MRF426 [TE]

The RF Line NPN Silicon RF Power Transistor; 射频线NPN硅射频功率晶体管
MRF426
型号: MRF426
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

The RF Line NPN Silicon RF Power Transistor
射频线NPN硅射频功率晶体管

晶体 晶体管 射频 放大器 局域网
文件: 总5页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF426/D  
The RF Line  
NP N S ilic on  
M
R
F
4
2
6
R
F
P
o
w
e
r
T
r
a
n
s
i
s
t
o
r
. . . designed for high gain driver and output linear amplifier stages in 1.5 to  
30 MHz HF/SSB equipment.  
Specified 28 Volt, 30 MHz Characteristics —  
Output Power = 25 W (PEP)  
Minimum Gain = 22 dB  
25 W (PEP), 30 MHz  
RF POWER  
Efficiency = 35%  
TRANSISTOR  
NPN SILICON  
Intermodulation Distortion @ 25 W (PEP) —  
IMD = –30 dB (Max)  
100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR  
Class A and AB Characterization  
BLX 13 Equivalent  
CASE 211–07, STYLE 1  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
35  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Adc  
Collector–Emitter Voltage  
Collector–Base Voltage  
Emitter–Base Voltage  
V
CEO  
V
CBO  
V
EBO  
65  
4.0  
3.0  
6.0  
Collector Current — Continuous  
Withstand Current — 5 s  
I
C
Total Device Dissipation @ T = 25°C (1)  
P
D
70  
Watts  
C
Derate above 25°C  
0.4  
W/°C  
Storage Temperature Range  
THERMAL CHARACTERISTICS  
T
stg  
–65 to +150  
°C  
Characteristic  
Symbol  
Max  
Unit  
Thermal Resistance, Junction to Case  
R
2.5  
°C/W  
θ
JC  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted.)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Breakdown Voltage (I = 50 mAdc, I = 0)  
V
V
V
35  
65  
4.0  
10  
Vdc  
Vdc  
C
B
(BR)CEO  
(BR)CBO  
(BR)EBO  
Collector–Base Breakdown Voltage (I = 50 mAdc, I = 0)  
C
E
Emitter–Base Breakdown Voltage (I = 10 mAdc, I = 0)  
Vdc  
E
C
Collector Cutoff Current (V = 28 Vdc, V = 0)  
I
CES  
mAdc  
CE  
BE  
NOTE:  
(continued)  
1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.  
1
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted.)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
DC Current Gain  
(I = 1.0 Adc, V = 5.0 Vdc)  
h
FE  
10  
35  
C
CE  
DYNAMIC CHARACTERISTICS  
Output Capacitance  
C
60  
80  
pF  
ob  
(V = 30 Vdc, I = 0, f = 1.0 MHz)  
CB  
E
FUNCTIONAL TESTS (SSB)  
Common–Emitter Amplifier Gain  
G
22  
35  
25  
dB  
%
PE  
(V = 28 Vdc, P = 25 W (PEP), f1 = 30 MHz,  
CC  
out  
f2 = 30.001 MHz, I = 25 mA)  
CQ  
Collector Efficiency  
η
(V = 28 Vdc, P = 25 W (PEP), f1 = 30 MHz,  
CC  
out  
f2 = 30.001 MHz, I = 25 mA)  
CQ  
Intermodulation Distortion (2)  
IMD  
–35  
–30  
dB  
(d3)  
(V = 28 Vdc, P = 25 W (PEP), f1 = 30 MHz,  
CC  
out  
f2 = 30.001 MHz, I = 25 mA)  
CQ  
Load Mismatch  
ψ
(V = 28 Vdc, P = 25 W (PEP), f1 = 30 MHz,  
No Degradation in Output Power  
CC  
out  
f2 = 30.001 MHz, I = 25 mA, VSWR 30:1 at All Phase Angles)  
CQ  
CLASS A PERFORMANCE  
Intermodulation Distortion (2) and Power Gain  
G
IMD  
IMD  
23.5  
–40  
–55  
dB  
PE  
(V = 28 Vdc, P = 8.0 W (PEP), f1 = 30 MHz,  
CC  
out  
(d3)  
(d5)  
f2 = 30.001 MHz, I = 1.2 Adc)  
CQ  
NOTE:  
2. To Mil–Std–1311 Version A, Test Method 2204B, Two Tone, Reference each Tone.  
R
F
C
2
C
8
+
R
F
C
1
2
-
8
Vd c  
B
N
IA S  
C
9
I
PU T  
L
3
C
6
C
7
C
R
1
L
2
C
3
L
4
R
F
O
U
T
P
U
T
C
5
L
1
R F  
IN PU T  
DU T  
C
4
C
1
R
1
C
2
C1, C2 — ARCO 469, 190ā ā 780 pF  
C3, C4 — ARCO 464, 25ā ā 280 pF  
C5 — 120 pF Dipped Mica  
L1 — 3 Turns #16 0.25ID  
L2 — 6 Turns #16 0.5ID  
L3 — 7 Turns #20 0.38ID  
C6, C7 — 100 µF, 15 Vdc  
L4 — 10 µH Molded Choke Delevan  
C8 — 680 pF F.T. Allen Bradley  
C9 — 1.0 µF 35 V Tantalum  
RFC1 — Ferroxcube VK200/20–4B  
RFC2 — 3–Ferroxcube 5653065–3B  
CR1 — 1N4997  
RF — Input/Output Connectors UG53 A/µ  
R1 — 10 1/2 Watt 10%  
Adjust Bias (Base) for I = 20 mA with No RF Applied  
CQ  
Figure 1. 30 MHz Linear Test Circuit  
2
5 0  
4 0  
3 0  
2 0  
1 0  
4
3
2
0
0
0
f
I
=
3
0
M Hz  
f
I
I
=
3
0
,
3
0
.
0
0
1
MH z  
=
2
5
m A  
V dc  
C
Q
=
2
5
m
A
C
Q
V
=
2
8
C
C
M
D
( d3)  
=
-
ā
5
d
B
1
0
0
0
1
0
2
0
4
0
6
0
8
0
1
00  
6
2
0
2
4
2
8
3 2  
P
i
,
n
I
N
P
U
T
P
O
W
E
R
(
m
W
)
V ,  
C C  
S
U
P
PLY  
V
O
L
T
A
G
E
(V O LTS)  
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Supply Voltage  
4
3
3
2
0
5
0
5
-
ā
5
-
-
-
-
-
0
5
0
5
0
d
3
d
5
V
=
2
8
V
m A  
C
C
f
=
3
0
,
3
0
.
0
0
1
MH z  
I
C
=
2
5
Q
2
1
0
5
I
C
=
2
5
m
A
Q
P
ou t  
=
2
5
W
P
E
P
V
=
2
8
V
C
C
1
.
5
2
3
5
F
7
1
0
1
5
2
0
3
0
0
1
0
2
0
3
T
0
f
,
R
E
Q
U
E
N
C
Y
(
M
H
z
)
P ,  
ou t  
O
U
T
P
U
T
P
O
WE  
R
(
W
A
T
S
PE P)  
Figure 4. Power Gain versus Frequency  
Figure 5. Intermodulation Distortion  
versus Output Power  
5
2
0
.
5
T
=
°
C
2
5
1
5
5
C
.
0
.
2
0
.
1
5
0
.
0
1
2
5
1
0
2
0
5
0
1
0
0
V
C
,
E
C
O
L
LE  
C
T
O
R
-
E
M
I
T
T
E
R
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 6. DC Safe Operating Area  
3
2
2
1
1
5
0
5
0
0
0
0
0
0
0
0
0
2
5
5
5
V
=
2
8
V
V
C C  
=
2
8
V
mA  
C
C
I
C
=
2
5
m
A
I
C Q  
=
2
5
Q
P
o
=
2
5
W
P
E
P
P
ou t  
=
2
5
W
PE P  
u
t
1
5
0
0
0
1
.
5
2
3
5
F
7
1
0
1
5
2
0
3
0
1
.
5
2
3
5
7
1
0
1
5
2
0
3 0  
f
,
R
EQ  
U
E
N
C
Y
(
M
H
z
)
f
,
F
R
E
Q
U
E
N
C
Y
(M Hz)  
Figure 7. Output Capacitance versus Frequency  
Figure 8. Output Resistance versus Frequency  
0
1. 0  
1. 0  
2
.
0
2
.
0
1. 0  
3
.
0
3. 0  
3
0
4 .0  
4
.
0
2
.
0
5 .0  
5
.
0
3. 0  
4. 0  
1
5
6
.
0
6. 0  
V
=
2
8
V
mA  
C
C
I
C
=
2
5
Q
7
0
. 5  
5. 0  
6. 0  
7 .0  
7
.
0
P
ou t  
=
2
5
W
P
E
P
f
Z
i n  
O h ms  
8 .0  
9 . 0  
1 0 . 0  
8. 0  
9. 0  
10 . 0  
M
H
z
7. 0  
8. 0  
4
.
2
4
7
.
.
.
0
6
4
3
2
ă
.
.
.
.
2
0
5
5
5
4
-
j
6
5
4
2
0
.
6
5
0
9
7
5
0
5
0
7
0
5
6
2
4
-
-
-
-
j
.
.
.
.
9
.
0
f
=
2
.
0
M
H
z
j
j
j
10 . 0  
12 . 0  
1
3
5
0
1
.
Z
=
1
0
o
14 . 0  
16 . 0  
1
2
.
0
1
2
.
0
1
8
.
0
1
4
.
0
1
4
.
0
2
0
.
0
Figure 9. Series Equivalent Input Impedance  
4
PACKAGE DIMENSIONS  
A
U
N O TE S :  
1. D I MEN S I ON I N G A ND TO LE R AN C I N G P ER AN S I  
Y 14. 5M, 198 2.  
M
2. C O N TR O LL IN G D I MEN S I ON : I N CH .  
M
1
Q
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
24. 39  
9. 40  
5. 82  
5. 47  
2. 16  
3. 81  
0. 11  
MAX  
25. 14  
9. 90  
7. 13  
5. 96  
2. 66  
4. 57  
0. 15  
10. 28  
50ꢀ ꢀ  
4
A
B
C
D
E
H
J
0. 960  
0. 370  
0. 229  
0. 215  
0. 085  
0. 150  
0. 004  
0. 395  
40ꢀ ꢀ  
0. 990  
0. 390  
0. 281  
0. 235  
0. 105  
0. 108  
0. 006  
0. 405  
50ꢀ ꢀ  
B
R
2
3
D
K
M
Q
R
S
U
10. 04  
40ꢀ ꢀ  
S
K
_
_
_
_
0. 113  
0. 245  
0. 790  
0. 720  
0. 130  
0. 255  
0. 810  
0. 730  
2. 88  
6. 23  
3. 30  
6. 47  
20. 07  
18. 29  
20. 57  
18. 54  
S TY LE 1:  
P IN 1. E MIT T ER  
2. B AS E  
3. E MIT T ER  
J
C
4. C O LLE C TO R  
H
E
SEATING  
PLANE  
CASE 211–07  
ISSUE N  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
5

相关型号:

MRF426A

RF Small Signal Bipolar Transistor, 3A I(C), 1-Element, Silicon, NPN
MOTOROLA

MRF427

NPN SILICON RF POWER TRANSISTOR
ASI

MRF427

Power Bipolar Transistor, 6A I(C), 65V V(BR)CEO, 1-Element, NPN, Silicon, Ceramic, Metal-Sealed Cofired, 4 Pin
MOTOROLA

MRF427A

6A, 65V, NPN, Si, POWER TRANSISTOR
MOTOROLA

MRF428

The RF Line NPN Silicon RF Power Transistor
TE

MRF428

NPN SILICON RF POWER TRANSISTOR
ASI

MRF429

RF POWER TRANSISTOR NPN SILICON
MOTOROLA

MRF429

RF POWER TRANSISTOR NPN SILICON
TE

MRF429

NPN SILICON RF POWER TRANSISTOR
ASI

MRF429MP

16A, 50V, NPN, Si, POWER TRANSISTOR
MOTOROLA

MRF430

THE RF LINE NPN SILICON RF POWER TRANSISTOR
MOTOROLA

MRF433

NPN SILICON RF POWER TRANSISTOR NPN SILICONS
MOTOROLA