5962R2122001VXC [TI]

耐辐射加固保障 (RHA)、10MHz 至 6.5GHz 3dB BW 单端转差分放大器 | FFM | 12 | -40 to 125;
5962R2122001VXC
型号: 5962R2122001VXC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射加固保障 (RHA)、10MHz 至 6.5GHz 3dB BW 单端转差分放大器 | FFM | 12 | -40 to 125

放大器
文件: 总22页 (文件大小:1580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
TRF0206-SP 单通道、10MHz 6.5GHz3dB 带宽、ADC 驱动器放大器  
1 特性  
2 应用  
• 已通QMLVQML V MIL-PRF-38535 认  
SMD 5962R2122001VXC  
– 耐辐射加固保(RHA) 能力高100krad (Si)  
总电离剂(TID)  
– 单粒子锁(SEL) LET 的抗扰= 75MeV-  
cm2/mg  
• 支持军用级温度范围  
• 直接驱动射频采样GSPS ADC  
• 适用于航天和国防应用  
• 消除具有出色增益或相位平衡的  
无源射频平衡-非平衡变压器  
• 高速数字转换器  
• 耐辐射应用  
命令和数据处理系统  
通信负载  
-55°C 125°C)  
• 可用ADC 驱动器具备出色的单端至差分转换  
性能  
• 也可在差分至单端模式下运行DAC 缓冲器  
6.5GHz3dB 带宽  
4.8GHz1dB 增益平坦度  
• 单端至差分的固定功率增益12.5dB  
OIP3 性能:  
2 GHz 38dBm  
6 GHz 32dBm  
P1dB 性能:  
3 说明  
TRF0206-SP 是一款超高性能耐辐射射频放大器专  
门针对射频 (RF) 用进行了优化。在驱动高性能  
ADC12DJ3200QML-SP 等模数转换器 (ADC) 交  
流耦合应用需要进行单端至差分转换此款器件是这类  
应用的理想之选。片上匹配元件可对印刷电路(PCB)  
实现方案进行简化并在可用带宽内提供最高性能。此  
器件采用德州仪器 (TI) 先进的互补 BiCMOS 工艺制  
并采用航天LCCC 封装。  
该器件由 3.3V 单轨电源供电。下电功能还有助于实现  
节能。  
2 GHz 12dBm  
6GHz 10dBm  
• 噪声系数:  
封装信息(1)  
2 GHz 8dB  
6 GHz 9dB  
• 增益和相位不平衡±0.4dB/±3 度  
• 关断特性  
封装尺寸NOM)  
器件型号  
封装  
FFMLCCC-FC,  
12)  
TRF0206-SP  
6.00mm x 6.10mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
3.3V 单电源运行  
• 有效电流130mA  
PD  
VDD  
TRF0206-SP  
+
ADC12DJ3200QML-SP  
Rs = 50 Ω  
50 Ω  
驱动高ADC TRF0206-SP  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA52  
 
 
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
9 Typical Application........................................................17  
9.1 TRF0206-SP Driving AFE7950-SP Receiver............17  
10 Power Supply Recommendations..............................18  
11 Layout...........................................................................18  
11.1 Layout Guidelines................................................... 18  
11.2 Layout Example...................................................... 19  
12 Device and Documentation Support..........................20  
12.1 Device Support....................................................... 20  
12.2 Documentation Support ......................................... 20  
12.3 接收文档更新通知................................................... 20  
12.4 支持资源..................................................................20  
12.5 Trademarks.............................................................20  
12.6 Electrostatic Discharge Caution..............................20  
12.7 术语表..................................................................... 20  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Quality Conformance Inspection.................................7  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................15  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2022) to Revision A (December 2022)  
Page  
• 将状态从预告信更改为“量产数据.............................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
13 GND  
(Thermal  
Pad)  
12 OUTM  
11 OUTP  
INM 5  
INP 6  
5-1. TRF0206-SP FFM Package, 12-Pin LCCC-FC (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
GND  
NO.  
1, 4, 7, 10  
GND  
Ground  
INP / INM  
6, 5  
11, 12  
2
I
O
I
Differential signal input  
Differential signal output  
OUTP / OUTM  
PD  
Power down signal. Supports 1.8 V and 3.3 V Logic. 0 = chip enabled. 1 = power down  
Test pin. Short to ground  
TP1  
8
TP2  
VDD  
3
9
Test pin. Short to ground  
3.3 V supply  
P
Thermal Pad  
13  
Thermal pad. Connect to ground on board.  
(1) I = input, O = output, P = power, GND = Ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TRF0206-SP  
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.7  
UNIT  
V
Supply voltage, VDD  
0.3  
INP, INM  
20  
dBm  
V
Input level  
EN  
3.7  
0.3  
65  
Junction temperature, TJ  
Temperature  
150  
150  
ºC  
Storage temperature, Tstg  
ºC  
Continuous power dissipation  
See thermal information  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.2  
NOM  
3.3  
MAX  
UNIT  
V
VDD  
TA  
Supply voltage  
3.45  
Ambient air temperature  
Junction temperature  
25  
°C  
55  
TJ  
125  
°C  
6.4 Thermal Information  
DEVICE  
THERMAL METRIC(1)  
FFM (LCCC)  
PINS  
69.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
54.5  
44.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
42  
ΨJT  
44.5  
ΨJB  
RθJC(bot)  
36.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
 
 
 
 
 
 
 
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
The specifications shown below correspond to the respectively identified subgroup temperature, unless otherwise noted. Test  
conditions are at TA = 25 oC, VDD = 3.3 V, Single-ended input with RS = 50 Ω, output with ZL = 100 Ωdifferential, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
SUBGROUP (1)  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
SSBW Small-signal 3-dB bandwidth  
LSBW Large-signal 3-dB bandwidth  
Bandwidth for 1.5-dB flatness  
Vo = 100 mVPP  
6.5  
6.5  
GHz  
GHz  
GHz  
dB  
Vo = 1 VPP  
4.8  
S21  
S11  
S12  
Power Gain  
f = 2 GHz  
12.5  
-10  
Input return loss  
Reverse isolation  
f = 10 MHz to 4 GHz  
f = 10 MHz to 4 GHz  
f = 10 MHz to 5 GHz  
dB  
-35  
dB  
ImbGAIN Gain Imbalance  
± 0.4  
dB  
ImbPHA  
degree  
s
Phase Imbalance  
f = 10 MHz to 5 GHz  
f = 2 GHz  
± 3  
-30  
SE  
CMRR using the formula (S21-  
CMRR S31) / (S21+S31). Port-1: INP,  
Port-2: OUTP, Port-3: OUTM  
dB  
f = 0.5 GHz, Po = +2 dBm  
f = 1 GHz, Po = +2 dBm  
f = 2 GHz, Po = +2 dBm  
f = 4 GHz, Po = +2 dBm  
f = 0.5 GHz, Po = +2 dBm  
f = 1 GHz, Po = +2 dBm  
f = 2 GHz, Po = +2 dBm  
f = 4 GHz, Po = +2 dBm  
f = 0.5 GHz  
-65  
-60  
-60  
-60  
-65  
-65  
-68  
-58  
8.5  
10  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
dBm  
HD2  
HD3  
Second-order harmonic distortion  
Third-order harmonic distortion  
f = 1 GHz  
OP1dB Output 1-dB compression point  
f = 2 GHz  
12  
f = 4 GHz  
10.5  
10  
f = 6 GHz  
f = 0.5 GHz, Po = -5 dBm per tone  
(10 MHz spacing)  
65  
62  
58  
55  
55  
32  
35  
38  
35  
32  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
f = 1 GHz, Po = -5 dBm per tone (10  
MHz spacing)  
f = 2 GHz, Po = -5 dBm per tone (10  
MHz spacing)  
OIP2  
Output second-order intercept point  
f = 4 GHz, Po = -5 dBm per tone (10  
MHz spacing)  
f = 6 GHz, Po = -5 dBm per tone (10  
MHz spacing)  
f = 0.5 GHz, Po = -5 dBm per tone  
(10 MHz spacing)  
f = 1 GHz, Po = -5 dBm per tone (10  
MHz spacing)  
f = 2 GHz, Po = -5 dBm per tone (10  
MHz spacing)  
OIP3  
Output third-order intercept point  
f = 4 GHz, Po = -5 dBm per tone (10  
MHz spacing)  
f = 6 GHz, Po = -5 dBm per tone (10  
MHz spacing)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TRF0206-SP  
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
The specifications shown below correspond to the respectively identified subgroup temperature, unless otherwise noted. Test  
conditions are at TA = 25 oC, VDD = 3.3 V, Single-ended input with RS = 50 Ω, output with ZL = 100 Ωdifferential, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
SUBGROUP (1)  
MIN  
TYP  
7.5  
7.5  
8
MAX UNIT  
f = 0.5 GHz  
dB  
dB  
dB  
dB  
dB  
f = 1 GHz  
f = 2 GHz  
f = 4 GHz  
f = 6 GHz  
NF  
Noise Figure  
9
9
IMPEDANCE  
ZO-DIFF Differential output impedance  
ZIN Single ended input impedance  
TRANSIENT  
f = DC (internal to the device)  
5
Ω
Ω
50  
With INM terminated with 50 Ω  
Output max operating range  
(differential)  
VOMAX  
VOSAT  
TREC  
1.7  
3.5  
VPP  
VPP  
ns  
Output saturated voltage level  
(differential)  
f = 4 GHz  
Using a 0.5 VP input pulse of width  
2 ns  
Over-drive recovery time  
0.35  
POWER SUPPLY  
IQA  
Active current  
Power-down quiescent current  
Current on VDD pin, PD = 0  
Current on VDD pin, PD = 1  
[1, 2, 3]  
[1, 2, 3]  
85  
2
130  
7
170  
16  
mA  
mA  
IQPD  
ENABLE  
VPDHIGH PD pin logic HIGH  
VPDLOW PD pin logic LOW  
1.55  
V
0.7  
100  
300  
V
PD = HIGH (1.8 V logic)  
PD = HIGH (3.3 V logic)  
50  
200  
3
µA  
µA  
pF  
ns  
ns  
IPDBIAS PD bias current (current on PD pin)  
CPD  
TON  
TOFF  
PD pin capacitance  
Turn-on time  
50% VPD to 90% RF  
50% VPD to 10% RF  
200  
100  
Turn-off time  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Quality Conformance Inspection  
SUBGROUP(1)  
DESCRIPTION  
Static tests at  
TEMPERATURE (°C)  
1
2
25  
125  
55  
25  
Static tests at  
3
Static tests at  
4
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
Functional tests at  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
5
125  
55  
25  
6
7
8A  
8B  
9
125  
55  
25  
10  
11  
125  
55  
(1) MIL-STD-883, Method 5005 Group A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TRF0206-SP  
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
TA = 25°C, VDD = 3.3 V, input source impedance is 50 Ωsingle-ended, output load is 100 Ωdifferential unless otherwise  
specified.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
-55 C  
-40 C  
25 C  
85 C  
105 C  
6
6
4
4
3.15 V  
3.3 V  
3.45 V  
2
2
0
0
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
Frequency (MHz)  
Frequency (MHz)  
6-1. Power Gain Across Temperature  
6-2. Power Gain Across VDD  
0
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
Frequency (MHz)  
Frequency (MHz)  
6-3. Return Loss Across Temperature  
6-4. Return Loss Across VDD  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
Frequency (MHz)  
Frequency (MHz)  
6-5. Reverse Isolation Across Temperature  
6-6. Reverse Isolation Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
TA = 25°C, VDD = 3.3 V, input source impedance is 50 Ωsingle-ended, output load is 100 Ωdifferential unless otherwise  
specified.  
45  
40  
35  
30  
25  
20  
15  
45  
40  
35  
30  
25  
20  
15  
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
Pout / tone = 5 dBm, 10 MHz tone spacing  
6-7. OIP3 Across Temperature  
Pout / tone = 5 dBm, 10 MHz tone spacing  
6-8. OIP3 Across VDD  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-55 C  
-40 C  
25 C  
85 C  
105 C  
-55 C  
-40 C  
25 C  
85 C  
105 C  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
At (2f1-f2) frequency; f2 > f1, Pout / tone = 5 dBm,  
At (2f2-f1) frequency; f2 > f1, Pout / tone = 5 dBm,  
10 MHz tone spacing  
10 MHz tone spacing  
6-9. IMD3 Lower Frequency  
6-10. IMD3 Higher Frequency  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
At (f2-f1) frequency; f2 > f1, Pout / tone = 5 dBm, 10  
At (f2-f1) frequency; f2 > f1, Pout / tone = 5 dBm, 10  
MHz tone spacing  
MHz tone spacing  
6-11. OIP2 Lower Frequency Across Temperature  
6-12. OIP2 Lower Frequency Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TRF0206-SP  
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
TA = 25°C, VDD = 3.3 V, input source impedance is 50 Ωsingle-ended, output load is 100 Ωdifferential unless otherwise  
specified.  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
At (f2+f1) frequency; f2 > f1, Pout / tone = 5 dBm,  
At (f2+f1) frequency; f2 > f1, Pout / tone = 5 dBm,  
10 MHz tone spacing  
10 MHz tone spacing  
6-13. OIP2 Higher Frequency Across Temperature  
6-14. OIP2 Higher Frequency Across VDD  
-20  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
-30  
-40  
-50  
-60  
-70  
-80  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
Pout = +2 dBm  
Pout = +2 dBm  
6-15. HD2 Across Temperature  
6-16. HD2 Across VDD  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
Pout = +2 dBm  
Pout = +2 dBm  
6-17. HD3 Across Temperature  
6-18. HD3 Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
TA = 25°C, VDD = 3.3 V, input source impedance is 50 Ωsingle-ended, output load is 100 Ωdifferential unless otherwise  
specified.  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
500 MHz  
500 MHz  
1800 MHz  
3000 MHz  
4000 MHz  
1800 MHz  
3000 MHz  
4000 MHz  
-6  
-4  
-2  
0
2
4
6
-6  
-4  
-2  
0
2
4
6
Output Power (dBm)  
Output Power (dBm)  
6-19. HD2 vs Output Power  
6-20. HD3 vs Output Power  
16  
16  
-55 C  
-40 C  
25 C  
85 C  
105 C  
14  
12  
10  
8
14  
12  
10  
8
3.15 V  
3.3 V  
6
6
3.45 V  
4
4
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
6-21. Output P1 dB Across Temperature  
6-22. Output P1 dB Across VDD  
14  
12  
10  
8
14  
12  
10  
8
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
6
6
4
4
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
6-23. NF Across Temperature  
6-24. NF Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TRF0206-SP  
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
TA = 25°C, VDD = 3.3 V, input source impedance is 50 Ωsingle-ended, output load is 100 Ωdifferential unless otherwise  
specified.  
1
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
-4  
-5  
-55 C  
-40 C  
25 C  
85 C  
105 C  
-55 C  
-40 C  
25 C  
85 C  
105 C  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
6-25. Gain Imbalance  
6-26. Phase Imbalance  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-55 C  
-40 C  
25 C  
85 C  
105 C  
3.15 V  
3.3 V  
3.45 V  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
6-27. CMRR Across Temperature  
6-28. CMRR Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
TA = 25°C, VDD = 3.3 V, input source impedance is 50 Ωsingle-ended, output load is 100 Ωdifferential unless otherwise  
specified.  
4
3
2
1
0
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (MHz)  
Input = +5 dBm  
6-29. Saturation Voltage  
6-30. Single-Ended S11  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TRF0206-SP  
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TRF0206-SP is a very high-performance amplifier optimized for radio frequency (RF) and intermediate  
frequency (IF) with signal bandwidths up to 7 GHz. The device is ideal for ac-coupled applications that may  
require a single-ended to differential conversion when driving an analog-to-digital converter (ADC). The chip has  
a 2-stage architecture and provides about 13 dB of gain when configured for single-ended inputs driven from a  
50-Ωsource. This chip can also work as as a Diff-to-SE amplifier to act as a DAC buffer.  
This chip does not require any pull up or pull down components on PCB and thereby it simplifies the layout and  
ensures the highest performance over the whole bandwidth.  
The input and output are ac coupled. The chip is powered with 3.3 V supply. A power-down feature is also  
available for this chip.  
7.2 Functional Block Diagram  
The following figure shows the functional block diagram of TRF0206-SP. It essentialy has 2-stages with voltage  
feedback configuration.  
TRF0206-SP  
+
+
7.3 Feature Description  
The TRF0206-SP includes the following features:  
Fully differential amplifier  
Single supply operation  
Power-down option  
7.3.1 Fully-Differential Amplifier  
The TRF0206-SP is a voltage feedback fully-differential amplifier (FDA) with fixed gain by architecture.  
TRF0206-SP is most suited to operate as a single-ended to differential amplifier by terminating the INM pin by a  
50 Ωresistor and driving the INP pin directly with no external components.  
This amplifier has non-linearity cancellation circuits, which provides excellent linearity performance over a wide  
range of frequencies.  
The output of the amplifier has a low DC impedance. If required, then the output of the amplifier can be matched  
to a load by adding appropriate series resistors or attenuator pad.  
7.3.2 Single Supply Operation  
TRF0206-SP operates on a single 3.3 V supply. The input and output bias voltages are set internally. Therefore,  
the signal path has to be ac-coupled on the board at all 4 RF input and output pins. Single supply operation  
simplifies the board design.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
 
 
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.3 Power Down Option  
There is power-down functionality for this device. The PD pin can be used to power-down the amplifier. This pin  
supports both 1.8 V and 3.3 V digital logics and is referenced to the GND. A logic 1 turns the device off placing  
the device into a low quiescent current state.  
Note that, when disabled, the signal path is still present through the internal circuits. Input signals applied to a  
disabled device still appear at the outputs at some lower level through this path as they would for any disabled  
feedback amplifier.  
7.4 Device Functional Modes  
TRF0206-SP has 2 functional modes: Active mode and Power-down mode. The functional modes are controlled  
by the PD pin as described in the previous section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TRF0206-SP  
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Driving a High-Speed ADC  
A common application of TRF0206-SP is to drive a high-speed ADC such as ADC12DJ3200QML-SP or  
AFE7950 which have differential input. Conventionally passive baluns are used to drive Gsps ADCs due to non-  
availability of high-BW, linear amplifiers. TRF0206-SP is an active balun that has excellent bandwidth flatness,  
gain, and phase imbalance comparable to or exceeding costly passive baluns.  
A typical interface circuit for ADC12DJ3200QML-SP is shown in the following figure. Depending on the ADC and  
system requirement, this circuit can be simplified or can be more complex.  
Anti-aliasing filter  
Resistive matching pad  
50 Ω  
TRF0206-SP  
ADC12DJ3200QML-SP  
8-1. Interfacing with High-Speed ADC  
8-1 shows two sections of the circuit between the driver amp and the ADC namely the matching pad (or  
attenuator pad) and the anti-aliasing filter. Small form-factor RF quality passive components are recommended  
for these circuits. The output swing of TRF0206-SP is well suited to drive these ADCs full-scale at the same time  
not over-driving it avoiding the need for any voltage limiting device at the ADC.  
8.1.2 Calculating Output Voltage Swing  
This section gives an idea of the output voltage swings for different input power levels as a quick reference. The  
output is terminated with 100 Ωdifferential load in this case and power gain of 13 dB is assumed.  
Pi, Vi  
50  
Po, Vo  
TRF0206-SP  
8-2. Power and Voltage Levels  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
 
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Voltage gain = 20*log (Vo/Vi)  
2
Power gain = 10*log (Po/Pi) = 10*log ((Vo 2/100)/(Vi /50)) = 20*log (Vo/Vi) - 3 dB  
(1)  
8-1. Output Voltage Swings for Different Input Power Levels  
Input  
Output  
Pi (dBm)  
20  
Vi (Vpp)  
0.063  
0.112  
0.2  
Po (dBm)  
Vo (Vpp)  
0.4  
7  
2  
3
0.71  
15  
1.263  
1.785  
10  
0.283  
6
7  
8.1.3 Thermal Considerations  
The TRF0206-SP is packaged in a 6.10 mm × 6.20 mm LCCC-FC package that has excellent thermal  
properties. The chip has a thermal pad underneath that should be connected to a ground plane. The ground  
plane should be shorted to the other ground pins of the chip at four corners if possible to allow heat propagation  
to the top layer of the PCB. There should be a thermal via that connects the thermal pad plane on the top layer  
of the PCB to the inner layer ground planes to allow heat propagation to the inner layers.  
The total power dissipation needs to be limited to keep the device junction temperature below 150°C for  
instantaneous power and below 125°C for continuous power.  
9 Typical Application  
9.1 TRF0206-SP Driving AFE7950-SP Receiver  
This section describes an RF receiver chain in which TRF0206-SP is working as a S2D (SE-to-Diff) amp and  
driving a receive channel of AFE7950-SP.  
3.3 V  
100 pF  
100 pF  
3.9 pF  
3.9 pF  
0.2 nH  
0.2 nH  
10  
10  
10  
10  
11  
12  
100 pF  
100 pF  
9
OUTP  
OUTM  
To AFE7950-SP RX  
VDD  
6
5
INP  
INM  
1
4
7
10  
GND  
GND  
GND  
GND  
2
PD  
8
3
AFE matching network  
TP1  
TP2  
TPAD 13  
TRF0206-SP  
9-1. TRF0206-SP in Receive Chain driving AFE7950-SP ADC  
9-1 is a generic schematics of a design in which TRF0206-SP drives an AFE7950-SP receive channel. The  
exact values of the components depend on the frequency band for which the AFE7950-SP front-end is matched.  
9.1.1 Design Requirements  
The AFE7950-SP receive channel is required to be matched to 2.3 GHz.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TRF0206-SP  
 
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.1.2 Detailed Design Procedure  
The TRF0206-SP is configured as a S2D amplifier. The section close to TRF0206-SP output is an attenuator  
pad which is meant for robust matching. The section close to AFE7950-SP is the matching network for the AFE  
which is channel and channel frequency dependent. The matching components are chosen based on the AFE  
return-loss data and some trial and error since the manufactured board parameters can influence the exact  
component values.  
10 Power Supply Recommendations  
TRF0206-SP requires a single 3.3 V supply. Supply decoupling is critical to high-frequency performance.  
Typically 2 or 3 capacitors are used for supply decoupling. The lowest-value capacitor should be a small form-  
factor component that is placed closest to the VDD pin of the device. There should be bulk decoupling capacitor  
that is of bigger value and size which can be placed next to the small capacitor. Additional layout  
recommendations are given in the Layout section.  
11 Layout  
11.1 Layout Guidelines  
TRF0206-SP is a wide-band feedback amplifer with about 13 dB of gain. When designing with a wide-band RF  
amplifier with relatively high gain, certain board layout precautions must be taken to ensure stability and optimum  
performance. TI recommends that the board be multi-layered to maintain signal and power integrity and thermal  
performance. The following figure shows an example of a good layout. In this figure, only the top layer is shown.  
It is recommended to route the RF input and output lines as grounded coplanar waveguide (GCPW) lines. The  
second layer should be a continuous ground layer without any ground-cuts near the amplifier area. The output  
differential lines have to be matched in length to minimize phase imbalance. Use small footprint passive  
components wherever possible. Care should be given also for the input side layout. The INP routing should be a  
50-Ω line and the termination on INM pin should have low parasitics by placing the ac-coupling cap and the 50-  
Ωresistor very close to the device. Use a RF quality 50-Ωresistor for termination. Ensure that ground planes on  
the top and internal layers are well stitched with vias.  
As 11-1 shows, place thermal vias under the device that connect the top thermal pad with ground planes in  
the inner layers of PCB. Also connect the thermal pad to the top layer ground plane through the ground pins.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
 
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
11.2 Layout Example  
Thermal vias under the device,  
connected to top layer ground for  
improved heat dissipa on  
TRF0206-SP  
device  
50- termina on  
resistor (0201) on INM  
pin very close to the  
cap  
Supply decoupling caps  
(0201 and 0402) placed  
very close to the device  
11-1. Layout Example Placement and Top Layer Layout  
The TRF0206-SP device can be evaluated using the TRF0206-SP EVM board, which can be ordered from  
TRF0206-SP product folder. Additional information about the evaluation board construction and test setup is  
given in the TRF0206-SP EVM User's Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TRF0206-SP  
 
 
TRF0206-SP  
ZHCSMI2A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, TRF0206-SP EVM User's Guide  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TRF0206-SP  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962R2122001VXC  
ACTIVE  
LCCC  
FFM  
12  
50  
RoHS & Green  
Call TI  
Level-1-NA-UNLIM  
-55 to 125  
5962R  
2122001VXC  
TRF0206FFM  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

5962R3812801VGA

Voltage Reference
ETC

5962R3812802VGA

Voltage Reference
ETC

5962R7802005M2A

QUAD LINE RECEIVER, CQCC20, CERAMIC, LCC-20
TI

5962R7802005Q2A

IC QUAD LINE RECEIVER, CQCC20, CERAMIC, LCC-20, Line Driver or Receiver
NSC

5962R7802005QEA

QUAD LINE RECEIVER, CDIP16, CERAMIC, DIP-16
TI

5962R7802005VEA

四路差分线路接收器 | NFE | 16 | -55 to 125
TI

5962R7802005VFA

IC QUAD LINE RECEIVER, CDFP16, CERAMIC, DFP-16, Line Driver or Receiver
NSC

5962R7802005VFA

四路差分线路接收器 | NAD | 16 | -55 to 125
TI

5962R7802005VZA

QUAD LINE RECEIVER, CDSO16, CERAMIC, SOIC-16
TI

5962R8512701VXA

Aerospace 12-Bit-ADC w/Microprocessor Interface
ADI

5962R8512701VZA

Analog to Digital Converter
ETC

5962R8512702VXA

Aerospace 12-Bit-ADC w/Microprocessor Interface
ADI