ADS5294IPFPR [TI]

八通道、14 位、80MSPS 模数转换器 (ADC) | PFP | 80 | -40 to 85;
ADS5294IPFPR
型号: ADS5294IPFPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

八通道、14 位、80MSPS 模数转换器 (ADC) | PFP | 80 | -40 to 85

转换器 模数转换器
文件: 总67页 (文件大小:2460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Octal Channel 14-Bit, 80 MSPS High-SNR and Low-Power ADC  
Check for Samples: ADS5294  
1
FEATURES  
DESCRIPTION  
Using CMOS process technology and innovative  
circuit techniques, the ADS5294 is a low power  
80MSPS 8-Channel ADC. Low power consumption,  
high SNR, low SFDR, and consistent overload  
recovery allow users to design high performance  
systems.  
Maximum Sample Rate: 80 MSPS/14-Bit  
High Signal-to-Noise Ratio  
75.5-dBFS SNR at 5 MHz/80 MSPS  
78.2-dBFS SNR at 5 MHz/80 MSPS and  
Decimation Filter Enabled  
The ADS5294 has a digital processing block that  
integrates several commonly used digital functions for  
improving system performance. It includes a digital  
filter module that has built-in decimation filters (with  
low-pass, high-pass and band-pass characteristics).  
The decimation rate is also programmable (by 2, by  
4, or by 8). This makes it useful for narrow-band  
applications, where the filters can be used  
conveniently to improve SNR and knock-off  
harmonics, while at the same time reducing the  
output data rate. The device includes an averaging  
mode where two channels (or even four channels)  
can be averaged to improve SNR.  
84-dBc SFDR at 5 MHz/80 MSPS  
Low Power Consumption  
58 mW/CH at 50 MSPS  
77 mW/CH at 80 MSPS (2 LVDS Wire Per  
Channel)  
Digital Processing Block  
Programmable FIR Decimation Filter and  
Oversampling to Minimize Harmonic  
Interference  
Programmable IIR High Pass Filter to  
Minimize DC Offset  
Serial LVDS outputs reduce the number of interface  
lines and enable the highest system integration. The  
digital data from each channel ADC can be output  
over one or two wires of LVDS output lines  
depending on the ADC sampling rate. This 2-wire  
interface helps keep the serial data rate low, allowing  
low cost FPGA based receivers to be used even at  
high sample rate. The ADC resolution can be  
programmed to 12 bit or 14 bit through registers. A  
very unique feature is the programmable mapping  
module that allows flexible mapping between the  
input channels and the LVDS output pins. This helps  
greatly reduce the complexity of LVDS output routing  
and can potentially result in cheaper system boards  
by reducing the number of PCB layers.  
Programmable Digital Gain: 0 dB to 12 dB  
2- or 4- Channel Averaging  
Flexible Serialized LVDS Outputs:  
One or Two Wires of LVDS Output Lines  
per Channel Depending on ADC Sampling  
Rate  
Programmable Mapping Between ADC  
Input Channels and LVDS Output Pins-  
Eases Board Design  
Variety of Test Patterns to Verify Data  
Capture by FPGA/Receiver  
Internal and External References  
1.8V Operation for Low Power Consumption  
Low-Frequency Noise Suppression  
The device integrates an internal reference trimmed  
to accurately match across devices. Best  
performance is expected to be achieved through the  
internal reference mode. The device can be driven  
with external references as well.  
Recovery From 6-dB Overload within 1 Clock  
Cycle  
Package: 12-mm × 12-mm 80-Pin QFP  
The device is available in a 12 mm × 12 mm 80-pin  
QFP. It is specified over a –40°C to 85°C operating  
temperature range. ADS5294 is completely pin-to-pin  
and register compatible to ADS5292.  
APPLICATIONS  
Ultrasound Imaging  
Communication Applications  
Multi-channel Data Acquisition  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011–2012, Texas Instruments Incorporated  
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Figure 1. Block Diagram  
2
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
PACKAGING/ORDERING INFORMATION(1)  
PRODUCT  
PACKAGE TYPE  
OPERATING  
ORDERING NUMBER  
TRANSPORT MEDIA, QUANTITY  
Tray, 480 (MOQ)  
ADS5294IPFP  
ADS5294  
PFP  
–40°C to 85°C  
ADS5294IPFPR  
ADS5294IPFPT  
Tape and Reel, 1000  
Tape and Reel, 250  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
PIN CONFIGURATION  
80-PIN TQFP WITH THERMAL PAD  
PFP PACKAGE (TOP VIEW)  
80 79 78 77 76  
74  
71 70 69 68 67 66 65 64 63 62 61  
60  
75  
73 72  
IN2p  
IN2n  
1
IN7n  
IN7p  
59  
58  
57  
2
AGND  
3
4
5
6
7
AGND  
IN6n  
Thermal Pad  
IN3p  
IN3n  
56  
55  
54  
53  
IN6p  
AGND  
IN4p  
AGND  
IN5n  
8
IN4n  
IN5p  
9
52  
51  
50  
49  
48  
47  
46  
AVDD  
PD  
AVDD  
RESET  
LGND  
ADS529X  
80 TQFP  
10  
11  
12  
LVDD  
LGND  
LVDD  
OUT8A_n  
OUT1A_p  
OUT1A_n  
13  
14  
15  
16  
17  
OUT8A_p  
OUT8B_n  
OUT8B_p  
OUT7A_n  
OUT7A_p  
OUT1B_p  
OUT1B_n  
45  
44  
OUT2A_p  
OUT2A_n  
43  
42  
41  
18  
19  
20  
OUT2B_p  
OUT2B_n  
OUT7B_n  
OUT7B_p  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
PIN FUNCTIONS  
PIN  
NUMBER  
OF PINS  
DESCRIPTION  
NAME  
AVDD  
AGND  
VCM  
NUMBER  
5
6
1
9, 52, 66, 71, 74  
Analog power supply, 1.8V  
3, 6, 55, 58, 61, 80 Analog ground  
68  
Common-mode output pin, 0.95 V output. This pin can be configured as the external reference  
voltage (1.5 V) input pin as well. See Reg 0x42.  
1
1
2
2
2
CLKN  
CLKP  
73  
72  
Negative differential clock –Tie CLKN to GND for single-ended clock  
Positive differential clock  
IN1P, IN1N  
IN2P, IN2N  
IN3P, IN3N  
78, 79  
1, 2  
4, 5  
Differential input signal, Channel 1  
Differential input signal, Channel 2  
Differential input signal, Channel 3  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
PIN FUNCTIONS (continued)  
PIN  
NUMBER  
OF PINS  
DESCRIPTION  
NAME  
NUMBER  
7, 8  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
IN4P, IN4N  
Differential input signal, Channel 4  
Differential input signal, Channel 5  
Differential input signal, Channel 6  
Differential input signal, Channel 7  
Differential input signal, Channel 8  
Differential LVDS bit clock (7X)  
Differential LVDS frame clock (1X)  
IN5P, IN5N  
53, 54  
56, 57  
59, 60  
62, 63  
31, 32  
29, 30  
13, 14  
15, 16  
17, 18  
19, 20  
21, 22  
23, 24  
25, 26  
27, 28  
35, 36  
33, 34  
39, 40  
37, 38  
43, 44  
41, 42  
47, 48  
45, 46  
10  
IN6P, IN6N  
IN7P, IN7N  
IN8P, IN8N  
LCLKP, LCLKN  
ACLKP, ACLKN  
OUT1A_P, OUT1A_N  
OUT1B_P, OUT1B_N  
OUT2A_P, OUT2A_N  
OUT2B_P, OUT2B_N  
OUT3A_P, OUT3A_N  
OUT3B_P, OUT3B_N  
OUT4A_P, OUT4A_N  
OUT4B_P, OUT4B_N  
OUT5A_P, OUT5A_N  
OUT5B_P, OUT5B_N  
OUT6A_P, OUT6A_N  
OUT6B_P, OUT6B_N  
OUT7A_P, OUT7A_N  
OUT7B_P, OUT7B_N  
OUT8A_P, OUT8A_N  
OUT8B_P, OUT8B_N  
PD  
Differential LVDS data output, wire 1, channel 1  
Differential LVDS data output, wire 2, channel 1  
Differential LVDS data output, wire 1, channel 2  
Differential LVDS data output, wire 2, channel 2  
Differential LVDS data output, wire 1, channel 3  
Differential LVDS data output, wire 2, channel 3  
Differential LVDS data output, wire 1, channel 4  
Differential LVDS data output, wire 2, channel 4  
Differential LVDS data output, wire 1, channel 5  
Differential LVDS data output, wire 2, channel 5  
Differential LVDS data output, wire 1, channel 6  
Differential LVDS data output, wire 2, channel 6  
Differential LVDS data output, wire 1, channel 7  
Differential LVDS data output, wire 2, channel 7  
Differential LVDS data output, wire 1, channel 8  
Differential LVDS data output, wire 2, channel 8  
Power down control input. Active High. The pin has an internal 220-kΩ pulldown resistor.  
Negative reference input/ output  
REFB  
69  
REFT  
70  
Positive reference input/ output  
RESET  
51  
Active HIGH RESET input. The pin has an internal 220-kΩ pulldown resistor.  
Serial clock input. The pin has an internal 220-kΩ pulldown resistor.  
Serial data input. The pin has an internal 220-kΩ pulldown resistor.  
SCLK  
77  
SDATA  
76  
SDOUT  
64  
Serial data readout. This pin is in the high-impedance state after reset. When the <READOUT> bit  
is set, the SDOUT pin becomes active. This is a CMOS digital output running from the AVDD  
supply.  
1
1
CSZ  
75  
65  
Serial enable chip select – active low digital input  
SYNC  
Input signal to synchronize channels and chips when used with reduced output data rates. If it is  
not used, add a 10 KΩ pull-down resistor.  
2
2
1
LVDD  
LGND  
NC  
11, 49  
12, 50  
67  
Digital and I/O power supply, 1.8V  
Digital ground  
No Connection. Must leave floated  
4
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
2.2  
Supply voltage AVDD  
LVDD  
V
V
2.2  
between AGND and LGND  
0.3  
V
at analog inputs  
at digital inputs, CLKN, CLKP(2), RESET, SCLK, SDATA, CSZ  
min[2.2, AVDD+0.3]  
V
Voltage  
min[2.2, AVDD+0.3]  
V
at digital outputs  
Maximum junction temperature (TJ), any condition  
Storage temperature range  
min[2.2,LVDD+0.3]  
V
105  
150  
85  
°C  
°C  
°C  
V
–55  
-40  
Operating temperature range  
Human Body Model (HBM)  
ESD Ratings  
2000  
500  
Charged Device Model (CDM)  
V
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied Exposure to absolute maximum rated conditions for extended periods may degrade device reliability.  
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKN is < |0.3V|. This  
prevents the ESD protection diodes at the clock input pins from turning on.  
THERMAL INFORMATION  
ADS5294  
THERMAL METRIC(1)  
UNITS  
PFP (80 PINS)  
θJA  
Junction-to-ambient thermal resistance  
30.8  
6.3  
8.3  
0.2  
8.2  
0.3  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
UNIT  
RECOMMENDED OPERATING CONDITIONS  
MIN  
TYP  
MAX  
SUPPLIES  
AVDD Analog supply voltage  
LVDD Digital supply voltage  
ANALOG INPUTS/OUTPUTS  
Differential input voltage range  
Input common-mode voltage  
REFT External reference mode  
REFB External reference mode  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
2
0.95±0.05  
1.45  
VPP  
V
V
0.45  
V
VCM  
Common-mode voltage output  
External Reference mode Input  
0.95  
V
1.5  
V
(1)  
Maximum Input Frequency  
2 VPP amplitude  
80  
MHz  
CLOCK INPUTS  
ADC Clock input sample rate  
10  
0.2  
0.2  
0.2  
80  
MSPS  
VPP  
Sine wave, AC-coupled  
LVPECL, AC-coupled  
LVDS, AC-coupled  
1.5  
1.6  
Input Clock amplitude differential (V(CLKP)  
V(CLKN)) peak-to-peak  
-
0.7  
VIL  
VIH  
<0.3  
>1.5  
50%  
V
V
Input Clock CMOS single-ended (V(CLKP)  
Input clock duty cycle  
)
35%  
65%  
DIGITAL OUTPUTS  
1x (sample  
rate)  
ACLKP and ACLKN outputs (LVDS), 1-wire interface  
LCLKP and LCLKN outputs (LVDS), 1-wire interface  
ACLKP and ACLKN outputs (LVDS), 2-wire interface  
LCLKP and LCLKN outputs (LVDS), 2-wire interface  
MSPS  
MSPS  
MSPS  
MSPS  
7x (sample  
rate)  
0.5x (sample  
rate)  
3.5x (sample  
rate)  
Maximum data rate, 2-wire interface  
560  
700  
5
Mbps  
Mbps  
pF  
Maximum data rate, 1-wire interface  
CLOAD Maximum external capacitance from each output pin to LGND  
RLOAD Differential load resistance between the LVDS output pairs  
100  
Ω
TA  
Operating free-air temperature  
-40  
85  
°C  
(1) See the Large and Small Signal Input Bandwidth section.  
6
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
ELECTRICAL CHARACTERISTICS DYNAMIC PERFORMANCE  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, –1 dBFS differential analog input, Sample  
rate = 80 MSPS, ADC is configured in internal reference mode (unless otherwise noted). MIN and MAX values are across the  
full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 1.8 V, LVDD = 1.8 V.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC PERFORMANCE  
fin = 10 MHz, 65 MSPS  
fin = 5 MHz, TA = 25°C  
75.6  
75.5  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
Bits  
72.8  
71.8  
fin = 5 MHz, Across temperatures  
SNR  
Signal-to-noise ratio  
fin = 5 MHz, -60 dBFS Input signal amplitude  
77.3  
78.2  
74.2  
71.7  
74.8  
73.4  
70  
fin = 5 MHz, Decimation by two enabled  
fin = 30 MHz  
fin = 65 MHz  
fin = 5 MHz  
SINAD  
Signal-to-noise and distortion ratio  
fin = 30 MHz  
fin = 65 MHz  
ENOB  
DNL  
INL  
Effective number of bits  
Differential nonlinearity  
Integral nonlinearity  
fin = 5 MHz  
12.2  
±0.5  
2.2  
84  
fin = 5 MHz  
–0.96  
72  
1.7  
5.5  
LSB  
LSB  
dBc  
fin = 5 MHz  
fin = 5 MHz  
SFDR  
THD  
HD2  
HD3  
Spurious-free dynamic range  
Total harmonic distortion  
fin = 30 MHz  
81  
dBc  
fin = 65 MHz  
74  
dBc  
fin = 5 MHz  
70.5  
73  
82  
dBc  
fin = 30 MHz  
80  
dBc  
fin = 65 MHz  
73.5  
93  
dBc  
fin = 5 MHz  
dBc  
Second-harmonic distortion  
Third-harmonic distortion  
fin = 30 MHz  
88  
dBc  
fin = 65 MHz  
85  
dBc  
fin = 5 MHz  
72  
84  
dBc  
fin = 30 MHz  
81  
dBc  
fin = 65 MHz  
74  
dBc  
fin = 5 MHz  
91  
dBc  
Worse spur excluding HD2, HD3  
fin = 30 MHz  
83  
dBc  
fin = 65 MHz  
76  
dBc  
IMD3  
Intermodualtion distortion  
Overload recovery  
fin = 8 MHz at –7 dBFS, f2 = 10 MHz at –7 dBFS  
84.5  
dBc  
Recovery to within 1% of full-scale for 6-dB overload with  
sine wave input  
1
Clock Cycle  
fin = 10 MHz, -1 dBFS signal applied on  
aggressor channel no signal applied on  
victim channel  
far channel  
90  
85  
dBc  
dBc  
XTALK  
Cross-talk  
near channel  
Phase noise  
5 MHz, 1 kHz off carrier  
–138  
dBc/Hz  
ANALOG INPUT / OUTPUT  
Differential input voltage range  
(0-dB gain)  
2
VPP  
RIN  
CIN  
Differential Input Resistance  
Differential Input Capacitance  
Analog input bandwidth  
At DC  
2
3.2  
kΩ  
pF  
At DC  
With a 50 Ωsource impedance  
550  
MHz  
Analog input common-mode current  
(per input pin)  
1.6  
µA/MSPS  
VCM common-mode output voltage  
VCM output current capability  
0.95  
5
V
mA  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS DYNAMIC PERFORMANCE (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, –1 dBFS differential analog input, Sample  
rate = 80 MSPS, ADC is configured in internal reference mode (unless otherwise noted). MIN and MAX values are across the  
full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 1.8 V, LVDD = 1.8 V.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Offset error  
Across devices and across channels within a device  
–15  
15  
mV  
Temperature coefficient of offset error  
<0.01  
mV/ °C  
Gain error due to internal reference  
inaccuracy alone  
E(GREF)  
Across devices  
-2  
2
%FS  
E(GCHAN)  
Gain error of channel alone  
0.5  
%FS  
Temperature coefficient of E(GCHAN)  
<0.01  
%FS/ °C  
POWER SUPPLY  
80 MSPS, 14 Bit, 2-wire LVDS  
50 MSPS, 1-wire LVDS  
77  
58  
52  
33  
mW/CH  
mW/CH  
mW/CH  
mW/CH  
40 MSPS, 14 Bit, 1-wire LVDS  
10 MSPS, 14 Bit, 1-wire LVDS  
Power consumption  
fin = 10 MHz, 80 MSPS, 14 Bit,  
Decimation filter = 2, 1-wire LVDS  
100  
mW/CH  
14 Bit, 80 MSPS  
230  
200  
155  
111  
80  
265  
122  
mA  
mA  
mA  
mA  
mA  
mA  
AVDD  
LVDD  
14 Bit, 65 MSPS  
14 Bit, 40 MSPS  
80 MSPS, 14 Bit, 2-wire LVDS  
50 MSPS, 14 Bit, 1-wire LVDS  
40 MSPS, 14 Bit, 1-wire LVDS  
73  
80 MSPS, 1 Bit, Decimation filter = 2,  
1-wire LVDS  
210  
175  
mA  
Partial Power Down (80 MSPS, 2-wire)  
Complete Power Down  
mW  
mW  
dB  
Power-down power consumption  
60  
Power supply modulation ratio  
Power supply rejection ratio  
Carrier = 5 MHz, f(PSRR) = 10 kHz, 50 mVpp on AVDD  
AC power supply rejection ratio f = 10 kHz  
35  
55  
dB  
8
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
DIGITAL CHARACTERISTICS  
The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD = 1.8V, LVDD = 1.8V  
PARAMETERS  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS/OUTPUTS  
All digital inputs support 1.8-V and 3.3-V CMOS  
logic levels.  
VIH  
Logic high input voltage  
1.3  
V
VIL  
IIH  
Logic low input voltage  
Logic high input current  
Logic low input current  
Logic high output voltage  
Logic low output voltage  
0.4  
V
µA  
µA  
V
VHIGH = 1.8 V  
VLOW = 0 V  
6
< 0.1  
IIL  
VOH  
VOL  
AVDD - 0.1  
0.2  
V
LVDS OUTPUTS  
High-level output differential  
voltage  
VODH  
100 Ω external termination  
100 Ω external termination  
245  
350  
405  
mV  
Low-level output differential  
voltage  
VODL  
VOCM  
–245  
900  
–350  
1100  
–405  
1300  
mV  
mV  
Output common-mode voltage  
OUTP  
Logic 0  
Logic 0  
V = +350 mV*  
ODH  
V
= -350 mV*  
ODL  
OUTM  
V
OCM  
GND  
GND  
*With external 100-W termination  
Figure 2. LVDS Output Voltage Levels  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
TIMING REQUIREMENTS(1)(2)(3)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8 V, sampling frequency = 80 MSPS, 14-bit, sine wave input clock = 1.5  
Vpp clock amplitude, CLOAD = 5 pF, RLOAD = 100 Ω, unless otherwise noted. MIN and MAX values are across the full  
temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 1.8 V, LVDD = 1.7 V to 1.9 V  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
The delay in time between the rising edge of the input  
sampling clock and the actual time at which the sampling  
occurs  
ta  
Aperture delay  
4
ns  
Aperture delay variation  
Across channels within the same device  
±175  
2.5  
ps  
ns  
Across devices at the same temperature and LVDD supply  
tj  
Aperture jitter RMS  
Data latency  
320  
fs rms  
Clock  
cycles  
1-wire LVDS output interface  
2-wire LVDS output interface  
11  
15  
td  
Clock  
cycles  
tSU  
tH  
Data setup time  
Data hold time  
80 MSPS, 2 wire LVDS, 7x serialization  
80 MSPS, 2 wire LVDS, 7x serialization  
0.34  
0.55  
0.57  
0.8  
ns  
ns  
Input clock rising edge(zero cross) to frame clock rising  
edge(zero cross)  
Clock propagation delay  
See Table 1 and Table 2  
tPROP  
Variation of tPROP  
LVDS bit clock duty cycle  
Data rise time  
Between two devices at same temperature and LVDD supply  
±0.75  
48%  
0.24  
0.24  
0.20  
0.20  
ns  
tRISE  
Rise time is from -100 mV to + 100 mV, 10 Fs 80 MSPS  
Fall time is from +100 mV to -100 mV, 10 Fs 80 MSPS  
Rise time is from -100 mV to +100 mV, 10 Fs 80 MSPS  
Fall time is from +100 mV to -100 mV, 10 Fs 80 MSPS  
ns  
ns  
ns  
ns  
tFALL  
Data fall time  
tCLKRISE  
tCLKFALL  
Output clock rise time  
Output clock fall time  
Time to valid data after coming out of COMPLETE POWER-  
DOWN mode  
tWAKE  
Wake-up Time  
100  
5
µs  
µs  
Time to valid data after coming out of PARTIAL POWER-  
DOWN mode (with clock continuing to run during power-  
down)  
(1) Timing parameters are ensured by design and characterization and not tested in production.  
(2) Measurements are done with a transmission line of 100-Ω characteristic impedance between the device and the load. Setup and hold  
time specifications take into account the effect of jitter on the output data and clock.  
(3) Data valid refers to logic HIGH of 100 mV and logic LOW of –100 mV.  
10  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
(1)  
Table 1. LVDS Timing at Different Sampling Frequencies - 2 Wire Interface, 7x Serialization  
LVDS Output Rate (MSPS)  
Setup Time (tsu), ns  
Hold Time (tH), ns  
tPROG = (6/7) × T + tdelay, ns(2)  
Zero-Crossing of LCLKP to  
Data Becoming Invalid  
Data Valid to Zero-  
Crossing of LCLKP  
(both edges)  
tPROG = delay from Input clock zero-cross  
rising edge to frame clock zero cross (rising  
edge)  
Fs = 1/T  
(both edges)  
MIN  
TYP  
0.57  
0.64  
0.9  
1.3  
2
MAX  
MIN  
0.55  
0.8  
1.2  
1.6  
2
TYP  
0.8  
1.1  
1.5  
1.85  
2.3  
3.5  
7
MAX  
MIN  
8
TYP  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
MAX  
11  
80  
65  
50  
40  
30  
20  
10  
0.34  
0.35  
0.7  
1
8
11  
8
11  
8
11  
1.7  
2.9  
6.5  
8
11  
3.2  
6.7  
3.2  
6.7  
8
11  
8
11  
(1) Bit clock and Frame clock jitter has been included in the Setup and hold timing.  
(2) Values below correspond to tdelay, NOT tPROG  
(1)  
Table 2. LVDS Timing at Different Sampling Frequencies - 1 Wire Interface, 14x Serialization  
LVDS Output Rate (MSPS)  
Setup Time (tsu), ns  
Hold Time (tH), ns  
tPROG = (5/7) × T + tdelay, ns(2)  
Zero-Crossing of LCLKP to  
Data Becoming Invalid  
Data Valid to Zero-  
Crossing of LCLKP  
(both edges)  
tPROG = delay from Input clock zero-cross  
rising edge to frame clock zero cross (rising  
edge)  
Fs = 1/T  
(both edges)  
MIN  
TYP  
0.48  
0.68  
0.8  
MAX  
MIN  
0.28  
0.54  
1
TYP  
0.6  
MAX  
MIN  
7.5  
7.5  
7.5  
7.5  
7.5  
TYP  
MAX  
10.5  
10.5  
10.5  
10.5  
10.5  
50  
40  
30  
20  
10  
0.28  
0.5  
9
9
9
9
9
0.8  
0.62  
1.2  
1.25  
1.9  
1.4  
1.6  
3.3  
3.1  
3.3  
3.5  
(1) Bit clock and Frame clock jitter has been included in the Setup and hold timing.  
(2) Values below correspond to tdelay, NOT tPROG  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
LVDS TIMING DIAGRAM  
Figure 3. 14-Bit 1 wire LVDS Timing Diagram  
12  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Figure 4. Enlarged 1 wire LVDS Timing Diagram (14bit)  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Figure 5. 14-Bit 2 wire LVDS Timing Diagram  
14  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Figure 6. Enlarged 2 wire LVDS Timing Diagram (14bit)  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s) :ADS5294  
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Figure 7. Definition of Setup and Hold Times tSU = min(tSU1, tSU2); tH = min(tH1, tH2  
)
16  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
TYPICAL CHARACTERISTICS  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
0
−10  
0
−10  
SNR = 76.1 dBFS  
SINAD = 75.7 dBFS  
SFDR = 87 dBc  
THD =84.7 dBc  
SNR = 75.5 dBFS  
SINAD = 74.4 dBFS  
SFDR = 80.3 dBc  
THD =79.7 dBc  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
10  
20  
30  
40  
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
Figure 8. FFT for 5 MHz Input Signal,  
Sample Rate = 80 MSPS  
Figure 9. FFT for 15 MHz Input Signal,  
Sample Rate = 80 MSPS  
0
−10  
0
−10  
SNR = 70.7 dBFS  
SNR = 76.5 dBFS  
SINAD =69.5 dBFS  
SFDR = 74.9 dBc  
THD =74.55 dBc  
SINAD = 76.5 dBFS  
SFDR = 90.23 dBc  
THD = 87 dBc  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
10  
20  
30  
40  
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
Figure 10. FFT for 65 MHz Input Signal,  
Sample Rate = 80 MSPS  
Figure 11. FFT for 5 MHz Input Signal,  
Sample Rate = 40 MSPS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
0
0
SNR = 76.5 dBFS  
SINAD = 76.5 dBFS  
SFDR = 88.4 dBc  
THD = 87 dBc  
fIN1 = 8 MHz  
fIN2 = 10 MHz  
Each Tone at −7dBFS Amplitude  
Two Tone IMD = −91.4 dBFS  
−10  
−10  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
5
10  
15  
20  
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
Figure 12. FFT for 15 MHz Input Signal,  
Sample Rate = 40 MSPS  
Figure 13. Two Tone Intermodulation  
77  
76  
75  
74  
73  
72  
71  
70  
86  
84  
82  
80  
78  
76  
74  
72  
70  
5
15  
25  
35  
45  
55  
65  
75  
85  
5
15  
25  
35  
45  
55  
65  
75  
85  
Input Signal frequency (MHz)  
Input Signal frequency (MHz)  
Figure 14. Signal -To-Noise Ratio vs. Input Signal  
Frequency  
Figure 15. Spurious-Free Dynamic Range vs. Input Signal  
Frequency  
18  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
80  
76  
72  
68  
64  
60  
90  
86  
82  
78  
74  
70  
Input frequency = 10 MHz  
Input frequency = 70 MHz  
Input frequency = 10 MHz  
Input frequency = 70 MHz  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Digital gain (dB)  
Digital gain (dB)  
G001  
G001  
Figure 16. SNR vs. Digital Gain  
Figure 17. SFDR vs. Digital Gain  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
88  
87  
86  
85  
84  
83  
82  
78  
77  
76  
75  
74  
73  
72  
SFDR  
SNR  
79.5  
79  
78.5  
78  
77.5  
77  
76.5  
76  
75.5  
75  
SNR  
SFDR(dBc)  
SFDR(dBFS)  
74.5  
74  
−96 −86 −76 −66 −56 −46 −36 −26 −16 −6  
Input amplitude (dBFS)  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4  
Input Clock Amplitude, differential (Vp−p)  
Figure 18. Performance vs. Input Amplitude  
Figure 19. Performance vs. Clock Input Amplitudes  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
86  
85.5  
85  
77  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
78  
SFDR  
SNR  
Fin = 5 MHz  
SFDR  
SNR  
77.5  
77  
76.5  
76  
76.5  
76  
84.5  
84  
75.5  
75  
75.5  
75  
83.5  
83  
74.5  
74  
74.5  
74  
82.5  
82  
73.5  
73  
73.5  
73  
1.10  
35  
40  
45  
50  
55  
60  
65  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
Input Clock Duty Cycle (%)  
Analog Input Common−mode voltage (V)  
Figure 20. Performance vs. Input Clock Duty Cycle  
Figure 21. Performance vs. Input VCM  
77.0  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
AVDD=1.65V  
AVDD=1.7V  
AVDD=1.8V  
AVDD=1.9V  
AVDD=1.95V  
AVDD=1.65V  
AVDD=1.7V  
AVDD=1.8V  
AVDD=1.9V  
AVDD=1.95V  
76.5  
76.0  
75.5  
75.0  
74.5  
74.0  
−40  
−20  
0
20  
40  
60  
80  
−40  
−20  
0
20  
40  
60  
80  
Temperature (°C)  
Temperature (°C)  
Figure 22. Signal -To-Noise Ratio vs. Temperature  
Figure 23. Spurious-Free Dynamic Range vs. Temperature  
20  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
−110  
−120  
−130  
−140  
−150  
−160  
Far Channel  
Near Channel  
10  
20  
30  
40  
50  
60  
70  
0.01  
0.1  
1
10  
100  
Frequency of Aggressor Channel (MHz)  
Frequency Offset (kHz)  
Figure 24. Crosstalk vs. Frequency  
Figure 25. Phase Noise for 5 MHz Input Signal,  
Sample Rate = 80 MSPS  
0.8  
0.7  
0.3  
0.2  
0.6  
0.5  
0.4  
0.3  
0.1  
0.2  
0.1  
0.0  
0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
−0.6  
−0.7  
−0.8  
−0.1  
−0.2  
−0.3  
900  
3900  
6900  
9900  
12900  
15900  
900  
3900  
6900  
9900  
12900  
15400  
Output_codes (dB)  
Output_codes (LSB)  
Figure 26. Integral Non-Linearity  
Figure 27. Differential Non-Linearity  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
80  
With 50mVpp signal superimposed on input common−mode  
45.5  
Fin = 3 MHz  
70  
31.53  
60  
50  
16.18  
40  
5.55  
0.1  
0.11  
0.03  
30  
0
10  
20  
30  
40  
50  
60  
70  
Frequency of CMRR signal (MHz)  
Figure 28. Histogram of Output Code with Analog Inputs  
Shorted  
Figure 29. Common Mode Rejection Ratio vs. Frequency  
−10  
20  
With 50mVpp signal  
PSMR  
PSRR  
Low Pass  
High pass  
superimposed on AVDD supply  
PSMR: 3MHz input signal applied  
PSRR: No input signal applied  
10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0.01  
0.1  
1
10  
70  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency of signal on supply (MHz)  
Normalized Frequency (fin/fs)  
Figure 30. Power Supply Rejection Ratio vs. Frequency  
Figure 31. Filter Response, Decimate by 2  
22  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
40  
0
Low Pass  
SNR = 78.2 dBFS  
SINAD = 78.2 dBFS  
Decimate by 2 Filter Enabled  
−10  
30  
Band−Pass1  
Band−Pass2  
High Pass  
−20  
20  
−30  
10  
−40  
0
−50  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
5
10  
Frequency (MHz)  
15  
20  
Normalized frequency (fin/fs)  
Figure 32. Filter Response, Decimate by 4  
Figure 33. FFT for 5 MHz Input Signal, Sample  
Rate = 80 MSPS with Decimation Filter = 2  
0
−10  
3
0
SNR = 77.9 dBFS  
SINAD = 77.9 dBFS  
SFDR = 93.13 dBc  
THD = −96 dBc  
−3  
−20  
−6  
−30  
2 Channels averaged  
−9  
−40  
−12  
−15  
−18  
−21  
−24  
−27  
−30  
−33  
−36  
−39  
−42  
−45  
−50  
−60  
−70  
−80  
K=2  
K=3  
K=4  
K=5  
K=6  
K=7  
K=8  
K=9  
K=10  
−90  
−100  
−110  
−120  
−130  
−140  
0
5
10  
15  
20  
25  
30  
35  
40  
0.02  
0.1  
1
10 15  
Frequency (MHz)  
Input Signal Frequency (MHz)  
Figure 34. FFT for 5 MHz Input Signal, Sample  
Rate = 80 MSPS by Averaging 2 Channels  
Figure 35. Digital High-Pass Filter Response  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
0
0
−5  
HPF_DISABLED  
HPF_ENABLED  
−10  
−15  
−25  
−20  
−30  
−40  
−35  
−50  
−45  
−60  
−55  
−70  
−65  
−80  
−90  
−75  
−100  
−110  
−120  
−130  
−140  
−150  
−85  
−95  
−105  
−115  
−125  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
5
10  
15  
20  
25  
30  
35  
40  
Input Signal Frequency (MHz)  
Frequency (MHz)  
Figure 36. FFT with HPF Enabled and Disabled, No Signal  
Figure 37. FFT (Full-Band) for 5 MHz Input Signal, Sample  
Rate = 80MSPS with Low Frequency Noise Suppression  
Enabled  
0
0
LF noise suppression enabled  
LF noise suppression disabled  
LF noise suppression enabled  
LF noise suppression disabled  
−10  
−10  
−20  
−30  
−20  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Frequency (MHz)  
1
39 39.1 39.2 39.3 39.4 39.5 39.6 39.7 39.8 39.9 40  
Frequency (MHz)  
Figure 38. FFT (0 to 1 MHz) for 5 MHz Input Signal, Sample  
Rate = 80 MSPS with Low Frequency Noise Suppression  
Enabled  
Figure 39. FFT (39 MHz to 40 MHz) for 5 MHz Input Signal,  
Sample Rate = 80 MSPS with Low Frequency Noise  
Suppression Enabled  
24  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 1.8 V, LVDD = 1.8V, 50% clock duty cycle, –1 dBFS differential analog input, 14 Bit/80  
MSPS, ADC is configured in the internal reference mode, unless otherwise noted.  
450  
400  
350  
300  
250  
200  
150  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
2−wire  
1−wire  
1−wire Decimate by 2  
50  
10  
20  
30  
40  
50  
60  
70  
80  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
Sampling Frequency (MSPS)  
Sampling Frequency (MSPS)  
Figure 40. Power Consumption on Analog Supply  
Figure 41. Power Consumption on Digital Supply  
240  
190  
170  
150  
130  
110  
90  
2−wire  
1−wire  
1−wire Decimate by 2  
220  
200  
180  
160  
140  
120  
100  
80  
70  
50  
30  
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Frequency (MSPS)  
Sampling Frequency (MSPS)  
Figure 42. Supply Current on Analog Supply  
Figure 43. Supply Current on Digital Supply  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
SERIAL INTERFACE  
ADS5294 has a set of internal registers that can be accessed by the serial interface formed by pins CSZ (Serial  
interface Enable – Active Low), SCLK (Serial Interface Clock) and SDATA (Serial Interface Data).  
When CSZ is low,  
Serial shift of bits into the device is enabled.  
Serial data (SDATA) is latched at every rising edge of SCLK.  
SDATA is loaded into the register at every 24th SCLK rising edge  
If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples of  
24-bit words within a single active CSZ pulse. The first eight bits form the register address and the remaining 16  
bits the register data. The interface can work with SCLK frequencies from 15 MHz down to very low speeds (few  
Hertz) and also with non-50% SCLK duty cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to the respective default values. Initialization can be done  
in one of two ways:  
1. Through a hardware reset, by applying a high pulse on the RESET pin; or  
2. Through a software reset; using the serial interface, set the RST bit high. Setting this bit initializes the  
internal registers to the respective default values and then self-resets the bit low. In this case, the RESET pin  
stays low (inactive).  
REGISTER DATA  
REGISTER ADDRESS  
SDATA  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
t
DH  
t
DSU  
t
SLOADH  
t
SCLK  
t
SLOADS  
CSZ  
RESET  
Figure 44. Serial Interface Timing  
SERIAL INTERFACE TIMING CHARACTERISTICS  
Typical values at 25°C, MIN and MAX values across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 1.8 V,  
LVDD = 1.8 V, unless otherwise noted.  
PARAMETER  
MIN  
> DC  
33  
TYP MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDS  
SCLK frequency (= 1/ tSCLK  
CS to SCLK setup time  
SCLK to CS hold time  
SDATA setup time  
)
15  
33  
ns  
33  
ns  
tDH  
SDATA hold time  
33  
ns  
26  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
RESET TIMING  
Typical values at 25°C, MIN and MAX values across the full temperature range TMIN = –40°C to TMAX = 85°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Delay from power up of AVDD and LVDD to RESET pulse active  
Pulse duration of active RESET signal  
MIN TYP MAX UNIT  
t1  
t2  
t3  
Power-on delay  
1
ms  
ns  
ns  
Reset pulse duration  
Register write delay  
50  
Delay from RESET disable to CSZ active  
100  
POWER SUPPLY  
AVDD, LVDD  
t
1
RESET  
t
2
t
3
SEN  
NOTE: A high-going pulse on RESET pin is required in serial interface mode in case of initialization through hardware reset.  
For parallel interface operation, RESET has to be tied permanently HIGH.  
Figure 45. Reset Timing Diagram  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back on SDOUT pin. This  
may be useful as a diagnostic check to verify the serial interface communication between the external controller  
and the ADC.  
By default, after power up and device reset, the SDOUT pin is in the high-impedance state. When the readout  
mode is enabled using the register bit <READOUT>, SDOUT outputs the contents of the selected register  
serially, described as follows.  
Set register bit <READOUT> = 1 to put the device in serial readout mode. This disables any further writes  
into the internal registers, EXCEPT the register at address 1. Note that the <READOUT> bit itself is also  
located in register 1.  
The device can exit readout mode by writing <READOUT> to 0.  
Only the contents of register at address 1 cannot be read in the register readout mode.  
Initiate a serial interface cycle specifying the address of the register (A7-A0) whose content is to be read.  
The device serially outputs the contents (D15–D0) of the selected register on the SDOUT pin.  
The external controller can latch the contents at the rising edge of SCLK.  
To exit the serial readout mode, reset register bit <READOUT> = 0, which enables writes into all registers of  
the device. At this point, the SDOUT pin enters the high-impedance state.  
A) Enable Serial Readout (<READOUT> = 1)  
REGISTER DATA (D15:D0) = 0x0001  
REGISTER ADDRESS (A7:A0) = 0x01  
SDATA  
SCLK  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
CSZ  
Pin SDOUT Becomes  
Active and Forces Low  
Pin SDOUT is tri-stated  
SDOUT  
B) Read Contents of Register 0x0F.  
This Register has been Initialized with 0x0200  
(The Device was earlier put in global power down)  
REGISTER DATA (D15:D0) = XXXX (don’t care)  
D9  
D3 D2 D1 D0  
REGISTER ADDRESS (A7:A0) = 0x0F  
A7 A6 A5 A4 A3 A2 A1 A0  
SDATA  
SCLK  
D13  
D10  
D8  
D4  
D15 D14  
D12 D11  
D7 D6  
D5  
CSZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
SDOUT  
SDOUT Output Contents of Register 0x0F in the same cycle, MSB first  
Figure 46. Serial Readout Timing  
28  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
DEFAULT STATES AFTER RESET  
Device is in normal operation mode with 14-bit ADC enabled for all channels.  
Output interface is 1-wire, 14× serialization with 7×bit clock and 1×frame clock frequency  
Serial readout is disabled  
PDN pin is configured as global power-down pin  
Digital gain is set to 0 dB.  
Digital modes such as LFNS, digital filters, and so on, are disabled.  
Register Map  
(1)(2)(3)(4)  
Table 3. Summary of Functions Supported by Serial Interface  
ADDR.  
(HEX)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
DESCRIPTION  
1: Self-clearing software RESET; . After reset, this bit is set to 0  
0: Normal operation.  
00  
X
X
RST  
EN_READOUT  
EN_HIGH_ADDRS  
1: READOUT of registers mode;0: Normal operation  
01  
0 – Disable access to register at address 0xF0  
1 – Enable access to register at address 0xF0  
X
1:Enable SYNC feature to synchronize the test patterns;  
0: Normal operation, SYNC feature is disabled for the test patterns.  
Note: this bit needs to be set as 1 when software or hardware SYNC  
feature is used. see Reg.0x25[8] and 0x25[15]  
02  
0A  
X
X
EN_SYNC  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
RAMP_PAT_RESET_VAL  
PDN_CH<8:1>  
Ramp pattern reset value  
1:Channel-specific ADC power-down mode;  
0: Normal operation  
1:Partial power-down mode - fast recovery from power-down;  
0: Normal operation  
PDN_PARTIAL  
PDN_COMPLETE  
PDN_PIN_CFG  
LFNS_CH<8:1>  
EN_FRAME_PAT  
0F  
1:Register mode for complete power-down - slower recovery;  
0: Normal operation  
1:Configures PD pin for partial power-down mode;  
0:Configures PD pin for complete power-down mode  
X
1: Channel-specific low frequency noise suppression mode enable;  
0: LFNS disabled  
14  
X
X
X
X
X
X
X
X
1: Enables output frame clock to be programmed through a pattern;  
0: Normal operation on frame clock  
X
X
1C  
23  
24  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ADCLKOUT<13:0>  
PRBS_SEED<15:0>  
14-bit pattern for frame clock on ADCLKP/ADCLKN pins  
PRBS pattern starting seed value lower 16 bits  
X
X
1: Swaps the polarity of the analog input pins electrically;  
0: Normal configuration  
X
X
X
X
X
X
X
X
INVERT_CH<8:1>  
X
X
X
X
X
X
PRBS_SEED<22:16>  
PRBS seed starting value upper 7 bits  
(1) The unused bits in each register (identified as blank table cells) must be programmed as '0'.  
(2) X = Register bit referenced by the corresponding name and description  
(3) Bits marked as '0' should be forced to 0, and bits marked as '1' should be forced to 1 when the particular register is programmed.  
(4) Multiple functions in a register can be programmed in a single write operation.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s) :ADS5294  
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Table 3. Summary of Functions Supported by Serial Interface (1)(2)(3)(4) (continued)  
ADDR.  
(HEX)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
DESCRIPTION  
1: Enables a repeating full scale ramp pattern on the outputs;  
0: Normal operation  
X
0
0
EN_RAMP  
1:Enables mode wherein output toggles between 2 defined codes;  
0: Normal operation  
0
X
0
DUALCUSTOM_PAT  
SINGLE_CUSTOM_PAT  
1: Enables mode wherein output is a constant specified code;  
0: Normal operation  
0
0
X
2 MSBs for single custom pattern (and for the first code of the dual  
custom patterns)  
X
X
BITS_CUSTOM1<13:12>  
BITS_CUSTOM2<13:12>  
X
X
2 MSBs for second code of the dual custom patterns  
1: Software sync bit for test patterns on all 8 CHs;  
0: No sync. Note: in order to synchronize the digital filters using the  
SYNC pin, this bit must be set as 0.  
25  
X
TP_SOFT_SYNC  
1: PRBS test pattern enable bit;  
0: PRBS test pattern disabled  
X
PRBS_TP_EN  
PRBS_MODE_2  
X
PRBS 9 bit LFSR (23bit LFSR is default)  
1: Enable PRBS seed to be chosen from register 0x23 and 0x24;  
0: Disabled  
X
PRBS_SEED_FROM_REG  
1: Enable the external SYNC feature for syncing test patterns.  
0: Inactive. Note: in order to synchronize the digital filters using the  
SYNC pin, this bit must be set as 0.  
X
TP_HARD_SYNC  
12 lower bits for single custom pattern (and for the first code of the  
dual custom pattern).  
26  
27  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
BITS_CUSTOM1<11:0>  
BITS_CUSTOM2<11:0>  
EN_BITORDER  
12 lower bits for second code of the dual custom pattern  
Enables the bit order output.  
0 = Byte wise, 1 = Word wise  
Selects between bytewise and bit wise  
1: bit-wise, odd bits come out on one wire and even bits come out on  
other wire  
0: byte-wise, upper bits on one wire and lower bits on other wire  
Note: D15 must be set to '0' for this mode  
0
1
X
BIT_WISE  
28  
1: Output format is one sample on one LVDS wire and next sample  
on other LVDS wire.  
0: Data comes out in two-wire mode with upper set of bits on one  
channel and lower set of bits on the other.  
X
X
X
X
X
X
X
X
X
EN_WORDWISE__BY_CH<7:0>  
Note: D15 must set '1' for this mode.  
1: Enables filter blocks - global control;  
0: Inactive  
GLOBAL_EN_FILTER  
EN_CHANNEL_AVG  
29  
2A  
1: Enables channel averaging mode;  
0: Inactive  
X
X
X
X
X
GAIN_CH1<3:0>  
GAIN_CH2<3:0>  
GAIN_CH3<3:0>  
GAIN_CH4<3:0>  
Programmable gain - Channel 1  
Programmable gain - Channel 2  
Programmable gain - Channel 3  
Programmable gain - Channel 4  
X
X
X
X
X
X
X
X
X
X
X
X
30  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Table 3. Summary of Functions Supported by Serial Interface (1)(2)(3)(4) (continued)  
ADDR.  
(HEX)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
DESCRIPTION  
Programmable gain - Channel 5  
X
X
X
X
GAIN_CH5<3:0>  
GAIN_CH6<3:0>  
X
X
X
X
Programmable gain - Channel 6  
2B  
2C  
2D  
X
X
X
X
X
X
GAIN_CH7<3:0>  
Programmable gain - Channel 7  
X
X
X
X
X
X
X
X
X
GAIN_CH8<3:0>  
Programmable gain - Channel 8  
X
X
X
X
X
AVG_CTRL4<1:0>  
AVG_CTRL3<1:0>  
AVG_CTRL2<1:0>  
AVG_CTRL1<1:0>  
AVG_CTRL8<1:0>  
AVG_CTRL7<1:0>  
AVG_CTRL6<1:0>  
AVG_CTRL5<1:0>  
FILTER1_COEFF_SET<2:0>  
FILTER1_RATE<2:0>  
ODD_TAP1  
1: Averaging control for what comes out on LVDS output OUT4  
Averaging control for what comes out on LVDS output OUT3  
Averaging control for what comes out on LVDS output OUT2  
Averaging control for what comes out on LVDS output OUT1  
Averaging control for what comes out on LVDS output OUT8  
Averaging control for what comes out on LVDS output OUT7  
Averaging control for what comes out on LVDS output OUT6  
Averaging control for what comes out on LVDS output OUT5  
Select stored coefficient set for filter 1  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Set decimation factor for filter 1  
X
X
X
Use odd tap filter 1  
1: Enables filter for channel 1;  
0: Disables  
2E  
2F  
30  
X
X
X
USE_FILTER1  
HPF_CORNER _CH1  
HPF_EN_CH1  
X
X
X
X
X
X
X
X
X
X
X
X
HPF corner in values k from 2 to 10  
1: HPF filter enable for the channel;  
0: Disables  
X
X
X
X
X
FILTER2_COEFF_SET<2:0>  
FILTER2_RATE<2:0>  
ODD_TAP2  
Select stored coefficient set for filter 2  
Set decimation factor for filter 2  
Use odd tap filter 2  
X
X
1: Enables filter for channel 2;  
0: Disables  
USE_FILTER2  
HPF_CORNER _CH2  
HPF_EN_CH2  
HPF corner in values k from 2 to 10  
1: HPF filter enabled for the channel;  
0: Disabled  
X
X
FILTER3_COEFF_SET<2:0>  
FILTER3_RATE<2:0>  
ODD_TAP3  
Select stored coefficient set for filter 3  
Set decimation factor for filter 3  
Use odd tap filter 3  
X
X
1: Enables filter for channel 3;  
0: Disables  
USE_FILTER3  
HPF_CORNER _CH3  
HPF_EN_CH3  
HPF corner in values k from 2 to 10  
1: HPF filter enabled for the channel;  
0: Disabled  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Table 3. Summary of Functions Supported by Serial Interface (1)(2)(3)(4) (continued)  
ADDR.  
(HEX)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
DESCRIPTION  
Select stored coefficient set for filter 4  
X
X
X
FILTER4_COEFF_SET<2:0>  
FILTER4_RATE<2:0>  
ODD_TAP4  
X
X
X
Set decimation factor for filter 4  
Use odd tap filter 4  
X
1: Enables filter for channel 4;  
0: Disables  
31  
X
USE_FILTER4  
HPF_CORNER _CH4  
HPF_EN_CH4  
X
X
X
X
HPF corner in values k from 2 to 10  
1: HPF filter enabled for the channel;  
0: Disabled  
X
X
X
X
FILTER5_COEFF_SET<2:0>  
FILTER5_RATE<2:0>  
ODD_TAP5  
Select stored coefficient set for filter 5  
Set decimation factor for filter 5  
Use odd tap filter 5  
X
X
X
X
1: Enables filter for channel 5;  
0: Disables  
32  
X
USE_FILTER5  
HPF_CORNER _CH5  
HPF_EN_CH5  
X
X
X
X
HPF corner in values k from 2 to 10  
1: HPF filter enabled for the channel;  
0: Disabled  
X
X
X
X
X
X
X
X
X
X
FILTER_TYPE6<2:0>  
DECBY8_6  
Select stored coefficient set for filter 6  
Enables decimate by 8 filter 6  
Set decimation factor for filter 6  
Use odd tap filter 6  
X
X
X
X
X
X
X
X
X
FILTER_MODE6<1:0>  
ODD_TAP6  
33  
X
X
X
X
USE_FILTER6  
Enables filter for channel 6  
X
X
X
X
HPF_CORNER _CH6  
HPF_EN_CH6  
HPF corner in values k from 2 to 10  
Hpf filter enable for the channel  
Select stored coefficient set for filter 7  
Enables decimate by 8 filter 7  
Set decimation factor for filter 7  
Use odd tap filter 7  
X
FILTER_TYPE7<2:0>  
DECBY8_7  
FILTER_MODE7<1:0>  
ODD_TAP7  
34  
X
USE_FILTER7  
Enables filter for channel 7  
X
X
X
X
HPF_CORNER _CH7  
HPF_EN_CH7  
HPF corner in values k from 2 to 10  
Hpf filter enable for the channel  
Select stored coefficient set for filter 8  
Enables decimate by 8 filter 8  
Set decimation factor for filter 8  
Use odd tap filter 8  
X
FILTER_TYPE8<2:0>  
DECBY8_8  
FILTER_MODE8<1:0>  
ODD_TAP8  
35  
38  
1: Enables filter for channel 8;  
0: Disables  
X
X
USE_FILTER8  
HPF_CORNER_CH8  
HPF_EN_CH8  
X
X
X
X
HPF corner in values k from 2 to 10  
1: HPF filter enable for the channel;  
0: Disables  
X
X
DATA_RATE<1:0>  
Select output frame clock rate  
32  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Table 3. Summary of Functions Supported by Serial Interface (1)(2)(3)(4) (continued)  
ADDR.  
(HEX)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
DESCRIPTION  
Drive external reference mode through:  
D15=D3=1: the VCM pin;  
X
X
EXT_REF_VCM  
D15=D3=0: REFT/REFB pins.  
Note: 0xF[15] should be set as '1' to enable the external reference  
mode  
42  
45  
X
X
PHASE_DDR<1:0>  
PAT_DESKEW  
Controls phase of LCLK output relative to data  
1: Enable deskew pattern mode;  
0: Inactive  
0
X
0
1: Enable sync pattern mode;  
0: Inactive  
X
PAT_SYNC  
EN_2WIRE  
BTC_MODE  
MSB_FIRST  
EN_SDR  
1: 2 wire LVDS output;  
0: 1 wire LVDS output  
1
1
1
1
1
1
X
1: 2's complement; (ADC data output format)  
0: Binary Offset (ADC data output format)  
X
1: MSB First;  
0: LSB First  
X
1:SDR Bit Clock;  
0: DDR Bit Clock  
X
1: Enable 12 bit serialization mode;  
0: Inactive  
0
0
0
X
0
EN_12BIT  
EN_14BIT  
46  
1: Enable 14 bit serialization mode;  
0: Inactive  
X
1: Enable 16 bit serialization mode;  
0: Inactive  
1
1
X
0
0
EN_16BIT  
FALL_SDR  
Note: 16 bit can be used when average mode or decimation mode is  
enabled for better SNR.  
1: Controls LCLK rising or falling edge comes in the middle of data  
window when operating in SDR output mode; 0: At the edge of data  
window.  
X
50  
51  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
MAP_Ch1234_to_OUT1A  
MAP_Ch1234_to_OUT1B  
MAP_Ch1234_to_OUT2A  
MAP_Ch1234_to_OUT2B  
MAP_Ch1234_to_OUT3A  
MAP_Ch1234_to_OUT3B  
MAP_Ch1234_to_OUT4A  
MAP_Ch1234_to_OUT4B  
MAP_Ch5678_to_OUT5B  
MAP_Ch5678_to_OUT5A  
MAP_Ch5678_to_OUT6B  
MAP_Ch5678_to_OUT6A  
MAP_Ch5678_to_OUT7B  
MAP_Ch5678_to_OUT7A  
OUT1A Pin pair to channel data mapping selection  
OUT1B Pin pair to channel data mapping selection  
OUT2A Pin pair to channel data mapping selection  
OUT2B Pin pair to channel data mapping selection  
OUT3A Pin pair to channel data mapping selection  
OUT3B Pin pair to channel data mapping selection  
OUT4A Pin pair to channel data mapping selection  
OUT4B Pin pair to channel data mapping selection  
OUT5B Pin pair to channel data mapping selection  
OUT5A Pin pair to channel data mapping selection  
OUT6B Pin pair to channel data mapping selection  
OUT6A Pin pair to channel data mapping selection  
OUT7B Pin pair to channel data mapping selection  
OUT7A Pin pair to channel data mapping selection  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
52  
53  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
54  
X
X
X
X
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Table 3. Summary of Functions Supported by Serial Interface (1)(2)(3)(4) (continued)  
ADDR.  
(HEX)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
DESCRIPTION  
1
1
X
X
X
X
MAP_Ch5678_to_OUT8B  
MAP_Ch5678_to_OUT8A  
OUT8B Pin pair to channel data mapping selection  
OUT8A Pin pair to channel data mapping selection  
55  
F0  
X
X
X
X
1: Enable external reference mode. the voltage reference can be  
applied on either REFP/B pins or VCM pin.  
X
EN_EXT_REF  
0: Default: internal reference mode.  
34  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
DESCRIPTION OF SERIAL REGISTERS  
POWER-DOWN MODES  
ADDR. D15 D14 D13 D12 D11 D10  
(HEX)  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
0F  
X
X
X
X
X
X
X
X
PDN_CH<8:1>  
PDN_PARTIAL  
PDN_COMPLETE  
PDN_PIN_CFG  
X
X
X
Each of the 8 channels can be individually powered down. PDN_CH<N> controls the power-down mode for ADC  
channel <N>. In addition to channel-specific power-down, the ADS5294 also has two global power-down modes:  
1. The partial power-down mode. It partially powers down the chip; recovery time from the partial power-down  
mode is about 10 µs provided that the clock has been running for at least 50 µs before exiting this mode.  
2. The complete power-down mode. It completely powers down the chip, and involves a much longer recovery  
time 100 µs.  
In addition to programming the chip in either of these two power-down modes (through either the PDN_PARTIAL  
or PDN_COMPLETE bits), the PD pin itself can be configured as either a partial power-down pin or a complete  
power-down pin control. For example, if PDN_PIN_CFG=0 (default), when the PD pin is high, the device enters  
complete power-down mode. However, if PDN_PIN_CFG=1, when the PD pin is high, the device enters partial  
power-down mode.  
LOW FREQUENCY NOISE SUPPRESSION MODE  
ADDR. D15 D14 D13 D12 D11 D10  
(HEX)  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
14  
X
X
X
X
X
X
X
X
LFNS_CH<8:1>  
The low frequency noise suppression mode is specifically useful in applications where good noise performance is  
desired in the frequency band of 0 to 1 MHz (around DC). Setting this mode shifts the low-frequency noise of the  
ADS5294 to approximately Fs/2, thereby, moving the noise floor around DC to a much lower value.  
LFNS_CH<8:1> enables this mode individually for each channel. See Figure 38 and Figure 39.  
ANALOG INPUT INVERT  
ADDR. D15 D14 D13 D12 D11 D10  
(HEX)  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
24  
X
X
X
X
X
X
X
X
INVERT_CH<8:1>  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Normally, INP pin represents the positive analog input pin, and INN represents the complementary negative input.  
Setting the bits marked INVERT_CH<8:1> (individual control for each channel) causes the inputs to be swapped.  
INN now represents the positive input, and INP the negative input.  
LVDS TEST PATTERNS  
ADDR.  
(HEX)  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
NAME  
23  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PRBS_SEED<15:0>  
PRBS_SEED<22:16>  
EN_RAMP  
X
0
0
0
X
0
0
0
24  
25  
DUALCUSTOM_PAT  
SINGLE_CUSTOM_PAT  
BITS_CUSTOM1<13:12>  
BITS_CUSTOM2<13:12>  
TP_SOFT_SYNC  
X
X
X
X
X
PRBS_TP_EN  
X
PRBS_MODE_2  
X
PRBS_SEED_FROM_REG  
TP_HARD_SYNC  
X
X
X
26  
27  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
BITS_CUSTOM1<11:0>  
BITS_CUSTOM2<11:0>  
PAT_DESKEW  
0
X
0
45  
X
PAT_SYNC  
The ADS5294 can output a variety of test patterns on the LVDS outputs. These test patterns replace the normal  
ADC data output. All these patterns can be synchronized across devices by the sync function either through the  
hardware SYNC pin or the software sync bit TP_SOFT_SYNC bit in register 0x25. TP_HARD_SYNC bit when  
set enables the Test patterns to be synchronized by the hardware SYNC Pin. When the software sync bit  
TP_SOFT_SYNC bit is set, special timing is needed.  
Setting EN_RAMP to 1 causes all the channels to output a repeating full-scale ramp pattern. The ramp  
increments from zero code to full-scale code in steps of 1 LSB every clock cycle. After hitting the full scale  
code, it returns back to zero code and ramps again.  
The device can also be programmed to output a constant code by setting SINGLE_CUSTOM_PAT to 1, and  
programming the desired code in BITS_CUSTOM1<13:0>. In this mode, BITS_CUSTOM1<13:0> take the  
place of the 14-bit ADC data at the output, and are controlled by LSB-first and MSB-first modes the same way  
as normal ADC data are.  
The device may also be made to toggle between two consecutive codes, by programming  
DUAL_CUSTOM_PAT to 1. The two codes are represented by the contents of BITS_CUSTOM1<13:0> and  
BITS_CUSTOM2<13:0>.  
In addition to custom patterns, the device may also be made to output two preset patterns:  
Deskew patten – Set using PAT_DESKEW, this mode replaces the 14-bit ADC output D<13:0> with the  
0101010101010101 word.  
Sync pattern – Set using PAT_SYNC, the normal ADC word is replaced by a fixed 11111110000000  
word.  
PRBS patterns: The device can give 9 bit or 23 bit LFSR Pseudo random pattern on the channel outputs  
that are controlled by the register 0x25. To enable the PRBS pattern PRBS_TP_EN bit in the register  
0x25 needs to be set. Default is the 23 bit LFSR but 9 bit LFSR can be chosen by setting  
PRBS_MODE_2 bit. The seed value for the PRBS patterns can be chosen by enabling the  
PRBS_SEED_FROM_REG bit to 1 and the value written to the PRBS_SEED registers in 0x24 and 0x23.  
Note that only one of the above patterns should be active at any given instant.  
36  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
BIT-BYTE-WORD WISE OUTPUT  
ADDR. D15 D14 D13 D12 D11 D10 D9  
(HEX)  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
x
EN_BITORDER  
BIT_WISE  
0
x
28  
1
X
X
X
X
X
X
X
X
EN_WORDWISE_B  
Y_CH<7:>  
Register 0x28 can select the LVDS ADC output as bit-wise,byte-wise or word-wise in the two wire mode.  
Figure 47 and Figure 48 illustrate the details.  
Figure 47. 12-Bit Word Wise  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Figure 48. 14-Bit Word Wise  
DIGITAL PROCESSING BLOCKS  
The ADS5294 integrates a set of commonly useful digital functions that can be used to ease system design.  
These functions are shown in the digital block diagram of Figure 49 and described in the following sections.  
38  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
LVDS OUTPUTS  
Test Patterns  
-
Channel 1 ADC Data  
Channel  
1
14-BIT  
Ramp  
OUT 1A  
OUT 1B  
Serializer  
Wire  
Serializer  
Wire  
1
Average of 2  
channels  
Built-in Coefficients  
2
24-tap filter  
(Even Tap)  
Decimation  
by or  
by  
2
Channel  
2
3
4
4
OUT 2A  
OUT 2B  
23-tap filter  
(Odd Tap)  
Serializer  
Channel 2 ADC Data  
Channel 3 ADC Data  
Channel 4 ADC Data  
Wire  
Serializer  
Wire  
1
Average of 4  
channels  
Custom Coefficients  
MAPPER  
Decimation  
2
24-tap filter  
(Even Tap)  
by  
by  
2
4
or  
or  
MULTIPLEXER  
8 : 8  
OUT 3A  
OUT 3B  
23-tap filter  
(Odd Tap)  
Channel  
by  
8
Serializer  
GAIN  
Wire  
Serializer  
Wire  
1
(0 to 12 dB ,  
1
dB steps )  
12-tap filter  
2
OUT 4A  
OUT 4B  
Channel  
Serializer  
Wire  
Serializer  
Wire  
1
DIGITAL PROCESSING BLOCK for CHANNEL 1  
2
½ ADS529x  
Figure 49. Digital Processing Block Diagram  
PROGRAMMABLE DIGITAL GAIN  
ADDR.  
D15 D14 D13 D12 D11 D10 D9  
(HEX)  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
2A  
X
X
X
X
GAIN_CH1<3:0>  
GAIN_CH2<3:0>  
GAIN_CH3<3:0>  
GAIN_CH4<3:0>  
GAIN_CH5<3:0>  
GAIN_CH6<3:0>  
GAIN_CH7<3:0>  
GAIN_CH8<3:0>  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2B  
X
X
X
X
X
X
X
X
In applications where the full scale swing of the analog input signal is much less than the 2 VPP range supported  
by the ADS5294, a programmable gain can be set to achieve the full-scale output code even with a lower analog  
input swing. The programmable gain for each channel can be individually set using a set of four bits, indicated as  
GAIN_CHN<3:0> for Channel N. The gain setting is coded in binary from 0-12 dB as shown in Table 4.  
Table 4. Gain Setting for Channel N  
GAIN_CHN<3>  
GAIN_CHN<2>  
GAIN_CHN<1>  
GAIN_CHN<0>  
CHANNEL N GAIN SETTING  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 dB  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
7 dB  
8 dB  
9 dB  
10 dB  
11 dB  
12 dB  
Do not use  
Do not use  
Do not use  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s) :ADS5294  
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
CHANNEL AVERAGING  
ADDR.  
D15 D14 D13 D12 D11 D10 D9  
(HEX)  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
29  
X
EN_CHANNEL_AVG  
AVG_CTRL4<1:0>  
AVG_CTRL3<1:0>  
AVG_CTRL2<1:0>  
AVG_CTRL1<1:0>  
AVG_CTRL8<1:0>  
AVG_CTRL7<1:0>  
AVG_CTRL6<1:0>  
AVG_CTRL5<1:0>  
2C  
X
X
X
X
X
X
X
X
X
X
X
X
2D  
X
X
X
X
In the default mode of operation, the LVDS outputs <8..1> contain the data of the ADC Channels <8..1>. By  
setting the EN_CHANNEL_AVG bit to ‘1’, the outputs from multiple channels can be averaged. The resulting  
outputs from the Channel averaging block (which is bypassed in the default mode) are referred to as Bins. The  
contents of the Bins <8..1> come out on the LVDS outputs <8..1>. The contents of each of the 8 bins are  
determined by the register bits marked AVG_CTRLn<1:0> where n stands for the Bin number. The different  
settings are shown below:  
AVG_CTRL1<1>  
AVG_CTRL1<0>  
Contents of Bin 1  
Zero  
0
0
0
1
ADC Channel 1  
1
0
Average of ADC Channel 1, 2  
Average of ADC Channel 1, 2, 3, 4  
Contents of Bin 2  
Zero  
1
1
AVG_CTRL2<1>  
AVG_CTRL2<0>  
0
0
0
1
ADC Channel 2  
1
0
ADC Channel 3  
1
1
Average of ADC Channel 3, 4  
Contents of Bin 3  
Zero  
AVG_CTRL3<1>  
AVG_CTRL3<0>  
0
0
0
1
ADC Channel 3  
1
0
ADC Channel 2  
1
1
Average of ADC Channel 1, 2  
Contents of Bin 4  
Zero  
AVG_CTRL4<1>  
AVG_CTRL4<0>  
0
0
0
1
ADC Channel 4  
1
0
Average of ADC Channel 3, 4  
Average of ADC Channel 1, 2, 3, 4  
Contents of Bin 5  
Zero  
1
1
AVG_CTRL5<1>  
AVG_CTRL5<0>  
0
0
0
1
ADC Channel 5  
1
0
Average of ADC Channel 5, 6  
Average of ADC Channel 5, 6, 7, 8  
Contents of Bin 6  
Zero  
1
1
AVG_CTRL6<1>  
AVG_CTRL6<0>  
0
0
0
1
ADC Channel 6  
1
0
ADC Channel 7  
1
1
Average of ADC Channel 7, 8  
Contents of Bin 7  
Zero  
AVG_CTRL7<1>  
AVG_CTRL7<0>  
0
0
40  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
AVG_CTRL1<1>  
AVG_CTRL1<0>  
Contents of Bin 1  
ADC Channel 7  
0
1
1
0
ADC Channel 6  
1
1
Average of ADC Channel 6, 5  
Contents of Bin 8  
AVG_CTRL8<1>  
AVG_CTRL8<0>  
0
0
1
1
0
1
0
1
Zero  
ADC Channel 8  
Average of ADC Channel 7, 8  
Average of ADC Channel 5, 6, 7, 8  
When the contents of a particular bin is set to Zero, then the LVDS buffer corresponding to that bin gets  
automatically powered down.  
DECIMATION FILTER  
ADDR.  
(HEX)  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
NAME  
29  
X
GLOBAL_EN_FILTER  
FILTER1_COEFF_SET<2:0>  
FILTER1_RATE<2:0>  
ODD_TAP1  
2E  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
USE_FILTER1  
2F  
30  
31  
32  
33  
34  
35  
FILTER2_COEFF_SET<2:0>  
FILTER2_RATE<2:0>  
ODD_TAP2  
USE_FILTER2  
FILTER3_COEFF_SET<2:0>  
FILTER3_RATE<2:0>  
ODD_TAP3  
USE_FILTER3  
FILTER4_COEFF_SET<2:0>  
FILTER4_RATE<2:0>  
ODD_TAP4  
USE_FILTER4  
FILTER5_COEFF_SET<2:0>  
FILTER5_RATE<2:0>  
ODD_TAP5  
USE_FILTER5  
FILTER6_COEFF_SET<2:0>  
FILTER6_RATE<2:0>  
ODD_TAP6  
USE_FILTER6  
FILTER7_COEFF_SET<2:0>  
FILTER7_RATE<2:0>  
ODD_TAP7  
USE_FILTER7  
FILTER8_COEFF_SET<2:0>  
FILTER8_RATE<2:0>  
ODD_TAP8  
USE_FILTER8  
The decimation filter is implemented as 24-tap FIR with symmetrical coefficients (each coefficient is 12-bit  
signed). The filter equation is:  
æ 1 ö  
y(n) =  
´ (h ´ x(n)+h ´ x(n -1)+h ´ x(n - 2)+...+h ´ x(n -11)+h ´ x(n -12)...+h ´ x(n - 22)+h ´ x(n - 23)  
é ù  
0 1 2 11 11 1 0  
ç
÷
ë
û
11  
è 2  
ø
(1)  
41  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s) :ADS5294  
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
By setting the register bit <ODD_TAPn> = 1, a 23-tap FIR is implemented:  
æ
ö
1
y(n)=  
´é(h ´x(n)+h ´x(n-1)+h ´x(n-2)+...+h ´x(n-10)+h ´x(n -11)+h ´x(n-12)...+h ´x(n-21)+h ´x(n -22)ù  
ç
÷
0
1
2
10  
11  
10  
1
0
ë
û
ç
÷
11  
2
è
ø
(2)  
In Equation 1 and Equation 2, h0, h1 …h11 are 12 bit signed representation of the coefficients, x(n) is the input  
data sequence to the filter and y(n) is the filter output sequence.  
A decimation filter can be introduced at the output of each channel. To enable this feature, the  
GLOBAL_EN_FILTER should be set to ‘1’. Setting this bit to ‘1’ increases the overall latency of each channel to  
20 clock cycles irrespective of whether the filter for that particular channel has been chosen or not (using the  
USE_FILTER bit). The bits marked FILTERn_COEFF_SET<2:0>, FILTERn_RATE<2:0>, ODD_TAPn and  
USE_FILTERn represent the controls for the filter for Channel n. Note that these bits are functional only when  
the GLOBAL_EN_FILTER gets set to ‘1’. For illustration, the controls for channel 1 are listed in Table 5:  
The USE_FILTER1 bit determines whether the filter for Channel 1 is used or not. When this bit is set to ‘1’, the  
filter for channel 1 is enabled. When this bit is set to ‘0’, the filter for channel 1 is disabled but the channel data  
passes through a dummy delay so that the overall latency of channel 1 is 20 clock cycles. With the  
USE_FILTER1 bit set to ‘1’, the characteristics of the filter can be set by using the other sets of bits.  
The ADS5294 has 6 sets of filter coefficients stored in memory. Each of these sets define a unique pass band in  
the frequency domain and contain 12 coefficients (each coefficient is 12-bit long). These 12 coefficients are used  
to implement either a symmetric 24-tap (even-tap) filter, or a symmetric 23-tap (odd-tap) filter. Setting the register  
bit ODD_TAP1 to ‘1’ enables the odd-tap configuration (the default is even tap with this bit set to ‘0’) for Channel  
1. The bits FILTER1_COEFF_SET<2:0> can be used to choose the required set of coefficients for Channel 1.  
The passbands corresponding to of each of these filter coefficient sets is shown in Figure 50  
Set 1  
Set 2  
H(f)  
H(f)  
0.2*Fs  
0.3*Fs  
0.2*Fs  
0.3*Fs  
0.5*Fs  
f
f
Set 3  
Set 4  
H(f)  
H(f)  
0.1*Fs  
0.15*Fs  
0.075*Fs  
0.275*Fs  
f
f
0.225*Fs  
0.125*Fs  
Set 5  
Set 6  
H(f)  
H(f)  
0.275*Fs  
0.4*Fs 0.5*Fs  
f
f
0.375*Fs  
0.225*Fs  
0.35*Fs  
Figure 50. Filter Types  
42  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Coefficient Sets 1 and 2 are the most appropriate when Decimation by a factor of 2 is required, whereas  
Coefficient Sets 3,4,5,6 are appropriate when Decimation by a factor of 4 is desired. The computation rate of the  
filter output can be independently set using the bits FILTERn_RATE<2:0>. The settings are shown in Table 5.  
Table 5. Digital Filters  
<USE  
FILTER  
CHn>  
<DATA  
RATE>  
FILTERn  
RATE>  
<FILTERn  
COEFF SET>  
<EN CUSTOM  
FILT>  
DECIMATION  
TYPE OF FILTER  
<ODD TAP>  
Built-in low-pass odd-tap filter (pass band = 0 to fS/4)  
Built-in high-pass odd-tap filter (pass band = 0 to fS/4)  
Built-in low-pass even-tap filter (pass band = 0 to fS/8)  
Built-in first band pass even tap filter(pass band = fS/8 to fS/4)  
001  
001  
010  
010  
000  
000  
001  
001  
000  
001  
010  
011  
1
1
0
0
1
1
1
1
0
0
0
0
Decimate by 2  
Decimate by 4  
Built-in second band pass even tap filter(pass band = fS/4 to 3  
fS/8)  
010  
001  
100  
0
1
0
Built-in high pass odd tap filter (pass band = 3 fS/8 to fS/2)  
Custom filter (user programmablecoefficients)  
Custom filter (user programmablecoefficients)  
Custom filter (user programmablecoefficients)  
Custom filter (user programmablecoefficients)  
010  
001  
010  
011  
001  
000  
001  
100  
101  
000  
000  
000  
1
1
1
1
1
1
0
1
1
1
1
Decimate by 2  
Decimate by 4  
Decimate by 8  
Bypass decimation  
0 and 1  
0 and 1  
0 and 1  
0 and 1  
The choice of the odd/even tap setting, filter coefficient set and the filter rate uniquely determines the filter to be  
used. In addition to the preset filter coefficients, the coefficients for each of the eight filter channels can be  
programmed by the user. Each of the eight channels has 12 programmable coefficients, each 12-bit long. The 96  
registers with addresses from 5A (Hex) to B9 (Hex) are used to program these 8 sets of 12 programmable  
coefficients. Registers 5A to 65 are used to program the 1st filter, with the 1st coefficient occupying the bits  
D11..D0 of register 5A, the 2nd coefficient occupying the bits D11..D0 of register 5B, and so on. Similarly  
registers 66(Hex) to 71(Hex) are used to program the 2nd filter, and so on.  
When programming the filter coefficients, the D15 bit of each of the 12 registers corresponding to that filter  
should be set to ‘1’. If the D15 bit of these 12 registers is set to ‘0’, then the preset coefficient (as programmed by  
FILTERn_COEFF_SET<2:0>) is used even if the bits D11..D0 get programmed. By setting or not setting the D15  
bits of individual filter channels to ‘1’, some filters can be made to operate with preset coefficient sets, and some  
others can be made to simultaneously operate with programmed coefficient sets.  
HIGH PASS FILTER  
ADDR.  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
(HEX)  
2E  
2E  
2F  
2F  
30  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
HPF_corner_CH1  
HPF_EN_CH1  
X
X
X
X
X
X
X
X
HPF_corner_CH2  
HPF_EN_CH2  
HPF_corner_CH3  
HPF_EN_CH3  
30  
31  
HPF_corner_CH4  
HPF_EN_CH4  
31  
32  
HPF_corner_CH5  
HPF_EN_CH5  
32  
33  
HPF_corner_CH6  
HPF_EN_CH6  
33  
34  
HPF_corner_CH7  
HPF_EN_CH7  
34  
35  
HPF_corner_CH8  
HPF_EN_CH8  
35  
This group of registers controls the characteristics of a digital high pass transfer function applied to the output  
data, useing Equation 3:  
2k  
2k +1  
y(n) =  
[x(n) - x(n -1)+y(n -1)]  
(3)  
43  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s) :ADS5294  
 
 
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Where k is set as described by the HPF_corner registers (one for each channel). Also the HPF_EN bit in each  
register needs to be set to enable the HPF feature for each channel.  
BIT CLOCK PROGRAMMABILITY  
ADDR.  
(HEX)  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
42  
X
X
PHASE_DDR<1:0>  
EN_SDR  
46  
1
X
46  
1
X
FALL_SDR  
The output interface of the ADS5294 is normally a DDR interface, with the LCLK rising edge and falling edge  
transitions in the middle of alternate data windows. This default phase is shown in Figure 51.  
PHASE_DDR<1:0> = 10  
ADCLKp  
LCLKp  
OUTp  
Figure 51. Default Phase of LCLK  
The phase of LCLK can be programmed relative to the output frame clock and data using bits  
PHASE_DDR<1:0>. The LCLK phase modes are shown in Figure 52.  
PHASE_DDR<1:0> = 00  
PHASE_DDR<1:0> = 10  
ADCLKp  
ADCLKp  
LCLKp  
OUTp  
LCLKp  
OUTp  
PHASE_DDR<1:0> = 01  
PHASE_DDR<1:0> = 11  
ADCLKp  
LCLKp  
OUTp  
ADCLKp  
LCLKp  
OUTp  
Figure 52. Phase Programmability Modes for LCLK  
44  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
In addition to programming the phase of the LCLK in the DDR mode, the device can also be made to operate in  
SDR mode by setting bit EN_SDR to 1. In the mode, the bit clock (LCLK) is output at 14X times the input clock,  
or twice the rate as in DDR mode. Depending on the state of FALL_SDR, the LCLK may be output in either of  
the two manners shown in Figure 53. As can be seen in Figure 53, only the LCLK rising (or falling edge) is used  
to capture the output data in SDR mode. The SDR mode does not work well beyond 40 MSPS because the  
LCLK frequency will become very high.  
EN_SDR = 1, FALL_SDR = 0  
ADCLKp  
LCLKp  
OUTp  
EN_SDR = 1, FALL_SDR = 1  
ADCLKp  
LCLKp  
OUTp  
Figure 53. SDR Interface Modes  
OUTPUT DATA RATE CONTROL  
ADDR. D15 D14 D13 D12 D11 D10 D9  
(HEX)  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
38  
DATA_RATE<1> DATA_RATE<0>  
In the default mode of operation, the data rate at the output of the ADS5294 is at the sampling rate of the ADC.  
This is true even when the custom pattern generator is enabled. In addition, both output data rate and sampling  
rate can also be configured to a sub-multiple of the input clock rate.  
With the DATA_RATE<1:0> control, the output data rate can be programmed to be a sub-multiple of the ADC  
sampling rate. This feature can be used to lower the output data rate, for example when the decimation filter is  
used. Without enabling the decimation filter, the sub-multiple ADC sampling rate feature still can be used.  
The different settings are listed below:  
DATA_RATE<1>  
DATA_RATE<0>  
Output data rate  
0
0
1
1
0
1
0
1
Same as ADC sampling rate  
1/2 of ADC sampling rate  
1/4 of ADC sampling rate  
1/8 of ADC sampling rate  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s) :ADS5294  
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
SYNCHRONIZATION PULSE  
ADDR.  
(HEX)  
D15  
D14  
D13  
D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
25  
02  
TP_HARD_SYNC  
EN_SYNC  
The SYNC pin can be used to synchronize the data output from channels within the same chip or from channels  
across chips when decimation filters are used with reduced output data rate.  
When the decimation filters are used (for example, the decimate by two filter is enabled), then, effectively, the  
device outputs one digital code for every two analog input samples. If the SYNC function is not enabled, then the  
filters are not synchronized (even within a chip) – this means that one channel may be sending out codes  
corresponding to input samples N, N+1 and so on, while another may be sending out code corresponding to  
N+1, N+2 and so on.  
To achieve synchronization, the SYNC pulse must arrive at all the ADS529x chips at the same time instant (as  
shown in the timing diagram of Figure 54  
The ADS5294 generates an internal synchronization signal which is used to reset the internal clock dividers used  
by the decimation filter.  
Using the SYNC signal in this way ensures that all channels will output digital codes corresponding to the same  
set of input samples.  
SYNC Timings:  
Synchronizing the filters using the SYNC pin is enabled by default. No register bits are required to be  
written. Even EN_SYNC bit is not required.It is important for register bit TP_HARD_SYNC to be 0 for  
this mode to work. As shown by Figure 54, the SYNC rising edge can be positioned anywhere within the  
window. The width of the SYNC must be at least one clock cycle.  
0ns  
ADC Input  
Clock  
tCLK/2  
-1ns  
tCLK/2  
t : -1ns< t < tCLK/2  
d
d
SYNC  
t
>
width  
1clock cycle  
Figure 54. Synchronization Pulse Timing  
Note that the SYNC DOES NOT synchronize the sampling instants of the ADC across chips. All channels within  
a single chip sample their analog inputs simultaneously. To ensure that channels across two chips will sample  
their analog inputs simultaneously, the input clock needs to be routed to both chips with identical length. This  
ensuring that the input clocks arrive at both the chips at the same time. This needs to be taken care of in the  
board design and routing. The SYNC pin cannot be used to synchronize the sampling instants.  
In addition to the above, the SYNC can also be used to synchronize the RAMP test patterns across channels. In  
order to synchronize the test patterns, TP_HARD_SYNC must be set as 1. Setting TP_HARD_SYNC =1 actually  
disables the sync of the filters.  
46  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
External Reference Mode of Operation  
The ADS5294 supports an external reference mode of operation in one of two ways:  
a. By forcing the reference voltages on the REFT and REFB pins.  
b. By applying the reference voltage on VCM pin.  
This mode can be used to operate multiple ADS5294 chips with the same (externally applied) reference voltage.  
Using the REF pins:  
For normal operation, the device requires two reference voltages, REFT and REFB. By default, the device  
generates these two voltages internally. To enable the external reference mode, set the register bits as shown in  
Table 6 . This powers down the internal reference amplifier and the two reference voltages can be forced directly  
on the REFT and REFB pins as VREFT = 1.45V ± 50mV and VREFB = 0.45 V ±50 mV.  
Note that the relation between the ADC full-scale input voltage and the applied reference voltages is  
Full-scale input voltage = 2 x (VREFT – VREFB)  
(4)  
Using the VCM pin:  
In this mode, an external reference voltage VREFIN can be applied to the VCM pin such that  
Full-scale input voltage = 2 x VREFIN  
(5)  
To enable this mode, set the register bits as shown in Table 6. This changes the function of the VCM pin to an  
external reference input pin. The voltage applied on VCM must be 1.5 V ±50 mV.  
Table 6. External reference function  
Function  
EN_HIGH_ADDRS  
EN_EXT_REF  
EXT_REF_VCM  
External reference using REFT/REFB pins  
External reference using VCM pin  
1
1
1
1
00  
11  
DATA OUTPUT FORMAT MODES  
ADDR.  
D15 D14 D13 D12 D11 D10  
(HEX)  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
46  
46  
1
1
X
BTC_MODE  
MSB_FIRST  
X
The ADC output, by default, is in Straight offset binary mode. Programming the BTC_MODE bit to '1' inverts the  
MSB, and the output becomes Binary 2’s complement mode. Also, by default, the first bit of the frame (following  
the rising edge of CLKP) is the LSB of the ADC output. Programming the MSB_FIRST mode inverts the bit order  
in the word, and the MSB is output as the first bit following CLKP rising edge.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
PROGRAMMABLE MAPPING BETWEEN INPUT CHANNELS AND OUTPUT PINS  
ADDR.  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
(HEX)  
NAME  
50  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
X
X
X
MAP_CH1234_TO_OUT1A  
MAP_CH1234_TO_OUT1B  
MAP_CH1234_TO_OUT2A  
MAP_CH1234_TO_OUT2B  
MAP_CH1234_TO_OUT3A  
MAP_CH1234_TO_OUT3B  
MAP_CH1234_TO_OUT4A  
MAP_CH1234_TO_OUT4B  
MAP_CH5678_TO_OUT5B  
MAP_CH5678_TO_OUT5A  
MAP_CH5678_TO_OUT6B  
MAP_CH5678_TO_OUT6A  
MAP_CH5678_TO_OUT7B  
MAP_CH5678_TO_OUT7A  
MAP_CH5678_TO_OUT8B  
MAP_CH5678_TO_OUT8A  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
51  
X
X
X
X
52  
53  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
54  
55  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
The ADS5294 has 16 pairs of LVDS channel outputs. The mapping of ADC channels to LVDS output channels is  
programmable to allow for flexibility in board layout. The 16 LVDS channel outputs are split in to 2 groups of 8  
LVDS pairs. Within each group 4 ADC input channels can be multiplexed in to the 8 LVDS pairs depending on  
the modes of operation whether it is 1 wire mode or 2 wire mode.  
Input channels 1 to 4 can be mapped to any of the LVDS outputs OUT1A/B to OUT4A/B (using the  
MAP_CH1234_TO_OUTnA/B). Similarly, input channels 5 to 8 can be mapped to any of the LVDS outputs  
OUT5A/B to OUT8A/B (using the MAP_CH5678_TO_OUTnA/B). The block diagram of the mapping is listed in  
Figure 55.  
48  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Channel 8 data  
MAP_CH5678_to_OUTn<3:0> = 0000  
n = 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B  
Channel 7 data  
MAP_CH5678_to_OUTn<3:0> = 0010  
OUTn  
Channel 6 data  
MAP_CH5678_to_OUTn<3:0> = 0100  
MAP_CH5678_to_OUTn<3:0> = 1xxx, the  
unused OUTn LVDS buffer is powered down.  
Channel 5 data  
MAP_CH5678_to_OUTn<3:0> = 0110  
Channel 4 data  
MAP_CH1234_to_OUTn<3:0> = 0110  
Channel 3 data  
MAP_CH1234_to_OUTn<3:0> = 0100  
OUTn  
Channel 2 data  
MAP_CH1234_to_OUTn<3:0> = 0010  
MAP_CH1234_to_OUTn<3:0> = 1xxx, the  
unused OUTn LVDS buffer is powered down.  
Channel 1 data  
MAP_CH1234_to_OUTn<3:0> = 0000  
(a) 1-wire mode  
Channel 1 LSB Byte data<7:0>  
MAP_CH1234_to_OUTn<3:0> = 0000  
Channel 1 MSB Byte data<15:8>  
MAP_CH1234_to_OUTn<3:0> = 0001  
Channel 2 LSB Byte data<7:0>  
MAP_CH1234_to_OUTn<3:0> = 0010  
n = 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B  
OUTn  
Channel 2 MSB Byte data<15:8>  
MAP_CH1234_to_OUTn<3:0> = 0011  
Channel 3 LSB Byte data<7:0>  
MAP_CH1234_to_OUTn<3:0> = 0100  
MAP_CH1234_to_OUTn<3:0> = 1xxx, the  
unused OUTn LVDS buffer is powered down.  
Channel 3 MSB Byte data<15:8>  
MAP_CH1234_to_OUTn<3:0> = 0101  
Channel 4 LSB Byte data<7:0>  
MAP_CH1234_to_OUTn<3:0> = 0110  
Channel 4 MSB Byte data<15:8>  
MAP_CH1234_to_OUTn<3:0> = 0011  
Channel 8 LSB Byte data<7:0>  
MAP_CH5678_to_OUTn<3:0> = 0000  
Channel 8 MSB Byte data<15:8>  
MAP_CH5678_to_OUTn<3:0> = 0001  
Channel 7 LSB Byte data<7:0>  
MAP_CH5678_to_OUTn<3:0> = 0010  
n = 5A, 5B, 6A, 6B, 7A, 7B, 7A, 7B  
OUTn  
Channel 7 MSB Byte data<15:8>  
MAP_CH5678_to_OUTn<3:0> = 0011  
Channel 6 LSB Byte data<7:0>  
MAP_CH5678_to_OUTn<3:0> = 0100  
MAP_CH5678_to_OUTn<3:0> = 1xxx, the  
unused OUTn LVDS buffer is powered down.  
Channel 6 MSB Byte data<15:8>  
MAP_CH5678_to_OUTn<3:0> = 0101  
Channel 5 LSB Byte data<7:0>  
MAP_CH5678_to_OUTn<3:0> = 0110  
Channel 5 MSB Byte data<15:8>  
MAP_CH5678_to_OUTn<3:0> = 0011  
(b) 2-wire mode  
Figure 55. Input and Output Channel Mapping  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
Registers 0x50 to 0x55 control the multiplexing options as below:  
MAP_CH1234_to_OUTn<3:0>  
Mapping  
Used in 1-wire mode?  
Used in 2-wire mode?  
0000  
0001  
ADC input channel IN1 to OUTn  
Y
N
Y, for LSB byte  
Y, for MSB byte  
ADC input channel IN1 to OUTn (2-  
wire only)  
0010  
0011  
ADC input channel IN2 to OUTn  
Y
N
Y, for LSB byte  
Y, for MSB byte  
ADC input channel IN2 to OUTn (2-  
wire only)  
0100  
0101  
ADC input channel IN3 to OUTn  
Y
N
Y, for LSB byte  
Y, for MSB byte  
ADC input channel IN3 to OUTn (2-  
wire only)  
0110  
0111  
ADC input channel IN4 to OUTn  
Y
N
Y, for LSB byte  
Y, for MSB byte  
ADC input channel IN4 to OUTn (2-  
wire only)  
1xxx  
LVDS output buffer OUTn is powered  
down  
MAP_CH5678_to_OUTn<3:0> Mapping  
Used in 1-wire mode?  
Used in 2-wire mode?  
Y, for LSB byte  
0000  
0001  
ADC input channel IN8 to OUTn  
Y
N
ADC input channel IN8 to OUTn (2-  
wire only)  
Y, for MSB byte  
0010  
0011  
ADC input channel IN7 to OUTn  
Y
N
Y, for LSB byte  
Y, for MSB byte  
ADC input channel IN7 to OUTn (2-  
wire only)  
0100  
0101  
ADC input channel IN6 to OUTn  
Y
N
Y, for LSB byte  
Y, for MSB byte  
ADC input channel IN6 to OUTn (2-  
wire only)  
0110  
0111  
ADC input channel IN5 to OUTn  
Y
N
Y, for LSB byte  
Y, for MSB byte  
ADC input channel IN5 to OUTn (2-  
wire only)  
1xxx  
LVDS output buffer OUTn is powered  
down  
50  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
The default mapping for 1-wire and 2-wire modes is:  
Table 7. Mapping for 1-wire Mode  
Analog Input channel  
Channel IN1  
Channel IN2  
Channel IN3  
Channel IN4  
Channel IN5  
Channel IN6  
Channel IN7  
Channel IN8  
LVDS Output  
OUT1A  
OUT2A  
OUT3A  
OUT4A  
OUT5A  
OUT6A  
OUT7A  
OUT8A  
Note: In the single wire mode with default register settings, ADC data is available only on OUTnA.  
Table 8. Mapping for 2-wire Mode  
Analog Input channel  
Channel IN1  
Channel IN2  
Channel IN3  
Channel IN4  
Channel IN5  
Channel IN6  
Channel IN7  
Channel IN8  
LVDS Output  
OUT1A, OUT1B  
OUT2A, OUT2B  
OUT3A, OUT3B  
OUT4A, OUT4B  
OUT5A, OUT5B  
OUT6A, OUT6B  
OUT7A, OUT7B  
OUT8A, OUT8B  
Note: In the 2-wire mode, the ADC data is available on both OUTnA and OUTnB.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS5294 is an octal channel, 14-bit high-speed ADC with sample rate up to 80 MSPS that runs off a single  
1.8 V supply. All eight channels of the ADS5294 simultaneously sample their analog inputs at the rising edge of  
the input clock. The sampled signal is sequentially converted by a series of small resolution stages, with the  
outputs combined in a digital correction logic block. At every clock, edge the sample propagates through the  
pipeline resulting in a data latency of 11 clock cycles.  
The 14 data bits of each channel are serialized and sent out in either 1-wire (one pair of LVDS pins are used) or  
2-wire (two pairs of LVDS pins are used) mode, depending on the LVDS output rate. When the data is output in  
the 2-wire mode, it can reduce the serial data rate of the outputs, especially at higher sampling rates. Hence, low  
cost FPGAs can be used to capture 80 MSPS/14bit data. Alternately, at lower sample rates, the 14-bit data can  
be output as a single data stream over one pair of LVDS pins (1-wire mode). The device outputs a bit clock at 7x  
and frame clock at 1x times the sample frequency in the 14-bit mode.  
This 14-bit ADC achieves approximately 76 dBFS SNR at 80 MSPS. Its output resolution can be configured as  
12-bit and 10-bit if necessary. 70 dBFS and 61 dBFS SNRs are achieved when the ADS5294’s output resolution  
is 12-bit and 10-bit respectively.  
ANALOG INPUT  
The analog inputs consist of a switched-capacitor based, differential sample and hold architecture. This  
differential topology results in very good AC performance even for high input frequencies at high sampling rates.  
The INP and INM pins are internally biased around a common-mode voltage of Vcm (0.95 V). For a full-scale  
differential input, each input pin (INP and INM) must swing symmetrically between Vcm + 0.5V and Vcm - 0.5V,  
resulting in a 2 VPP differential input swing. Figure 56 illustrates the equivalent circuit of the input sampling circuit.  
Figure 56. Analog Input Circuit Model  
DRIVE CIRCUIT  
For optimum performance, the analog inputs must be driven differentially. This improves the common-mode  
noise immunity and even order harmonic rejection. A 5 Ω to 15 Ω resistor in series with each input pin is  
recommended to damp out ringing caused by package parasitic.  
The drive circuit shows an R-C filter across the analog input pins. The purpose of the filter is to absorb the  
glitches caused by the opening and closing of the sampling capacitors.  
52  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
0.1 mF  
10 W  
INP  
Differential  
Input  
2 pF  
INM  
ADS259x  
10 W  
0.1 mF  
Figure 57. Analog Input Drive Circuit  
Large and Small Signal Input Bandwidth  
The small signal bandwidth of the analog input circuit is high, around 550 MHz. When using an amplifier to drive  
the ADS5294, the total noise of the amplifier up to the small signal bandwidth must be considered. The large  
signal bandwidth of the device depends on the amplitude of the input signal. The ADS5294 supports 2 VPP  
amplitude for input signal frequency up to 80 MHz. For higher frequencies (80 MHz), the amplitude of the input  
signal must be decreased proportionally. For example, at 160 MHz, the device supports a maximum of 1 VPP  
signal.  
INPUT CLOCK  
The ADS5294 is configured by default to operate with a single-ended input clock – CLKP is driven by a CMOS  
clock and CLKM is tied to GND. The device can automatically detect a single-ended or differential clock. If CLKM  
is grounded, the device treats clock as a single-ended clock. Operating with a low-jitter differential clock usually  
gives better SNR performance, especially at input frequencies greater than 30 MHz. Typical clock termination  
structures are listed in Figure 58 andFigure 59.  
Clock buffer  
Lpkg  
~ 2 nH  
5 Ω  
CLKP  
Cbond  
~ 0.5 pF  
Ceq  
Ceq  
6 pF  
6 pF  
5 kΩ  
Resr  
~ 200 Ω  
VCM  
5 kΩ  
Lpkg  
~ 2 nH  
5 Ω  
CLKM  
Cbond  
~ 0.5 pF  
Resr  
~ 200 Ω  
Ceq is approximately 1 to 3 pF, equivalent input capacitance of clock buffer.  
Figure 58. Equivalent Circut of the Input Clock Circuit  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
SINGLE-ENDED CLOCK CONNECTIONS  
CMOS  
CLOCK IN  
CLKP  
VCM  
CLKM  
ADS529x  
Figure 59. Single-Ended Clock Drive Circuit  
DIFFERENTIAL CLOCK CONNECTIONS  
DIFFERENTIAL CLOCK CONNECTIONS  
0.1 mF  
0.1 mF  
CLKP  
CLKM  
CLKP  
CLKM  
R
Differential  
LVPECL  
term  
Differential sine-  
wave clock input  
clock input  
0.1 mF  
R
ADS529x  
0.1 mF  
ADS529x  
term  
0.1 mF  
CLKP  
Differential  
LVDS  
R
term  
clock input  
CLKM  
0.1 mF  
ADS529x  
54  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
DIGITAL HIGH PASS IIR FILTER  
DC offset is often observed at ADC input signals. For example, in ultrasound applications, the DC offset from  
VGA (variable Gain amplifier) varies at different gains. Such a variable offset can introduce artifacts in ultrasound  
images especially in Doppler modes. Analog filter between ADC and VGA can be used with added noise and  
power. Digital filter achieves the same performance as analog filters and has more flexibility in fine tuning  
multiple characteristics.  
ADS5294 includes optional 1st order digital high-pass IIR filter. Its block diagram is shown in Figure 60 as well as  
its transfer function  
2k  
2k +1  
y(n) =  
[x(n) - x(n -1)+y(n -1)]  
(6)  
Figure 60. HP Filter Block Diagram  
Figure 61 shows its characteristics at k=2 to 10.  
3
0
−3  
−6  
−9  
−12  
−15  
−18  
−21  
−24  
−27  
−30  
−33  
−36  
−39  
−42  
K=2  
K=3  
K=4  
K=5  
K=6  
K=7  
K=8  
K=9  
K=10  
−45  
0.02  
0.1  
1
10 15  
Input Signal Frequency (MHz)  
Figure 61. HP Filter Amplitude Response at K = 2 to 10  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s) :ADS5294  
 
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
DECIMATION FILTER  
ADS5294 includes an option to decimate the ADC output data using filters. Once the decimation is enabled, the  
decimation rate, frequency band of the filter can be programmed. In addition, the user can select either the pre-  
defined or custom coefficients.  
Table 9. Digital Filters  
<USE  
FILTER  
CHn>  
<DATA  
RATE>  
FILTERn  
RATE>  
<FILTERn  
COEFF SET>  
<EN CUSTOM  
FILT>  
DECIMATION  
TYPE OF FILTER  
<ODD TAP>  
Built-in low-pass odd-tap filter (pass band = 0 to fS/4)  
Built-in high-pass odd-tap filter (pass band = 0 to fS/4)  
Built-in low-pass even-tap filter (pass band = 0 to fS/8)  
Built-in first band pass even tap filter(pass band = fS/8 to fS/4)  
001  
001  
010  
010  
000  
000  
001  
001  
000  
001  
010  
011  
1
1
0
0
1
1
1
1
0
0
0
0
Decimate by 2  
Decimate by 4  
Built-in second band pass even tap filter(pass band = fS/4 to 3  
fS/8)  
010  
001  
100  
0
1
0
Built-in high pass odd tap filter (pass band = 3 fS/8 to fS/2)  
Custom filter (user programmablecoefficients)  
Custom filter (user programmablecoefficients)  
Custom filter (user programmablecoefficients)  
Custom filter (user programmablecoefficients)  
010  
001  
010  
011  
001  
000  
001  
100  
101  
000  
000  
000  
1
1
1
1
1
1
0
1
1
1
1
Decimate by 2  
Decimate by 4  
Decimate by 8  
Bypass decimation  
0 and 1  
0 and 1  
0 and 1  
0 and 1  
DECIMATION FILTER EQUATION  
In the default setting, the decimation filter is implemented as a 24-tap FIR filter with symmetrical coefficients  
(each coefficient is 12-bit signed). By setting the register bit <ODD TAPn> = 1, a 23-tap FIR is implemented  
Pre-defined Coefficients  
The build-in filters (low pass, high pass an band pass) use pre-defined coefficients. The frequency responses of  
the build-in decimation filters with different decimation factors are shown in Figure 62.  
20  
10  
40  
30  
Low Pass  
High pass  
Low Pass  
Band−Pass1  
Band−Pass2  
High Pass  
20  
0
10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (fin/fs)  
Normalized frequency (fin/fs)  
Figure 62. Decimation Filter Responses  
(Decimate by 2)  
Figure 63. Decimation Filter Responses  
(Decimate by 4)  
56  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
 
 
 
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Custom Filter Coefficients  
The filter coefficients can also be programmed by the user (customized). For custom coefficients, set the register  
bit <FILTER COEFF SELECT> and load the coefficients (h0 to h11) in registers 0x5A to 0xB9, using the serial  
interface as:  
Register content = real coefficient value x 211, i.e., 12 bit signed representation of real coefficient.  
Board Design Considerations  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of  
the board are cleanly partitioned. See ADS5294VM Evaluation Module (SLAU355) for placement of components,  
routing and grounding.  
Supply Decoupling  
Because the ADS5294 already includes internal decoupling, minimal external decoupling can be used without  
loss in performance. For example, the ADS5294EVM uses a single 0.1 µF decoupling capacitor for each supply,  
placed close to the device supply pins.  
Packaging  
Exposed Pad  
The exposed pad at the bottom of the package is the main path for heat dissipation. Therefore, the pad must be  
soldered to a ground plane on the PCB for best thermal performance. The pad must be connected to the ground  
plane through the optimum number of vias.  
Also, visit TI’s thermal website at www.ti.com/thermal.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s) :ADS5294  
 
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth – The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay – The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (Jitter) – The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle – The duty cycle of a clock signal is the ratio of the time the clock signal remains  
at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate – The maximum sampling rate at which specified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate – The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL) – An ideal ADC exhibits code transitions at analog input values spaced exactly  
1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL) – The INL is the deviation of the ADC transfer function from a best fit line determined  
by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error – Gain error is the deviation of the ADC actual input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a  
result of reference inaccuracy and error as a result of the channel. Both errors are specified independently as  
EGREF and EGCHAN  
To a first-order approximation, the total gain error is ETOTAL ~ EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1 – 0.5/100) x FSideal to (1 + 0.5/100) x FSideal  
.
.
.
Offset Error – The offset error is the difference, given in number of LSBs, between the ADC actual average idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift – The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation  
of the parameter across the TMIN to TMAX range by the difference TMAX – TMIN  
.
Signal-to-Noise Ratio – SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN),  
excluding the power at dc and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(7)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
Signal-to-Noise and Distortion (SINAD) – SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
PS  
SINAD = 10Log10  
PN + PD  
(8)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
58  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
ADS5294  
www.ti.com  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
Effective Number of Bits (ENOB) – ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(9)  
Total Harmonic Distortion (THD) – THD is the ratio of the power of the fundamental (PS) to the power of the  
first nine harmonics (PD).  
PS  
THD = 10Log10  
PN  
(10)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR) – The ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion – IMD3 is the ratio of the power of the fundamental (at frequencies f1  
and f2) to the power of the worst spectral component at either frequency 2f1 – f2 or 2f2 – f1. IMD3 is either given  
in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB  
to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
DC Power-Supply Rejection Ratio (DC PSRR) – DC PSSR is the ratio of the change in offset error to a change  
in analog supply voltage. The dc PSRR is typically given in units of mV/V.  
AC Power-Supply Rejection Ratio (AC PSRR) – AC PSRR is the measure of rejection of variations in the  
supply voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the  
ADC output code (referred to the input), then:  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(11)  
Voltage Overload Recovery – The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6dB positive and  
negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.  
Common-Mode Rejection Ratio (CMRR) – CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input pins and ΔVOUT is  
the resulting change of the ADC output code (referred to the input), then:  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(12)  
Crosstalk (only for multi-channel ADCs) – This is a measure of the internal coupling of a signal from an  
adjacent channel into the channel of interest. It is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from channel across the package (far-channel). It is usually  
measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the  
coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. It is typically expressed in dBc.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s) :ADS5294  
ADS5294  
SLAS776B NOVEMBER 2011REVISED JULY 2012  
www.ti.com  
REVISION HISTORY  
Changes from Original (November 2011) to Revision A  
Page  
Changed From: Product Preview To: Production ................................................................................................................. 1  
Changes from Revision A (November 2011) to Revision B  
Page  
Changed the location of OUT A and OUT B in Figure 5 and Figure 6 ............................................................................... 14  
Added EN_HIGH_ADDRS to Table 3 ................................................................................................................................. 29  
Moved EN_EXT_REF From: 0x0F To: 0xF0 in Table 3 ..................................................................................................... 34  
Added the section BIT-BYTE-WORD WISE OUTPUT. Added Figure 47 and Figure 48. .................................................. 37  
Added section DIGITAL PROCESSING BLOCKS ............................................................................................................. 38  
Replaced Table 5 and Table 6 with new Table 5 - Digital Filters ....................................................................................... 43  
Changed the SYNCHRONIZATION PULSE section .......................................................................................................... 46  
Added the External Reference Mode of Operation section ................................................................................................ 47  
Added Figure 58 ................................................................................................................................................................. 53  
Replaced Table 9 (Decimation Filter Modes) with new Table 9 - Digital Filters ................................................................. 56  
Deleted section: Synchronization Pulse ............................................................................................................................. 57  
60  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ADS5294  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Feb-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
ADS5294IPFP  
ADS5294IPFPR  
ADS5294IPFPT  
ACTIVE  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
PFP  
PFP  
PFP  
80  
80  
80  
96  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
1000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS5294IPFPR  
ADS5294IPFPT  
HTQFP  
HTQFP  
PFP  
PFP  
80  
80  
1000  
250  
330.0  
330.0  
24.4  
24.4  
15.0  
15.0  
15.0  
15.0  
1.5  
1.5  
20.0  
20.0  
24.0  
24.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS5294IPFPR  
ADS5294IPFPT  
HTQFP  
HTQFP  
PFP  
PFP  
80  
80  
1000  
250  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

ADS5294IPFPT

八通道、14 位、80MSPS 模数转换器 (ADC) | PFP | 80 | -40 to 85
TI

ADS5295

12-Bit, 100-MSPS, 8-Channel Analog-to-Digital Converter
TI

ADS5295IPFP

12-Bit, 100-MSPS, 8-Channel Analog-to-Digital Converter
TI

ADS5295PFP

暂无描述
TI

ADS5295PFPR

八通道 12 位、100MSPS 高 SNR 低功耗 ADC | PFP | 80 | -40 to 85
TI

ADS5295PFPT

八通道 12 位、100MSPS 高 SNR 低功耗 ADC | PFP | 80 | -40 to 85
TI

ADS5296

10-Bit, 200-MSPS, 4-Channel and 12-Bit, 80-MSPS, 8-Channel Analog-to-Digital Converter
TI

ADS5296A

10 位、200MSPS、4 或 8 通道/12 位、80MSPS、8 通道 ADC
TI

ADS5296ARGCR

10 位、200MSPS、4 或 8 通道/12 位、80MSPS、8 通道 ADC | RGC | 64 | -40 to 85
TI

ADS5296ARGCT

10 位、200MSPS、4 或 8 通道/12 位、80MSPS、8 通道 ADC | RGC | 64 | -40 to 85
TI

ADS5296RGCR

10-Bit, 200-MSPS, 4-Channel and 12-Bit, 80-MSPS, 8-Channel Analog-to-Digital Converter
TI

ADS5296RGCT

10-Bit, 200-MSPS, 4-Channel and 12-Bit, 80-MSPS, 8-Channel Analog-to-Digital Converter
TI