VND5160J-E [STMICROELECTRONICS]

Double channel high side driver for automotive applications; 用于汽车应用的双通道高侧驱动器
VND5160J-E
型号: VND5160J-E
厂家: ST    ST
描述:

Double channel high side driver for automotive applications
用于汽车应用的双通道高侧驱动器

外围驱动器 驱动程序和接口 接口集成电路 光电二极管 PC
文件: 总31页 (文件大小:530K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VND5160J-E  
Double channel high side driver for automotive applications  
Features  
Max supply voltage  
VCC  
41V  
Operating voltage range  
Max on-state resistance  
Current limitation (typ)  
Off state supply current (typ)  
VCC 4.5 to 36V  
PowerSSO-12  
RON  
ILIMH  
IS  
160 mΩ  
5A  
2 µA(1)  
– Electrostatic discharge protection  
Application  
1. Typical value with all loads connected.  
General  
All types of resistive, inductive and capacitive  
loads  
– Inrush current active management by  
power limitation  
– Very low stand-by current  
Description  
– 3.0V CMOS compatible input  
– Optimized electromagnetic emission  
– Very low electromagnetic susceptibility  
– In compliance with the 2002/95/EC  
European directive  
The VND5160J-E is a monolithic device made  
using STMicroelectronics VIPower M0-5  
technology. It is intended for driving resistive or  
inductive loads with one side connected to  
ground. Active V pin voltage clamp protects the  
CC  
device against low energy spikes (see ISO7637  
transient compatibility table).  
Diagnostic functions  
– Open drain status output  
– On state open load detection  
– Off state open load detection  
– Thermal shutdown indication  
The device detects open load condition in both  
ON and OFF states, when STAT_DIS is left open  
or driven low. Output shorted to V is detected in  
CC  
the OFF state.  
Protection  
When STAT_DIS is driven high, the STATUS pin is  
in a high impedance condition.  
– Undervoltage shut-down  
– Overvoltage clamp  
– Output stuck to Vcc detection  
– Load current limitation  
Output current limitation protects the device in  
overload condition. In case of long duration  
overload, the device limits the dissipated power to  
safe level up to thermal shut-down intervention.  
Thermal shut-down with automatic restart allows  
the device to recover normal operation as soon as  
fault condition disappears.  
– Self limiting of fast thermal transients  
– Protection against loss of ground and loss  
of V  
CC  
– Thermal shut down  
– Reverse battery protection (see Figure 28)  
Table 1.  
Device summary  
Order codes  
Package  
Part number (Tube)  
Part number (Tape & Reel)  
PowerSSO-12  
VND5160J-E  
VND5160JTR-E  
December 2007  
Rev 5  
1/31  
www.st.com  
31  
Contents  
VND5160J-E  
Contents  
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
2.2  
2.3  
2.4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1  
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 20  
3.1.1  
3.1.2  
Solution 1 : resistor in the ground line (RGND only) . . . . . . . . . . . . . . . 20  
Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . 21  
3.2  
3.3  
3.4  
3.5  
Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Open load detection in Off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . 23  
4
5
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.1  
PowerSSO-12™ thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1  
5.2  
5.3  
ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PowerSSO-12™ package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2/31  
VND5160J-E  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Suggested connections for unused and N.C. pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Switching (VCC = 13V; Tj = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Status pin (V =0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SD  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Openload detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Logic input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PowerSSO-12™ mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3/31  
List of figures  
VND5160J-E  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Status timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output voltage drop limitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Off state output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10. High level input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 12. Input low level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 13. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 14. Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 15. Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 16. Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 17. On state resistance vs T  
Figure 18. On state resistance vs V  
Figure 19. Openload On state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 20. Openload Off state voltage detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 21. Turn - On voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 22. Turn - Off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
case  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
CC  
Figure 23.  
I
vs T  
LIM case  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 24. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 25. STAT_DIS clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 26. High level STAT_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 27. Low level STAT_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 28. Application schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 29. Open load detection in Off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 30. Maximum turn Off current versus inductance (for each channel) . . . . . . . . . . . . . . . . . . . . 23  
Figure 31. PowerSSO-12™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 32. Rthj-amb vs. PCB copper area in open box free air condition (one channel ON). . . . . . . . 24  
Figure 33. PowerSSO-12™ Thermal impedance junction ambient single pulse (one channel ON) . . 25  
Figure 34. Thermal fitting model of a double channel HSD in PowerSSO-12™ . . . . . . . . . . . . . . . . . 25  
Figure 35. PowerSSO-12™ package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 36. PowerSSO-12™ tube shipment (no suffix). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 37. PowerSSO-12™ tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4/31  
VND5160J-E  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1.  
Block diagram  
VCC  
OUTPUT1  
V
CC  
GND  
INPUT1  
CLAMP  
UNDERVOLTAGE  
CLAMP 1  
CLAMP 2  
DRIVER 2  
STATUS1  
STAT_DIS  
INPUT2  
DRIVER 1  
LOGIC  
ILIM  
1
ILIM  
2
PWRLIM  
1
VDSLIM  
1
VDSLIM  
2
STATUS2  
OPENLOAD ON 1  
OPENLOAD OFF 1  
OPENLOAD ON 2  
OVERTEMP. 1  
OVERTEMP. 2  
OPENLOAD OFF 2  
OUTPUT2  
PWRLIM  
2
Table 2.  
Pin functions  
Name  
VCC  
Function  
Battery connection.  
Power output.  
OUTPUTn  
GND  
Ground connection. Must be reverse battery protected by an external diode/  
resistor network.  
Voltage controlled input pin with hysteresis, CMOS compatible. Controls output  
switch state.  
INPUTn  
STATUSn  
STAT_DIS  
Open Drain digital diagnostic pin.  
Active high CMOS compatible pin, to disable the STATUS pin.  
5/31  
Block diagram and pin description  
Figure 2. Configuration diagram (top view)  
VND5160J-E  
TAB = Vcc  
Vcc  
GND  
12  
11  
10  
9
8
7
1
2
3
4
5
6
OUTPUT 1  
OUTPUT 1  
STAT_DIS  
INPUT 1  
STATUS 1  
OUTPUT 2  
OUTPUT 2  
Vcc  
STATUS 2  
INPUT 2  
Table 3.  
Suggested connections for unused and N.C. pins  
Connection / Pin  
STATUS  
N.C.  
OUTPUT  
INPUT  
STAT_DIS  
Floating  
X
X
X
X
X
Through 10kΩ  
Through 10kΩ  
To ground  
N.R.(1)  
X
N.R.  
resistor  
resistor  
1. Not recommended.  
6/31  
VND5160J-E  
Electrical specifications  
2
Electrical specifications  
Figure 3.  
Current and voltage conventions  
IS  
VCC  
VCC  
VFn  
IOUTn  
ISD  
OUTPUTn  
STATUSn  
STAT_DIS  
INPUTn  
VSD  
VOUTn  
IINn  
ISTATn  
VINn  
VSTATn  
GND  
IGND  
Note:  
V
= V  
- V  
during reverse battery condition.  
CCn  
Fn  
OUTn  
2.1  
Absolute maximum ratings  
Stressing the device above the ratings listed in the “Absolute maximum ratings” tables may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to the conditions in this section for extended  
periods may affect device reliability. Refer also to the STMicroelectronics SURE Program  
and other relevant quality documents.  
Table 4.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
-VCC  
-IGND  
IOUT  
-IOUT  
IIN  
DC supply voltage  
41  
0.3  
V
V
Reverse DC supply voltage  
DC reverse ground pin current  
DC output current  
200  
mA  
A
Internally limited  
6
Reverse DC output current  
DC input current  
A
+10 / -1  
+10 / -1  
+10 / -1  
mA  
mA  
mA  
ISTAT  
DC status current  
ISTAT_DIS DC status disable current  
Maximum switching energy  
EMAX  
(L=12mH; RL=0; Vbat=13.5V; Tjstart=150°C;  
IOUT = IlimL(Typ.) )  
33  
mJ  
7/31  
Electrical specifications  
VND5160J-E  
Unit  
Table 4.  
Symbol  
Absolute maximum ratings (continued)  
Parameter  
Value  
Electrostatic discharge (Human Body Model: R=1.5K;  
C=100pF)  
– INPUT  
4000  
4000  
4000  
5000  
5000  
V
V
V
V
V
– STATUS  
– STAT_DIS  
– OUTPUT  
– VCC  
VESD  
VESD  
Tj  
Charge device model (CDM-AEC-Q100-011)  
Junction operating temperature  
Storage temperature  
750  
V
-40 to 150  
-55 to 150  
°C  
°C  
Tstg  
2.2  
Thermal data  
Table 5.  
Symbol  
Thermal data  
Parameter  
Max value  
Unit  
Rthj-case Thermal resistance junction-case (max.) (with one channel ON)  
Rthj-amb Thermal resistance junction-ambient  
8
°C/W  
°C/W  
See Figure 32  
8/31  
VND5160J-E  
Electrical specifications  
2.3  
Electrical characteristics  
Values specified in this section are for 8V<V <36V; -40°C<T <150°C, unless otherwise  
CC  
j
stated.  
.
Table 6.  
Power section  
Parameter  
Symbol  
Test conditions  
Min. Typ. Max. Unit  
VCC  
Operating supply voltage  
4.5  
13  
36  
V
V
VUSD Undervoltage shutdown  
3.5  
4.5  
Undervoltage Shut-down  
hysteresis  
V
0.5  
46  
V
USDhyst  
I
OUT= 1A; Tj= 25°C  
160 mΩ  
320 mΩ  
210 mΩ  
RON  
On state resistance(2)  
IOUT= 1A; Tj= 150°C  
IOUT= 1A; VCC= 5V; Tj= 25°C  
Vclamp Clamp voltage  
IS= 20mA  
41  
52  
V
Off State; VCC=13V; VIN=VOUT=0  
Tj= 25°C;  
IS  
Supply current  
2(1) 5(1) µA  
On State; VCC=13V; VIN=5V;  
IOUT= 0A  
3
6
mA  
µA  
V
VIN=VOUT=0V; VCC=13V; Tj=25°C  
VIN=VOUT=0V; VCC=13V; Tj=125°C  
0
0
0.01  
3
5
IL(off1)  
IL(off2)  
VF  
Off state output current(2)  
VIN=0V; VOUT=4V  
-75  
0
Output - V diode  
CC  
-IOUT=0.6A; Tj=150°C  
0.7  
(2)  
voltage  
1. PowerMOS leakage included.  
2. For each channel.  
Table 7.  
Symbol  
Switching (V = 13V; T = 25°C)  
CC j  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
td(on)  
td(off)  
Turn-On delay time  
Turn-Off delay time  
RL=13(see Figure 6)  
RL=13(see Figure 6)  
RL=13Ω  
10  
15  
µs  
µs  
dVOUT/dt(on) Turn-On voltage slope  
dVOUT/dt(off) Turn-Off voltage slope  
See Figure 21  
See Figure 22  
0.07  
V/ µs  
V/ µs  
mJ  
RL=13Ω  
WON  
Switching energy losses during twon RL=13(see Figure 6)  
Switching energy losses during twoff RL=13(see Figure 6)  
WOFF  
0.04  
mJ  
9/31  
Electrical specifications  
VND5160J-E  
Table 8.  
Symbol  
Status pin (V =0)  
SD  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VSTAT  
ILSTAT  
CSTAT  
Status low output voltage  
Status leakage current  
ISTAT= 1.6 mA, VSD=0V  
0.5  
10  
V
Normal operation or VSD=5V,  
VSTAT= 5V  
µA  
Normal operation or VSD=5V,  
VSTAT= 5V  
Status pin input capacitance  
Status clamp voltage  
100  
7
pF  
I
STAT= 1mA  
5.5  
V
V
VSCL  
ISTAT= - 1mA  
-0.7  
(1)  
Table 9.  
Symbol  
Protection  
Parameter  
Test conditions  
Min.  
Typ. Max. Unit  
VCC= 13V  
3.5  
5
7.5  
7.5  
A
A
IlimH  
DC short circuit current  
5V<VCC<36V  
Short circuit current during  
thermal cycling  
IlimL  
VCC= 13V TR<Tj<TTSD  
2
A
TTSD  
TR  
Shutdown temperature  
Reset temperature  
150  
175  
200  
°C  
°C  
°C  
°C  
T
+ 1  
T
+ 5  
RS  
RS  
TRS  
Thermal reset of STATUS  
135  
THYST Thermal hysteresis (T  
-T )  
7
TSD  
R
Status delay in overload  
conditions  
tSDL  
Tj>TTSD  
20  
µs  
V
Turn-Off output voltage  
clamp  
VDEMAG  
IOUT=1A; VIN=0; L=20mH  
V
-41  
V
-46  
V
-52  
CC  
CC  
CC  
I
OUT= 0.03A;  
Output voltage drop  
limitation  
VON  
Tj= -40°C...+150°C  
25  
mV  
(see Figure 5)  
1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related  
diagnostic signals must be used together with a proper software strategy. If the device is subjected to  
abnormal conditions, this software must limit the duration and number of activation cycles.  
10/31  
VND5160J-E  
Electrical specifications  
Table 10. Openload detection  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
Openload On state  
detection threshold  
See  
Figure 19  
IOL  
VIN = 5V, 8V<VCC<18V  
10  
40  
mA  
µs  
Openload On state  
detection delay  
IOUT = 0A, VCC=13V  
(see Figure 4)  
tDOL(on)  
200  
Delay between INPUT falling  
edge and STATUS rising  
edge in Openload condition  
tPOL  
IOUT = 0A (see Figure 4) 200  
500  
1000  
µs  
Openload Off state voltage  
detection threshold  
See  
Figure 20  
VOL  
VIN = 0V, 8V<VCC<16V  
2
4
V
Output short circuit to Vcc  
detection delay at turn Off  
tDSTKON  
See Figure 4  
180  
tPOL  
µs  
Table 11. Logic input  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VIL  
IIL  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
0.9  
V
µA  
V
VIN= 0.9V  
VIN= 2.1V  
1
VIH  
IIH  
2.1  
10  
µA  
V
VI(hyst) Input hysteresis voltage  
0.25  
5.5  
IIN= 1mA  
IIN= -1mA  
7
V
V
VICL  
Input clamp voltage  
-0.7  
VSDL  
ISDL  
VSDH  
ISDH  
STAT_DIS low level voltage  
Low level STAT_DIS current  
STAT_DIS high level voltage  
High level STAT_DIS current  
0.9  
V
µA  
V
VCSD= 0.9V  
VCSD= 2.1V  
1
2.1  
10  
7
µA  
V
VSD(hyst) STAT_DIS hysteresis voltage  
VSDCL STAT_DIS clamp voltage  
0.25  
5.5  
ISD= 1mA  
V
V
ISD= -1mA  
-0.7  
11/31  
Electrical specifications  
Figure 4.  
VND5160J-E  
Status timings  
OPEN LOAD STATUS TIMING (without external pull-up)  
< I  
OPEN LOAD STATUS TIMING (with external pull-up)  
< I  
I
I
OUT  
OL  
OUT  
OL  
V
V
V
IN  
IN  
V
< V  
OL  
V
> V  
OL  
OUT  
OUT  
V
STAT  
STAT  
t
t
DOL(on)  
DOL(on)  
t
POL  
OUTPUT STUCK TO Vcc  
> I  
OVER TEMP STATUS TIMING  
T > T  
I
j
TSD  
OUT  
OL  
V
IN  
V
V
IN  
V
> V  
OL  
OUT  
V
STAT  
STAT  
t
t
DOL(on)  
t
SDL  
DSTKON  
t
SDL  
Figure 5.  
Output voltage drop limitation  
Vcc-Vout  
o
o
T =150 C  
j
T =25 C  
j
o
T =-40 C  
j
Von  
Iout  
Von/Ron(T)  
12/31  
VND5160J-E  
Electrical specifications  
STATUSn (VSD=0V)(1)  
Table 12. Truth table  
Conditions  
INPUTn  
OUTPUTn  
L
L
H
H
Normal operation  
Current limitation  
Overtemperature  
Undervoltage  
H
H
L
L
H
H
H
X
L
L
L
H
L
H
L
L
L
X
X
H
L
H
H
L(2)  
H
Output Voltage > VOL  
Output Current < IOL  
H
L
L
H(3)  
L
H
H
1. If the VSD is high, the STATUS pin is in a high impedance.  
2. The STATUS pin is low with a delay equal to tDSTKON after INPUT falling edge.  
3. The STATUS pin becomes high with a delay equal to tPOL after INPUT falling edge.  
Figure 6.  
Switching characteristics  
V
OUT  
t
t
Won  
Woff  
90%  
80%  
dV  
/dt  
dV  
/dt  
OUT (off)  
OUT (on)  
10%  
t
f
t
r
t
INPUT  
t
d(on)  
t
d(off)  
t
13/31  
Electrical specifications  
VND5160J-E  
Table 13. Electrical transient requirements  
ISO 7637-2:  
2004(E)  
Test levels(1)  
Number of  
pulses or  
test times  
Burst cycle/pulse  
repetition time  
Delays and  
impedance  
III  
IV  
test pulse  
1
2a  
3a  
3b  
4
-75V  
+37V  
-100V  
+75V  
-6V  
-100V  
+50V  
-150V  
+100V  
-7V  
5000 pulses  
5000 pulses  
1h  
0.5 s  
0.2 s  
5 s  
2 ms, 10 Ω  
50 µs, 2 Ω  
5 s  
90 ms  
90 ms  
100 ms  
100 ms  
0.1 µs, 50 Ω  
0.1 µs, 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
1h  
1 pulse  
1 pulse  
5b(2)  
+65V  
+87V  
ISO 7637-2:  
2004(E)  
Test level results(1)  
III  
IV  
test pulse  
1
2a  
3a  
3b  
4
C
C
C
C
C
C
C
C
C
C
C
C
5b(2)  
1. The above test levels must be considered referred to VCC = 13.5V except for pulse 5b.  
2. Valid in case of external load dump clamp: 40V maximum referred to ground.  
Class  
Contents  
C
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device are not performed as designed after exposure to  
disturbance and cannot be returned to proper operation without replacing the device.  
E
14/31  
VND5160J-E  
Figure 7.  
Electrical specifications  
Waveforms  
NORMAL OPERATION  
INPUT  
STAT_DIS  
LOAD CURRENT  
STATUS  
UNDERVOLTAGE  
V
USDhyst  
V
CC  
V
USD  
INPUT  
STAT_DIS  
LOAD CURRENT  
STATUS  
undefined  
OPEN LOAD with external pull-up  
INPUT  
STAT_DIS  
V
>V  
OUT OL  
LOAD VOLTAGE  
STATUS  
V
OL  
OPEN LOAD without external pull-up  
INPUT  
STAT_DIS  
LOAD VOLTAGE  
LOAD CURRENT  
STATUS  
I
<I  
OUT OL  
POL  
t
RESISTIVE SHORT TO Vcc, NORMAL LOAD  
INPUT  
STAT_DIS  
I
>I  
OUT OL  
V >V  
OUT OL  
LOAD VOLTAGE  
STATUS  
V
OL  
t
DSTKON  
OVERLOAD OPERATION  
T
TSD  
T
T
R
j
T
RS  
INPUT  
STAT_DIS  
I
LIMH  
I
LIML  
LOAD CURRENT  
STATUS  
thermal cycling  
SHORTED LOAD  
current power  
limitation  
limitation  
NORMAL LOAD  
15/31  
Electrical specifications  
VND5160J-E  
2.4  
Electrical characteristics curves  
Figure 8.  
Off state output current  
Figure 9.  
Input clamp voltage  
Iloff1 (uA)  
Vicl (V)  
8
0.25  
0.2  
0.15  
0.1  
7.75  
7.5  
Off state  
Vcc=13V  
Vin=Vout=0V  
Ii n =1mA  
7.25  
7
6.75  
6.5  
0.05  
0
6.25  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
150  
150  
175  
175  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
150  
150  
175  
175  
175  
Tc (°C )  
Tc (°C )  
Figure 10. High level input current  
Figure 11. Input high level  
Iih (uA)  
5
Vih (V)  
4
4.5  
3.5  
3
Vin=2.1V  
4
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Tc (°C)  
Tc (°C)  
Figure 12. Input low level  
Figure 13. Input hysteresis voltage  
Vil (V)  
4
Vihyst (V)  
2
3.5  
3
1.75  
1.5  
1.25  
1
2.5  
2
1.5  
1
0.75  
0.5  
0.25  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Tc (°C)  
Tc (°C )  
16/31  
VND5160J-E  
Electrical specifications  
Figure 14. Status low output voltage  
Figure 15. Status leakage current  
Ilstat (uA)  
0.08  
Vstat (V)  
0.9  
0.8  
0.072  
0.064  
0.056  
0.048  
0.04  
Istat=1.6mA  
Vstat=5V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.032  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C )  
Tc (°C )  
Figure 16. Status clamp voltage  
Figure 17. On state resistance vs T  
case  
Ron (mOhm)  
300  
Vscl (V)  
9
270  
8.5  
Istat=1mA  
Io ut=1A  
Vcc=13V  
240  
8
210  
7.5  
7
180  
150  
120  
90  
6.5  
6
5.5  
5
60  
30  
4.5  
4
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C )  
Tc (°C )  
Figure 18. On state resistance vs V  
Figure 19. Openload On state detection  
threshold  
CC  
Ron (mOhm)  
300  
Iol (mA)  
100  
275  
90  
Tc=150°C  
Tc=125°C  
Vin=5V  
250  
225  
200  
175  
150  
125  
100  
75  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tc=25°C  
Tc=-40°C  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Vcc (V)  
Tc (°C )  
17/31  
Electrical specifications  
VND5160J-E  
Figure 20. Openload Off state voltage  
detection threshold  
Figure 21. Turn - On voltage slope  
Vol (V)  
5
dVout/dt(on) (V/ms)  
1000  
4.5  
900  
Vin=0V  
Vcc=13V  
Ri=6.5Ohm  
4
800  
3.5  
3
700  
600  
500  
400  
300  
200  
100  
0
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C )  
Tc (°C )  
Figure 22. Turn - Off voltage slope  
Figure 23. I  
vs T  
LIM  
case  
Ilimh (A)  
10  
dVout/dt(off) (V/ms)  
1000  
9
8
7
6
5
4
3
2
1
0
900  
800  
700  
Vcc=13V  
Vcc=13V  
600  
Ri=13Ohm  
500  
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C )  
Tc (°C )  
Figure 24. Undervoltage shutdown  
Figure 25. STAT_DIS clamp voltage  
Vusd (V)  
14  
Vsdcl (V)  
14  
12  
10  
8
12  
Is d =1mA  
10  
8
6
4
2
0
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C )  
Tc (°C )  
18/31  
VND5160J-E  
Electrical specifications  
Figure 26. High level STAT_DIS voltage  
Figure 27. Low level STAT_DIS voltage  
Vsdh (V)  
8
Vsdl (V)  
8
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C )  
Tc (°C )  
19/31  
Application information  
VND5160J-E  
3
Application information  
Figure 28. Application schematic  
+5V  
+5V  
V
CC  
R
prot  
STAT_DIS  
D
ld  
R
INPUT  
prot  
µC  
OUTPUT  
STATUS  
R
prot  
GND  
R
GND  
V
D
GND  
GND  
Note:  
Channels 2, has the same internal circuit as channel 1.  
3.1  
GND protection network against reverse battery  
3.1.1  
Solution 1 : resistor in the ground line (R  
only)  
GND  
This can be used with any type of load.  
The following is an indication on how to dimension the R  
resistor.  
GND  
1.  
2.  
R
R
600mV / (I  
).  
GND  
GND  
S(on)max  
≥ (V ) / (-I  
)
CC  
GND  
where -I  
is the DC reverse ground pin current and can be found in the absolute  
GND  
maximum rating section of the device datasheet.  
Power Dissipation in R  
(when V <0: during reverse battery situations) is:  
CC  
GND  
2
P = (-V ) /R  
D
CC  
GND  
This resistor can be shared amongst several different HSDs. Please note that the value of  
this resistor should be calculated with formula (1) where I  
maximum on-state currents of the different devices.  
becomes the sum of the  
S(on)max  
Please note that if the microprocessor ground is not shared by the device ground then the  
will produce a shift (I * R ) in the input thresholds and the status output  
R
GND  
S(on)max  
GND  
values. This shift will vary depending on how many devices are ON in the case of several  
high side drivers sharing the same R  
.
GND  
20/31  
VND5160J-E  
Application information  
If the calculated power dissipation leads to a large resistor or several devices have to share  
the same resistor then ST suggests to utilize Solution 2 (see below).  
3.1.2  
Solution 2: a diode (D  
) in the ground line  
GND  
A resistor (R  
inductive load.  
=1k) should be inserted in parallel to D if the device drives an  
GND  
GND  
This small signal diode can be safely shared amongst several different HSDs. Also in this  
case, the presence of the ground network will produce a shift (600mV) in the input  
threshold and in the status output values if the microprocessor ground is not common to the  
device ground. This shift will not vary if more than one HSD shares the same diode/resistor  
network.  
3.2  
3.3  
Load dump protection  
D is necessary (Voltage transient suppressor) if the load dump peak voltage exceeds the  
ld  
V
max DC rating. The same applies if the device is subject to transients on the V line  
CC  
CC  
that are greater than the ones shown in the ISO 7637-2: 2004(E) table.  
MCU I/Os protection  
If a ground protection network is used and negative transient are present on the V line,  
CC  
the control pins will be pulled negative. ST suggests to insert a resistor (R ) in line to  
prot  
prevent the µC I/Os pins to latch-up.  
The value of these resistors is a compromise between the leakage current of µC and the  
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC  
I/Os.  
-V  
/I  
R  
(V  
-V -V  
) / I  
CCpeak latchup  
prot  
OHµC IH GND IHmax  
Calculation example:  
For V  
= - 100V and I  
20mA; V  
4.5V  
CCpeak  
latchup  
OHµC  
5kR  
180k.  
prot  
Recommended R  
values is 10k.  
prot  
3.4  
Open load detection in Off state  
Off state open load detection requires an external pull-up resistor (R ) connected between  
PU  
OUTPUT pin and a positive supply voltage (V ) like the +5V line used to supply the  
PU  
microprocessor.  
The external resistor has to be selected according to the following requirements:  
1. no false open load indication when load is connected: in this case we have to avoid  
V
V
to be higher than V  
; this results in the following condition  
OUT  
OUT  
Olmin  
=(V /(R +R ))R <V .  
PU  
L
PU  
L
Olmin  
2. no misdetection when load is disconnected: in this case the V has to be higher than  
out  
V
; this results in the following condition R <(V –V  
)/I  
.
OLmax  
PU  
PU OLmax L(off2)  
21/31  
Application information  
Because I  
VND5160J-E  
may significantly increase if V is pulled high (up to several mA), the pull-  
s(OFF)  
out  
up resistor R should be connected to a supply that is switched OFF when the module is in  
PU  
standby.  
The values of V  
section.  
, V  
and I  
are available in the Electrical characteristics  
OLmin OLmax  
L(off2)  
Figure 29. Open load detection in Off state  
V batt.  
V
PU  
VCC  
R
PU  
DRIVER  
+
INPUT  
IL(off2)  
LOGIC  
OUT  
+
-
R
STATUS  
V
OL  
R
L
GROUND  
22/31  
VND5160J-E  
Application information  
3.5  
Maximum demagnetization energy (VCC = 13.5V)  
Figure 30. Maximum turn Off current versus inductance (for each channel)  
10  
A
B
C
1
0,1  
0,1  
1
L (mH)  
10  
100  
A: Tjstart = 150°C single pulse  
B: Tjstart = 100°C repetitive pulse  
C: Tjstart = 125°C repetitive pulse  
VIN, IL  
Demagnetization  
Demagnetization  
Demagnetization  
t
Note:  
Values are generated with R = 0.  
L
In case of repetitive pulses, T  
(at beginning of each demagnetization) of every pulse  
jstart  
must not exceed the temperature specified above for curves A and B.  
23/31  
Package and PCB thermal data  
VND5160J-E  
4
Package and PCB thermal data  
4.1  
PowerSSO-12™ thermal data  
Figure 31. PowerSSO-12™ PC board  
Note:  
Layout condition of R and Z measurements (PCB: Double layer, Thermal Vias, FR4  
th th  
area= 77mm x 86mm,PCB thickness=1.6mm, Cu thickness=70µm (front and back side),  
2
Copper areas: from minimum pad lay-out to 8cm ).  
Figure 32. R  
vs. PCB copper area in open box free air condition (one channel  
thj-amb  
ON)  
RTHj_amb(°C/W)  
65  
60  
55  
50  
45  
40  
35  
30  
0
2
4
6
8
10  
PCB Cu heatsink area (cm^2)  
24/31  
VND5160J-E  
Package and PCB thermal data  
Figure 33. PowerSSO-12™ Thermal impedance junction ambient single pulse (one  
channel ON)  
ZTH (°C/W)  
100  
Footprint  
2
2 cm  
2
8 cm  
10  
1
0,1  
0,0001  
0,001  
0,01  
0,1  
Time (s)  
1
10  
100  
1000  
Pulse calculation formula  
= R ⋅ δ + Z (1 δ)  
Z
THδ  
TH  
THtp  
where δ = t /T  
P
(a)  
Figure 34. Thermal fitting model of a double channel HSD in PowerSSO-12™  
a. The fitting model is a semplified thermal tool and is valid for transient evolutions where the embedded  
protections (power limitation or thermal cycling during thermal shutdown) are not triggered.  
25/31  
Package and PCB thermal data  
VND5160J-E  
8
Table 14. Thermal parameters  
Area/island (cm2)  
R1=R7 (°C/W)  
R2=R8 (°C/W)  
R3 (°C/W)  
Footprint  
2
1.2  
6
7
R4 (°C/W)  
10  
10  
15  
20  
9
R5 (°C/W)  
22  
10  
15  
R6 (°C/W)  
26  
C1=C7 (W.s/°C)  
C2=C8 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
0.0008  
0.0016  
0.05  
0.2  
0.1  
0.8  
6
0.1  
1
0.27  
3
9
26/31  
VND5160J-E  
Package and packing information  
5
Package and packing information  
5.1  
ECOPACK® packages  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second-level interconnect. The category of  
Second-Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
5.2  
PowerSSO-12™ package information  
Figure 35. PowerSSO-12™ package dimensions  
27/31  
Package and packing information  
VND5160J-E  
Table 15. PowerSSO-12™ mechanical data  
Millimeters  
Typ.  
Symbol  
Min.  
1.250  
0.000  
1.100  
0.230  
0.190  
4.800  
3.800  
Max.  
1.620  
0.100  
1.650  
0.410  
0.250  
5.000  
4.000  
A
A1  
A2  
B
C
D
E
e
0.800  
H
5.800  
0.250  
0.400  
0°  
6.200  
0.500  
1.270  
8°  
h
L
k
X
1.900  
3.600  
2.500  
4.200  
0.100  
Y
ddd  
28/31  
VND5160J-E  
Package and packing information  
5.3  
Packing information  
Figure 36. PowerSSO-12™ tube shipment (no suffix)  
B
Base Q.ty  
100  
2000  
532  
C
Bulk Q.ty  
Tube length ( 0.5)  
A
1.85  
6.75  
0.6  
A
B
C ( 0.1)  
All dimensions are in mm.  
Figure 37. PowerSSO-12™ tape and reel shipment (suffix “TR”)  
REEL DIMENSIONS  
Base Q.ty  
Bulk Q.ty  
A (max)  
B (min)  
C ( 0.2)  
F
2500  
2500  
330  
1.5  
13  
20.2  
12.4  
60  
G (+ 2 / -0)  
N (min)  
T (max)  
18.4  
TAPE DIMENSIONS  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb. 1986  
Tape width  
W
12  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
Hole Diameter  
Hole Position  
P0 ( 0.1)  
P
8
D ( 0.05)  
D1 (min)  
F ( 0.1)  
K (max)  
P1 ( 0.1)  
1.5  
1.5  
5.5  
4.5  
2
Compartment Depth  
Hole Spacing  
All dimensions are in mm.  
End  
Start  
Top  
cover  
tape  
No components Components  
500mm min  
No components  
500mm min  
Empty components pockets  
saled with cover tape.  
User direction of feed  
29/31  
Revision history  
VND5160J-E  
6
Revision history  
Table 16. Document revision history  
Date  
Revision  
Changes  
7-Jan-2004  
3-Feb-2006  
1
2
Initial release.  
Major series of updates incorporated.  
Reformatted.  
Added list of tables and list of figures.  
20-Mar-2007  
01-Jun-2007  
3
4
Added Section 3.5: Maximum demagnetization energy  
(VCC = 13.5V).  
Added new disclaimer.  
Updated Table 4: Absolute maximum ratings: EMAX entries.  
Updated Table 13: Electrical transient requirements :Test level  
values III and IV for test pulse 5b and notes.  
Figure 34: Thermal fitting model of a double channel HSD in  
PowerSSO-12™ added note.  
Updated Section 4.1: PowerSSO-12™ thermal data:  
– Changed Figure 32: Rthj-amb vs. PCB copper area in open  
box free air condition (one channel ON).  
– Changed Figure 33: PowerSSO-12™ Thermal impedance  
junction ambient single pulse (one channel ON).  
– Updated Table 14: Thermal parameters:  
R1 and R7 values changed from 1.2 to 0.1 °C/W.  
R2 = R8 values changed from 6 to 0.2 °C/W.  
R3 value changed from 7 to 4 °C/W.  
17-Dec-2007  
5
R4 values changed from 10/10/9 to 8/8/7 °C/W.  
C1=C7 values changed from 0.0008 to 0.0001 °C/W.  
C2=C8 values changed from 0.0016 to 0.002 °C/W.  
30/31  
VND5160J-E  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
31/31  

相关型号:

VND5160JTR-E

Double channel high side driver for automotive applications
STMICROELECTR

VND5E004A-E

Double 4 m high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E004A30TR-E

Double 4 m high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E004ASP30-E

Double 4 m high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E004ATR-E

Double 4 m high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E006ASP-E

Double channel high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E006ASPTR-E

Double channel high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E008ASP-E

Double channel high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E008ASPTR-E

Double channel high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E008MY-E

Double channel high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E008MYTR-E

Double channel high-side driver with analog current sense for automotive applications
STMICROELECTR

VND5E012AY-E

Double channel high-side driver with analog current sense for automotive applications
STMICROELECTR