VNH5180A-E [STMICROELECTRONICS]

Automotive fully integrated H-bridge motor driver; 汽车完全集成H桥电机驱动器
VNH5180A-E
型号: VNH5180A-E
厂家: ST    ST
描述:

Automotive fully integrated H-bridge motor driver
汽车完全集成H桥电机驱动器

驱动器 电机
文件: 总31页 (文件大小:533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VNH5180A-E  
Automotive fully integrated H-bridge motor driver  
Features  
Type  
RDS(on)  
Iout VCCmax  
8 A 41 V  
180 mΩ max  
(per leg)  
VNH5180A-E  
PowerSSO-36 TP  
Output current: 8 A  
proprietary VIPower® M0 technology that allows  
to efficiently integrate on the same die a true  
Power MOSFET with an intelligent  
signal/protection circuitry. The three dies are  
assembled in PowerSSO-36 TP package on  
electrically isolated leadframes. This package,  
specifically designed for the harsh automotive  
environment offers improved thermal  
3 V CMOS compatible inputs  
Undervoltage shutdown  
Overvoltage clamp  
Thermal shutdown  
Cross-conduction protection  
Current and power limitation  
performance thanks to exposed die pads.  
Moreover, its fully symmetrical mechanical design  
allows superior manufacturability at board level.  
The input signals INA and INB can directly  
interface to the microcontroller to select the motor  
direction and the brake condition. The DIAGA/ENA  
or DIAGB/ENB, when connected to an external  
pull-up resistor, enables one leg of the bridge.  
Each DIAGA/ENA provides a feedback digital  
diagnostic signal as well. The normal operating  
condition is explained in the truth table. The CS  
pin allows to monitor the motor current by  
delivering a current proportional to its value when  
CS_DIS pin is driven low or left open. When  
CS_DIS is driven high, CS pin is in high  
Very low standby power consumption  
PWM operation up to 20 KHz  
Protection against loss of ground and loss of  
VCC  
Current sense output proportional to motor  
current  
Output protected against short to ground and  
short to VCC  
Package: ECOPACK®  
Description  
The VNH5180A-E is a full bridge motor driver  
intended for a wide range of automotive  
applications. The device incorporates a dual  
monolithic high-side driver and two low-side  
switches. Both switches are designed using  
STMicroelectronics’ well known and proven  
impedance condition. The PWM, up to 20 KHz,  
allows to control the speed of the motor in all  
possible conditions. In all cases, a low level state  
on the PWM pin turns off both the LSA and LSB  
switches.  
Table 1.  
Device summary  
Package  
Order codes  
Tape and reel  
Tube  
PowerSSO-36 TP  
VNH5180A-E  
VNH5180ATR-E  
December 2011  
Doc ID 17074 Rev 5  
1/31  
www.st.com  
1
 
Contents  
VNH5180A-E  
Contents  
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.1  
Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.1  
PowerSSO-36 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.1.1  
Thermal calculation in clockwise and anti-clockwise operation in  
steady-state mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1.2  
Thermal calculation in transient mode . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5
6
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
®
5.1  
5.2  
5.3  
ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PowerSSO-36 TP package information . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PowerSSO-36 TP packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions and functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin functions description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic inputs (INA, INB, ENA, ENB, PWM, CS_DIS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Switching (VCC = 13 V, RLOAD = 5 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Protections and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Current sense (9 V < VCC < 18 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 23  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PowerSSO-36 TP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Doc ID 17074 Rev 5  
3/31  
List of figures  
VNH5180A-E  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Definition of the low-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Definition of the high-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Definition of dynamic cross conduction current during a PWM operation. . . . . . . . . . . . . . 14  
Definition of delay response time of sense current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Waveforms in full-bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10. Waveforms in full-bridge operation (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. Typical application circuit for DC to 20 kHz PWM operation short circuit protection . . . . . 19  
Figure 12. Behavior in fault condition (how a fault can be cleared) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15. PowerSSO-36™ PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 16. Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 17. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . 23  
Figure 18. Detailed chipset configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 19. PowerSSO-36 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . 25  
Figure 20. PowerSSO-36 LSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . 25  
Figure 21. Thermal fitting model of an H-bridge in PowerSSO-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 22. PowerSSO-36 TP package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 23. PowerSSO-36 TP tube shipment (no suffix). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 24. PowerSSO-36 TP tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1.  
Block diagram  
6##  
3)'.!,  
#,!-0  
&!5,4  
$%4%#4)/.  
0/7%2  
,)-)4!4)/.  
,3!?/6%24%-0%2!452%  
(3!?/6%24%-0%2!452%  
,3"?/6%24%-0%2!452%  
(3"?/6%24%-0%2!452%  
56  
#,!-0?(3!  
$2)6%2  
#,!-0?(3"  
$2)6%2  
(3"  
,/')#  
(3!  
(3  
(3  
"
!
#522%.4  
,)-)4!4)/.?!  
#522%.4  
,)-)4!4)/.?"  
3/52#%?(3  
ꢀꢁ+  
ꢀꢁ+  
3/52#%?(3  
"
!
#,!-0?,3  
#,!-0?,3  
"
!
$2!).?,3  
$2!).?,3  
"
!
$2)6%2  
!
$2)6%2  
,3  
,3!  
,3"  
,3  
"
/6%2,/!$  
$%4%#4/2?!  
/6%2,/!$  
$%4%#4/2?"  
'.$  
$)!' ꢁ%. ). #3 #3?$)3 07- ).  
$)!' ꢁ%.  
'.$  
"
!
!
!
!
"
"
"
("1($'5ꢀꢀꢁꢂꢁ  
Table 2.  
Block description  
Name  
Description  
Allows the turn-on and the turn-off of the high-side and the  
low-side switches according to the truth table.  
Logic control  
Undervoltage  
Shuts down the device for battery voltage lower than 5V.  
Protect the high-side and the low-side switches from the  
high voltage on the battery line.  
High-side and low-side clamp voltage  
Drive the gate of the concerned switch to allow a proper  
High-side and low-side driver  
Current limitation  
RDS(on) for the leg of the bridge.  
Limits the motor current in case of short circuit.  
In case of short-circuit with the increase of the junction  
temperature, it shuts down the concerned driver to prevent  
degradation and to protect the die.  
High-side and low-side overtemperature  
protection  
Detects when low side current exceeds shutdown current  
and latches off the concerned Low side.  
Low-side overload detector  
Fault detection  
Signalizes the abnormal behaviour of the switch (output  
shorted to ground or output shorted to battery) by pulling  
down the concerned ENx/DIAGx pin.  
Limits the power dissipation of the high-side driver inside  
safe range in case of short to ground condition.  
Power limitation  
Doc ID 17074 Rev 5  
5/31  
 
Block diagram and pin description  
Figure 2. Configuration diagram (top view)  
VNH5180A-E  
1
NC  
NC  
36  
DRAIN LS  
A
GND_A  
GND_A  
NC  
DRAIN LS  
GND_B  
GND_B  
NC  
B
Slug2  
Slug3  
GND_B  
GND_B  
GND_A  
GND_A  
DRAIN LS  
NC  
SOURCE HS  
SOURCE HS  
A
DRAIN LS  
NC  
B
A
SOURCE HS  
SOURCE HS  
B
B
A
SOURCE HS  
A
SOURCE HSB  
V
V
CC  
CC  
NC  
NC  
Slug1  
IN_A  
IN_B  
EN/DIAG_A  
EN/DIAG  
CS_DIS  
CS  
_B  
IN_PWM  
NC  
18  
19  
Table 3.  
Suggested connections for unused and not connected pins  
INPUTx, PWM  
DIAGx/ENx  
CS_DIS  
Connection / pin  
Current sense  
N.C. SOURCE_HSx DRAIN_LSx  
Floating  
Not allowed  
X
X
X
X
X
X
Through 1 kΩ  
Through 10 kΩ  
To ground  
Not allowed  
resistor  
resistor  
Table 4.  
Pin N°  
Pin definitions and functions  
Symbol  
Function  
13, 24  
VCC, Heat Slug1  
NC  
Drain of high-side switches and power supply voltage.  
Not connected.  
1, 5, 9, 14, 18, 23,  
28, 32, 36  
15  
16  
INA  
Clockwise input  
Status of high-side and low-side switches A;  
open drain output.  
ENA/DIAGA  
17  
19  
IN_PWM  
CS  
PWM input.  
Output of current sense.  
6/31  
Doc ID 17074 Rev 5  
 
VNH5180A-E  
Block diagram and pin description  
Pin definitions and functions (continued)  
Table 4.  
Pin N°  
Symbol  
Function  
Active high CMOS compatible pin to disable current sense  
pin.  
20  
CS_DIS  
Status of high-side and low-side switches b;  
open drain output.  
21  
22  
ENB/DIAGB  
INB  
Counter clockwise input.  
25, 26, 27, 29, 35 OUTB Heat Slug3 Source of high-side switch B / drain of low-side switch B.  
,
30, 31, 33, 34  
2, 8, 10, 11, 12  
3, 4, 6, 7  
GNDB  
OUTA, Heat Slug2 Source of high-side switch A / drain of low-side switch A.  
GNDA Source of low-side switch A.  
Source of low-side switch B.  
Table 5.  
Name  
Pin functions description  
Description  
VCC  
Battery connection.  
Power ground.  
GND  
OUTA  
OUTB  
Power connections to the motor.  
Voltage controlled input pins with hysteresis, CMOS compatible. These two pins  
control the state of the bridge in normal operation according to the truth table (brake  
to VCC, Brake to GND, clockwise and counterclockwise).  
INA  
INB  
Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low-side  
FETS get modulated by the PWM signal during their ON phase allowing speed control  
of the motor.  
PWM  
Open drain bidirectional logic pins.These pins must be connected to an external pull  
up resistor. When externally pulled low, they disable half-bridge A or B. In case of fault  
detection (thermal shutdown of a high-side FET or excessive ON-state voltage drop  
across a low-side FET), these pins are pulled low by the device (see Table 14: Truth  
table in fault conditions (detected on OUTA)).  
ENA/DIAGA  
ENB/DIAGB  
Analog current sense output. This output delivers a current proportional to the motor  
current if CS_DIS is low or left open. The information can be read back as an analog  
voltage across an external resistor.  
CS  
CS_DIS  
Active high CMOS compatible pin to disable the current sense pin.  
Doc ID 17074 Rev 5  
7/31  
Electrical specifications  
VNH5180A-E  
2
Electrical specifications  
Figure 3.  
Current and voltage conventions  
I
S
V
CC  
I
INA  
V
CC  
I
OUTA  
IN  
A
OUT  
A
I
INB  
I
OUTB  
I
SENSE  
IN  
B
OUT  
B
V
I
OUTA  
ENA  
CS  
DIAG /EN  
A
A
I
CSD  
V
I
OUTB  
ENB  
CS_DIS  
V
SENSE  
DIAG /EN  
B
B
PWM  
GND  
I
pw  
V
CSD  
I
GND  
V
V
V
V
V
ENB  
INA  
INB  
pw  
ENA  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in the Table 6: Absolute maximum ratings may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality document.  
Table 6.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Imax  
IR  
Supply voltage  
+ 41  
Internally limited  
-15  
V
A
Maximum output current (continuous)  
Reverse output current (continuous)  
Input current (INA and INB pins)  
Enable input current (DIAGA/ENA and DIAGB/ENB pins)  
PWM Input current  
A
IIN  
+/- 10  
mA  
mA  
mA  
mA  
V
IEN  
Ipw  
+/- 10  
+/- 10  
ICS_DIS CS_DIS input current  
+/- 10  
VCS  
Current sense maximum voltage  
VCC-41/+VCC  
Electrostatic discharge  
(Human body model: R=1.5 kΩ, C=100 pF)  
VESD  
2
kV  
Tc  
Junction operating temperature  
Storage temperature  
-40 to 150  
-55 to 150  
200  
°C  
°C  
TSTG  
IGND  
DC reverse ground pin current  
mA  
8/31  
Doc ID 17074 Rev 5  
 
VNH5180A-E  
Electrical specifications  
2.2  
Thermal data  
Table 7.  
Symbol  
Thermal data  
Parameter  
Max. value  
Unit  
HSD  
LSD  
4.8  
4.6  
°C/W  
Rthj-case  
Rthj-amb  
Thermal resistance junction-case (per leg)  
Thermal resistance junction-ambient  
See Figure 17  
°C/W  
2.3  
Electrical characteristics  
Values specified in this section are for VCC = 9 V up to 18 V; -40 °C < TJ < 150 °C, unless  
otherwise specified.  
Table 8.  
Symbol  
Power section  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VCC  
Operating supply voltage  
5.5  
18  
V
Off-state with all fault cleared and  
ENx = 0 (standby)  
INA = INB = PWM = 0; Tj = 25 °C;  
VCC = 13 V  
3
6
µA  
Off-state with all fault cleared and  
ENx = 0 (standby)  
INA = INB = PWM = 0;  
10  
5
µA  
VCC = 13 V; Tj = - 40 to 150 °C  
IS  
Supply current  
Off-state (no standby)  
INA = INB = PWM = 0; ENx = 5 V;  
Tj = - 40 to 150 °C  
mA  
On-state:  
3
6
6
mA  
mA  
INA or INB = 5 V; no PWM  
On-state:  
INA or INB = 5 V; PWM = 20 kHz  
IOUT = 2.5 A; Tj = -40 °C  
75  
mΩ  
mΩ  
mΩ  
I
I
OUT = 2.5 A; Tj = 25 °C  
OUT = 2.5 A; Tj = 150 °C  
115  
230  
RONHS Static high-side resistance  
RONLS Static low-side resistance  
IOUT = 2.5 A; Tj = - 40 to 150 °C  
250 mΩ  
mΩ  
I
I
OUT = 2.5 A; Tj = 25 °C  
53.5  
0.7  
OUT = 2.5 A; Tj = - 40 to 150 °C  
110 mΩ  
High-side free-wheeling  
Vf  
IOUT = -2.5 A; Tj = 150 °C  
0.9  
V
diode forward voltage  
Doc ID 17074 Rev 5  
9/31  
 
 
Electrical specifications  
VNH5180A-E  
Table 8.  
Symbol  
Power section (continued)  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Tj = 25 °C; VOUTX = ENX = 0 V;  
VCC = 13 V  
0
0
3
5
µA  
µA  
A
High-side off-state output  
current (per channel)  
IL(off)  
Tj = 125 °C; VOUTX = ENX = 0 V;  
VCC = 13 V  
Dynamic cross-  
conduction current  
IRM  
IOUT= 2.5A (see Figure 6)  
0.6  
Table 9.  
Symbol  
Logic inputs (INA, INB, ENA, ENB, PWM, CS_DIS)  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Normal operation  
VIL  
Input low level voltage  
(DIAGX/ENX pin acts as an  
input pin)  
0.9  
V
V
V
Normal operation  
(DIAGX/ENX pin acts as an  
input pin)  
VIH  
Input high level voltage  
2.1  
Normal operation  
(DIAGX/ENX pin acts as an 0.15  
input pin)  
VIHYST  
Input hysteresis voltage  
Input clamp voltage  
I
IN = 1 mA  
IN = -1 mA  
5.5  
-1.0  
1
6.3  
7.5  
V
V
VICL  
I
-0.7  
-0.3  
IINL  
IINH  
Input current  
Input current  
VIN = 0.9 V  
VIN = 2.1 V  
µA  
µA  
10  
Fault operation  
(DIAGX/ENX pin acts as an  
output pin); IEN = 1 mA  
Enable output low  
level voltage  
VDIAG  
0.4  
V
Table 10. Switching (VCC = 13 V, RLOAD = 5 Ω)  
Symbol  
Parameter  
PWM frequency  
Test conditions  
Min. Typ. Max. Unit  
f
0
20  
kHz  
µs  
Input rise time < 1µs  
(see Figure 6)  
td(on)  
td(off)  
Turn-on delay time  
Turn-off delay time  
250  
Input rise time < 1µs  
(see Figure 6)  
250  
µs  
tr  
tf  
Rise time  
Fall time  
See Figure 5  
See Figure 5  
1
1
2
2
µs  
µs  
Delay time during change  
of operating mode  
tDEL  
See Figure 4  
See Figure 7  
200  
400 1600  
400  
µs  
ns  
High-side free wheeling  
diode reverse recovery  
time  
trr  
10/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Electrical specifications  
Min. Typ. Max. Unit  
Table 11. Protections and diagnostics  
Symbol  
Parameter  
Test conditions  
VUSD  
Undervoltage shutdown  
3
5
V
V
Undervoltage shutdown  
hysteresis  
VUSDhyst  
0.5  
ILIM_H  
ISD_LS  
High-side current limitation  
Shutdown LS current  
8
12  
30  
16  
52  
A
A
16  
High-side clamp voltage (VCC to  
OUTA = 0 or OUTB = 0)  
VCLPH  
IOUT = 2.5 A  
41  
41  
46  
52  
V
V
Low-side clamp voltage  
(OUTA = VCC or  
VCLPLS  
I
OUT = 2.5 A  
46  
52  
OUTB = VCC to GND)  
(1)  
TTSD  
Thermal shutdown temperature  
Thermal reset temperature  
Thermal hysteresis (TSD - TR)  
VIN = 2.1 V  
150  
135  
175  
200  
°C  
°C  
°C  
(2)  
TTR  
(2)  
THYST  
7
Low-side thermal shutdown  
temperature  
TTSD_LS  
VIN = 2.1 V  
150  
41  
175  
200  
52  
°C  
VCLP  
Total clamp voltage (VCC to GND) IOUT = 2.5 A  
Time to shutdown for the low-side  
46  
10  
V
tSD_LS  
µs  
1.  
T
is the minimum threshold temperature between HS and LS  
TSD  
2. Valid for both HSD and LSD.  
Table 12. Current sense (9 V < VCC < 18 V)  
Symbol  
Parameter  
IOUT/ISENSE  
IOUT/ISENSE  
IOUT/ISENSE  
IOUT/ISENSE  
Test conditions  
Min. Typ. Max. Unit  
IOUT = 0.35 A; VSENSE = 0.32 V;  
VCSD = 0 V; Tj = - 40 to 150 °C  
K0  
645 840 1140  
IOUT = 1 A; VSENSE = 0.98 V;  
CSD = 0 V; Tj = - 40 to 150 °C  
K1  
K2  
K3  
700 820 955  
710 810 900  
690 790 900  
V
IOUT = 2.5 A; VSENSE = 2.4 V;  
VCSD = 0 V; Tj = - 40 to 150 °C  
IOUT = 4 A; VSENSE = 4 V; VCSD = 0 V;  
Tj = - 40 to 150 °C  
Analog sense  
current drift  
IOUT = 0.35A; VSENSE = 0.32V;  
(1)  
dK0/K0  
-18  
-13  
-13  
-13  
5
18  
13  
13  
13  
%
%
%
%
V
VCSD = 0 V; Tj = - 40 to 150 °C  
Analog sense  
current drift  
IOUT = 1 A; VSENSE = 0.98 V;  
VCSD = 0 V; Tj = - 40 to 150 °C  
(1)  
dK1/K1  
Analog sense  
current drift  
IOUT = 2.5A; VSENSE = 2.4V;  
VCSD = 0 V; Tj = - 40 to 150 °C  
(1)  
dK2/K2  
Analog sense  
current drift  
IOUT = 4A; VSENSE = 4V; VCSD = 0 V;  
Tj = - 40 to 150 °C  
(1)  
dK3/K3  
Max analog sense  
output voltage  
IOUT = 2.5A; VCSD = 0 V;  
RSENSE = 2 KΩ  
VSENSE  
Doc ID 17074 Rev 5  
11/31  
 
 
Electrical specifications  
Table 12. Current sense (9 V < VCC < 18 V) (continued)  
VNH5180A-E  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
IOUT = 0 A; VSENSE = 0 V; VCSD = 5 V;  
VIN = 0 V; Tj = - 40 to 150 °C  
0
0
0
5
180  
5
µA  
µA  
µA  
Analog sense  
leakage current  
VCSD = 0 V; VIN = 5 V;  
Tj = - 40 to.150 °C  
ISENSE0  
VCSD = 5 V; VIN = 5 V; IOUT = 2.5 A;  
Tj = - 40 to.150 °C  
Delay response time VIN = 5 V; VSENSE < 4 V, IOUT = 2.5 A,  
tDSENSEH from falling edge of ISENSE = 90 % of ISENSEmax  
50  
20  
µs  
µs  
CS_DIS pin  
(see Figure 8)  
VIN = 5 V; VSENSE < 4 V; IOUT = 2.5 A;  
Delay response time  
tDSENSEL from rising edge of  
CS_DIS pin  
ISENSE = 10 % of ISENSEmax  
(see Figure 8)  
1. Analog sense current drift is deviation of factor K for a given device over (-40 °C to 150 °C and  
9 V < V < 18 V) with respect to its value measured at T = 25 °C, V = 13 V.  
CC  
J
CC  
Figure 4.  
Definition of the delay times measurement  
V
INA  
t
V
INB  
t
PWM  
t
I
LOAD  
t
DEL  
t
DEL  
t
12/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Figure 5.  
Electrical specifications  
Definition of the low-side switching times  
PWM  
t
V
OUTA, B  
90%  
80%  
t
f
t
t
10%  
20%  
r
Figure 6.  
Definition of the high-side switching times  
V
INA  
t
t
D(off)  
D(on)  
t
V
OUTA  
90%  
10%  
t
Doc ID 17074 Rev 5  
13/31  
Electrical specifications  
Figure 7.  
VNH5180A-E  
Definition of dynamic cross conduction current during a PWM operation  
INA = 1, INB = 0  
PWM  
t
I
MOTOR  
t
V
OUTB  
t
I
CC  
I
RM  
t
t
rr  
Figure 8.  
Definition of delay response time of sense current  
INPUT  
CS_DIS  
LOAD CURRENT  
SENSE CURRENT  
t
t
DSENSEH  
DSENSEL  
14/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Electrical specifications  
Operating mode  
Table 13. Truth table in normal operating conditions  
INA INB DIAGA/ENA DIAGB/ENB OUTA OUTB  
CS  
1
0
1
0
H
L
High Imp.  
Brake to VCC  
1
0
H
L
Clockwise (CW)  
Counterclockwise (CCW)  
Brake to GND  
1
1
ISENSE = IOUT/K  
High Imp.  
H
L
Table 14. Truth table in fault conditions (detected on OUTA)  
INA  
INB  
DIAGA/ENA  
DIAGB/ENB  
OUTA  
OUTB  
CS (VCSD=0V)  
1
0
1
0
X
H
1
High Imp.  
IOUTB/K  
L
H
1
0
0
OPEN  
0
L
High Imp.  
X
OPEN  
Fault Information  
Protection Action  
Note:  
In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the  
device. This pin must be externally pulled high.  
Doc ID 17074 Rev 5  
15/31  
Electrical specifications  
VNH5180A-E  
Table 15. Electrical transient requirements (part 1)  
Burst cycle/pulse  
repetition time  
Test levels(1)  
ISO 7637-2:  
2004(E)  
Test pulse  
Number of  
pulses or  
test times  
Delays and  
Impedance  
III  
IV  
Min.  
Max.  
1
2a  
3a  
3b  
4
-75V  
+37V  
-100V  
+75V  
-6V  
-100V  
+50V  
-150V  
+100V  
-7V  
5000 pulses  
5000 pulses  
1h  
0.5s  
0.2s  
5s  
2 ms, 10Ω  
50µs, 2Ω  
5s  
90ms  
90ms  
100ms  
100ms  
0.1µs, 50Ω  
0.1µs, 50Ω  
100ms, 0.01Ω  
400ms, 2Ω  
1h  
1 pulse  
1 pulse  
5b(2)  
+65V  
+87V  
1. The above test levels must be considered referred to V = 13.5 V except for pulse 5b.  
CC  
2. Valid in case of external load dump clamp: 40V maximum referred to ground.  
Table 16. Electrical transient requirements (part 2)  
ISO 7637-2:  
2004(E)  
Test level results(1)  
III  
IV  
Test pulse  
1
2a  
3a  
3b  
4
C
C
C
C
C
C
C
C
C
C
C
C
5b(2)  
1. The above test levels must be considered referred to V = 13.5 V except for pulse 5b.  
CC  
2. Valid in case of external load dump clamp: 40V maximum referred to ground.  
Table 17. Electrical transient requirements (part 3)  
Class  
Contents  
C
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device are not performed as designed after exposure to  
disturbance and cannot be returned to proper operation without replacing the device.  
E
16/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Electrical specifications  
2.4  
Waveforms  
Figure 9.  
Waveforms in full-bridge operation  
NORMAL OPERATION (DIAGA/ENA=1, DIAGB/ENB=1)  
LOAD CONNECTED BETWEEN OUTA, OUTB  
DIAGA/ENA  
DIAGB/ENB  
INA  
INB  
PWM  
OUTA  
OUTB  
IOUTA->OUTB  
CS (*)  
tDEL  
tDEL  
CS_DIS  
(*) CS BEHAVIOUR DURING PWM MODE DEPENDS ON PWM FREQUENCY AND DUTY CYCLE  
NORMAL OPERATION (DIAGA/ENA=1, DIAGB/ENB=0 and DIAGA/ENA=0, DIAGB/ENB=1)  
LOAD CONNECTED BETWEEN OUTA, OUTB  
DIAGA/ENA  
DIAGB/ENB  
INA  
INB  
PWM  
OUTA  
OUTB  
IOUTA->OUTB  
CS  
CS_DIS  
CURRENT LIMITATION/THERMAL SHUTDOWN or OUTA SHORTED TO GROUND  
INA  
INB  
ILIM  
IOUTA->OUTB  
TTSD_HSA  
TTR_HSA  
Tj =TTSD  
Tj < TTSD  
Tj > TTR  
TjHSA  
DIAGA/ENA  
DIAGB/ENB  
CS  
CS_DIS  
power limitation  
current  
limitation  
normal operation  
normal operation  
OUTA shorted to ground  
Doc ID 17074 Rev 5  
17/31  
 
Electrical specifications  
Figure 10. Waveforms in full-bridge operation (continued)  
VNH5180A-E  
OUTA shorted to VCC (resistive short) and undervoltage shutdown  
CS_DIS  
INA  
INB  
OUTA  
OUTB  
IOUTA->OUTB  
I
SD_LS  
ILSA  
T
TSD_LS  
Tj_LSA  
DIAGB/ENB  
DIAGA/ENA  
CS  
V<nominal  
normal operation OUTA softly shorted to VCC  
normal operation  
undervoltage shutdown  
OUTA shorted to VCC (pure short) and undervoltage shutdown  
CS_DIS  
INA  
INB  
OUTA  
OUTB  
IOUTA->OUTB  
I
SD_LS  
ILSA  
T
TSD_LS  
Tj_LSA  
DIAGB/ENB  
DIAGA/ENA  
CS  
V<nominal  
normal operation OUTA hardly shorted to VCC  
normal operation  
undervoltage shutdown  
18/31  
Doc ID 17074 Rev 5  
 
VNH5180A-E  
Application information  
3
Application information  
In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the  
device. This pin must be externally pulled high.  
PWM pin usage: In all cases, a “0” on the PWM pin turns off both LSA and LSB switches.  
When PWM rises back to “1”, LSA or LSB turn on again depending on the input pin state.  
Figure 11. Typical application circuit for DC to 20 kHz PWM operation short circuit  
protection  
VCC  
Reg 5V  
+ 5V  
+5V  
VCC  
3.3K  
3.3K  
1K  
DIAGA/ENA  
1K  
DIAGA/ENA  
1K  
DIAGB/ENB  
HSA  
HSB  
PWM  
1k  
μC  
OUTA  
CS_DIS  
OUTB  
INA  
1K  
1K  
LSA  
LSB  
INB  
CS  
10K  
M
Vcc  
33nF  
1.5K  
GND  
GND  
S
100K  
G
b) N MOSFET  
D
Note:  
The value of the blocking capacitor (C) depends on the application conditions and defines  
voltage and current ripple on supply line at PWM operation. Stored energy of the motor  
inductance may fly back into the blocking capacitor, if the bridge driver goes into 3-state.  
This causes a hazardous overvoltage if the capacitor is not big enough. As basic orientation,  
500 µF per 10 A load current is recommended.  
In case of a fault condition the DIAGX/ENX pin is considered as an output pin by the device.  
The fault conditions are:  
Overtemperature on one or both high-sides  
Short to battery condition on the output (overcurrent detection on the low-side  
Power MOSFET)  
Possible origins of fault conditions may be:  
OUTA is shorted to ground overtemperature detection on high-side A  
OUTA is shorted to VCC low-side Power MOSFET overcurrent detection  
When a fault condition is detected, the user can identify which power element is in fault by  
monitoring the INA, INB, DIAGA/ENA and DIAGB/ENB pins.  
Doc ID 17074 Rev 5  
19/31  
 
 
Application information  
VNH5180A-E  
In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn on the  
respective output (OUTX) again, the input signal must rise from low to high level.  
Figure 12. Behavior in fault condition (how a fault can be cleared)  
Note:  
In case of the fault condition is not removed, the procedure for unlatching and sending the  
device in Stby mode is:  
- Clear the fault in the device (toggle: INA if ENA = 0 or INB if ENB = 0)  
- Pull low all inputs, PWM and Diag/EN pins within tDEL  
.
If the Diag/En pins are already low, PWM = 0, the fault can be cleared simply toggling the  
input. The device enters in stby mode as soon as the fault is cleared.  
3.1  
Reverse battery protection  
Three possible solutions can be considered:  
A Schottky diode D connected to VCC pin  
An N-channel MOSFET connected to the GND pin (see Figure 11: Typical  
application circuit for DC to 20 kHz PWM operation short circuit protection)  
A P-channel MOSFET connected to the VCC pin  
The device sustains no more than -15 A in reverse battery conditions because of the two  
Body diodes of the Power MOSFETs. Additionally, in reverse battery condition the I/Os of  
VNH5180A-E is pulled down to the VCC line (approximately -1.5 V).  
20/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Application information  
Series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If  
Rmax is the maximum target reverse current through microcontroller I/Os, series resistor is:  
I
V
V  
IOs  
I
CC  
R = ---------------------------------  
Rmax  
Figure 13. Half-bridge configuration  
V
CC  
IN  
IN  
IN  
A
A
B
IN  
B
DIAG /EN  
DIAG /EN  
A
A
A
A
B
DIAG /EN  
DIAG /EN  
B
B
B
PWM  
PWM  
OUT  
A
OUT  
OUT  
OUT  
B
M
B
A
GND  
GND  
Note:  
The VNH5180A-E can be used as a high power half-bridge driver achieving an On  
resistance per leg of 90 mΩ.  
Figure 14. Multi-motors configuration  
V
CC  
IN  
IN  
IN  
IN  
A
B
A
B
DIAG /EN  
DIAG /EN  
A
A
A
A
B
DIAG /EN  
DIAG /EN  
B
PWM  
B
B
PWM  
OUT  
A
OUT  
OUT  
OUT  
B
M
2
B
A
GND  
GND  
M
M
1
3
Note:  
The VNH5180A-E can easily be designed in multi-motors driving applications such as seat  
positioning systems where only one motor must be driven at a time. DIAGX/ENX pins allow  
to put unused half-bridges in high impedance.  
Doc ID 17074 Rev 5  
21/31  
Package and PCB thermal data  
VNH5180A-E  
4
Package and PCB thermal data  
4.1  
PowerSSO-36 thermal data  
Figure 15. PowerSSO-36™ PC board  
Double layers: footprint  
2
Double layers: 2cm of Cu  
2
Double layers: 8cm of Cu  
Note:  
Board finish thickness 1.6 mm +/- 10 %, Board double layers, Board dimension 129 mm x 60 mm, Board Material FR4, Cu  
thickness 0.070 mm (front and back side), Thermal vias spaced on a 1.2 mm x 1.2 mm grid, Vias pad clearance thickness  
0.2 mm, Thermal via diameter 0.3 mm +/- 0.08 mm, Cu thickness on vias 0.025 mm.  
22/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Figure 16. Chipset configuration  
Package and PCB thermal data  
CHIP 1  
RthA  
RthAB  
RthAC  
CHIP 2  
CHIP 3  
RthC  
RthB  
RthBC  
Figure 17. Auto and mutual Rthj-amb vs PCB copper area in open box free air  
condition  
80  
RthA  
RthB = RthC  
RthAB = RthAC  
RthBC  
70  
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
9
cm2 of Cu Area (refer to PCB layout)  
4.1.1  
Thermal calculation in clockwise and anti-clockwise operation in  
steady-state mode  
Table 18. Thermal calculation in clockwise and anti-clockwise operation in steady-  
state mode  
HSA HSB LSA LSB  
TjHSAB  
TjLSA  
TjLSB  
PdHSA x RthHS + PdLSB PdHSA x RthHSLS  
+
PdHSA x RthHSLS + PdLSB  
ON OFF OFF ON  
x RthHSLS + Tamb  
PdLSB x RthLSLS + Tamb x RthLS + Tamb  
PdHSB x RthHS + PdLSA PdHSB x RthHSLS  
+
PdHSB x RthHSLS + PdLSA  
x RthLSLS + Tamb  
OFF ON ON OFF  
x RthHSLS + Tamb  
PdLSA x RthLS + Tamb  
Doc ID 17074 Rev 5  
23/31  
 
Package and PCB thermal data  
VNH5180A-E  
4.1.2  
Thermal calculation in transient mode  
Ths = Pdhs • Zhs + Zhsls • (PdlsA + PdlsB) + Tamb  
TlsA = PdlsA • Zls + Pdhs • Zhsls + PdlsB • Zhsls + Tamb  
TlsB = PdlsB • Zls + Pdhs • Zhsls + PdlsA • Zhsls + Tamb  
Figure 18. Detailed chipset configuration  
CHIP 1  
Zts  
Zhsls  
Zhsls  
CHIP 2  
CHIP 3  
Zls  
Zls  
Zlsls  
Equation 1: pulse calculation formula  
Z
= R  
⋅ δ + Z  
(1 δ)  
THtp  
THδ  
TH  
where  
δ = t T  
p
24/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Package and PCB thermal data  
Figure 19. PowerSSO-36 HSD thermal impedance junction ambient single pulse  
ZTH -HSD @ cu area  
100  
HSD-8 cm^2 Cu  
HSD-2 cm^2 Cu  
HSD-footprint  
HsLsD-8 cm^2 Cu  
HsLsD-2 cm^2 Cu  
HsLsD-footprint  
10  
1
0.1  
0.001  
0.01  
0.1  
time (sec)  
1
10  
100  
1000  
Figure 20. PowerSSO-36 LSD thermal impedance junction ambient single pulse  
ZTH -LSD @ cu area  
100  
LSD-8 cm^2 Cu  
LSD-2 cm^2 Cu  
LSD-footprint  
LsLsD-8 cm^2 Cu  
LsLsD-2 cm^2 Cu  
LsLsD-footprint  
10  
Z ls  
Z lsls  
1
0.1  
0.001  
0.01  
0.1  
time (sec)  
1
10  
100  
1000  
Doc ID 17074 Rev 5  
25/31  
Package and PCB thermal data  
VNH5180A-E  
Figure 21. Thermal fitting model of an H-bridge in PowerSSO-36  
Table 19. Thermal parameters(1)  
Area/island (cm2)  
Footprint  
2
8
R1 = R7 (°C/W)  
0.4  
3.5  
8
R2 = R8 (°C/W)  
R3 (°C/W)  
R4 (°C/W)  
30  
16  
30  
34  
11  
14  
21  
R5 (°C/W)  
40  
R6 (°C/W)  
36  
R9 = R15 (°C/W)  
R10 = R16 (°C/W)  
R11 = R17 (°C/W)  
R12 = R18 (°C/W)  
R13 = R19 (°C/W)  
R14 = R20 (°C/W)  
R21 = R22 = R23 (°C/W)  
C1 = C7 = C9 = C15 (W.s/°C)  
C2 = C8 (W.s/°C)  
C3 (W.s/°C)  
0.1  
5.2  
32  
14  
21  
36  
40  
77  
14  
21  
24  
33  
75  
49  
52  
50  
80  
0.0005  
0.008  
0.09  
0.5  
0.8  
7
C4 (W.s/°C)  
0.8  
1.4  
8
0.8  
2
C5 (W.s/°C)  
C6 (W.s/°C)  
10  
C10 = C16 (W.s/°C)  
C11 = C17 (W.s/°C)  
C12 = C18 (W.s/°C)  
C13 = C19 (W.s/°C)  
C14 = C20 (W.s/°C)  
C21 = C22 = C23 (W.s/°C)  
0.009  
0.09  
0.45  
0.8  
4
0.07  
0.45  
1.2  
0.07  
0.45  
1.4  
5
8
0.005  
0.003  
0.003  
1. The blank space means that the value is the same as the previous one.  
26/31  
Doc ID 17074 Rev 5  
 
VNH5180A-E  
Package and packing information  
5
Package and packing information  
®
5.1  
ECOPACK  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
5.2  
PowerSSO-36 TP package information  
Figure 22. PowerSSO-36 TP package dimensions  
Doc ID 17074 Rev 5  
27/31  
Package and packing information  
VNH5180A-E  
Table 20. PowerSSO-36 TP mechanical data  
Millimeters  
Typ.  
Symbol  
Min.  
Max.  
A
A2  
a1  
b
2.15  
2.15  
0
-
2.47  
2.40  
0.1  
-
-
0.18  
0.23  
10.10  
7.4  
-
-
0.36  
0.32  
10.50  
7.6  
c
-
D
-
-
E
e
0.5  
8.5  
2.3  
-
-
e3  
F
-
-
G
-
10.1  
-
0.1  
10.5  
0.4  
H
-
h
-
k
0 deg  
0.6  
8 deg  
1
L
-
M
N
4.3  
-
-
10 deg  
O
1.2  
0.8  
2.9  
3.65  
1.0  
Q
S
T
U
X1  
Y1  
X2  
Y2  
X3  
Y3  
Z1  
Z2  
1.85  
3
2.35  
3.5  
1.85  
3
2.35  
3.5  
4.7  
3
-
5.2  
-
3.5  
0.4  
0.4  
28/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Package and packing information  
5.3  
PowerSSO-36 TP packing information  
Figure 23. PowerSSO-36 TP tube shipment (no suffix)  
Base Qty  
49  
1225  
532  
3.5  
Bulk Qty  
Tube length ( 0.5)  
A
C
B
B
13.8  
0.6  
C ( 0.1)  
All dimensions are in mm.  
A
Figure 24. PowerSSO-36 TP tape and reel shipment (suffix “TR”)  
Reel dimensions  
Base Qty  
Bulk Qty  
A (max)  
B (min)  
C ( 0.2)  
F
1000  
1000  
330  
1.5  
13  
20.2  
24.4  
100  
30.4  
G (+2 / -0)  
N (min)  
T (max)  
Tape dimensions  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb. 1986  
Tape width  
W
24  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
P0 ( 0.1)  
P
12  
D ( 0.05)  
D1 (min)  
F ( 0.1)  
K (max)  
P1 ( 0.1)  
1.55  
1.5  
11.5  
2.85  
2
Hole Diameter  
Hole Position  
Compartment Depth  
Hole Spacing  
End  
All dimensions are in mm.  
Start  
No components  
500mm min  
Top  
cover  
tape  
No components Components  
500mm min  
Empty components pockets  
sealed with cover tape.  
User direction of feed  
Doc ID 17074 Rev 5  
29/31  
Revision history  
VNH5180A-E  
6
Revision history  
Table 21. Document revision history  
Date  
Revision  
Changes  
11-Feb-2010  
1
Initial release.  
Updated following tables:  
Table 7: Thermal data  
Table 8: Power section  
28-Sep-2010  
2
Table 12: Current sense (9 V < VCC < 18 V)  
Updated Chapter 3: Application information  
Updated following tables:  
13-Oct-2010  
20-Oct-2010  
3
4
Table 18: Thermal calculation in clockwise and anti-clockwise  
operation in steady-state mode  
Table 19: Thermal parameters  
Changed document status from target specification to definitive  
datasheet  
Updated Figure 1: Block diagram  
Added Table 3: Suggested connections for unused and not  
connected pins  
22-Dec-2011  
5
Table 11: Protections and diagnostics:  
– TTSD, TTR, THYST: added note  
Updated Figure 9: Waveforms in full-bridge operation and  
Figure 10: Waveforms in full-bridge operation (continued)  
30/31  
Doc ID 17074 Rev 5  
VNH5180A-E  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 17074 Rev 5  
31/31  

相关型号:

VNH7013XP-E

Automotive integrated H-bridge
STMICROELECTR

VNH70N07

TRANSISTOR | MOSFET | N-CHANNEL | 70V V(BR)DSS | 70A I(D) | TO-218
ETC

VNH7100AS

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH7100ASTR

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNI4140K

Quad high side smart power solid state relay
STMICROELECTR

VNI4140K-32

Quad high side smart power solid state relay
STMICROELECTR

VNI4140KTR

Quad high side smart power solid state relay
STMICROELECTR

VNI4140KTR-32

Quad high side smart power solid state relay
STMICROELECTR

VNI4140K_08

Quad high side smart power solid state relay S
STMICROELECTR

VNI4140K_12

Quad high-side smart power solid-state relay
STMICROELECTR

VNI8200XP

Octal high-side smart power solid state relay with serial/parallel selectable interface on chip
STMICROELECTR

VNI8200XP-32

Octal high-side smart power solid-state relay with serial
STMICROELECTR