ADS5295PFPR [TI]

八通道 12 位、100MSPS 高 SNR 低功耗 ADC | PFP | 80 | -40 to 85;
ADS5295PFPR
型号: ADS5295PFPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

八通道 12 位、100MSPS 高 SNR 低功耗 ADC | PFP | 80 | -40 to 85

转换器 模数转换器
文件: 总91页 (文件大小:2512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
12-Bit, 100-MSPS, 8-Channel Analog-to-Digital Converter  
Check for Samples: ADS5295  
1
FEATURES  
DESCRIPTION  
The ADS5295 is a low-power, 12-bit, 100-MSPS, 8-  
channel analog-to-digital converter (ADC). Low power  
consumption and integration of multiple channels in a  
compact package make the device attractive for very  
high channel count data acquisition systems.  
2
Maximum Sample Rate: 100 MSPS  
Designed for Low Power:  
80 mW per channel at 100 MSPS  
SNR: 70.6 dBFS  
SFDR: 85 dBc at 10 MHz, 100 MSPS  
Serial LVDS ADC Data Outputs:  
Serial low-voltage differential signaling (LVDS)  
outputs reduce the number of interface lines and  
enable high system integration. The ADC digital data  
can be output over one or two wires of LVDS pins per  
channel. At high sample rates, the two-wire interface  
helps keep the serial data rate low, allowing low-cost  
One- or Two-Wire Serialized LVDS Outputs  
per Channel  
One-Wire Interface:  
Up to 80 MSPS Sample Rate  
field-programmable  
receivers to be used.  
gate  
array  
(FPGA)-based  
Two-Wire Interface:  
Up to 100 MSPS Sample Rate  
The device integrates an internal reference trimmed  
to accurately match across devices. Best  
performance is expected to be achieved through the  
internal reference mode. However, the device can be  
driven with external references as well.  
Digital Processing Block:  
Programmable FIR Decimation Filter and  
Oversampling to Minimize Harmonic  
Interference  
Several digital functions that are commonly used in  
systems are included in the device. These functions  
include a low-frequency suppression mode, digital  
filtering options, and programmable mapping.  
Programmable IIR High-Pass Filter to  
Minimize DC Offset  
Programmable Digital Gain: 0 dB to 12 dB  
Low-Frequency Noise Suppression Mode  
For low input frequency applications, the low-  
frequency noise suppression mode enables noise  
suppression at low frequencies and improves signal-  
to-noise ratio (SNR) in the 1-MHz band near dc by  
approximately 3 dB. Digital filtering options include  
low-pass, high-pass, and band-pass digital filters, as  
well as dc offset removal filters. The device also  
provides programmable mapping of the LVDS output  
pins and analog input channels. For applications  
where the 12-bit ADC SNR is not required, the  
ADS5295 can be configured as an 8-channel, 10-bit  
ADC with 10x LVDS serialization to reduce the output  
data rate.  
Programmable Mapping Between ADC Input  
Channels and LVDS Output Pins  
Channel Averaging Mode  
Variety of LVDS Test Patterns to Verify  
Data Capture by FPGA or Receiver  
Package: 12-mm × 12-mm QFP-80  
APPLICATIONS  
Ultrasound Imaging  
Communication Applications  
Multichannel Data Acquisition  
The device is available in a 12-mm × 12-mm QFP-80  
package. The ADS5295 is specified over the –40°C  
to +85°C operating temperature range.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED TEMPERATURE  
PRODUCT  
PACKAGE-LEAD  
PACKAGE DESIGNATOR  
RANGE  
PACKAGE MARKING  
ORDERING NUMBER  
ADS5295  
TQFP-80  
PFP  
–40°C to +85°C  
ADS5295  
ADS5295IPFP  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
PARAMETER  
AVDD  
VALUE  
–0.3 to 2.2  
UNIT  
V
Supply voltage range  
Voltage between  
LVDD  
–0.3 to 2.2  
V
AGND and LGND  
–0.3 to 0.3  
V
AVDD to LVDD (when AVDD leads LVDD)  
LVDD to AVDD (when LVDD leads AVDD)  
INP, INN  
0 to 2.2  
V
0 to 2.2  
V
–0.3 to min (2.2, AVDD + 0.3)  
V
RESET, SCLK, SDATA, CS, PD, SYNC,  
CLKP, CLKN(2)  
Voltage applied to  
–0.3 to min (2.2, AVDD + 0.3)  
V
Digital outputs  
–0.3 to min (2.2, LVDD + 0.3)  
V
Operating free-air, TA  
Operating junction, TJ  
Storage, Tstg  
–40 to +85  
+105  
°C  
°C  
°C  
V
Temperature range  
–55 to +150  
2000  
Electrostatic discharge (ESD) rating  
Human body model (HBM)  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP and CLKN is less than |0.3 V|.  
This setting prevents the ESD protection diodes at the clock input pins from turning on.  
THERMAL INFORMATION  
ADS5295  
THERMAL METRIC(1)  
PFP (TQFP)  
80 PINS  
30.8  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
6.3  
8.3  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
8.2  
θJCbot  
0.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
2
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
RECOMMENDED OPERATING CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage  
Digital supply voltage  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
LVDD  
ANALOG INPUTS  
VID  
Differential input voltage range  
Input common-mode voltage  
External reference mode  
2
VCM ± 0.05  
1.45  
VPP  
V
REFT  
REFB  
VCM  
V
External reference mode  
0.45  
V
Common-mode voltage output  
0.95  
V
CLOCK INPUTS (ADCLK Input Sample Rate)  
One-wire LVDS interface  
Two-wire LVDS interface  
Sine-wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
VIL  
10  
10  
80  
MSPS  
MSPS  
VPP  
VPP  
VPP  
V
ADCLK input sample rate (1 / tC)  
100  
1.5  
1.6  
Input clock amplitude differential  
(VCLKP – VCLKN)  
0.7  
< 0.3  
> 1.5  
50  
Input clock CMOS single-ended  
(VCLKP)  
VIH  
V
Input clock duty cycle  
35  
65  
%
DIGITAL OUTPUTS  
1x  
ADCLKP and ADCLKN outputs (LVDS), one-wire  
(sample rate in  
MSPS)  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ADCLKP and ADCLKN outputs (LVDS), two-wire  
0.5x  
(sample rate in  
MSPS)  
6x  
(sample rate in  
MSPS)  
12x serialization  
LCLKP and LCLKN outputs  
(LVDS), one-wire  
5x  
(sample rate in  
MSPS)  
10x serialization  
12x serialization  
3x  
(sample rate in  
MSPS)  
LCLKP and LCLKN outputs  
(LVDS), two-wire  
2.5x  
(sample rate in  
MSPS)  
10x serialization  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS: General  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and  
LVDD = 1.8 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RESOLUTION  
Resolution  
ANALOG INPUTS  
12  
Bits  
Differential input voltage range  
Differential input resistance  
Differential input capacitance  
Analog input bandwidth  
2.0  
2
VPP  
kΩ  
At dc  
At dc  
3.7  
500  
pF  
MHz  
Analog input common-mode current  
(per input pin)  
1
µA/MSPS  
VCM  
Common-mode output voltage  
VCM output current capability  
0.95  
5
V
mA  
DYNAMIC ACCURACY  
EO  
Offset error  
–20  
20  
mV  
Resulting from internal  
reference inaccuracy alone  
EGREF  
EGCHAN  
–1.5  
1.5  
%FS  
Gain error  
Of channel itself  
0.5  
%FS  
EGCHAN temperature coefficient  
POWER SUPPLY  
< 0.01  
Δ%FS/°C  
IAVDD  
ILVDD  
AVDD  
LVDD  
Analog supply current  
100 MSPS  
206  
150  
225  
163  
mA  
mA  
100 MSPS, two-wire LVDS interface, 350-mV  
swing with 100-Ω external termination  
Output buffer supply current  
Analog power  
100 MSPS  
370.8  
270  
mW  
mW  
100 MSPS, two-wire LVDS interface, 350-mV  
swing with 100-Ω external termination  
Digital power  
100 MSPS, two-wire LVDS interface, 350-mV  
swing with 100-Ω external termination  
Total power  
640.8  
192  
mW  
Global power-down  
Standby power  
45  
mW  
mW  
4
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
ELECTRICAL CHARACTERISTICS: Dynamic Performance  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, maximum rated sampling frequency, 50% clock duty cycle,  
100 MSPS, two-wire LVDS interface, and –1-dBFS differential analog input, unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and  
LVDD = 1.8 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
70.6  
70.4  
69.7  
70.4  
70  
MAX  
UNIT  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
67.5  
SNR  
Signal-to-noise ratio  
66  
72.5  
71  
SINAD  
SFDR  
THD  
Signal-to-noise and distortion ratio  
Spurious-free dynamic range  
Total harmonic distortion  
68.9  
86  
79  
dBc  
76.3  
85  
dBc  
dBc  
78.4  
75.8  
89.5  
89.5  
89.5  
86  
dBc  
dBc  
72.5  
72.5  
75  
dBc  
HD2  
Second-harmonic distortion  
Third-harmonic distortion  
dBc  
dBc  
dBc  
HD3  
79  
dBc  
76.4  
95  
dBc  
dBc  
Worst spur  
(other than second and third harmonics)  
93  
dBc  
82.3  
dBc  
f1 = 8 MHz, f2 = 10 MHz,  
each tone at –7 dBFS  
IMD  
Two-tone intermodulation distortion  
Crosstalk  
86  
86  
1
dBc  
dB  
10-MHz full-scale signal on aggressor channel;  
5-MHz input signal applied on victim channel  
Recovery to within 1% (of full-scale) for  
6-dB overload with sine-wave input  
Clock  
cycle  
Input overload recovery  
For 50-mVPP signal on AVDD supply,  
up to 10 MHz, no signal applied to analog  
inputs  
PSRR  
AC power-supply rejection ratio  
60  
dB  
ENOB  
DNL  
INL  
Effective number of bits  
Differential nonlinearity  
Integrated nonlinearity  
fIN = 5 MHz  
fIN = 5 MHz  
fIN = 5 MHz  
11.4  
±0.05  
0.4  
LSBs  
LSBs  
LSBs  
–0.82  
0.82  
1.1  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
DIGITAL CHARACTERISTICS  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level '0' or '1'. AVDD = 1.8 V and DRVDD = 1.8 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SDATA, CS, SYNC, PDN)  
All pins support 1.8-V and 3.3-V CMOS  
logic levels  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
V
V
All pins support 1.8-V and 3.3-V CMOS  
logic levels  
0.4  
IIH  
IIL  
High-level input current  
Low-level input current  
CS, SDATA, SCLK(1)  
CS, SDATA, SCLK(1)  
VHIGH = 1.8 V  
VLOW = 0 V  
6
µA  
µA  
0.1  
DIGITAL OUTPUTS (CMOS INTERFACE: SDOUT)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
AVDD – 0.1  
V
V
0.1  
DIGITAL OUTPUTS (LVDS INTERFACE: OUT1A_P, OUT1A_N to OUT8A_P, OUT8A_N and OUT1B_P, OUT1B_N to OUT8B_P, OUT8B_N)  
VODH  
VODL  
VOCM  
High-level output differential voltage(2)  
Low-level output differential voltage(2)  
Output common-mode voltage  
300  
-485  
0.95  
485  
-300  
1.35  
mV  
mV  
V
(1) CS, SDATA, and SCLK have an internal 220-kΩ pull-down resistor.  
(2) With an external 100-Ω termination.  
6
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
TIMING REQUIREMENTS(1)  
Typical values are at +25°C, AVDD = 1.8 V, LVDD = 1.8 V, sampling frequency = 100 MSPS, sine-wave input clock, CLOAD  
=
5 pF, and RLOAD = 100 Ω, unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and  
LVDD = 1.7 V to 1.9 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tA  
Aperture delay  
4
ns  
Aperture delay matching  
Variation of aperture delay  
Aperture jitter  
Between any two channels of the same device  
±200  
ps  
Between two devices at the same temperature and  
LVDD supply  
±1  
ns  
tJ  
Sample uncertainty  
320  
5
fs rms  
µs  
Time to valid data after coming out of standby  
Wake-up time  
ADC latency(2)  
Time to valid data after coming out of global power-  
down mode  
100  
µs  
One-wire LVDS Output interface  
Two-wire LVDS Output interface  
12  
16  
Clock cycles  
Clock cycles  
TWO-WIRE, 12x SERIALIZATION  
tSU  
tH  
Data setup time  
Data hold time  
Data valid to zero-crossing of LCLKP  
0.52  
0.62  
ns  
ns  
Zero-crossing of LCLKP to data becoming invalid  
tPDI  
(11/12)  
× tS  
=
Input clock rising edge crossover to output clock  
rising edge crossover  
tPDI  
Clock propagation delay  
ns  
+
tDELAY  
tDELAY  
Delay time  
8.5  
11  
13.5  
ns  
%
Duty cycle of differential clock  
(LCLKP – LCLKN)  
LVDS bit clock duty cycle  
50  
ACROSS ALL SERIALIZATION MODES  
Rise time measured from –100 mV to +100 mV,  
10 MSPS sampling frequency 100 MSPS  
tFALL  
Data fall time  
0.11  
0.11  
0.11  
0.11  
ns  
ns  
ns  
ns  
Rise time measured from –100 mV to +100 mV,  
10 MSPS sampling frequency 100 MSPS  
tRISE  
Data rise time  
Rise time measured from –100 mV to +100 mV,  
10 MSPS sampling frequency 100 MSPS  
tCLKRISE  
tCLKFALL  
Output clock rise time  
Output clock fall time  
Rise time measured from –100 mV to +100 mV,  
10 MSPS sampling frequency 100 MSPS  
(1) Timing parameters are ensured by design and characterization, but are not tested in production.  
(2) At higher frequencies, tPDI is greater than one clock period and the overall latency = ADC latency + 1.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Table 1. Two-Wire, 12x Serialization(1)(2)  
tPDI = (11/12) × tS + tDELAY  
Where tDELAY is specified as  
below, ns  
SETUP TIME (ns)  
TYP  
HOLD TIME (ns)  
MIN TYP  
SAMPLING  
FREQUENCY (MSPS)  
MIN  
7.80  
2.40  
1.10  
0.83  
0.60  
0.52  
MAX  
MAX  
MIN  
8.5  
8.5  
8.5  
8.5  
8.5  
8.5  
TYP  
11  
MAX  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
10  
30  
8.00  
2.50  
1.60  
1.25  
1.00  
0.62  
11  
50  
11  
65  
11  
80  
11  
100  
11  
(1) All the timing specifications are taken with default output clock and data delay settings (0 ps).  
(2) Refer to the Programmable LVDS Output Clock and Data Edges section in the Application Information for output clock and data delay  
options.  
Table 2. One-Wire, 12x Serialization(1)(2)  
tPDI = (9/12) × tS + tDELAY  
Where tDELAY is specified as  
SETUP TIME (ns)  
MIN TYP  
HOLD TIME (ns)  
MIN TYP  
below, ns  
SAMPLING  
FREQUENCY (MSPS)  
MAX  
MAX  
MIN  
8
TYP  
10  
MAX  
12  
10  
30  
50  
65  
80  
3.90  
1.00  
0.60  
0.40  
0.22  
4.00  
1.30  
0.57  
0.34  
0.24  
8
10  
12  
8
10  
12  
8
10  
12  
8
10  
12  
(1) All the timing specifications are taken with default output clock and data delay settings (0 ps).  
(2) Refer to the Programmable LVDS Output Clock and Data Edges section in the Application Information for output clock and data delay  
options.  
Table 3. Two-Wire, 10x Serialization(1)(2)  
SETUP TIME (ns)  
TYP  
HOLD TIME (ns)  
TYP  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
1.00  
0.74  
0.44  
MAX  
MIN  
1.50  
1.20  
1.00  
MAX  
65  
80  
100  
(1) All the timing specifications are taken with default output clock and data delay settings (0 ps).  
(2) Refer to the Programmable LVDS Output Clock and Data Edges section in the Application Information for output clock and data delay  
options.  
Table 4. One-Wire, 10x Serialization(1)(2)  
SETUP TIME (ns)  
TYP  
HOLD TIME (ns)  
TYP  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
0.51  
0.33  
0.17  
MAX  
MIN  
0.60  
0.36  
0.31  
MAX  
65  
80  
100  
(1) All the timing specifications are taken with default output clock and data delay settings (0 ps).  
(2) Refer to the Programmable LVDS Output Clock and Data Edges section in the Application Information for output clock and data delay  
options.  
8
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
PARAMETRIC MEASUREMENT INFORMATION  
LATENCY TIMING  
Figure 1 shows a timing diagram of the LVDS output voltage levels.  
OUTP  
Logic 0  
VODL = -350 mV(1)  
Logic 1  
VODH = +350 mV(1)  
OUTN  
VOCM  
GND  
(1) With an external 100-Ω termination.  
Figure 1. LVDS Output Voltage Levels  
Figure 2 shows a latency timing diagram.  
Sample  
N + 11  
Sample  
N + 12  
Sample  
N + 13  
Sample  
N
Input Signal  
tA  
CLKN  
CLKP  
Input Clock  
Frequency = fS  
Latency = 12 Clocks  
tPDI  
LCLKP  
LCLKN  
Bit Clock  
Frequency = 6x fS  
OUTP  
OUTN  
Output Data  
Rate = 12x fS  
D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D1  
D0  
D3  
D2  
D11 D10 D9 D8  
Sample N-1  
Sample N  
ADCLKN  
ADCLKP  
Frame Clock  
Frequency = 1x fS  
Figure 2. Latency Timing Diagram  
LVDS OUTPUT TIMING  
Figure 3 shows the output timing described in the Timing Requirements table.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ADS5295  
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
PARAMETRIC MEASUREMENT INFORMATION (continued)  
CLKN  
Input  
Clock  
CLKP  
tPDI  
ADCLKN  
Frame  
Clock  
ADCLKP  
tSU  
tH  
LCLKP  
LCLKN  
Bit  
Clock  
tSU  
tH  
tSU  
tH  
OUT1, OUT2,  
OUT3, OUT4,  
OUT5, OUT6,  
OUT7, OUT8  
Output  
Data  
Dn(1)  
Dn+1(1)  
(1) n = 0 to 11.  
Figure 3. LVDS Output Timing  
10  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
PIN DESCRIPTION  
PFP PACKAGE  
TQFP-80  
(Top View)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
IN2P  
IN2N  
1
2
3
4
5
6
7
8
9
60 IN7N  
59 IN7P  
AGND  
IN3P  
58 AGND  
57 IN6N  
IN3N  
56 IN6P  
AGND  
IN4P  
55 AGND  
54 IN5N  
IN4N  
53 IN5P  
AVDD  
52 AVDD  
PD 10  
LVDD 11  
LGND 12  
51 RESET  
50 LGND  
49 LVDD  
OUT1A_P 13  
OUT1A_N 14  
OUT1B_P 15  
OUT1B_N 16  
OUT2A_P 17  
OUT2A_N 18  
OUT2B_P 19  
OUT2B_N 20  
48 OUT8A_N  
47 OUT8A_P  
46 OUT8B_N  
45 OUT8B_P  
44 OUT7A_N  
43 OUT7A_P  
42 OUT7B_N  
41  
OUT7B_P  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
PIN DESCRIPTIONS  
NAME  
ADCLKN  
ADCLKP  
AGND  
NO.  
FUNCTION(1)  
DESCRIPTION  
30  
DO  
DO  
G
Differential LVDS frame clock (1x), negative  
Differential LVDS frame clock (1x), positive  
Analog ground pin  
29  
3, 6, 55, 58, 61, 80  
9, 52, 66, 71, 74  
AVDD  
S
Analog supply pin, 1.8 V  
Differential clock input, negative  
For a single-ended clock, tie CLKN to 0 V  
CLKN  
73  
AI  
CLKP  
CS  
72  
75  
79  
78  
2
AI  
DI  
Differential clock input, positive  
Serial enable chip select; active low digital input  
Differential analog input for channel 1, negative  
Differential analog input for channel 1, positive  
Differential analog input for channel 2, negative  
Differential analog input for channel 2, positive  
Differential analog input for channel 3, negative  
Differential analog input for channel 3, positive  
Differential analog input for channel 4, negative  
Differential analog input for channel 4, positive  
Differential analog input for channel 5, negative  
Differential analog input for channel 5, positive  
Differential analog input for channel 6, negative  
Differential analog input for channel 6, positive  
Differential analog input for channel 7, negative  
Differential analog input for channel 7, positive  
Differential analog input for channel 8, negative  
Differential analog input for channel 8, positive  
LVDS differential bit clock output pins (6x), negative  
LVDS differential bit clock output pins (6x), positive  
Digital ground pin  
IN1N  
AI  
IN1P  
AI  
IN2N  
AI  
IN2P  
1
AI  
IN3N  
5
AI  
IN3P  
4
AI  
IN4N  
8
AI  
IN4P  
7
AI  
IN5N  
54  
53  
57  
56  
60  
59  
63  
62  
32  
31  
12, 50  
11, 49  
67  
14  
13  
16  
15  
18  
17  
20  
19  
22  
21  
24  
23  
26  
25  
28  
27  
AI  
IN5P  
AI  
IN6N  
AI  
IN6P  
AI  
IN7N  
AI  
IN7P  
AI  
IN8N  
AI  
IN8P  
AI  
LCLKN  
LCLKP  
LGND  
DO  
DO  
G
LVDD  
S
Digital and I/O power supply, 1.8 V  
NC  
Do not connect  
OUT1A_N  
OUT1A_P  
OUT1B_N  
OUT1B_P  
OUT2A_N  
OUT2A_P  
OUT2B_N  
OUT2B_P  
OUT3A_N  
OUT3A_P  
OUT3B_N  
OUT3B_P  
OUT4A_N  
OUT4A_P  
OUT4B_N  
OUT4B_P  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
Channel 1 differential LVDS negative data output, one-wire  
Channel 1 differential LVDS positive data output, one-wire  
Channel 1 differential LVDS negative data output, two-wire  
Channel 1 differential LVDS positive data output, two-wire  
Channel 2 differential LVDS negative data output, one-wire  
Channel 2 differential LVDS positive data output, one-wire  
Channel 2 differential LVDS negative data output, two-wire  
Channel 2 differential LVDS positive data output, two-wire  
Channel 3 differential LVDS negative data output, one-wire  
Channel 3 differential LVDS positive data output, one-wire  
Channel 3 differential LVDS negative data output, two-wire  
Channel 3 differential LVDS positive data output, two-wire  
Channel 4 differential LVDS negative data output, one-wire  
Channel 4 differential LVDS positive data output, one-wire  
Channel 4 differential LVDS negative data output, two-wire  
Channel 4 differential LVDS positive data output, two-wire  
(1) Pin functionality: AI = analog input; DI = digital input; DO = digital output; G = ground; and S = supply.  
12  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
PIN DESCRIPTIONS (continued)  
NAME  
NO.  
34  
33  
36  
35  
38  
37  
40  
39  
42  
41  
44  
43  
46  
45  
48  
47  
10  
69  
70  
51  
77  
76  
64  
65  
68  
FUNCTION(1)  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
DESCRIPTION  
OUT5B_N  
OUT5B_P  
OUT5A_N  
OUT5A_P  
OUT6B_N  
OUT6B_P  
OUT6A_N  
OUT6A_P  
OUT7B_N  
OUT7B_P  
OUT7A_N  
OUT7A_P  
OUT8B_N  
OUT8B_P  
OUT8A_N  
OUT8A_P  
PD  
Channel 5 differential LVDS negative data output, two-wire  
Channel 5 differential LVDS positive data output, two-wire  
Channel 5 differential LVDS negative data output, one-wire  
Channel 5 differential LVDS positive data output, one-wire  
Channel 6 differential LVDS negative data output, two-wire  
Channel 6 differential LVDS positive data output, two-wire  
Channel 6 differential LVDS negative data output, one-wire  
Channel 6 differential LVDS positive data output, one-wire  
Channel 7 differential LVDS negative data output, two-wire  
Channel 7 differential LVDS positive data output, two-wire  
Channel 7 differential LVDS negative data output, one-wire  
Channel 7 differential LVDS positive data output, one-wire  
Channel 8 differential LVDS negative data output, two-wire  
Channel 8 differential LVDS positive data output, two-wire  
Channel 8 differential LVDS negative data output, one-wire  
Channel 8 differential LVDS positive data output, one-wire  
Power-down control input pin  
REFB  
AI  
Negative reference input/output  
REFT  
AI  
Positive reference input/output  
RESET  
DI  
Active high RESET input  
SCLK  
DI  
Serial clock input  
SDATA  
DI  
Serial data input  
SDOUT  
DO  
DI  
Serial data output  
SYNC  
Synchronization input for reduced output data rate  
Common-mode output pin, 0.95-V output  
VCM  
AI  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
OUT1A_P  
OUT1A_N  
IN1P  
IN1N  
Sampling  
Circuit  
Digital Processing  
Block  
12-Bit ADC  
Serializer  
OUT1B_P  
OUT1B_N  
OUT2A_P  
OUT2A_N  
IN2P  
IN2N  
Sampling  
Circuit  
Digital Processing  
Block  
12-Bit ADC  
Serializer  
OUT2B_P  
OUT2B_N  
OUT3A_P  
OUT3A_N  
IN3P  
IN3N  
Sampling  
Circuit  
Digital Processing  
Block  
12-Bit ADC  
Serializer  
OUT3B_P  
OUT3B_N  
OUT4A_P  
OUT4A_N  
IN4P  
IN4N  
Sampling  
Circuit  
Digital Processing  
Block  
12-Bit ADC  
Serializer  
OUT4B_P  
OUT4B_N  
LCLKP  
LCLKN  
CLKP  
CLKN  
CLOCKGEN  
PLL  
ADCLKP  
ADCLKN  
SYNC  
OUT5A_P  
OUT5A_N  
IN5P  
IN5N  
Sampling  
Circuit  
Digital Processing  
Block  
12-Bit ADC  
Serializer  
OUT5B_P  
OUT5B_N  
OUT6A_P  
OUT6A_N  
IN6P  
IN6N  
Sampling  
Circuit  
Digital Processing  
Block  
12-Bit ADC  
Serializer  
OUT6B_P  
OUT6B_N  
OUT7A_P  
OUT7A_N  
IN7P  
IN7N  
Sampling  
Circuit  
Digital Processing  
Block  
12-Bit ADC  
Serializer  
OUT7B_P  
OUT7B_N  
OUT8A_P  
OUT8A_N  
IN8P  
IN8N  
Sampling  
Circuit  
Digital Processing  
Block  
12-Bit ADC  
Serializer  
OUT8B_P  
OUT8B_N  
Control  
Interface  
Reference  
SDOUT  
Device  
14  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
TYPICAL CHARACTERISTICS: General  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
0
−10  
0
−10  
SNR = 70.8 dBFS  
SINAD = 70.7 dBFS  
SFDR = 91 dBc  
SNR = 70.7 dBFS  
SINAD = 70.4 dBFS  
SFDR = 81.7 dBc  
THD = 81.4 dBc  
−20  
−20  
THD = 87.3 dBc  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Frequency (MHz)  
Frequency (MHz)  
G001  
G002  
Figure 4. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 100 MSPS)  
Figure 5. FFT FOR 15-MHz INPUT SIGNAL  
(Sample Rate = 100 MSPS)  
0
−10  
0
−10  
SNR = 69.6 dBFS  
SINAD = 68.9 dBFS  
SFDR = 76.4 dBc  
THD = 76.26 dBc  
SNR = 70.9 dBFS  
SINAD = 70.8 dBFS  
SFDR = 88.4 dBc  
THD = 87.9 dBc  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
10  
20  
30  
40  
50  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
G003  
G004  
Figure 6. FFT FOR 70-MHz INPUT SIGNAL  
(Sample Rate = 100 MSPS)  
Figure 7. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 50 MSPS)  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS: General (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
0
0
SNR = 70.5 dBFS  
SINAD = 70.4 dBFS  
SFDR = 85.9 dBc  
THD = 84.6 dBc  
SNR = 67 dBFS  
SINAD = 66.7 dBFS  
SFDR = 75.6 dBc  
THD = 77.2 dBc  
−10  
−10  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
G005  
G006  
Figure 8. FFT FOR 15-MHz INPUT SIGNAL  
(Sample Rate = 50 MSPS)  
Figure 9. FFT FOR 70-MHz INPUT SIGNAL  
(Sample Rate = 50 MSPS)  
0
−10  
72  
71.5  
71  
fIN1 = 8 MHz  
fIN2 = 10 MHz  
Each Tone at −7−dBFS Amplitude  
Two−Tone IMD = −93.6 dBFS  
−20  
−30  
−40  
−50  
70.5  
70  
−60  
−70  
−80  
69.5  
69  
−90  
−100  
−110  
−120  
−130  
−140  
68.5  
68  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Frequency (MHz)  
Input Signal Frequency (MHz)  
G007  
G008  
Figure 10. FFT WITH TWO-TONE SIGNAL  
Figure 11. SIGNAL-TO-NOISE RATIO vs  
INPUT SIGNAL FREQUENCY  
16  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
TYPICAL CHARACTERISTICS: General (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
94  
90  
86  
82  
78  
74  
70  
66  
74  
70  
66  
62  
58  
Input Frequency = 10 MHz  
Input Frequency = 70 MHz  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Input Signal Frequency (MHz)  
Digital Gain (dB)  
G009  
G010  
Figure 12. SPURIOUS-FREE DYNAMIC RANGE vs  
INPUT SIGNAL FREQUENCY  
Figure 13. SIGNAL-TO-NOISE RATIO vs  
DIGITAL GAIN  
120  
110  
100  
90  
73  
90  
SNR  
SFDR (dBc)  
SFDR (dBFS)  
Input Frequency = 5 MHz  
Input Frequency = 10MHz  
Input Frequency = 70MHz  
72.5  
72  
86  
82  
78  
74  
70  
71.5  
71  
80  
70  
70.5  
70  
60  
50  
69.5  
69  
40  
30  
68.5  
68  
20  
−50 −45 −40 −35 −30 −25 −20 −15 −10 −5  
Input amplitude (dBFS)  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
G012  
Digital Gain (dB)  
G011  
Figure 14. SPURIOUS-FREE DYNAMIC RANGE vs  
DIGITAL GAIN  
Figure 15. PERFORMANCE vs INPUT AMPLITUDE  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS: General (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
90  
89.5  
89  
72  
84  
83.5  
83  
72  
Input Frequency = 5 MHz  
SFDR  
SNR  
Input Frequency = 5 MHz  
SFDR  
SNR  
71.5  
71  
71.5  
71  
88.5  
88  
70.5  
70  
82.5  
82  
70.5  
70  
87.5  
87  
69.5  
69  
81.5  
81  
69.5  
69  
86.5  
68.5  
80.5  
80  
68.5  
68  
86  
68  
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
35  
40  
45  
50  
55  
60  
65  
Input Clock Duty Cycle (%)  
Input Clock Amplitude, Differential (VP-P  
)
G013  
G014  
Figure 16. PERFORMANCE vs INPUT CLOCK AMPLITUDE  
Figure 17. PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
73  
72  
71  
70  
69  
68  
72  
Input Frequency = 5 MHz  
SFDR  
SNR  
Input Frequency = 5 MHz  
AVDD = 1.7 V  
AVDD = 1.8 V  
AVDD = 1.9 V  
71.5  
71  
70.5  
70  
69.5  
69  
68.5  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
68  
Analog Input Common−Mode Voltage (V)  
−40 −27.5 −15 −2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (°C)  
G015  
G016  
Figure 18. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE  
Figure 19. SIGNAL-TO-NOISE RATIO vs  
AVDD AND TEMPERATURE  
18  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
TYPICAL CHARACTERISTICS: General (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
90  
88  
86  
84  
82  
80  
78  
110  
105  
100  
95  
Input Frequency = 5 MHz  
AVDD = 1.7 V  
AVDD = 1.8 V  
AVDD = 1.9 V  
Adjacent Channel  
Near Channel  
Far Channel  
90  
85  
80  
75  
70  
65  
60  
−40 −27.5 −15 −2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (°C)  
10  
20  
30  
40  
50  
60  
70  
Frequency of Aggressor Channel (MHz)  
G017  
G018  
(1)  
Figure 20. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD AND TEMPERATURE  
Figure 21. CROSSTALK vs FREQUENCY  
0.2  
0.4  
0.3  
0.1  
0
0.2  
0.1  
0
−0.1  
−0.2  
−0.3  
−0.1  
−0.2  
−0.3  
−0.4  
0
500 1000 1500 2000 2500 3000 3500 4000  
0
500 1000 1500 2000 2500 3000 3500 4000  
Output Codes (LSB)  
Output Codes (LSB)  
G020  
G021  
Figure 22. INTEGRAL NONLINEARITY  
Figure 23. DIFFERENTIAL NONLINEARITY  
(1) Adjacent channel: Neighboring channels on the immediate left and right of the channel of interest.  
Near channel: Channels on the same side of the package, except the immediate neighbors.  
Far channel: Channels on the opposite side of the package.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS: Digital Processing  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
20  
10  
40  
30  
Low-Pass  
High-Pass  
Low-Pass  
Band-Pass 1  
Band-Pass 2  
High-Pass  
20  
0
10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (fIN/fS)  
Normalized Frequency (fIN/fS)  
G024  
G025  
Figure 24. DIGITAL FILTER RESPONSE  
(Decimate-by-2)  
Figure 25. DIGITAL FILTER RESPONSE  
(Decimate-by-4)  
0
−10  
0
−10  
SNR = 73.9 dBFS  
SINAD = 73.3 dBFS  
SFDR = 82.1 dBc  
THD = 81.1 dBc  
SNR = 74.5 dBFS  
SINAD = 73.82 dBFS  
SFDR = 81.4 dBc  
THD = 80.8 dBc  
−20  
−20  
−30  
−30  
Decimate−by−2 Filter Enabled  
2 Channels Averaged  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
5
10  
15  
20  
25  
0
10  
20  
30  
40  
50  
Frequency (MHz)  
Frequency (MHz)  
G026  
G027  
Figure 26. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 100 MSPS, Decimation Filter = 2)  
Figure 27. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 100 MSPS by Averaging Two Channels)  
20  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
TYPICAL CHARACTERISTICS: Digital Processing (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
0
0
SNR = 77.19 dBFS  
SINAD = 77 dBFS  
SFDR = 91.2 dBc  
THD = 90.6 dBc  
Decimate−by−4 Filter Enabled  
SNR = 76.4 dBFS  
SINAD = 72.9 dBFS  
SFDR = 74.5 dBc  
THD = 74.4 dBc  
−10  
−10  
−20  
−20  
−30  
−30  
4 Channels Averaged  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
5
10  
12.5  
0
10  
20  
30  
40  
50  
Frequency (MHz)  
Frequency (MHz)  
G028  
G029  
Figure 28. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 100 MSPS, Decimation Filter = 4)  
Figure 29. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 100 MSPS by Averaging Four Channels)  
0
−10  
3
0
SNR = 77 dBFS  
SINAD = 77 dBFS  
SFDR = 94.4 dBc  
THD = 100.9 dBc  
Decimate−by−8 Filter Enabled  
−3  
−20  
−6  
−30  
−9  
−40  
−12  
−15  
−18  
−21  
−24  
−50  
−60  
−70  
−80  
K = 2  
K = 3  
−27  
−90  
−30  
−33  
−36  
−39  
−42  
−45  
K= 4  
−100  
−110  
−120  
−130  
−140  
K = 5  
K = 6  
K = 7  
K = 8  
K = 9  
K = 10  
0
1
2
3
4
5
6
0.02  
0.1  
1
10 15  
Frequency (MHz)  
Frequency (MHz)  
G030  
G031  
Figure 30. FFT FOR 5-MHz INPUT SIGNAL  
USING CUSTOM DECIMATION-BY-8 FILTER  
Figure 31. DIGITAL HIGH-PASS FILTER RESPONSE  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS: Digital Processing (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
0
0
HPF_DISABLED  
HPF_ENABLED (K = 2)  
SNR = 70.7 dBFS  
SINAD = 70.4 dBFS  
SFDR = 82.9 dBc  
THD = 82.1 dBc  
−10  
−10  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−70  
−60  
−80  
−70  
−90  
−80  
−100  
−110  
−120  
−130  
−140  
−90  
−100  
−110  
−120  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
10  
20  
30  
40  
50  
Frequency (MHz)  
Frequency (MHz)  
G032  
G033  
Figure 32. FFT WITH HPF ENABLED AND DISABLED  
(No Signal)  
Figure 33. FULL-BAND FFT, 5-MHz INPUT  
(100-MHz FS with LFNS Enabled)  
0
0
−10  
LF Noise Suppression Enabled  
LF Noise Suppression Disabled  
LF Noise Suppression Enabled  
LF Noise Suppression Disabled  
−10  
−20  
−30  
−20  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Frequency (MHz)  
1
49 49.1 49.2 49.3 49.4 49.5 49.6 49.7 49.8 49.9 50  
Frequency (MHz)  
G034  
G035  
Figure 34. 0-MHz to 1 MHz FFT, 5-MHz INPUT  
(100-MHz FS with LFNS Enabled)  
Figure 35. 49-MHz to 50-MHz FFT, 5-MHz INPUT  
(100-MHz FS with LFNS Enabled)  
22  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
TYPICAL CHARACTERISTICS: Power Consumption  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
390  
360  
330  
300  
270  
240  
210  
180  
150  
120  
300  
275  
250  
225  
200  
175  
150  
125  
100  
Two−Wire  
One−Wire  
One−Wire, Decimate−By−2  
One−Wire, Decimate−By−4  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
G036  
G037  
Figure 36. ANALOG SUPPLY POWER  
Figure 37. DIGITAL SUPPLY POWER  
220  
200  
180  
160  
140  
120  
100  
80  
170  
150  
130  
110  
90  
Two−Wire  
One−Wire  
One−Wire, Decimate−By−2  
One−Wire, Decimate−By−4  
70  
50  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
G038  
G039  
Figure 38. ANALOG SUPPLY CURRENT  
Figure 39. DIGITAL SUPPLY CURRENT  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS: Power Consumption (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
85  
Two−Wire  
One−Wire  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Sampling Frequency (MHz)  
G040  
Figure 40. TOTAL POWER PER CHANNEL  
24  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
TYPICAL CHARACTERISTICS: Contour  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
100  
69  
68.6  
90  
70.2  
68.2  
69.8  
69.4  
70.6  
69  
80  
70  
60  
50  
40  
30  
20  
68.6  
67  
67.8  
67.4  
68.2  
70.2  
69.8  
69.4  
70.6  
69  
68.6  
67.8  
68.2  
68.6  
69.8  
70.2  
69.4  
70.6  
69  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Input Frequency, MHz  
67  
67.5  
68  
68.5  
69  
69.5  
70  
70.5  
Figure 41. SIGNAL-TO-NOISE RATIO vs INPUT AND SAMPLING FREQUENCIES  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS: Contour (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, 100 MSPS, two-wire LVDS interface,  
and –1-dBFS differential analog input, unless otherwise noted.  
100  
76  
90  
84  
82  
76  
86  
78  
80  
74  
80  
70  
60  
50  
40  
30  
20  
72  
76  
82  
84  
78  
80  
86  
74  
72  
88  
80  
76  
78  
84 82  
86  
74  
10  
20  
30  
40  
50  
60  
70  
80  
86  
90  
Input Frequency, MHz  
72  
74  
76  
78  
80  
82  
84  
88  
Figure 42. SPURIOUS-FREE DYNAMIC RANGE vs INPUT AND SAMPLING FREQUENCIES  
26  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
DEVICE CONFIGURATION  
SERIAL INTERFACE  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the CS (serial  
interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins. Serially shifting bits into  
the device is enabled when CS is low. The serial data (on the SDATA pin) are latched at every SCLK falling  
edge when CS is active (low). The serial data are loaded into the register at every 24th SCLK rising edge when  
CS is low. When the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded  
in multiples of 24-bit words within a single active CS pulse. The first eight bits form the register address and the  
remaining 16 bits are the register data. The interface can function with SCLK frequencies from 15 MHz down to  
very low speeds (of a few hertz) and also with a non-50% SCLK duty cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to default values. This initialization can be accomplished  
in one of two ways:  
1. Either through a hardware reset by applying a high pulse on the RESET pin (of widths greater than 10 ns),  
as shown in Figure 43; or  
2. By applying a software reset. When using the serial interface, set the RESET bit (register 00h, bit D7) high.  
This setting initializes the internal registers to default values and then self-resets the RESET bit low. In this  
case, the RESET pin is kept low (inactive).  
Register Address  
Register Data  
SDATA  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tDSU  
tDH  
tSCLK  
tSLOADS  
tSLOADH  
CS  
RESET  
Figure 43. Serial Interface Timing Diagram  
Table 5. Timing Characteristics for Figure 43(1)  
PARAMETER  
MIN  
>dc  
33  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
CS to SCLK setup time  
SCLK to CS hold time  
SDATA setup time  
)
15  
33  
ns  
33  
ns  
tDH  
SDATA hold time  
33  
ns  
(1) Typical values are at TA = +25°C, minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX  
+85°C, unless otherwise noted.  
=
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Reset Timing  
Figure 44 shows a timing diagram for the reset function.  
Power Supply  
AVDD, LVDD  
t1  
RESET  
t2  
t3  
SEN  
Figure 44. Reset Timing Diagram  
Table 6. Timing Characteristics for Figure 44(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay from AVDD and LVDD power-up  
to active RESET pulse  
t1  
Power-on delay  
1
ms  
t2  
t3  
Reset pulse width  
Pulse width of active RESET signal  
50  
ns  
ns  
Register write delay  
Delay from RESET disable to CS active  
100  
(1) Typical values are at TA = +25°C, minimum and maximum values are across the full temperature range of TMIN = –40°C to  
TMAX = +85°C, unless otherwise noted.  
(2) A high pulse on the RESET pin is required when initialization is done via a hardware reset.  
28  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back on the SDOUT pin.  
This readback mode may be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC.  
By default, the SDOUT pin is in 3-state after a device power-up or reset. When the readout mode is enabled  
using the READOUT register bit, SDOUT serially outputs the contents of the selected register. The following  
steps describe how to achieve this functionality:  
1. Set the READOUT register bit to '1'. This setting puts the device in serial readout mode. This mode prevents  
any further writes to the internal registers, except for at register 01h. Note that the READOUT bit is also  
located in register 01h. The device can exit readout mode by setting the READOUT bit to '0'. Note that only  
the contents of register 01h are unable to be read in register readout mode.  
2. Initiate a serial interface cycle specifying the address of the register (A[7:0]) whose content must be read.  
3. The device serially outputs the contents (D[15:0]) of the selected register on the SDOUT pin.  
4. The external controller can latch the contents at the SCLK rising edge.  
To exit serial readout mode, reset the READOUT register bit to '0', which enables writes to all device registers. At  
this point, the SDOUT pin is in 3-state. A detailed timing diagram for the serial readout mode is shown in  
Figure 45.  
Register Address (A[7:0]) = 01h  
Register Data (D[15:0]) = 0001  
SDATA  
SCLK  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
The SDOUT pin becomes active and is forced low.  
CS  
SDOUT  
The SDOUT Pin is in 3-State  
a) Enable Serial Readout (READOUT = 1)  
Register Address (A[7:0]) = 0Fh  
Register Data (D[15:0]) = XXXX (don’t care)  
SDATA  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
SDOUT  
SDOUT outputs the contents of register 0Fh in the same cycle, MSB first.  
b) Read contents of register 0Fh. This register is initialized with 0200 (the device was previously put in global power-down).  
Figure 45. Serial Readout Timing Diagram  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
SERIAL INTERFACE REGISTERS MAP  
Table 7 lists the ADS5295 registers.  
Table 7. Register Map  
REGISTER  
ADDRESS  
(Hex)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RST  
EN_HIGH_  
ADDRS  
EN_  
READOUT  
01  
0A  
0F  
14  
1C  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RAMP_PAT_RESET_VAL  
PDN_PIN_  
CFG  
PDN_  
COMPLETE  
PDN_  
PARTIAL  
0
0
0
0
0
0
0
0
0
0
0
0
0
PDN_CH[8:1]  
0
0
0
0
LFNS_CH[8:1]  
EN_FRAME  
_PAT  
ADCLKOUT[11:0]  
23  
24  
PRBS_SEED[15:0]  
0
PRBS_SEED[22:16]  
INVERT_CH[8:1]  
PRBS_  
SEED_  
FROM_REG  
TP_HARD_  
SYNC  
PRBS_  
MODE_2  
PRBS_  
TP_EN  
TP_SOFT_  
SYNC  
25  
0
0
0
TEST_PATT[2:0]  
BITS_CUSTOM2[11:10]  
BITS_CUSTOM1[11:10]  
26  
27  
BITS_CUSTOM1[9:0]  
BITS_CUSTOM2[9:0]  
0
0
0
0
0
0
0
0
0
0
0
0
EN_WORD  
_BIT_WISE  
EN_BIT  
_WISE  
28  
29  
0
0
0
0
0
0
0
0
0
0
0
0
EN_WORDWISE_BY_CH[7:0]  
EN_  
CHANNEL_  
AVG  
EN_DIG_  
FILTER  
0
0
0
0
0
0
0
0
2A  
2B  
2C  
2D  
GAIN_CH4[3:0]  
GAIN_CH5[3:0]  
GAIN_CH3[3:0]  
GAIN_CH2[3:0]  
GAIN_CH7[3:0]  
GAIN_CH1[3:0]  
GAIN_CH8[3:0]  
AVG_OUT1[1:0]  
AVG_OUT5[1:0]  
USE_  
GAIN_CH6[3:0]  
AVG_OUT4[1:0]  
AVG_OUT8[1:0]  
0
0
0
0
0
0
0
0
0
0
0
AVG_OUT3[1:0]  
AVG_OUT7[1:0]  
0
0
AVG_OUT2[1:0]  
AVG_OUT6[1:0]  
0
0
0
HPF_EN_  
CH1  
SEL_ODD_  
TAP_CH1  
2E  
2F  
30  
31  
32  
33  
0
0
0
0
0
0
HPF_CORNER_CH1[3:0]  
HPF_CORNER_CH2[3:0]  
HPF_CORNER_CH3[3:0]  
HPF_CORNER_CH4[3:0]  
HPF_CORNER_CH5[3:0]  
HPF_CORNER_CH6[3:0]  
FILTER_TYPE_CH1[2:0]  
FILTER_TYPE_CH2[2:0]  
FILTER_TYPE_CH3[2:0]  
FILTER_TYPE_CH4[2:0]  
FILTER_TYPE_CH5[2:0]  
FILTER_TYPE_CH6[2:0]  
DEC_RATE_CH1  
DEC_RATE_CH2  
DEC_RATE_CH3  
DEC_RATE_CH4  
DEC_RATE_CH5  
DEC_RATE_CH6  
0
0
0
0
0
0
0
0
0
0
0
0
FILTER_  
CH1  
USE_  
FILTER_  
CH2  
HPF_EN_  
CH2  
SEL_ODD_  
TAP_CH2  
USE_  
FILTER_  
CH3  
HPF_EN_  
CH3  
SEL_ODD_  
TAP_CH3  
USE_  
FILTER_  
CH4  
HPF_EN_  
CH4  
SEL_ODD_  
TAP_CH4  
USE_  
FILTER_  
CH5  
HPF_EN_  
CH5  
SEL_ODD_  
TAP_CH5  
USE_  
FILTER_  
CH6  
HPF_EN_  
CH6  
SEL_ODD_  
TAP_CH6  
30  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Table 7. Register Map (continued)  
REGISTER  
ADDRESS  
(Hex)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
USE_  
FILTER_  
CH7  
HPF_EN_  
CH7  
SEL_ODD_  
TAP_CH7  
34  
35  
0
HPF_CORNER_CH7[3:0]  
HPF_CORNER_CH8[3:0]  
FILTER_TYPE_CH7[2:0]  
DEC_RATE_CH7  
0
0
USE_  
FILTER_  
CH8  
HPF_EN_  
CH8  
SEL_ODD_  
TAP_CH8  
0
0
FILTER_TYPE_CH8[2:0]  
DEC_RATE_CH8  
0
0
0
38  
42  
45  
46  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DATA_RATE[1:0]  
EN_PHASE  
DDR  
PHASE_  
DDR1  
PHASE_  
DDR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
PAT_DESKEW_SYNC[1:0]  
EN_2WIRE  
EN_MSB_  
FIRST  
ENABLE 46  
FALL_SDR  
BIT_SER_SEL  
EN_SDR  
BTC_MODE  
0
50  
51  
52  
53  
54  
55  
ENABLE 50  
ENABLE 51  
ENABLE 52  
ENABLE 53  
ENABLE 54  
ENABLE 55  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MAP_Ch1234_to_OUT2A  
MAP_Ch1234_to_OUT3B  
MAP_Ch1234_to_OUT1B  
MAP_Ch1234_to_OUT3A  
MAP_Ch1234_to_OUT4B  
MAP_Ch5678_to_OUT5A  
MAP_Ch5678_to_OUT7B  
MAP_Ch5678_to_OUT8A  
MAP_Ch1234_to_OUT1A  
MAP_Ch1234_to_OUT2B  
MAP_Ch1234_to_OUT4A  
MAP_Ch5678_to_OUT5B  
MAP_Ch5678_to_OUT6A  
MAP_Ch5678_to_OUT8B  
0
0
0
0
0
0
MAP_Ch5678_to_OUT6B  
MAP_Ch5678_to_OUT7A  
0
0
EN_  
CUSTOM_  
FILT_CH1  
5A to 65  
66 to 71  
72 to 7D  
7E to 89  
8A to 95  
96 to A1  
A2 to AD  
AE to B9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
COEFFn_SET_CH1(1)  
COEFFn_SET_CH2(1)  
COEFFn_SET_CH3(1)  
COEFFn_SET_CH4(1)  
COEFFn_SET_CH5(1)  
COEFFn_SET_CH6(1)  
COEFFn_SET_CH7(1)  
EN_  
CUSTOM_  
FILT_CH2  
EN_  
CUSTOM_  
FILT_CH3  
EN_  
CUSTOM_  
FILT_CH4  
EN_  
CUSTOM_  
FILT_CH5  
EN_  
CUSTOM_  
FILT_CH6  
EN_  
CUSTOM_  
FILT_CH7  
EN_  
CUSTOM_  
FILT_CH8  
COEFFn_SET_CH8(1)  
EN_LVDS  
_PROG  
BE  
F0  
0
0
0
0
0
0
0
0
0
0
DELAY_DATA_R  
DELAY_LCLK_R  
DELAY_DATA_F  
DELAY_LCLK_F  
EN_EXT_  
REF  
0
0
0
0
0
0
0
0
0
0
(1) n = 0 to 11.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
DESCRIPTION OF SERIAL INTERFACE REGISTERS  
Register 00h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
RST  
Bits D[15:1]  
Bit D0  
Must write '0'  
RST  
0 = Normal operation (default)  
1 = Self-clearing software RESET; after reset, this bit is set to '0'  
Register 01h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
D3  
0
D2  
0
D1  
0
D0  
EN_HIGH_  
ADDRS  
EN_READOUT  
Bits D[15:5]  
Bit D4  
Must write '0'  
EN_HIGH_ADDRS  
0 = Access to register F0h disabled (default)  
1 = Access to register F0h enabled  
Bits D[3:1]  
Bit D0  
Must write '0'  
EN_READOUT  
0 = Normal operation (default)  
1 = READOUT of registers mode using the SDOUT pin enabled  
Register 0Ah  
D15  
D14  
D6  
D13  
D5  
D12  
RAMP_PAT_RESET_VAL  
D4 D3  
RAMP_PAT_RESET_VAL  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
D7  
Bits D[15:0]  
RAMP_PAT_RESET_VAL  
The starting value of digital ramp test pattern can be programmed using these register bits.  
By default, after a reset, the starting value is 0000h.  
32  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Register 0Fh  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
D9  
D8  
PDN_  
COMPLETE  
PDN_PIN_CFG  
PDN_PARTIAL  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PDN_CH[8:1]  
All bits default to '0' after reset.  
Bits D[15:11]  
Bit D10  
Must write '0'  
PDN_PIN_CFG  
0 = PD pin configured for complete power-down mode  
1 = PD pin configured for partial power-down mode  
Bit D9  
PDN_COMPLETE  
0 = Normal operation  
1 = Register mode for complete power-down; slow recovery from power-down  
Bit D8  
PDN_PARTIAL  
0 = Normal operation  
1 = Partial power-down mode; fast recovery from power-down  
Bits D[7:0]  
PDN_CH[8:1]  
0 = Normal operation  
1 = Individual channel ADC power-down mode  
Register 14h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LFNS_CH[8:1]  
Bits D[15:8]  
Bits D[7:0]  
Must write '0'  
LFNS_CH[8:1]  
0 = LFNS disabled (default)  
1 = Low-frequency noise suppression (LFNS) mode enabled for individual channels  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 1Ch  
D15  
0
D14  
D13  
0
D12  
0
D11  
D3  
D10  
D9  
D1  
D8  
D0  
EN_FRAME_  
PAT  
ADCLKOUT[11:0]  
D7  
D6  
D5  
D4  
D2  
ADCLKOUT[11:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
EN_FRAME_PAT  
0 = Normal operation on frame clock (default)  
1 = Enables output frame clock to be programmed through a pattern specified by  
ADCCLKOUT register bits  
Bits D[13:12]  
Bits D[11:0]  
Must write '0'  
ADCLKOUT[11:0]  
These bits create the 12-bit pattern for the frame clock on the ADCLKP, ADCLKN pins.  
Register 23h  
D15  
D14  
D6  
D13  
D5  
D12  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
PRBS_SEED[15:0]  
D7  
D4  
PRBS_SEED[15:0]  
Bits D[15:0]  
PRBS_SEED[15:0]  
These bits are the lower 16 bits of the PRBS pattern starting seed value.  
The starting seed value of the PRBS test pattern can be specified using these register bits  
Register 24h  
D15  
D14  
D6  
D13  
D5  
D12  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
0
PRBS_SEED[22:16]  
D7  
D4  
D0  
INVERT_CH[8:1]  
All bits default to '0' after reset.  
Bits D[15:9]  
PRBS_SEED[22:16]  
These bits are the seven upper bits of the PRBS seed starting value.  
Bit D8  
Must write '0'  
Bits D[7:0]  
INVERT_CH[8:1]  
0 = Normal configuration  
Normally, the INP pin represents the positive analog input pin and INN represents the  
complementary negative input.  
1 = The polarity of the analog input pins is electrically swapped  
Setting the INVERT_CH[8:1] bits causes the inputs to be swapped. INN now represents the  
positive input and INP represents the negative input.  
34  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
Register 25h  
D15  
SBAS595 DECEMBER 2012  
D14  
D13  
D12  
D11  
0
D10  
0
D9  
D8  
TP_HARD_  
SYNC  
PRBS_SEED_  
FROM_REG  
PRBS_  
MODE_2  
TP_SOFT_  
SYNC  
PRBS_TP_EN  
0
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TEST_PATT[2:0]  
BITS_CUSTOM2[11:10]  
BITS_CUSTOM1[11:10]  
All bits default to '0' after reset.  
Bit D15  
TP_HARD_SYNC  
0 = Inactive  
1 = The external SYNC feature is enabled for syncing test patterns  
Bit D14  
PRBS_SEED_FROM_REG  
0 = Disabled  
1 = The PRBS seed is now able to be chosen from registers 23h and 24h  
Bit D13  
Bit D12  
PRBS_MODE_2  
The PRBS 9-bit LFSR (23-bit LFSR) is the default mode.  
PRBS_TP_EN  
0 = PRBS test pattern disabled  
1 = PRBS test pattern enabled  
Bits D[11:9]  
Bit D8  
Must write '0'  
TP_SOFT_SYNC  
0 = No sync  
1 = Software sync bit for the test patterns on all eight channels  
Bit D7  
Bit D6  
Must write '0'  
TEST_PATT2  
0 = Normal operation  
1 = A repeating full-scale ramp pattern is enabled on the outputs; ensure that bits D4 and  
D5 are '0'  
Bit D5  
Bit D4  
TEST_PATT1  
0 = Normal operation  
1 = Enables a mode where the output toggles between two defined codes; ensure that bits  
D4 and D6 are '0'  
TEST_PATT0  
0 = Normal operation  
1 = Enables a mode where the output is a constant specified code; ensure that bits D5 and  
D6 are '0'  
Bits D[3:2]  
Bits D[1:0]  
BITS_CUSTOM2[11:10]  
These bits are the two MSBs for the second code of the dual custom patterns.  
BITS_CUSTOM1[11:10]  
These bits are the two MSBs for the single custom pattern (and for the first code of the dual  
custom patterns).  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 26h  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
BITS_CUSTOM1[9:0]  
D7  
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
BITS_CUSTOM1[9:0]  
Bits D[15:6]  
BITS_CUSTOM1[9:0]  
These bits are the 10 lower bits for the single custom pattern (and for the first code of the  
dual custom pattern).  
Bits D[5:0]  
Must write '0'  
Register 27h  
D15  
D14  
D6  
D13  
D12  
D11  
D10  
D9  
D8  
BITS_CUSTOM2[9:0]  
D7  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
BITS_CUSTOM2[9:0]  
Bits D[15:6]  
Bits D[5:0]  
BITS_CUSTOM2[9:0]  
These bits are the 10 lower bits for the second code of the dual custom pattern.  
Must write '0'  
36  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
Register 28h  
D15  
SBAS595 DECEMBER 2012  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
D8  
EN_WORD_  
BIT_WISE  
0
EN_BIT_WISE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_WORDWISE_BY_CH[7:0]  
All bits default to '0' after reset.  
Bit D15  
EN_WORD_BIT_WISE  
This bit enables the bit order output in two-wire mode.  
0 = Byte-wise  
1 = Word-wise if D[7:0] = 1 (bit-wise if D8 = 1 and D[7:0] = 0)  
Bits D[14:9]  
Bit D8  
Must write '0'  
EN_BIT_WISE  
1 = Bit-wise if D15 =1 and D[7:0] = 0  
EN_WORDWISE_BY_CH[7:0]  
Bits D[7:0]  
0 = Bit-wise if D15 = 1 and D8 = 1  
1 = Word-wise if D15 = 1  
Register 29h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
EN_DIG_  
FILTER  
EN_CHANNEL  
_AVG  
Bits D[15:2]  
Bit D1  
Must write '0'  
EN_DIG_FILTER  
0 = Global control digital filter disabled(default)  
1 = Global control digital filter enabled  
Bit D0  
EN_CHANNEL_AVG  
0 = Channel averaging is disabled (default)  
1 = Channel averaging is enabled and specified by the AVG_OUTn register bits  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 2Ah  
D15  
D14  
GAIN_CH4[3:0]  
D6 D5  
GAIN_CH2[3:0]  
D13  
D12  
D4  
D11  
D3  
D10  
D9  
D1  
D8  
D0  
GAIN_CH3[3:0]  
D7  
D2  
GAIN_CH1[3:0]  
Bits D[15:12]  
Bits D[11:8]  
Bits D[7:4]  
Bits D[3:0]  
GAIN_CH4[3:0]  
These bits set the programmable gain for channel 4.  
GAIN_CH3[3:0]  
These bits set the programmable gain for channel 3.  
GAIN_CH2[3:0]  
These bits set the programmable gain for channel 2.  
GAIN_CH1[3:0]  
These bits set the programmable gain for channel 1.  
Register 2Bh  
D15  
D14  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D9  
D1  
D8  
D0  
GAIN_CH5[3:0]  
GAIN_CH6[3:0]  
D7  
D6  
D2  
GAIN_CH8[3:0]  
GAIN_CH7[3:0]  
Bits D[15:12]  
Bits D[11:8]  
Bits D[7:4]  
Bits D[3:0]  
GAIN_CH5[3:0]  
These bits set the programmable gain for channel 5.  
GAIN_CH6[3:0]  
These bits set the programmable gain for channel 6.  
GAIN_CH7[3:0]  
These bits set the programmable gain for channel 7.  
GAIN_CH8[3:0]  
These bits set the programmable gain for channel 8.  
38  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Register 2Ch  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
D9  
D8  
0
AVG_OUT4[1:0]  
D7  
D6  
D5  
0
D4  
D3  
D2  
0
D1  
D0  
AVG_OUT3[1:0]  
AVG_OUT2[1:0]  
AVG_OUT1[1:0]  
Bits D[15:11]  
Bits D[10:9]  
Must write '0'  
AVG_OUT4[1:0]  
These bits set the averaging control for what is transmitted on the LVDS output OUT4.  
Bit D8  
Must write '0'  
Bits D[7:6]  
AVG_OUT3[1:0]  
These bits set the averaging control for what is transmitted on the LVDS output OUT3.  
Bit D5  
Must write '0'  
Bits D[4:3]  
AVG_OUT2[1:0]  
These bits set the averaging control for what is transmitted on the LVDS output OUT2.  
Bit D2  
Must write '0'  
Bits D[1:0]  
AVG_OUT1[1:0]  
These bits set the averaging control for what is transmitted on the LVDS output OUT1.  
Register 2Dh  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
D9  
D1  
D8  
0
AVG_OUT8[1:0]  
D7  
D6  
D5  
0
D4  
D3  
D2  
0
D0  
AVG_OUT7[1:0]  
AVG_OUT6[1:0]  
AVG_OUT5[1:0]  
Bits D[15:11]  
Bits D[10:9]  
Must write '0'  
AVG_OUT8[1:0]  
These bits set the averaging control for what is transmitted on the LVDS output OUT8.  
Bit D8  
Must write '0'  
Bits D[7:6]  
AVG_OUT7[1:0]  
These bits set the averaging control for what is transmitted on the LVDS output OUT7.  
Bit D5  
Must write '0'  
Bits D[4:3]  
AVG_OUT6[1:0]  
These bits set the averaging control for what is transmitted on the LVDS output OUT6.  
Bit D2  
Must write '0'  
Bits D[1:0]  
AVG_OUT5[1:0]  
These bits set the averaging control for what is transmitted on the LVDS output OUT5.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 2Eh  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH1  
D6  
HPF_CORNER _CH1[3:0]  
FILTER_TYPE_CH1[2:0]  
D7  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH1[2:0]  
SEL_ODD_  
TAP_CH1  
USE_FILTER_  
CH1  
DEC_RATE_CH1[2:0]  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH1  
This bit enables the HPF filter for channel 1.  
HPF_CORNER _CH1[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 1.  
FILTER_TYPE_CH1[2:0]  
These bits select the type of filter on channel 1.  
DEC_RATE_CH1[2:0]  
These bits set the decimation factor for the filter on channel 1.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH1  
This bit enables the odd tap filter for channel 1.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH1  
This bit enables the filter for channel 1.  
40  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Register 2Fh  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH2  
HPF_CORNER _CH2[3:0]  
FILTER_TYPE_CH2[2:0]  
D7  
D6  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH2[2:0]  
SEL_ODD_  
TAP_CH2  
USE_FILTER_  
CH2  
DEC_RATE_CH2[2:0]  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH2  
This bit enables the HPF filter for channel 2.  
HPF_CORNER _CH2[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 2.  
FILTER_TYPE_CH2[2:0]  
These bits select the type of filter on channel 2.  
DEC_RATE_CH2[2:0]  
These bits set the decimation factor for the filter on channel 2.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH2  
This bit enables the odd tap filter for channel 2.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH2  
This bit enables the filter for channel 2.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 30h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH3  
D6  
HPF_CORNER _CH3[3:0]  
FILTER_TYPE_CH3[2:0]  
D7  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH3[2:0]  
SEL_ODD_  
TAP_CH3  
USE_FILTER_  
CH3  
DEC_RATE_CH3[2:0]  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH3  
This bit enables the HPF filter for channel 3.  
HPF_CORNER _CH3[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 3.  
FILTER_TYPE_CH3[2:0]  
These bits select the type of filter on channel 3.  
DEC_RATE_CH3[2:0]  
These bits set the decimation factor for the filter on channel 3.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH3  
This bit enables the odd tap filter for channel 3.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH3  
This bit enables the filter for channel 3.  
42  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Register 31h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH4  
HPF_CORNER _CH4[3:0]  
FILTER_TYPE_CH4[2:0]  
D7  
D6  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH4[2:0]  
SEL_ODD_  
TAP_CH4  
USE_FILTER_  
CH4  
DEC_RATE_CH4[2:0]  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH4  
This bit enables the HPF filter for channel 4.  
HPF_CORNER _CH4[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 4.  
FILTER_TYPE_CH4[2:0]  
These bits select the type of filter on channel 4.  
DEC_RATE_CH4[2:0]  
These bits set the decimation factor for the filter on channel 4.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH4  
This bit enables the odd tap filter for channel 4.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH4  
This bit enables the filter for channel 4.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 32h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH5  
D6  
HPF_CORNER _CH5[3:0]  
FILTER_TYPE_CH5[2:0]  
D7  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH5[2:0]  
SEL_ODD_  
TAP_CH5  
USE_FILTER_  
CH5  
DEC_RATE_CH5[2:0]  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH5  
This bit enables the HPF filter for channel 5.  
HPF_CORNER _CH5[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 5.  
FILTER_TYPE_CH5[2:0]  
These bits select the type of filter on channel 5.  
DEC_RATE_CH5[2:0]  
These bits set the decimation factor for the filter on channel 5.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH5  
This bit enables the odd tap filter for channel 5.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH5  
This bit enables the filter for channel 5.  
44  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Register 33h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH6  
HPF_CORNER _CH6[3:0]  
FILTER_TYPE_CH6[2:0]  
D7  
D6  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH6[2:0]  
SEL_ODD_  
TAP_CH6  
USE_FILTER_  
CH6  
DEC_RATE_CH6[2:0]  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH6  
This bit enables the HPF filter for channel 6.  
HPF_CORNER _CH6[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 6.  
FILTER_TYPE_CH6[2:0]  
These bits select the type of filter on channel 6.  
DEC_RATE_CH6[2:0]  
These bits set the decimation factor for the filter on channel 6.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH6  
This bit enables the odd tap filter for channel 6.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH6  
This bit enables the filter for channel 6.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 34h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH7  
D6  
HPF_CORNER _CH7[3:0]  
FILTER_TYPE_CH7[2:0]  
D7  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH7[2:0]  
SEL_ODD_  
TAP_CH7  
USE_FILTER_  
CH7  
DEC_RATE_CH7[2:0]  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH7  
This bit enables the HPF filter for channel 7.  
HPF_CORNER _CH7[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 7.  
FILTER_TYPE_CH7[2:0]  
These bits select the type of filter on channel 7.  
DEC_RATE_CH7[2:0]  
These bits set the decimation factor for the filter on channel 7.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH7  
This bit enables the odd tap filter for channel 7.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH7  
This bit enables the filter for channel 7.  
46  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Register 35h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH8  
HPF_CORNER _CH8[3:0]  
FILTER_TYPE_CH8[2:0]  
D7  
D6  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH8[2:0]  
SEL_ODD_  
TAP_CH8  
USE_FILTER_  
CH8  
DEC_RATE_CH8[2:0]  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH8  
This bit enables the HPF filter for channel 8.  
HPF_CORNER _CH8[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 8.  
FILTER_TYPE_CH8[2:0]  
These bits select the type of filter on channel 8.  
DEC_RATE_CH8[2:0]  
These bits set the decimation factor for the filter on channel 8.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH8  
This bit enables the odd tap filter for channel 8.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH8  
This bit enables the filter for channel 8.  
Register 38h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
DATA_RATE[1:0]  
Bits D[15:2]  
Bits D[1:0]  
Must write '0'  
DATA_RATE[1:0]  
Bits D1 and D0 select the output data rate depending on the type of filter.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 42h  
D15  
D14  
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
EN_PHASE_  
DDR  
0
D7  
0
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
PHASE_DDR1 PHASE_DDR0  
Bit D15  
This bit enables LCLK phase programmability.  
Must write '0'  
Bits D[14:7]  
Bits D[6:5]  
PHASE_DDR[1:0]  
These bits control the LCLK output phase relative to data.  
Refer to the Programmable LCLK Phase section.  
Bits D[4:0]  
Must write '0'  
Register 45h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
PAT_DESKEW_SYNC[1:0]  
Bits D[15:2]  
Bit D1  
Must write '0'  
PAT_DESKEW_SYNC1  
0 = Inactive  
1 = Sync pattern mode enabled; ensure that D0 is '0'  
Bit D0  
PAT_DESKEW_SYNC0  
0 = Inactive  
1 = Deskew pattern mode enabled; ensure that D1 is '0'  
48  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Register 46h  
D15  
D14  
0
D13  
D12  
0
D11  
D3  
D10  
D9  
D8  
ENABLE 46  
FALL_SDR  
BIT_SER_SEL  
D7  
0
D6  
0
D5  
0
D4  
D2  
D1  
0
D0  
EN_MSB_  
FIRST  
EN_SDR  
BTC_MODE  
EN_2WIRE  
All bits default to '0' after reset. Note that bit D15 must be set to '1' to enable bits D[13:0].  
Bit D15  
ENABLE 46  
This bit enables register 46h.  
Must write '0'  
Bit D14  
Bit D13  
FALL_SDR  
0 = The LCLK rising or falling edge comes at the edge of the data window when operating in  
SDR output mode  
1 = The LCLK rising or falling edge comes in the middle of the data window when operating  
in SDR output mode  
Bit D12  
Must write '0'  
BIT_SER_SEL  
Bits D[11:8]  
0001 = 10-bit serialization mode enabled  
0010 = 12-bit serialization mode enabled  
0100 = 14-bit serialization mode enabled  
1000 = 16-bit serialization mode enabled  
Do not use any other bit combinations.  
Bits D[7:5]  
Bit D4  
Must write '0'  
EN_SDR  
0 = DDR bit clock  
1 = SDR bit clock  
Bit D3  
Bit D2  
EN_MSB_FIRST  
0 = LSB first  
1 = MSB first  
BTC_MODE  
0 = Binary offset (ADC data output format)  
1 = Twos complement (ADC data output format)  
Bit D1  
Bit D0  
Must write '0'  
EN_2WIRE  
0 = One-wire LVDS output  
1 = Two-wire LVDS output  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Programmable LVDS Mapping Mode Registers  
Register 50h  
D15  
D14  
0
D13  
0
D12  
0
D11  
D3  
D10  
MAP_Ch1234_to_OUT2A  
D2 D1  
MAP_Ch1234_to_OUT1A  
D9  
D8  
D0  
ENABLE 50  
D7  
D6  
D5  
D4  
MAP_Ch1234_to_OUT1B  
Bit D15  
ENABLE 50  
This bit enables bits D[11:0] of register 50h.  
Must write '0'  
Bits D[14:12]  
Bits D[11:8]  
MAP_Ch1234_to_OUT2A  
These bits set the OUT2A pin pair to the channel data mapping selection.  
MAP_Ch1234_to_OUT1B  
Bits D[7:4]  
Bits D[3:0]  
These bits set the OUT1B pin pair to the channel data mapping selection.  
MAP_Ch1234_to_OUT1A  
These bits set the OUT1A pin pair to the channel data mapping selection.  
Register 51h  
D15  
D14  
0
D13  
0
D12  
0
D11  
D3  
D10  
MAP_Ch1234_to_OUT3B  
D2 D1  
MAP_Ch1234_to_OUT2B  
D9  
D8  
D0  
ENABLE 51  
D7  
D6  
D5  
D4  
MAP_Ch1234_to_OUT3A  
Bit D15  
ENABLE 51  
This bit enables bits D[11:0] of register 51h.  
Must write '0'  
Bits D[14:12]  
Bits D[11:8]  
MAP_Ch1234_to_OUT3B  
These bits set the OUT3B pin pair to the channel data mapping selection.  
MAP_Ch1234_to_OUT3A  
Bits D[7:4]  
Bits D[3:0]  
These bits set the OUT3A pin pair to the channel data mapping selection.  
MAP_Ch1234_to_OUT2B  
These bits set the OUT2B pin pair to the channel data mapping selection.  
50  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Register 52h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
D8  
0
ENABLE 52  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAP_Ch1234_to_OUT4B  
MAP_Ch1234_to_OUT4A  
Bit D15  
ENABLE 52  
This bit enables bits D[7:0] of register 52h.  
Must write '0'  
Bits D[14:8]  
Bits D[7:4]  
MAP_Ch1234_to_OUT4B  
These bits set the OUT4B pin pair to the channel data mapping selection.  
MAP_Ch1234_to_OUT4A  
Bits D[3:0]  
These bits set the OUT4A pin pair to the channel data mapping selection.  
Register 53h  
D15  
D14  
0
D13  
0
D12  
0
D11  
D3  
D10  
MAP_Ch5678_to_OUT6B  
D2 D1  
MAP_Ch5678_to_OUT5B  
D9  
D8  
D0  
ENABLE 53  
D7  
D6  
D5  
D4  
MAP_Ch5678_to_OUT5A  
Bit D15  
ENABLE 53  
This bit enables bits D[11:0] of register 53h.  
Must write '0'  
Bits D[14:12]  
Bits D[11:8]  
MAP_Ch5678_to_OUT6B  
These bits set the OUT6B pin pair to the channel data mapping selection.  
MAP_Ch5678_to_OUT5A  
Bits D[7:4]  
Bits D[3:0]  
These bits set the OUT5A pin pair to the channel data mapping selection.  
MAP_Ch5678_to_OUT5B  
These bits set the OUT5B pin pair to the channel data mapping selection.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Register 54h  
D15  
D14  
D13  
0
D12  
0
D11  
D3  
D10  
MAP_Ch5678_to_OUT7A  
D2 D1  
MAP_Ch5678_to_OUT6A  
D9  
D8  
D0  
ENABLE 54  
0
D7  
D6  
D5  
D4  
MAP_Ch5678_to_OUT7B  
Bit D15  
ENABLE 54  
This bit enables bits D[11:0] of register 54h.  
Must write '0'  
Bits D[14:12]  
Bits D[11:8]  
MAP_Ch5678_to_OUT7A  
These bits set the OUT7A pin pair to the channel data mapping selection.  
MAP_Ch5678_to_OUT7B  
Bits D[7:4]  
Bits D[3:0]  
These bits set the OUT7B pin pair to the channel data mapping selection.  
MAP_Ch5678_to_OUT6A  
These bits set the OUT6A pin pair to the channel data mapping selection.  
Register 55h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
ENABLE 55  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAP_Ch5678_to_OUT8A  
MAP_Ch5678_to_OUT8B  
Bit D15  
ENABLE 55  
This bit enables bits D[7:0] of register 55h.  
Must write '0'  
Bits D[14:8]  
Bits D[7:4]  
MAP_Ch5678_to_OUT8A  
These bits set the OUT8A pin pair to the channel data mapping selection.  
MAP_Ch5678_to_OUT8B  
Bits D[3:0]  
These bits set the OUT8B pin pair to the channel data mapping selection.  
52  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Custom Coefficient Registers  
Registers 5Ah to 65h(1)  
D15  
D14  
0
D13  
0
D12  
0
D11  
D3  
D10  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH1  
COEFFn_SET_CH1[11:0]  
D7  
D6  
D5  
D4  
D2  
D1  
COEFFn_SET_CH1[11:0]  
(1) n = 0 to 11.  
These registers are the custom coefficient registers for channel 1.  
Bit D15  
EN_CUSTOM_FILT_CH1  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH1[11:0]  
These bits set the custom coefficient n for the channel 1 digital filter.  
Registers 66h to 71h(1)  
D15  
D14  
0
D13  
0
D12  
0
D11  
D10  
COEFFn_SET_CH2[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH2  
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH2[11:0]  
(1) n = 0 to 11.  
These registers are the custom coefficient registers for channel 2.  
Bit D15  
EN_CUSTOM_FILT_CH2  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH2[11:0]  
These bits set the custom coefficient n for the channel 2 digital filter.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Registers 72h to 7Dh(1)  
D15  
D14  
0
D13  
0
D12  
0
D11  
D3  
D10  
COEFFn_SET_CH3[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH3  
D7  
D6  
D5  
D4  
COEFFn_SET_CH3[11:0]  
(1) n = 0 to 11.  
These registers are the custom coefficient registers for channel 3.  
Bit D15  
EN_CUSTOM_FILT_CH3  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH3[11:0]  
These bits set the custom coefficient n for the channel 3 digital filter.  
Registers 7Eh to 89h(1)  
D15  
D14  
0
D13  
0
D12  
0
D11  
D10  
COEFFn_SET_CH4[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH4  
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH4[11:0]  
(1) n = 0 to 11.  
These registers are the custom coefficient registers for channel 4.  
Bit D15  
EN_CUSTOM_FILT_CH4  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH1[11:0]  
These bits set the custom coefficient n for the channel 4 digital filter.  
54  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Registers 8Ah to 95h(1)  
D15  
D14  
0
D13  
0
D12  
0
D11  
D3  
D10  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH5  
COEFFn_SET_CH5[11:0]  
D7  
D6  
D5  
D4  
D2  
D1  
COEFFn_SET_CH5[11:0]  
(1) n = 0 to 11.  
These registers are the custom coefficient registers for channel 5.  
Bit D15  
EN_CUSTOM_FILT_CH5  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH5[11:0]  
These bits set the custom coefficient n for the channel 5 digital filter.  
Registers 96h to A1h(1)  
D15  
D14  
0
D13  
0
D12  
0
D11  
D10  
COEFFn_SET_CH6[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH6  
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH6[11:0]  
(1) n = 0 to 11.  
These registers are the custom coefficient registers for channel 6.  
Bit D15  
EN_CUSTOM_FILT_CH6  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH6[11:0]  
These bits set the custom coefficient n for the channel 6 digital filter.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Registers A2h to ADh(1)  
D15  
D14  
0
D13  
0
D12  
0
D11  
D3  
D10  
COEFFn_SET_CH7[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH7  
D7  
D6  
D5  
D4  
COEFFn_SET_CH7[11:0]  
(1) n = 0 to 11.  
These registers are the custom coefficient registers for channel 7.  
Bit D15  
EN_CUSTOM_FILT_CH7  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH7[11:0]  
These bits set the custom coefficient n for the channel 7 digital filter.  
Registers AEh to B9h(1)  
D15  
D14  
0
D13  
0
D12  
0
D11  
D10  
COEFFn_SET_CH8[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH8  
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH8[11:0]  
(1) n = 0 to 11.  
These registers are the custom coefficient registers for channel 8.  
Bit D15  
EN_CUSTOM_FILT_CH8  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH8[11:0]  
These bits set the custom coefficient n for the channel 8 digital filter.  
56  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
Register BEh  
D15  
SBAS595 DECEMBER 2012  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
D8  
EN_LVDS_  
PROG  
DELAY_DATA_R[1:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DELAY_LCLK_R[2:0]  
DELAY_DATA_F[1:0]  
DELAY_LCLK_F[2:0]  
Bit D15  
This bit enables LVDS edge delay programmability.  
Must write '0'  
Bits D[14:10]  
Bits D[9:8]  
Bits D[7:5]  
Bits D[4:3]  
Bits D[2:0]  
Refer Table 22 for settings.  
Refer Table 23 for settings.  
Refer Table 22 for settings.  
Refer Table 23 for settings.  
Register F0h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
EN_EXT_REF  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
The EN_HIGH_ADDRS register bit (register 01h, bit D4) must be set to '1' to allow access to this register.  
Bit D15  
EN_EXT_REF  
0 = Internal reference mode (default)  
1 = External reference mode enabled; apply the reference voltages on the REFT and REFB  
pins  
Bits D[14:0]  
Must write '0'  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS5295 is a low-power, 8-channel, 12-bit analog-to-digital converter (ADC) with sample rates up to  
100 MSPS that run off of a single 1.8-V supply. All eight channels simultaneously sample the analog inputs at the  
input clock rising edge. The sampled signal is sequentially converted by a series of small resolution stages, with  
the outputs combined in a digital correction logic block. At every clock edge, the sample propagates through the  
pipeline, resulting in a data latency of 12 clock cycles.  
ANALOG INPUT  
The analog input consists of a switched-capacitor-based, differential sample-and-hold architecture, as shown in  
Figure 46. This differential topology results in very good ac performance even for high input frequencies at high  
sampling rates. The INP and INM pins must be externally biased around a common-mode voltage of 0.95 V,  
available on the VCM pin. For a full-scale differential input, each input pin (INP, INN) must swing symmetrically  
between VCM + 0.5 V and VCM – 0.5 V, resulting in a 2-VPP differential input swing. The input sampling circuit  
has a high 3-dB bandwidth that extends up to 500 MHz (measured from the input pins to the sampled voltage).  
S
SZ  
RON  
25 W  
RON  
CPAR3  
100 W  
0.3 pF  
Sampling  
Switch  
LPKG  
2 nH  
S
Sampling  
Capacitor  
15 W  
INP  
RON  
10 W  
CBOND  
0.5 pF  
CPAR2  
1 pF  
CSAMP  
2.6 pF  
1 kW  
RESR  
200 W  
CPAR1  
1.5 pF  
RON  
40 W  
VCM  
LPKG  
2 nH  
1 kW  
CSAMP  
2.6 pF  
RON  
10 W  
15 W  
INN  
CBOND  
0.5 pF  
CPAR2  
1 pF  
Sampling  
Capacitor  
S
RESR  
Sampling  
Switch  
200 W  
RON  
RON  
25 W  
100 W  
CPAR3  
0.3 pF  
S
SZ  
Figure 46. Analog Input Equivalent Circuit  
58  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This architecture improves the  
common-mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with  
each input pin is recommended to damp out ringing caused by package parasitics. The drive circuits in Figure 47  
and Figure 48 show an R-C filter across the analog input pins. The purpose of the filter is to absorb the glitches  
caused by the opening and closing of the sampling capacitors. Figure 49 and Figure 50 show the differential  
input resistance and capacitance across frequency.  
0.1 mF  
5  
10 W  
INP  
INP  
25 ꢀ  
6.8 pF  
25 ꢀ  
25 ꢀ  
VCM  
25 ꢀ  
Device  
Device  
3.3 pF  
INN  
5 ꢀ  
INN  
10 W  
0.1 mF  
Figure 47. DC-Coupled Drive Circuit with RCR  
Figure 48. AC-Coupled Drive Circuit  
2
4
3.5  
3
1.5  
1
2.5  
2
0.5  
1.5  
1
0
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
Frequency (MHz)  
G043  
G044  
Figure 49. ADC Differential Input Resistance (RIN)  
vs Frequency  
Figure 50. ADC Differential Input Capacitance (CIN)  
vs Frequency  
Large- and Small-Signal Input Bandwidth  
The small-signal bandwidth of the analog input circuit is high, approximately 500 MHz. When using an amplifier  
to drive the ADS5295, the total amplifier noise up to the small-signal bandwidth must be considered. The large-  
signal bandwidth of the device depends on the amplitude of the input signal. The ADS5295 supports a 2-VPP  
amplitude for input signal frequencies up to 90 MHz. For higher frequencies, the amplitude of the input signal  
must be decreased proportionally. For example, at 180 MHz, the device supports a maximum 1-VPP signal.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: ADS5295  
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
CLOCK INPUT  
The ADS5295 can operate with both single-ended (CMOS) and differential input clocks (such as sine wave,  
LVPECL, and LVDS). Operating with a low-jitter differential clock is recommended for good SNR performance,  
especially at input frequencies greater than 30 MHz. In the differential mode, the clock inputs are internally  
biased to a 0.95-V common-mode voltage. While driving with an external LVPECL or LVDS driver, TI  
recommends ac-coupling the clock signals so that the clock pins are correctly biased to the common-mode  
voltage (0.95 V). To operate using a single-ended clock, connect a CMOS clock source to CLKP and tie CLKN to  
GND. The device automatically detects the presence of a single-ended clock without requiring any configuration  
and disables the internal biasing. Typical clock termination schemes are shown in Figure 51, Figure 52,  
Figure 53, and Figure 54.  
0.1 mF  
0.1 mF  
CLKP  
CLKP  
RTERM  
Differential  
LVPECL  
Clock Input  
Differential  
Sine-Wave  
Clock Input  
0.1 mF  
0.1 mF  
CLKN  
CLKN  
RTERM  
Figure 51. Differential Sine-Wave Clock Driving  
Circuit  
Figure 52. Differential LVPECL Clock Driving  
Circuit  
0.1 mF  
CMOS  
Clock Input  
CLKP  
CLKP  
Differential  
LVDS  
Clock Input  
RTERM  
0.1 mF  
CLKN  
CLKN  
Figure 53. Differential LVDS Clock Driving Circuit  
Figure 54. Single-Ended Clock Driving Circuit  
60  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
EXTERNAL REFERENCE MODE OF OPERATION  
For normal operation, the device requires two reference voltages (REFT and REFB) that are generated internally  
by default, as shown in Figure 55. The value of the reference voltage determines the actual ADC full-scale input  
voltage, as shown in Equation 1:  
Full-Scale Input Voltage = 2 ´ (VREFT - VREFB  
)
(1)  
Device  
INTREF/EXTREF  
INTREF/EXTREF  
Internal  
Reference  
REFT  
REFB  
REF Amp  
ADC  
Figure 55. Reference Equivalent Circuit  
Any error in the reference results in a deviation of the full-scale input range from its ideal value of 2.0 VPP, as  
shown in Equation 2:  
Error in Full-Scale Voltage = 2x [Error in (VREFT – VREFB)]  
(2)  
The reference inaccuracy results in a gain error, which is defined as Equation 3:  
100  
Gain Error (%) = Error in Full-Scale Voltage ´  
Ideal Full-Scale Voltage  
100  
= 2x [Error in (VREFT - VREFB)] ´  
2.0  
(3)  
To minimize the gain error, the internal reference voltages are trimmed to an accuracy of ±1.5% (or ±30 mV).  
To obtain even lower gain error, the ADS5295 supports an external reference mode of operation. In this mode,  
the internal reference amplifiers are powered down and an external amplifier must force the reference voltages  
on the REFT and REFB pins. For example, this mode can be used to ensure that multiple ADS5295 chips in the  
system have nearly the same full-scale voltage.  
To enable the external reference mode, set the register bits as shown in Table 8. These settings power down the  
internal reference amplifier and the two reference voltages can be forced directly on the REFT and REFB pins as  
VREFT = 1.45 V and VREFB = 0.45 V.  
Table 8. External Reference Function  
FUNCTION  
EN_HIGH_ADDRS  
EN_EXT_REF  
External reference using the REFT, REFB pins  
1
1
Because the internal reference amplifiers are powered down, the accuracy of the full-scale voltage is determined  
by the accuracy of (VREFT – VREFB), where VREFT is the voltage forced on REFT and VREFB is the voltage forced  
on REFB.  
Note that although the nominal value of (VREFT – VREFB) = 1.0 V, ensure that:  
[(VREFT + VREFB) / 2 = 0.950 V ± 50 mV].  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: ADS5295  
 
 
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Figure 56 shows an example of driving the reference pins. The 1-µF bypass capacitor helps provide the  
switching current drawn by the REFT and REFB pins. The external amplifier must provide an average current of  
5 mA or less at 100 MSPS. The performance in the external reference mode depends on the sampling speed. At  
low sampling speeds (20 MSPS), the performance is the same as that of an internal reference. At higher speeds,  
the performance degrades because of the effect of the parasitic bond-wire inductance of the REF pins. Figure 57  
highlights the difference in SNR between the external and internal reference modes.  
RS  
+
REFT  
VT  
VB  
-
1 mF  
Precision  
Reference  
Device  
+
RS  
REFB  
-
1 mF  
Figure 56. Driving Reference Inputs in External Reference Mode  
73  
SNR in External Reference  
SNR in Internal Reference  
72  
71  
70  
69  
68  
67  
66  
65  
20  
30  
40  
50  
60  
70  
80  
Sampling Frequency (MSPS)  
G045  
Figure 57. SNR in Internal and External Reference Mode  
62  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
LOW-FREQUENCY NOISE SUPPRESSION  
The low-frequency noise suppression (LFNS) mode is particularly useful in applications where good noise  
performance is desired in the low-frequency band of dc to 1 MHz. By setting this mode, the low-frequency noise  
spectrum band around dc is shifted to a similar band around fS / 2 (or the Nyquist frequency). As a result, the  
noise spectrum from dc to approximately 1 MHz improves significantly, as shown in Figure 58, Figure 59, and  
Figure 60.  
This function can be selectively enabled in each channel using the LFNS_CH register bits. Figure 58, Figure 59,  
and Figure 60 show the effect of this mode on the spectrum.  
0
−10  
0
−10  
SNR = 70.7 dBFS  
SINAD = 70.4 dBFS  
SFDR = 82.9 dBc  
THD = 82.1 dBc  
LF Noise Suppression Enabled  
LF Noise Suppression Disabled  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−80  
−70  
−90  
−80  
−100  
−110  
−120  
−130  
−140  
−90  
−100  
−110  
−120  
0
10  
20  
30  
40  
50  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Frequency (MHz)  
1
Frequency (MHz)  
G033  
G034  
Figure 58. Full-Scale Input Amplitude  
Figure 59. Spectrum (Zoomed) From DC to 1 MHz  
0
−10  
LF Noise Suppression Enabled  
LF Noise Suppression Disabled  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
49 49.1 49.2 49.3 49.4 49.5 49.6 49.7 49.8 49.9 50  
Frequency (MHz)  
G035  
Figure 60. Spectrum (Zoomed) in 1-MHz Band from 49 MHz to 50 MHz (fS = 100 MSPS)  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: ADS5295  
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
DIGITAL PROCESSING BLOCKS  
The ADS5295 integrates a set of commonly-used digital functions that can be used to ease system design.  
These functions are shown in Figure 61 and are described in the following sections.  
LVDS Outputs  
Test  
Patterns,  
Ramp  
Channel 1 ADC Data  
12-Bit  
ADC  
Channel 1  
OUT1A  
OUT1B  
Serializer  
Wire 1  
Average of  
2 Channels  
Built-In Coefficients  
Serializer  
Wire 2  
Decimate  
By 2 or 4  
24-Tap Filter  
(Even Tap)  
ADC Data:  
Channel 2  
Channel 3  
Channel 4  
Channel 2  
OUT2A  
OUT2B  
23-Tap Tilter  
(Odd Tap)  
Serializer  
Wire 1  
Average of  
4 Channels  
Serializer  
Wire 2  
Mapper  
8:8  
Multiplexer  
Custom Coefficients  
Decimate  
By 2, 4,  
or 8  
24-Tap Filter  
(Even Tap)  
OUT3A  
OUT3B  
Channel 3  
Serializer  
Wire 1  
Gain  
(0 dB to 12 dB,  
in 1-dB steps)  
23-Tap Filter  
(Odd Tap)  
Serializer  
Wire 2  
12-Tap Filter  
OUT4A  
OUT4B  
Channel 4  
Serializer  
Wire 1  
Digital Processing Block for Channel 1  
Digital Processing Block for Channel 2  
Serializer  
Wire 2  
12-Bit  
ADC  
Channel 2 ADC Data  
Channel 3 ADC Data  
12-Bit  
ADC  
Digital Processing Block for Channel 3  
Digital Processing Block for Channel 4  
12-Bit  
ADC  
Channel 4 ADC Data  
1/2 ADS5295  
Figure 61. Digital Processing Block Diagram  
Digital Gain  
The ADS5295 includes programmable digital gain settings from 0 dB to 12 dB in 1-dB steps. The benefit of  
digital gain is obtaining improved SFDR performance. However, SFDR improvement is achieved at the expense  
of SNR; for each gain setting, SNR degrades by approximately 1 dB. Therefore, the gain can be used to trade-off  
between SFDR and SNR.  
For each gain setting, the supported analog input full-scale range scales proportionally, as shown in Table 9.  
After reset, the device comes up in 0-dB gain mode. To use other gain settings, program the GAIN_CH[3:0]  
register bits.  
Table 9. Analog Full-Scale Range Across Gains  
GAIN_CH[3:0]  
DIGITAL GAIN (dB)  
ANALOG FULL-SCALE INPUT (VPP)  
0000  
0001  
0
2
1
1.78  
1.59  
1.42  
1.26  
1.12  
1
0010  
2
0011  
3
0100  
4
0101  
5
0110  
6
0111  
7
0.89  
0.8  
1000  
8
1001  
9
0.71  
0.63  
0.56  
0.5  
1010  
10  
11  
1011  
1100  
12  
Other combinations  
Do not use  
64  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Digital Filter  
The digital processing block includes the option to filter and decimate the ADC data outputs digitally. Various  
filters and decimation rates are supported: decimation rates of 2, 4, and 8, and low-pass, high-pass, and band-  
pass filters are available.  
The filters are internally implemented as 24-tap symmetric finite impulse response (FIR) filters (even-tap) using  
the predefined coefficients of Equation 4:  
y(n) =  
1
211  
´ [h0.x(n) + h1.x(n-1) + h2.x(n-2) + ... + h11.x(n-11) + h12.x(n-12) + ... + h1.x (n-22) + h0.x(n-23)]  
(4)  
Alternatively, some filters can be configured as 23-tap symmetric FIR filters (odd-tap), as described in  
Equation 5:  
y(n) =  
1
211  
´ [h0.x(n) + h1.x(n-1) + h2.x(n-2) + ... + h10.x(n-10) + h11.x(n-11) + h10.x(n-12) + ... + h1.x (n-21) + h0.x(n-22)]  
(5)  
In Equation 4 and Equation 5, h0 through h11 are 12-bit, signed, twos complement representations of the  
coefficients (–2048 to +2047). x(n) is the filter input data sequence and y(n) is the filter output sequence.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: ADS5295  
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Details of the registers used for configuring the digital filters are described in the digital filter registers (registers  
29h, 2Eh, 2Fh, 30h, 31h, and 38h) and Table 10. Table 10 gives a summary of the register bits to be used for  
each filter type.  
Table 10. Digital Filters  
USE_  
FILTER_  
CHn  
EN_  
CUSTOM_  
FILT_CHn  
DATA_ DEC_RATE  
RATE  
FILTER_  
TYPE_CHn  
ODD_  
TAP_CHn  
EN_DIG_  
FILTER  
DECIMATION  
TYPE OF FILTER  
_CHn(1)  
Built-in, low-pass, odd-tap filter  
(pass band = 0 to fS / 4)  
01  
000  
000  
001  
010  
011  
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Decimate-by-2  
Built-in, high-pass, odd-tap filter  
(pass band = 0 to fS / 4)  
01  
10  
10  
000  
001  
001  
Built-in, low-pass, even-tap filter  
(pass band = 0 to fS / 8)  
Built-in, first band pass, even-tap filter  
(pass band = fS / 8 to fS / 4)  
Decimate-by-4  
Built-in, second band pass,  
even-tap filter  
10  
001  
100  
0
1
0
1
(pass band = fS / 4 to 3 fS / 8)  
Built-in, high-pass, odd-tap filter  
(pass band = 3 fS / 8 to fS / 2)  
10  
01  
10  
11  
001  
000  
001  
100  
101  
000  
000  
000  
1
1
1
1
1
0
1
1
1
1
1
1
1
Custom filter  
(user-programmable coefficients)  
Decimate-by-2  
Decimate-by-4  
Decimate-by-8  
0 or 1  
0 or 1  
0 or 1  
Custom filter  
(user-programmable coefficients)  
Custom filter  
(user-programmable coefficients)  
12-tap filter  
without  
decimation  
Custom filter  
(user-programmable coefficients)  
00  
011  
000  
0
1
1
1
(1) The DEC_RATE_CHn value must be the same for all channels.  
66  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Predefined Coefficients  
The built-in filter types (low pass, high pass, and band pass) use predefined coefficients. The frequency  
response of the built-in filters is shown in Figure 62 and Figure 63.  
20  
10  
40  
30  
Low-Pass  
High-Pass  
Low-Pass  
Band-Pass 1  
Band-Pass 2  
High-Pass  
20  
0
10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (fIN/fS)  
Normalized Frequency (fIN/fS)  
G024  
G025  
Figure 62. Filter Response (Decimate-by-2)  
Figure 63. Filter Response (Decimate-by-4)  
The predefined coefficients for the decimate-by-2 and decimate-by-4 filters are listed in Table 11 and Table 12,  
respectively.  
Table 11. Predefined Coefficients for Decimate-by-2 Filters  
DECIMATE-BY-2  
COEFFICIENTS  
LOW-PASS FILTER  
HIGH-PASS FILTER  
h0  
h1  
3
0
–22  
–65  
–52  
30  
h2  
5
h3  
1
h4  
–27  
–2  
66  
h5  
–35  
–107  
38  
h6  
73  
h7  
3
h8  
–178  
–4  
202  
–41  
–644  
1061  
h9  
h10  
h11  
636  
1024  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: ADS5295  
 
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Table 12. Predefined Coefficients for Decimate-by-4 Filters  
DECIMATE-BY-4  
COEFFICIENTS  
LOW-PASS FILTER  
1st BAND-PASS FILTER 2nd BAND-PASS FILTER  
HIGH-PASS FILTER  
h0  
h1  
–17  
–50  
71  
–7  
19  
–34  
–34  
–101  
43  
40  
–15  
–95  
22  
h2  
–47  
127  
73  
h3  
46  
h4  
24  
58  
–8  
h5  
–42  
–100  
–97  
8
0
–28  
–5  
–81  
106  
–62  
–97  
310  
–501  
575  
h6  
86  
h7  
117  
–190  
–464  
–113  
526  
–179  
294  
86  
h8  
h9  
202  
414  
554  
h10  
h11  
–563  
352  
Custom Filter Coefficients  
In addition to the built-in filters described in the Predefined Coefficients section, customers also have the option  
of using their own custom, 12-bit, signed coefficients. Because of the symmetric FIR implementation of the filters,  
only 12 coefficients can be specified with the configuration of Equation 4 or Equation 5. These coefficients (h0 to  
h11) must be configured in the custom coefficient registers as shown in Equation 6:  
Register Content = 12-Bit Signed Representation of (Real Coefficient Value × 211)  
(6)  
The 12 custom coefficients must be loaded into 12 separate registers for each channel (refer to the custom  
coefficient registers, 5Ah to B9h). The MSB bit of each coefficient register determines whether the built-in filters  
or custom filters are used. If the EN_CUSTOM_FILT MSB bit is reset to '0', then the built-in filter coefficients are  
used. Otherwise, the custom coefficients are used.  
Custom Filter without Decimation  
Another mode is available that enables the use of the digital filter without decimation. In this mode, the filter  
behaves similar to a 12-tap symmetric FIR filter, as shown in Equation 7:  
y(n) =  
1
211  
´ [h6.x(n) + h7.x(n-1) + h8.x(n-2) + h9.x(n-3) + h10.x(n-4) + h11.x(n-5) +  
+ h11.x(n-6) + h10.x(n-7) + h9.x(n-8) + h8.x(n-9) + h7.x(n-10) + h6.x (n-11)]  
(7)  
In Equation 7, h6 through h11 are 12-bit, signed, twos complement representations of the coefficients (–2048 to  
+2047). x(n) is the filter input data sequence and y(n) is the filter output sequence.  
In this mode, because the filter is implemented as a 12-tap symmetric FIR, only six custom coefficients must be  
specified and loaded in registers h6 to h11 (refer to the custom coefficient registers, 5Ah to B9h). To enable this  
mode, use the register setting specified in bit 15 of registers AEh to B9h.  
Digital High-Pass Filter  
In addition to the 12 tap filters described previously, the digital processing block also includes a separate high-  
pass filter for each channel. The high-pass corner frequency can be programmed using bits D[14:10] in register  
2Eh.  
68  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Digital Averaging  
The ADS5295 includes an averaging function where the ADC digital data from two (or four) channels can be  
averaged. The averaged data are output on specific LVDS channels. Table 13 shows the combinations of the  
input channels that can be averaged and the LVDS channels on which the averaged data are available.  
Table 13. Using Channel Averaging  
OUTPUT WHERE  
AVERAGED CHANNELS AVERAGED DATA ARE  
AVAILABLE AT  
REGISTER SETTINGS  
1, 2  
1, 2  
OUT1A, OUT1B  
OUT3A, OUT3B  
OUT4A, OUT4B  
OUT2A, OUT2B  
OUT1A, OUT1B  
OUT4A, OUT4B  
OUT5A, OUT5B  
OUT7A, OUT7B  
OUT8A, OUT8B  
OUT6A, OUT6B  
OUT5A, OUT5B  
OUT8A, OUT8B  
Set AVG_OUT1 = 10 and EN_CHANNEL_AVG = 1  
Set AVG_OUT3 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT4 = 10 and EN_CHANNEL_AVG = 1  
Set AVG_OUT2 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT1 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT4 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT5 = 10 and EN_CHANNEL_AVG = 1  
Set AVG_OUT7 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT8 = 10 and EN_CHANNEL_AVG = 1  
Set AVG_OUT6 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT5 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT8 = 11 and EN_CHANNEL_AVG = 1  
3, 4  
3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
5, 6  
5, 6  
7, 8  
7, 8  
5, 6, 7, 8  
5, 6, 7, 8  
Performance with Digital Processing Blocks  
In applications where higher SNR performance is desired, digital processing blocks (such as averaging and  
decimation filters) can be used advantageously to achieve this. Table 14 shows the improvement in SNR that  
can be achieved compared to the default value, using these modes.  
Table 14. SNR Improvement Using Digital Processing  
TYPICAL IMPROVEMENT IN  
MODE(1)  
TYPICAL SNR (dB)(2)  
SNR (dB)  
Default  
70.6  
NA  
With decimate-by-2 filter enabled  
74.64  
76.13  
77.04  
77.43  
76.14  
79.27  
4.04  
With decimate-by-4 filter enabled  
5.53  
With decimate-by-8 filter enabled  
6.44  
With two channels averaged and decimate-by-4 filter enabled  
With four channels averaged  
6.83  
5.54  
With four channels averaged and decimate-by-4 filter enabled  
8.67  
(1) Custom coefficients are used for the decimate-by-8 filter.  
(2) In all these modes (except the default one), 14x serialization is used to capture data.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: ADS5295  
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
PROGRAMMABLE MAPPING BETWEEN INPUT CHANNELS AND OUTPUT PINS  
The ADS5295 has 16 pairs of LVDS channel outputs. The mapping of ADC channels to LVDS output channels is  
programmable to allow for flexibility in board layout. The control register mapping is shown in Table 15. The 16  
LVDS channel outputs are split into two groups of eight LVDS pairs. Within each group, four ADC input channels  
can be multiplexed to the eight LVDS pairs, depending on the mode of operation (one-wire mode or two-wire  
mode).  
Table 15. Mapping Control Registers  
ADDRESS  
(Hex)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
X
X
X
MAP_CH1234_TO_OUT1A  
MAP_CH1234_TO_OUT1B  
MAP_CH1234_TO_OUT2A  
MAP_CH1234_TO_OUT2B  
MAP_CH1234_TO_OUT3A  
MAP_CH1234_TO_OUT3B  
MAP_CH1234_TO_OUT4A  
MAP_CH1234_TO_OUT4B  
MAP_CH5678_TO_OUT5B  
MAP_CH5678_TO_OUT5A  
MAP_CH5678_TO_OUT6B  
MAP_CH5678_TO_OUT6A  
MAP_CH5678_TO_OUT7B  
MAP_CH5678_TO_OUT7A  
MAP_CH5678_TO_OUT8B  
MAP_CH5678_TO_OUT8A  
50  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
51  
52  
53  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
54  
55  
X
X
X
X
X
X
X
X
Input channels 1 to 4 can be mapped to any LVDS output (OUT1A, OUT1B to OUT4A, OUT4B) using the  
MAP_CH1234_TO_OUTnA, MAP_CH1234_TO_OUTnB bits, as shown in Table 16.  
Table 16. Multiplexing IN1 to IN4  
MAP_CH1234_TO_OUTN[3:0](1)  
MAPPING  
USED IN ONE-WIRE MODE?  
USED IN TWO-WIRE MODE?  
0000  
ADC input channel IN1 to OUTn  
Y
Y (LSB byte)  
ADC input channel IN1 to OUTn  
(two-wire only)  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
N
Y
N
Y
N
Y
N
Y (MSB byte)  
Y (LSB byte)  
Y (MSB byte)  
Y (LSB byte)  
Y (MSB byte)  
Y (LSB byte)  
Y (MSB byte)  
ADC input channel IN2 to OUTn  
ADC input channel IN2 to OUTn  
(two-wire only)  
ADC input channel IN3 to OUTn  
ADC input channel IN3 to OUTn  
(two-wire only)  
ADC input channel IN4 to OUTn  
ADC input channel IN4 to OUTn  
(two-wire only)  
LVDS output buffer OUTn  
powered down  
1xxx  
(1) n = 1A, 1B, 2A, 2B, 3A, 3B, 4A, or 4B.  
70  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Similarly, input channels 5 to 8 can be mapped to any LVDS output (OUT5A, OUT5B to OUT8A, OUT8B) using  
the MAP_CH5678_TO_OUTnA, MAP_CH5678_TO_OUTnB bits, as shown in Table 17. Both multiplexing  
options are controlled by registers 50h to 55h. Channel mapping block diagrams for one-wire mode and two-wire  
mode are illustrated in Figure 64 and Figure 65, respectively.  
Table 17. Multiplexing IN5 to IN8  
MAP_CH5678_TO_OUTN[3:0](1)  
MAPPING  
USED IN ONE-WIRE MODE?  
USED IN TWO-WIRE MODE?  
0000  
ADC input channel IN8 to OUTn  
Y
Y (LSB byte)  
ADC input channel IN8 to OUTn  
(two-wire only)  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
N
Y
N
Y
N
Y
N
Y (MSB byte)  
Y (LSB byte)  
Y (MSB byte)  
Y (LSB byte)  
Y (MSB byte)  
Y (LSB byte)  
Y (MSB byte)  
ADC input channel IN7 to OUTn  
ADC input channel IN7 to OUTn  
(two-wire only)  
ADC input channel IN6 to OUTn  
ADC input channel IN6 to OUTn  
(two-wire only)  
ADC input channel IN5 to OUTn  
ADC input channel IN5 to OUTn  
(two-wire only)  
LVDS output buffer OUTn  
powered down  
1xxx  
(1) n = 5A, 5B, 6A, 6B, 7A, 7B, 8A, or 8B.  
Channel 8 Data  
MAP_CH5678_to_OUTn[3:0] = 0000  
Channel 7 Data  
MAP_CH5678_to_OUTn[3:0] = 0010  
(1)  
OUTn  
Channel 6 Data  
MAP_CH5678_to_OUTn[3:0] = 0100  
MAP_CH5678_to_OUTn[3:0] = 1xxx,  
the unused OUTn LVDS buffer is powered down.  
Channel 5 Data  
MAP_CH5678_to_OUTn[3:0] = 0110  
Channel 4 Data  
MAP_CH1234_to_OUTn[3:0] = 0110  
Channel 3 Data  
MAP_CH1234_to_OUTn[3:0] = 0100  
(1)  
OUTn  
Channel 2 Data  
MAP_CH1234_to_OUTn[3:0] = 0010  
MAP_CH1234_to_OUTn[3:0] = 1xxx,  
the unused OUTn LVDS buffer is powered down.  
Channel 1 Data  
MAP_CH1234_to_OUTn[3:0] = 0000  
(1) For channels 1 to 4, n = 1A, 1B, 2A, 2B, 3A, 3B, 4A, and 4B. For channels 5 to 8, n = 5A, 5B, 6A, 6B, 7A, 7B, 8A, and 8B.  
Figure 64. One-Wire Channel Mapping Mode  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: ADS5295  
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Channel 1 LSB Byte Data[7:0]  
MAP_CH1234_to_OUTn[3:0] = 0000  
Channel 1 MSB Byte Data[15:8]  
MAP_CH1234_to_OUTn[3:0] = 0001  
Channel 2 LSB Byte Data[7:0]  
MAP_CH1234_to_OUTn[3:0] = 0010  
Channel 2 MSB Byte Data[15:8]  
MAP_CH1234_to_OUTn[3:0] = 0011  
(1)  
OUTn  
Channel 3 LSB Byte Data[7:0]  
MAP_CH1234_to_OUTn[3:0] = 0100  
Channel 3 MSB Byte Data[15:8]  
MAP_CH1234_to_OUTn[3:0] = 0101  
MAP_CH1234_to_OUTn[3:0] = 1xxx,  
the unused OUTn LVDS buffer is powered down.  
Channel 4 LSB Byte Data[7:0]  
MAP_CH1234_to_OUTn[3:0] = 0110  
Channel 4 MSB Byte Data[15:8]  
MAP_CH1234_to_OUTn[3:0] = 0111  
Channel 8 LSB Byte Data[7:0]  
MAP_CH5678_to_OUTn[3:0] = 0000  
Channel 8 MSB Byte Data[15:8]  
MAP_CH5678_to_OUTn[3:0] = 0001  
Channel 7 LSB Byte Data[7:0]  
MAP_CH5678_to_OUTn[3:0] = 0010  
Channel 7 MSB Byte Data[15:8]  
MAP_CH5678_to_OUTn[3:0] = 0011  
(1)  
OUTn  
Channel 6 LSB Byte Data[7:0]  
MAP_CH5678_to_OUTn[3:0] = 0100  
Channel 6 MSB Byte Data[15:8]  
MAP_CH5678_to_OUTn[3:0] = 0101  
MAP_CH5678_to_OUTn[3:0] = 1xxx,  
the unused OUTn LVDS buffer is powered down.  
Channel 5 LSB Byte Data[7:0]  
MAP_CH5678_to_OUTn[3:0] = 0110  
Channel 5 MSB Byte Data[15:8]  
MAP_CH5678_to_OUTn[3:0] = 0111  
(1) For channels 1 to 4, n = 1A, 1B, 2A, 2B, 3A, 3B, 4A, and 4B. For channels 5 to 8, n = 5A, 5B, 6A, 6B, 7A, 7B, 8A, and 8B.  
Figure 65. Two-Wire Channel Mapping Mode  
72  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
The default mapping for the one-wire and two-wire modes is shown in Table 18 and Table 19, respectfully.  
Table 18. Mapping for One-Wire Mode  
ANALOG INPUT CHANNEL  
Channel IN1  
LVDS OUTPUT(1)  
OUT1A  
Channel IN2  
OUT2A  
Channel IN3  
OUT3A  
Channel IN4  
OUT4A  
Channel IN5  
OUT5A  
Channel IN6  
OUT6A  
Channel IN7  
OUT7A  
Channel IN8  
OUT8A  
(1) ADC data are only available on OUTnA with default register settings.  
Table 19. Mapping for Two-Wire Mode  
ANALOG INPUT CHANNEL  
Channel IN1  
LVDS OUTPUT(1)  
OUT1A, OUT1B  
OUT2A, OUT2B  
OUT3A, OUT3B  
OUT4A, OUT4B  
OUT5A, OUT5B  
OUT6A, OUT6B  
OUT7A, OUT7B  
OUT8A, OUT8B  
Channel IN2  
Channel IN3  
Channel IN4  
Channel IN5  
Channel IN6  
Channel IN7  
Channel IN8  
(1) ADC data are available on both OUTnA and OUTnB.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: ADS5295  
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
SYNCHRONIZATION USING THE SYNC PIN  
The SYNC pin can be used to synchronize the data output from channels within the same chip or from channels  
across multiple chips when decimation filters are used with a reduced output data rate. When decimation filters  
are used (if the decimate-by-2 filter is enabled, for example), then effectively, the device outputs one digital code  
for every two analog input samples. If the SYNC pulse is not used, then the filters are not synchronized (even  
within a chip). When the filters are not synchronized, one channel may be transmitting codes corresponding to  
input samples N, N+1, and so on, while another channel may be transmitting codes corresponding to N+1, N+2,  
and so on.  
To achieve synchronization across multiple chips, the SYNC pulse must arrive at all ADS5295 chips at the same  
time (as shown in Figure 66). The ADS5295 generates an internal synchronization signal that resets the internal  
clock dividers used by the decimation filter. Using the SYNC signal in this way ensures that all channels output  
digital codes corresponding to the same set of input samples.  
Synchronizing the filters using the SYNC pin is enabled by default. No register bits are required to be written.  
The TP_HARD_SYNC register bit must be reset to '0' for this mode to function properly. As shown in Figure 66,  
the SYNC rising edge can be positioned anywhere within the window. SYNC width must be at least one clock  
cycle.  
In addition, SYNC can also be used to synchronize the RAMP test patterns across channels. In order to  
synchronize the test patterns, TP_HARD_SYNC must be set to '1'. Setting TP_HARD_SYNC to '1' actually  
disables the sync of the filters.  
0 ns  
tCLK / 2  
ADC Input  
Clock  
-1 ns  
tCLK / 2  
tD = -1 ns < tD < tCLK / 2  
SYNC  
tWIDTH ³ 1 Clock Cycle  
Figure 66. SYNC Timing Diagram  
Synchronizing ADC Sampling Instants  
Note that SYNC does not and cannot be used to synchronize the ADC sampling instants across chips. All  
channels within a single chip sample the analog inputs simultaneously. To ensure that channels across two chips  
sample the analog inputs simultaneously, the input clock must be routed to both chips with an identical length.  
This layout ensures that the input clocks arrive at both chips at the same time. Therefore, the SYNC pin cannot  
be used to synchronize the sampling instants because the input clock routing must be implemented during board  
design.  
74  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
DIGITAL OUTPUT INTERFACE  
SERIAL LVDS INTERFACE  
The ADS5295 offers several flexible output options, making the device easy to interface to an application-specific  
integrated circuit (ASIC) or a field-programmable gate array (FPGA). Each option can be easily programmed  
using the serial interface. A summary of all available options is listed in Table 20 along with the default values  
after power-up and reset. Following Table 20, each option is described in detail. Table 21 lists the two-wire  
register settings for the LVDS interface.  
Table 20. Summary of Output Interface Options  
AVAILABLE IN:  
DEFAULT AFTER  
ONE-  
WIRE  
TWO-  
WIRE  
POWER-UP AND  
RESET  
FEATURE  
OPTIONS  
BRIEF DESCRIPTION  
One-wire: ADC data are sent serially over one pair  
of LVDS pins.  
Two-wire: ADC data are split and sent serially over  
two pairs of LVDS pins.  
Wire interface  
One- and two-wire  
N
N
One-wire  
12x  
10x  
Y
Y
Y
Y
12x  
12x  
To be used with digital processing functions, such  
as averaging and decimation filers.  
Serialization factor  
14x  
16x  
Y
Y
Y
N
Y
N
N
Y
To be used with digital processing functions, such  
as averaging and decimation filers.  
Only available with one-wire interface for 12x, 10x,  
14x, and 16x serialization factors, respectively.  
6x, 5x, 7x, 8x  
3x, 2.5x, 3.5x, 4x  
6x  
6x  
DDR bit clock frequency  
Frame clock frequency  
Only available with two-wire interface for 12x, 10x,  
14x, and 16x serialization factors, respectively.  
1x sample rate  
Y
N
N
Y
1x  
1x  
1/2x sample rate  
Only available with the two-wire interface.  
Byte-wise: the ADC data are split into upper and  
lower bytes that are output on separate wires.  
Byte-wise  
Bit-wise  
N
N
N
Y
Y
Y
Byte-wise  
Byte-wise  
Byte-wise  
Only available with the two-wire interface.  
Bit-wise: the ADC data are split into even and odd  
bits that are output on separate wires.  
Bit sequence  
Only available with the two-wire interface.  
Word-wise: successive ADC data samples are sent  
over separate wires.  
Word-wise  
Table 21. Register Settings for Two-wire LVDS Interface  
D[7:0]  
D8 (EN_BIT_WISE)  
D15 (EN_WORD_BIT_WISE)  
LVDS OUTPUT  
(EN_WORDWISE_BY_CH)  
0
1
1
X
X
1
X
1
0
Byte-wise mode  
Word-wise mode  
Bit-wise mode  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: ADS5295  
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
One-Wire, 12x Serialization with DDR Bit Clock and 1x Frame Clock  
The 12-bit ADC data are serialized and output over one LVDS pair per channel along with a 6x bit clock and a 1x  
frame clock, as shown in Figure 67. The output data rate is a 12x sample rate; therefore, it is suited for low  
sample rates.  
Input Clock  
(CLK Frequency = fS)  
Frame Clock  
(ADCLK Frequency = 1x fS)  
Bit Clock  
(LCLK Frequency = 6x fS)  
Output Data(1)  
(OUTA Data rate = 12x fS)  
D11  
(D0)  
D10  
(D1)  
D9  
(D2)  
D8  
(D3)  
D7  
(D4)  
D6  
(D5)  
D5  
(D6)  
D4  
(D7)  
D3  
(D8)  
D2  
(D9)  
D1  
(D10)  
D0  
(D11)  
D11  
(D0)  
D10  
(D1)  
Sample N  
Sample N+1  
(1) The upper data bit is the MSB-first mode data bit and the lower data bit is the LSB-first mode data bit.  
Figure 67. LVDS Output Interface Timing Diagram (One-Wire, 12x Serialization)  
One-Wire, 10x Serialization with DDR Bit Clock and 1x Frame Clock  
The 10 upper bits of the 12-bit ADC data are serialized and output over one LVDS pair per channel along with a  
5x bit clock and a 1x frame clock, as shown in Figure 68. The output data rate is a 10x sample rate; therefore, it  
is suited for low sample rates, typically up to 65 MSPS.  
Input Clock  
(CLK Frequency = fS)  
Frame Clock  
(ADCLK Frequency = 1x fS)  
Bit Clock  
(LCLK Frequency = 5x fS)  
Output Data(1)  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D9  
D8  
D7  
(OUTA Data rate = 10x fS)  
(D0)  
(D1)  
(D2)  
(D3)  
(D4)  
(D5)  
(D6)  
(D7)  
(D8)  
(D9)  
(D0)  
(D1)  
(D2)  
Sample N  
Sample N+1  
(1) The upper data bit is the MSB-first mode data bit and the lower data bit is the LSB-first mode data bit.  
Figure 68. LVDS Output Interface Timing Diagram (One-Wire, 10x Serialization)  
76  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Two-Wire, 12x Serialization with DDR Bit Clock and 1/2x Frame Clock  
The 12-bit ADC data are serialized and output over two LVDS pairs per channel, as shown in Figure 69 and  
Figure 70. The output data rate is a 12x sample rate with a 3x bit clock and a 1/2x frame clock. This interface  
can be used up to the maximum sample rate of the device because the output data rate is half of the data rate in  
the one-wire case.  
Input Clock, CLK  
Frequency = fS  
Frame Clock, ADCLK  
Frequency = 1x fS  
Bit Clock, DDR LCLK  
Frequency = 3x fS  
Output Data  
OUT1B, OUT2B,  
OUT3B, OUT4B  
D9  
(D2)  
D8  
(D3)  
D7  
(D4)  
D6  
(D5)  
D11  
(D0)  
D10  
(D1)  
D9  
(D2)  
D8  
(D3)  
D7  
(D4)  
D6  
(D5)  
D11  
(D0)  
D10  
(D1)  
Output Data  
OUT1A, OUT2A,  
OUT3A, OUT4A  
D5  
(D6)  
D4  
(D7)  
D3  
(D8)  
D2  
(D9)  
D1  
(D10)  
D0  
(D11)  
D5  
(D6)  
D4  
(D7)  
D3  
(D8)  
D2  
(D9)  
D1  
(D10)  
D0  
(D11)  
Output Data  
OUT1B, OUT2B,  
OUT3B, OUT4B  
D6  
(D5)  
D4  
(D7)  
D2  
(D9)  
D0  
(D11)  
D10  
(D1)  
D8  
(D3)  
D6  
(D5)  
D4  
(D7)  
D2  
(D9)  
D0  
(D11)  
D10  
(D1)  
D8  
(D3)  
Output Data  
OUT1A, OUT2A,  
OUT3A, OUT4A  
D11  
(D0)  
D9  
(D2)  
D7  
(D4)  
D5  
(D6)  
D3  
(D8)  
D1  
(D10)  
D11  
(D0)  
D9  
(D2)  
D7  
(D4)  
D5  
(D6)  
D3  
(D8)  
D1  
(D10)  
Data Rate = 6x fS  
White Cells = Sample N  
Grey Cells = Sample N+1  
Data Bit in MSB-First Mode  
D5  
(D0)  
Data Bit in LSB-First Mode  
(1) The upper data bit is the MSB-first mode data bit and the lower data bit is the LSB-first mode data bit.  
(2) Shaded cells correspond to N+1 samples. Unshaded cells correspond to N samples.  
Figure 69. LVDS Output Interface Timing Diagram  
(Two-Wire, 12x Serialization, Byte-Wise and Bit-Wise Modes)  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Input Clock, CLK  
Frequency = fS  
Frame Clock, ADCLK  
Frequency = 1x fS  
Bit Clock, DDR LCLK  
Frequency = 3x fS  
Output Data  
OUT1A, OUT2A,  
OUT3A, OUT4A  
D6  
(D5)  
D7  
(D4)  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
D0  
(D11)  
D1  
(D10)  
Output Data  
OUT1B, OUT2B,  
OUT3B, OUT4B  
D6  
(D5)  
D7  
(D4)  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
D0  
(D11)  
D1  
(D10)  
Data Rate = 6x fS  
White Cells = Sample N  
Grey Cells = Sample N+1  
Data Bit in LSB-First Mode  
Data Bit in MSB-First Mode  
D0  
(D11)  
Figure 70. LVDS Output Interface Timing Diagram (Two-Wire, 12x Serialization, Word-Wise Mode)  
78  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
Two-Wire, 10x Serialization with DDR Bit Clock and 1/2x Frame Clock  
The 10 upper bits of the 12-bit ADC data are serialized and output over two LVDS pairs per channel, as shown in  
Figure 71. The output data rate is a 5x sample rate per wire with a 2.5x bit clock and a 1/2x frame clock. This  
interface can be used up to the maximum sample rate of the device because the output data rate is half of the  
data rate in the one-wire case.  
Input Clock, CLK  
Frequency = fS  
Frame Clock, ADCLK  
Frequency = 1x fS  
Bit Clock, DDR LCLK  
Frequency = 2.5x fS  
Output Data  
OUT1B, OUT2B,  
OUT3B, OUT4B  
D7  
(D2)  
D6  
(D3)  
D5  
(D4)  
D7  
(D2)  
D6  
(D3)  
D5  
(D4)  
D9  
(D0)  
D8  
(D1)  
D9  
(D0)  
D8  
(D1)  
Output Data  
OUT1A, OUT2A,  
OUT3A, OUT4A  
D4  
(D5)  
D3  
(D6)  
D2  
(D7)  
D1  
(D8)  
D0  
(D9)  
D4  
(D5)  
D3  
(D6)  
D2  
(D7)  
D1  
(D8)  
D0  
(D9)  
Output Data  
OUT1B, OUT2B,  
OUT3B, OUT4B  
D4  
(D5)  
D2  
(D7)  
D0  
(D9)  
D4  
(D5)  
D2  
(D7)  
D0  
(D9)  
D8  
(D1)  
D6  
(D3)  
D8  
(D1)  
D6  
(D3)  
Output Data  
OUT1A, OUT2A,  
OUT3A, OUT4A  
D9  
(D0)  
D7  
(D2)  
D5  
(D4)  
D3  
(D6)  
D1  
(D8)  
D9  
(D0)  
D7  
(D2)  
D5  
(D4)  
D3  
(D6)  
D1  
(D8)  
Data Rate = 2.5x fS  
White Cells = Sample N  
Grey Cells = Sample N+1  
Data Bit in MSB-First Mode  
D9  
(D0)  
Data Bit in LSB-First Mode  
(1) The upper data bit is the MSB-first mode data bit and the lower data bit is the LSB-first mode data bit.  
(2) Shaded cells correspond to N+1 samples. Unshaded cells correspond to N samples.  
Figure 71. LVDS Output Interface Timing Diagram (Two-Wire, 10x Serialization)  
When digital signal processing functions are used, the 14x and 16x serialization modes can also be used. These  
modes are:  
One-wire, 14x and 16x serialization with DDR bit clock and 1x frame clock mode, and  
Two-wire, 14x with DDR bit clock and 1/2x frame clock mode.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: ADS5295  
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
PROGRAMMABLE LCLK PHASE  
The ADS5295 enables the edge of the output bit clock (LCLK) to be programmed with the PHASE_DDR register  
bits. The default value of PHASE_DDR after reset is '10'. The default phase is shown in Figure 72.  
ADCLKP  
LCLKP  
DATA  
OUT  
PHASE_DDR[1:0] = 10  
Figure 72. Default LCLK Phase  
The phase can also be changed by changing the value of the PHASE_DDR[1:0] bits, as shown in Figure 73.  
ADCLKP  
ADCLKP  
LCLKP  
LCLKP  
DATA  
OUT  
DATA  
OUT  
PHASE_DDR[1:0] = 10  
PHASE_DDR[1:0] = 00  
ADCLKP  
LCLKP  
ADCLKP  
LCLKP  
DATA  
OUT  
DATA  
OUT  
PHASE_DDR[1:0] = 11  
PHASE_DDR[1:0] = 01  
Figure 73. Programmable LCLK Phases  
80  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
PROGRAMMABLE LVDS OUTPUT CLOCK AND DATA EDGES  
The ADS5295 enables the edges of the output data and output bit clock to be programmed with the  
DELAY_DATA and DELAY_LCLK register bits.  
Figure 74 details the timing of the output data and clock edge movements.Table 22 and Table 23 show the  
register settings and corresponding delay values for the data and clock edge movements.  
tDF  
DATA  
tDR  
LCLKN  
LCLKP  
tCR  
tCF  
Figure 74. LVDS Interface Output Data and Clock Edge Movement  
Table 22. LVDS Interface Output Data Delay Settings(1)  
DATA DELAY, RISING CLOCK  
EDGE  
DATA DELAY, FALLING CLOCK  
EDGE  
DELAY_DATA_R[1:0]  
tDR, Typical (ps)  
DELAY_DATA_F[1:0]  
tDF, Typical (ps)  
0
0
1
1
0
1
0
1
0
0
0
1
1
0
1
0
1
0
33  
33  
72  
72  
120  
120  
(1) Delay settings are the same for both 10x and 12x serialization modes.  
Table 23. LVDS Interface Output Clock Delay Settings(1)  
CLOCK RISING EDGE DELAY  
tCR, Typical (ps)  
CLOCK FALLING EDGE DELAY  
DELAY_LCLK_R[2:0]  
DELAY_LCLK_F[2:0]  
tCF, Typical (ps)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
33  
33  
72  
72  
120  
106  
159  
202  
244  
120  
106  
159  
202  
244  
(1) Delay settings are the same for both 10x and 12x serialization modes.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: ADS5295  
 
 
 
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
LVDS OUTPUT DATA AND CLOCK BUFFERS  
The equivalent circuit of each LVDS output buffer is shown in Figure 75. After reset, the buffer presents an  
output impedance of 100 Ω to match with the external 100-Ω termination.  
The VDIFF voltage is nominally 350 mV, resulting in an output swing of ±350 mV with a 100-Ω external  
termination. The buffer output impedance behaves in the same way as a source-side series termination. By  
absorbing reflections from the receiver end, this impedance helps improve signal integrity.  
VDIFF  
High  
Low  
OUTP  
OUTM  
External  
100-W Load  
VOCM  
(1)  
ROUT  
VDIFF  
High  
Low  
(1) ROUT = 100 Ω.  
Figure 75. LVDS Buffer Equivalent Circuit  
OUTPUT DATA FORMAT  
Two output data formats are supported: twos complement and offset binary. These formats can be selected by  
the BTC_MODE serial interface register bit. In the event of an input voltage overdrive, the digital outputs go to  
the appropriate full-scale level. For a positive overload, the 12-bit output data (D[11:0]) is FFFh in offset binary  
output format and 7FFh in twos complement output format. For a negative input overload, the output data is 000h  
in offset binary output format and 800h in twos complement output format.  
BOARD DESIGN CONSIDERATIONS  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of  
the board are cleanly partitioned. See the EVM User Guide (ADS5295, 8-Channel ADC Evaluation Module,  
SLAU442) for details on layout and grounding.  
Supply Decoupling  
Minimal external decoupling can be used without loss in performance because the ADS5295 already includes  
internal decoupling. Note that decoupling capacitors can help filter external power-supply noise; thus, the  
optimum number of capacitors would depend on the actual application. The decoupling capacitors should be  
placed very close to the converter supply pins.  
Exposed Pad  
In addition to providing a path for heat dissipation, the pad is also electrically connected to the digital ground  
internally. Therefore, the exposed pad must be soldered to the ground plane for best thermal and electrical  
performance.  
82  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
 
ADS5295  
www.ti.com  
SBAS595 DECEMBER 2012  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth: The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay: The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (jitter): The sample-to-sample variation in aperture delay.  
Clock Pulse Width (duty cycle): The duty cycle of a clock signal is the ratio of the time that the clock signal  
remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate: The maximum sampling rate at which specified operation is given. All parametric  
testing is performed at this sampling rate, unless otherwise noted.  
Minimum Conversion Rate: The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL): An ideal ADC exhibits code transitions at analog input values spaced exactly  
1 LSB apart. DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL): INL is the deviation of the ADC transfer function from a best-fit line determined by a  
least-squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error: Gain error is the deviation of the actual ADC input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a  
result of reference inaccuracy and error as a result of the channel. Both errors are specified independently as  
EGREF and EGCHAN, respectively. To a first-order approximation, the total gain error is (ETOTAL ~ EGREF + EGCHAN).  
For example, if ETOTAL = ±0.5%, then the full-scale input varies from [(1 – 0.5 / 100) × FSIDEAL] to [(1 + 0.5 / 100)  
× FSIDEAL].  
Offset Error: Offset error is the difference, given in number of LSBs, between the actual average ADC idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift: The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. Drift is calculated by dividing the maximum  
deviation of the parameter across the TMIN to TMAX range by the difference of TMAX – TMIN  
.
Signal-to-Noise Ratio (SNR): SNR is the ratio of the power of the fundamental (PS) to the noise floor power  
(PN), excluding the power at dc and the first nine harmonics. SNR is either given in units of dBc (dB to carrier)  
when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power  
of the fundamental is extrapolated to the converter full-scale range.  
PS  
SNR = 10 Log10  
PN  
(8)  
Signal-to-Noise and Distortion (SINAD): SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components, including noise (PN) and distortion (PD), but excluding dc. SINAD is either  
given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or  
dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
PS  
SINAD = 10 Log10  
PN + PD  
(9)  
Effective Number of Bits (ENOB): ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(10)  
Total Harmonic Distortion (THD): THD is the ratio of the power of the fundamental (PS) to the power of the first  
nine harmonics (PD). THD is typically given in units of dBc (dB to carrier).  
PS  
THD = 10 Log10  
PN  
(11)  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: ADS5295  
ADS5295  
SBAS595 DECEMBER 2012  
www.ti.com  
Spurious-Free Dynamic Range (SFDR): SFDR is the ratio of power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion (IMD3): IMD3 is the ratio of the power of the fundamental (at frequencies  
f1 and f2) to the power of the worst spectral component at either frequency 2 f1 – f2 or 2 f2 – f1. IMD3 is either  
given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or  
dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
AC Power-Supply Rejection Ratio (AC PSRR): AC PSRR is the measure of rejection of variations in the supply  
voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the ADC  
output code (referred to the input), then:  
DVOUT  
PSRR = 20 Log10  
(Expressed in dBc)  
DVSUP  
(12)  
Voltage Overload Recovery: The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This recovery is tested by separately applying a sine-wave signal with 6-dB  
positive and negative overload. The deviation of the first few samples after the overload (from the expected  
values) is noted.  
Common-Mode Rejection Ratio (CMRR): CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input pins and ΔVOUT is  
the resulting change of the ADC output code (referred to the input), then:  
DVOUT  
CMRR = 20 Log10  
(Expressed in dBc)  
DVCM  
(13)  
CROSSTALK: (only for multichannel ADCs) Crosstalk is a measure of the internal coupling of a signal from an  
adjacent channel into the channel of interest. Crosstalk is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from a channel across the package (far-channel). Crosstalk  
is usually measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of  
the coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. Crosstalk is typically expressed in dBc.  
84  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS5295  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
PACKAGING INFORMATION  
Orderable Device  
ADS5295PFP  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
PFP  
80  
80  
80  
96  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85 ADS5295  
ADS5295PFPR  
ADS5295PFPT  
ACTIVE  
ACTIVE  
PFP  
PFP  
1000  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
ADS5295  
ADS5295  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) Only one of markings shown within the brackets will appear on the physical device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS5295PFPR  
ADS5295PFPT  
HTQFP  
HTQFP  
PFP  
PFP  
80  
80  
1000  
250  
330.0  
330.0  
24.4  
24.4  
15.0  
15.0  
15.0  
15.0  
1.5  
1.5  
20.0  
20.0  
24.0  
24.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS5295PFPR  
ADS5295PFPT  
HTQFP  
HTQFP  
PFP  
PFP  
80  
80  
1000  
250  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

ADS5295PFPT

八通道 12 位、100MSPS 高 SNR 低功耗 ADC | PFP | 80 | -40 to 85
TI

ADS5296

10-Bit, 200-MSPS, 4-Channel and 12-Bit, 80-MSPS, 8-Channel Analog-to-Digital Converter
TI

ADS5296A

10 位、200MSPS、4 或 8 通道/12 位、80MSPS、8 通道 ADC
TI

ADS5296ARGCR

10 位、200MSPS、4 或 8 通道/12 位、80MSPS、8 通道 ADC | RGC | 64 | -40 to 85
TI

ADS5296ARGCT

10 位、200MSPS、4 或 8 通道/12 位、80MSPS、8 通道 ADC | RGC | 64 | -40 to 85
TI

ADS5296RGCR

10-Bit, 200-MSPS, 4-Channel and 12-Bit, 80-MSPS, 8-Channel Analog-to-Digital Converter
TI

ADS5296RGCT

10-Bit, 200-MSPS, 4-Channel and 12-Bit, 80-MSPS, 8-Channel Analog-to-Digital Converter
TI

ADS52J65

具有 JESD204B 接口的 8 通道 16 位 125MSPS 模数转换器 (ADC)
TI

ADS52J65IRGCR

具有 JESD204B 接口的 8 通道 16 位 125MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85
TI

ADS52J65IRGCT

具有 JESD204B 接口的 8 通道 16 位 125MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85
TI

ADS52J65_V01

ADS52J65 8-Channel, 16-Bit, 125-MSPS, 70-mW/Ch ADC With JESD204B Interface
TI

ADS52J90

14 位多通道低功耗高速模数转换器 (ADC)
TI