ADS5521IPAPRG4 [TI]

12-Bit, 105-MSPS Analog-to-Digital Converter (ADC) 64-HTQFP -40 to 85;
ADS5521IPAPRG4
型号: ADS5521IPAPRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12-Bit, 105-MSPS Analog-to-Digital Converter (ADC) 64-HTQFP -40 to 85

转换器
文件: 总35页 (文件大小:666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
12-Bit, 105MSPS  
Analog-To-Digital Converter  
1
FEATURES  
THS9001, OPA695, OPA847  
2
12-Bit Resolution  
APPLICATIONS  
105MSPS Sample Rate  
Wireless Communication  
High SNR: 70 dBFS at 100 MHz fIN  
High SFDR: 86 dBc at 100 MHz fIN  
2.3-VPP Differential Input Voltage  
Internal Voltage Reference  
3.3-V Single-Supply Voltage  
Analog Power Dissipation: 571 mW  
Serial Programming Interface  
TQFP-64 PowerPAD™ Package  
Communication Receivers  
Base Station Infrastructure  
Test and Measurement Instrumentation  
Single and Multichannel Digital Receivers  
Communication Instrumentation  
Radar  
Infrared  
Video and Imaging  
Medical Equipment  
Recommended Op Amps:  
THS3201, THS3202, THS4503, THS4509,  
DESCRIPTION  
The ADS5521 is a high-performance, 12-bit, 105MSPS analog-to-digital converter (ADC). To provide a complete  
converter solution, it includes a high-bandwidth linear sample-and-hold stage (S&H) and internal reference.  
Designed for applications demanding the highest speed and highest dynamic performance in little space, the  
ADS5521 has excellent power consumption of 571 mW at 3.3-V single-supply voltage. This allows an even  
higher system integration density. The provided internal reference simplifies system design requirements. Parallel  
CMOS-compatible output ensures seamless interfacing with common logic.  
The ADS5521 is available in a 64-pin TQFP PowerPAD package and in an industrial temperature grade device.  
Table 1. ADS5500 Product Family  
80MSPS  
ADS5522  
ADS5542  
105MSPS  
ADS5521  
ADS5541  
125MSPS  
ADS5520  
ADS5500  
12 Bit  
14 Bit  
AV  
DD  
DRV  
DD  
CLK+  
CLK−  
Timing Circuitry  
CLKOUT  
12-Bit  
Pipeline  
ADC  
D0  
Digital  
Error  
Correction  
V
IN+  
.
.
.
Output  
Control  
S&H  
V
D11  
IN−  
Core  
OVR  
DFS  
Internal  
Reference  
Control Logic  
CM  
Serial Programming Register  
ADS5521  
A
GND  
SEN  
SDATA SCLK  
DR  
GND  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004–2008, Texas Instruments Incorporated  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT PACKAGE-LEAD  
HTQFP-64(2)  
ADS5521  
ADS5521IPAP  
Tray, 160  
PAP  
–40°C to 85°C  
ADS5521I  
PowerPAD  
ADS5521IPAPR  
Tape and Reel, 1000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet.  
(2) Thermal pad size: 3,5 mm x 3,5 mm (min), 4 mm x 4 mm (max). θJA = 21.47°C/W and θJC = 2.99°C/W, when used with 2 oz. copper  
trace and pad soldered directly to a JEDEC standard, four-layer, 3 in x 3 in PCB.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
ADS5521  
UNIT  
V
AVDD to AGND, DRVDD to DRGND  
AGND to DRGND  
–0.3 to 3.7  
Supply Voltage  
±0.1  
–0.3 to minimum (AVDD + 0.3, 3.6)  
–0.3 to DRVDD  
–0.3 to DRVDD  
–40 to 85  
V
(2)(3)  
Analog input to AGND  
Logic input to DRGND  
V
V
Digital data output to DRGND  
Operating temperature range  
Junction temperature  
V
°C  
°C  
°C  
105  
Storage temperature range  
–65 to 150  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) If the input signal can exceed 3.6 V, then a resistor greater than or equal to 25 W should be added in series with each of the analog  
input pins to support input voltages up to 3.8 V. For input voltages above 3.8 V, the device can only handle transients and the duty cycle  
of the overshoot should be limited to less than 5% for inputs up to 3.9 V.  
(3) The overshoot duty cycle can be defined as the ratio of the total time of overshoot to the total intended device lifetime, expressed as a  
percentage. The total time of overshoot is the integrated time of all overshoot occurrences over the lifetime of the device.  
2
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Supplies  
Analog supply voltage, AVDD  
Output driver supply voltage, DRVDD  
Analog input  
3
3
3.3  
3.3  
3.6  
3.6  
V
V
Differential input range  
2.3  
VPP  
V
(1)  
Input common-mode voltage, VCM  
1.45  
1.55  
1.65  
Digital Output  
Maximum output load  
Clock Input  
10  
pF  
DLL ON  
60  
2
105  
80  
ADCLK input sample rate (sine wave) 1/tC  
MSPS  
VPP  
DLL OFF  
Clock amplitude, sine wave, differential(2)  
Clock duty cycle(3)  
1
3
50%  
Open free-air temperature range  
–40  
85  
°C  
(1) Input common-mode should be connected to CM.  
(2) See Figure 49 for more information.  
(3) See Figure 48 for more information.  
ELECTRICAL CHARACTERISTICS  
Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD  
=
DRVDD = 3.3 V, sampling rate = 105MSPS, 50% clock duty cycle, DLL On, 3-VPP differential clock, and –1dBFS differential  
input, unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
12  
Bits  
Analog Inputs  
Differential input range  
2.3  
6.6  
4
VPP  
k  
pF  
Differential input impedance  
Differential input capacitance  
See Figure 39  
See Figure 39  
Analog input common-mode current  
(per input)  
250  
750  
4
µA  
Analog input bandwidth  
Source impedance = 50 Ω  
MHz  
Clock  
cycles  
Voltage overload recovery time  
Internal Reference Voltages  
Reference bottom voltage, VREFM  
Reference top voltage, VREFP  
Reference error  
1
2.15  
V
V
–4%  
±0.9%  
4%  
1.55  
±0.05  
Common-mode voltage output, VCM  
V
Dynamic DC Characteristics and Accuracy  
No missing codes  
Tested  
±0.25  
±0.5  
Differential nonlinearity error, DNL  
Integral nonlinearity error, INL  
Offset error  
fIN = 55 MHz  
fIN = 55 MHz  
–0.5  
–1.5  
–11  
+0.5  
+1.5  
11  
LSB  
LSB  
±1.5  
mV  
Offset temperature coefficient  
0.02  
mV/°C  
Δoffset error/ΔAVDD from AVDD = 3 V to  
AVDD = 3.6 V  
DC power-supply rejection ratio, DC PSRR  
0.25  
mV/V  
(1)  
Gain error  
–2  
±0.3  
2
%FS  
Gain temperature coefficient  
–0.02  
Δ%/°C  
(1) Gain error is specified by design and characterization; it is not tested in production.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD  
=
DRVDD = 3.3 V, sampling rate = 105MSPS, 50% clock duty cycle, DLL On, 3-VPP differential clock, and –1dBFS differential  
input, unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Dynamic AC Characteristics  
fIN = 10 MHz  
fIN = 55 MHz  
71  
70.5  
69  
25°C to 85°C  
Full temp range  
68  
66.8  
Signal-to-noise ratio. SNR  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 150 MHz  
fIN = 220 MHz  
70.3  
70  
dBFS  
LSB  
dBc  
69.3  
67.8  
0.32  
83  
RMS idle channel noise  
Input tied to common-mode  
fIN = 10 MHz  
25°C  
78  
76  
86  
fIN = 55 MHz  
Full temp range  
85  
Spurious-free dynamic range, SFDR  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 150 MHz  
fIN = 220 MHz  
fIN = 10 MHz  
81  
86  
75  
72  
90  
25°C  
78  
76  
86  
fIN = 55 MHz  
Full temp range  
85  
Second-harmonic, HD2  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 150 MHz  
fIN = 220 MHz  
81  
dBc  
88  
75  
72  
83  
fIN = 10 MHz  
fIN = 55 MHz  
88  
25°C  
78  
76  
88  
Full temp range  
87  
Third-harmonic, HD3  
dBc  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 150 MHz  
fIN = 220 MHz  
87  
86  
80  
78  
Worst-harmonic/spur (other than HD2 and  
HD3)  
fIN = 55 MHz  
fIN = 10 MHz  
87  
dBc  
70.7  
70  
25°C  
67  
fIN = 55 MHz  
Full temp range  
65.8  
68.5  
69.6  
69.3  
68.2  
65.8  
Signal-to-noise + distortion, SINAD  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 150 MHz  
fIN = 220 MHz  
dBFS  
4
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD  
=
DRVDD = 3.3 V, sampling rate = 105MSPS, 50% clock duty cycle, DLL On, 3-VPP differential clock, and –1dBFS differential  
input, unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
79  
MAX  
UNIT  
fIN = 10 MHz  
fIN = 55 MHz  
25°C  
76  
74  
83  
Full temp range  
82  
Total harmonic distortion, THD  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 150 MHz  
fIN = 220 MHz  
fIN = 55 MHz  
78  
dBc  
84  
74  
70.3  
11.3  
94.6  
96.6  
84.7  
35  
Effective number of bits, ENOB  
Bits  
dBFS  
dB  
f = 10.1 MHz, 15.1 MHz (-7dBFS each tone)  
f = 50.1 MHz, 55.1 MHz (-7dBFS each tone)  
f = 150.1 MHz, 155.1 MHz (-7dBFS each tone)  
Supply noise frequency 100 MHz  
Two-tone intermodulation distortion, IMD  
AC power supply rejection ratio, ACPSRR  
Power Supply  
Total supply current, ICC  
fIN = 55 MHz  
fIN = 55 MHz  
fIN = 55 MHz  
Analog only  
223  
173  
50  
250  
185  
65  
mA  
mA  
mA  
Analog supply current, IAVDD  
Output buffer supply current, IDRVDD  
571  
611  
Power dissipation  
Standby power  
mW  
mW  
Output buffer power with 10-pF load on digital  
output to ground  
165  
180  
215  
250  
With clocks running  
DIGITAL CHARACTERISTICS  
Valid over full recommended operating temperature range, AVDD = DRVDD = 3.3 V, unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Inputs  
High-level input voltage, VIH  
Low-level input voltage, VIL  
High-level input current, IIH  
Low-level input current, IIL  
Input current for RESET  
Input capacitance  
2.4  
V
0.8  
10  
V
µA  
µA  
µA  
pF  
-10  
–20  
4
Digital Outputs  
Low-level output voltage, VOL  
High-level output voltage, VOH  
Output capacitance  
CLOAD = 10 pF  
0.3  
3
0.4  
V
V
CLOAD = 10 pF  
2.4  
3
pF  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
TIMING CHARACTERISTICS(1)(2)  
Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD  
DRVDD = 3.3 V, sampling rate = 105MSPS, 50% clock duty cycle, 3-VPP differential clock, and CLOAD = 10 pF, unless  
otherwise noted(1)  
=
PARAMETER  
Switching Specification  
Aperture delay, tA  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Input CLK falling edge to data sampling point  
Uncertainty in sampling instant  
Data valid(3) to 50% of CLKOUT rising edge  
1
300  
2.8  
ns  
fs  
Aperture jitter (uncertainty)  
Data setup time, tSETUP  
Data hold time, tHOLD  
2.2  
2.2  
ns  
ns  
50% of CLKOUT rising edge to data becoming  
invalid(3)  
2.5  
Input clock to output data valid start,  
tSTART  
Input clock rising edge to data valid start delay  
1.9  
7.3  
2.8  
ns  
ns  
(4)(5)  
Input clock to output data valid end,  
Input clock rising edge to data valid end delay  
5.8  
(4)(5)  
tEND  
Output clock jitter, tJIT  
Uncertainty in CLKOUT rising edge, peak-to-peak  
Rise time of CLKOUT from 20% to 80% of DRVDD  
Fall time of CLKOUT from 80% to 20% of DRVDD  
175  
2
250  
2.2  
1.8  
5.5  
psPP  
ns  
Output clock rise time, tr  
Output clock fall time, tf  
1.7  
4.7  
ns  
Input clock to output clock delay, tPDI  
Input clock rising edge, zero crossing, to output  
clock rising edge 50%  
4
ns  
Data rise time, tr  
Data rise time measured from 20% to 80% of  
DRVDD  
4.4  
3.3  
5.1  
3.8  
ns  
ns  
Data fall time, tf  
Data fall time measured from 80% to 20% of  
DRVDD  
Output enable(OE) to data output delay  
Time required for outputs to have stable timings  
with regard to input clock(6) after OE is activated  
1000  
1000  
1000  
Clock  
cycles  
Time to valid data after coming out of software  
power down  
Clock  
cycles  
Wakeup time  
Latency  
Time to valid data after stopping and restarting the  
clock  
Time for a sample to propagate to the ADC outputs  
17.5  
Clock  
cycles  
(1) Timing parameters are ensured by design and characterization, and not tested in production.  
(2) See Table 6 through Table 9 in the Application Information section for timing information at additional sampling frequencies.  
(3) Data valid refers to 2 V for LOGIC HIGH and 0.8 V for LOGIC LOW.  
(4) See the Output Information section for details on using the input clock for data capture.  
(5) These specifications apply when the CLKOUT polarity is set to rising edge (according to Table 3). Add 1/2 clock period for the valid  
number for a falling edge CLKOUT polarity.  
(6) Data outputs are available within a clock from assertion of OE; however, it takes 1000 clock cycles to ensure stable timing with respect  
to input clock.  
6
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
N + 3  
N + 4  
N + 2  
Sample  
N
Analog  
Input  
N + 1  
N + 17  
N + 16  
N + 14  
N + 15  
Signal  
t
A
Input Clock  
t
START  
t
PDI  
Output Clock  
t
su  
Data Out  
(D0−D11)  
N − 17  
N − 16  
N − 15  
N − 14  
N − 13  
N − 3  
N − 2  
N − 1  
N
Data Invalid  
t
t
END  
h
17.5 Clock Cycles  
A. It is recommended that the loading at CLKOUT and all data lines are accurately matched to ensure that the above  
timing matches closely with the specified values.  
Figure 1. Timing Diagram  
RESET TIMING CHARACTERISTICS  
Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD  
DRVDD = 3.3 V, and 3-VPP differential clock, unless otherwise noted  
=
PARAMETER  
Switching Specification  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Power-on delay, t1  
Delay from power-on of AVDD and  
DRVDD to RESET pulse active  
10  
ms  
Reset pulse width, t2  
Register write delay, t3  
Pulse width of active RESET signal  
2
2
µs  
µs  
Delay from RESET disable to SEN  
active  
Power-up time  
Delay from power-up of AVDD and  
DRVDD to output stable  
40  
ms  
Power Supply  
(AV , DRV  
)
DD  
DD  
t . 10 ms  
1
t . 2 ms  
2
t . 2 ms  
3
SEN Active  
RESET (Pin 35)  
Figure 2. Reset Timing Diagram  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS5521  
 
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
SERIAL PROGRAMMING INTERFACE CHARACTERISTICS  
The ADS5521 has a three-wire serial interface. The ADS5521 latches serial data SDATA on the falling edge of  
serial clock SCLK when SEN is active.  
Serial shift of bits is enabled when SEN is low. SCLK shifts serial data at the falling edge.  
Minimum width of data stream for a valid loading is 16 clocks.  
Data is loaded at every 16th SCLK falling edge while SEN is low.  
In case the word length exceeds a multiple of 16 bits, the excess bits are ignored.  
Data can be loaded in multiples of 16-bit words within a single active SEN pulse.  
The first 4-bit nibble is the address of the register while the last 12 bits are the register contents.  
A3  
A2  
A1  
A0  
D11  
D10  
D9  
D0  
SDATA  
ADDRESS  
DATA  
MSB  
Figure 3. DATA Communication is 2-Byte, MSB First  
t
SLOADS  
t
SEN  
SLOADH  
t
t
t
SCLK  
WSCLK WSCLK  
SCLK  
t
t
h(D)  
su(D)  
SDATA  
MSB  
LSB  
MSB  
LSB  
16 x M  
Figure 4. Serial Programming Interface Timing Diagram  
Table 2. Serial Programming Interface Timing Characteristics  
SYMBOL  
tSCLK  
PARAMETER  
SCLK period  
MIN(1)  
TYP(1)  
MAX(1)  
UNIT  
50  
ns  
tWSCLK  
tSLOADS  
tSLOADH  
tDS  
SCLK duty cycle  
SEN to SCLK setup time  
SCLK to SEN hold time  
Data setup time  
25%  
50%  
75%  
8
6
8
6
ns  
ns  
ns  
ns  
tDH  
Data hold time  
(1) Typ, min, and max values are characterized, but not production tested.  
8
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
Table 3. Serial Register Table(1)  
A3 A2 A1 A0 D11  
D10  
D9  
D8 D7 D6 D5 D4 D3 D2  
D1  
D0  
DESCRIPTION  
DLL  
CTRL  
Clock DLL  
1
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
Internal DLL is on; recommended for 60MSPS to 105MSPS  
clock speeds.  
Internal DLL is off; recommended for 2MSPS to 80MSPS  
clock speeds.  
TP<1>  
TP<0>  
Test Mode  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
X
X
0
0
0
0
Normal mode of operation  
All outputs forced to 0  
All outputs forced to 1  
0
(2)(3)  
0
Each output bit toggles between 0 and 1.  
PDN  
0
Power Down  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
0
0
Normal mode of operation  
1
Device is put in power-down (low-current) mode.  
(1) The register contents default to the appropriate setting for normal operation up on RESET.  
(2) The patterns given are applicable to the straight offset binary output format. If 2's complement output format is selected, the test mode  
outputs will be the binary 2's complement equivalent of these patterns as described in the Output Information section.  
(3) While each bit toggles between 1 and 0 in this mode, there is no assured phase relationship between the data bits D0 through D13. For  
example, when D0 is a 1, D1 in not assured to be a 0, and vice versa.  
Table 4. Data Format Select (DFS) Table  
DFS-PIN VOLTAGE (VDFS  
)
DATA FORMAT  
CLOCK OUTPUT POLARITY  
2
12  
Straight Binary  
Data valid on rising edge  
V
t
  AV  
DD  
DFS  
5
12  
4
12  
2's complement  
Straight Binary  
2's complement  
Data valid on rising edge  
Data valid on falling edge  
Data valid on falling edge  
  AV  
  AV  
t V  
t
  AV  
  AV  
DD  
DD  
DFS  
8
12  
7
12  
t V  
t
DD  
DD  
DFS  
10  
12  
V
u
  AV  
DD  
DFS  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS5521  
 
 
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
PIN CONFIGURATION  
PAP PACKAGE  
HTQFP-64  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
DRGND  
SCLK  
SDATA  
SEN  
DRGND  
D1  
3
D0 (LSB)  
4
45 NC  
AVDD  
AGND  
5
44 NC  
6
43 CLKOUT  
7
42  
41  
AVDD  
AGND  
DRGND  
OE  
ADS5521  
PowerPAD  
8
AVDD  
CLKP  
CLKM  
AGND  
9
40 DFS  
(Connected to Analog Ground)  
10  
11  
12  
39  
38  
37  
AVDD  
AGND  
AVDD  
AGND 13  
AGND 14  
AVDD 15  
36 AGND  
35 RESET  
34 AVDD  
16  
33  
AVDD  
AGND  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
10  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
PIN ASSIGNMENTS(1)  
TERMINAL  
NO. OF  
NAME  
NO.  
PINS  
I/O DESCRIPTION  
5, 7, 9, 15, 22,  
24, 26, 28, 33,  
34, 37, 39  
AVDD  
12  
I
Analog power supply  
6, 8, 12, 13,  
14, 16, 18, 21,  
23, 25, 27, 32,  
36, 38  
AGND  
14  
I
Analog ground  
DRVDD  
DRGND  
49, 58  
2
6
I
I
Output driver power supply  
Output driver ground  
1, 42, 48, 50,  
57, 59  
NC  
44, 45  
19  
20  
29  
30  
31  
17  
35  
41  
40  
10  
11  
4
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
Not connected  
INP  
Differential analog input (positive)  
INM  
I
Differential analog input (negative)  
REFP  
REFM  
IREF  
CM  
O
O
I
Reference voltage (positive); 1-µF capacitor in series with a 1-resistor to GND  
Reference voltage (negative); 1-µF capacitor in series with a 1-resistor to GND  
Current set; 56-kresistor to GND; do not connect capacitors  
Common-mode output voltage  
O
I
(2)  
RESET  
OE  
Reset (active high), 200-kresistor to AVDD  
Output enable (active high)(3)  
Data format and clock out polarity select(4)(3)  
Data converter differential input clock (positive)  
Data converter differential input clock (negative)  
Serial interface chip select(3)  
I
DFS  
I
CLKP  
CLKM  
SEN  
I
I
I
SDATA  
SCLK  
3
I
Serial interface data(3)  
Serial interface clock(3)  
2
I
D0 (LSB) to  
D11 (MSB)  
46, 47, 51-56,  
60-63  
14  
O
Parallel data output  
OVR  
64  
43  
1
1
O
O
Over-range indicator bit  
CLKOUT  
CMOS clock out in sync with data  
(1) PowerPAD is connected to analog ground.  
(2) If unused, the RESET pin should be tied to AGND. See the serial programming interface section for details.  
(3) Pins OE, DFS, SEN, SDATA, and SCLK have internal clamping diodes to the DRVDD supply. Any external circuit driving these pins  
must also run off the same supply voltage as DRVDD.  
(4) Table 4 defines the voltage levels for each mode selectable via the DFS pin.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
DEFINITION OF SPECIFICATIONS  
Offset Error  
Analog Bandwidth  
The offset error is the difference, given in number of  
The analog input frequency at which the power of the  
LSBs, between the ADC's actual average idle  
fundamental is reduced by 3 dB with respect to the  
channel output code and the ideal average idle  
low frequency value.  
channel output code. This quantity is often mapped  
into mV.  
Aperture Delay  
Temperature Drift  
The delay in time between the falling edge of the  
input sampling clock and the actual time at which the  
sampling occurs.  
The temperature drift coefficient (with respect to gain  
error and offset error) specifies the change per  
degree Celsius of the parameter from TMIN to TMAX. It  
is calculated by dividing the maximum deviation of  
the parameter across the TMIN to TMAX range by the  
difference (TMAX – TMIN).  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle  
Signal-to-Noise Ratio (SNR)  
The duty cycle of a clock signal is the ratio of the time  
the clock signal remains at a logic high (clock pulse  
width) to the period of the clock signal. Duty cycle is  
typically expressed as a percentage. A perfect  
differential sine wave clock results in a 50% duty  
cycle.  
SNR is the ratio of the power of the fundamental (PS)  
to the noise floor power (PN), excluding the power at  
DC and the first eight harmonics.  
PS  
SNR + 10Log  
10 PN  
Maximum Conversion Rate  
SNR is either given in units of dBc (dB to carrier)  
when the absolute power of the fundamental is used  
as the reference, or dBFS (dB to Full-Scale) when the  
power of the fundamental is extrapolated to the  
converter's full-scale range.  
The maximum sampling rate at which certified  
operation is given. All parametric testing is performed  
at this sampling rate unless otherwise noted.  
Minimum Conversion Rate  
The minimum sampling rate at which the ADC  
functions.  
Signal-to-Noise and Distortion (SINAD)  
SINAD is the ratio of the power of the fundamental  
(PS) to the power of all the other spectral components  
including noise (PN) and distortion (PD), but excluding  
DC.  
Differential Nonlinearity (DNL)  
An ideal ADC exhibits code transitions at analog input  
values spaced exactly 1LSB apart. The DNL is the  
deviation of any single step from this ideal value,  
measured in units of LSBs.  
PS  
SINAD + 10Log  
10 PN ) PD  
Integral Nonlinearity (INL)  
SINAD is either given in units of dBc (dB to carrier)  
when the absolute power of the fundamental is used  
as the reference, or dBFS (dB to Full-Scale) when the  
power of the fundamental is extrapolated to the  
converter's full-scale range.  
The INL is the deviation of the ADC's transfer  
function from a best fit line determined by a least  
squares curve fit of that transfer function, measured  
in units of LSBs.  
Effective Number of Bits (ENOB)  
Gain Error  
The ENOB is a measure of a converter's performance  
as compared to the theoretical limit based on  
quantization noise.  
The gain error is the deviation of the ADC's actual  
input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input  
full-scale range. Gain error does not account for  
variations in the internal reference voltages (see the  
Electrical Specifications section for limits on the  
variation of VREFP and VREFM).  
SINAD * 1.76  
ENOB +  
6.02  
12  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
Total Harmonic Distortion (THD)  
Two-Tone Intermodulation Distortion (IMD3)  
THD is the ratio of the power of the fundamental (PS)  
to the power of the first eight harmonics (PD).  
IMD3 is the ratio of the power of the fundamental (at  
frequencies f1 and f2) to the power of the worst  
spectral component at either frequency 2f1 – f2 or  
2f2 –f1. IMD3 is either given in units of dBc (dB to  
carrier) when the absolute power of the fundamental  
is used as the reference, or dBFS (dB to Full-Scale)  
when the power of the fundamental is extrapolated to  
the converter's full-scale range.  
PS  
THD + 10Log  
10 PD  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the power of the fundamental to the  
highest other spectral component (either spur or  
harmonic). SFDR is typically given in units of dBc (dB  
to carrier).  
DC Power Supply Rejection Ration (DC PSRR)  
The DC PSSR is the ratio of the change in offset  
error to a change in analog supply voltage. The DC  
PSRR is typically given in units of mV/V.  
Reference Error  
The reference error is the variation of the actual  
reference voltage (VREFP - VREFM) from its ideal  
value. The reference error is typically given as a  
percentage.  
Voltage Overload Recovery Time  
The voltage overload recovery time is defined as the  
time required for the ADC to recover to within 1% of  
the full-scale range in response to an input voltage  
overload of 10% beyond the full-scale range.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, sampling rate = 105MSPS,  
DLL On,  
and 3-V differential clock, unless otherwise noted  
SPECTRAL PERFORMANCE  
(FFT for 4 MHz Input Signal)  
SPECTRAL PERFORMANCE  
(FFT for 16 MHz Input Signal)  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
100  
120  
100  
120  
0
0
0
10  
20  
30  
40  
50  
0
0
0
10  
20  
30  
40  
50  
f
Frequency MHz  
f
Frequency MHz  
Figure 5.  
Figure 6.  
SPECTRAL PERFORMANCE  
(FFT for 55 MHz Input Signal)  
SPECTRAL PERFORMANCE  
(FFT for 70 MHz Input Signal)  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
100  
120  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
f
Frequency MHz  
f
Frequency MHz  
Figure 7.  
Figure 8.  
SPECTRAL PERFORMANCE  
(FFT for 80 MHz Input Signal)  
SPECTRAL PERFORMANCE  
(FFT for 100 MHz Input Signal)  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
100  
120  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
f
Frequency MHz  
f
Frequency MHz  
Figure 9.  
Figure 10.  
14  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, sampling rate = 105MSPS,  
DLL On,  
and 3-V differential clock, unless otherwise noted  
SPECTRAL PERFORMANCE  
(FFT for 150 MHz Input Signal)  
SPECTRAL PERFORMANCE  
(FFT for 220 MHz Input Signal)  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
100  
120  
100  
120  
0
0
0
10  
20  
30  
40  
50  
0
0
0
10  
20  
30  
40  
50  
f
Frequency MHz  
f
Frequency MHz  
Figure 11.  
Figure 12.  
SPECTRAL PERFORMANCE  
(FFT for 300 MHz Input Signal)  
TWO-TONE  
INTERMODULATION  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
100  
120  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
f
Frequency MHz  
f
Frequency MHz  
Figure 13.  
Figure 14.  
TWO-TONE  
INTERMODULATION  
TWO-TONE  
INTERMODULATION  
0
0
f1 = 150.1MHz ( 7dBFS)  
f2 = 155.1MHz ( 7dBFS)  
2−Tone IMD = 85.1dBFS  
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
100  
120  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
f
Frequency MHz  
f
Frequency MHz  
Figure 15.  
Figure 16.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, sampling rate = 105MSPS,  
DLL On,  
and 3-V differential clock, unless otherwise noted  
DIFFERENTIAL  
NONLINEARITY  
INTEGRAL  
NONLINEARITY  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.2  
0.4  
0.6  
0.8  
1.0  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
Code  
Code  
Figure 17.  
Figure 18.  
SPURIOUS-FREE DYNAMIC RANGE  
vs INPUT FREQUENCY  
SIGNAL-TO-NOISE RATIO  
vs INPUT FREQUENCY  
95  
90  
85  
80  
75  
70  
65  
60  
76  
74  
72  
70  
68  
66  
64  
62  
60  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Frequency MHz  
Frequency MHz  
Figure 19.  
Figure 20.  
AC PERFORMANCE  
vs ANALOG SUPPLY VOLTAGE  
AC PERFORMANCE  
vs ANALOG SUPPLY VOLTAGE  
76  
75  
74  
73  
72  
71  
70  
69  
68  
95  
90  
85  
80  
75  
70  
65  
60  
fIN = 150MHz  
fIN = 70MHz  
SFDR  
SFDR  
SNR  
SNR  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
AVDD Analog Supply Voltage  
V
AVDD Analog Supply Voltage V  
Figure 21.  
Figure 22.  
16  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, sampling rate = 105MSPS,  
DLL On,  
and 3-V differential clock, unless otherwise noted  
AC PERFORMANCE  
vs DIGITAL SUPPLY VOLTAGE  
AC PERFORMANCE  
vs DIGITAL SUPPLY VOLTAGE  
78  
76  
74  
72  
70  
68  
66  
88  
84  
80  
76  
72  
68  
64  
fIN = 150MHz  
fIN = 70MHz  
SFDR  
SNR  
SFDR  
SNR  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
DVDD Digital Supply Voltage  
V
DVDD Digital Supply Voltage  
V
Figure 23.  
Figure 24.  
POWER DISSIPATION  
vs SAMPLE RATE  
POWER DISSIPATION  
vs SAMPLE RATE  
800  
750  
700  
650  
600  
550  
500  
450  
800  
750  
700  
650  
600  
550  
500  
450  
fIN = 150MHz  
DLL On  
fIN = 70MHz  
DLL On  
DLL Off  
DLL Off  
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Sample Rate MSPS  
Sample Rate MSPS  
Figure 25.  
Figure 26.  
AC PERFORMANCE  
vs TEMPERATURE  
AC PERFORMANCE  
vs INPUT AMPLITUDE  
90  
85  
80  
75  
70  
65  
60  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
fIN = 70MHz  
SNR (dBFS)  
SFDR  
SNR  
SFDR (dBc)  
SNR (dBc)  
10  
20  
30  
fIN = 70MHz  
10  
40  
15  
+10  
+35  
_  
+60  
+85  
100 90  
80  
70  
60  
50  
40  
30 20  
0
Temperature  
C
Input Amplitude dBFS  
Figure 27.  
Figure 28.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, sampling rate = 105MSPS,  
DLL On,  
and 3-V differential clock, unless otherwise noted  
AC PERFORMANCE  
vs INPUT AMPLITUDE  
AC PERFORMANCE  
vs INPUT AMPLITUDE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SNR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBc)  
SNR (dBc)  
SNR (dBc)  
10  
20  
30  
10  
20  
30  
fIN = 220MHz  
fIN = 150MHz  
10  
100 90  
80  
70  
60  
50  
40  
30 20  
10  
0
100 90  
80  
70  
60  
50  
40  
30 20  
0
3.0  
65  
Input Amplitude dBFS  
Input Amplitude dBFS  
Figure 29.  
Figure 30.  
OUTPUT  
AC PERFORMANCE  
vs CLOCK AMPLITUDE  
NOISE HISTOGRAM  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
95  
90  
85  
80  
75  
70  
65  
60  
fIN = 70MHz  
SFDR  
SNR  
0
0.5  
1.0  
1.5  
2.0  
2.5  
Differential Clock Amplitude  
V
Code  
Figure 31.  
Figure 32.  
WCDMA  
CARRIER  
AC PERFORMANCE  
vs CLOCK DUTY CYCLE  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
fIN = 20MHz  
20  
40  
60  
80  
SFDR  
SNR  
100  
120  
140  
0
5
10  
15  
20  
25 30  
35  
40  
45  
50  
35  
40  
45  
50  
55  
%
60  
f
Frequency MHz  
Clock Duty Cycle  
Figure 33.  
Figure 34.  
18  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
TYPICAL CHARACTERISTICS  
Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, and 3-V differential clock,  
unless otherwise noted  
SIGNAL-TO-NOISE RATIO (SNR)  
(DLL On)  
125  
69  
71  
120  
71  
69.5  
70.5  
70  
115  
110  
105  
100  
95  
70.5  
70.5  
70.5  
70  
68.5  
69  
71  
70.5  
70.5  
69.5  
69  
69.5  
90  
85  
71.5  
71  
70  
68.5  
68  
80  
68.5  
68  
69  
75  
71  
70  
67.5  
69.5  
70.5  
70  
65  
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
Input Frequency MHz  
Figure 35.  
SIGNAL-TO-NOISE RATIO (SNR)  
(DLL Off)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
71  
70  
69  
69  
71  
70  
68  
67  
66  
65  
69  
71  
71  
68  
66  
70  
69  
64  
63  
68  
67  
70  
71  
69  
62  
61  
63  
67  
68  
65  
66  
64  
63  
67  
66  
62  
61  
70  
64  
140  
65  
120  
69  
68  
63  
160  
60  
20  
40  
60  
80  
100  
180  
200  
220  
Input Frequency MHz  
Figure 36.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, and 3-V differential clock,  
unless otherwise noted  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
(DLL On)  
125  
81  
79  
81  
83  
77  
120  
115  
110  
105  
100  
95  
87  
90  
85  
80  
75  
70  
85  
79  
89  
85  
83  
75  
79  
81  
77  
77  
85  
75  
79  
81  
83  
81  
91  
83  
87  
87  
87  
89  
85  
89  
90  
85  
83  
81  
93  
89  
75  
79  
85  
77  
73  
80  
87  
81  
81  
91  
89  
87  
75  
83  
79  
70  
85  
85  
79  
75  
65  
77  
81  
80  
20  
40  
60  
100  
120  
140  
160  
180  
200  
220  
Input Frequency MHz  
Figure 37.  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
(DLL Off)  
76  
74  
72  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
82  
78  
86  
84  
84  
70  
68  
84  
66  
90  
86  
80  
82  
88  
86  
88  
88  
86  
84  
86  
86  
86  
78  
84  
88  
90  
74  
76  
86  
88  
86  
72 70  
80  
78  
66  
68  
82  
84  
88  
88  
86  
84  
84  
86  
82  
88  
84  
74  
72  
76  
80  
68  
86  
70  
82  
80  
86  
84  
66  
220  
64  
78  
100  
Input Frequency MHz  
Figure 38.  
20  
40  
60  
80  
120  
140  
160  
180  
200  
20  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS5521 is a low-power, 12-Bit, 105MSPS, CMOS, switched capacitor, pipeline ADC that operates from a  
single 3.3-V supply. The conversion process is initiated by a falling edge of the external input clock. Once the  
signal is captured by the input S&H, the input sample is sequentially converted by a series of small resolution  
stages, with the outputs combined in a digital correction logic block. Both the rising and the falling clock edges  
are used to propagate the sample through the pipeline every half clock cycle. This process results in a data  
latency of 17.5 clock cycles, after which the output data is available as a 12-Bit parallel word, coded in either  
straight offset binary or binary 2's complement format.  
INPUT CONFIGURATION  
The analog input for the ADS5521 consists of a differential sample-and-hold architecture implemented using the  
switched capacitor technique shown in Figure 39.  
S
3a  
L1  
R1a  
C1a  
INP  
INM  
S
S
1a  
CP1  
CP3  
S
2
R3  
CA  
L2  
R1b  
C1b  
VINCM  
1V  
1b  
CP2  
CP4  
S
3b  
L , L : 6 nH − 10 nH effective  
1
2
R
1a  
, R : 5W − 8W  
1b  
C , C : 2.2 pF − 2.6 pF  
1a 1b  
CP , CP : 2.5 pF − 3.5 pF  
1
2
CP , CP : 1.2 pF − 1.8 pF  
3
4
C : 0.8 pF − 1.2 pF  
A
R : 80 W − 120 W  
3
Swithches: S , S  
On Resistance: 35 W − 50 W  
1a 1b:  
S : On Resistance: 7.5 W − 15 W  
2
S
, S : On Resistance: 40 W − 60 W  
3a 3b  
All switches OFF Resistance: 10 GW  
A. All Switches are ON in sampling phase which is approximately one half of a clock period.  
Figure 39. Analog Input Stage  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS5521  
 
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
This differential input topology produces a high level of ac-performance for high sampling rates. It also results in  
a very high usable input bandwidth, especially important for high intermediate-frequency (IF) or undersampling  
applications. The ADS5521 requires each of the analog inputs (INP, INM) to be externally biased around the  
common-mode level of the internal circuitry (CM, pin 17). For a full-scale differential input, each of the differential  
lines of the input signal (pins 19 and 20) swings symmetrically between CM + 0.575 V and CM – 0.575 V. This  
means that each input is driven with a signal of up to CM + 0.575 V, so that each input has a maximum  
differential signal of 1.15 VPP for a total differential input signal swing of 2.3 VPP. The maximum swing is  
determined by the two reference voltages, the top reference (REFP, pin 29), and the bottom reference (REFM,  
pin 30).  
The ADS5521 obtains optimum performance when the analog inputs are driven differentially. The circuit shown  
in Figure 40 illustrates one possible configuration using an RF transformer.  
R0  
Z0  
W
25  
W
W
50  
50  
INP  
1:1  
R
AC Signal  
S ource  
ADS5521  
W
50  
W
25  
INM  
C M  
ADT11W T  
W
m
10  
1nF  
0.1  
F
Figure 40. Transformer Input to Convert Single-Ended Signal to Differential Signal  
The single-ended signal is fed to the primary winding of an RF transformer. Placing a 25-resistor in series with  
INP and INM is recommended to dampen ringing due to ADC kickback.  
Since the input signal must be biased around the common-mode voltage of the internal circuitry, the  
common-mode voltage (VCM) from the ADS5521 is connected to the center-tap of the secondary winding.  
To ensure a steady low-noise VCM reference, best performance is attained when the CM output (pin 17) is filtered  
to ground with a 10-series resistor and parallel 0.1-µF and 0.001-µF low-inductance capacitors, as illustrated in  
Figure 39.  
Output VCM (pin 17) is designed to directly drive the ADC input. When providing a custom CM level, be aware  
that the input structure of the ADC sinks a common-mode current in the order of 500 µA (250 µA per input).  
Equation 1 describes the dependency of the common-mode current and the sampling frequency:  
500mA   fS (in MSPS)  
105 MSPS  
(1)  
Where:  
fS > 2MSPS.  
This equation helps to design the output capability and impedance of the driving circuit accordingly.  
When it is necessary to buffer or apply a gain to the incoming analog signal, it is possible to combine  
single-ended operational amplifiers with an RF transformer, or to use a differential input/output amplifier without a  
transformer, to drive the input of the ADS5521. Texas Instruments offers a wide selection of single-ended  
operational amplifiers (including the THS3201, THS3202, OPA695, and OPA847) that can be selected  
depending on the application. An RF gain block amplifier, such as Texas Instruments THS9001, can also be  
used with an RF transformer for high input frequency applications. The THS4503 is a recommended differential  
input/output amplifier. Table 5 lists the recommended amplifiers.  
22  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
 
 
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
Table 5. Recommended Amplifiers to Drive the Input of the ADS5521  
INPUT SIGNAL FREQUENCY  
DC to 20 MHz  
RECOMMENDED AMPLIFIER  
THS4503  
TYPE OF AMPLIFIER  
Differential In/Out Amp  
Operational Amp  
USE WITH TRANSFORMER?  
No  
Yes  
No  
DC to 50 MHz  
OPA847  
DC to 100 MHz  
THS4509  
Differential In/Out Amp  
Operational Amp  
OPA695  
Yes  
Yes  
Yes  
Yes  
10 MHz to 120 MHz  
THS3201  
Operational Amp  
THS3202  
Operational Amp  
Over 100 MHz  
THS9001  
RF Gain Block  
When using single-ended operational amplifiers (such as the THS3201, THS3202, OPA695, or OPA847) to  
provide gain, a three-amplifier circuit is recommended with one amplifier driving the primary of an RF transformer  
and one amplifier in each of the legs of the secondary driving the two differential inputs of the ADS5521. These  
three amplifier circuits minimize even-order harmonics. For high frequency inputs, an RF gain block amplifier can  
be used to drive a transformer primary; in this case, the transformer secondary connections can drive the input of  
the ADS5521 directly, as shown in Figure 40, or with the addition of the filter circuit shown in Figure 41.  
Figure 41 illustrates how RIN and CIN can be placed to isolate the signal source from the switching inputs of the  
ADC and to implement a low-pass RC filter to limit the input noise in the ADC. It is recommended that these  
components be included in the ADS5521 circuit layout when any of the amplifier circuits discussed previously are  
used. The components allow fine-tuning of the circuit performance. Any mismatch between the differential lines  
of the ADS5521 input produces a degradation in performance at high input frequencies, mainly characterized by  
an increase in the even-order harmonics. In this case, special care should be taken to keep as much electrical  
symmetry as possible between both inputs.  
Another possible configuration for lower-frequency signals is the use of differential input/output amplifiers that  
can simplify the driver circuit for applications requiring dc-coupling of the input. Flexible in their configurations  
(see Figure 42), such amplifiers can be used for single-ended-to-differential conversion signal amplification.  
-
+5V 5V  
RS  
RIN  
RIN  
W
100  
0.1 mF  
25 W  
25 W  
VIN  
1:1  
INP  
INM  
OPA695  
R1  
RT  
100  
ADS5521  
CM  
CIN  
1000 pF  
W
W
400  
AV = 8V/V  
(18dB)  
R2  
57.5  
W
10  
W
0.1 mF  
Figure 41. Converting a Single-Ended Input Signal to a Differential Signal Using an RF Transformer  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS5521  
 
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
R
S
R
G
R
F
+5V  
R
T
+3.3V  
0.1 mF  
10 mF  
R
R
IN  
INP  
ADS5521  
12-Bit / 105MSPS  
V
COM  
IN  
INM  
1 mF  
CM  
THS4503  
10 mF  
0.1 mF  
10  
W
5V  
-
R
G
R
F
0.1 mF  
Figure 42. Using the THS4503 with the ADS5521  
POWER-SUPPLY SEQUENCE  
The preferred power-up sequence is to ramp AVDD first, followed by DRVDD, including a simultaneous ramp of  
AVDD and DRVDD. In the event that DRVDD ramps up first in the system, care must be taken to ensure that AVDD  
ramps up within 10 ms. Optionally, it is recommended to put a 2-kresistor from REFP (pin 29) to AVDD as  
shown in Figure 43. This helps to make the device more robust to power supply ramp-up timings.  
28  
29  
AVDD  
REFP  
2 kW  
1 W  
1 mF  
Figure 43.  
POWER-DOWN  
The device enters power-down in one of two ways: either by reducing the clock speed or by setting the PDN bit  
through the serial programming interface. Using the reduced clock speed, power-down may be initiated for clock  
frequency below 2 MSPS. The exact frequency at which the power down occurs varies from device to device.  
Using the serial interface PDN bit to power down the device places the outputs in a high-impedance state and  
only the internal reference remains on to reduce the power-up time. The power-down mode reduces power  
dissipation to approximately 180 mW.  
24  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
 
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
REFERENCE CIRCUIT  
The ADS5521 has built-in internal reference generation, requiring no external circuitry on the printed circuit board  
(PCB). For optimum performance, it is best to connect both REFP and REFM to ground with a 1-µF decoupling  
capacitor (the 1-resistor shown in Figure 44 is optional). In addition, an external 56.2-kresistor should be  
connected from IREF (pin 31) to AGND to set the proper current for the operation of the ADC, as shown in  
Figure 44. No capacitor should be connected between pin 31 and ground; only the 56.2-kresistor should be  
used.  
1 W  
REFP  
REFM  
IREF  
29  
30  
31  
1 mF  
1 mF  
1 W  
56.2 kW  
Figure 44. REFP, REFM, and IREF Connections for Optimum Performance  
CLOCK INPUT  
The ADS5521 clock input can be driven with either a differential clock signal or a single-ended clock input, with  
little or no difference in performance between both configurations. The common-mode voltage of the clock inputs  
is set internally to CM (pin 17) using internal 5-kresistors that connect CLKP (pin 10) and CLKM (pin 11) to CM  
(pin 17), as shown in Figure 45.  
CM  
CM  
5 kW  
5 kW  
CLKM  
CLKP  
6 pF  
3 pF  
3 pF  
Figure 45. Clock Inputs  
When driven with a single-ended CMOS clock input, it is best to connect CLKM (pin 11) to ground with a 0.01-µF  
capacitor, while CLKP is ac-coupled with a 0.01-µF capacitor to the clock source, as shown in Figure 46.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS5521  
 
 
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
Square Wave  
or Sine Wave  
CLKP  
(3 V )  
PP  
0.01 mF  
ADS5521  
CLKM  
0.01 mF  
Figure 46. AC-Coupled, Single-Ended Clock Input  
The ADS5521 clock input can also be driven differentially, reducing susceptibility to common-mode noise. In this  
case, it is best to connect both clock inputs to the differential input clock signal with 0.01-µF capacitors, as shown  
in Figure 47.  
0.01 mF  
CLKP  
Differential Square Wave  
or Sine Wave  
(3 V )  
PP  
ADS5521  
CLKM  
0.01 mF  
Figure 47. AC-Coupled, Differential Clock Input  
For high input frequency sampling, it is recommended to use a clock source with low jitter. Additionally, the  
internal ADC core uses both edges of the clock for the conversion process. This means that, ideally, a 50% duty  
cycle should be provided. Figure 48 shows the performance variation of the ADC versus clock duty cycle.  
100  
fIN = 20MHz  
95  
90  
85  
80  
75  
70  
65  
60  
SFDR  
SNR  
35  
40  
45  
50  
55  
%
60  
65  
Clock Duty Cycle  
Figure 48. AC Performance vs Clock Duty Cycle  
Bandpass filtering of the source can help produce a 50% duty cycle clock and reduce the effect of jitter. When  
using a sinusoidal clock, the clock jitter further improves as the amplitude is increased. In that sense, using a  
differential clock allows for the use of larger amplitudes without exceeding the supply rails and absolute  
maximum ratings of the ADC clock input. Figure 49 shows the performance variation of the device versus input  
clock amplitude. For detailed clocking schemes based on transformer or PECL-level clocks, see the  
ADS55xxEVM User's Guide (SLWU010), available for download from www.ti.com.  
26  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
 
 
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
95  
fIN = 70MHz  
90  
85  
SFDR  
80  
75  
SNR  
70  
65  
60  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Differential Clock Amplitude  
V
Figure 49. AC Performance vs Clock Amplitude  
INTERNAL DLL  
In order to obtain the fastest sampling rates achievable with the ADS5521, the device uses an internal digital  
delay lock loop (DLL). Nevertheless, the limited frequency range of operation of DLL degrades the performance  
at clock frequencies below 60 MSPS. In order to operate the device below 60 MSPS, the internal DLL must be  
shut off using the DLL OFF mode described in the Serial Interface Programming section. The Typical  
Performance Curves show the performance obtained in both modes of operation: DLL ON (default) and DLL  
OFF. In either of the two modes, the device enters power-down mode if no clock or slow clock is provided. The  
limit of the clock frequency where the device functions properly with default settings is ensured to be over 2 MHz.  
OUTPUT INFORMATION  
The ADC provides 12 data outputs (D11 to D0, with D11 being the MSB and D0 the LSB), a data-ready signal  
(CLKOUT, pin 43), and an out-of-range indicator (OVR, pin 64) that equals 1 when the output reaches the  
full-scale limits.  
Two different output formats (straight offset binary or 2's complement) and two different output clock polarities  
(latching output data on rising or falling edge of the output clock) can be selected by setting DFS (pin 40) to one  
of four different voltages. Table 4 details the four modes. In addition, output enable control (OE, pin 41, active  
high) is provided to put the outputs into a high-impedance state.  
In the event of an input voltage overdrive, the digital outputs go to the appropriate full-scale level. For a positive  
overdrive, the output code is 0xFFF in straight offset binary output format and 0x7FF in 2's complement output  
format. For a negative input overdrive, the output code is 0x000 in straight offset binary output format and 0x800  
in 2's complement output format. These outputs to an overdrive signal are ensured through design and  
characterization.  
The output circuitry of the ADS5521, by design, minimizes the noise produced by the data switching transients,  
and, in particular, its coupling to the ADC analog circuitry. Output D2 (pin 51) senses the load capacitance and  
adjusts the drive capability of all the output pins of the ADC to maintain the same output slew rate described in  
the timing diagram of Figure 1. Care should be taken to ensure that all output lines (including CLKOUT) have  
nearly the same load as D2 (pin 51). This circuit also reduces the sensitivity of the output timing versus supply  
voltage or temperature. Placing external resistors in series with the outputs is not recommended.  
The timing characteristics of the digital outputs change for sampling rates below the 105MSPS maximum  
sampling frequency. Table 6 and Table 7 show the setup, hold, input clock to output data delays, and rise and  
fall times for different sampling frequencies with the DLL on and off, respectively.  
Table 8 and Table 9 show the rise and fall times at additional sampling frequencies with DLL on and off,  
respectively.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
To use the input clock as the data capture clock, it is necessary to delay the input clock by a delay, td, that  
results in the desired setup or hold time. Use either of the following equations to calculate the value of td.  
Desired setup time = td – tSTART  
Desired hold time = tEND – td  
Table 6. Timing Characteristics at Additional Sampling Frequencies (DLL ON)  
tSETUP (ns)  
tHOLD (ns)  
tSTART (ns)  
tEND (ns)  
tr (ns)  
tf (ns)  
fS  
(MSPS)  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
80  
65  
2.8  
3.8  
3.7  
4.6  
2.8  
3.6  
3.3  
4.1  
0.5  
1.7  
0.8  
5.3  
5.3  
7.9  
8.5  
5.8  
6.7  
6.6  
7.2  
4.4  
5.5  
5.3  
6.4  
–0.5  
Table 7. Timing Characteristics at Additional Sampling Frequencies (DLL OFF)  
tSETUP (ns)  
tHOLD (ns)  
tSTART (ns)  
tEND (ns)  
tr (ns)  
tf (ns)  
fS  
(MSPS)  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
80  
65  
40  
20  
10  
2
3.2  
4.3  
8.5  
17  
4.2  
5.7  
11  
1.8  
2
3
3.8  
2.8  
5
4.5  
1.5  
2
8.4  
8.3  
11  
5.8  
6.6  
7.5  
7.5  
6.6  
7.2  
8
4.4  
5.5  
7.3  
7.6  
5.3  
6.4  
7.8  
8
3
11.8  
14.5  
21.6  
31  
2.6  
2.5  
4
3.5  
4.7  
6.5  
19  
–1  
8.9  
25.7  
51  
–9.8  
-30  
185  
9.5  
8
27  
-3  
11.5  
515  
284  
370  
8
320  
576  
50  
82  
75  
150  
Table 8. Timing Characteristics at Additional Sampling Frequencies (DLL ON)  
CLKOUT Jitter,  
Peak-to-Peak  
tJIT (ps)  
Input-to-Output  
Clock Delay  
tPDI (ns)  
CLKOUT, Rise Time  
tr (ns)  
CLKOUT, Fall Time  
tf (ns)  
fS  
(MSPS)  
MIN  
TYP  
2.5  
MAX  
MIN  
TYP  
2.1  
MAX  
MIN  
TYP  
210  
260  
MAX  
315  
MIN  
3.7  
TYP  
4.3  
MAX  
80  
65  
2.8  
3.5  
2.3  
2.9  
5.1  
4.8  
3.1  
2.6  
380  
3.5  
4.1  
Table 9. Timing Characteristics at Additional Sampling Frequencies (DLL OFF)  
CLKOUT Jitter,  
Peak-to-Peak  
tJIT (ps)  
CLKOUT, Rise Time  
tr (ns)  
CLKOUT, Fall Time  
tf (ns)  
Input-to-Output Clock Delay  
tPDI (ns)  
fS  
(MSPS)  
MIN  
TYP  
2.5  
3.1  
4.8  
8.3  
MAX  
MIN  
TYP  
2.1  
2.6  
4
MAX  
MIN  
TYP  
210  
260  
445  
800  
MAX  
315  
MIN  
7.1  
7.8  
9.5  
13  
TYP  
8
MAX  
8.9  
80  
65  
40  
20  
10  
2
2.8  
3.5  
5.3  
9.5  
2.3  
2.9  
4.4  
8.2  
380  
8.5  
9.4  
650  
10.4  
15.5  
20.7  
551  
11.4  
18  
7.6  
1200  
16  
25.5  
567  
31  
52  
36  
65  
2610  
4400  
537  
28  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
 
 
ADS5521  
www.ti.com ...................................................................................................................................................... SBAS309DMAY 2004REVISED OCTOBER 2008  
SERIAL PROGRAMMING INTERFACE  
The ADS5521 has internal registers for the programming of some of the modes described in the previous  
sections. The registers should be reset after power-up by applying a 2 µs (minimum) high pulse on RESET (pin  
35); this also resets the entire ADC and sets the data outputs to low. This pin has a 200-kinternal pullup  
resistor to AVDD. The programming is done through a three-wire interface. The timing diagram and serial register  
setting in the Serial Programing Interface section describe the programming of this register.  
Table 3 shows the different modes and the bit values to be written to the register to enable them.  
Note that some of these modes may modify the standard operation of the device and possibly vary the  
performance with respect to the typical data shown in this data sheet.  
Applying a RESET signal is absolutely essential to set the internal registers to their default states for normal  
operation. If the hardware RESET function is not used in the system, the RESET pin must be tied to ground and  
it is necessary to write the default values to the internal registers through the serial programming interface. The  
following registers must be written in this order.  
Write 9000h (Address 9, Data 000)  
Write A000h (Address A, Data 000)  
Write B000h (Address B, Data 000)  
Write C000h (Address C, Data 000)  
Write D000h (Address D, Data 000)  
Write E000h (Address E, Data 804)  
Write 0000h (Address 0, Data 000)  
Write 1000h (Address 1, Data 000)  
Write F000h (Address F, Data 000)  
NOTE:  
This procedure is only required if a RESET pulse is not provided to the device.  
PowerPAD PACKAGE  
The PowerPAD package is a thermally enhanced standard size IC package designed to eliminate the use of  
bulky heatsinks and slugs traditionally used in thermal packages. This package can be easily mounted using  
standard printed circuit board (PCB) assembly techniques and can be removed and replaced using standard  
repair procedures.  
The PowerPAD package is designed so that the lead frame die pad (or thermal pad) is exposed on the bottom of  
the IC. This provides a low thermal resistance path between the die and the exterior of the package. The thermal  
pad on the bottom of the IC can then be soldered directly to the printed circuit board (PCB), using the PCB as a  
heatsink.  
Assembly Process  
1. Prepare the PCB top-side etch pattern including etch for the leads as well as the thermal pad as illustrated in  
the Mechanical Data section. The recommended thermal pad dimension is 8 mm x 8 mm.  
2. Place a 5-by-5 array of thermal vias in the thermal pad area. These holes should be 13 mils in diameter. The  
small size prevents wicking of the solder through the holes.  
3. It is recommended to place a small number of 25 mil diameter holes under the package, but outside the  
thermal pad area to provide an additional heat path.  
4. Connect all holes (both those inside and outside the thermal pad area) to an internal copper plane (such as a  
ground plane).  
5. Do not use the typical web or spoke via connection pattern when connecting the thermal vias to the ground  
plane. The spoke pattern increases the thermal resistance to the ground plane.  
6. The top-side solder mask should leave exposed the terminals of the package and the thermal pad area.  
7. Cover the entire bottom side of the PowerPAD vias to prevent solder wicking.  
8. Apply solder paste to the exposed thermal pad area and all of the package terminals.  
Copyright © 2004–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS5521  
ADS5521  
SBAS309DMAY 2004REVISED OCTOBER 2008 ...................................................................................................................................................... www.ti.com  
For more detailed information regarding the PowerPAD package and its thermal properties, see either the  
application brief SLMA004B (PowerPAD Made Easy) or technical brief SLMA002 (PowerPAD Thermally  
Enhanced Package).  
Table 10. Revision History  
Added notes regarding the input voltage overstress requirements in the absolute maximum ratings table.  
Changed offset temperature coefficient to units of mV/°C.  
Clarified output capture test modes in Table 3.  
Updated the definitions section.  
Updated the Power Down section to reflect the newly specified 2 MSPS minimum sampling rate.  
Added footnotes in the Pin Assignements table or pins RESET,OE, SEN, SDATA and SCLK pins.  
Removed the input voltage stress section in the Application Information section.  
Tpdi parameter was added to the timing Table 8 and Table 9.  
Added note in the Serial Programming section about mandatory RESET.  
Added latency specification in the Timing Characteristics table.  
Rev C  
Added min/max specs for Offset and Gain errors.  
Rev D  
Output Information Section, p. 27.  
Changed - From: binary output format and 0x4FFF To: binary output format and 0x7FF.  
Changed From: binary output format and 0x2000 To: binary output format and 0x800.  
30  
Submit Documentation Feedback  
Copyright © 2004–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5521  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Mar-2013  
PACKAGING INFORMATION  
Orderable Device  
ADS5521IPAP  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
HTQFP  
HTQFP  
PAP  
64  
64  
160  
160  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-3-260C-168 HR  
-40 to 85 ADS5521I  
ADS5521IPAPG4  
ACTIVE  
PAP  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
-40 to 85  
ADS5521I  
ADS5521I  
ADS5521IPAPR  
OBSOLETE  
OBSOLETE  
HTQFP  
HTQFP  
PAP  
PAP  
64  
64  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
ADS5521IPAPRG4  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) Only one of markings shown within the brackets will appear on the physical device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

ADS5522

14-Bit, 80MSPS Analog-to-Digital Converter
BB

ADS5522

12-Bit, 80 MSPS Analog-To-Digital Converter
TI

ADS5522IPAP

12-Bit, 80 MSPS Analog-To-Digital Converter
TI

ADS5522IPAPG4

12-Bit, 80 MSPS Analog-To-Digital Converter
TI

ADS5522IPAPR

12-Bit, 80 MSPS Analog-To-Digital Converter
TI

ADS5522IPAPRG4

12-Bit, 80 MSPS Analog-To-Digital Converter
TI

ADS5525

12-BIT, 170 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS5525IRGZ25

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC48, 7 X 7 MM, GREEN, PLASTIC, QFN-48
TI

ADS5525IRGZR

12-BIT, 170 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS5525IRGZRG4

12-bit, 170 MSPS ADC with User selectable DDR LVDS or Parallel CMOS outputs 48-VQFN -40 to 85
TI

ADS5525IRGZT

12-BIT, 170 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS5525IRGZTG4

12-Bit, 170-MSPS Analog-to-Digital Converter (ADC) 48-VQFN -40 to 85
TI