VND7050AJ12TR [STMICROELECTRONICS]

Double channel high-side driver with CurrentSense analog feedback;
VND7050AJ12TR
型号: VND7050AJ12TR
厂家: ST    ST
描述:

Double channel high-side driver with CurrentSense analog feedback

文件: 总43页 (文件大小:1497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VND7050AJ12  
Double channel high-side driver with CurrentSense analog  
feedback for automotive applications  
Datasheet - production data  
Sense enable/ disable  
Protections  
Undervoltage shutdown  
Overvoltage clamp  
Load current limitation  
Self limiting of fast thermal transients  
Loss of ground and loss of VCC  
Reverse battery with external  
components  
PowerSSO-12  
GAPG040515 1112CFT  
Features  
Electrostatic discharge protection  
Max transient supply voltage  
VCC  
VCC  
40 V  
Applications  
Operating voltage range  
4 V to 28 V  
2.85 V  
All types of Automotive resistive, inductive  
and capacitive loads  
Minimum cranking supply  
voltage (VCC decreasing)  
VUSD_Cranking  
RON  
Specially intended for Automotive Signal  
Lamps (up to P27W or SAE1156 or LED  
Rear Combinations)  
Typ. on-state resistance  
(per Ch)  
50 mΩ  
Current limitation (typ)  
Standby current (max)  
ILIMH  
ISTBY  
30 A  
Description  
0.5 µA  
The device is a double channel high-side driver  
manufactured using ST proprietary VIPower®  
technology and housed in PowerSSO-12  
package. The device is designed to drive 12 V  
automotive grounded loads through a 3 V and  
5 V CMOS compatible interface, providing  
protection and diagnostics.  
Automotive qualified  
Extreme low voltage operation for deep cold  
cranking applications (compliant with LV124,  
revision 2013)  
General  
Double channel smart high-side driver  
with CurrentSense analog feedback  
Very low standby current  
Compatible with 3 V and 5 V CMOS  
outputs  
The device integrates advanced protective  
functions such as load current limitation, overload  
active management by power limitation and  
overtemperature shutdown.  
CurrentSense diagnostic functions  
A current sense delivers high precision  
proportional load current sense in addition to the  
detection of overload and short circuit to ground,  
short to VCC and off-state open-load.  
Multiplexed analog feedback of: load  
current with high precision proportional  
current mirror  
Overload and short to ground (power  
limitation) indication  
Thermal shutdown indication  
Off-state open-load detection  
Output short to VCC detection  
A sense enable pin allows off-state diagnosis to  
be disabled during the module low-power mode  
as well as external sense resistor sharing among  
similar devices.  
September 2015  
DocID027585 Rev 3  
1/43  
www.st.com  
This is information on a product in full production.  
Contents  
VND7050AJ12  
Contents  
1
2
Block diagram and pin description................................................5  
Electrical specification....................................................................7  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings................................................................7  
Thermal data.....................................................................................8  
Main electrical characteristics ...........................................................8  
Waveforms......................................................................................18  
Electrical characteristics curves ......................................................19  
3
4
Protections.....................................................................................23  
3.1  
3.2  
3.3  
3.4  
Power limitation...............................................................................23  
Thermal shutdown...........................................................................23  
Current limitation.............................................................................23  
Negative voltage clamp...................................................................23  
Application information ................................................................24  
4.1  
GND protection network against reverse battery.............................24  
4.1.1  
Diode (DGND) in the ground line ..................................................... 25  
4.2  
4.3  
4.4  
4.5  
Immunity against transient electrical disturbances..........................25  
MCU I/Os protection........................................................................26  
Behaviour during engine start transients.........................................26  
CurrentSense - analog current sense .............................................28  
4.5.1  
4.5.2  
Principle of CurrenSense signal generation..................................... 29  
Short to VCC and OFF-state open-load detection ........................... 31  
5
6
Maximum demagnetization energy (VCC = 16 V)........................33  
Package and PCB thermal data....................................................34  
6.1  
PowerSSO-12 thermal data ............................................................34  
7
Package information .....................................................................37  
7.1  
7.2  
7.3  
PowerSSO-12 package information................................................37  
PowerSSO-12 packing information .................................................38  
PowerSSO-12 marking information.................................................40  
8
9
Order codes ...................................................................................41  
Revision history ............................................................................42  
2/43  
DocID027585 Rev 3  
VND7050AJ12  
List of tables  
List of tables  
Table 1: Pin functions .................................................................................................................................5  
Table 2: Suggested connections for unused and not connected pins........................................................6  
Table 3: Absolute maximum ratings ...........................................................................................................7  
Table 4: Thermal data.................................................................................................................................8  
Table 5: Electrical characteristics during cranking .....................................................................................8  
Table 6: Power section ...............................................................................................................................9  
Table 7: Switching.......................................................................................................................................9  
Table 8: Logic inputs.................................................................................................................................10  
Table 9: Protections..................................................................................................................................11  
Table 10: CurrentSense............................................................................................................................11  
Table 11: Truth table.................................................................................................................................17  
Table 12: CurrentSense multiplexer addressing ......................................................................................17  
Table 13: ISO 7637-2 - electrical transient conduction along supply line.................................................26  
Table 14: Test parameters, E-11 Start pulses..........................................................................................27  
Table 15: Cranking operating mode .........................................................................................................28  
Table 16: CurrentSense pin levels in off-state..........................................................................................31  
Table 17: PCB properties .........................................................................................................................34  
Table 18: Thermal parameters .................................................................................................................36  
Table 19: PowerSSO-12 mechanical data................................................................................................38  
Table 20: Reel dimensions .......................................................................................................................38  
Table 21: PowerSSO-12 carrier tape dimensions ....................................................................................39  
Table 22: Device summary.......................................................................................................................41  
Table 23: Document revision history ........................................................................................................42  
DocID027585 Rev 3  
3/43  
List of figures  
VND7050AJ12  
List of figures  
Figure 1: Block diagram..............................................................................................................................5  
Figure 2: Configuration diagram (top view).................................................................................................6  
Figure 3: Current and voltage conventions.................................................................................................7  
Figure 4: IOUT/ISENSE versus IOUT.......................................................................................................14  
Figure 5: Current sense accuracy versus IOUT .......................................................................................15  
Figure 6: Switching times and Pulse skew ...............................................................................................15  
Figure 7: CurrentSense timings................................................................................................................16  
Figure 8: TDSTKON..................................................................................................................................16  
Figure 9: Standby mode activation ...........................................................................................................18  
Figure 10: Standby state diagram.............................................................................................................18  
Figure 11: OFF-state output current .........................................................................................................19  
Figure 12: Standby current .......................................................................................................................19  
Figure 13: IGND(ON) vs. Tcase ...............................................................................................................19  
Figure 14: Logic Input high level voltage ..................................................................................................19  
Figure 15: Logic Input low level voltage....................................................................................................19  
Figure 16: High level logic input current ...................................................................................................19  
Figure 17: Low level logic input current ....................................................................................................20  
Figure 18: Logic Input hysteresis voltage .................................................................................................20  
Figure 19: Undervoltage shutdown...........................................................................................................20  
Figure 20: On-state resistance vs. Tcase.................................................................................................20  
Figure 21: On-state resistance vs. Vcc.....................................................................................................20  
Figure 22: Turn-on voltage slope..............................................................................................................20  
Figure 23: Turn-off voltage slope..............................................................................................................21  
Figure 24: Won vs Tcase..........................................................................................................................21  
Figure 25: Woff vs Tcase..........................................................................................................................21  
Figure 26: ILIMH vs. Tcase.......................................................................................................................21  
Figure 27: OFF-state open-load voltage detection threshold ...................................................................21  
Figure 28: Vsense clamp vs Tcase...........................................................................................................21  
Figure 29: Vsenseh vs Tcase ...................................................................................................................22  
Figure 30: Application diagram.................................................................................................................24  
Figure 31: Simplified internal structure - GND network protection with Schottly diode............................24  
Figure 32: Simplified internal structure - GND network protection with MOSFET....................................25  
Figure 33: Cranking profile .......................................................................................................................27  
Figure 34: CurrentSense and diagnostic – block diagram........................................................................28  
Figure 35: CurrentSense block diagram...................................................................................................29  
Figure 36: Analogue HSD – open-load detection in off-state ...................................................................30  
Figure 37: Open-load / short to VCC condition.........................................................................................31  
Figure 38: Maximum turn off current versus inductance ..........................................................................33  
Figure 39: PowerSSO-12 on two-layers PCB (2s0p to JEDEC JESD 51-5)............................................34  
Figure 40: PowerSSO-12 on four-layers PCB (2s2p to JEDEC JESD 51-7) ...........................................34  
Figure 41: Rthj-amb vs PCB copper area in open box free air condition (one channel on).....................35  
Figure 42: PowerSSO-12 thermal impedance junction ambient single pulse (one channel on) ..............35  
Figure 43: Thermal fitting model of a double-channel HSD in PowerSSO-12..........................................36  
Figure 44: PowerSSO-12 package dimensions........................................................................................37  
Figure 45: PowerSSO-12 reel 13" ............................................................................................................38  
Figure 46: PowerSSO-12 carrier tape ......................................................................................................39  
Figure 47: PowerSSO-12 schematic drawing of leader and trailer tape ..................................................40  
Figure 48: PowerSSO-12 marking information.........................................................................................40  
4/43  
DocID027585 Rev 3  
VND7050AJ12  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1: Block diagram  
Table 1: Pin functions  
Function  
Name  
VCC  
Battery connection.  
OUTPUT0,1 Power output.  
Ground connection. Must be reverse battery protected by an external diode/resistor  
network.  
GND  
INPUT0,1  
CurrentSense  
SEn  
Voltage controlled input pins with hysteresis, compatible with 3 V and 5 V CMOS  
outputs. They control output switch state.  
Multiplexed analog sense output pin; it delivers a current proportional to the load  
current.  
Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the  
CurrentSense diagnostic pin.  
Active high compatible with 3 V and 5 V CMOS outputs pin; it addresses the  
CurrentSense multiplexer.  
SEL  
DocID027585 Rev 3  
5/43  
 
 
 
Block diagram and pin description  
VND7050AJ12  
Figure 2: Configuration diagram (top view)  
Table 2: Suggested connections for unused and not connected pins  
Connection/pin  
CurrentSense  
N.C. Output  
Input  
SEn, SEL  
Floating  
Not allowed  
X (1)  
X
X
X
Through 1 kΩ  
Not  
allowed  
Through 15 kΩ  
Through 15 kΩ  
To ground  
X
resistor  
resistor  
resistor  
Notes:  
(1)X: do not care.  
6/43  
DocID027585 Rev 3  
 
 
 
VND7050AJ12  
Electrical specification  
2
Electrical specification  
Figure 3: Current and voltage conventions  
VFn = VOUTn - VCC during reverse battery condition.  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to the conditions in table below for extended  
periods may affect device reliability.  
Table 3: Absolute maximum ratings  
Symbol  
VCC DC supply voltage  
-VCC Reverse DC supply voltage  
Parameter  
Value  
38  
Unit  
V
0.3  
V
Maximum transient supply voltage (ISO 16750-2:2010 Test B  
clamped to 40 V; RL = 4 Ω)  
VCCPK  
40  
V
VCCJS Maximum jump start voltage for single pulse short circuit protection  
-IGND DC reverse ground pin current  
28  
V
200  
Internally limited  
11  
mA  
IOUT OUTPUT0,1 DC output current  
A
mA  
-IOUT Reverse DC output current  
IIN  
INPUT0,1 DC input current  
ISEn  
ISEL  
SEn DC input current  
-1 to 10  
SEL DC input current  
CurrentSense pin DC output current (VGND = VCC and VSENSE < 0 V)  
CurrentSense pin DC output current in reverse (VCC < 0V)  
10  
ISENSE  
mA  
-20  
DocID027585 Rev 3  
7/43  
 
 
 
 
Electrical specification  
VND7050AJ12  
Symbol  
Parameter  
Value  
Unit  
Maximum switching energy (single pulse)  
(TDEMAG = 0.4 ms; Tjstart = 150 °C)  
EMAX  
30  
mJ  
Electrostatic discharge (JEDEC 22A-114F)  
INPUT0,1  
CurrentSense  
SEn, SEL  
OUTPUT0,1  
VCC  
4000  
2000  
4000  
4000  
4000  
V
V
V
V
V
VESD  
VESD Charge device model (CDM-AEC-Q100-011)  
750  
V
Tj  
Junction operating temperature  
Storage temperature  
-40 to 150  
-55 to 150  
°C  
Tstg  
2.2  
Thermal data  
Table 4: Thermal data  
Parameter  
Symbol  
Typ. value Unit  
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) (1)(2)  
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-5)(1)(3)  
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-7)(1)(2)  
6.4  
59  
25  
°C/W  
Notes:  
(1)One channel ON.  
(2)Device mounted on four-layers 2s2p PCB.  
(3)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace.  
2.3  
Main electrical characteristics  
7 V < VCC < 28 V; -40 °C < Tj < 150 °C, unless otherwise specified.  
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.  
Table 5: Electrical characteristics during cranking  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Minimum cranking supply voltage  
(VCC decreasing)  
VUSD_Cranking  
2.85  
V
IOUT = 0.5 A; VCC = 2.85 V;  
VCC decreasing  
RON  
On-state resistance (1)  
500 mΩ  
Shutdown temperature (VCC  
decreasing)  
(2)  
TTSD  
VCC = 2.85 V  
140  
°C  
Notes:  
(1)For each channel.  
(2)Parameter guaranteed by design and characterization; not subject to production test.  
8/43  
DocID027585 Rev 3  
 
 
 
 
 
 
 
VND7050AJ12  
Electrical specification  
Table 6: Power section  
Test conditions  
Symbol  
VCC  
Parameter  
Min. Typ. Max. Unit  
Operating supply voltage  
4
13 28  
2.85  
VUSD Undervoltage shutdown  
Undervoltage shutdown  
V
VUSDReset  
reset  
5
Undervoltage shutdown  
hysteresis  
VUSDhyst  
0.3  
50  
I
OUT = 2 A; Tj = 25 °C  
RON  
On-state resistance (1)  
IOUT = 2 A; Tj = 150 °C  
100 mΩ  
IOUT = 2 A; VCC = 4 V; Tj = 25 °C  
IS = 20 mA; Tj = -40 °C  
75  
38  
Vclamp Clamp voltage  
V
IS = 20 mA; 25°C < Tj < 150°C  
41 46 52  
V
V
CC = 13 V; VIN = VOUT = VSEn = 0 V;  
SEL = 0 V; Tj = 25 °C  
0.5 µA  
0.5 µA  
µA  
60 300 550 µA  
Supply current in standby at VCC = 13 V; VIN = VOUT = VSEn = 0 V;  
ISTBY  
(2)  
(3)  
VCC = 13 V  
VSEL = 0 V; Tj = 85 °C  
VCC = 13 V; VIN = VOUT = VSEn = 0 V;  
3
VSEL = 0 V; Tj = 125 °C  
V
CC = 13 V; VIN = VOUT = VSEL = 0 V;  
Standby mode blanking  
time  
tD_STBY  
VSEn = 5 V to 0 V  
V
CC = 13 V; VSEn = VSEL = 0 V;  
IS(ON) Supply current  
Control stage current  
V
IN0 = 5 V; VIN1 = 5 V; IOUT0 = 0 A;  
5
8
mA  
IOUT1 = 0 A  
VCC = 13 V; VSEn = 5 V; VSEL = 0 V;  
IGND(ON) consumption in ON state.  
All channels active.  
V
IN0 = 5 V; VIN1 = 5 V; IOUT0 = 2 A;  
12 mA  
IOUT1 = 2 A  
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 25 °C  
0
0
0.01 0.5  
Off-state output current at  
IL(off)  
µA  
V
VCC = 13 V(1)  
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 125 °C  
3
Output - VCC diode  
VF  
I
OUT = -2 A; Tj = 150 °C  
0.7  
voltage(1)  
Notes:  
(1)For each channel.  
(2)PowerMOS leakage included.  
(3)Parameter specified by design; not subject to production test.  
Table 7: Switching  
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified  
Symbol  
Parameter  
Test conditions Min. Typ. Max. Unit  
(1)  
td(on)  
Turn-on delay time at Tj = 25°C  
Turn-off delay time at Tj = 25°C  
10  
10  
60  
40  
120  
100  
0.7  
RL = 6.5 Ω  
RL = 6.5 Ω  
µs  
(1)  
td(off)  
(1)  
(dVOUT/dt)on Turn-on voltage slope at Tj = 25°C  
0.1 0.3  
V/µs  
(1)  
(dVOUT/dt)off Turn-off voltage slope at Tj = 25°C  
0.1 0.32 0.7  
DocID027585 Rev 3  
9/43  
 
 
 
 
 
Electrical specification  
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified  
VND7050AJ12  
Symbol  
WON  
Parameter  
Test conditions Min. Typ. Max. Unit  
Switching energy losses at turn-on (twon  
Switching energy losses at turn-off (twoff  
)
)
RL = 6.5 Ω  
RL = 6.5 Ω  
RL = 6.5 Ω  
0.25 0.33 (2) mJ  
0.23 0.31(2) mJ  
WOFF  
(1)  
tSKEW  
Differential pulse skew (tPHL - tPLH  
)
-80 -30  
20  
µs  
Notes:  
(1)See Figure 6: "Switching times and Pulse skew"  
(2)Parameter guaranteed by design and characterization; not subject to production test.  
Table 8: Logic inputs  
7 V < VCC < 28 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
INPUT0,1 characteristics  
VIL  
IIL  
Input low level voltage  
0.9  
V
µA  
V
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
VIN = 0.9 V  
1
VIH  
2.1  
IIH  
VIN = 2.1 V  
10  
µA  
V
VI(hyst)  
0.2  
5.3  
I
IN = 1 mA  
7.2  
VICL  
Input clamp voltage  
V
IIN = -1 mA  
-0.7  
-0.7  
-0.7  
SEL characteristics (7 V < VCC < 18 V)  
VSELL  
ISELL  
VSELH  
ISELH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VSEL(hyst) Input hysteresis voltage  
VSELCL Input clamp voltage  
SEn characteristics (7 V < VCC < 18 V)  
0.2  
5.3  
I
IN = 1 mA  
7.2  
V
IIN = -1 mA  
VSEnL  
ISEnL  
VSEnH  
ISEnH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VSEn(hyst) Input hysteresis voltage  
0.2  
5.3  
I
IN = 1 mA  
7.2  
VSEnCL Input clamp voltage  
V
IIN = -1 mA  
10/43  
DocID027585 Rev 3  
 
 
 
VND7050AJ12  
Electrical specification  
Table 9: Protections  
Test conditions  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol Parameter  
Min.  
Typ.  
Max. Unit  
V
CC = 13 V  
21  
30  
42  
ILIMH DC short circuit current  
4 V < VCC < 18 V (1)  
42  
A
Short circuit current during  
thermal cycling  
ILIML  
VCC = 13 V; TR < Tj < TTSD  
10  
TTSD Shutdown temperature  
150  
175  
200  
TR  
Reset temperature(1)  
TRS + 1 TRS + 7  
Thermal reset of fault  
diagnostic indication  
°C  
TRS  
VSEn = 5 V  
135  
Thermal hysteresis (TTSD  
TR)(1)  
-
THYST  
7
ΔTJ_SD Dynamic temperature  
Tj = -40 °C; VCC = 13 V  
60  
K
V
IOUT = 2 A; L = 6 mH;  
Tj = -40 °C  
V
CC - 38  
VCC - 41 VCC - 46 VCC - 52  
20  
Turn-off output voltage  
VDEMAG  
clamp  
IOUT = 2 A; L = 6 mH;  
Tj = 25 °C to +150 °C  
Output voltage drop  
limitation  
VON  
IOUT = 0.2 A  
mV  
Notes:  
(1)Parameter guaranteed by design and characterization; not subject to production test.  
Table 10: CurrentSense  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VSEn = 0 V; ISENSE = 1 mA  
VSEn = 0 V; ISENSE = -1 mA  
-17  
-12  
V
V
VSENSE_CL  
CurrentSense clamp voltage  
7
CurrentSense characteristics  
IOUT = 0.01 A;  
KOL  
dKcal/Kcal  
KLED  
IOUT/ISENSE  
440  
-30  
VSENSE = 0.5 V; VSEn = 5 V  
I
I
OUT = 0.01 A to 0.05 A;  
cal = 30 mA;  
Current sense ratio drift at  
calibration point  
(1)(2)  
30  
%
VSENSE = 0.5 V; VSEn = 5 V  
IOUT = 0.05 A;  
VSENSE = 0.5 V; VSEn = 5 V  
IOUT/ISENSE  
530 1450 2200  
-25 25  
830 1400 1935  
-20 20  
915 1300 1700  
IOUT = 0.05 A;  
(1)(2)  
dKLED/KLED  
K0  
Current sense ratio drift  
IOUT/ISENSE  
%
%
V
SENSE = 0.5 V; VSEn = 5 V  
IOUT = 0.2 A;  
SENSE = 0.5 V; VSEn = 5 V  
IOUT = 0.2 A;  
SENSE = 0.5 V; VSEn = 5 V  
IOUT = 0.4 A; VSENSE = 4 V;  
SEn = 5 V  
V
(1)(2)  
dK0/K0  
K1  
Current sense ratio drift  
IOUT/ISENSE  
V
V
DocID027585 Rev 3  
11/43  
 
 
 
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7050AJ12  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
IOUT = 0.4 A; VSENSE = 4 V;  
VSEn = 5 V  
(1)(2)  
dK1/K1  
K2  
Current sense ratio drift  
-15  
980 1230 1470  
-10 10  
1095 1215 1335  
15  
%
IOUT = 1.5 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
IOUT = 1.5 A; VSENSE = 4 V;  
(1)(2)  
(1)(2)  
dK2/K2  
K3  
Current sense ratio drift  
IOUT/ISENSE  
%
V
SEn = 5 V  
IOUT = 4.5 A; VSENSE = 4 V;  
SEn = 5 V  
OUT = 4.5 A; VSENSE = 4 V;  
SEn = 5 V  
CurrentSense disabled:  
SEn = 0 V;  
V
I
V
dK3/K3  
Current sense ratio drift  
-5  
0
5
%
0.5  
0.5  
µA  
µA  
V
CurrentSense disabled:  
-1 V < VSENSE < 5 V(1)  
-0.5  
CurrentSense enabled:  
V
SEn = 5 V;  
All channel ON;  
OUTX = 0 A;  
ChX diagnostic selected;  
I
0
2
µA  
E.g. Ch0:  
VIN0 = 5 V; VIN1 = 5 V;  
VSEL = 0 V;  
ISENSE0  
CurrentSense leakage current  
IOUT0 = 0 A;  
IOUT1 = 2 A  
CurrentSense enabled:  
SEn = 5 V;  
V
ChX channel OFF;  
ChX diagnostic selected;  
0
2
µA  
E.g. Ch0:  
VIN0 = 0 V; VIN1 = 5 V;  
VSEL = 0 V;  
I
OUT1 = 2 A  
VSEn = 5 V;  
RSENSE = 2.7 kΩ  
Output Voltage for  
CurrentSense shutdown  
E.g. Ch0:  
(1)  
VOUT_MSD  
5
V
VIN0 = 5 V;  
VSEL = 0 V;  
IOUT0 = 2 A  
VCC = 7 V;  
SENSE = 2.7 kΩ;  
VSEn = 5 V; VIN0 = 5 V;  
VSEL = 0 V; IOUT0 = 4.5 A;  
Tj = 150°C  
R
CurrentSense saturation  
voltage  
VSENSE_SAT  
5
4
V
V
V
CC = 7 V; VSENSE = 4 V;  
IN0 = 5 V; VSEn = 5 V;  
(1)  
ISENSE_SAT  
CS saturation current  
mA  
VSEL0 = 0 V; VSEL1 = 0 V;  
Tj = 150°C  
12/43  
DocID027585 Rev 3  
VND7050AJ12  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Electrical specification  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
V
CC = 7 V; VSENSE = 4 V;  
(1)  
IOUT_SAT  
Output saturation current  
VIN0 = 5 V; VSEn = 5 V;  
SEL = 0 V; Tj = 150°C  
6
A
V
Off-state diagnostic  
VSEn = 5 V; ChX OFF;  
Off-state open-load voltage  
detection threshold  
ChX diagnostic selected  
VOL  
2
3
4
V
E.g: Ch0  
VIN0 = 0 V; VSEL = 0 V  
IL(off2)  
Off-state output sink current  
VIN = 0 V; VOUT = VOL  
-100  
-15  
µA  
VSEn = 5 V; ChX ON to OFF  
transition  
ChX diagnostic selected  
Off-state diagnostic delay time  
from falling edge of INPUT  
(see Figure 8: "TDSTKON")  
E.g: Ch0  
tDSTKON  
100 350 700  
µs  
VIN0 = 5 V to 0 V;  
VSEL = 0 V;  
I
OUT0 = 0 A;  
VOUT = 4 V  
Settling time for valid OFF-  
state open load diagnostic  
indication from rising edge of  
SEn  
V
IN0 = 0 V; VIN1 = 0 V;  
tD_OL_V  
VSEL = 0 V; VOUT0 = 4 V;  
V
60  
µs  
µs  
SEn = 0 V to 5 V  
V
SEn = 5 V; ChX OFF  
ChX diagnostic selected  
Off-state diagnostic delay time  
from rising edge of VOUT  
E.g: Ch0  
VIN0 = 0 V;  
tD_VOL  
5
30  
VSEL = 0 V;  
VOUT = 0 V to 4 V  
Fault diagnostic feedback (see Table 11: "Truth table")  
VCC = 13 V; RSENSE = 1 kΩ  
E.g: Ch0 in open load  
VIN0 = 0 V;  
CurrentSense output voltage  
in fault condition  
VSENSEH  
5
7
6.6  
30  
V
VSEn = 5 V;  
VSEL = 0 V;  
IOUT0 = 0 A;  
VOUT = 4 V  
CurrentSense output current in  
fault condition  
ISENSEH  
VCC = 13 V; VSENSE = 5 V  
20  
mA  
CurrentSense timings (current sense mode - see Figure 7: "CurrentSense timings")(3)  
V
IN = 5 V; VSEn = 0 V to  
Current sense settling time  
from rising edge of SEn  
tDSENSE1H  
tDSENSE1L  
tDSENSE2H  
5 V; RSENSE = 1 kΩ;  
RL = 6.5 Ω  
60  
20  
µs  
µs  
µs  
VIN = 5 V; VSEn = 5 V to  
0 V; RSENSE = 1 kΩ;  
RL = 6.5 Ω  
Current sense disable delay  
time from falling edge of SEn  
5
VIN = 0 V to 5 V;  
Current sense settling time  
from rising edge of INPUT  
VSEn = 5 V; RSENSE = 1 kΩ;  
100 250  
RL = 6.5 Ω  
DocID027585 Rev 3  
13/43  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7050AJ12  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VIN = 5 V; VSEn = 5 V;  
RSENSE = 1 kΩ;  
Current sense settling time  
from rising edge of IOUT  
ΔtDSENSE2H  
100  
250  
µs  
µs  
(dynamic response to a step  
ISENSE = 90 % of ISENSEMAX  
RL = 6.5 Ω  
;
change of IOUT  
)
Current sense turn-off delay  
time from falling edge of  
INPUT  
VIN = 5 V to 0 V;  
VSEn = 5 V; RSENSE = 1 kΩ;  
RL = 6.5 Ω  
tDSENSE2L  
50  
CurrentSense timings (Multiplexer transition times) (3)  
VIN0 = 5 V; VIN1 = 5 V;  
V
SEn = 5 V;  
CurrentSense transition delay  
from ChX to ChY  
tD_XtoY  
20  
20  
µs  
µs  
VSEL = 0 V to 5 V;  
IOUT0 = 0A; IOUT1 = 3 A;  
RSENSE = 1 kΩ  
VIN0 = 5 V; VIN1 = 0 V;  
VSEn = 5 V;  
CurrentSense transition delay  
tD_CStoVSENSEH from stable current sense on  
ChX to VSENSEH on ChY  
VSEL = 0 V to 5 V;  
I
OUT0 = 3 A; VOUT1 = 4 V;  
RSENSE = 1 kΩ  
Notes:  
(1)Parameter guaranteed by design and characterization; not subject to production test.  
(2)All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.  
(3)Transition delay are measured up to +/- 10% of final conditions.  
Figure 4: IOUT/ISENSE versus IOUT  
14/43  
DocID027585 Rev 3  
 
 
 
VND7050AJ12  
Electrical specification  
Figure 5: Current sense accuracy versus IOUT  
Figure 6: Switching times and Pulse skew  
twon  
twoff  
VOUT  
Vcc  
80% Vcc  
20% Vcc  
ON  
OFF  
dVOUT/dt  
dVOUT/dt  
t
INPUT  
td(off)  
td(on)  
tpLH  
tpHL  
t
GAPGCFT00797  
DocID027585 Rev 3  
15/43  
 
 
Electrical specification  
VND7050AJ12  
Figure 7: CurrentSense timings  
Figure 8: TDSTKON  
VINPUT  
VOUT  
VOUT > VOL  
CurrentSense  
TDSTKON  
GAPG0912131101CFT  
16/43  
DocID027585 Rev 3  
 
 
VND7050AJ12  
Electrical specification  
Table 11: Truth table  
Mode  
Standby  
Conditions  
INX SEn SEL OUTX CurrentSense  
Comments  
Low quiescent current  
consumption  
All logic inputs low  
L
L
L
L
L
L
Hi-Z  
See (1)  
See (1)  
Nominal load  
connected;  
Outputs configured for  
auto-restart  
H
H
See (1)  
Normal  
Tj < 150°C  
Outputs configured for  
latch off  
See (1)  
See (1)  
See (1)  
See (1)  
H
L
H
L
Overload or short to  
GND causing:  
Output cycles with  
temperature hysteresis  
See (1)  
Overload  
H
H
H
L
Tj > TTSD or  
ΔTj > ΔTj_SD  
Output latches off  
Re-start when  
L
L
Hi-Z  
Hi-Z  
VCC > VUSD  
+
Under-voltage VCC < VUSD (falling)  
X
X
X
VUSDhyst (rising)  
See (1)  
See (1)  
Short to VCC  
Off-state  
L
L
H
H
See (1)  
See (1)  
diagnostics  
Open-load  
External pull up  
Negative output Inductive loads turn-  
See (1)  
L
< 0 V  
voltage  
off  
Notes:  
(1)Refer to Table 12: "CurrentSense multiplexer addressing"  
Table 12: CurrentSense multiplexer addressing  
CurrentSense output  
MUX  
SEn SEL  
Negative  
output  
channel  
Normal mode  
Overload  
Off-state diag.  
Hi-Z  
L
X
L
Channel 0  
diagnostic  
ISENSE  
=
VSENSE  
=
VSENSE  
=
H
Hi-Z  
Hi-Z  
1/K * IOUT0  
VSENSEH  
VSENSEH  
Channel 1  
diagnostic  
ISENSE  
=
VSENSE  
=
VSENSE  
=
H
H
1/K * IOUT1  
VSENSEH  
VSENSEH  
DocID027585 Rev 3  
17/43  
 
 
 
Electrical specification  
VND7050AJ12  
2.4  
Waveforms  
Figure 9: Standby mode activation  
Figure 10: Standby state diagram  
Normal Operation  
INx = High  
INx = Low  
AN  
OR  
D
SEn = High  
OR  
SEL = High  
SEn = Low  
AND  
SEL = Low  
t > tD_STBY  
Stand-by Mode  
GAPG2911131147CFT  
18/43  
DocID027585 Rev 3  
 
 
 
VND7050AJ12  
Electrical specification  
2.5  
Electrical characteristics curves  
Figure 12: Standby current  
Figure 11: OFF-state output current  
Figure 13: IGND(ON) vs. Tcase  
Figure 14: Logic Input high level voltage  
Figure 15: Logic Input low level voltage  
Figure 16: High level logic input current  
DocID027585 Rev 3  
19/43  
 
 
 
 
 
 
 
Electrical specification  
Figure 17: Low level logic input current  
VND7050AJ12  
Figure 18: Logic Input hysteresis voltage  
Figure 19: Undervoltage shutdown  
Figure 20: On-state resistance vs. Tcase  
Figure 21: On-state resistance vs. Vcc  
Figure 22: Turn-on voltage slope  
20/43  
DocID027585 Rev 3  
 
 
 
 
 
 
VND7050AJ12  
Electrical specification  
Figure 24: Won vs Tcase  
Figure 23: Turn-off voltage slope  
Figure 25: Woff vs Tcase  
Figure 26: ILIMH vs. Tcase  
Figure 27: OFF-state open-load voltage  
detection threshold  
Figure 28: Vsense clamp vs Tcase  
DocID027585 Rev 3  
21/43  
 
 
 
 
 
 
Electrical specification  
VND7050AJ12  
Figure 29: Vsenseh vs Tcase  
VSENSEH [V]  
10  
9
8
7
6
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
T [°C]  
GAPG2110131629CFT  
22/43  
DocID027585 Rev 3  
 
VND7050AJ12  
Protections  
3
Protections  
3.1  
Power limitation  
The basic working principle of this protection consists of an indirect measurement of the  
junction temperature swing ΔTj through the direct measurement of the spatial temperature  
gradient on the device surface in order to automatically shut off the output MOSFET as  
soon as ΔTj exceeds the safety level of ΔTj_SD. The output MOSFET switches on and  
cycles with a thermal hysteresis according to the maximum instantaneous power which can  
be handled. The protection prevents fast thermal transient effects and, consequently,  
reduces thermo-mechanical fatigue.  
3.2  
3.3  
Thermal shutdown  
In case the junction temperature of the device exceeds the maximum allowed threshold  
(typically 175°C), it automatically switches off and the diagnostic indication is triggered. The  
device switches on again as soon as its junction temperature drops to TR.  
Current limitation  
The device is equipped with an output current limiter in order to protect the silicon as well  
as the other components of the system (e.g. bonding wires, wiring harness, connectors,  
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or  
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the  
output power MOSFET in the active region.  
3.4  
Negative voltage clamp  
In case the device drives inductive load, the output voltage reaches a negative value during  
turn off. A negative voltage clamp structure limits the maximum negative voltage to a  
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the  
device.  
DocID027585 Rev 3  
23/43  
 
 
 
 
 
Application information  
VND7050AJ12  
4
Application information  
Figure 30: Application diagram  
4.1  
GND protection network against reverse battery  
Figure 31: Simplified internal structure - GND network protection with Schottly diode  
24/43  
DocID027585 Rev 3  
 
 
 
 
VND7050AJ12  
Application information  
Figure 32: Simplified internal structure - GND network protection with MOSFET  
4.1.1  
Diode (DGND) in the ground line  
A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an  
inductive load.  
This small signal diode can be safely shared amongst several different HSDs. Also in this  
case, the presence of the ground network produces a shift (»600 mV) in the input threshold  
and in the status output values if the microprocessor ground is not common to the device  
ground. This shift does not vary if more than one HSD shares the same diode/resistor  
network.  
To comply with LV124, E-11 "severe" start pulse, a Schottky diode (see Figure 31:  
"Simplified internal structure - GND network protection with Schottly diode") or N-channel  
MOSFET (see Figure 32: "Simplified internal structure - GND network protection with  
MOSFET") is recommended in order to ensure a lower ground network shift (≤ 350 mV).  
4.2  
Immunity against transient electrical disturbances  
The immunity of the device against transient electrical emissions, conducted along the  
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)  
and ISO 16750-2:2010.  
The related function performance status classification is shown in Table 13: "ISO 7637-2 -  
electrical transient conduction along supply line".  
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and  
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present  
device only, without components and accessed through VCC and GND terminals.  
DocID027585 Rev 3  
25/43  
 
 
 
Application information  
VND7050AJ12  
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as  
follows: “The function does not perform as designed during the test but returns  
automatically to normal operation after the test”.  
Table 13: ISO 7637-2 - electrical transient conduction along supply line  
Test pulse severity  
Test  
Pulse  
Minimum  
number of  
pulses or test  
time  
level with Status II  
functional performance  
status  
Burst cycle / pulse  
repetition time  
Pulse duration and  
pulse generator  
internal impedance  
2011(E)  
(1)  
Level  
III  
US  
min  
0,5 s  
max  
1
-112V  
+55V  
-220V  
+150V  
-7V  
500 pulses  
500 pulses  
1h  
2ms, 10Ω  
50µs, 2Ω  
2a  
3a  
3b  
4 (2)  
III  
0,2 s  
5 s  
IV  
90 ms  
90 ms  
100 ms  
100 ms  
0.1µs, 50Ω  
0.1µs, 50Ω  
100ms, 0.01Ω  
IV  
1h  
IV  
1 pulse  
Load dump according to ISO 16750-2:2010  
Test B (3)  
40V  
5 pulse  
1 min  
400ms, 2Ω  
Notes:  
(1)US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.  
(2)Test pulse from ISO 7637-2:2004(E).  
(3)With 40 V external suppressor referred to ground (-40°C < Tj < 150°C).  
4.3  
MCU I/Os protection  
If a ground protection network is used and negative transients are present on the VCC line,  
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to  
prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.  
The value of these resistors is a compromise between the leakage current of  
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with  
the latch-up limit of microcontroller I/Os.  
Equation  
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax  
Calculation example:  
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V  
7.5 kΩ ≤ Rprot ≤ 140 kΩ.  
Recommended values: Rprot = 15 kΩ  
4.4  
Behaviour during engine start transients  
The battery voltage drops every time an engine start occurs as well as in start&stop  
automotive systems.  
The device is designed to operate during engine start pulses without external components.  
In particular, the device achieves functional status A, for both E-11 start pulses, “normal”  
and “severe” as defined in Table 14: "Test parameters, E-11 Start pulses".  
26/43  
DocID027585 Rev 3  
 
 
 
 
 
 
VND7050AJ12  
Application information  
Functional status A is defined as follows: the DUT (device under test) must fulfill all  
functions during and after exposure to the test parameters.  
Table 14: Test parameters, E-11 Start pulses  
Parameter  
Test pulse “normal”  
Test pulse “severe”  
VB  
11,0 V  
4,5 V (0%, -4%)  
4,5 V (0%, -4%)  
6,5 V (0%, -4%)  
2 V  
11,0 V  
VT  
3,2 V +0,2V  
5,0 V (0%, -4%)  
6,0 V (0%, -4%)  
2 V  
VS  
VA  
VR  
tf  
≤1 ms  
≤1 ms  
t4  
0 ms  
19 ms  
t5  
0 ms  
≤1 ms  
t6  
19 ms  
329 ms  
50 ms  
t7  
50 ms  
t8  
10 s  
10 s  
tr  
100 ms  
2 Hz  
100 ms  
2 Hz  
f
Break between two cycles  
Test cycles  
2 s  
2 s  
10  
10  
For more details see standard norm “LV124 - Electric and Electronic Components  
in Motor Vehicles up to 3.5 t”.  
Figure 33: Cranking profile  
The extremely low VUSD_Cranking, minimum cranking supply voltage (VCC decreasing),  
specification of 2.85 V, much lower than the standard requirement, allows the device  
DocID027585 Rev 3  
27/43  
 
 
Application information  
VND7050AJ12  
operating in all the applications where a ground network protection is required (see Section  
4.1: "GND protection network against reverse battery").  
Table 15: Cranking operating mode  
Operating range  
Voltage range  
Operating mode  
All functions are performed as specified. Some  
deviations of the electrical characteristics.  
18 V - 28 V  
All functions are performed as specified. All  
parameters in range.  
Normal mode 4 V to 28 V  
7 V - 18 V  
4 V - 7 V  
All functions are performed as specified. Some  
deviations of the electrical characteristics.  
Device is operating (VCC decreasing). Device is  
protected. No diagnostic. Electrical parameters  
deviations.  
Cranking mode 2.85 V to 4 V  
2.85 V - 4 V  
4.5  
CurrentSense - analog current sense  
Diagnostic information on device and load status are provided by an analog output pin  
(CurrentSense) delivering a current mirror of channel output current  
Figure 34: CurrentSense and diagnostic – block diagram  
28/43  
DocID027585 Rev 3  
 
 
 
VND7050AJ12  
Application information  
4.5.1  
Principle of CurrenSense signal generation  
Figure 35: CurrentSense block diagram  
Current monitor  
This output is capable of providing:  
Current mirror proportional to the load current in normal operation, delivering  
current proportional to the load according to known ratio named K  
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH  
The current delivered by the current sense circuit, ISENSE, can be easily converted to a  
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load  
monitoring and abnormal condition detection.  
Normal operation (channel ON, no fault, SEn active)  
While device is operating in normal conditions (no fault intervention), VSENSE calculation can  
be done using simple equations  
Current provided by CurrentSense output: ISENSE = IOUT/K  
Voltage on RSENSE : VSENSE = RSENSE . ISENSE = RSENSE . IOUT/K  
Where :  
VSENSE is voltage measurable on RSENSE resistor  
DocID027585 Rev 3  
29/43  
 
 
Application information  
VND7050AJ12  
ISENSE is current provided from CurrentSense pin in current output mode  
IOUT is current flowing through output  
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its  
spread includes geometric factor spread, current sense amplifier offset and process  
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE  
.
Failure flag indication  
In case of power limitation/overtemperature, the fault is indicated by the CurrentSense pin  
which is switched to a “current limited” voltage source, VSENSEH  
.
In any case, the current sourced by the CurrentSense in this condition is limited to ISENSEH  
.
The typical behavior in case of overload or hard short circuit is shown in Waveforms  
section.  
Figure 36: Analogue HSD – open-load detection in off-state  
30/43  
DocID027585 Rev 3  
 
VND7050AJ12  
Application information  
Figure 37: Open-load / short to VCC condition  
Table 16: CurrentSense pin levels in off-state  
Condition  
Output  
CurrentSense  
SEn  
L
Hi-Z  
VSENSEH  
Hi-Z  
0
V
OUT > VOL  
H
L
Open-load  
VOUT < VOL  
VOUT > VOL  
VOUT < VOL  
H
L
Hi-Z  
VSENSEH  
Hi-Z  
0
Short to VCC  
Nominal  
H
L
H
4.5.2  
Short to VCC and OFF-state open-load detection  
Short to VCC  
A short circuit between VCC and output is indicated by the relevant current sense pin set to  
VSENSEH during the device off-state. Small or no current is delivered by the current sense  
during the on-state depending on the nature of the short circuit.  
OFF-state open-load with external circuitry  
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting  
the output to a positive supply voltage VPU.  
It is preferable VPU to be switched off during the module standby mode in order to avoid the  
overall standby current consumption to increase in normal conditions, i.e. when load is  
connected.  
DocID027585 Rev 3  
31/43  
 
 
 
Application information  
VND7050AJ12  
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following  
equation:  
Equation  
VPU - 4  
IL(off2)min @ 4V  
RPU  
<
32/43  
DocID027585 Rev 3  
VND7050AJ12  
Maximum demagnetization energy (VCC = 16 V)  
5
Maximum demagnetization energy (VCC = 16 V)  
Figure 38: Maximum turn off current versus inductance  
Maximum turn off current versus inductance  
100  
10  
1
Single Pulse  
Repetitive pulse Tjstart=100°C  
Repetitive pulse Tjstart=125°C  
0.1  
0.1  
1
10  
100  
1000  
L (mH)  
GAPG0912131502CFT  
Values are generated with RL = 0 Ω.  
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of  
every pulse must not exceed the temperature specified above for curves A and B.  
DocID027585 Rev 3  
33/43  
 
 
Package and PCB thermal data  
VND7050AJ12  
6
Package and PCB thermal data  
6.1  
PowerSSO-12 thermal data  
Figure 39: PowerSSO-12 on two-layers PCB (2s0p to JEDEC JESD 51-5)  
Figure 40: PowerSSO-12 on four-layers PCB (2s2p to JEDEC JESD 51-7)  
Table 17: PCB properties  
Dimension  
Value  
1.6 mm +/- 10%  
77 mm x 86 mm  
FR4  
Board finish thickness  
Board dimension  
Board material  
Copper thickness (top and bottom layers)  
Copper thickness (inner layers)  
Thermal via separation  
0.070 mm  
0.035 mm  
1.2 mm  
Thermal via diameter  
0.3 mm +/- 0.08 mm  
0.025 mm  
Copper thickness on via  
Footprint dimension (top layer)  
Heatsink copper area dimension (bottom layer)  
2.2 mm x 3.9 mm  
Footprint, 2 cm2 or 8 cm2  
34/43  
DocID027585 Rev 3  
 
 
 
 
 
VND7050AJ12  
Package and PCB thermal data  
Figure 41: Rthj-amb vs PCB copper area in open box free air condition (one channel on)  
Figure 42: PowerSSO-12 thermal impedance junction ambient single pulse (one channel on)  
Equation: pulse calculation formula  
ZTHδ = RTH · δ + ZTHtp (1 - δ)  
where δ = tP/T  
DocID027585 Rev 3  
35/43  
 
 
Package and PCB thermal data  
VND7050AJ12  
Figure 43: Thermal fitting model of a double-channel HSD in PowerSSO-12  
The fitting model is a simplified thermal tool and is valid for transient evolutions  
where the embedded protections (power limitation or thermal cycling during  
thermal shutdown) are not triggered.  
Table 18: Thermal parameters  
Area/island (cm2)  
R1 = R7 (°C/W)  
R2 = R8 (°C/W)  
R3 (°C/W)  
Footprint  
1.8  
2
8
4L  
3.2  
8
8
6
8
6
6
4
3
7
R4 (°C/W)  
14  
R5 (°C/W)  
30  
20  
20  
10  
18  
R6 (°C/W)  
26  
C1 = C7 (W.s/°C)  
C2 = C8 (W.s/°C)  
C3 (W.s/°C)  
0.00035  
0.005  
0.05  
0.2  
C4 (W.s/°C)  
0.3  
1
0.3  
1
0.4  
4
C5 (W.s/°C)  
0.4  
C6 (W.s/°C)  
3
5
7
18  
36/43  
DocID027585 Rev 3  
 
 
VND7050AJ12  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
7.1  
PowerSSO-12 package information  
Figure 44: PowerSSO-12 package dimensions  
DocID027585 Rev 3  
37/43  
 
 
 
Package information  
VND7050AJ12  
Table 19: PowerSSO-12 mechanical data  
Millimeters  
Symbol  
Min.  
1.250  
0.000  
1.100  
0.230  
0.190  
4.800  
3.800  
Typ.  
Max.  
1.700  
0.100  
1.600  
0.410  
0.250  
5.000  
4.000  
A
A1  
A2  
B
C
D
E
e
0.800  
H
5.800  
0.250  
0.400  
0°  
6.200  
0.500  
1.270  
8°  
h
L
k
X
2.200  
2.900  
2.800  
3.500  
0.100  
Y
ddd  
7.2  
PowerSSO-12 packing information  
Figure 45: PowerSSO-12 reel 13"  
Table 20: Reel dimensions  
Value(1)  
Description  
Base quantity  
Bulk quantity  
A (max)  
2500  
2500  
330  
B (min)  
1.5  
38/43  
DocID027585 Rev 3  
 
 
 
 
VND7050AJ12  
Description  
Package information  
Value(1)  
13  
C (+0.5, -0.2)  
D (min)  
20.2  
100  
N
W1 (+2 /-0)  
W2 (max)  
12.4  
18.4  
Notes:  
(1)All dimensions are in mm.  
Figure 46: PowerSSO-12 carrier tape  
P2  
P0  
2.0 0.1  
4.0 0.1  
X
1.55 0.05  
1.6 0.1  
1.75 0.1  
0.30 0.05  
Y
Y
R 0.5  
Typical  
K1  
K0  
X
P1  
A0  
SECTION X - X  
REF 4.18  
REF 0.5  
SECTION Y - Y  
GAPG2204151242CFT  
Table 21: PowerSSO-12 carrier tape dimensions  
Value(1)  
Description  
A0  
B0  
K0  
K1  
F
6.50 ± 0.1  
5.25 ± 0.1  
2.10 ± 0.1  
1.80 ± 0.1  
5.50 ± 0.1  
8.00 ± 0.1  
12.00 ± 0.3  
P1  
W
Notes:  
(1)All dimensions are in mm.  
DocID027585 Rev 3  
39/43  
 
 
 
 
Package information  
VND7050AJ12  
Figure 47: PowerSSO-12 schematic drawing of leader and trailer tape  
7.3  
PowerSSO-12 marking information  
Figure 48: PowerSSO-12 marking information  
Marking area  
1
2
3
4
5
6
7
8
Special function digit  
&: Engineering sample  
<blank>: Commercial sample  
PowerSSO-12 TOP VIEW  
(not in scale)  
GAPG1203151332CFT  
Engineering Samples: these samples can be clearly identified by a dedicated  
special symbol in the marking of each unit. These samples are intended to be  
used for electrical compatibility evaluation only; usage for any other purpose may  
be agreed only upon written authorization by ST. ST is not liable for any customer  
usage in production and/or in reliability qualification trials.  
Commercial Samples: Fully qualified parts from ST standard production with no  
usage restrictions  
40/43  
DocID027585 Rev 3  
 
 
 
VND7050AJ12  
Order codes  
8
Order codes  
Table 22: Device summary  
Order codes  
Tape and reel  
Package  
PowerSSO-12  
VND7050AJ12TR  
DocID027585 Rev 3  
41/43  
 
 
Revision history  
VND7050AJ12  
9
Revision history  
Table 23: Document revision history  
Changes  
Date  
Revision  
09-Jun-2015  
1
Initial release.  
Table 5: "Electrical characteristics during cranking":  
TTSD: updated value  
18-Jun-2015  
14-Sep-2015  
2
3
Updated Table 7: "Switching"  
Table 10: "CurrentSense":  
KOL, KLED, K0, K1, K2: updated values  
Updated Table 1: "Pin functions"  
Table 5: "Electrical characteristics during cranking":  
RON: updated test conditions  
42/43  
DocID027585 Rev 3  
 
 
VND7050AJ12  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST  
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the  
design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
DocID027585 Rev 3  
43/43  

相关型号:

VND7050AJTR

Double channel high-side driver with MultiSense analog feedback
STMICROELECTR

VND7140AJ

Double channel high-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VND7140AJ12

Double channel high-side driver with CurrentSense analog feedback
STMICROELECTR

VND7140AJ12TR

Double channel high-side driver with CurrentSense analog feedback
STMICROELECTR

VND7140AJTR

Double channel high-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VND7N04

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VND7N04-1

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VND7N04-1-E

OMNIFET :FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VND7N04-E

暂无描述
STMICROELECTR

VND7N04TR-E

暂无描述
STMICROELECTR

VND7N04_09

"OMNIFET"Fully autoprotected power MOSFET
STMICROELECTR

VND7NV04

OMNIFET II fully autoprotected Power MOSFET
STMICROELECTR