ADS8353QPWQ1 [TI]

具有单端输入的汽车类 16 位 600kSPS 2 通道同步采样 SAR ADC | PW | 16 | -40 to 125;
ADS8353QPWQ1
型号: ADS8353QPWQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有单端输入的汽车类 16 位 600kSPS 2 通道同步采样 SAR ADC | PW | 16 | -40 to 125

文件: 总48页 (文件大小:2886K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
ADS8353-Q1 汽车16 位双通道  
同步采600kSPS 模数转换器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准:  
电池管理系(BMS)  
直流/直流转换器  
能量存储电源转换系(PCS)  
太阳能电弧保护  
– 温度等140°C +125°CTA  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
功能安全型  
3 说明  
可提供用于功能安全系统设计的文档  
16 位分辨率  
• 两个通道同步采样  
ADS8353-Q1 是一款 16 位双通道高速同步采样模数转  
(ADC)可支持单端和伪差分模拟输入。  
• 支持单端和伪差分输入  
• 两个软件可选的单极输入范围:  
0V VREF0V 2x VREF  
• 高600kSPS 的采样速度  
• 出色的直流性能:  
±0.6LSB DNL  
±1LSB INL  
±0.05% 增益误差  
• 出色的交流性能:  
ADS8353-Q1 包含两个可用于系统级增益校准的独立  
可编程基准源。并且配有一个可在宽电源供电范围内运  
行的灵活串行接口从而轻松实现与多种主机控制器的  
通信。该系列器件支持两种低功耗模式可针对给定输  
出优化功耗。ADS8353-Q1 的额定工作温度范围为 –  
40°C +125°C16 TSSOP 封装。  
封装信息(1)  
封装尺寸标称值)  
器件型号  
封装  
ADS8353-Q1  
TSSOP (16)  
5.00mm × 4.40mm  
89dB SNR  
-100dB THD  
• 双路、低漂(10ppm/°C)、可编程  
2.5V 内部基准电压  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
典型应用图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS931  
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................21  
7.5 Programming............................................................ 21  
7.6 Register Maps...........................................................29  
8 Application and Implementation..................................33  
8.1 Application Information............................................. 33  
8.2 Typical Application.................................................... 35  
8.3 Power Supply Recommendations.............................36  
8.4 Layout....................................................................... 37  
9 Device and Documentation Support............................39  
9.1 Device Support......................................................... 39  
9.2 Documentation Support............................................ 39  
9.3 接收文档更新通知..................................................... 39  
9.4 支持资源....................................................................39  
9.5 Trademarks...............................................................39  
9.6 Electrostatic Discharge Caution................................39  
9.7 术语表....................................................................... 39  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................4  
6.4 Recommended Operating Conditions.........................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................8  
6.7 Switching Characteristics............................................8  
6.8 Timing Diagram...........................................................9  
6.9 Typical Characteristics..............................................10  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (March 2019) to Revision B (July 2022)  
Page  
更新了整个文档中的表格、图和交叉参考的编号格........................................................................................1  
• 更改了特定于汽车的要点............................................................................................................................1  
• 向部分添加了功能安全要点....................................................................................................................1  
• 更改了出色的直流性子要点±1LSBDNL 典型值更改±0.6LSB (DNL)±1LSBINL 典型  
更改±1LSB (INL) ...................................................................................................................................1  
• 更改了部分..................................................................................................................................................1  
Changes from Revision * (January 2019) to Revision A (March 2019)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
AINP_A  
AINM_A  
1
16  
15  
14  
13  
12  
11  
10  
9
AVDD  
GND  
2
3
4
5
6
7
8
REFIO_A  
REFGND_A  
REFGND_B  
REFIO_B  
AINM_B  
SDO_B  
SDO_A  
SCLK  
CS  
SDI  
AINP_B  
DVDD  
Not to scale  
5-1. PW Package, 16-Pin TSSOP (Top View)  
5-1. Pin Functions  
PIN  
NAME  
AINM_A  
TSSOP  
TYPE  
Analog input  
Analog input  
Analog input  
Analog input  
Supply  
DESCRIPTION  
2
7
Negative analog input, channel A  
Negative analog input, channel B  
Positive analog input, channel A  
Positive analog input, channel B  
Supply voltage for ADC operation  
Chip-select signal; active low  
AINM_B  
AINP_A  
AINP_B  
AVDD  
1
8
16  
11  
9
CS  
Digital input  
Digital I/O supply  
Supply  
DVDD  
Digital I/O supply  
GND  
15  
4
Digital ground  
REFGND_A  
REFGND_B  
REFIO_A  
REFIO_B  
SCLK  
Supply  
Reference ground potential A  
5
Supply  
Reference ground potential B  
3
Analog input/output  
Analog input/output  
Digital input  
Digital input  
Digital output  
Digital output  
Reference voltage input/output, channel A  
Reference voltage input/output, channel B  
Clock for serial communication  
6
12  
10  
13  
14  
SDI  
Data input for serial communication  
Data output for serial communication, channel A and channel B  
Data output for serial communication, channel B  
SDO_A  
SDO_B  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
UNIT  
AVDD to REFGND_x(2) or GND  
DVDD to GND  
6
6
V
V
Analog (AINP_x and AINM_x)(3) and reference input  
AVDD + 0.3  
V
REFGND_x 0.3  
(REFIO_x) voltage with respect to REFGND_x  
Digital input voltage with respect to GND  
REFGND_x  
DVDD + 0.3  
GND 0.3  
-10  
DVDD + 0.3  
GND + 0.3  
10  
V
V
Input current to any pin except supply pins  
Junction temperature, TJ  
mA  
°C  
°C  
125  
40  
Storage temperature, Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) REFGND_x refers to REFGND_A and REFGND_B. REFIO_x refers to REFIO_A and REFIO_B.  
(3) AINP_x refers AINP_A and AINP_B. AINM_x refers to AINM_A and AINM_B.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Corner pins (1,8,9  
±2000  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged-device model (CDM),  
and 16)  
per AEC Q100-001, level C4B  
All other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Thermal Information  
ADS8353-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
UNIT  
16 PINS  
99  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.6  
45  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.4  
ΨJT  
YJB  
44.5  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
 
 
 
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VREF range, internal reference  
4.5  
4.5  
5
5
5.5  
5.5  
VREF range, external reference VEXT_REF < 4.5 V  
VREF range, external reference VEXT_REF > 4.5 V  
2x VREF range, internal reference  
Analog supply voltage  
(AVDD to AGND)  
AVDD  
DVDD  
VEXT_REF  
5
5
5.5  
5.5  
5.5  
5.5  
V
V
5
2x VREF range, external reference  
2 x VEXT_REF  
1.65  
5
Digital supply voltage  
3.3  
ANALOG INPUTS (Single-Ended Configuration)  
VREF range, single-ended input, AINM_x = GND  
0
0
VREF  
Full-scale input range  
(AINP_x to AINM_x)(1)  
FSR  
VINP  
VINM  
V
V
V
2x VREF range, single-ended input, AINM_x =  
GND  
2 x VREF  
Absolute input voltage VREF range  
(AINP_x to  
0
0
VREF  
2 x VREF  
0.1  
REFGND_x)(2)  
2x VREF range, AVDD 2x VREF  
VREF range, single-ended input  
0.1  
Absolute input voltage  
(AINM_x to  
REFGND_x)  
2x VREF range, single-ended input, AVDD 2 x  
0.1  
0.1  
VREF  
ANALOG INPUTS (Pseudo-Differential Configuration)  
VREF range, pseudo-differential input, AINM_x =  
VREF/2  
VREF / 2  
VREF  
VREF / 2  
VREF  
Full-scale input range  
(AINP_x-AINM_x)  
FSR  
VINP  
VINM  
V
V
V
2x VREF range, pseudo-differential input, AINM_x  
= VREF  
,
AVDD 2x VREF  
Absolute input voltage  
(AINP_x to  
REFGND_x)  
VREF range  
0
0
VREF  
Absolute input voltage  
(AINP_x to  
2 x VREF  
2x VREF range, AVDD 2x VREF  
REFGND_x)(2)  
Absolute input voltage  
(AINM_x -REFGND_x)  
VREF range, pseudo-differential input  
VREF / 2+0.1  
VREF+0.1  
V
REF / 2 0.1  
Absolute input voltage  
(AINM_x -REFGND_x)  
2x VREF range, single-ended input, AVDD 2x  
VREF  
V
REF0.1  
EXTERNAL REFERENCE INPUT  
REFIO_x(3) input  
VREF range  
2.4  
2.4  
2.5  
2.5  
AVDD  
VREFIO  
voltage  
V
2x VREF range  
AVDD / 2  
TEMPERATURE RANGE  
TA  
Ambient temperature  
25  
125  
°C  
40  
(1) AINP_x refers to analog input pins AINP_A and AINP_B. AINM_x refers to analog input pins AINM_A and AINM_B.  
(2) REFGND_x refers to reference ground pins REFGND_A and REFGND_B.  
(3) REFIO_x refers to voltage reference inputs REFIO_A and REFIO_B.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS8353-Q1  
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
at AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF = 2.5 V (internal), and fDATA = 600 kSPS (unless otherwise noted);  
minimum and maximum values at TA = 40°C to 125°C; typical values are at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUTS  
In sample mode  
40  
4
Ci  
Input capacitance  
pF  
µA  
In hold mode  
Ilkg  
Input leakage current  
0.1  
RESOLUTION  
Resolution  
16  
Bits  
Bits  
DC ACCURACY  
NMC  
INL  
No missing codes  
Integral nonlinearity  
Differential nonlinearity  
Input offset error  
EIO match  
16  
±1  
4
LSB  
LSB  
mV  
4  
DNL  
EIO  
±0.6  
±0.5  
±0.5  
1
1
1
1  
1  
ADC_A to ADC_B  
mV  
dEIO/dT  
EG  
Input offset thermal drift  
Gain error  
µV/°C  
Referenced to the voltage at REFIO_x  
ADC_A to ADC_B  
±0.05  
±0.05  
1
0.1 %FS  
0.1 %FS  
ppm/°C  
0.1  
0.1  
EG match  
dEG/dT  
Gain error thermal drift  
Referenced to the voltage at REFIO_x  
AC ACCURACY  
VREF = 2.5 V, VREF input range  
VREF = 2.5 V, 2x VREF input range  
VREF = 5 V, VREF input range  
VREF = 2.5 V, VREF input range  
VREF = 2.5 V, 2x VREF input range  
VREF = 5 V, VREF input range  
VREF = 2.5 V, VREF input range  
VREF = 2.5 V, 2x VREF input range  
VREF = 5 V, VREF input range  
VREF = 2.5 V, VREF input range  
VREF = 2.5 V, 2 x VREF input range  
VREF = 5 V, VREF input range  
80.2  
80.5  
83  
83.9  
88.7  
83  
SINAD  
SNR  
Signal-to-noise + distortion  
Signal-to-noise ratio  
dB  
dB  
84  
89  
100  
100  
100  
105  
THD  
Total harmonic distortion  
dB  
dB  
SFDR  
Spurious-free dynamic range  
105  
105  
INTERNAL VOLTAGE REFERENCE  
VREFOUT  
Reference output voltage  
REFDAC_x = 1FFh (default) at 25°C  
REFDAC_x = 1FFh (default) at 25°C  
2.495  
2.5 2.505  
V
VREF-match  
VREF_A to VREF_B matching  
±1  
mV  
mV  
REFDAC_x resolution(1)  
1.1  
Reference voltage temperature  
drift  
dVREFOUT/dT  
dVREFOUT/dt  
RO  
REFDAC_x = 1FFh (default) at 25°C  
1000 hours  
±10  
150  
1
ppm/°C  
ppm  
Ω
Long-term stability  
Internal reference output  
impedance  
IREFOUT  
CREFOUT  
tREFON  
Reference output dc current  
Reference output capacitor  
Reference output settling time  
2
10  
8
mA  
µF  
ms  
VOLTAGE REFERENCE INPUT  
IREF Average reference input current  
Per ADC  
300  
µA  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF = 2.5 V (internal), and fDATA = 600 kSPS (unless otherwise noted);  
minimum and maximum values at TA = 40°C to 125°C; typical values are at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
MAX UNIT  
External ceramic reference  
capacitor  
CREF  
µF  
µA  
Ilkg(dc)  
DC leakage current  
±0.1  
SAMPLING DYNAMICS  
tA  
Aperture delay  
tA match  
8
40  
50  
ns  
ps  
ps  
ADC_A to ADC_B  
tAJIT  
Aperture jitter  
DIGITAL INPUTS  
0.7  
DVDD  
DVDD  
+ 0.3  
DVDD > 2.3 V  
DVDD 2.3 V  
DVDD > 2.3 V  
DVDD 2.3 V  
VIH  
High-level input voltage  
V
0.8  
DVDD  
DVDD  
+ 0.3  
0.3  
0.3  
0.3  
DVDD  
V
VIL  
Low-level input voltage  
Input current  
0.2  
DVDD  
±10  
nA  
DIGITAL OUTPUTS  
0.8  
DVDD  
VOH  
High-level output voltage  
Low-level output voltage  
IOH = 500-µA source  
IOL = 500-µA sink  
DVDD  
V
V
0.2  
DVDD  
VOL  
0
POWER SUPPLY  
AVDD = 5 V, fastest throughput internal  
reference  
8.5  
7.5  
5.5  
4.5  
2.5  
10  
3.6  
7
AVDD = 5 V, fastest throughput external  
reference(2)  
AVDD = 5V, no conversion internal  
reference  
mA  
AIDD  
Analog supply current  
AVDD = 5 V, no conversion external  
reference(2)  
AVDD = 5 V, STANDBY mode internal  
reference  
AVDD = 5 V, STANDBY mode external  
reference(2)  
1
10  
Power-down mode  
50  
µA  
DVDD = 3.3 V, Cload = 10 pF, fastest  
throughput  
0.5  
DIDD  
PD  
Digital supply current  
mA  
DVDD = 5 V, Cload = 10 pF, fastest  
throughput  
1
Power dissipation (normal  
operation)  
AVDD = 5 V, fastest throughput, internal  
reference  
42.5  
50 mW  
(1) Refer to the Reference section for more details.  
(2) With internal reference powered down, CFR.B6 = 0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS8353-Q1  
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6.6 Timing Requirements  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = 40°C to +125°C; typical values at TA = 25°C.  
MIN  
0.4  
NOM  
MAX UNIT  
0.6 tCLK  
0.6 tCLK  
20 MHz  
33 x  
tPH_CK  
tPL_CK  
fCLK  
CLOCK high time  
CLOCK low time  
CLOCK frequency  
0.4  
32-clock, dual SDO mode  
32-clock, single SDO mode  
tCLK -  
tCONV  
tACQ  
Acquisition time  
ns  
49 x  
tCLK  
-
tCONV  
tCONV  
Conversion time  
730  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tPH_CS  
CS high time  
40  
150  
15  
15  
5
tPH_CS_SHRT  
tSU_CSCK  
tD_CKCS  
tSU_CKDI  
tHT_CKDI  
tPU_STDBY  
CS high time after frame abort  
Setup time: CS falling edge to SCLK falling edge  
Delay time: Last SCLK falling edge to CS rising edge  
Setup time: DIN data valid to SCLK falling edge  
Hold time: SCLK falling edge to (previous) data valid on DIN  
Power-up time from STANDBY mode  
5
1
With internal reference  
Power-up time from SPD mode  
3
tPU_SPD  
ms  
With external reference  
1
6.7 Switching Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = 40°C to +125°C; typical values at TA = 25°C.  
PARAMETER  
Throughput time  
Throughput  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tTHROUGHPUT  
fTHROUGHPUT  
1.666  
µs  
600 kSPS  
Delay time: CS falling edge to data  
enable  
tDV_CSDO  
tDZ_CSDO  
tD_CKDO  
12  
12  
20  
ns  
ns  
ns  
Delay time: CS rising edge to data going  
to 3-state  
Delay time: SCLK falling edge to next  
data valid  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6.8 Timing Diagram  
CS  
CS  
SCLK  
SDO  
tSU_CSCK  
SCLK  
1
2
12  
13  
14  
15  
16  
1
2
tSU_CKDI  
tHT_CKDI  
tDV_CSDO  
SDI  
B4  
B3  
B2  
B1  
B15  
B14  
Sample  
N+1  
Sample  
N
CS  
SCLK  
SDO  
tPL_CK  
tSCLK  
tD_CKCS  
tPH_CK  
1
2
N-9 N-8 N-7 N-6 N-5  
N-4  
N-3 N-2 N-1  
N
tD_CKDO  
tDZ_CSDO  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
V
V
6-1. Serial Interface Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6.9 Typical Characteristics  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 600 kSPS (unless otherwise noted)  
0
-20  
85.2  
85  
84.8  
84.6  
84.4  
84.2  
84  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
83.8  
83.6  
83.4  
83.2  
83  
82.8  
0
30  
60  
90 120 150 180 210 240 270 300  
fIN, Input Frequency (kHz)  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Free-Air Temperature (èC)  
D012  
D014  
fIN = 2 kHz  
fIN = 2 kHz, SNR = 84.6 dB, THD = 107.6 dB  
6-2. Typical FFT  
6-3. SNR vs Temperature  
85.2  
85  
89.5  
89  
84.8  
84.6  
84.4  
84.2  
84  
88.5  
88  
87.5  
87  
83.8  
83.6  
83.4  
83.2  
83  
86.5  
86  
85.5  
85  
82.8  
84.5  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
2.4  
2.7  
3
3.3  
3.6  
Reference voltage (V)  
3.9  
4.2  
4.5  
4.8  
5.1  
Free-Air Temperature (èC)  
D011  
D013  
fIN = 2 kHz  
fIN = 2 kHz  
6-4. SINAD vs Temperature  
6-5. SNR vs Reference Voltage  
89.5  
89  
-72  
-80  
88.5  
88  
-88  
87.5  
87  
-96  
86.5  
86  
-104  
-112  
-120  
85.5  
85  
84.5  
2.4  
2.7  
3
3.3  
3.6  
Reference voltage (V)  
3.9  
4.2  
4.5  
4.8  
5.1  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (èC)  
D010  
D016  
fIN = 2 kHz  
fIN = 2 kHz  
6-6. SINAD vs Reference Voltage  
6-7. THD vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 600 kSPS (unless otherwise noted)  
-80  
-88  
12  
10  
8
-96  
-104  
-112  
-120  
6
4
2
2
2.5  
3
3.5  
Reference voltage (V)  
4
4.5  
5
5.5  
-60  
-30  
0
30  
60  
90  
120  
150  
Free-Air Temperature (èC)  
D015  
D018  
fIN = 2 kHz  
6-8. THD vs Reference Voltage  
6-9. Analog Supply Current vs Temperature  
12  
10  
8
18000  
15000  
12000  
9000  
6000  
3000  
0
6
4
2
0
3
6
9
12  
SCLK Frequency (MHz)  
15  
18  
21  
D017  
D005  
65536 data points, VIN-DIFF = 0 V  
6-10. Analog Supply Current vs SCLK Frequency  
6-11. DC Histogram  
600  
1.5  
1
450  
300  
150  
0
0.5  
0
-0.5  
-150  
-1  
-60  
-30  
0
30  
60  
90  
120  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D009  
D004  
6-12. Offset Error vs Temperature  
6-13. Gain Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS8353-Q1  
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 600 kSPS (unless otherwise noted)  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
0
13705  
27410  
Code  
41115  
54820  
65535  
0
13705  
27410  
Code  
41115  
54820  
65535  
D003  
D008  
6-14. Typical DNL  
6-15. Typical INL  
2
1.6  
1.2  
0.8  
0.4  
0
3
2
DNL_MIN  
DNL_MAX  
INL_MIN  
INL_MAX  
1
-0.4  
-0.8  
-1.2  
-1.6  
-2  
0
-1  
-2  
-40  
-10  
20  
50  
80  
110  
140  
-60  
-30  
0
30  
60  
90  
120  
150  
Free-Air Temperature (èC)  
Free-Air Temperature (C)è  
D001  
D006  
6-16. DNL vs Temperature  
6-17. INL vs Temperature  
3
2
2
DNL_MIN  
DNL_MAX  
INL_MIN  
INL_MAX  
1
0
1
0
-1  
-2  
-3  
-1  
-2  
2.4  
2.8  
3.2  
3.6  
Reference Voltage (V)  
4
4.4  
4.8  
5.2  
2.4  
2.8  
3.2  
3.6  
Reference Voltage (V)  
4
4.4  
4.8  
5.2  
D002  
D007  
6-18. DNL vs Reference Voltage  
6-19. INL vs Reference Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADS8353-Q1 is a 16-bit, dual-channel, high-speed, simultaneous-sampling, analog-to-digital converter  
(ADC). The ADS8353-Q1 supports single-ended and pseudo-differential input signals. The device provides a  
simple, serial interface to the host controller and operates over a wide range of analog and digital power  
supplies.  
The device has two independently programmable internal references to achieve system-level gain error  
correction. The Functional Block Diagram section provides a functional block diagram of the device.  
7.2 Functional Block Diagram  
REF_A  
Comparator  
S/H  
CDAC  
SAR  
SAR  
ADC_A  
ADC_B  
Serial  
Interface  
CDAC  
S/H  
Comparator  
REF_B  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS8353-Q1  
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Reference  
The device has two simultaneous sampling ADCs (ADC_A and ADC_B). ADC_A and ADC_B operate with  
reference voltages present on the REFIO_A and REFIO_B pins, respectively. Decouple the REFIO_A and  
REFIO_B pins with the REFGND_A and REFGND_B pins, respectively, with 10-µF decoupling capacitors.  
7-1 shows that the device supports operation either with an internal or external reference source. The  
reference voltage source is determined by setting bit 6 of the configuration register (CFR.B6). This bit is common  
to ADC_A and ADC_B.  
AINP_A  
ADC_A  
AINM_A  
REFGND_A  
REFDAC_A  
DAC_A  
REFIO_A  
10 mF  
Enable  
CFR.B6  
INTREF  
DAC_B  
REFIO_B  
REFDAC_B  
10 mF  
REFGND_B  
AINP_B  
AINM_B  
ADC_B  
7-1. Reference Configurations and Connections  
When CFR.B6 is 0, the device shuts down the internal reference source (INTREF) and ADC_A and ADC_B  
operate on external reference voltages provided by the user on the REFIO_A and REFIO_B pins, respectively.  
When CFR.B6 is 1, the device operates with the internal reference source (INTREF) connected to REFIO_A and  
REFIO_B via DAC_A and DAC_B, respectively. In this configuration, VREF_A and VREF_B can be changed  
independently by writing to the respective user-programmable registers, REFDAC_A and REFDAC_B,  
respectively. See the Register Maps section for more details.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.3.2 Analog Inputs  
The ADS8353-Q1 supports single-ended or pseudo-differential analog inputs on both ADC channels. These  
inputs are sampled and converted simultaneously by the two ADCs, ADC_A and ADC_B. ADC_A samples and  
converts (VAINP_A VAINM_A), and ADC_B samples and converts (VAINP_B VAINM_B).  
7-2a and 7-2b show equivalent circuits for the ADC_A and ADC_B analog input pins, respectively. Series  
resistance, RS, represents the on-state sampling switch resistance (typically 50 Ω) and CSAMPLE is the device  
sampling capacitor (typically 40 pF).  
AVDD  
AVDD  
RS CSAMPLE  
RS CSAMPLE  
AINP_A  
AINP_B  
GND  
GND  
AVDD  
AVDD  
RS CSAMPLE  
RS CSAMPLE  
AINM_A  
AINM_B  
GND  
GND  
a) ADC_A  
b) ADC_B  
7-2. Equivalent Circuit for the Analog Input Pins  
7.3.2.1 Analog Input: Full-Scale Range Selection  
The full-scale range (FSR) supported at the analog inputs of the device is programmable with bit B9 of the  
configuration register (CFR.B9). This bit is common for both ADCs (ADC_A and ADC_B). 方程式 1 and 方程式 2  
give the FSR:  
For CFR.B9 = 0, FSR_ADC_A = 0 to VREF_A and FSR_ADC_B = 0 to VREF_B  
For CFR.B9 = 1, FSR_ADC_A = 0 to 2 × VREF_A and FSR_ADC_B = 0 to 2 × VREF_B  
(1)  
(2)  
where:  
VREF_A and VREF_B are the reference voltages going to ADC_A and ADC_B, respectively (as described in the  
Reference section).  
Therefore, with appropriate settings of the REFDAC_A and REFDAC_B registers, CFR.B7, and CFR.B9, the  
maximum dynamic range of the ADC can be used.  
Make sure that the ADC analog supply (AVDD) is as in 方程3 and 方程4 when CFR.B9 is set to 1:  
2 × VREF_A AVDD AVDD(max)  
(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS8353-Q1  
 
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
2 × VREF_B AVDD AVDD(max)  
(4)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.3.2.2 Analog Input: Single-Ended and Pseudo-Differential Configurations  
The ADS8353-Q1 can support single-ended or pseudo-differential input configurations.  
For supporting single-ended inputs, B7 in the configuration register (CFR.B7) must be set to 0 (CFR.B7 = 0) and  
AINM_A and AINM_B must be externally connected to GND.  
For supporting pseudo-differential inputs, CFR.B7 must be set to 1 (CFR.B7 = 1) and AINM_A and AINM_B  
must be externally connected to FSR_ADC_A / 2 and FSR_ADC_B / 2, respectively. CFR.B7 is common to both  
ADCs.  
The CFR.B9 and CFR.B7 settings can be combined as shown in 7-1 to select the desired input configuration.  
7-1. Input Configurations  
INPUT RANGE SELECTION  
AINM SELECTION  
CONNECTION DIAGRAM  
VREF_x  
VREF_x  
REFIO_x  
AINP_x  
CFR.B9 = 0  
CFR.B7 = 0  
(FSR_ADC_A = 0 to VREF_A  
(FSR_ADC_B = 0 to VREF_B  
)
)
(AINM_A = GND)  
(AINM_B = GND)  
0 V  
Device  
AINM_x  
2 ì VREF_x  
VREF_x  
REFIO_x  
AINP_x  
CFR.B9 = 1  
CFR.B7 = 0  
(FSR_ADC_A = 0 to 2 x VREF_A  
(FSR_ADC_B = 0 to 2 x VREF_B  
)
)
(AINM_A = GND)  
(AINM_B = GND)  
0 V  
Device  
AINM_x  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7-1. Input Configurations (continued)  
INPUT RANGE SELECTION  
AINM SELECTION  
CONNECTION DIAGRAM  
VREF_x  
VREF_x  
REFIO_x  
AINP_x  
0 V  
VREF_x / 2  
2 ì VREF_x  
CFR.B9 = 0  
(FSR_ADC_A = VREF_A  
(FSR_ADC_B = VREF_B  
CFR.B7 = 1  
(AINM_A = VREF_A/2)  
(AINM_B = VREF_B/2)  
Device  
)
)
AINM_x  
VREF_x  
REFIO_x  
AINP_x  
0 V  
CFR.B9 = 1  
CFR.B7 = 1  
Device  
(FSR_ADC_A = 2 x VREF_A  
(FSR_ADC_B = 2 x VREF_B  
)
)
(AINM_A = VREF_A  
(AINM_B = VREF_B  
)
)
AINM_x  
VREF_x  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.3.3 Transfer Function  
The device supports two input configurations:  
1. Single-ended inputs, CFR.B7 = 0 (default), or  
2. Pseudo-differential inputs, CFR.B7 = 1  
The device also supports two output data formats:  
1. Straight binary output, CFR.B4 = 0 (default), or  
2. Two's compliment output, CFR.B4 = 1  
方程5 calculates the device resolution:  
1 LSB = (FSR_ADC_x) / (2N)  
(5)  
where:  
N = 16  
FSR_ADC_x = the full-scale input range of the ADC (see the Analog Inputs section for more details)  
7-2 and 7-3 show the different input voltages and the corresponding output codes from the device.  
7-2. Transfer Characteristics for Straight Binary Output (CFR.B4 = 0, Default)  
OUTPUT CODE (Hex)  
INPUT VOLTAGE  
INPUT  
CONFIGURATION  
STRAIGHT BINARY (CFR.B4 = 0, Default)  
AINP_x  
1 LSB  
AINM_x  
AINP_x - AINM_x  
1 LSB  
CODE  
ADS8353-Q1  
0000  
ZC  
Single-ended  
(CFR.B7 = 0, default)  
FSR_ADC_x / 2  
FSR_ADC_x / 2  
MC  
7FFF  
0
FSR_ADC_x 1  
FSC  
FFFF  
FSR_ADC_x 1 LSB  
LSB  
ZC  
0000  
7FFF  
1 LSB  
FSR_ADC_x / 2 + 1 LSB  
Pseudo-differential  
(CFR.B7 = 1)  
FSR_ADC_x / 2  
0
MC  
FSR_ADC_x / 2  
FSR_ADC_x 1  
FSC  
FFFF  
FSR_ADC_x / 2 1 LSB  
LSB  
7-3. Transfer Characteristics for Two's Compliment Output (CFR.B4 = 1)  
OUTPUT CODE (Hex)  
INPUT VOLTAGE  
INPUT  
CONFIGURATION  
TWO'S COMPLIMENT (CFR.B4 = 1,  
Default)  
AINP_x  
1 LSB  
AINM_x  
AINP_x - AINM_x  
1 LSB  
CODE  
ADS8353-Q1  
8000  
NFSC  
MC  
Single-ended  
FSR_ADC_x / 2  
FSR_ADC_x / 2  
0000  
0
(CFR.B7 = 0, default)  
FSR_ADC_x 1  
PFSC  
7FFF  
FSR_ADC_x 1 LSB  
LSB  
NFSC  
MC  
8000  
0000  
1 LSB  
FSR_ADC_x / 2 + 1 LSB  
Pseudo-differential  
(CFR.B7 = 1)  
FSR_ADC_x / 2  
0
FSR_ADC_x / 2  
FSR_ADC_x 1  
PFSC  
7FFF  
FSR_ADC_x / 2 1 LSB  
LSB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS8353-Q1  
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7-3 shows the ideal device transfer characteristics for the single-ended analog input.  
FSC  
PFSC  
MC  
MC  
NFSC  
ZC  
1 LSB  
FSR_ADC_x / 2  
FSR_ADC_x œ 1 LSB  
Single-Ended Analog Input  
(AINP_x œ AINM_x)  
VIN  
7-3. Ideal Transfer Characteristics for a Single-Ended Analog Input  
7-4 shows the ideal device transfer characteristics for the pseudo-differential analog input.  
FSC  
PFSC  
-FSR_ADC_x/2  
+ 1 LSB  
0
MC  
FSR_ADC_x/2  
œ 1 LSB  
MC  
ZC  
NFSC  
Pseudo-Differential Analog Input  
(AINP_x œ AINM_x)  
7-4. Ideal Transfer Characteristics for a Pseudo-Differential Analog Input  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
The device provides three user-programmable registers: the configuration register (CFR), the REFDAC_A  
register, and the REFDAC_B register. These registers support write (see the Write to User-Programmable  
Registers section) and readback (see the Reading User-Programmable Registers section) operations and allow  
the ADC behavior to be customized for specific application requirements.  
The device supports two interface modes (see the Conversion Data Read section), two low-power modes (see  
the Low-Power Modes section), and a short-cycling or reconversion feature (see the Frame Abort,  
Reconversion, or Short-Cycling section).  
7.5 Programming  
7.5.1 Serial Interface  
The device uses the serial clock (SCLK) for synchronizing data transfers in and out of the device.  
The CS signal defines one conversion and serial transfer frame. A frame starts with a CS falling edge and ends  
with a CS rising edge. Between the start and end of the frame, a minimum of N SCLK falling edges must be  
provided to validate the read or write operation. As shown in 7-4, N depends upon the interface mode used to  
read the conversion result. When N SCLK falling edges are provided, the write operation attempted in the frame  
is validated and the internal user-programmable registers are updated on the subsequent CS rising edge. This  
CS rising edge also ends the frame.  
7-4. SCLK Falling Edges for a Valid Write Operation  
MINIMUM SCLK FALLING EDGES REQUIRED TO  
INTERFACE MODE  
VALIDATE WRITE OPERATION N  
32-CLK, dual-SDO mode (default); see the 32-CLK, Dual-SDO Mode (CFR.B11 = 0,  
CFR.B10 = 0, Default) section  
32  
32-CLK, single-SDO mode; see the 32-CLK, Single-SDO Mode (CFR.B11 = 0,  
CFR.B10 = 1) section  
48  
If CS is brought high before providing N SCLK falling edges, the write operation attempted in the frame is not  
valid. See the Frame Abort, Reconversion, or Short-Cycling section for more details.  
7.5.2 Write to User-Programmable Registers  
The device features three user-programmable registers: the configuration register (CFR), the REFDAC_A  
register, and the REFDAC_B register. These registers can be written with the device SDI pin. The first 16 bits of  
data on SDI are latched into the device on the first 16 SCLK falling edges. However, the new configuration takes  
effect only when the read or write operation is validated. If these registers are not required to update, SDI must  
remain low during the respective frames.  
The first four SDI data bits (B[15:12]) determine what operation is performed (that is, either a read or write  
operation or no operation), which register address the operation uses, and the function of the next 12 SDI data  
bits (B[11:0]). 7-5 lists the various combinations supported for B[15:12].  
7-5. Data Write Operation  
B15  
0
B14  
0
B13  
0
B12  
0
OPERATION  
No operation is performed  
REFDAC_A read  
REFDAC_B read  
CFR read  
FUNCTION OF BITS B[11:0]  
These bits are ignored  
0
0
0
1
000h; see the Reading User-Programmable Registers section  
000h; see the Reading User-Programmable Registers section  
000h; see the Reading User-Programmable Registers section  
See the CFR register  
0
0
1
0
0
0
1
1
1
0
0
0
CFR write  
1
0
0
1
REFDAC_A write  
REFDAC_B write  
No operation is performed  
See the REFDAC register  
1
0
1
0
See the REFDAC register  
1
0
1
1
These bits are ignored  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS8353-Q1  
 
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7-5. Data Write Operation (continued)  
B15  
B14  
B13  
B12  
OPERATION  
FUNCTION OF BITS B[11:0]  
X
1
X
X
No operation is performed  
These bits are ignored  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.5.3 Data Read Operation  
The device supports two types of read operations: reading user-programmable registers and reading conversion  
results.  
7.5.3.1 Reading User-Programmable Registers  
The device supports a readback option for all user-programmable registers: CFR, REFDAC_A, and REFDAC_B.  
7-5 shows a detailed timing diagram for this operation.  
Frame (F)  
Frame (F+1)  
Frame (F+2)  
Frame (F+3)  
CS  
1
2
N
1
2
3
4
5
16  
48  
1
2
15  
16  
47  
48  
1
2
N
SCLK  
R15  
R14  
R1 R0  
Valid Data  
Valid Data  
Valid Data  
Valid Data  
Valid data as per device configuration.  
Valid data as per device configuration.  
SDO-A  
SDO-B  
SDI  
No change in device  
configuration  
No change in device  
configuration  
B15  
B14 B13 B12  
X
X
X
X
Device configuration for frame (F+3)  
N is a function of the device configuration, as described in 7-4.  
7-5. Register Readback Timing  
To readback the user-programmable register settings, transmit the appropriate control word, as shown in 7-6,  
to the device during frame (F+1). Frame (F+1) must have at least 48 SCLK falling edges.  
7-6. Control Word to Readback User-Programmable Registers  
CONTROL WORD TO BE PROGRAMMED IN FRAME (F+1)  
USER-PROGRAMMABLE REGISTER  
B[15:12] (Binary)  
B[11:0] (Hex)  
CFR  
0011b  
000h  
REFDAC_A  
REFDAC_B  
0001b  
000h  
0010b  
000h  
Frame (F+2) must have at least 48 SCLK falling edges. During frame (F+2), SDO_A outputs the contents of the  
selected user-programmable register on the first 16 SCLK falling edges (as shown in 7-7) and then outputs  
0's for any subsequent SCLK falling edges. The SDO_B pin outputs 0's for all SCLK falling edges.  
7-7. Register Data Read Back  
USER-  
DATA READ ON SDO-A IN FRAME (F+2)  
PROGRAMMABLE  
REGISTER  
R15 R14  
R13  
R12  
R11  
R3  
R2  
CFG.B2  
R1  
CFG.B1  
R0  
CFG.B0  
CFR  
0
0
0
0
0
0
1
0
1
1
1
0
CFG.B11  
CFG.B3  
REFDAC_A  
REFDAC_B  
REFDAC_A.D8  
REFDAC_B.D8  
REFDAC_A.D0  
REFDAC_B.D0  
0
0
0
0
0
0
Register settings programmed during frame (F+2) determine the device configuration in frame (F+3).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS8353-Q1  
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.5.3.2 Conversion Data Read  
The device provides two different interface modes for reading the conversion result. These modes offer flexible  
hardware connections and firmware programming. 7-8 shows how to select one of the two interface modes.  
7-8. Interface Mode Selection  
MINIMUM SCLK FALLING EDGES  
CFR.B11  
CFR.B10  
INTERFACE MODE  
REQUIRED TO VALIDATE WRITE  
OPERATION N  
0
0
0
1
32-CLK, dual-SDO mode (default)  
32-CLK, single-SDO mode  
32  
48  
In the 32-CLK interface modes, the device uses an internal clock to convert the sampled analog signal. The  
conversion is completed during the first 16 periods of SCLK and the conversion result can be read on the  
subsequent SCLK falling edges.  
The following sections detail the various interface modes supported by the device.  
7.5.3.2.1 32-CLK, Dual-SDO Mode (CFR.B11 = 0, CFR.B10 = 0, Default)  
The 32-CLK, dual-SDO mode is the default mode supported by the device. This mode can also be selected by  
writing CFR.B11 = 0 and CFR.B10 = 0.  
In this mode, the SDO_A pin outputs the ADC_A conversion result and the SDO_B pin outputs the ADC_B  
conversion result. 7-6 shows a detailed timing diagram for this mode.  
Sample  
N
Sample  
N+1  
tTHROUGHPUT  
tACQ  
tCONV  
CS  
SCLK  
1
2
14  
15 16  
17  
18  
25 26  
27  
28  
29  
30 31  
32  
SDO_A and SDO_B  
D7 D6  
D5  
D4 D3  
D1 D0  
D15 D14  
D2  
Data from sample N  
SDI  
X
B15 B14  
B2  
B1  
B0  
X
X
X
X
X
X
X
X
7-6. 32-CLK, Dual-SDO Mode Timing Diagram  
A CS falling edge brings the serial data bus out of 3-state and also outputs a 0 on the SDO_A and SDO_B pins.  
The device converts the sampled analog input during the conversion time (tCONV). SDO_A and SDO_B read 0  
during this period. After completing the conversion process, the sample-and-hold circuit returns to sample mode.  
The device outputs the MSBs of ADC_A and ADC_B on the SDO_A and SDO_B pins, respectively, on the 16th  
SCLK falling edge. As shown in 7-9, the subsequent SCLK falling edges are used to shift out the rest of the  
bits of the conversion result.  
7-9. Data Launch Edge  
LAUNCH EDGE  
CS  
SCLK  
CS  
DEVICE  
PINS  
1  
0
15  
16  
27  
D4_A  
D4_B  
28  
D3_A  
D3_B  
29  
D2_A  
D2_B  
30  
D1_A  
D1_B  
31  
D0_A  
D0_B  
32 ...  
0 ...  
0
SDO-A  
SDO-B  
0
0
D15_A  
D15_B  
Hi-Z  
Hi-Z  
ADS8353-Q1  
0
0
0 ...  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
In this mode, at least 32 SCLK falling edges must be given to validate the read or write frame. A CS rising edge  
ends the frame and puts the serial bus into 3-state.  
See the Timing Requirements table for timing specifications specific to this serial interface mode.  
7.5.3.2.2 32-CLK, Single-SDO Mode (CFR.B11 = 0, CFR.B10 = 1)  
The 32-CLK, single-SDO mode provides the option of using only one SDO pin (SDO_A) to read conversion  
results from both ADCs (ADC_A and ADC_B). SDO_B remains in 3-state and can be treated as a no connect  
(NC) pin.  
This mode can be selected by writing CFR.B11 = 0 and CFR.B10 = 1. 7-7 shows a detailed timing diagram for  
this mode.  
Sample  
N
Sample  
N+1  
tTHROUGHPUT  
tACQ  
tCONV  
CS  
SCLK  
1
2
14  
15  
16  
17  
18  
28  
29  
30  
31  
32  
33  
34  
44  
45  
46  
47  
25  
48  
D15 D14  
D4  
D3 D2 D1 D0 D15 D14  
D4  
D3 D2 D1 D0  
SDO_A  
ADC A Data  
X
ADC B Data  
X
SDI  
B15 B14  
B2  
B1  
B0  
X
X
X
X
X
X
X
7-7. 32-CLK, Single-SDO Mode Timing Diagram  
A CS falling edge brings the serial data bus out of 3-state and also outputs a 0 on the SDO_A pin. The device  
converts the sampled analog input during the conversion time (tCONV). SDO_A reads 0 during this period. After  
competing the conversion process, the sample-and-hold circuit goes back into sample mode. The device outputs  
the MSB of ADC_A on the SDO_A pin on the 16th SCLK falling edge. As shown in 7-10, the subsequent  
SCLK falling edges are used to shift out the conversion result of ADC_A followed by the conversion result of  
ADC_B on the SDO_A pin.  
7-10. Data Launch Edge  
LAUNCH EDGE  
CS SCLK  
CS  
DEVICE  
PIN  
48 ...  
1  
15  
16  
27  
28  
29  
30  
31  
32  
43  
44 45  
46  
47  
ADS8353- SDO-  
Q1  
0
0
0
D15_A  
D4_A D3_A D2_A D1_A D0_A  
D15_B  
D4_B D3_B D2_B D1_B D0_B  
0 ...  
Hi-Z  
A
In this mode, at least 48 SCLK falling edges must be given to validate the read or write frame. A CS rising edge  
ends the frame and puts the serial bus into 3-state.  
See the Timing Requirements table for timing specifications specific to this serial interface mode.  
7.5.4 Low-Power Modes  
In normal mode of operation, all internal circuits of the device are always powered up and the device is always  
ready to commence a new conversion. This mode enables the device to support the rated throughput. The  
device also supports two low-power modes to optimize the power consumption at lower throughputs: STANDBY  
mode and software power-down (SPD) mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS8353-Q1  
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.5.4.1 STANDBY Mode  
The device supports a STANDBY mode of operation where some of the internal circuits of the device are  
powered down. However, if bit 6 in configuration register is set to 1 (CFR.B6 = 1), then the internal reference is  
not powered down and the contents of the REFDAC_A and REFDAC_B registers are retained to enable faster  
power-up to a normal mode of operation.  
As shown in 7-8, a valid write operation in frame (F) programs the configuration register with B5 set to 1  
(CFR.B5 = 1) and places the device into a STANDBY mode of operation on the following CS rising edge. While  
in STANDBY mode, SDO_A and SDO_B output all 1s when CS is low and remain in 3-state when CS is high.  
To remain in STANDBY mode, SDI must remain low in the subsequent frames.  
Device enters  
STANDBY mode  
Frame (F)  
Frame (F+1)  
Device in  
STANDBY mode  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1
2
N
SCLK  
16  
SDO-A and  
SDO-B  
Valid Data as per device configuration  
CFG.B[5] = 1  
SDI  
CFG.B[4:0] = 00000b  
CFG.B[15:12] = 1000b  
CFG.B[11:6]  
N is a function of the device configuration, as described in 7-4.  
7-8. Enter STANDBY Mode  
As shown in 7-9, a valid write operation in frame (F+3) writes the configuration register with B5 set to 0  
(CFR.B5 = 0) and brings the device out of STANDBY mode on the following CS rising edge. Frame (F+3) must  
have at least 48 SCLK falling edges.  
After exiting the STANDBY mode, a delay of tPU_STDBY must elapse for the internal circuits to fully power-up and  
resume normal operation in frame (F+4). Device configuration for frame (F+4) is determined by the status of the  
CFR.B[11:6] bits programmed during frame (F+3).  
Frame (F+2)  
Frame (F+3)  
Device exits  
STANDBY mode  
Frame (F+4)  
Device in  
STANDBY  
mode  
tPU_STDBY  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1
2
15  
16  
N
SCLK  
16  
48  
SDO-A  
and  
SDO-B  
Valid Data as per device configuration  
CFG settings for Frame (F+5)  
These bits set device  
configuration for Frame (F+4)  
CFG.B[5] = 0  
SDI  
CFG.B[15:12] = 1000b  
CFG.B[11:6]  
CFG.B[4:0] = 00000b  
N is a function of the device configuration, as described in 7-4.  
7-9. Exit STANDBY Mode  
See the Timing Requirements table for timing specifications for this operating mode.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.5.4.2 Software Power-Down (SPD) Mode  
In software power-down (SPD) mode, all internal circuits (including the internal references) are powered down.  
However, the contents of the REFDAC_A and REFDAC_B registers are retained.  
As shown in 7-10, to enter SPD mode, the device must be selected (by bringing CS low) and SDI must be  
kept high for a minimum of 48 SCLK cycles during frame (F). The device goes to SPD on the CS rising edge  
following frame (F). While in SPD mode, SDO_A and SDO_B go to 3-state irrespective of the status of the CS  
signal.  
To remain in SPD mode, SDI must remain high in all subsequent frames.  
Device enters SPD  
mode  
Frame (F)  
Frame (F+1)  
Device in SPD  
mode  
CS  
1
2
3
47  
1
2
SCLK  
48  
SDO-A and  
SDO-B  
Valid Data as per device configuration  
SDI  
7-10. Enter SPD Mode  
As shown in 7-11, to exit SPD mode, the device must be selected (by bringing CS low) and SDI must be kept  
low for a minimum of 48 SCLK cycles during frame (F+3). The device starts powering-up on a CS rising edge  
following frame (F+3). After frame (F+3), a delay of tPU_SPD must elapse before programming the configuration  
register.  
A valid write operation in frame (F+4) sets the device configuration for frame (F+5). Frame (F+4) must have at  
least 48 SCLK falling edges. Discard the output data in frame (F+4).  
Frame (F+2)  
Frame (F+3)  
Frame (F+4)  
Frame (F+5)  
Device exits  
SPD  
tPU_SPD  
Device in  
SPD  
CS  
SCLK  
1
2
47  
48  
1
2
15  
16  
48  
1
2
15  
16  
N
SDO-A  
and  
SDO-B  
Invalid Data  
Valid Data as per device configuration  
CFG settings for Frame (F+6)  
SDI  
CFG settings for Frame (F+5)  
N is a function of the device configuration, as described in 7-4.  
7-11. Exit SPD Mode  
See the Timing Requirements table for timing specifications for this operating mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS8353-Q1  
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.5.5 Frame Abort, Reconversion, or Short-Cycling  
As shown in 7-12, the minimum number of SCLK falling edges (N) that must be provided between the  
beginning and end of the frame depends on the serial interface mode. The SCLK falling edges (N) program the  
device and retrieve the conversion result. If CS is brought high before the expected number of SCLK falling  
edges are provided, the current frame is aborted and the device starts sampling the new analog input signal.  
If frame (F) is aborted, then the register write operation attempted in frame (F) is considered invalid and the  
internal registers are not updated. The device continues to have the same configuration in frame (F+1) from  
frame (F).  
The output data bits latched before the CS rising edge are still valid data that correspond to sample N.  
tPL_CS  
tPH_CS_SHRT  
CS  
1
2
SCLK  
SDO  
Sample  
N
Sample  
N + 1  
tCONV  
tACQ  
tPH_CS_SHRT  
CS  
22  
V
23  
V
1
2
13  
14  
15  
16  
V
17  
V
24  
V
SCLK  
SDO  
Data From Sample N  
7-12. Frame Abort, Reconversion, or Short-Cycling Feature  
See the Timing Requirements table for timing specifications for this operating mode.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 ADS8353-Q1 Registers  
7-11 lists the memory-mapped registers for the ADS8353-Q1 registers. Consider any register offset  
addresses not listed in 7-11 as reserved locations and, therefore, do not modify the register contents.  
7-11. ADS8353-Q1 Registers  
Offset  
0h  
Acronym  
CFR  
Register Name  
Section  
7.6.1.2  
7.6.1.3  
CFR register  
2h  
REFDAC  
REFDAC register  
Complex bit access types are encoded to fit into small table cells. 7-12 shows the codes that are used for  
access types in this section.  
7-12. ADS8353-Q1 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS8353-Q1  
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7.6.1.1 CFR Register (Offset = 0h) [reset = 0h]  
CFR is shown in 7-9 and described in 7-13.  
Return to 7-11.  
7-13. CFR Register  
15  
14  
13  
12  
11  
10  
9
8
RD_CLK_  
MODE  
RD_DATA_  
LINES  
WRITE_READ_CFR[3:0]  
R/W-0000b  
INPUT_RANGE RESERVED  
R/W-0b  
3
R/W-0b  
2
R/W-0b  
1
R/W-0b  
0
7
6
5
4
RD_DATA_  
FORMAT  
INM_SEL  
R/W-0b  
REF_SEL  
R/W-0b  
STANDBY  
W-0b  
0[3:0]  
R/W-0000b  
R/W-0b  
7-13. CFR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
WRITE_READ_CFR[3:0] R/W  
0000b  
These bits select the user-programmable register.  
0011b = Select this combination to read the CFR register  
1000b = Select this combination to write to CFR register and enable  
bits 11:0  
11  
10  
RD_CLK_MODE  
RD_DATA_LINES  
R/W  
R/W  
0b  
0b  
This bit must be set to 0 (default).  
This bit provides data line selection for the serial interface.  
0b = Use SDO_A to output ADC_A data and SDO_B to output of  
ADC_B data (default)  
1b = Use only SDO_A to output of ADC_A data followed by ADC_B  
data  
9
INPUT_RANGE  
R/W  
0b  
This bit selects the maximum input range for the ADC as a function  
of the reference voltage provided to the ADC. See the Analog Inputs  
section for more details.  
0b = FSR equals VREF  
1b = FSR equals 2 × VREF  
8
7
RESERVED  
INM_SEL  
R/W  
R/W  
0b  
0b  
This bit must be set to 0 (default).  
This bit selects the voltage to be externally connected to the INM pin.  
0b = INM must be externally connected to the GND potential  
(default)  
1b = INM must be externally connected to the FSR_ADC_x / 2  
6
5
REF_SEL  
STANDBY  
R/W  
0b  
0b  
This bit selects the ADC reference voltage source. See the  
Reference section for more details.  
0b = Use external reference (default)  
1b = Use internal reference  
W
This bit is used by the device to enter or exit STANDBY mode. See  
the STANDBY Mode section for more details.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7-13. CFR Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
RD_DATA_FORMAT  
R/W  
0b  
This bit selects the output data format.  
0b = Output is in straight binary format (default)  
1b = Output is in two's complement format  
3-0  
0[3:0]  
R/W  
0000b  
These bits must be set to 0 (default).  
7.6.1.2 REFDAC Register (Offset = 2h) [reset = 0h]  
REFDAC is shown in 7-10 and described in 7-14.  
Return to 7-11.  
7-14. REFDAC Register  
15  
14  
13  
12  
11  
10  
9
8
0
WRITE_READ_REFDAC[3:0]  
R/W-0000b  
D[8:0]  
R/W-000000000b  
7
6
5
4
3
2
1
D[8:0]  
RESERVED  
R/W-000b  
R/W-000000000b  
7-14. REFDAC Register Field Descriptions  
Bit  
Field  
WRITE_READ_REFDAC[3:0]  
Type  
Reset  
Description  
15-12  
R/W  
0000b  
These bits select the configurable register address.  
1001 = Select this combination to write to the REFDAC_A register  
1010 = Select this combination to write to the REFDAC_B register  
11-3  
D[8:0]  
R/W  
R/W  
000000000b  
Data to program the individual DAC output voltage.  
These bits are valid only for bits 15:12 = 1001 or bits 15:12 = 1010.  
7-15 shows the relationship between the REFDAC_x programmed value  
and the DAC_x output voltage.  
2-0  
RESERVED  
000b  
This bit must be set to 0 (default).  
7-15. REFDAC Settings  
REFDAC_x VALUE (Bits 11:3 in Hex)  
B[2:0]  
Typical DAC_x OUPTUT VOLTAGE (V)(1)  
1FF (default)  
1FE  
000  
000  
000  
2.5000  
2.4989  
2.4978  
1FD  
1D7  
000  
2.45  
1AE  
000  
2.40  
186  
000  
2.35  
15D  
000  
2.30  
134  
000  
2.25  
10C  
000  
2.20  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS8353-Q1  
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
7-15. REFDAC Settings (continued)  
REFDAC_x VALUE (Bits 11:3 in Hex)  
B[2:0]  
Typical DAC_x OUPTUT VOLTAGE (V)(1)  
0E3  
000  
2.15  
0BA  
000  
2.10  
091  
000  
2.05  
069  
000  
2.00  
064 to 000  
000  
Do not use  
(1) Actual output voltage may vary by a few millivolts from the specified value. To obtain the desired output voltage, TI recommends  
starting with the specified register setting and then experimenting with five codes on either side of the specified register setting.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing these circuits, and some application circuits designed using  
these devices.  
The device supports operation either with an internal or external reference source. See the Reference section for  
details about the decoupling requirements.  
The reference source to the ADC must provide low-drift and very accurate dc voltage and support the dynamic  
charge requirements without affecting the noise and linearity performance of the device. The output broadband  
noise (typically in the order of a few 100 μVRMS) of the reference source must be appropriately filtered by using  
a low-pass filter with a cutoff frequency of a few hundred hertz. After band-limiting the noise from the reference  
source, the next important step is to design a reference buffer that can drive the dynamic load posed by the  
reference input of the ADC. At the start of each conversion, the reference buffer must regulate the voltage of the  
reference pin within 1 LSB of the intended value. This condition necessitates the use of a large filter capacitor at  
the reference pin of the ADC. The amplifier selected to drive the reference input pin must be stable while driving  
this large capacitor and must have low output impedance, low offset, and temperature drift specifications. To  
reduce the dynamic current requirements and crosstalk between the channels, a separate reference buffer is  
recommended for driving the reference input of each ADC channel.  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel  
RC filter. The amplifier is used for signal conditioning of the input voltage and its low output impedance provides  
a buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate  
the sampling charge injection from the switched-capacitor input stage of the ADC and functions as an charge  
kickback filter to band-limit the wideband noise contributed by the front-end circuit. Careful design of the front-  
end circuit is critical to meet the linearity and noise performance of a high-precision ADC.  
8.1.1 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type and the performance goals  
of the data acquisition system. Some key amplifier specifications to consider while selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter at the ADC  
inputs. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. Select the  
amplifier bandwidth as described in 方程6 to maintain the overall stability of the input driver circuit:  
1
÷
÷
Unity - Gain Bandwidth í 4ì  
2p  
ì(RFLT + RFLT )ìCFLT  
«
(6)  
Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in  
SNR performance of the system. As a rule of thumb, to ensure that the noise performance of the data  
acquisition system is not limited by the front-end circuit, keep the total noise contribution from the front-end  
circuit below 20% of the input-referred noise of the ADC. 方程7 calculates noise from the input driver  
circuit. This noise is band-limited by designing a low cutoff frequency RC filter:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS8353-Q1  
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
2
SNR dB  
(
20  
)
÷
V
÷
-
1
f
_ AMP_PP  
p
2
1
5
VREF  
2
NG ì 2 ì  
+ en2_RMS  
ì
ì f-3dB  
Ç
ì
ì10  
«
÷
÷
6.6  
«
(7)  
where:  
V1/f_AMP_PP = the peak-to-peak flicker noise in µV  
en_RMS = the amplifier broadband noise density in nV/Hz  
f3dB = the 3-dB bandwidth of the RC filter  
NG = the noise gain of the front-end circuit, which is equal to 1 in a buffer configuration  
Distortion. Both the ADC and the input driver introduce nonlinearity in a data acquisition block. As a rule of  
thumb, the distortion of the input driver must be at least 10 dB lower than the distortion of the ADC, as shown  
in 方程8, to ensure that the distortion performance of the data acquisition system is not limited by the front-  
end circuit.  
THDAMP Ç THDADC - 10  
(
dB  
)
(8)  
Settling Time. For dc signals with fast transients that are common in a multiplexed application, the input  
signal must settle to the desired accuracy at the inputs of the ADC during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data  
sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the  
desired accuracy. Therefore, always verify the settling behavior of the input driver with TINA-SPICE  
simulations before selecting the amplifier.  
8.1.2 Charge Kickback Filter  
Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher frequency  
content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency  
spectrum. This process is called aliasing. Therefore, an analog, charge kickback filter must be used to remove  
the harmonic content from the input signal before being sampled by the ADC. A charge kickback filter is  
designed as a low-pass, RC filter, for which the 3-dB bandwidth is optimized based on specific application  
requirements. For dc signals with fast transients (including multiplexed input signals), a high-bandwidth filter is  
designed to allow accurately settling the signal at the ADC inputs during the small acquisition time window. For  
ac signals, keep the filter bandwidth low to band-limit the noise fed into the ADC input, thereby increasing the  
signal-to-noise ratio (SNR) of the system.  
A filter capacitor, CFLT, connected across the ADC inputs (see 8-1), filters the noise from the front-end drive  
circuitry, reduces the sampling charge injection, and provides a charge bucket to quickly charge the internal  
sample-and-hold capacitors during the acquisition process. As a rule of thumb, the value of this capacitor must  
be at least 10 times the specified value of the ADC sampling capacitance. For these devices, the input sampling  
capacitance is equal to 40 pF. Thus, the value of CFLT must be greater than 400 pF. The capacitor must be a  
COG- or NPO-type because these capacitor types have a high-Q, low-temperature coefficient, and stable  
electrical characteristics under varying voltages, frequency, and time.  
RFLT  
1
CFLT  
AINP  
ADS8353-Q1  
AINM  
f-3dB  
=
2Œ x RFLT x CFLT  
GND  
RFLT  
CFLT  
GND  
8-1. Charge Kickback Filter  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
Driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source  
impedance, input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires  
balancing the stability and distortion of the design. For more information on ADC input R-C filter component  
selection, see the TI Precision Labs on ti.com.  
8.2 Typical Application  
Input Driver  
AVDD  
AVDD  
OPA320-Q1  
œ
49  
AINP  
AINM  
+
3.3nF  
3.3nF  
Device  
+
VIN  
œ
GND  
49 ꢀ  
VDC  
Only one ADC channel is shown in this diagram. Replicate the same circuit for other ADC channels.  
8-2. DAQ Circuit: Maximum SINAD for a 10-kHz Input Signal at Full Throughput, 32-CLK Interface  
AVDD  
10 µF  
REFGND_A  
AVDD  
0.1  
ADC_A  
REFIN_A  
œ
1 kꢀ  
+
REF34-Q1  
VOUT  
1µF  
ADS8353-Q1  
AVDD  
10 µF  
œ
1 kꢀ  
REFIN_B  
ADC_B  
+
0.1 ꢀ  
1µF  
REFGND_B  
OPA2320-Q1  
10 µF  
8-3. Reference Drive Circuit  
8.2.1 Design Requirements  
8-1 lists the target specifications for this application.  
8-1. Target Specifications  
TARGET SPECIFICATIONS  
TEST CONDITIONS  
INPUT SIGNAL  
FREQUENCY  
SNR  
THD  
DEVICE  
THROUGHPUT  
INTERFACE MODE  
> 83 dB  
ADS8353-Q1  
10 kHz  
Maximum supported  
32-CLK, dual-SDO  
< 100 dB  
8.2.2 Detailed Design Procedure  
Best practice is for the distortion from the input driver to be at least 10 dB less than the ADC distortion. The  
distortion resulting from variation in the common-mode signal is eliminated by using the amplifier in an inverting  
gain configuration that establishes a fixed common-mode level for the circuit. This configuration also eliminates  
the requirement of rail-to-rail swing at the amplifier input. The low-power OPA320-Q1, used as an input driver,  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS8353-Q1  
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
provides exceptional ac performance because of its extremely low-distortion and high-bandwidth specifications.  
In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low  
without adding distortion to the input signal.  
The application circuit illustrated in 8-2 is optimized to achieve the lowest distortion and lowest noise for a  
10-kHz input signal fed to the ADS8353-Q1 operating at full throughput with the default 32-CLK, dual-SDO  
interface mode. The input signal is processed through a high-bandwidth, low-distortion amplifier in an inverting  
gain configuration and a low-pass RC filter before being fed into the device.  
8-3 illustrates the reference driver circuit when operation with an external reference is desired. The reference  
voltage is generated by the high-precision, low-noise REF34-Q1 circuit. The output broadband noise of the  
reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz. The decoupling capacitor  
on each reference pin is selected to be 10 µF. The low output impedance, low noise, and fast settling time make  
the OPA2320-Q1 a good choice for driving this high capacitive load.  
8.2.3 Application Curve  
To minimize external components and to maximize the dynamic range of the ADC, the device is configured to  
operate with internal reference (CFR.B6 = 1) and 2x VREF_x input full-scale range (CFR.B9 = 1).  
8-4 shows the FFT plot and test result obtained with the ADS8353-Q1 operating at full throughput with a 32-  
CLK interface and the circuit configuration of 8-2.  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ200  
0
60  
120  
180  
240  
300  
C301  
Input Frequency (kHz)  
SNR = 83.5 dB, THD = 101.2 dB, fIN = 10.1 kHz  
8-4. ADS8353-Q1 in 32-CLK Interface Mode  
8.3 Power Supply Recommendations  
The device has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is used  
for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible ranges.  
When using the device with the 2× VREF input range (CFR.B9 = 1), the AVDD supply voltage value defines the  
permissible voltage swing on the analog input pins. AVDD must be set as shown in 方程式 9, 方程式 10, and 方  
11 to avoid saturation of output codes and to use the full dynamic range on the analog input pins:  
AVDD 2 × VREF_A  
AVDD 2 × VREF_B  
4.75 V AVDD 5.25 V  
(9)  
(10)  
(11)  
Decouple the AVDD and DVDD pins, as shown in 8-5, with the GND pin using individual 10-µF decoupling  
capacitors.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
 
 
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
Device  
AVDD  
AVDD (Pin 16)  
10 F  
GND (Pin 15)  
DVDD (Pin 9)  
10 F  
DVDD  
8-5. Power-Supply Decoupling  
8.4 Layout  
8.4.1 Layout Guidelines  
8-6 shows a board layout example for the ADS8353-Q1 TSSOP package. Partition the printed circuit board  
(PCB) into analog and digital sections. Avoid crossing digital lines with the analog signal path and keep the  
analog input signals and the reference input signals away from noise sources. As shown in 8-6, the analog  
input and reference signals are routed on the left side of the board and the digital connections are routed on the  
right side of the device.  
The power sources to the device must be clean and well-bypassed. Use 10-μF, ceramic bypass capacitors in  
close proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the  
AVDD and DVDD pins and the bypass capacitors. Connect all ground pins to the ground plane using short, low  
impedance paths.  
The REFIO-A and REFIO-B reference inputs and outputs are bypassed with 10-μF, X7R-grade, 0805-size, 16-V  
rated ceramic capacitors (CREF-x). Place the reference bypass capacitors as close as possible to the reference  
REFIO-x pins and connect the bypass capacitors using short, low-inductance connections. Avoid placing vias  
between the REFIO-x pins and the bypass capacitors. Small 0.1-Ωto 0.2-Ωresistors (RREF-x) are used in series  
with the reference bypass capacitors to improve stability.  
The fly-wheel RC filters are placed immediately next to the input pins. Among ceramic surface-mount capacitors,  
COG (NPO) ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG  
(NPO) ceramic capacitors provides the most stable electrical properties over voltage, frequency, and  
temperature changes. 8-6 shows CIN-A and CIN-B filter capacitors placed across the analog input pins of the  
device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS8353-Q1  
 
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
8.4.2 Layout Example  
GND  
RFLT-A  
1
CIN-A  
16  
AVDD  
AINP_A  
AINM_A  
REFIO_A  
CIN-A  
CAVDD  
GND 15  
2
3
GND  
RFLT-A  
CREF-A  
GND  
RREF-A  
SDO_B  
14  
SDO_A  
SCLK  
13  
12  
REFGND_A  
REFGND_B  
4
5
CREF-B  
RREF-B  
CS  
11  
10  
REFIO_B  
AINM_B  
6
7
RFLT-B  
SDI  
CIN-B  
CIN-B  
9
AINP_B  
8
DVDD  
CDVDD  
RFLT-B  
GND  
GND  
8-6. Recommended Layout  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS8353-Q1  
 
ADS8353-Q1  
ZHCSJ89B JANUARY 2019 REVISED JULY 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
Texas Instruments, TI Precision Labs TI training and videos site  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, OPAx320-Q1 Precision, 20-MHz, 0.9-pA, low-noise, RRIO, CMOS operational amplifier  
data sheet  
Texas Instruments, REF34-Q1 Low-drift, low-power, small-footprint series voltage references data sheet  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TINAand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS8353-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS8353QPWQ1  
ADS8353QPWRQ1  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
A8353Q  
A8353Q  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2021  
OTHER QUALIFIED VERSIONS OF ADS8353-Q1 :  
Catalog : ADS8353  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8353QPWRQ1  
TSSOP  
PW  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
ADS8353QPWRQ1  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
PW TSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ADS8353QPWQ1  
16  
90  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADS8353QPWRQ1

具有单端输入的汽车类 16 位 600kSPS 2 通道同步采样 SAR ADC | PW | 16 | -40 to 125
TI

ADS8354

双路 700kSPS 16 位、同步采样 SAR 模数转换器 (ADC)
TI

ADS8354IPW

双路 700kSPS 16 位、同步采样 SAR 模数转换器 (ADC) | PW | 16 | -40 to 125
TI

ADS8354IPWR

双路 700kSPS 16 位、同步采样 SAR 模数转换器 (ADC) | PW | 16 | -40 to 125
TI

ADS8354IRTER

双路 700kSPS 16 位、同步采样 SAR 模数转换器 (ADC) | RTE | 16 | -40 to 125
TI

ADS8354IRTET

双路 700kSPS 16 位、同步采样 SAR 模数转换器 (ADC) | RTE | 16 | -40 to 125
TI

ADS8355

具有单端输入的 16 位 1MSPS 双通道同步采样 SAR ADC
TI

ADS8355IRTER

具有单端输入的 16 位 1MSPS 双通道同步采样 SAR ADC | RTE | 16 | -40 to 125
TI

ADS8355IRTET

具有单端输入的 16 位 1MSPS 双通道同步采样 SAR ADC | RTE | 16 | -40 to 125
TI

ADS8361

Dual, 500kSPS, 16-Bit, 2 + 2 Channel, Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS8361

Dual, 500kSPS, 16-Bit, 2 2 Channel, Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTER
TI

ADS8361IDBQ

Dual, 500kSPS, 16-Bit, 2 + 2 Channel, Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTER
BB