U4256BM-NFS [TEMIC]

PLL Frequency Synthesizer, BICMOS, PDSO20, SSOP-20;
U4256BM-NFS
型号: U4256BM-NFS
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

PLL Frequency Synthesizer, BICMOS, PDSO20, SSOP-20

文件: 总14页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U4256BM  
Frequency Synthesizer for Radio Tuning  
Description  
The U4256BM is a single chip frequency synthesizer in System) applications. It is controlled by 3-wire bus and  
BICMOS technology. Together with the AM/FM IC contains also Digital to Analog Converters (DACs) for  
U4255BM, it performs a complete AM/FM car radio front automatic alignment of the AM/FM tuner.  
end, which is recommended also for RDS (Radio Data  
Features  
Reference oscillator up to 15 MHz (tuned)  
Oscillator buffer output (for AM up/down conversion)  
Two programmable 16-bit dividers  
Four programmable switching outputs (open drain)  
Three DACs for software controlled tuner alignment  
Low power consumption  
Fine-tuning steps: AM 1 kHz, FM 2 kHz  
Fast response time due to integrated loop push-pull stage  
High S/N ratio  
3-wire bus (enable, clock and data; 3 V and 5 V micro-  
controllers acceptable)  
Integrated band gap  
necessary  
only one supply voltage  
Block Diagram  
SWO1 SWO2 SWO3 SWO4  
10  
7
8
9
Tuning  
13  
OSCIN  
R–  
divider  
Oscillator  
Switching outputs  
12  
DAC3  
3–bit  
OSCOUT  
5
DAC3  
V
Ref  
15  
OSC  
buffer  
MX2LO  
DAC2  
DAC1  
4
DAC2  
17  
16  
18  
CLK  
DATA  
EN  
3W–  
bus  
interface  
3
DAC1  
V
AM/FM  
Ref  
6
VS  
1
19  
FM–  
preamp  
N–  
divider  
Phase  
detector  
Current  
sources  
FMOSCIN  
PDO  
2
Band-gap  
PD  
20  
14  
11  
96 11799  
GNDan  
V5  
GND  
Figure 1. Block diagram  
Ordering Information  
Extended Type Number  
Package  
SSO20  
SSO20  
Remarks  
U4256BM-AFS  
U4256BM-AFSG3  
Taped and reeled  
Rev. A2, 03-Nov-98  
1 (14)  
Preliminary Information  
U4256BM  
Pin Description  
Pin  
1
Symbol  
PDO  
Function  
Analog output  
1
20  
19  
18  
17  
16  
15  
14  
13  
GNDan  
FMOSCIN  
EN  
PDO  
2
PD  
Current output  
2
3
DAC1  
Output 1,  
digital to analog converter  
Output 2,  
digital to analog converter  
Output 3,  
digital to analog converter  
Supply voltage analog part  
Switching output 1  
Switching output 2  
Switching output 3  
Switching output 4  
Ground, digital part  
PD  
4
5
DAC2  
DAC3  
3
4
DAC1  
DAC2  
DAC3  
VS  
CLK  
6
VS  
7
SWO1  
SWO2  
SWO3  
SWO4  
GND  
5
6
7
8
DATA  
8
U4256BM  
9
MX2LO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SWO1  
SWO2  
SWO3  
V5  
OSCOUT Oscillator output  
OSCIN  
V5  
Oscillator input  
OSCIN  
Capacitor band gap  
MX2LO Oscillator buffer output  
12  
11  
9
OSCOUT  
GND  
DATA  
CLK  
EN  
Data input  
Clock  
10  
Enable  
SWO4  
FMOSCIN FM-oscillator input  
GNDan Ground, analog part  
96 11944  
Figure 2. Pinning  
Circuit Description  
Functional Description  
The U4256BM is especially designed for AM up/down  
converter systems, together with the tuner U4255BM.  
Due to the integrated DACs, an automatic tuner  
alignment is possible. All the functions of the U4256BM  
can be software controlled via a serial 3-wire bus,  
consisting of Enable, Clock and Data. The format and  
procedure for the data transfer from the microcontroller  
is shown in figures 3, 4 and table Data Transfer. All  
requested data have to be transferred via 16-bit or 24-bit  
commands. Due to the 8-bit structure, the serial output  
interface of a microcontroller can be used for the data  
transfer. The PLL functions can be controlled by 24-bit  
commands, while the alignment functions are controlled  
by 16-bit commands. The alignment function control  
normally is set once by switching on the tuner. Then the  
tuner automatically will be aligned. The data for  
alignment are stored in a separate EPROM. Via integrated  
capacitors it is possible to tune the reference oscillator  
(this function is controlled via the 3-wire bus).  
The U4256BM is a single chip PLL circuit, designed for  
AM/FM RDS (Radio Data System) applications. The  
special design allows to build automatic alignment tuner  
systems. Two programmable DACs (Digital to Analog  
Converter) support the computer controlled alignment.  
The U4256BM has a very fast response time of maximum  
800 s (at 2 mA, fref = 100 kHz, measured on MPX  
signal). It performs a high signal to noise ratio.  
Only one supply voltage is necessary, due to a  
integrated band gap.  
The U4256BM is controlled via 3-wire bus.  
2 (14)  
Rev. A2, 03-Nov-98  
Preliminary Information  
U4256BM  
Absolute Maximum Ratings  
All voltages are referred to GND (Pin 15)  
Parameters  
Symbol  
Value  
Unit  
V
Analog supply voltage  
Input voltage  
Pin 6  
V
S
8 to 15  
–0.3 to +12  
–1 to +5  
15  
Pins 16, 17 and 18  
Pins 7, 8, 9 and 10  
Pins 7, 8, 9 and 10  
V
I
V
Output current  
I
mA  
V
O
Output drain voltage  
Ambient temperature range  
Storage temperature range  
Junction temperature  
Electrostatic handling  
V
OD  
T
amb  
–40 to +85  
–40 to +125  
125  
°C  
°C  
°C  
V
T
stg  
T
j
V
ESD  
t.b.d.  
Thermal Resistance  
Parameters  
Symbol  
Value  
140  
Unit  
K/W  
Junction ambient  
when soldered to PCB  
R
thJA  
Operating Range  
All voltages are referred to GND (Pin 15)  
Parameter  
Symbol  
Min.  
8
Typ.  
8.5  
Max.  
14  
Unit  
Supply voltage range  
Ambient temperature  
Input frequency  
Pin 6  
V
S
V
°C  
Tamb  
RFi  
–40  
70  
+85  
160  
65535  
15  
Pin 19  
MHz  
Programmable divider  
Crystal oscillator  
SF  
2
Pins 12 and 13  
fXTAL  
0.1  
MHz  
Electrical Characteristics  
Test conditions (unless otherwise specified): V = +8.5 V, T  
= +25°C  
S
amb  
Parameters  
Supply voltage  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
8.5  
10  
Max.  
12  
Unit  
V
Pin 6  
Analog supply voltage  
Supply current  
Analog supply current  
OSCIN  
V
A
8
Pin 20  
I
4.5  
100  
20  
mA  
A
Pin 13  
f = 0.1 to 15 MHz  
Pin 19  
Input voltage  
V
OSC  
mV  
rms  
FMOSCIN  
Input voltage  
f = 70 to 120 MHz  
f = 120 to 160 MHz  
Pin 2  
V
FMOSC  
V
FMOSC  
40  
150  
mV  
mV  
rms  
rms  
PD  
Output current 1  
Output current 2  
Output current 3  
Output current 4  
Leakage current  
PD = 2.5 V  
PD = 2.5 V  
PD = 2.5 V  
PD = 2.5 V  
PD = 2.5 V  
20  
80  
25  
100  
500  
2000  
30  
120  
600  
2400  
20  
µA  
µA  
µA  
µA  
nA  
± IPD  
400  
1600  
± IPDL  
Rev. A2, 03-Nov-98  
3 (14)  
Preliminary Information  
U4256BM  
Electrical Characteristics (continued)  
Test conditions (unless otherwise specified): V = +8.5 V, T  
= +25°C  
S
amb  
Parameters  
Test Conditions / Pins  
Pin 1  
– (V – V  
Symbol  
Min.  
100  
Typ.  
200  
Max.  
Unit  
PDO  
Saturation voltage HIGH  
LOW  
V
),  
V
SATH  
500  
400  
mV  
mV  
SATH  
A
PDOFM  
I = 15 mA  
V
SATL  
SWO1, SWO2, SWO3, SWO4 (open drain) Pins 7, 8, 9 and 10  
I = 1 mA,  
V7,8,9,10 = 8.5 V  
Output leakage current  
HIGH  
LOW  
I
100  
400  
nA  
OHL  
Output voltage  
DAC1, DAC2  
Output current  
Output voltage  
V
SWOL  
100  
mV  
Pins 3 and 4  
I
1
mA  
V
DAC1, 2  
V
0.3  
0.6  
V – 0.5  
S
DAC1, 2  
Gain range (resolution 256 steps)  
Offset range (resolution 24 steps)  
DAC 3  
2.3  
0.7  
–0.6  
V
Pin 5  
Output current  
I
1
6
mA  
V
DAC3  
Output voltage (resolution 16 steps)  
MX2LO  
V
0.25  
DAC3  
Output AC voltage  
At Pin15: 47 pF and 1 k  
V
80  
120  
1.9  
200  
2.1  
mV  
V
MX2LO  
pp  
Output DC voltage  
V
DC  
1.6  
3-Wire Bus Description  
16-bit command  
14858  
EN  
DATA  
CLK  
LSB  
BYTE 1  
MSB LSB  
BYTE 2  
MSB  
24-bit command  
EN  
DATA  
CLK  
LSB  
BYTE 1  
MSB LSB  
BYTE 2  
MSB LSB  
BYTE 3  
MSB  
e.g., Divider  
IPD3  
IPD4  
IPD1  
IPD2  
25  
27 28  
26  
R–Divider  
211  
OSCB  
21  
24  
29 210  
212  
0
20  
22 23  
213 214 215  
0
0
1
2
P–2 P–2 P–2  
Status 0  
Addr.  
Figure 3. Pulse diagram  
4 (14)  
Rev. A2, 03-Nov-98  
Preliminary Information  
U4256BM  
Data Transfer  
A
MSB  
BYTE 2  
LSB  
MSB  
BYTE 1  
LSB  
ADDR.  
Oscillator tuning function  
1 0 8pF 32pF 16pF 8pF 4pF 2pF 1pF 0.5pF  
B85 B84 B83 B82 B81 B80 B79 B78  
B77 B76 B75 B74 B73 B72  
B
MSB  
Byte 3  
STATUS 0  
LSB MSB  
BYTE 2  
LSB  
MSB  
BYTE 1  
LSB  
ADDR.  
R – DIVIDER  
2
1
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
IPD IPD  
1,2 3,4  
OSCB  
0 = on,  
1 = off  
P–2 P–2 P–2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
B71 B70  
B69  
B68 B67 B66  
B65  
B64 B63 B62 B61 B60 B59 B58 B57 B56 B55 B54 B53 B52 B51 B50  
C
MSB  
BYTE 2  
LSB MSB  
BYTE 1  
LSB  
ADDR.  
DAC1 – GAIN & OFFSET  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
O–2 O–2 O–2 O–2 O–2 O–2 G–2 G–2 G–2 G–2 G–2 G–2 G–2 G–2  
B49 B48 B47 B46 B45 B44 B43 B42 B41 B40 B39 B38 B37 B36  
D
MSB  
Byte 3  
STATUS 1  
LSB  
MSB  
BYTE 2  
LSB  
MSB  
BYTE 1  
LSB  
ADDR.  
N – DIVIDER  
15  
2
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
0
AM = 1 SWO4 SWO3 SWO2 SWO1  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
FM = 0  
1=off,  
0=on  
1=off,  
0=on  
1=off,  
0=on  
1=off,  
0=on  
B35  
B34  
B33  
B32  
B31  
B30  
B29  
B28 B27 B25 B24 B23 B22 B22 B21 B20 B19 B18 B17 B16 B15 B14  
E
MSB  
BYTE 2  
LSB MSB  
BYTE 1  
LSB  
ADDR.  
DAC2 – GAIN & OFFSET  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
1
O–2 O–2 O–2 O–2 O–2 O–2 G–2 G–2 G–2 G–2 G–2 G–2 G–2 G–2  
B13 B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. A2, 03-Nov-98  
5 (14)  
Preliminary Information  
U4256BM  
Timing Information  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
2.0  
Typ.  
Max.  
Unit  
3-wire bus, ENABLE, DATA, CLOCK  
Pins 16, 17, 18  
Input voltage  
HIGH  
LOW  
V
BUS  
V
BUS  
V
V
MHz  
1.0  
1.0  
Clock frequency  
Period of CLK  
HIGH  
LOW  
t
H
250  
250  
ns  
ns  
ns  
t
L
Rise time EN, DA, CLK  
Fall time EN, DA, CLK  
Set-up time  
t
400  
100  
r
f
s
t
ns  
ns  
ns  
ns  
t
100  
250  
0
Hold time EN  
t
HEN  
HDA  
Hold time DA  
t
Bus Timing  
t
R
t
F
Enable  
Data  
t
t
HEN  
S
t
F
t
R
tHDA  
t
S
t
R
t
F
Clock  
t
H
t
L
96 11826  
Figure 4. Bus timing  
6 (14)  
Rev. A2, 03-Nov-98  
Preliminary Information  
U4256BM  
Bus Control  
The charge pump current can be choosen by setting the The gain of DAC1 has a range of 0.7 x V(PDO) to  
2.15 x V(PDO). V(PDO) is the PLL tuning voltage  
output. This range is divided into 256 steps. So one step  
is approximately (2.15–0.7)/256 = 5.664 m. The gain can  
be controlled by the Bits 36 to 43 (G–2 to G–2 ) as  
following:  
Bits IPD1, 2 (Bit 71) and IPD3, 4 (Bit 70) as following:  
IPD (µA)  
25  
IPD1, 2  
IPD3, 4  
0
0
1
1
0
1
0
1
0
7
100  
500  
Gain  
DAC1  
Approx.  
B43 B42 B41 B40 B39 B38 B37 B36  
2000  
0.7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0.70566  
0.71133  
0.71699  
...  
The oscillator buffer output can be switched by the OSCB  
Bit as following (Bit 69):  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
MX2LO AC Voltage  
OSCB  
...  
0
...  
0
...  
1
...  
1
...  
0
...  
1
...  
0
...  
1
ON  
0
1
1.00019  
...  
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
OFF  
2.1386  
2.14434  
2.15 m  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
The DAC3 output voltage can be controlled by the  
0
2
Bits P-2 to P-2 (Bits 66 to 68) as following:  
DAC3 Offset Approx.  
Bit68  
Bit67  
Bit66  
The offset of DAC1 has a range of 0.5 to –0.6. This range  
is divided into 64 steps. So one step is approximately  
1.1V/63 = 17.2 m. The offset can be controlled by the Bits  
0.5 V  
1.1 V  
1.8 V  
2.4 V  
3.1 V  
3.7 V  
4.4 V  
5.0 V  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
5
44 to 49 (O–2 to O–2 ) as following:  
Offset DAC1 B49 B48 B47 B46 B45 B44  
Approx.  
0.5  
0.4828  
0.4656  
0.4484  
...  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
...  
0
...  
1
...  
1
...  
1
...  
1
...  
0
–0.0156  
...  
The FM/AM function can be controlled by setting the  
FM/AM Bit 34 as following:  
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
0.5656  
–0.5828  
–0.6  
FM/AM  
FM  
Bit 34  
1
1
1
1
1
0
1
1
1
1
1
1
0
1
AM  
The tuning capacity for the crystal oscillator has a range  
of 0.5 pF to 71.5 pF. The values are coded binary. The  
tuning can be controlled by the Bits 78 to 85 as following:  
The switching output SWO1 to SWO4 can be controlled  
as following (Bits 30 to 33):  
C
(pF)  
B85 B84 B83 B82 B81 B80 B79 B78  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
Switch Output  
SWOx = ON  
SWOx = OFF  
Bit  
0
0.5  
1.0  
1.5  
...  
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
...  
1
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
63.5  
71.5  
0
0
0
0
0
0
0
0
Rev. A2, 03-Nov-98  
7 (14)  
Preliminary Information  
U4256BM  
The gain of DAC2 has a range of 0.7 x V(PDO) to The offset of DAC2 has a range of 0.5 to –0.6. This range  
2.15 x V(PDO). V(PDO) is the PLL tuning voltage is divided into 64 steps. So one step is approximately  
output. This range is divided into 256 steps. So one step 1.1V/63 = 17.2 m. The offset can be controlled by the  
0
5
is approximately (2.15–0.7)/256 = 5.664 m. The gain can Bits 8 to 13 (O–2 to O–2 ) as following:  
0
7
be controlled by the bits 0 to 7 (G–2 to G–2 ) as  
following:  
Offset DAC2 B13 B12  
Approx.  
B11 B10  
B9  
B8  
Gain  
DAC2  
Approx.  
B7 B6 B5 B4 B3 B2 B1 B0  
0.5  
0.4828  
0.4656  
0.4484  
...  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0.7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0.70566  
0.71133  
0.71699  
...  
...  
0
...  
1
...  
1
...  
1
...  
1
...  
0
0
0
0
0
0
0
1
0
–0.0156  
...  
0
0
0
0
0
0
1
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
...  
0
...  
0
...  
1
...  
1
...  
0
...  
1
...  
0
...  
1
0.5656  
–0.5828  
–0.6  
1.00019  
...  
1
1
1
1
1
0
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
1
1
1
1
1
1
2.1386  
2.14434  
2.15 m  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
Input / Output Interface Circuits  
PDO  
PD  
PD is the current charge pump output of the PLL. The  
current can be controlled by setting the Bits IDP1, 2 and  
IDP3, 4. The loop filter has to be designed corresponding  
to the choosen pump current and the internal reference  
frequency. A recommendation can be found in the  
application circuit.  
PDO is the loop amplifier output of the PLL. The bipolar  
output stage is a rail-to-rail amplifier.  
V5  
14859  
V5  
C
PDO  
PD  
Figure 5.  
8 (14)  
Rev. A2, 03-Nov-98  
Preliminary Information  
U4256BM  
FMOSCIN  
FMOSCIN is the preamplifier input for the FM/AM oscillator signal.  
FMOSCIN  
AMOSCIN  
14860  
Figure 6.  
MX2LO  
EN, DATA, CLK  
MX2LO is the buffered output of the crystal oscillator.  
All functions can be controlled via a 3-wire bus consisting  
of ENABLE, DATA and CLOCK. The bus is designed for  
microcontrollers which operate with 3 V supply voltage.  
Details of the data transfer protocol are shown in the table  
‘Data Transfer’.  
V5  
V5  
VDD  
OSCIN  
EN  
DATA  
CLK  
MX2LO  
14863  
14861  
Figure 7.  
Figure 9.  
DAC 1, 2 and 3  
SWO1, 2, 3 and 4  
DAC 1 to 3 are the outputs for automatic tuner alignment.  
VS  
All switching outputs are ‘open drain’ and can be set and  
reset by software control. Details are described in the data  
transfer protocol.  
SWO1  
SWO2  
SWO3  
SWO4  
DAC1  
14862  
14864  
Figure 8.  
Figure 10.  
Rev. A2, 03-Nov-98  
9 (14)  
Preliminary Information  
U4256BM  
OSCIN, OSCOUT  
A crystal resonator (up to 16 Mhz) is connected between  
OSCIN and OSCOUT in order to generate the reference  
frequency. The complete application circuit is shown in  
figure 15. If a reference is available, it can be applied at  
OSCIN. The minimum voltage should be 100mVrms. In  
this case, pin OSCOUT has to be open.  
VDD  
OSCIN  
VDD  
OSCOUT  
14865  
Figure 11.  
Application Information  
Function of DAC1, 2 in the FM Mode  
Function of DAC1, 2 in the AM Mode  
In AM mode, DAC1, 2 can be used as standard DAC  
converters. The resolution of 8 bit is controlled via the  
gain bits in a range of approximately 0.5 V to 7 V,  
depending on the offset value.  
For automatic tuner alignment, the DAC1 and 2 of the  
U4256BM can be controlled by setting gain and offset  
values. The following figure shows the principle of the  
operation in FM mode. The gain is in the range of  
0.7 to 2.15. The offset range is +0.5 V to –0.6 V. For  
alignment, DAC1 and 2 are connected to the varicaps of  
the preselection filter and the IF filter. For alignment,  
offset and gain is set for having the best tuner tracking  
FMOSCIN Sensitivity  
Vi (mV on 50  
)
rms  
150  
100  
50  
PDO  
DAC1,2  
Gain  
+/–  
Offset  
14907  
0
0
20  
40  
60  
80  
100  
120 140 160  
Frequency (MHz)  
Figure 12.  
Figure 13.  
10 (14)  
Rev. A2, 03-Nov-98  
Preliminary Information  
U4256BM  
Oscillator Tuning Function Schematic  
Cx1  
Cx2  
INV  
.5p  
8p  
32p 16p 8p  
4p  
2p  
1p  
.5p  
1p  
2p  
4p  
8p 16p 32p 8p  
B78  
B79  
B80  
B81  
B82  
B83  
B84  
B85  
Figure 14.  
Application Circuit  
EN  
CLK DATA  
V5  
GND  
C12  
100 nF  
C9  
33 pF  
R5  
5.1 k  
33 pF  
C8  
47 pF  
4 MHz  
13 12  
20  
19  
18  
17  
16  
15  
14  
11  
C1  
10 pF  
R2  
600 Ω  
U4256BM  
FM  
OSC  
1
2
3
5
6
4
7
8
9
10  
C16  
C5  
C6  
330 pF  
C7  
10 nF  
R4  
C15  
C4  
10 kΩ  
10 nF  
100 nF  
C14  
10 nF  
100 µF  
R3  
10 nF  
100 Ω  
DAC1 DAC2 DAC3 VS  
8 ... 12 V  
SWO1 SWO2 SWO3 SWO4  
9611257  
Figure 15. Application circuit  
Rev. A2, 03-Nov-98  
11 (14)  
Preliminary Information  
U4256BM  
Application Board Schematic  
Figure 16. Application borad schematic  
12 (14)  
Rev. A2, 03-Nov-98  
Preliminary Information  
U4256BM  
Package Information  
Package SSO20  
Dimensions in mm  
5.7  
5.3  
6.75  
6.50  
4.5  
4.3  
1.30  
0.15  
0.15  
0.05  
0.25  
0.65  
6.6  
6.3  
5.85  
20  
11  
technical drawings  
according to DIN  
specifications  
13007  
1
10  
Rev. A2, 03-Nov-98  
13 (14)  
Preliminary Information  
U4256BM  
Ozone Depleting Substances Policy Statement  
It is the policy of TEMIC Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and  
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban  
on these substances.  
TEMIC Semiconductor GmbH semiconductor division has been able to use its policy of continuous improvements  
to eliminate the use of ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting  
substances and do not contain such substances.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized  
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,  
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or  
unauthorized use.  
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423  
14 (14)  
Rev. A2, 03-Nov-98  
Preliminary Information  

相关型号:

U4256BM-NFSG3

PLL Frequency Synthesizer, BICMOS, PDSO20, SSOP-20
TEMIC

U4256BM-NFSG3

PLL Frequency Synthesizer, BICMOS, PDSO20, SSO-20
ATMEL

U4256BM-R

Frequency Synthesizer for Radio Tuning
ATMEL

U4256BM-RFS

Frequency Synthesizer for Radio Tuning
ATMEL

U4256BM-RFSY

Consumer Circuit, BICMOS, PDSO20, SSO-20
ATMEL

U4256BM-RSG3

Frequency Synthesizer for Radio Tuning
ATMEL

U425_PDIP

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_SOIC

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_TO-71

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_TO-78

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U426

Linear Systems replaces discontinued Siliconix U426
MICROSS

U426

N-Channel Dual JFET
CALOGIC