ADS4449IZCRT [TI]

Quad-Channel, 14-Bit, 250-MSPS, Low-Power ADC; 四通道, 14位, 250 MSPS ,低功耗ADC
ADS4449IZCRT
型号: ADS4449IZCRT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Quad-Channel, 14-Bit, 250-MSPS, Low-Power ADC
四通道, 14位, 250 MSPS ,低功耗ADC

文件: 总54页 (文件大小:1544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Quad-Channel, 14-Bit, 250-MSPS, Low-Power ADC  
Check for Samples: ADS4449  
1
FEATURES  
DESCRIPTION  
The ADS4449 is a high-linearity, quad-channel, 14-  
bit, 250-MSPS, analog-to-digital converter (ADC).  
The four ADC channels are separated into two blocks  
with two ADCs each. Designed for low power  
consumption and high spurious-free dynamic range  
(SFDR), the device has low-noise performance and  
outstanding SFDR over a large input frequency  
range.  
2
Quad Channel  
14-Bit Resolution  
Maximum Sampling Data Rate: 250 MSPS  
Power Dissipation:  
365 mW per Channel  
Spectral Performance at 170-MHz IF (typ):  
SNR: 69 dBFS  
SFDR: 86 dBc  
DDR LVDS Digital Output Interface  
Package: 144-Pin BGA (10-mm × 10-mm)  
APPLICATIONS  
Multi-Carrier GSM Cellular Infrastructure Base  
Stations  
RADAR and Smart Antenna Arrays  
Multi-Carrier Multi-Mode Cellular Infrastructure  
Base Stations  
Active Antenna Arrays for Wireless  
Infrastructures  
Communications Test Equipment  
0
DAB0P, DAB0M or  
OVRABP, OVRABM  
FIN = 170 MHz  
SFDR = 89 dBc  
SNR = 69 dBFS  
AINP,  
AINM  
14-Bit  
ADC  
14  
DAB[13:1]P,  
DAB[13:1]M  
Digital  
Block  
−20  
SINAD = 68.9 dBFS  
CLKOUTABP,  
CLKOUTABM  
THD = 85 dBc  
BINP,  
BINM  
14-Bit  
ADC  
−40  
Output  
Formatter  
CLKINP,  
CLKINM  
DDR  
LVDS  
−60  
−80  
CINP,  
CINM  
14-Bit  
ADC  
DCD0P, DCD0M or  
OVRCDP, OVRCDM  
Digital  
Block  
DINP,  
DINM  
14-Bit  
ADC  
14  
DCD[13:1]P,  
DCD[13:1]M  
−100  
−120  
CLKOUTCDP,  
CLKOUTCDM  
Common  
Mode  
VCM  
Configuration Registers  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
G005  
Figure 1. Spectrum For 170-MHz Input Frequency  
Figure 2. Basic Block Diagram  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE AND ORDERING INFORMATION(1)  
PACKAGE  
DESIGNATOR  
SPECIFIED TEMPERATURE  
RANGE  
PRODUCT  
PACKAGE-LEAD  
ADS4449  
BGA-144  
ZCR  
–40°C to +85°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
VALUE  
–0.3 to +3.6  
UNIT  
V
AVDD33  
Supply voltage range  
Voltage between  
AVDD  
–0.3 to +2.1  
V
DRVDD  
–0.3 to +2.1  
V
AVSS and DRVSS  
AVDD and DRVDD  
AVDD33 and DRVDD  
AVDD33 and AVDD  
XINP, XINM  
CLKP, CLKM(2)  
RESET, SCLK, SDATA, SEN, PDN  
Operating free-air, TA  
Operating junction, TJ  
Storage, Tstg  
–0.3 to +0.3  
V
–2.4 to +2.4  
V
–2.4 to +3.9  
V
–2.4 to +3.9  
V
–0.3 to minimum (1.9, AVDD + 0.3)  
–0.3 to minimum (1.9, AVDD + 0.3)  
–0.3 to +3.9  
V
Voltage applied to input pins  
Temperature  
V
V
–40 to +85  
°C  
°C  
°C  
+150  
–65 to +150  
Electrostatic discharge (ESD)  
rating  
Human body model (HBM)  
2
kV  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP and CLKM is less than  
| 0.3 V |). This recommendation prevents the ESD protection diodes at the clock input pins from turning on.  
2
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
THERMAL INFORMATION  
ADS4449  
ZCR (BGA)  
144 PINS  
35.9  
THERMAL METRIC(1)  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.1  
12.6  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
12.4  
θJCbot  
N/A  
SPACER  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD33  
AVDD  
3.15  
1.8  
3.3  
1.9  
1.8  
3.45  
2.0  
V
V
V
Supply voltage  
DRVDD  
1.7  
2.0  
ANALOG INPUTS  
Differential input voltage range  
2
VPP  
V
Input common-mode voltage  
VCM ± 0.025  
Analog input common-mode current (per input pin of each channel)  
VCM current capability  
1.5  
5
µA/MSPS  
mA  
2-VPP input amplitude(1)  
400  
500  
MHz  
Maximum analog input frequency  
1.4-VPP input amplitude  
MHz  
CLOCK INPUTS  
Input clock sample rate  
184  
0.2  
250  
MSPS  
VPP  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
1.5  
1.6  
VPP  
Input clock amplitude differential  
(VCLKP – VCLKM  
)
LVDS, ac-coupled  
0.7  
VPP  
LVCMOS, single-ended, ac-coupled  
1.8  
VPP  
Input clock duty cycle  
DIGITAL OUTPUTS  
40%  
50%  
60%  
Maximum external load capacitance from each output pin to DRVSS  
(default strength)  
CLOAD  
3.3  
pF  
RLOAD  
Differential load resistance between the LVDS output pairs (LVDS mode)  
100  
Ω
TEMPERATURE RANGE  
TA  
Operating free-air temperature  
–40  
+85  
+105  
+125  
°C  
°C  
°C  
Recommended  
Maximum rated(2)  
TJ  
Operating junction temperature  
(1) See the Theory of Operation section.  
(2) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
SPECIAL PERFORMANCE MODES  
Best performance can be achieved by writing certain modes depending upon source impedance, band of  
operation and sampling speed. Table 1 summarizes the different these modes.  
Table 1. High-Performance Modes Summary(1)  
SPECIAL MODES SUMMARY  
INPUT FREQUENCIES  
(Up to 125 MHz)  
INPUT FREQUENCIES  
(> 125 MHz)  
SPECIAL MODE NAME  
ADDRESS (Hex)  
DATA (Hex)  
High-frequency mode  
F1  
58  
70  
88  
A0  
20  
20  
20  
20  
20  
Not required  
Optional  
Optional  
Optional  
Optional  
Must  
Optional  
Optional  
Optional  
Optional  
High SNR mode(2)  
(1) See the Serial Interface Registers section for details.  
(2) High SNR mode improves SNR typically by 1 dB at 170 MHz input frequency. See the Using High SNR Mode Register Settings section.  
ELECTRICAL CHARACTERISTICS  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC clock frequency = 250 MHz,  
50% clock duty cycle, AVDD33V = 3.3 V, AVDD = 1.9 V, DRVDD = 1.8 V, and –1-dBFS differential input, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
RESOLUTION  
Default resolution  
ANALOG INPUTS  
14  
Bits  
Differential input full-scale  
Common mode input voltage  
Input resistance, differential  
Input capacitance, differential  
2
1.15  
700  
3.3  
VPP  
V
VCM  
RIN  
At 170-MHz input frequency  
At 170-MHz input frequency  
Ω
CIN  
pF  
With a 50-Ω source driving the ADC  
analog inputs  
Analog input bandwidth, 3 dB  
500  
MHz  
DYNAMIC ACCURACY  
EO  
Offset error  
Specified across devices and channels  
Specified across devices and channels  
Specified across channels within a device  
–15  
–5  
15  
5
mV  
As a result of internal  
reference inaccuracy  
alone  
%FS  
EG  
Gain error(1)  
Of channel alone  
±0.2  
%FS  
Channel gain error temperature coefficient(1)  
0.001  
Δ%/°C  
POWER SUPPLY(2)  
IAVDD33  
3.3-V analog supply  
1.9-V analog supply  
1.8-V digital supply  
Total  
51  
350  
355  
1.47  
400  
6
mA  
mA  
mA  
W
IAVDD  
Supply current  
IDRVDD  
PTOTAL  
1.6  
52  
PDISS(standby) Power dissipation  
PDISS(global)  
Standby  
mW  
mW  
Global power-down  
(1) There are two sources of gain error: internal reference inaccuracy and channel gain error.  
(2) A 185-MHz, full-scale, sine-wave input signal is applied to all four channels.  
4
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
 
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC clock frequency = 250 MHz,  
50% clock duty cycle, AVDD33V = 3.3 V, AVDD = 1.9 V, DRVDD = 1.8 V, and –1-dBFS differential input, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
DYNAMIC AC CHARACTERISTICS(3)  
fIN = 40 MHz  
71.1  
71  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 170 MHz  
fIN = 220 MHz  
fIN = 307 MHz  
fIN = 350 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 170 MHz  
fIN = 220 MHz  
fIN = 307 MHz  
fIN = 350 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 170 MHz  
fIN = 220 MHz  
fIN = 307 MHz  
fIN = 350 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 170 MHz  
fIN = 220 MHz  
fIN = 307 MHz  
fIN = 350 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 170 MHz  
fIN = 220 MHz  
fIN = 307 MHz  
fIN = 350 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 170 MHz  
fIN = 220 MHz  
fIN = 307 MHz  
fIN = 350 MHz  
69.5  
69  
SNR  
Signal-to-noise ratio  
67.5  
68.5  
67.5  
67  
70.9  
70.8  
69.3  
68.8  
68.3  
66.8  
66.3  
84  
SINAD  
SFDR  
THD  
Signal-to-noise and distortion ratio  
Spurious-free dynamic range  
Total harmonic distortion  
66.9  
78.5  
75  
87  
dBc  
85  
dBc  
86  
dBc  
84  
dBc  
78  
dBc  
77  
dBc  
83  
dBc  
84  
dBc  
82  
dBc  
83  
dBc  
82  
dBc  
76  
dBc  
75  
dBc  
96  
dBc  
87  
dBc  
86  
dBc  
HD2  
Second-order harmonic distortion(4)  
78.5  
86  
dBc  
84  
dBc  
78  
dBc  
77  
dBc  
83  
dBc  
89  
dBc  
85  
dBc  
HD3  
Third-order harmonic distortion  
79.5  
86  
dBc  
85  
dBc  
80  
dBc  
78  
dBc  
(3) Phase and amplitude imbalances onboard must be minimized to obtain good performance.  
(4) The minimum value across temperature is ensured by bench characterization.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC clock frequency = 250 MHz,  
50% clock duty cycle, AVDD33V = 3.3 V, AVDD = 1.9 V, DRVDD = 1.8 V, and –1-dBFS differential input, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
DYNAMIC AC CHARACTERISTICS (continued)  
fIN = 40 MHz  
100  
100  
95  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
LSBs  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 170 MHz  
fIN = 220 MHz,  
fIN = 307 MHz  
fIN = 350 MHz  
Worst spur  
(non HD2, HD3)  
87  
95  
95  
85  
85  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
-0.95  
±0.5  
±1.5  
±5.25  
LSBs  
Recovery to within 1% (of final value) for  
6-dB output overload with sine-wave input  
Clock  
cycle  
Input overload recovery  
1
With a full-scale, 220-MHz signal on  
aggressor channel and no signal on victim  
channel  
Crosstalk  
90  
dB  
dB  
PSRR  
AC power-supply rejection ratio  
For 50-mVPP signal on AVDD supply  
< 30  
DIGITAL CHARACTERISTICS  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level '0' or '1'. AVDD33 = 3.3 V, AVDD = 1.9 V, and DRVDD = 1.8 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS(1) (RESET, SCLK, SDATA, SEN, PDN)  
All digital inputs support 1.8-V logic  
levels. SPI supports 3.3-V logic levels.  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.25  
V
V
All digital inputs support 1.8-V logic  
levels. SPI supports 3.3-V logic levels.  
0.45  
RESET, SCLK, PDN pins VHIGH = 1.8 V  
10  
0
µA  
µA  
µA  
µA  
High-level input  
current  
IIH  
SEN(2) pin  
VHIGH = 1.8 V  
RESET, SCLK, PDN pins VLOW = 0 V  
SEN pin VLOW = 0 V  
0
Low-level input  
current  
IIL  
10  
DIGITAL OUTPUTS (SDOUT)  
DRVDD –  
0.1  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DRVDD  
0
V
V
0.1  
DIGITAL OUTPUTS, LVDS INTERFACE  
(DAB[13:0]P, DAB[13:0]M, DCD[13:0]P, DCD[13:0]M, CLKOUTABP, CLKOUTABM, CLKOUTCDP, CLKOUTCDM)  
VODH  
VODL  
VOCM  
High(3)  
Standard-swing LVDS  
Standard-swing LVDS  
270  
350  
–350  
1.05  
465  
mV  
mV  
V
Output differential  
voltage  
Low  
–465  
–270  
Output common-mode voltage  
(1) RESET, SDATA, and SCLK have an internal 150-kΩ pull-down resistor.  
(2) SEN has an internal 150-kΩ pull-up resistor to DRVDD.  
(3) With an external 100-Ω termination.  
6
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
TIMING REQUIREMENTS(1)  
Typical values are at +25°C, AVDD33 = 3.3 V, AVDD = 1.9 V, DRVDD = 1.8 V, sine-wave input clock, CLOAD = 3.3 pF(2), and  
RLOAD = 100 Ω(3), unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
tA  
Aperture delay  
0.7  
1.2  
1.6  
Aperture delay matching  
Between any two channels of the same device  
±70  
ps  
Between two devices at the same temperature and  
DRVDD supply  
Variation of aperture delay  
Aperture jitter  
±150  
140  
ps  
fs rms  
µs  
tJ  
Time to valid data after coming out of global power  
down  
100  
Wake up time  
Time to valid data after coming out of channel power  
down  
10  
10  
13  
14  
µs  
Output clock  
cycles  
Default latency in 14-bit mode  
Digital gain enabled  
Output clock  
cycles  
ADC latency(4)(5)  
Output clock  
cycles  
Digital gain and offset correction enabled  
OUTPUT TIMING(6)  
tSU  
Data setup time(7)(8)(9)  
tH  
Data valid to CLKOUTxxP zero-crossing  
0.6  
0.6  
0.85  
0.84  
ns  
ns  
Data hold time(7)(8)(9)  
CLKOUTxxP zero-crossing to data becoming invalid  
Differential clock duty cycle (CLKOUTxxP –  
CLKOUTxxM)  
LVDS bit clock duty cycle  
50%  
Input clock falling edge cross-over to output clock  
tPDI  
Clock propagation delay(5) falling edge cross-over, 184 MSPS sampling  
frequency 250 MSPS  
0.25 × tS + tdelay  
ns  
ns  
Input clock falling edge cross-over to output clock  
tdelay  
Delay time  
falling edge cross-over, 184 MSPS sampling  
frequency 250 MSPS  
6.9  
8.65  
10.5  
tRISE  
tFALL  
,
Data rise and fall time  
Rise time measured from –100 mV to +100 mV  
Rise time measured from –100 mV to +100 mV  
0.1  
0.1  
ns  
ns  
tCLKRISE  
tCLKFALL  
,
Output clock rise and fall  
time  
(1) Timing parameters are ensured by design and characterization and are not tested in production.  
(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground.  
(3) RLOAD is the differential load resistance between the LVDS output pair.  
(4) ADC latency is given for channels B and D. For channels A and C, latency reduces by half of the output clock cycles.  
(5) Overall latency = ADC latency + tPDI  
.
(6) Measurements are done with a transmission line of 100-Ω characteristic impedance between the device and load. Setup and hold time  
specifications take into account the effect of jitter on the output data and clock.  
(7) Data valid refers to a logic high of +100 mV and a logic low of –100 mV.  
(8) Note that these numbers are taken with delayed output clocks by writing the following registers: address A9h, value 02h; and address  
ACh, value 60h. Refer to the Serial Interface Registers section. By default after reset, minimum setup time and minimum hold times are  
520 ps each.  
(9) The setup and hold times of a channel are measured with respect to the same channel output clock.  
Table 2. LVDS Timings Across Lower Sampling Frequencies  
SETUP TIME (ns)  
HOLD TIME (ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
0.89  
1.06  
TYP  
1.03  
1.21  
MAX  
MIN  
0.82  
0.95  
TYP  
1.01  
1.15  
MAX  
210  
185  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
PARAMETRIC MEASUREMENT INFORMATION  
LVDS OUTPUT TIMING  
Figure 3 shows a timing diagram of the LVDS output voltage levels. Figure 4 shows the latency described in the  
Timing Requirements table.  
DxnP  
Logic 0  
VODL  
Logic 1  
VODH  
DxnM  
VOCM  
GND  
Figure 3. LVDS Output Voltage Levels  
N+12  
N+3  
N+4  
N+11  
N+2  
N+1  
N+10  
Sample  
N
Input  
Signal  
tA  
CLKINM  
CLKINP  
Input  
Clock  
CLKOUTABM  
(CLKOUTCDM)  
CLKOUTABP  
(CLKOUTCDP)  
10 Clock Cycles  
DDR  
LVDS  
tPDI  
Output Data  
DABP, DABM  
(DCDP, DCDM)  
Ch B  
Ch A  
Ch B  
Ch A  
Ch B  
Ch A  
Ch B  
Ch A  
Ch B  
Ch A  
Ch A  
Ch B  
Ch A  
Ch B  
Ch A  
Ch B  
Ch A  
Ch B  
Ch A  
(Ch D) (Ch C) (Ch D) (Ch C) (Ch D) (Ch C) (Ch D) (Ch C) (Ch D) (Ch C)  
(Ch C) (Ch D) (Ch C) (Ch D) (Ch C) (Ch D) (Ch C) (Ch D) (Ch C)  
N
N+1  
N-1  
N-10  
N-9  
N-8  
N-7  
Figure 4. Latency Timing  
8
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
 
 
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
PARAMETRIC MEASUREMENT INFORMATION (continued)  
All 14 data bits of one channel are included in the digital output interface at the same time, as shown in Figure 5.  
Channel A and C data are output on the rising edge of the output clock while channels B and D are output on the  
falling edge of the output clock.  
CLKOUTABM  
CLKOUTABP  
DAB[13:0]P,  
DAB[13:0]M  
DA[13:0]P,  
DA[13:0]M  
DB[13:0]P,  
DB[13:0]M  
DA[13:0]P,  
DA[13:0]M  
DB[13:0]P,  
DB[13:0]M  
DA[13:0]P,  
DA[13:0]M  
DB[13:0]P,  
DB[13:0]M  
Sample N  
Sample N + 1  
Sample N + 2  
CLKOUTCDM  
CLKOUTCDP  
DCD[13:0]P,  
DCD[13:0]M  
DC[13:0]P,  
DC[13:0]M  
DD[13:0]P,  
DD[13:0]M  
DC[13:0]P,  
DC[13:0]M  
DD[13:0]P,  
DD[13:0]M  
DC[13:0]P,  
DC[13:0]M  
DD[13:0]P,  
DD[13:0]M  
Sample N  
Sample N + 1  
Sample N + 2  
Figure 5. LVDS Output Interface Timing  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ADS4449  
 
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
PIN CONFIGURATION  
ZCR PACKAGE  
BGA-144  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
AVDD  
AVDD  
AVSS  
CINM  
CINP  
AVDD  
VCM  
VCM  
AVDD  
BINM  
BINP  
AVDD  
AVDD  
A
B
C
D
E
F
DINP  
AVDD  
AVSS  
VCM  
NC  
AVDD  
AVSS  
AVSS  
DRVSS  
DRVSS  
NC  
AVSS  
AVSS  
AVDD33  
CLKINM  
AVSS  
AVDD33  
CLKINP  
AVSS  
AVSS  
AVSS  
AVDD  
AVSS  
AVDD  
AVSS  
AVSS  
AVSS  
AINM  
AINP  
DINM  
AVSS  
AVDD  
AVDD  
AVSS  
AVSS  
AVSS  
VCM  
AVDD  
AVDD  
AVDD33  
DCD13M  
DCD12M  
DCD11M  
DCD10M  
DCD9M  
DCD8M  
DCD7M  
AVDD33  
DCD13P  
DCD12P  
DCD11P  
DCD10P  
DCD9P  
DCD8P  
DCD7P  
DRVSS  
DRVSS  
NC  
DRVSS  
DRVSS  
RESET  
DRVDD  
DRVDD  
DRVDD  
DRVSS  
DRVSS  
SCLK  
DRVSS  
DRVSS  
SDATA  
DRVDD  
DAB2M  
DAB2P  
DRVSS  
DRVSS  
SEN  
PDN  
AVDD33  
DAB13P  
DAB12P  
DAB11P  
DAB10P  
DAB9P  
DAB8P  
DAB7P  
AVDD33  
DAB13M  
DAB12M  
DAB11M  
DAB10M  
DAB9M  
DAB8M  
DAB7M  
DRVDD  
DRVDD  
SDOUT  
DAB6P  
DAB5P  
DAB4P  
DAB3P  
NC  
G
H
J
DCD6P  
DCD5P  
DCD4P  
DCD3P  
DCD6M  
DCD5M  
DCD4M  
DCD3M  
DRVDD  
DCD2P  
DCD2M  
DRVDD  
DRVDD  
DRVDD  
DAB6M  
DAB5M  
DAB4M  
DAB3M  
K
L
DCD1P  
DCD0P/  
DCD1M  
DCD0M/  
DAB1M  
DAB0M/  
DAB1P  
DAB0P/  
CLKOUT  
CDP  
CLKOUT  
CDM  
CLKOUT  
ABM  
CLKOUT  
ABP  
M
OVRCDP OVRCDM OVRABM OVRABP  
10  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
PIN FUNCTIONS  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
B12  
AINM  
AINP  
I
I
I
Negative differential analog input for channel A  
Positive differential analog input for channel A  
Analog 3.3-V power supply  
C12  
AVDD33  
B6, B7, E1, E2, E11, E12  
A1, A2, A5, A8, A11, A12,  
B3, B4, B9, B10, D1, D2,  
D11, D12  
AVDD  
AVSS  
I
I
Analog 1.9-V power supply  
Analog ground  
B2, B5, B8, B11, C2-C5,  
C8-C11, D4-D9  
BINM  
BINP  
A9  
A10  
A3  
I
I
Negative differential analog input for channel B  
Positive differential analog input for channel B  
Negative differential analog input for channel C  
Positive differential analog input for channel C  
Negative differential clock input  
CINM  
I
CINP  
A4  
I
CLKINM  
C6  
I
CLKINP  
C7  
I
Positive differential clock input  
CLKOUTABM  
CLKOUTABP  
CLKOUTCDM  
CLKOUTCDP  
M9  
M10  
M4  
M3  
O
O
O
O
Negative differential LVDS clock output for channel A and B  
Positive differential LVDS clock output for channel A and B  
Negative differential LVDS clock output for channels C and D  
Positive differential LVDS clock output for channels C and D  
DAB[13:1]P,  
DAB0P/OVRABP,  
DAB[13:1]M,  
F11, F12, G11, G12,  
H9-H12, J8-J12, K8-K12,  
L7-L12, M7, M8, M11, M12  
O
O
DDR LVDS outputs for channels A and B.  
DDR LVDS outputs for channels C and D.  
DAB0M/OVRABM  
DCD[13:1]P,  
DCD0P/OVRCDP,  
DCD[13:1]M,  
F1, F2, G1, G2, H1-H4,  
J1-J5, K1-K5, L1-L6, M1,  
M2, M5, M6  
DCD0M/OVRCDM  
DINM  
DINP  
C1  
B1  
I
I
Negative differential analog input for channel D  
Positive differential analog input for channel D  
F3, F10, H5-H8, J6, J7, K6,  
K7  
DRVDD  
I
Digital 1.8-V power supply  
DRVSS  
NC  
E4-E9, F4-F9  
I
-
Digital ground  
E3, G3, G4, G5  
Do not connect  
PDN  
E10  
I
Power-down control; active high. Logic high is power down.  
Hardware reset; active high  
Serial interface clock input  
Serial interface data input  
Serial interface data output  
Serial interface enable  
RESET  
SCLK  
SDATA  
SDOUT  
SEN  
G6  
I
G7  
I
G8  
G10  
I
O
I
G9  
VCM  
A6, A7, D3, D10  
O
Common-mode voltage for analog inputs. All VCM pins are internally connected together.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
DAB0P, DAB0M or  
OVRABP, OVRABM  
AINP,  
AINM  
14-Bit  
ADC  
14  
DAB[13:1]P,  
DAB[13:1]M  
Digital  
Block  
CLKOUTABP,  
CLKOUTABM  
BINP,  
BINM  
14-Bit  
ADC  
Output  
Formatter  
CLKINP,  
CLKINM  
DDR  
LVDS  
CINP,  
CINM  
14-Bit  
ADC  
DCD0P, DCD0M or  
OVRCDP, OVRCDM  
Digital  
Block  
DINP,  
DINM  
14-Bit  
ADC  
14  
DCD[13:1]P,  
DCD[13:1]M  
CLKOUTCDP,  
CLKOUTCDM  
Common  
Mode  
VCM  
Configuration Registers  
12  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
TYPICAL CHARACTERISTICS  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
0
0
FIN = 40 MHz  
FIN = 70 MHz  
SFDR = 84 dBc  
SNR = 71.1 dBFS  
SINAD = 70.9 dBFS  
THD = 84 dBc  
SFDR = 87 dBc  
SNR = 70.9 dBFS  
SINAD = 70.8 dBFS  
THD = 84 dBc  
−20  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G001  
G002  
Figure 6. FFT FOR 40-MHz INPUT SIGNAL  
Figure 7. FFT FOR 70-MHz INPUT SIGNAL  
0
−20  
0
−20  
FIN = 100 MHz  
FIN = 140 MHz  
SFDR = 85 dBc  
SNR = 70.2 dBFS  
SINAD = 70.1 dBFS  
THD = 84 dBc  
SFDR = 87 dBc  
SNR = 69.7 dBFS  
SINAD = 69.6 dBFS  
THD = 84 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G003  
G004  
Figure 8. FFT FOR 100-MHz INPUT SIGNAL  
Figure 9. FFT FOR 140-MHz INPUT SIGNAL  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
0
0
FIN = 170 MHz  
FIN = 230 MHz  
SFDR = 89 dBc  
SNR = 69 dBFS  
SINAD = 68.9 dBFS  
THD = 85 dBc  
SFDR = 86 dBc  
SNR = 68.6 dBFS  
SINAD = 68.5 dBFS  
THD = 84 dBc  
−20  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G005  
G006  
Figure 10. FFT FOR 170-MHz INPUT SIGNAL  
Figure 11. FFT FOR 230-MHz INPUT SIGNAL  
0
−20  
0
−20  
Each Tone at  
−7 dBFS Amplitude  
fIN1 = 45 MHz  
fIN2 = 50 MHz  
Each Tone at  
−36 dBFS Amplitude  
fIN1 = 45 MHz  
fIN2 = 50 MHz  
2−Tone IMD = 87 dBFS  
SFDR = 92 dBFS  
2−Tone IMD = 99 dBFS  
SFDR = 99 dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G007  
G008  
Figure 12. FFT FOR TWO-TONE INPUT SIGNAL  
(–7 dBFS)  
Figure 13. FFT FOR TWO-TONE INPUT SIGNAL  
(–36 dBFS)  
14  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
0
0
Each Tone at  
Each Tone at  
−7 dBFS Amplitude  
fIN1 = 185.1 MHz  
fIN2 = 190.1 MHz  
−36 dBFS Amplitude  
fIN1 = 185.1 MHz  
fIN2 = 190.1 MHz  
−20  
−20  
2−Tone IMD = 97 dBFS  
SFDR = 102 dBFS  
2−Tone IMD = 101 dBFS  
SFDR = 100 dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G009  
G010  
Figure 14. FFT FOR TWO-TONE INPUT SIGNAL  
(–7 dBFS)  
Figure 15. FFT FOR TWO-TONE INPUT SIGNAL  
(–36 dBFS)  
25  
20  
15  
10  
5
93  
91  
Input Frequency = 170 MHz  
Temperature = −40 C  
Temperature = 25 C  
Temperature = 85 C  
88  
85  
82  
79  
76  
73  
70  
0
40  
80  
120 160 200 240 280 320 360 400  
Input Frequency (MHz)  
HD2 (dBc)  
G011  
G039  
Figure 16. SPURIOUS-FREE DYNAMIC RANGE  
vs INPUT FREQUENCY  
Figure 17. HD2 DISTRIBUTION OVER MULTIPLE DEVICES  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
72  
71  
70  
69  
68  
67  
66  
65  
104  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
40 MHz  
100 MHz  
130 MHz  
170 MHz  
230 MHz  
300 MHz  
350 MHz  
400 MHz  
450 MHz  
40  
80  
120 160 200 240 280 320 360 400  
Input Frequency (MHz)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
G012  
G013  
Figure 18. SIGNAL-TO-NOISE RATIO vs INPUT FREQUENCY  
Figure 19. SPURIOUS-FREE DYNAMIC RANGE  
vs DIGITAL GAIN  
75.5  
130  
120  
110  
100  
90  
74  
Input Frequency = 70 MHz  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
40 MHz  
100 MHz  
130 MHz  
170 MHz  
230 MHz  
300 MHz  
350 MHz  
400 MHz  
450 MHz  
75  
74.5  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
73.5  
73  
80  
72.5  
72  
70  
60  
71.5  
71  
50  
40  
70.5  
30  
70  
−70  
20  
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
G015  
Digital Gain (dB)  
G014  
Figure 20. SIGNAL-TO-NOISE RATIO vs DIGITAL GAIN  
Figure 21. PERFORMANCE vs INPUT AMPLITUDE  
16  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
120  
110  
100  
90  
74  
94  
92  
90  
88  
86  
84  
82  
80  
78  
72  
Input Frequency = 185 MHz  
Input Frequency = 185 MHz  
73.5  
73  
71.5  
71  
72.5  
72  
70.5  
70  
80  
70  
71.5  
71  
60  
69.5  
69  
50  
70.5  
70  
40  
SFDR (dBc)  
SFDR (dBFS)  
SNR  
68.5  
30  
69.5  
69  
SFDR  
SNR  
20  
−50  
68  
1.3  
−40  
−30  
−20  
−10  
0
0.7  
0.8  
0.9  
1
1.1  
1.2  
Amplitude (dBFS)  
Input Common−Mode Voltage (V)  
G016  
G017  
Figure 22. PERFORMANCE vs INPUT AMPLITUDE  
Figure 23. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE  
90  
89  
88  
87  
86  
85  
84  
83  
71  
70.5  
70  
Input Frequency = 185 MHz  
Input Frequency = 185 MHz  
69.5  
69  
DRVDD = 1.7 V  
DRVDD = 1.8 V  
DRVDD = 1.9 V  
DRVDD = 2 V  
DRVDD = 1.7 V  
DRVDD = 1.8 V  
DRVDD = 1.9 V  
DRVDD = 2 V  
68.5  
68  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
G018  
G019  
Figure 24. SPURIOUS-FREE DYNAMIC RANGE vs  
DRVDD SUPPLY AND TEMPERATURE  
Figure 25. SIGNAL-TO-NOISE RATIO vs  
DRVDD SUPPLY AND TEMPERATURE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
90  
89  
88  
87  
86  
85  
84  
83  
82  
71  
70.5  
70  
Input Frequency = 185 MHz  
Input Frequency = 185 MHz  
69.5  
69  
68.5  
68  
AVDD = 1.8 V  
AVDD = 1.9 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.9 V  
AVDD = 2 V  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
G020  
G021  
Figure 26. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD SUPPLY AND TEMPERATURE  
Figure 27. SIGNAL-TO-NOISE RATIO vs  
AVDD SUPPLY AND TEMPERATURE  
90  
89  
88  
87  
86  
85  
84  
83  
82  
71  
70.5  
70  
Input Frequency = 185 MHz  
Input Frequency = 185 MHz  
69.5  
69  
68.5  
68  
AVDD3V = 3.15 V  
AVDD3V = 3.3 V  
AVDD3V = 3.45 V  
AVDD3V = 3.15 V  
AVDD3V = 3.3 V  
AVDD3V = 3.45 V  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
G022  
G023  
Figure 28. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD3V SUPPLY AND TEMPERATURE  
Figure 29. SIGNAL-TO-NOISE RATIO vs  
AVDD3V SUPPLY AND TEMPERATURE  
18  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
71  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
72  
Input Frequency = 185 MHz  
Input Frequency = 185 MHz  
70.5  
70  
71.5  
71  
69.5  
69  
70.5  
70  
68.5  
68  
69.5  
69  
67.5  
67  
68.5  
68  
66.5  
66  
67.5  
67  
SFDR  
SNR  
SNR  
THD  
65.5  
65  
0.2  
0.5  
0.8  
1.1  
1.4  
1.7  
2
2.3  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Differential Clock Amplitudes (Vpp)  
Input Clock Duty Cycle (%)  
G024  
G025  
Figure 30. PERFORMANCE vs CLOCK AMPLITUDE  
Figure 31. PERFORMANCE vs CLOCK DUTY CYCLE  
0
0
Input Frequency = 185 MHz  
FIN = 185 MHz  
−5  
50−mVPP Signal Superimposed on VCM  
FCM = 10 MHz, 50−mVPP  
SFDR = 76 dBc  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
−20  
Amlpitude(FIN) = −1 dBFS  
Amlpitude(FCM) = −95 dBFS  
Amplitude  
FIN + FCM = −77.2 dBFS  
Amplitude  
−40  
FIN − FCM = −80.9 dBFS  
−60  
−80  
−100  
−120  
0
50  
100  
150  
200  
250  
300  
0
25  
50  
75  
100  
125  
Frequency of Input Common−Mode Signal (MHz)  
Frequency (MHz)  
G026  
G027  
Figure 32. COMMON-MODE REJECTION RATIO SPECTRUM  
Figure 33. COMMON-MODE REJECTION RATIO vs  
TEST SIGNAL FREQUENCY  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
−65  
−70  
0
FIN = 10 MHz  
PSRR on AVDD Supply  
PSRR on AVDD3V Supply  
FPSRR = 2 MHz, 50−mVPP  
Amlpitude(FIN) = −1 dBFS  
Amlpitude(FPSRR) = −87 dBFS  
Amplitude  
FIN + FPSRR = −60.6 dBFS  
Amplitude  
−20  
−40  
FIN − FPSRR = −60 dBFS  
−60  
−80  
−100  
−120  
Input Frequency = 10 MHz  
50−mVPP Signal Superimposed on Supply  
0
50  
100  
150  
200  
250  
300  
0
10  
20  
30  
40  
50  
Frequency of Signal on Supply (MHz)  
Frequency (MHz)  
G028  
G029  
Figure 34. POWER-SUPPLY REJECTION RATIO  
SPECTRUM FOR AVDD  
Figure 35. POWER-SUPPLY REJECTION RATIO vs  
TEST SIGNAL FREQUENCY  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
800  
700  
600  
500  
400  
300  
200  
100  
0
Input Frequency = 185 MHz  
AVDD Power  
AVDD3V Power  
DRVDD Power  
Input Frequency = 185 MHz  
1
26  
51  
76 101 126 151 176 201 226 250  
Sampling Speed (MSPS)  
1
26  
51  
76 101 126 151 176 201 226 250  
Sampling Speed (MSPS)  
G030  
G031  
Figure 36. TOTAL POWER vs SAMPLING FREQUENCY  
Figure 37. POWER BREAKUP vs SAMPLING FREQUENCY  
20  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
250  
87  
83  
70  
80  
75  
240  
230  
220  
210  
200  
190  
87  
87  
91  
91  
87  
87  
87  
83  
70  
80  
75  
95  
91  
87  
87  
87  
75  
83 80  
70  
91  
87  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
70  
75  
80  
85  
90  
95  
Figure 38. SPURIOUS-FREE DYNAMIC RANGE  
(0-dB Gain)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
250  
90  
88  
86  
79  
82  
84  
76  
240  
230  
220  
210  
200  
190  
90  
88 86  
84  
82  
79  
76  
90  
84  
88  
86  
82  
79  
76  
50  
74  
100  
76  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
78  
80  
82  
84  
86  
88  
90  
Figure 39. SPURIOUS-FREE DYNAMIC RANGE  
(6-dB Gain)  
22  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
250  
66.5  
68.5  
67.5  
69.8  
69.4  
70.2  
68  
69  
67  
66  
240  
230  
220  
210  
200  
190  
70.6  
65.5  
69.4  
68.5  
66.5  
69.8  
67.5  
70.2  
66  
69  
68  
67  
69.8  
69.4  
68.5  
69  
67.5  
66.5  
70.2  
66  
67  
68  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
66  
67  
68  
69  
70  
Figure 40. SIGNAL-TO-NOISE RATIO  
(0-dB Gain)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
250  
64.5  
64.1  
63.7  
240  
230  
220  
210  
200  
190  
63.3  
64.9  
62.  
62.9  
64.7  
64.5  
64.1  
63.7  
64.9  
63.3  
64.7  
62.9  
64.7  
64.5  
63.3  
62.9  
64.613.7  
64.5  
62.5  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
62.5  
63  
63.5  
64  
64.5  
Figure 41. SIGNAL-TO-NOISE RATIO  
(6-dB Gain)  
24  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
DEVICE CONFIGURATION  
The ADS4449 can be configured with a serial programming interface (SPI), as described in the Serial Interface  
section. In addition, the device has control pins that control power-down.  
SERIAL INTERFACE  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface input data), and SDOUT (serial interface  
readback data) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data (SDATA) are  
latched at every SCLK falling edge when SEN is active (low). Serial data are loaded into the register at every  
16th SCLK falling edge when SEN is low. When the word length exceeds a multiple of 16 bits, the excess bits  
are ignored. Data can be loaded in multiples of 16-bit words within a single active SEN pulse. The first eight bits  
form the register address and the remaining eight bits are the register data. The interface can function with SCLK  
frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50% SCLK duty cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to the default values. This initialization can be  
accomplished in one of two ways:  
1. Either through a hardware reset by applying a high pulse on the RESET pin (of widths greater than 10 ns),  
as shown in Figure 42; or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D1 in register 00h) high.  
This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In  
this case, the RESET pin is kept low.  
Register Address  
Register Data  
SDATA  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
tSLOADS  
tSLOADH  
SEN  
RESET  
Figure 42. Serial Interface Timing  
Table 3. Timing Characteristics for Figure 42  
PARAMETER  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDI setup time  
MIN  
> dc  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
)
20  
25  
ns  
25  
ns  
tDH  
SDI hold time  
25  
ns  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: ADS4449  
 
 
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back, as shown in  
Figure 43. This readback mode can be useful as a diagnostic check to verify the serial interface communication  
between the external controller and ADC.  
1. Set the READOUT register bit to '1'. This setting disables any further writes to the registers except register  
address 00h.  
2. Initiate a serial interface cycle specifying the address of the register (A[7:0]) whose content must be read.  
3. The device outputs the contents (D[7:0]) of the selected register on the SDOUT pin (pin G10).  
4. The external controller can latch the contents at the SCLK falling edge.  
5. To enable register writes, reset the READOUT register bit to '0'.  
Note that the contents of register 00h cannot be read back because the register contains RESET and READOUT  
bits. When the READOUT bit is disabled, the SDOUT pin is in a high-impedance state. If serial readout is not  
used, the SDOUT pin must not be connected (must float).  
Register Address A[7:0] = 00h  
A4 A2  
A5 A3  
Register Data D[7:0] = 01h  
D4 D2  
D5 D3  
SDATA  
A7  
A6  
A1  
A0  
D7  
D6  
D1  
D0  
SCLK  
SEN  
The SDOUT pin is in a high-impedance state (READOUT = 0).  
SDOUT  
a) Enable serial readout (READOUT = 1)  
Register Address A[7:0] = 45h  
A4 A2  
A5 A3  
Register Data D[7:0] = XX (don’t care)  
D4 D2 D1  
D6 D5 D3  
SDATA  
SCLK  
A7  
A6  
A1  
A0  
D7  
D0  
SEN  
0
0
0
0
0
1
0
0
SDOUT  
The SDOUT pin functions as a serial readout (READOUT = 1).  
b) Read contents of Register 45h. This register is initialized with 04h.  
Figure 43. Serial Readout Timing Diagram  
SDOUT comes out at the SCLK rising edge with an approximate delay (tSD_DELAY) of 8 ns, as shown in Figure 44.  
SCLK  
tSD_DELAY  
SDOUT  
Figure 44. SDOUT Delay Timing  
26  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
 
 
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
SERIAL INTERFACE REGISTERS  
Table 4 summarizes the ADS4449 registers.  
Table 4. Register Map  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
RESET  
0
D0  
READOUT  
0
00  
01  
0
0
0
0
0
0
LVDS SWING  
DIGITAL GAIN  
BYPASS CH B  
25  
2B  
31  
37  
3D  
DIGITAL GAIN CH B  
TEST PATTERN CH B  
TEST PATTERN CH A  
TEST PATTERN CH D  
TEST PATTERN CH C  
0
DIGITAL GAIN  
BYPASS CH A  
DIGITAL GAIN CH A  
DIGITAL GAIN CH D  
DIGITAL GAIN CH C  
DIGITAL GAIN  
BYPASS CH D  
DIGITAL GAIN  
BYPASS CH C  
OFFSET CORR  
0
0
0
0
0
0
0
0
EN1  
3F  
40  
42  
CUSTOM PATTERN[13:8]  
CUSTOM PATTERN[7:0]  
0
0
0
0
0
0
0
0
0
0
0
DIGITAL ENABLE  
SEL OVR  
0
0
0
0
GLOBAL POWER  
DOWN  
45  
A9  
AC  
C3  
C4  
DIS OVR ON LSB  
0
CONFIG PDN PIN  
CLOCKOUT DELAY PROG CH AB  
ALWAYS WRITE  
1
CLOCKOUT DELAY PROG CH CD  
FAST OVR THRESH PROG  
0
0
EN FAST OVR  
THRESH  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OFFSET CORR  
EN2  
CF  
D6  
D7  
F1  
58  
59  
70  
71  
88  
89  
A0  
0
ALWAYS WRITE  
1
0
ALWAYS WRITE  
1
ALWAYS WRITE  
1
0
0
0
HIGH FREQ  
MODE  
0
0
0
0
0
0
0
0
ENABLE LVDS SWING PROG  
HIGH SNR MODE  
CH A  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ALWAYS WRITE  
1
0
HIGH SNR MODE  
CH B  
0
ALWAYS WRITE  
1
0
HIGH SNR MODE  
CH D  
0
ALWAYS WRITE  
1
0
HIGH SNR MODE  
CH C  
0
ALWAYS WRITE  
1
A1  
FE  
0
0
0
0
0
0
0
0
0
0
0
PDN CH D  
PDN CH C  
PDN CH A  
PDN CH B  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: ADS4449  
 
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
DESCRIPTION OF SERIAL REGISTERS  
Register Address 00h (Default = 00h)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
RESET  
READOUT  
Bits D[7:2]  
Bit D1  
Always write '0'  
RESET: Software reset applied  
This bit resets all internal registers to the default values and self-clears to '0'.  
READOUT: Serial readout  
Bit D0  
This bit sets the serial readout of the registers.  
0 = Serial readout of registers disabled; the SDOUT pin is placed in a high-impedance  
state. (default)  
1 = Serial readout enabled; the SDOUT pin functions as a serial data readout with  
CMOS logic levels running from the DRVDD supply.  
Register Address 01h (Default = 00h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
0
LVDS SWING  
Bits D[7:2]  
LVDS SWING: LVDS swing programmability  
These bits program the LVDS swing only after the ENABLE LVDS SWING PROG bits  
are set to '11'.  
000000 = Default LVDS swing; ±350 mV with an external 100-Ω termination (default)  
011011 = ±420-mV LVDS swing with an external 100-Ω termination  
110010 = ±470-mV LVDS swing with an external 100-Ω termination  
010100 = ±560-mV LVDS swing with an external 100-Ω termination  
001111 = ±160-mV LVDS swing with an external 100-Ω termination  
Bits D[1:0]  
Always write '0'  
28  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Register Address 25h (Default = 00h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
TEST PATTERN CH B  
D0  
DIGITAL GAIN CH B  
DIGITAL GAIN BYPASS CH B  
Bits D[7:4]  
DIGITAL GAIN CH B: Channel B digital gain programmability  
These bits set the digital gain programmability from 0 dB to 6 dB in 0.5-dB steps for  
channel B. Set the DIGITAL ENABLE bit to '1' beforehand to enable this feature.  
0000 = 0-dB gain (default)  
0001 = 0.5-dB gain  
0010 = 1-dB gain  
0011 = 1.5-dB gain  
0100 = 2-dB gain  
0101 = 2.5-dB gain  
0110 = 3-dB gain  
0111 = 3.5-dB gain  
1000 = 4-dB gain  
1001 = 4.5-dB gain  
1010 = 5-dB gain  
1011 = 5.5-dB gain  
1100 = 6-dB gain  
Bit D3  
DIGITAL GAIN BYPASS CH B: Channel B digital gain bypass  
0 = Normal operation (default)  
1 = Digital gain feature for channel B is bypassed  
Bits D[2:0]  
TEST PATTERN CH B: Channel B test pattern programmability  
These bits program the test pattern for channel B.  
000 = Normal operation (default)  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern  
Output data ([D:0]) are an alternating sequence of 01010101010101 and  
10101010101010.  
100 = Outputs digital ramp  
Output data increments by one 14-bit LSB every clock cycle from code 0 to code  
16383  
101 = Outputs custom pattern  
To program a test pattern, use the CUSTOM PATTERN D[13:0] bits of registers 3Fh  
and 40h.  
110 = Unused  
111 = Unused  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
Register Address 2Bh (Default = 00h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
TEST PATTERN CH A  
D0  
DIGITAL GAIN CH A  
DIGITAL GAIN BYPASS CH A  
Bits D[7:4]  
DIGITAL GAIN CH A: Channel A digital gain programmability  
These bits set the digital gain programmability from 0 dB to 6 dB in 0.5-dB steps for  
channel A. Set the DIGITAL ENABLE bit to '1' beforehand to enable this feature.  
0000 = 0-dB gain (default)  
0001 = 0.5-dB gain  
0010 = 1-dB gain  
0011 = 1.5-dB gain  
0100 = 2-dB gain  
0101 = 2.5-dB gain  
0110 = 3-dB gain  
0111 = 3.5-dB gain  
1000 = 4-dB gain  
1001 = 4.5-dB gain  
1010 = 5-dB gain  
1011 = 5.5-dB gain  
1100 = 6-dB gain  
Bit D3  
DIGITAL GAIN BYPASS CH A: Channel A digital gain bypass  
0 = Normal operation (default)  
1 = Digital gain feature for channel A is bypassed  
Bits D[2:0]  
TEST PATTERN CH A: Channel A test pattern programmability  
These bits program the test pattern for channel A.  
000 = Normal operation (default)  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern  
Output data ([D:0]) are an alternating sequence of 01010101010101 and  
10101010101010.  
100 = Outputs digital ramp  
Output data increments by one 14-bit LSB every clock cycle from code 0 to code  
16383  
101 = Outputs custom pattern  
To program a test pattern, use the CUSTOM PATTERN D[13:0] bits of registers 3Fh  
and 40h.  
110 = Unused  
111 = Unused  
30  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Register Address 31h (Default = 00h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
TEST PATTERN CH D  
D0  
DIGITAL GAIN CH D  
DIGITAL GAIN BYPASS CH D  
Bits D[7:4]  
DIGITAL GAIN CH D: Channel D digital gain programmability  
These bits set the digital gain programmability from 0 dB to 6 dB in 0.5-dB steps for  
channel D. Set the DIGITAL ENABLE bit to '1' beforehand to enable this feature.  
0000 = 0-dB gain (default)  
0001 = 0.5-dB gain  
0010 = 1-dB gain  
0011 = 1.5-dB gain  
0100 = 2-dB gain  
0101 = 2.5-dB gain  
0110 = 3-dB gain  
0111 = 3.5-dB gain  
1000 = 4-dB gain  
1001 = 4.5-dB gain  
1010 = 5-dB gain  
1011 = 5.5-dB gain  
1100 = 6-dB gain  
Bit D3  
DIGITAL GAIN BYPASS CH D: Channel D digital gain bypass  
0 = Normal operation (default)  
1 = Digital gain feature for channel A is bypassed  
Bits D[2:0]  
TEST PATTERN CH D: Channel D test pattern programmability  
These bits program the test pattern for channel D.  
000 = Normal operation (default)  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern  
Output data ([D:0]) are an alternating sequence of 01010101010101 and  
10101010101010.  
100 = Outputs digital ramp  
Output data increments by one 14-bit LSB every clock cycle from code 0 to code  
16383  
101 = Outputs custom pattern  
To program test pattern, use the CUSTOM PATTERN D[13:0] bits of registers 3Fh and  
40h.  
110 = Unused  
111 = Unused  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
Register Address 37h (Default = 00h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
TEST PATTERN CH C  
D0  
DIGITAL GAIN CH C  
DIGITAL GAIN BYPASS CH C  
Bits D[7:4]  
DIGITAL GAIN CH C: Channel C digital gain programmability  
These bits set the digital gain programmability from 0 dB to 6 dB in 0.5-dB steps for  
channel C. Set the DIGITAL ENABLE bit to '1' beforehand to enable this feature.  
0000 = 0-dB gain (default)  
0001 = 0.5-dB gain  
0010 = 1-dB gain  
0011 = 1.5-dB gain  
0100 = 2-dB gain  
0101 = 2.5-dB gain  
0110 = 3-dB gain  
0111 = 3.5-dB gain  
1000 = 4-dB gain  
1001 = 4.5-dB gain  
1010 = 5-dB gain  
1011 = 5.5-dB gain  
1100 = 6-dB gain  
Bit D3  
DIGITAL GAIN BYPASS CH C: Channel C digital gain bypass  
0 = Normal operation (default)  
1 = Digital gain feature for channel A is bypassed  
Bits D[2:0]  
TEST PATTERN CH C: Channel C test pattern programmability  
These bits program the test pattern for channel C.  
000 = Normal operation (default)  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern  
Output data ([D:0]) are an alternating sequence of 01010101010101 and  
10101010101010.  
100 = Outputs digital ramp  
Output data increments by one 14-bit LSB every clock cycle from code 0 to code  
16383  
101 = Outputs custom pattern  
To program a test pattern, use the CUSTOM PATTERN D[13:0] bits of registers 3Fh  
and 40h.  
110 = Unused  
111 = Unused  
32  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Register Address 3Dh (Default = 00h)  
D7  
0
D6  
0
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
OFFSET CORR EN1  
Bits D[7:6]  
Bit D5  
Always write '0'  
OFFSET CORR EN1: Offset correction setting  
This bit enables the offset correction feature for all four channels after the DIGITAL  
ENABLE bit is set to ‘1,’ correcting mid-code to 8191. In addition, write the OFFSET  
CORR EN2 bit (register CFh, value 08h) for proper operation of the offset correction  
feature.  
0 = Offset correction disabled (default)  
1 = Offset correction enabled  
Bits D[4:0]  
Always write '0'  
Register Address 3Fh (Default = 00h)  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
CUSTOM  
PATTERN D13  
CUSTOM  
PATTERN D12  
CUSTOM  
PATTERN D11  
CUSTOM  
PATTERN D10  
CUSTOM  
PATTERN D9  
CUSTOM  
PATTERN D8  
Bits D[7:6]  
Always write '0'  
CUSTOM PATTERN D[13:8]  
Set the custom pattern using these bits for all four channels.  
Register Address 40h (Default = 00h)  
Bits D[5:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
PATTERN D7  
PATTERN D6  
PATTERN D5  
PATTERN D4  
PATTERN D3  
PATTERN D2  
PATTERN D1  
PATTERN D0  
Bits D[7:0]  
CUSTOM PATTERN D[7:0]  
Set the custom pattern using these bits for all four channels.  
Register Address 42h (Default = 00h)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
0
D1  
0
D0  
0
DIGITAL ENABLE  
Bits D[7:4]  
Bit D3  
Always write '0'  
DIGITAL ENABLE  
1 = Digital gain and offset correction features disabled  
1 = Digital gain and offset correction features enabled  
Bits D[2:0]  
Always write '0'  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
Register Address 45h (Default = 00h)  
D7  
0
D6  
0
D5  
0
D4  
D3  
D2  
D1  
0
D0  
DIS OVR  
ON LSB  
SEL OVR  
GLOBAL POWER DOWN  
CONFIG PDN PIN  
Bits D[7:5]  
Bit D4  
Always write '0'  
DIS OVR ON LSB  
0 = Effective ADC resolution is 13 bits (the LSB of a 14-bit output is OVR) (default)  
1 = ADC resolution is 14 bits  
Bit D3  
Bit D2  
SEL OVR: OVR selection  
0 = Fast OVR selected (default)  
1 = Normal OVR selected. See the Overrange Indication (OVRxx) section for details.  
GLOBAL POWER DOWN  
0 = Normal operation (default)  
1 = Global power down. All ADC channels, internal references, and output buffers are  
powered down. Wakeup time from this mode is slow (100 µs).  
Bit D1  
Bit D0  
Always write '0'  
CONFIG PDN PIN  
Use this bit to configure PDN pin.  
0 = The PDN pin functions as a standby pin. All channels are put in standby. Wake-up  
time from standby mode is fast (10 µs). (default)  
1 = The PDN pin functions as a global power-down pin. All ADC channels, internal  
references, and output buffers are powered down. Wake-up time from global power  
mode is slow (100 µs).  
Register Address A9h (Default = 00h)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
CLOCKOUT DELAY PROG CH AB  
Bits D[7:4]  
Bits D[6:3]  
Always write '0'  
CLOCKOUT DELAY PROG CH AB  
These bits program the clock out delay for channels A and B, see Table 5.  
34  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Register Address ACh (Default = 00h)  
D7  
0
D6  
D5  
D4  
D3  
D2  
0
D1  
0
D0  
ALWAYS  
WRITE 1  
CLOCKOUT DELAY PROG CH CD  
Bit D7  
Always write '0'  
CLOCKOUT DELAY PROG CH CD  
Bits D[7:4]  
These bits program the clock out delay for channels C and D, as shown in Table 5.  
Bits D[2:1]  
Bit D[0]  
Always write '0'  
Always write '1'  
This bit is set to 0 by default. User must set it to 1 after reset or power-up.  
Table 5. Clock Out Delay Programmability for All Channels  
CLOCKOUT DELAY PROG CHxx  
DELAY (ps)  
0 (default)  
–30  
0000 (default)  
0001  
0010  
70  
0011  
30  
0100  
–150  
–180  
–70  
0101  
0110  
0111  
–110  
270  
1000  
1001  
230  
1010  
340  
1011  
300  
1100  
140  
1101  
110  
1110  
200  
1111  
170  
Register Address C3h (Default = 00h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FAST OVR THRESH PROG  
Bits D[7:0]  
FAST OVR THRESH PROG  
The ADS4449 has a fast OVR mode that indicates an overload condition at the ADC  
input. The input voltage level at which the overload is detected is referred to as the  
threshold and is programmable using the FAST OVR THRESH PROG bits.  
FAST OVR is triggered seven output clock cycles after the overload condition occurs. To  
enable the FAST OVR programmability, enable the EN FAST OVR THRESH register bit.  
The threshold at which fast OVR is triggered is (full-scale × [the decimal value of the  
FAST OVR THRESH PROG bits] / 255).  
After reset, when EN FAST OVR THRESH PROG is set, the default value of the FAST  
OVR THRESH PROG bits is 230 (decimal).  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: ADS4449  
 
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
Register Address C4h (Default = 00h)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
EN FAST OVR THRESH  
Bit D7  
EN FAST OVR THRESH  
This bit enables the ADS4449 to be programmed to select the fast OVR threshold.  
Bits D[6:0]  
Always write '0'  
Register Address CFh (Default = 00h)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
0
D1  
0
D0  
0
OFFSET CORR EN2  
Bits D[7:4]  
Bit D3  
Always write '0'  
OFFSET CORR EN2  
This bit must be set to ‘1’ when the OFFSET CORR EN1 bit is selected.  
Bits D[2:0]  
Always write '0'  
Register Address D6h (Default = 00h)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
ALWAYS  
WRITE 1  
Bits D[7]  
Always write '1'  
This bit is set to 0 by default. User must set it to 1 after reset or power-up.  
Bits D[6:0]  
Always write '0'  
Register Address D7h (Default = 00h)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
0
D0  
0
ALWAYS  
WRITE 1  
ALWAYS WRITE 1  
Bits D[7:4], Bits  
D[1:0]  
Always write '0'  
Bits D[3]  
Always write '1'  
This bit is set to 0 by default. User must set it to 1 after reset or power-up.  
36  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Register Address F1h (Default = 00h)  
D7  
0
D6  
0
D5  
D4  
0
D3  
0
D2  
D1  
D0  
HIGH FREQ MODE  
ENABLE LVDS SWING PROG  
Bits D[7:6]  
Bit D5  
Always write '0'  
HIGH FREQ MODE  
0 = Default (default)  
1 = Use for input frequencies > 125 MHz  
Bits D[4:3]  
Bits D[2:0]  
Always write '0'  
ENABLE LVDS SWING PROG  
This bit enables the LVDS swing control with the LVDS SWING bits.  
00 = LVDS swing control disabled (default)  
01 = Do not use  
10 = Do not use  
11 = LVDS swing control enabled  
Register Address 58h (Default = 00h)  
D7  
0
D6  
0
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
HIGH SNR  
MODE CH A  
Bits D[7:6], Bits  
D[4:0]  
Always write '0'  
Bit D5  
HIGH SNR MODE CH A  
See the Using High SNR MODE Register Settings section.  
Register Address 59h (Default = 00h)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
ALWAYS  
WRITE 1  
Bits D[7]  
Always write '1'  
This bit is set to 0 by default. User must set it to 1 after reset or power-up.  
Bits D[6:0]  
Always write '0'  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
Register Address 70h (Default = 00h)  
D7  
0
D6  
0
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
HIGH SNR  
MODE CH B  
Bits D[7:6], Bits  
D[4:0]  
Always write '0'  
Bit D5  
HIGH SNR MODE CH B  
See the Using High SNR MODE Register Settings section.  
Register Address 71h (Default = 00h)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
ALWAYS  
WRITE 1  
Bits D[7]  
Always write '1'  
This bit is set to 0 by default. User must set it to 1 after reset or power-up.  
Bits D[6:0]  
Always write '0'  
Register Address 88h (Default = 00h)  
D7  
0
D6  
0
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
HIGH SNR  
MODE CH D  
Bits D[7:6], Bits  
D[4:0]  
Always write '0'  
Bit D5  
HIGH SNR MODE CH D  
See the Using High SNR MODE Register Settings section.  
Register Address 89h (Default = 00h)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
ALWAYS  
WRITE 1  
Bits D[7]  
Always write '1'  
This bit is set to 0 by default. User must set it to 1 after reset or power-up.  
Bits D[6:0]  
Always write '0'  
38  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Register Address A0h (Default = 00h)  
D7  
0
D6  
0
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
HIGH SNR  
MODE CH C  
Bits D[7:6], Bits  
D[4:0]  
Always write '0'  
Bit D5  
HIGH SNR MODE CH C  
See the Using High SNR MODE Register Settings section.  
Register Address A1h (Default = 00h)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
ALWAYS  
WRITE 1  
Bits D[7]  
Always write '1'  
This bit is set to 0 by default. User must set it to 1 after reset or power-up.  
Bits D[6:0]  
Always write '0'  
Register Address FEh (Default = 00h)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PDN CH D  
PDN CH C  
PDN CH A  
PDN CH B  
Bits D[7:4]  
Bit D3  
Always write '0'  
PDN CH D: Power-down channel D  
Channel D is powered down.  
Bit D2  
Bit D1  
Bit D0  
PDN CH C: Power-down channel C  
Channel C is powered down.  
PDN CH B: Power-down channel B  
Channel B is powered down.  
PDN CH A: Power-down channel A  
Channel A is powered down.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS4449 is a quad-channel, 14-bit, analog-to-digital converter (ADC) with sampling rates up to  
250 MSPS. At every falling edge of the input clock, the analog input signal for each channel is sampled  
simultaneously. The sampled signal in each channel is converted by a pipeline of low-resolution stages. In each  
stage, the sampled-and-held signal is converted by a high-speed, low-resolution, flash sub-ADC. The difference  
(residue) between the stage input and quantized equivalent is gained and propagates to the next stage. At every  
clock, each subsequent stage resolves the sampled input with greater accuracy. The digital outputs from all  
stages are combined in a digital correction logic block and are digitally processed to create the final code, after a  
data latency of 10 clock cycles. The digital output is available in a double data rate (DDR) low-voltage differential  
signaling (LVDS) interface and is coded in binary twos complement format.  
ENABLING 14-BIT RESOLUTION  
By default after reset, the ADS4449 outputs 11-bit data on the Dxx13P, Dxx13M and Dxx3P, Dxx3M pins and  
OVR information on the Dxx0P, Dxx0M pins. When the ALWAYS WRITE 1 bits are set, the ADC outputs 13-bit  
data on the Dxx13P, Dxx13M and Dxx1P, Dxx1M pins and OVR information on the Dxx0P, Dxx0M pins. To  
enable 14-bit resolution, the DIS OVR ON LSB register bit must be set to '1' as indicated in Table 6.  
Table 6. ADC configuration  
DATA ON ADC PINS  
ALWAYS WRITE 1 = 1  
DIS OVR ON LSB = 1  
ADC PIN NAMES  
AFTER RESET  
ALWAYS WRITE 1 = 1  
Dxx13  
D13  
D13  
D13  
Dxx3  
Dxx2  
Dxx1  
Dxx0  
D3  
D3  
D3  
D2  
D1  
D0  
Logic 0  
Logic 1  
OVR  
D2  
D1  
OVR  
11-bit data (D[13:3]) and OVR come  
on ADC output pins  
13-bit data (D[13:1]) and OVR come  
on ADC output pins  
14-bit data comes on ADC output  
pins  
Comments  
ANALOG INPUT  
The analog input consists of a switched-capacitor-based differential sample-and-hold architecture. This  
differential topology results in very good ac performance even for high input frequencies at high sampling rates.  
The INP and INM pins must be externally biased around a common-mode voltage of 1.15 V, available on the  
VCM pin. For a full-scale differential input, each input pin (INP, INM) must swing symmetrically between VCM +  
0.5 V and VCM – 0.5 V, resulting in a 2-VPP differential input swing.  
The input sampling circuit has a high 3-dB bandwidth that extends up to 500 MHz when a 50-Ω source drives the  
ADC analog inputs.  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This configuration improves the  
common-mode noise immunity and even-order harmonic rejection. A 5-Ω to 15-Ω resistor in series with each  
input pin is recommended to damp out ringing caused by package parasitics.  
Spurious-free dynamic range (SFDR) performance can be limited because of several reasons (such as the effect  
of sampling glitches, sampling circuit nonlinearity, and quantizer nonlinearity that follows the sampling circuit).  
Depending on the input frequency, sampling rate, and input amplitude, one of these metrics plays a dominant  
part in limiting performance. At very high input frequencies, SFDR is determined largely by the device sampling  
circuit nonlinearity. At low input amplitudes, the quantizer nonlinearity typically limits performance.  
40  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
 
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Glitches are caused by opening and closing the sampling switches. The driving circuit should present a low  
source impedance to absorb these glitches, otherwise these glitches may limit performance. A low impedance  
path between the analog input pins and VCM is required from the common-mode switching currents perspective  
as well. This impedance can be achieved by using two resistors from each input terminated to the common-mode  
voltage (VCM).  
The ADS4449 includes an internal R-C filter from each input to ground. The purpose of this filter is to absorb the  
sampling glitches inside the device itself. The R-C component values are also optimized to support high input  
bandwidth (up to 500 MHz). However, using an external R-LC-R filter (refer to Figure 48, Figure 49, Figure 50,  
Figure 51, and Figure 55) improves glitch filtering, thus further resulting in better performance.  
In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency  
range and matched source impedance. In doing so, the ADC input impedance must be considered. Figure 45,  
Figure 46, and Figure 47 show the impedance (ZIN = RIN || CIN) at the ADC input pins.  
XINP(1)  
(2)  
RIN  
CIN  
ZIN  
XINM(1)  
(1) X = A, B, C, or D.  
(2) ZIN = RIN || (1 / jωCIN).  
Figure 45. ADC Equivalent Input Impedance  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
6
5
4
3
2
1
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (MHz)  
G037  
Frequency (MHz)  
G038  
Figure 46. ADC Analog Input Resistance (RIN) vs  
Frequency  
Figure 47. ADC Analog Input Capacitance (CIN) vs  
Frequency  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: ADS4449  
 
 
 
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
Driving Circuit  
Two example driving circuits with a 50-Ω source impedance are shown in Figure 48 and Figure 49. The driving  
circuit in Figure 48 is optimized for input frequencies in the second Nyquist zone (centered at 185 MHz), whereas  
the circuit in Figure 49 is optimized for input frequencies in third Nyquist zone (centered at 310 MHz).  
Note that both drive circuits are terminated by 50 Ω near the ADC side. This termination is accomplished with a  
25-Ω resistor from each input to the 1.15-V common-mode (VCM) from the device. This architecture allows the  
analog inputs to be biased around the required common-mode voltage.  
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order  
harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch and  
good performance is obtained for high-frequency input signals.  
T1  
T2  
0.1 mF  
50 W  
10 W  
INP  
25 W  
25 W  
25 W  
Band-Pass Filter  
Centered at  
f0 = 185 MHz  
RIN  
82 nH  
CIN  
10 pF  
0.1 mF  
BW = 125 MHz  
25 W  
INM  
10 W  
0.1 mF  
1:1  
1:1  
VCM  
Device  
Figure 48. Driving Circuit for a 50-Ω Source Impedance and Input Frequencies  
in the Second Nyquist Zone  
T1  
T2  
0.1 mF  
50 W  
10 W  
INP  
25 W  
25 W  
25 W  
Band-Pass Filter  
Centered at  
f0 = 310 MHz  
RIN  
27 nH  
CIN  
10 pF  
0.1 mF  
BW = 125 MHz  
25 W  
INM  
10 W  
0.1 mF  
1:1  
1:1  
VCM  
Device  
Figure 49. Driving Circuit for a 50-Ω Source Impedance and Input Frequencies  
in the Third Nyquist Zone  
42  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
 
 
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
TI recommends terminating the drive circuit by a 50-Ω (or lower) impedance near the ADC for best performance.  
However, in some applications higher impedances be required to terminate the drive circuit. Two example driving  
circuits with 100-Ω differential termination are shown in Figure 50 and Figure 51. In these example circuits, the  
1:2 transformer (T1) is used to transform the 50-Ω source impedance into a differential 100 Ω at the input of the  
band-pass filter. In Figure 50, the parallel combination of two 68-Ω resistors and one 120-nH inductor and two  
100-Ω resistors is used (100 Ω is the effective impedance in pass-band) for better performance.  
T1  
0.1 mF  
T2  
50 W  
10 W  
INP  
68 W  
25 W  
100 W  
100 W  
Band-Pass Filter  
Centered at  
f0 = 185 MHz  
120 nH  
RIN  
82 nH  
CIN  
10 pF  
0.1 mF  
BW = 125 MHz  
68 W  
25 W  
10 W  
INM  
0.1 mF  
1:2  
1:1  
VCM  
Device  
Figure 50. Driving Circuit for a 100-Ω Source Impedance and Input Frequencies  
in the Second Nyquist Zone  
T1  
0.1 mF  
T2  
50 W  
10 W  
INP  
25 W  
50 W  
50 W  
Band-Pass Filter  
Centered at  
f0 = 310 MHz  
RIN  
27 nH  
CIN  
10 pF  
0.1 mF  
BW = 125 MHz  
25 W  
10 W  
INM  
0.1 mF  
1:2  
1:1  
VCM  
Device  
Figure 51. Driving Circuit for a 100-Ω Source Impedance and Input Frequencies  
in the Third Nyquist Zone  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: ADS4449  
 
 
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
Using High SNR Mode Register Settings  
The HIGH SNR MODE register settings can be used to further improve the SNR. However, there is a trade off  
between improved SNR and degraded THD when these settings are used. These settings shut down the internal  
spectrum-cleaning algorithm, resulting in THD performance degradation. Figure 52 and Figure 53 show the effect  
of using HIGH SNR MODE. SNR improves by approximately 1 dB and THD degrades by 3 dB.  
0
0
FIN = 170 MHz  
FIN = 170 MHz  
SFDR = 93 dBc  
SNR = 69.1 dBFS  
SINAD = 69 dBFS  
THD = 89 dBc  
SFDR = 89 dBc  
SNR = 70.1 dBFS  
SINAD = 70 dBFS  
THD = 86 dBc  
−20  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G036  
G037  
Figure 52. FFT (Default) at 170 MHz  
Figure 53. FFT with High SNR Mode at 170 MHz  
Figure 54 shows SNR versus input frequency with and without these settings.  
72  
Default  
HIGH SNR MODE Enable  
71  
70  
69  
68  
67  
66  
65  
64  
40  
90  
140 190 240 290 340 390 440 490  
Input Frequency (MHz)  
G038  
Figure 54. SNR vs Input Frequency with High SNR Mode  
To obtain best performance, TI recommends keeping termination impedance between INP and INM low (for  
instance, at 50 Ω differential). This setting helps absorb the kickback noise component of the spectrum-cleaning  
algorithm. However, when higher termination impedances (such as 100 Ω) are required, shutting down the  
spectrum-cleaning algorithm by using the HIGH SNR MODE register settings can be helpful.  
44  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
 
 
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Input Common Mode  
To ensure a low-noise, common-mode reference, the VCM pin should be filtered with a 0.1-µF, low-inductance  
capacitor connected to ground. The VCM pin is designed to directly bias the ADC inputs (refer to Figure 48 to  
Figure 51).  
Each ADC input pin sinks a common-mode current of approximately 1.5 µA per MSPS of clock frequency. When  
a differential amplifier is used to drive the ADC (with dc-coupling), ensure that the output common-mode of the  
amplifier is within the acceptable input common-mode range of the ADC inputs (VCM ± 25 mV).  
Clock Input  
The ADS4449 clock inputs can be driven differentially with a sine, LVPECL, or LVDS source with little or no  
difference in performance between them. The common-mode voltage of the clock inputs is set to 0.95 V using  
internal 5-kΩ resistors, as shown in Figure 55. This setting allows the use of transformer-coupled drive circuits for  
sine-wave clock or ac-coupling for LVPECL, LVDS, and LVCMOS clock sources (see Figure 56, Figure 57, and  
Figure 58).  
For best performance, the clock inputs must be driven differentially, thereby reducing susceptibility to common-  
mode noise. TI recommends keeping the differential voltage between clock inputs less than 1.8 VPP to obtain  
best performance. A clock source with very low jitter is recommended for high input frequency sampling. Band-  
pass filtering of the clock source can help reduce the effects of jitter. With a non-50% duty cycle clock input,  
performance does not change.  
Clock Buffer  
LPKG  
~ 2 nH  
20 Ω  
CLKP  
CBOND  
~ 1 pF  
CEQ  
CEQ  
5 kΩ  
R
ESR  
~ 100 Ω  
0.95V  
5 kΩ  
L
PKG  
~ 2 nH  
20 Ω  
CLKM  
CBOND  
~ 1 pF  
R
ESR  
~ 100 Ω  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
Figure 55. Internal Clock Buffer  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: ADS4449  
 
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
0.1 mF  
ZO  
0.1 mF  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
0.1 mF  
Typical LVDS  
Clock Input  
100 W  
0.1 mF  
ZO  
CLKM  
CLKM  
(1) RT is the termination resistor (optional).  
Figure 58. LVDS Clock Driving Circuit  
Figure 56. Differential Sine-Wave Clock Driving  
Circuit  
0.1 mF  
CLKP  
0.1 mF  
ZO  
CLKP  
CMOS  
Clock Input  
150 W  
VCM  
Typical LVPECL  
Clock Input  
100 W  
0.1 mF  
0.1 mF  
CLKM  
ZO  
CLKM  
150 W  
Figure 59. Typical LVCMOS Clock Driving Circuit  
Figure 57. LVPECL Clock Driving Circuit  
46  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
Overrange Indication (OVRxx)  
After reset, all serial interface register ALWAYS WRITE 1 bits must be set to '1'. Afterwards, 13-bit data are  
output on the Dxx13P, Dxx13M to Dxx1P, Dxx1M pins and overrange information is output on the Dxx0P and  
Dxx0M pins (where xx = channels A and B or channels C and D).  
When the DIS OVR ON LSB bit is set to '1', 14-bit data are output on the Dxx13P, Dxx13M to Dxx0P, Dxx0M  
pins without overrange information on the LSB bits.  
The OVR timing diagram (13-bit data with OVR) is shown in Figure 60. In 14-bit mode, OVR is disabled by  
setting the DIS OVR ON LSB bit to '1', as shown in Figure 61.  
Register bits ALWAYS WRITE 1=1 & DIS OVR ON LSB=0  
CLKOUTM  
CLKOUTP  
DA[13:1]P/M  
DB[13:1]P/M  
13-BIT OUTPUT  
DA[13:1]P/M  
OVR A  
DB[13:1]P/M  
OVR B  
DA[13:1]P/M  
OVR A  
DB[13:1]P/M  
OVR B  
OVER-RANGE  
INDICATOR  
DAB0P, DAB0M  
Sample N  
Sample N+1  
Figure 60. 13-Bit Data With OVR  
Register bits ALWAYS WRITE 1=1 & DIS OVR ON LSB=1  
CLKOUTM  
CLKOUTP  
DA[13:0]P/M  
DB[13:0]P/M  
14-BIT OUTPUT  
DA[13:0]P/M  
DB[13:0]P/M  
DA[13:0]P/M  
DB[13:0]P/M  
Sample N  
Sample N+1  
Figure 61. 14-Bit Mode  
Normal overrange indication (OVR) shows the event of the ADS4449 digital output being saturated when the  
input signal exceeds the ADC full-scale range. Normal OVR has the same latency as digital output data.  
However, an overrange event can be indicated earlier (than normal latency) by using the fast OVR mode. The  
fast OVR mode (enabled by default) is triggered seven clock cycles after the overrange condition that occurred at  
the ADC input. The fast OVR thresholds are programmable with the FAST OVR THRESH PROG bits (refer to  
Table 4, register address C3h). At any time, either normal or fast OVR mode can be programmed on the Dxx0P  
and Dxx0M pins.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: ADS4449  
 
 
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
GAIN FOR SFDR AND SNR TRADE-OFF  
The ADS4449 includes gain settings that can be used to obtain improved SFDR performance. The gain is  
programmable from 0 dB to 6 dB (in 0.5-dB steps) using the DIGITAL GAIN CH X register bits. For each gain  
setting, the analog input full-scale range scales proportionally, as shown in Table 7.  
Table 7. Full-Scale Range Across Gains  
GAIN (dB)  
TYPE  
FULL-SCALE (VPP)  
0
1
2
3
4
5
6
Default after reset  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
2
1.78  
1.59  
1.42  
1.26  
1.12  
1
SFDR improvement is achieved at the expense of SNR; for each gain setting, SNR degrades by approximately  
0.5 dB to 1 dB. SNR degradation is diminished at high input frequencies. As a result, fine gain is very useful at  
high input frequencies because SFDR improvement is significant with marginal degradation in SNR. Therefore,  
fine gain can be used to trade-off between SFDR and SNR.  
After a reset, the gain function is disabled. To use fine gain:  
First, program the DIGITAL ENABLE bits to enable digital functions.  
This setting enables the gain for all four channels and places the device in a 0-dB gain mode.  
For other gain settings, program the DIGITAL GAIN CH X register bits.  
DIGITAL OUTPUT INFORMATION  
The ADS4449 provides 14-bit digital data for each channel and two output clocks in LVDS mode. Output pins are  
shared by a pair of channels that are accompanied by one dedicated output clock.  
DDR LVDS Outputs  
In the LVDS interface mode, the data bits and clock are output using LVDS levels. The data bits of two channels  
are multiplexed and output on each LVDS differential pair of pins; see Figure 62 and Figure 63.  
48  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
 
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
CLKOUTxxP,  
CLKOUTxxM  
Dxx0P,  
Dxx0M  
Dxx1P,  
Dxx1M  
Dxx2P,  
Dxx2M  
14-Bit Output  
Dxx12P,  
Dxx12M  
Dxx13P,  
Dxx13M  
Device  
NOTE: xx = channels A and B or C and D.  
Figure 62. DDR LVDS Interface  
CLKOUTABM  
CLKOUTABP  
DAB[13:0]P,  
DAB[13:0]M  
DA[13:0]P,  
DA[13:0]M  
DB[13:0]P,  
DB[13:0]M  
DA[13:0]P,  
DA[13:0]M  
DB[13:0]P,  
DB[13:0]M  
DA[13:0]P,  
DA[13:0]M  
DB[13:0]P,  
DB[13:0]M  
Sample N  
Sample N + 1  
Sample N + 2  
CLKOUTCDM  
CLKOUTCDP  
DCD[13:0]P,  
DCD[13:0]M  
DC[13:0]P,  
DC[13:0]M  
DD[13:0]P,  
DD[13:0]M  
DC[13:0]P,  
DC[13:0]M  
DD[13:0]P,  
DD[13:0]M  
DC[13:0]P,  
DC[13:0]M  
DD[13:0]P,  
DD[13:0]M  
Sample N  
Sample N + 1  
Sample N + 2  
Figure 63. DDR LVDS Interface Timing Diagram  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: ADS4449  
ADS4449  
SBAS603 APRIL 2013  
www.ti.com  
LVDS Output Data and Clock Buffers  
The equivalent circuit of each LVDS output buffer is shown in Figure 64. After reset, the buffer presents an  
output impedance of 100 Ω to match with the external 100-Ω termination.  
The VDIFF voltage is nominally 350 mV, resulting in an output swing of ±350 mV with 100-Ω external termination.  
The VDIFF voltage is programmable using the LVDS SWING register bits (refer to Table 4, register address 01h).  
The buffer output impedance behaves similar to a source-side series termination. By absorbing reflections from  
the receiver end, the source-side termination helps improve signal integrity.  
VDIFF(high)  
High  
Low  
OUTP  
OUTM  
External  
100-W Load  
1.1 V  
ROUT  
VDIFF(low)  
High  
Low  
Figure 64. LVDS Buffer Equivalent Circuit  
Output Data Format  
The ADS4449 transmits data in binary twos complement format. In the event of an input voltage overdrive, the  
digital outputs go to the appropriate full-scale level. For a positive overdrive, the output code is 3FFh. For a  
negative input overdrive, the output code is 400h.  
BOARD DESIGN CONSIDERATIONS  
For evaluation module (EVM) board information, refer to the ADS4449 EVM User's Guide (SLAU455).  
Grounding  
A single ground plane is sufficient to provide good performance, as long as the analog, digital, and clock sections  
of the board are cleanly partitioned. See the ADS4449 EVM User's Guide (SLAU455) for details on layout and  
grounding.  
50  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS4449  
 
ADS4449  
www.ti.com  
SBAS603 APRIL 2013  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth: The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay: The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as an  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (Jitter): The sample-to-sample variation in aperture delay.  
Clock Pulse Width and Duty Cycle: The duty cycle of a clock signal is the ratio of the time the clock signal  
remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate: The maximum sampling rate at which specified operation is given. All parametric  
testing is performed at this sampling rate, unless otherwise noted.  
Minimum Conversion Rate: The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL): An ideal ADC exhibits code transitions at analog input values spaced exactly 1  
LSB apart. DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL): INL is the deviation of the ADC transfer function from a best-fit line determined by a  
least-squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error: Gain error is the deviation of the ADC actual input full-scale range from the ideal value. Gain error is  
given as a percentage of the ideal input full-scale range. Gain error has two components: error as a result of  
reference inaccuracy and error as a result of the channel. Both errors are specified independently as EGREF and  
EGCHAN  
To a first-order approximation, the total gain error of ETOTAL is approximately EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1 – 0.5 / 100) × fS ideal to (1 + 0.5 / 100) × fS ideal  
.
.
.
Offset Error: Offset error is the difference, given in number of LSBs, between the ADC actual average idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift: The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. The coefficient is calculated by dividing the  
maximum deviation of the parameter across the TMIN to TMAX range by the difference of TMAX – TMIN  
.
Signal-to-Noise Ratio (SNR): SNR is the ratio of the power of the fundamental (PS) to the noise floor power  
(PN), excluding the power at dc and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(1)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
Signal-to-Noise and Distortion (SINAD): SINAD is the ratio of the power of the fundamental (PS) to the power  
of all other spectral components, including noise (PN) and distortion (PD) but excluding dc.  
PS  
SINAD = 10Log10  
PN + PD  
(2)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: ADS4449  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
ADS4449IZCR  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
NFBGA  
NFBGA  
NFBGA  
ZCR  
144  
144  
144  
168  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Call TI  
ADS4449I  
ADS4449IZCRR  
ADS4449IZCRT  
ACTIVE  
ZCR  
ZCR  
1000  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
ADS4449I  
ADS4449I  
PREVIEW  
TBD  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

ADS4616A4A

Synchronous DRAM(512K X 16 Bit X 2 Banks)
ADATA

ADS4616A4A-5

Synchronous DRAM(512K X 16 Bit X 2 Banks)
ADATA

ADS4616A4A-6

Synchronous DRAM(512K X 16 Bit X 2 Banks)
ADATA

ADS4616A4A-7

Synchronous DRAM(512K X 16 Bit X 2 Banks)
ADATA

ADS5102

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5102CPFB

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5102CPFBR

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5102CPFBRG4

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48, Analog to Digital Converter
TI

ADS5102EVM

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5102IPFB

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5102IPFBG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48
TI

ADS5102IPFBR

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI