ICP-10100 [TDK]

气压传感器;
ICP-10100
型号: ICP-10100
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

气压传感器

传感器
文件: 总34页 (文件大小:1229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
High Accuracy, Low Power, Waterproof Barometric Pressure  
and Temperature Sensor IC  
GENERAL INFORMATION  
FEATURES  
Pressure operating range: 30 to 110 kPa  
Noise and current consumption  
The ICP-101xx pressure sensor family is based on MEMS  
capacitive technology which provides ultra-low noise at the  
lowest power, enabling industry leading relative accuracy,  
sensor throughput, and temperature stability. The pressure  
sensor can measure pressure differences with an accuracy of  
±1 Pa, an accuracy enabling altitude measurement  
differentials as small as 8.5 cm, less than the height of a single  
stair step.  
o
o
o
0.4 Pa @ 10.4 µA (ULN mode)  
0.8 Pa @ 5.2 µA (LN mode)  
3.2 Pa @ 1.3 µA (LP mode)  
Pressure Sensor Relative Accuracy: ±1 Pa for any  
10 hPa change over 950 hPa-1050 hPa at 25°C  
Pressure Sensor Absolute Accuracy: ±1 hPa over  
950 hPa-1050 hPa, 0°C to 65°C  
Pressure Sensor Temperature Coefficient Offset:  
±0.5 Pa/°C over 25°C to 45°C at 100 kPa  
Temperature Sensor Absolute Accuracy: ±0.4°C  
IPx8: Waterproof to 1.5m depth (ICP-10100 & ICP-  
10110)  
Consuming only 1.3 µA @1 Hz, available in a small footprint  
2 mm x 2 mm x 0.72 mm waterproof to 1.5m depth 10-pin  
LGA package (ICP-10100), the ICP-101xx is ideally suited for  
mobile phones, wearable fitness monitoring, drones, and  
battery powered IoT.  
The ICP-101xx offers an industry leading temperature  
coefficient offset of ±0.5 Pa/°C. The combination of high  
accuracy, low power, temperature stability, waterproofing in  
a small footprint enables higher performance barometric  
pressure sensing for sports activity identification, mobile  
indoor/outdoor navigation, and altitude-hold in drones.  
Temperature operating range: -40 °C to 85 °C  
Host Interface: I2C at up to 400 kHz  
Single Supply voltage: 1.8V ±5%  
RoHS and Green compliant  
DEVICE INFORMATION  
PART  
NUMBER  
PACKAGE  
LID OPENING  
3-Hole IPx8 Lid Opening  
ICP-10100 & ICP-10110  
1-Hole Lid Opening  
ICP-10100  
2x2x0.72mm LGA-10L  
2x2x0.72mm LGA-10L  
3-Hole, IPx8: 1.5m Waterproof  
1-Hole  
ICP-10101 & ICP-10111  
ICP-10101  
ICP-10110 2x2.5x0.92mm LGA-8L 3-Hole, IPx8: 1.5m Waterproof  
ICP-10111  
TYPICAL OPERATING CIRCUIT  
2x2.5x0.92mm LGA-8L  
1-Hole  
Denotes RoHS and Green-Compliant Package  
BLOCK DIAGRAMS  
AP/HUB  
I2C  
ICP-101xx  
APPLICATIONS  
Altitude Control of Drones and Flying Toys  
Mobile Phones  
Virtual Reality and Gaming Equipment  
Indoor/Outdoor Navigation (dead-reckoning,  
floor/elevator/step detection)  
Vertical velocity monitoring  
Leisure, Sports, and Fitness Activity Identification  
Weather Forecasting  
TDK Corporation  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
+1(408) 988–7339  
InvenSense reserves the right to change the detail  
specifications as may be required to permit  
improvements in the design of its products.  
Document Number: DS-000186  
Revision: 1.2  
Release Date: 05/06/2019  
www.invensense.com  
 
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
TABLE OF CONTENTS  
GENERAL INFORMATION...............................................................................................................................................................................1  
DEVICE INFORMATION .................................................................................................................................................................................1  
APPLICATIONS ............................................................................................................................................................................................1  
FEATURES..................................................................................................................................................................................................1  
TYPICAL OPERATING CIRCUIT.........................................................................................................................................................................1  
1
2
INTRODUCTION .........................................................................................................................................................................5  
1.1  
1.2  
PURPOSE AND SCOPE.......................................................................................................................................................................5  
PRODUCT OVERVIEW.......................................................................................................................................................................5  
PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS..........................................................................................................6  
2.1  
OPERATION RANGES........................................................................................................................................................................6  
OPERATION MODES ........................................................................................................................................................................6  
PRESSURE SENSOR SPECIFICATIONS ....................................................................................................................................................7  
TEMPERATURE SENSOR SPECIFICATIONS ..............................................................................................................................................7  
RECOMMENDED OPERATION CONDITIONS ...........................................................................................................................................7  
2.2  
2.3  
2.4  
2.5  
3
4
ELECTRICAL SPECIFICATIONS......................................................................................................................................................8  
3.1  
ELECTRICAL CHARACTERISTICS ...........................................................................................................................................................8  
ABSOLUTE MAXIMUM RATINGS.........................................................................................................................................................9  
SENSOR SYSTEM TIMING ..................................................................................................................................................................9  
I2C TIMING CHARACTERIZATION.......................................................................................................................................................10  
3.2  
3.3  
3.4  
APPLICATIONS INFORMATION.................................................................................................................................................11  
4.1  
4.2  
INTERFACE SPECIFICATIONS .............................................................................................................................................................11  
PIN OUT DIAGRAM AND SIGNAL DESCRIPTION....................................................................................................................................11  
ICP-10100 and ICP-10101: 2x2x0.72mm 10-pin LGA ............................................................................................................................................. 11  
ICP-10110 and ICP-10111: 2x2.5x0.92 mm 8-pin LGA ........................................................................................................................................... 12  
4.3  
4.4  
TYPICAL OPERATING CIRCUIT...........................................................................................................................................................13  
BILL OF MATERIALS FOR EXTERNAL COMPONENTS...............................................................................................................................15  
5
OPERATION AND COMMUNICATION .......................................................................................................................................16  
5.1  
POWER-UP AND COMMUNICATION START.........................................................................................................................................16  
MEASUREMENT COMMANDS ..........................................................................................................................................................16  
STARTING A MEASUREMENT ...........................................................................................................................................................16  
SENSOR BEHAVIOR DURING MEASUREMENT ......................................................................................................................................16  
READOUT OF MEASUREMENT RESULTS..............................................................................................................................................16  
SOFT RESET .................................................................................................................................................................................17  
READ-OUT OF ID REGISTER .............................................................................................................................................................17  
CHECKSUM CALCULATION...............................................................................................................................................................17  
CONVERSION OF SIGNAL OUTPUT.....................................................................................................................................................18  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10 READ-OUT OF CALIBRATION PARAMETERS .........................................................................................................................................19  
5.11 SAMPLE CODE: EXAMPLE C SYNTAX..................................................................................................................................................19  
5.12 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)......................................................................................................21  
5.13 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX).............................................................................................22  
5.14 COMMUNICATION DATA SEQUENCES................................................................................................................................................22  
6
ASSEMBLY................................................................................................................................................................................24  
6.1  
IMPLEMENTATION AND USAGE RECOMMENDATIONS ...........................................................................................................................24  
Soldering................................................................................................................................................................................................................ 24  
Chemical Exposure and Sensor Protection ............................................................................................................................................................ 24  
Document Number: DS-000186  
Revision: 1.2  
Page 2 of 34  
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
7
PACKAGE DIMENSIONS............................................................................................................................................................25  
PART NUMBER PART MARKINGS .............................................................................................................................................30  
ORDERING GUIDE ....................................................................................................................................................................30  
REFERENCES.........................................................................................................................................................................32  
REVISION HISTORY...............................................................................................................................................................33  
8
9
10  
11  
Document Number: DS-000186  
Revision: 1.2  
Page 3 of 34  
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
LIST OF FIGURES  
Figure 1. Digital I/O Pads Timing..................................................................................................................................................................................... 10  
Figure 2. Pin Out Diagram for ICP-10100 & ICP10101, 2 mm x 2 mm x 0.72 mm LGA ................................................................................................... 11  
Figure 3. Pin Out Diagram for ICP-10110 & ICP-10111 2 mm x 2.5 mm x 0.92 mm LGA ................................................................................................ 12  
Figure 4. ICP-10100 & ICP-10101 Application Schematic ............................................................................................................................................... 13  
Figure 5. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package)........14  
Figure 6. ICP-10110 & ICP-10111 Application Schematic ............................................................................................................................................... 14  
Figure 7. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package)........15  
Figure 8. Communication Data Sequences ..................................................................................................................................................................... 23  
Figure 9. ICP-10100 & ICP-1010 Package Diagrams........................................................................................................................................................ 25  
Figure 10. ICP-10100 & ICP-10101 recommended PCB land pattern ............................................................................................................................. 26  
Figure 11. ICP-10110 & ICP-10111 Package Diagrams.................................................................................................................................................... 28  
Figure 12. ICP-10110 & ICP-10111 recommended PCB land pattern ............................................................................................................................. 29  
Figure 13. Part Number Part Markings ........................................................................................................................................................................... 30  
LIST OF TABLES  
Table 1. Operation Ranges................................................................................................................................................................................................ 6  
Table 2. Operation Modes................................................................................................................................................................................................ 6  
Table 3. Pressure Sensor Specifications............................................................................................................................................................................ 7  
Table 4. Temperature Sensor Specifications .................................................................................................................................................................... 7  
Table 5. Electrical Specifications....................................................................................................................................................................................... 8  
Table 6. Absolute Maximum Ratings ................................................................................................................................................................................ 9  
Table 7. System Timing Specifications.............................................................................................................................................................................. 9  
Table 8. I2C Parameters Specification............................................................................................................................................................................. 10  
Table 9. Signal Descriptions............................................................................................................................................................................................ 11  
Table 10. Signal Descriptions.......................................................................................................................................................................................... 12  
Table 11. Bill of Materials ............................................................................................................................................................................................... 15  
Table 12. ICP-101xx I2C Device Address.......................................................................................................................................................................... 16  
Table 13. Measurement Commands............................................................................................................................................................................... 16  
Table 14. Soft Reset Command....................................................................................................................................................................................... 17  
Table 15. Read-Out Command of ID Register ................................................................................................................................................................. 17  
Table 16. 16-bit ID Structure .......................................................................................................................................................................................... 17  
Table 17. ICP-101xx I2C CRC Properties .......................................................................................................................................................................... 18  
Table 18. ICP-10100 & ICP-10101 Package Dimensions ................................................................................................................................................. 26  
Table 19. ICP-10110 & ICP-10111 Package Dimensions ................................................................................................................................................. 28  
Table 20. Part Number Part Markings ............................................................................................................................................................................ 30  
Document Number: DS-000186  
Revision: 1.2  
Page 4 of 34  
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
1 INTRODUCTION  
1.1 PURPOSE AND SCOPE  
This document is a preliminary product specification, providing a description, specifications, and design related information for the  
ICP-101xx Pressure Sensor.  
Specifications are subject to change without notice. Final specifications will be updated based upon characterization of production  
silicon.  
1.2 PRODUCT OVERVIEW  
The ICP-101xx is an ultra-low power, low noise, digital output barometric pressure and temperature sensor IC. It is based on an  
innovative MEMS capacitive pressure sensor technology that can measure pressure differences with an accuracy of ±1 Pa at the  
industry’s lowest power. The high accuracy MEMS capacitive pressure sensor is capable of measuring altitude differentials down to  
8.5 cm without the penalty of increased power consumption or reduced sensor throughput.  
The capacitive pressure sensor has a ±1 hPa absolute accuracy over its full range of 300 hPa -1100 hPa. The pressure sensor has an  
embedded temperature sensor and 400 kHz I2C bus for communication. For power-critical applications, the ICP-101xx features a low  
power mode of 1.3 µA at a noise of 3.2 Pa or for high performance applications, it features a low noise mode of 0.8 Pa while only  
consuming 5.2 µA.  
The ICP-10100 and ICP-10110 has three 0.025 mm package openings, making waterproof to 1.5m for 30 minutes providing many  
mobile applications improved water resistance with no additional waterproofing costs.  
The ICP-101xx also offers industry leading temperature stability of the pressure sensor with a temperature coefficient offset of  
±0.5 Pa/°C. The high accuracy, temperature stability, and market leading low power consumption of 1.3 µA @1 Hz offered by ICP-  
101xx makes it ideally suited for applications such as mobile phones, drone flight control and stabilization, indoor/outdoor  
navigation (elevator, floor, and stair step detection), sports and fitness activity monitoring, and battery-powered IoT.  
Document Number: DS-000186  
Revision: 1.2  
Page 5 of 34  
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
2 PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS  
2.1 OPERATION RANGES  
The sensor shows best performance when operated within the recommended temperature and pressure range (hereafter called  
normal conditions) of 0°C – 45°C and 95 kPa – 105 kPa, respectively. The following ranges are defined for the device:  
OPERATION RANGE  
Normal  
PRESSURE (KPA)  
TEMPERATURE (°C)  
95 to 105  
0 to 45  
Extended  
Maximum  
30 to 110  
25 to 115  
-20 to 65  
-40 to 85  
Table 1. Operation Ranges  
2.2 OPERATION MODES  
The sensor can be operated in up to four different measurement modes to satisfy different requirements for power consumption vs.  
noise, accuracy and measurement frequency. An overview of the operation modes is given in Table 2.  
PARAMETER  
CONDITIONS  
SENSOR MODE  
TYP  
MAX  
UNITS  
NOTES  
Low Power (LP)  
Normal (N)  
1.6  
5.6  
1.8  
6.3  
1
1
1
Time between sending last bit of  
measurement command, and  
sensor data ready for  
Conversion Time  
ms  
Low Noise (LN)  
Ultra Low Noise  
(ULN)  
20.8  
23.8  
measurement  
83.2  
94.5  
1
Low Power (LP)  
Normal (N)  
Low Noise (LN)  
Ultra Low Noise  
(ULN)  
Low Power (LP)  
Normal  
Low Noise (LN)  
Ultra Low Noise  
(ULN)  
1.3  
2.6  
5.2  
Current  
Consumption  
1 Hz ODR  
µA  
Pa  
10.4  
3.2  
1.6  
0.8  
Valid for P = 100 kPa, T = 25°C,  
and U = 1.8V  
Pressure RMS Noise  
0.4  
Table 2. Operation Modes  
Notes:  
1. Guaranteed by design.  
Low Power modes supports ODR greater than 500 Hz while the Low Noise mode provides industry leading RMS noise at a fast 40 Hz  
ODR. Further decrease in noise may be achieved by software oversampling and filtering through customer’s software  
implementation or custom TDK-InvenSense operation modes available upon request.  
Document Number: DS-000186  
Revision: 1.2  
Page 6 of 34  
 
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
2.3 PRESSURE SENSOR SPECIFICATIONS  
Pressure sensor specifications are given in Table 3. Default conditions of 25 °C and 1.8V supply voltage apply, unless otherwise stated.  
PARAMETER  
Absolute Accuracy  
CONDITIONS  
Normal range  
TYP  
±1  
UNITS  
hPa  
NOTES  
1
Extended range  
±1.5  
Relative Accuracy  
Any step 1 kPa, 25 °C  
Any step 10 kPa, 25 °C  
±1  
±3  
Pa  
Long-term drift  
During 1 year  
Solder drift  
Extended range  
±1  
hPa/y  
hPa  
1.5  
1, 2  
Temperature coefficient offset  
P = 100 kPa  
25°C … 45°C  
Maximum range  
±0.5  
0.01  
Pa/°C  
Pa  
Resolution  
Table 3. Pressure Sensor Specifications  
Notes:  
1. Absolute accuracy may be improved through One Point Calibration  
2. Sensor accuracy post Solder reflow may be improved through One Point Calibration  
2.4 TEMPERATURE SENSOR SPECIFICATIONS  
Specifications of the temperature sensor are shown in Table 4.  
PARAMETER  
Absolute Accuracy  
Repeatability  
Resolution  
CONDITIONS  
Extended range  
Extended range  
Maximum range  
Normal range  
TYP  
±0.4  
±0.1  
0.01  
<0.04  
UNITS  
°C  
°C  
°C  
°C/y  
Long-term drift  
Table 4. Temperature Sensor Specifications  
2.5 RECOMMENDED OPERATION CONDITIONS  
The pressure sensor exhibits best performance when operated within the normal pressure and temperature range 0°C < T < 45°C  
and 95 kPa < P < 105 kPa.  
Injected photo current due to strong light sources can influence the sensor performance and should be avoided to guarantee best  
operation.  
The sensor should not be exposed to high mechanical stress, the resulting deformation of the package can alter internal dimensions  
and therefore falsify the sensor signal. Solder reflow may affect device performance. One-point calibration can improve the sensor  
accuracy post solder reflow.  
Document Number: DS-000186  
Revision: 1.2  
Page 7 of 34  
 
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
3 ELECTRICAL SPECIFICATIONS  
3.1 ELECTRICAL CHARACTERISTICS  
Default conditions of 25 °C and 1.8V supply voltage apply to values in Table 5, unless otherwise stated.  
PARAMETER  
Supply voltage  
SYMBOL  
VDD  
CONDITIONS  
MIN  
1.71  
1.0  
TYP  
1.8  
MAX  
1.89  
1.5  
UNITS  
COMMENTS  
V
V
Power-up/down level  
Supply Ramp Time  
VPOR  
Static power supply  
1.25  
Monotonic ramp. Ramp rate  
is 10% to 90% of the final  
value  
TRAMP  
0.01  
100  
ms  
Idle state  
-
-
1.0  
2.5  
µA  
µA  
Current consumption while  
sensor is measuring.  
Measurement  
210  
300  
Current consumption in  
µA continuous operation @ 1 Hz  
ODR in LP Mode  
Supply current  
IDD  
-
-
1.3  
5.2  
-
-
Average  
Current consumption in  
µA continuous operation @1 Hz  
ODR in LN Mode  
Low level input voltage  
High level input voltage  
Low level output voltage  
VIL  
VIH  
VOL  
0
0.7 VDD  
-
-
-
0.3 VDD  
V
V
VDD  
0 < IOL < 3 mA  
VOL = 0.4V  
-
0.2 VDD  
V
3.1  
4.1  
4.5  
-
-
mA  
mA  
Output Sink Current  
IOL  
VOL = 0.6V  
3.5  
Table 5. Electrical Specifications  
Document Number: DS-000186  
Revision: 1.2  
Page 8 of 34  
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
3.2 ABSOLUTE MAXIMUM RATINGS  
Stress levels beyond those listed in Table 6 may cause permanent damage to the device. These are stress ratings only and functional  
operation of the device at these conditions cannot be guaranteed. Exposure to the absolute maximum rating conditions for  
extended periods may affect the reliability of the device.  
PARAMETER  
Supply voltage, VDD  
RATING  
-0.3V to 2.16V  
-0.3V to VDD 0.3V  
-40°C to 85°C  
-40°C to 125°C  
2.0 kV  
Supply Voltage, SCL & SDA  
Operating temperature range  
Storage temperature range  
ESD HBM  
ESD CDM  
250V  
Latch up, JESD78 Class II, 85°C  
Overpressure  
100 mA  
>600kPa  
Table 6. Absolute Maximum Ratings  
3.3 SENSOR SYSTEM TIMING  
Default conditions of 25°C and 1.8V supply voltage apply to typ. values listed in Table 7, unless otherwise stated. Max. values apply  
over the specified operating range of VDD and over the operating temperature range.  
PARAMETER  
Power-up time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
COMMENTS  
Time between VDD reaching VPU  
and sensor entering idle state  
tPU  
After hard reset, VDD ≥ VPOR  
-
170  
-
-
µs  
µs  
Time between ACK of soft reset  
command and sensor entering  
idle state  
Soft reset time  
tSR  
After soft reset  
-
-
170  
Duration for a pressure and  
temperature measurement  
Measurement duration  
tMEAS LN Mode  
20.8  
23.8  
ms  
Table 7. System Timing Specifications  
Document Number: DS-000186  
Revision: 1.2  
Page 9 of 34  
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
3.4 I2C TIMING CHARACTERIZATION  
Default conditions of 25°C and 1.8V supply voltage apply to values in Table 8, unless otherwise stated.  
PARAMETER  
SCL clock frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
fSCL  
0
-
400  
kHz  
After this period, the first clock  
pulse is generated  
Hold time (repeated) START condition  
tHD;STA  
0.6  
-
-
µs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Set-up time for a repeated START condition  
SDA hold time  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tR  
1.3  
0.6  
0.6  
0
-
-
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
-
-
-
SDA set-up time  
100  
20  
-
-
SCL/SDA rise time  
300  
300  
0.9  
SCL/SDA fall time  
tF  
SDA valid time  
tVD;DAT  
-
Set-up time for STOP condition  
Capacitive load on bus line  
tSU;STO  
CB  
0.6  
-
-
-
-
µs  
pF  
400  
Table 8. I2C Parameters Specification  
1/fSC  
tHIGH  
tR  
tF  
tLOW  
70  
30  
SCL  
tSU;D  
tHD;DA  
DATA IN  
70  
30  
SDA  
tR  
tVD;DAT  
tF  
DATA OUT  
70  
30  
SDA  
Figure 1. Digital I/O Pads Timing  
Document Number: DS-000186  
Revision: 1.2  
Page 10 of 34  
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
4 APPLICATIONS INFORMATION  
4.1 INTERFACE SPECIFICATIONS  
The ICP-101xx supports I2C fast mode, SCL clock frequency from 0 to 400 kHz.  
4.2 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
ICP-10100 and ICP-10101: 2x2x0.72mm 10-pin LGA  
PIN NUMBER  
PIN NAME  
RESV  
SCL  
DESCRIPTION  
No Internal Connection: Can connect to VDD/VDDIO/GND/NC  
I2C Serial Clock  
1
2
3
4
RESV  
SDA  
Connect to Ground  
I2C Serial Data  
5
6
7
8
RESV  
RESV  
RESV  
GND  
Connect to VDD  
Connect to VDD  
No Internal Connection: Can connect to VDD/VDDIO/GND/NC  
Connect to Ground  
9
GND  
Connect to Ground  
10  
VDD  
Power Supply VDD  
Table 9. Signal Descriptions  
3
4
5
RESV  
SDA  
RESV  
2
6
SCL  
RESV  
BOTTOM VIEW  
1
7
RESV  
RESV  
10  
9
8
VDD  
GND  
GND  
Figure 2. Pin Out Diagram for ICP-10100 & ICP10101, 2 mm x 2 mm x 0.72 mm LGA  
Document Number: DS-000186  
Revision: 1.2  
Page 11 of 34  
 
 
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
ICP-10110 and ICP-10111: 2x2.5x0.92 mm 8-pin LGA  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1
2
3
4
5
6
7
8
GND  
RESV  
SDA  
Connect to Ground  
No Internal Connection: Can connect to VDD/VDDIO/GND/NC  
I2C Serial Data  
SCL  
I2C Serial Clock  
RESV  
RESV  
GND  
VDD  
Connect to Ground  
No Internal Connection: Can connect to VDD/VDDIO/GND/NC  
Connect to Ground  
Power Supply VDD  
Table 10. Signal Descriptions  
1
8
GND  
VDD  
2
7
RESV  
GND  
BOTTOM VIEW  
3
6
SDA  
RESV  
4
5
SCL  
RESV  
Figure 3. Pin Out Diagram for ICP-10110 & ICP-10111 2 mm x 2.5 mm x 0.92 mm LGA  
Document Number: DS-000186  
Revision: 1.2  
Page 12 of 34  
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
4.3 TYPICAL OPERATING CIRCUIT  
GND  
GND  
VDD  
1.71-1.89V  
C1, 100nF  
GND  
10  
9
8
VDD  
GND  
GND  
No Internal Connection  
Can connect to: VDD/VDDIO/GND/NC  
No Internal Connection  
Can connect to: VDD/VDDIO/GND/NC  
1
7
RESV  
RESV  
TOP VIEW  
2
6
SCL  
VDD  
SCL  
RESV  
3
4
5
RESV  
SDA  
RESV  
GND  
SDA  
VDD  
Figure 4. ICP-10100 & ICP-10101 Application Schematic  
Power supply pins supply voltage (Vdd) and ground (Vss) must be decoupled with a 100 nF capacitor that shall be placed as close to  
the sensor as possible (see Figure 5).  
Document Number: DS-000186  
Revision: 1.2  
Page 13 of 34  
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
Figure 5. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package)  
SCL is used to synchronize the communication between the microcontroller and the sensor. The master must keep the clock  
frequency within 0 to 400 kHz as specified in Table 8.  
The SDA pin is used to transfer data in and out of the sensor. For safe communication, the timing specifications defined in the I2C  
manual must be met.  
To avoid signal contention, the microcontroller must only drive SDA and SCL low. External pull-up resistors (i.e. 10 kΩ) are required  
to pull the signal high. For dimensioning resistor sizes, user should also consider bus capacity requirements. It should be noted that  
pull-up resistors may be included in I/O circuits of microcontrollers.  
1
8
VDD  
1.71-1.89V  
GND  
GND  
VDD  
C1, 100nF  
No Internal Connection  
Can connect to: VDD/VDDIO/GND/NC  
2
7
GND  
RESV  
GND  
GND  
TOP  
No Internal Connection  
3
6
SDA  
SCL  
SDA  
RESV  
Can connect to: VDD/VDDIO/GND/NC  
4
5
GND  
SCL  
RESV  
Figure 6. ICP-10110 & ICP-10111 Application Schematic  
Document Number: DS-000186  
Revision: 1.2  
Page 14 of 34  
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
Power supply pins supply voltage (Vdd) and ground (Vss) must be decoupled with a 100 nF capacitor that shall be placed as close to  
the sensor as possible (see Figure 7).  
The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.  
Figure 7. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package)  
4.4 BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
COMPONENT  
VDD Bypass Capacitor  
LABEL  
SPECIFICATION  
QUANTITY  
C1  
Ceramic, X7R, 100 nF ±10%  
1
Table 11. Bill of Materials  
Document Number: DS-000186  
Revision: 1.2  
Page 15 of 34  
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
5 OPERATION AND COMMUNICATION  
All commands and memory locations of the ICP-101xx are mapped to a 16-bit address space which can be accessed via the I2C protocol.  
ICP-101XX  
BINARY  
DECIMAL  
HEXADECIMAL  
I2C address  
110’0011  
99  
0x63  
Table 12. ICP-101xx I2C Device Address  
5.1 POWER-UP AND COMMUNICATION START  
Upon VDD reaching the power-up voltage level VPOR, the ICP-101xx enters idle state after a duration of tPU. In idle state, the ICP-  
101xx is ready to receive commands from the master (microcontroller).  
Each transmission sequence begins with START condition (S) and ends with an (optional) STOP condition (P) as described in the  
I2C-bus specification. Whenever the sensor is powered up, but not performing a measurement or communicating, it automatically  
enters idle state for energy saving.  
5.2 MEASUREMENT COMMANDS  
The ICP-101xx provides the possibility to define the sensor behavior during measurement as well as the transmission sequence of  
measurement results. These characteristics are defined by the appropriate measurement command.  
Each measurement command triggers both a temperature and a pressure measurement.  
OPERATION MODE  
Low Power (LP)  
Normal (N)  
Low Noise (LN)  
Ultra-Low Noise (ULN)  
TRANSMIT T FIRST TRANSMIT P FIRST  
0x609C  
0x6825  
0x70DF  
0x7866  
0x401A  
0x48A3  
0x5059  
0x58E0  
Table 13. Measurement Commands  
5.3 STARTING A MEASUREMENT  
A measurement communication sequence consists of a START condition followed by the I2C header with the 7-bit I2C device address  
and a write bit (write W: ‘0’, 8-bit word including I2C header: 0xC6). The sensor indicates the proper reception of a byte by pulling  
the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock. Then the sensor is ready to receive a 16-bit measurement  
command. Again, the ICP-101xx acknowledges the proper reception of each byte with ACK condition. A complete measurement  
cycle is presented in Figure 8.  
With the acknowledgement of the measurement command, the ICP-101xx starts measuring pressure and temperature.  
5.4 SENSOR BEHAVIOR DURING MEASUREMENT  
In general, the sensor does not respond to any I2C activity during measurement, i.e. I2C read and write headers are not  
acknowledged (NACK).  
5.5 READOUT OF MEASUREMENT RESULTS  
After a measurement command has been issued and the sensor has completed the measurement, the master can read the  
measurement results by sending a START condition followed by an I2C read header (8-bit word including I2C header: 0xC7). The  
sensor will acknowledge the reception of the read header and send the measured data in the specified order to the master. The MSB  
of the corresponding data is always transmitted first. Temperature data is transmitted in two 8-bit words and pressure data is  
transmitted in four 8-bit words. Regarding the pressure data, only the first three words MMSB, MLSB and LMSB contain information  
about the ADC pressure value p_dout. Therefore, for retrieving the ADC pressure value, LLSB must be disregarded:  
p_dout = MMSB 16 | MLSB 8| LMSB.  
Document Number: DS-000186  
Revision: 1.2  
Page 16 of 34  
 
 
 
 
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
Two bytes of data are always followed by one byte CRC checksum, for calculation see section 5.8. Each byte must be acknowledged  
by the microcontroller with an ACK condition for the sensor to continue sending data. If the ICP-101xx does not receive an ACK from  
the master after any byte of data, it will not continue sending data.  
Whether the sensor sends out pressure or temperature data first depends on the measurement command that was sent to the  
sensor to initiate the measurement (see Table 13).  
The I2C master can abort the read transfer with a NACK condition after any data byte if it is not interested in subsequent data, e.g.  
the CRC byte or the second measurement result, to save time.  
5.6 SOFT RESET  
The ICP-101xx provides a soft reset mechanism that forces the system into a well-defined state without removing the power supply.  
If the system is in idle state (i.e. if no measurement is in progress) the soft reset command will be accepted by ICP-101xx. This  
triggers the sensor to reset all internal state machines and reload calibration data from the memory.  
COMMAND  
HEXADECIMAL CODE  
BINARY CODE  
Soft reset  
0x805D  
1000’0000’0101’1101  
Table 14. Soft Reset Command  
5.7 READ-OUT OF ID REGISTER  
The ICP-101xx has an ID register which contains a specific product code. The read-out of the ID register can be used to verify the  
presence of the sensor and proper communication. The command to read the ID register is shown in Table 15.  
COMMAND  
HEXADECIMAL CODE  
BINARY CODE  
Read ID register  
0xEFC8  
1110’1111’1100’1000  
Table 15. Read-Out Command of ID Register  
It needs to be sent to the ICP-101xx after an I2C write header. After the ICP-101xx has acknowledged the proper reception of the  
command, the master can send an I2C read header and the ICP-101xx will submit the 16-bit ID followed by 8 bits of CRC. The  
structure of the ID is described in Table 16. Bits 15:6 of the ID contain unspecified information (marked as “x”), which may vary from  
sensor to sensor, while bits 5:0 contain the ICP-101xx specific product code.  
16-bit ID  
xxxx'xxxx’xx 00’1000  
bits 5 to 0: ICP-101xx-specific product code  
bits 15 to 6: unspecified information  
Table 16. 16-bit ID Structure  
5.8 CHECKSUM CALCULATION  
The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm with the properties displayed in Table 17.  
The CRC covers the contents of the two previously transmitted data bytes.  
Document Number: DS-000186  
Revision: 1.2  
Page 17 of 34  
 
 
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
PROPERTY  
VALUE  
Name  
CRC-8  
Width  
8 bits  
Polynomial  
Initialization  
Reflect input  
Reflect output  
Final XOR  
0x31 (x8 + x5 + x4 + 1)  
0xFF  
false  
false  
0x00  
CRC(0x00) = 0xAC  
CRC(0xBEEF) = 0x92  
Examples  
Table 17. ICP-101xx I2C CRC Properties  
5.9 CONVERSION OF SIGNAL OUTPUT  
Pressure measurement data is always transferred as 4 8-bit words; temperature measurement data is always transferred as two 8-  
bit words. Please see section 5.5 for more details.  
Temperature measurement values t_dout are linearized by the ICP-101xx and must be calculated to °C by the user via the following  
formula:  
175°C  
T = - 45°C +  
× t_dout.  
16  
2
For retrieving physical pressure values in Pa the following conversion formula has to be used:  
B
P = A +  
,
C + pdout  
where p_dout is the sensor’s raw pressure output. The converted output is compensated for temperature effects via the  
temperature dependent functions A, B and C. Besides the raw temperature output t_dout, the calculation of A, B and C requires to  
access calibration parameters OTP0, OTP1, OTP2, OTP3 stored in the OTP of the sensor. Read-out of OTP parameters is described in  
section 5.10.  
Full sample code for calculating physical pressure values is given in section 5.11. The general workflow of the conversion is done by:  
1) Import class Invensense_pressure_conversion  
2) Read out values OTP0, …, OTP3 and save to c1, …, c4  
3) Create object name for an individual sensor with parameter values c1, …, c4  
name = Invensense_pressure_conversion  
([c1,c2,c3,c4])  
4) Get raw pressure p_dout and temperature t_dout data from the sensor as described in chapter 5.5.  
5) Call function get_pressure:  
name.get_pressure(p_dout, t_dout)  
The sample code from section 5.13 gives an example of this workflow.  
Document Number: DS-000186  
Revision: 1.2  
Page 18 of 34  
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
5.10 READ-OUT OF CALIBRATION PARAMETERS  
For converting raw pressure data to physical values, four calibration parameters have to be retrieved from the OTP of the sensor.  
Set up of OTP read:  
1) Send I2C write header 0xC6  
2) Send command 0xC595 (move pointer in address register)  
3) Send address parameter together with its CRC 0x00669C  
Steps 1) – 3) can be executed on many platforms by a single I2C write of the value 0xC59500669C.  
Read out parameters:  
Repeat the following procedure 4 times:  
a) Send I2C write header 0xC6  
b) Send command 0xC7F7 (incremental read-out of OTP)  
c) Send I2C read header 0xC7  
d) Read 3B (2B of data and 1B of CRC)  
e) Decode data as 16bit big endian signed integer and store result into n-th calibration parameter cn.  
Steps a) to d) can be executed on many platforms by a single write 0xC7F7 to the chip address followed by a single read of 3 B from  
the chip address.  
5.11 SAMPLE CODE: EXAMPLE C SYNTAX  
/* data structure to hold pressure sensor related parameters */  
typedef struct inv_invpres  
{
struct inv_invpres_serif serif;  
uint32_t min_delay_us;  
uint8_t pressure_en;  
uint8_t temperature_en;  
float sensor_constants[4]; // OTP values  
float p_Pa_calib[3];  
float LUT_lower;  
float LUT_upper;  
float quadr_factor;  
float offst_factor;  
} inv_invpres_t;  
int inv_invpres_init(struct inv_invpres * s)  
{
short otp[4];  
read_otp_from_i2c(s, otp);  
init_base(s, otp);  
return 0;  
}
int read_otp_from_i2c(struct inv_invpres * s, short *out)  
{
unsigned char data_write[10];  
unsigned char data_read[10] = {0};  
int status;  
int i;  
// OTP Read mode  
data_write[0] = 0xC5;  
data_write[1] = 0x95;  
data_write[2] = 0x00;  
data_write[3] = 0x66;  
data_write[4] = 0x9C;  
Document Number: DS-000186  
Revision: 1.2  
Page 19 of 34  
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 5);  
if (status)  
return status;  
// Read OTP values  
for (i = 0; i < 4; i++) {  
data_write[0] = 0xC7;  
data_write[1] = 0xF7;  
status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 2);  
if (status)  
return status;  
status = inv_invpres_serif_read_reg(&s->serif, ICC_ADDR_PRS, data_read, 3);  
if (status)  
return status;  
out[i] = data_read[0]<<8 | data_read[1];  
}
return 0;  
}
void init_base(struct inv_invpres * s, short *otp)  
{
int i;  
for(i = 0; i < 4; i++)  
s->sensor_constants[i] = (float)otp[i];  
s->p_Pa_calib[0] = 45000.0;  
s->p_Pa_calib[1] = 80000.0;  
s->p_Pa_calib[2] = 105000.0;  
s->LUT_lower = 3.5 * (1<<20);  
s->LUT_upper = 11.5 * (1<<20);  
s->quadr_factor = 1 / 16777216.0;  
s->offst_factor = 2048.0;  
}
// p_LSB -- Raw pressure data from sensor  
// T_LSB -- Raw temperature data from sensor  
int inv_invpres_process_data(struct inv_invpres * s, int p_LSB, int T_LSB,  
float * pressure, float * temperature)  
{
float t;  
float s1,s2,s3;  
float in[3];  
float out[3];  
float A,B,C;  
t = (float)(T_LSB - 32768);  
s1 = s->LUT_lower + (float)(s->sensor_constants[0] * t * t) * s->quadr_factor;  
s2 = s->offst_factor * s->sensor_constants[3] + (float)(s->sensor_constants[1] * t * t) * s->quadr_factor;  
s3 = s->LUT_upper + (float)(s->sensor_constants[2] * t * t) * s->quadr_factor;  
in[0] = s1;  
in[1] = s2;  
in[2] = s3;  
calculate_conversion_constants(s, s->p_Pa_calib, in, out);  
A = out[0];  
B = out[1];  
C = out[2];  
*pressure = A + B / (C + p_LSB);  
*temperature = -45.f + 175.f/65536.f * T_LSB;  
return 0;  
}
// p_Pa -- List of 3 values corresponding to applied pressure in Pa  
// p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.  
void calculate_conversion_constants(struct inv_invpres * s, float *p_Pa,  
float *p_LUT, float *out)  
{
float A,B,C;  
C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) +  
p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +  
p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) /  
Document Number: DS-000186  
Revision: 1.2  
Page 20 of 34  
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
(p_LUT[2] * (p_Pa[0] - p_Pa[1]) +  
p_LUT[0] * (p_Pa[1] - p_Pa[2]) +  
p_LUT[1] * (p_Pa[2] - p_Pa[0]));  
A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1]);  
B = (p_Pa[0] - A) * (p_LUT[0] + C);  
out[0] = A;  
out[1] = B;  
out[2] = C;  
}
5.12 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)  
class InvensensePressureConversion:  
""" Class for conversion of the pressure and temperature output of the Invensense sensor"""  
def __init__(self, sensor_constants):  
""" Initialize customer formula  
Arguments:  
sensor_constants -- list of 4 integers: [c1, c2, c3, c4]  
"""  
self.sensor_constants = sensor_constants  
# configuration for ICP-101xx Samples  
self.p_Pa_calib = [45000.0, 80000.0, 105000.0]  
self.LUT_lower = 3.5 * (2**20)  
self.LUT_upper = 11.5 * (2**20)  
self.quadr_factor = 1 / 16777216.0  
self.offst_factor = 2048.0  
def calculate_conversion_constants(self, p_Pa, p_LUT):  
""" calculate temperature dependent constants  
Arguments:  
p_Pa -- List of 3 values corresponding to applied pressure in Pa  
p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.  
"""  
C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) +  
p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +  
p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) / \  
(p_LUT[2] * (p_Pa[0] - p_Pa[1]) +  
p_LUT[0] * (p_Pa[1] - p_Pa[2]) +  
p_LUT[1] * (p_Pa[2] - p_Pa[0]))  
A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1])  
B = (p_Pa[0] - A) * (p_LUT[0] + C)  
return [A, B, C]  
def get_pressure(self, p_LSB, T_LSB):  
Document Number: DS-000186  
Revision: 1.2  
Page 21 of 34  
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
""" Convert an output from a calibrated sensor to a pressure in Pa.  
Arguments:  
p_LSB -- Raw pressure data from sensor  
T_LSB -- Raw temperature data from sensor  
"""  
t = T_LSB - 32768.0  
s1 = self.LUT_lower + float(self.sensor_constants[0] * t * t) * self.quadr_factor  
s2 = self.offst_factor * self.sensor_constants[3] + float(self.sensor_constants[1] * t * t) * self.quadr_factor  
s3 = self.LUT_upper + float(self.sensor_constants[2] * t * t) * self.quadr_factor  
A, B, C = self.calculate_conversion_constants(self.p_Pa_calib, [s1, s2, s3])  
return A + B / (C + p_LSB)  
[end of the pseudocode]  
5.13 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)  
def read_otp_from_i2c():  
# TODO: implement read from I2C  
# refer to data sheet for I2C commands to read OTP  
return 1000, 2000, 3000, 4000  
def read_raw_pressure_temp_from_i2c():  
# TODO: implement read from I2C  
# refer to data sheet for I2C commands to read pressure and temperature  
return 8000000, 32000  
# Sample code to read  
from Invensense_pressure_conversion import Invensense_pressure_conversion  
# -- initialization  
c1, c2, c3, c4 = read_otp_from_i2c()  
conversion = Invensense_pressure_conversion([c1, c2, c3, c4])  
# -- read raw pressure and temp data, calculate pressure  
p, T = read_raw_pressure_temp_from_i2c()  
pressure = conversion.get_pressure(p, T)  
print 'Pressure: %f' % pressure  
[end of the pseudocode]  
5.14 COMMUNICATION DATA SEQUENCES  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  
P
ICP-101xx measuring  
S
1 1 0 0 0 1 1 0  
0 1 0 1 0 0 0 0  
0 1 0 1 1 0 0 1  
Measurement command  
MSB  
Measurement command  
LSB  
I2C address + write  
Measurement in progress  
Document Number: DS-000186  
Revision: 1.2  
Page 22 of 34  
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
29 30 31 32 33 34 35 36 37 38 39  
40 41 42 43 44 45 46 47 48 49  
ICP-101xx  
measuring  
ICP-101xx in  
idle state  
S
P
S
1 1 0 0 0 1 1 1  
1 1 0 0 0 1 1 1  
repeated I2C address +  
read while meas. is in  
prog. (polling)  
measurement  
completed  
measurement  
cont’d  
I2C address + read  
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76  
1 0 1 0 0 0 0 1  
0 0 1 1 0 0 1 1  
0 0 0 1 1 1 0 0  
Pressure CRC  
checksum  
Pressure MMSB  
Pressure MLSB  
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103  
1 0 1 0 0 0 0 1  
0 0 1 1 0 0 1 1  
0 0 0 1 1 1 0 0  
Pressure CRC  
checksum  
Pressure LMSB  
Pressure LLSB  
104 105106 107108 109 110111 112 113 114 115 116 117118 119 120 121 122 123 124 125 126 127 128 129 130131  
P
0 1 1 0 0 1 0 0  
1 0 0 0 1 0 1 1  
1 1 0 0 0 1 1 1  
Temperature CRC  
checksum  
Temperature MSB  
Temperature LSB  
Figure 8. Communication Data Sequences  
Document Number: DS-000186  
Revision: 1.2  
Page 23 of 34  
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
6 ASSEMBLY  
This section provides general guidelines for assembling TDK-InvenSense Micro Electro-Mechanical Systems (MEMS) pressure sensors.  
6.1 IMPLEMENTATION AND USAGE RECOMMENDATIONS  
Soldering  
When soldering, use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260°C. ICP-101xx may exhibit a  
pressure offset after soldering, some settling time may be required depending on soldering properties, PCB properties, and ambient  
conditions.  
The ICP-101xx is an open cavity package, it is mandatory to use no-clean solder paste and no board wash should be applied.  
Chemical Exposure and Sensor Protection  
The ICP-101xx is an open cavity package, the ICP-101x0 is waterproof to 1.5m for 30 minutes (IPx8), however the ICP-101x1 should  
not be exposed to particulates or liquids. If any type of protective coating must be applied to the circuit board, the sensor must be  
protected during the coating process.  
Document Number: DS-000186  
Revision: 1.2  
Page 24 of 34  
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
7 PACKAGE DIMENSIONS  
Package dimensions for the ICP-10100 & ICP-10101:  
Top View: ICP-10100  
Top View: ICP-10101  
Bottom View: ICP-10100 & ICP-10101  
Figure 9. ICP-10100 & ICP-1010 Package Diagrams  
Document Number: DS-000186  
Revision: 1.2  
Page 25 of 34  
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
DIMENSIONS IN MILLIMETERS  
SYMBOLS  
MIN.  
0.64  
---  
NOM.  
0.72  
0.595 REF.  
0.25  
MAX.  
0.800  
---  
A
A3  
b
---  
---  
c
D
D1  
E
E1  
e
---  
1.90  
---  
1.90  
---  
---  
0.125 REF.  
2.00  
---  
2.10  
---  
2.10  
---  
---  
1.85  
2.00  
1.85  
0.50  
L
L1  
L3  
0.275  
0.025  
0.250  
0.375  
0.075  
0.300  
0.400  
0.100  
0.325  
Table 18. ICP-10100 & ICP-10101 Package Dimensions  
Recommended PCB land pattern for the ICP-10100 & ICP-10101:  
Figure 10. ICP-10100 & ICP-10101 recommended PCB land pattern  
Document Number: DS-000186  
Revision: 1.2  
Page 26 of 34  
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
Product artwork for the ICP-10100 & ICP-10101:  
Package Artwork: ICP-10100  
Package Artwork: ICP-10101  
Package dimensions for the ICP-10110 & ICP-10111:  
Top View: ICP-10110  
Top View: ICP-10111  
Document Number: DS-000186  
Revision: 1.2  
Page 27 of 34  
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
Bottom View: ICP-10110 & ICP-10111  
Figure 11. ICP-10110 & ICP-10111 Package Diagrams  
DIMENSIONS IN MILLIMETERS  
SYMBOLS  
MIN.  
0.84  
---  
NOM.  
0.92  
0.79 REF.  
0.35  
MAX.  
1.00  
---  
A
A3  
b
---  
---  
c
E
E1  
D
D1  
e
---  
1.90  
---  
2.40  
---  
---  
0.13 REF.  
2.00  
1.85  
2.50  
2.35  
---  
2.10  
---  
2.60  
---  
---  
0.65  
L
0.35  
0.05  
0.30  
---  
0.45  
0.10  
0.35  
0.10  
0.55  
0.15  
0.40  
---  
L1  
L3  
S
Table 19. ICP-10110 & ICP-10111 Package Dimensions  
Recommended PCB land pattern for the ICP-10110 & ICP-10111:  
Document Number: DS-000186  
Revision: 1.2  
Page 28 of 34  
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
Figure 12. ICP-10110 & ICP-10111 recommended PCB land pattern  
Product artwork for the ICP-10110 & ICP-10111:  
Package Artwork: ICP-10110  
Package Artwork: ICP-10111  
Document Number: DS-000186  
Revision: 1.2  
Page 29 of 34  
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
8 PART NUMBER PART MARKINGS  
The part number part markings for ICP-101xx devices are summarized below:  
PART NUMBER  
ICP-10100  
ICP-10101  
ICP-10110  
ICP-10111  
PART MARKING  
P1  
P2  
P5  
P6  
Table 20. Part Number Part Markings  
TOP VIEW  
Px  
Part Number  
Lot Traceability Code  
Date Code: (Y)Year(W)WorkWeek  
XXXX  
YW  
1-Hole (ICP-10101) or  
3-Hole (ICP-10100)  
Figure 13. Part Number Part Markings for 2x2mm (ICP-10101 & ICP-10100)  
TOP VIEW  
1-Hole (ICP-10111) or  
Px  
3-Hole (ICP-10110)  
Part Number  
Lot Traceability Code  
Date Code: (Y)Year(W)WorkWeek  
XXXX  
YW  
Figure 144. Part Number Part Markings for 2x2.5mm (ICP-10111 & ICP-10110)  
Document Number: DS-000186  
Revision: 1.2  
Page 30 of 34  
 
 
 
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
9 ORDERING GUIDE  
PACKAGE LID  
3-Hole: 1.5m Waterproof  
1-Hole  
QUANTITY  
10,000  
PACKAGING  
PART  
TEMP RANGE  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
PACKAGE BODY  
2x2x0.72mm LGA-10L  
2x2x0.72mm LGA-10L  
2x2.5x0.92mm LGA-8L  
2x2.5x0.92mm LGA-8L  
13” Tape and Reel  
13” Tape and Reel  
13” Tape and Reel  
13” Tape and Reel  
ICP-10100†  
ICP-10101†  
ICP-10110†  
ICP-10111†  
10,000  
3-Hole: 1.5m Waterproof  
1-Hole  
10,000  
10,000  
Denotes RoHS and Green-Compliant Package  
Document Number: DS-000186  
Revision: 1.2  
Page 31 of 34  
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
10 REFERENCES  
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information:  
Manufacturing Recommendations  
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
o
Reflow Specification  
o
Storage Specifications  
o
o
o
Package Marking Specification  
Tape & Reel Specification  
Reel & Pizza Box Label  
o
Packaging  
o
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Document Number: DS-000186  
Revision: 1.2  
Page 32 of 34  
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
11 REVISION HISTORY  
Revision Date  
Revision  
Description  
01/02/2017  
02/04/2019  
05/06/2019  
1.0  
1.1  
1.2  
Initial Release  
Updated package drawing information to include additional details  
Updated package drawing information to clarify dimensions  
Document Number: DS-000186  
Revision: 1.2  
Page 33 of 34  
 
ICP-10100, ICP-10101, ICP-10110, ICP-10111  
This information furnished by InvenSense, Inc. (“InvenSense”) is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use,  
or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves  
the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes  
no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any  
claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to,  
claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any  
patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the  
property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or  
mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment,  
transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.  
©2016—2017 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the  
InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the  
respective companies with which they are associated.  
©2016—2019 InvenSense. All rights reserved.  
Document Number: DS-000186  
Revision: 1.2  
Page 34 of 34  

相关型号:

ICP-10110

气压传感器
TDK

ICP-10125

气压传感器
TDK

ICP-112-2

IC Socket, QFP112, 112 Contact(s)
YAMAICHI

ICP-120-2

IC Socket, QFP120, 120 Contact(s)
YAMAICHI

ICP-160-1

IC Socket, QFP160, 160 Contact(s)
YAMAICHI

ICP-2010

Exportable Voice Grade Channel Processor
ETC

ICP-20100

气压传感器
TDK

ICP-2020-01

Voice Grade Channel Processor
ETC

ICP-2020-02

Voice Grade Channel Processor
ETC

ICP-2020SERIES

Voice Grade Channel Processor
ETC

ICP-2120-01

Voice Grade Channel Processor
ETC

ICP-2120-02

Voice Grade Channel Processor
ETC