ADS9120 [TI]

具有增强型 SPI 接口的 16 位、2.5MSPS、单通道 SAR ADC;
ADS9120
型号: ADS9120
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有增强型 SPI 接口的 16 位、2.5MSPS、单通道 SAR ADC

文件: 总64页 (文件大小:2662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
ADS9120 16 位、2.5MSPS15.5mWSAR ADC,具有 multiSPI™接口  
1 特性  
3 说明  
1
采样率:2.5MSPS  
ADS9120 是一款 16 位、2.5MSPS、逐次逼近寄存器  
(SAR) 模数转换器 (ADC),在典型工作条件下具有  
±0.25 LSB INL 96 dB SNR 规范值。高吞吐量使得  
开发者能够对输入信号进行过采样,从而提高测量的动  
态范围和精度。  
无延迟输出  
出色的直流和交流性能:  
积分非线性 (INL)±0.25 最低有效位 (LSB)  
(典型值),±0.6 LSB(最大值)  
微分非线性 (DNL)±0.6 LSB(最大值),16  
位无丢码 (NMC)  
该器件支持单极全差分模拟输入信号,并采用 2.5V 至  
5V 的外部基准电压,能够提供宽输入选择范围,无需  
额外进行输入调节。  
信噪比 (SNR)96dB  
总谐波失真 (THD)-118dB  
该器件的功耗仅为 15.5mW(以 2.5MSPS 全吞吐量运  
行时)。吞吐量较低时,可灵活使用低功耗模式  
NAP PD)来降低功耗。  
宽输入范围:  
单极差分输入范围:±VREF  
VREF 输入范围:2.5V 5V,  
AVDD 无关  
集成的 multiSPI™ 串行接口向后兼容传统 SPI 协议。  
此外,该器件的可配置 特性 还能够简化电路板布局、  
时序和固件,并且以低时钟速度运行时能够获得高吞吐  
量,因此可轻松连接各种微控制器、数字信号处理器  
(DSP) 以及现场可编程门阵列 (FPGA)。  
低功耗:  
2.5MSPS 时为 9mW(仅限 AVDD)  
2.5MSPS 时为 15mW(总功耗)  
灵活的低功耗模式,可根据吞吐量调节功率  
multiSPI™:增强型串行接口  
该器件采用节省空间的 4mm × 4mm VQFN 封装,支  
持符合 JESD8-7A 标准的 I/O 和扩展级工业温度范  
围。  
符合 JESD8-7A 标准的数字 I/O1.8V DVDD 时)  
在以下扩展级温度范围内完全额定运行:-40°C 至  
+125°C  
小型封装:4mm × 4mm 超薄四方扁平无引线  
(VQFN) 封装  
器件信息  
器件编号  
ADS9120  
封装  
VQFN (24)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
2 应用  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
测试和测量  
电机控制  
医疗成像  
高精度、高速工业领域  
典型应用图以及积分非线性度与代码间的关系图  
DVDD  
AVDD  
REFP  
REFM  
ADS9120  
CONVST  
CS  
multiSPITM  
Serial  
AIN_P  
VIN+  
SCLK  
+
SPI  
Mode  
multiSPITM  
Mode  
OPA625  
Interface  
SDI  
16-Bit SAR ADC,  
2.5 MSPS  
VBIAS  
SDO œ 0  
SDO œ 1  
SDO œ 2  
SDO œ 3  
RVS  
4X  
DDR  
OPA625  
SDO  
+
VIN-  
AIN_M  
AGND  
DGND  
RST  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS710  
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 22  
7.5 Programming........................................................... 24  
7.6 Register Maps......................................................... 44  
Application and Implementation ........................ 47  
8.1 Application Information............................................ 47  
8.2 Typical Application .................................................. 50  
Power-Supply Recommendations...................... 52  
9.1 Power-Supply Decoupling....................................... 52  
9.2 Power Saving.......................................................... 52  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements: Conversion Cycle.................. 7  
8
9
10 Layout................................................................... 54  
10.1 Layout Guidelines ................................................. 54  
10.2 Layout Example .................................................... 55  
11 器件和文档支持 ..................................................... 56  
11.1 文档支持................................................................ 56  
11.2 接收文档更新通知 ................................................. 56  
11.3 社区资源................................................................ 56  
11.4 ....................................................................... 56  
11.5 静电放电警告......................................................... 56  
11.6 Glossary................................................................ 56  
12 机械、封装和可订购信息....................................... 56  
6.7 Timing Requirements: Asynchronous Reset, NAP,  
and PD....................................................................... 7  
6.8 Timing Requirements: SPI-Compatible Serial  
Interface ..................................................................... 7  
6.9 Timing Requirements: Source-Synchronous Serial  
Interface (External Clock) .......................................... 8  
6.10 Timing Requirements: Source-Synchronous Serial  
Interface (Internal Clock)............................................ 8  
6.11 Typical Characteristics.......................................... 12  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 9 月  
*
最初发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
5 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN  
Top View  
1
18  
17  
16  
15  
14  
13  
CONVST  
SDO-2  
SDO-3  
DVDD  
GND  
2
RST  
3
NC  
Thermal  
Pad  
4
REFM  
5
REFP  
AVDD  
AVDD  
6
NC  
Pin Functions  
PIN  
NAME  
AINM  
NO.  
10  
FUNCTION  
Analog input  
Analog input  
Power supply  
DESCRIPTION  
Negative analog input  
AINP  
9
Positive analog input  
AVDD  
13, 14  
Analog power supply for the device  
Conversion start input pin for the device.  
A CONVST rising edge brings the device from ACQ state to CNV state.  
CONVST  
1
Digital input  
Chip-select input pin for the device; active low.  
The device takes control of the data bus when CS is low.  
The SDO-x pins go to tri-state when CS is high.  
CS  
24  
Digital input  
DVDD  
GND  
NC  
16  
11, 15  
3, 6, 12  
4, 8  
Power supply  
Power supply  
No connection  
Analog input  
Analog input  
Interface supply  
Ground  
These pins must be left floating with no external connection  
Reference ground potential  
Reference voltage input  
REFM  
REFP  
5, 7  
Asynchronous reset input pin for the device.  
A low pulse on the RST pin resets the device and all register bits return to a default state.  
RST  
2
Digital input  
Multi-function output pin for the device.  
RVS  
21  
Digital output  
With CS held high, RVS reflects the status of the internal ADCST signal.  
With CS low, the status of RVS depends on the output protocol selection.  
Clock input pin for the serial interface.  
All system-synchronous data transfer protocols are timed with respect to the SCLK signal.  
SCLK  
SDI  
23  
22  
Digital input  
Digital input  
Serial data input pin for the device.  
This pin is used to feed the data or command into the device.  
SDO-0  
20  
19  
18  
17  
Digital output  
Digital output  
Digital output  
Digital output  
Supply  
Serial communication: data output 0  
SDO-1  
Serial communication: data output 1  
SDO-2  
Serial communication: data output 2  
SDO-3  
Serial communication: data output 3  
Thermal pad  
Exposed thermal pad; connecting this pin to GND is recommended  
Copyright © 2016, Texas Instruments Incorporated  
3
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.1  
–0.3  
–0.3  
–0.3  
–40  
MAX  
2.1  
UNIT  
V
AVDD to GND  
DVDD to GND  
2.1  
V
REFP to REFM  
5.5  
V
REFM to GND  
0.1  
V
Analog (AINP, AINM) to GND  
Digital input (RST, CONVST, CS, SCLK, SDI) to GND  
Digital output (RVS, SDO-0, SDO-1, SDO-2, SDO-3) to GND  
Operating temperature, TA  
Storage temperature, Tstg  
REFP + 0.3  
DVDD + 0.3  
DVDD + 0.3  
125  
V
V
V
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
1.8  
1.8  
5
MAX  
UNIT  
AVDD  
DVDD  
REFP  
Analog supply voltage  
Digital supply voltage  
Positive reference  
V
V
V
6.4 Thermal Information  
ADS9120  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
31.9  
UNITS  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
29.9  
8.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.9  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
6.5 Electrical Characteristics  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2.5 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +125°C, unless otherwise noted.  
All typical values are at TA = 25°C.  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Full-scale input range  
(AINP – AINM)(1)  
FSR  
VIN  
–VREF  
–0.1  
VREF  
V
V
V
Absolute input voltage  
(AINP and AINM to REFGND)  
VREF + 0.1  
Common-mode voltage range  
(AINP + AINM) / 2  
VCM  
(VREF / 2) – 0.1 VREF / 2 (VREF / 2) + 0.1  
In sample mode  
60  
4
CIN  
IIL  
Input capacitance  
pF  
µA  
In hold mode  
Input leakage current  
±1  
VOLTAGE REFERENCE INPUT  
VREF Reference input voltage range  
2.5  
5
V
Average current, VREF = 5 V,  
2-kHz, full-scale input,  
throughput = 2.5 MSPS  
IREF  
Reference input current  
1.3  
16  
mA  
DC ACCURACY  
Resolution  
Bits  
Bits  
NMC  
No missing codes  
16  
–0.6  
–0.7  
–0.6  
–0.7  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
±0.25(2)  
±0.25(2)  
±0.25(2)  
±0.25(2)  
0.6  
0.7  
0.6  
0.7  
1
INL  
Integral nonlinearity  
LSB(3)  
DNL  
E(IO)  
Differential nonlinearity  
Input offset error  
LSB  
–1 ±0.025(2)  
mV  
μV/°C  
%FS  
ppm/°C  
LSB  
dVOS/dT Input offset thermal drift  
1
GE  
Gain error  
–0.02  
±0.01(2)  
0.25  
0.35  
80  
0.02  
GE/dT  
Gain error thermal drift  
Transition noise  
CMRR  
Common-mode rejection ratio  
At dc to 20 kHz  
dB  
(1) Ideal input span, does not include gain or offset errors.  
(2) See Figure 9, Figure 10, Figure 25, and Figure 26 for statistical distribution data for INL, DNL, offset, and gain error parameters.  
(3) LSB = least-significant bit. 1 LSB at 18 bits is approximately 3.8 ppm.  
Copyright © 2016, Texas Instruments Incorporated  
5
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2.5 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +125°C, unless otherwise noted.  
All typical values are at TA = 25°C.  
PARAMETER  
AC ACCURACY(4)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
fIN = 2 kHz  
94.4  
96  
95  
SINAD  
SNR  
Signal-to-noise + distortion  
Signal-to-noise ratio  
fIN = 100 kHz  
fIN = 500 kHz  
fIN = 2 kHz  
83.9  
96  
94.5  
fIN = 100 kHz  
fIN = 500 kHz  
fIN = 2 kHz  
95.9  
84  
dB  
–118  
–102  
–101  
120  
108  
106  
THD  
Total harmonic distortion(5)  
fIN = 100 kHz  
fIN = 500 kHz  
fIN = 2 kHz  
dB  
SFDR  
Spurious-free dynamic range  
fIN = 100 kHz  
fIN = 500 kHz  
dB  
DIGITAL INPUTS(6)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.65 DVDD  
–0.3  
DVDD + 0.3  
0.35 DVDD  
V
V
DIGITAL OUTPUTS(6)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = 2-mA source  
IOH = 2-mA sink  
DVDD – 0.45  
V
V
0.45  
POWER SUPPLY  
AVDD  
DVDD  
Analog supply voltage  
1.65  
1.65  
1.8  
1.8  
1.95  
1.95  
V
V
Digital supply voltage  
Active, 2.5-MSPS throughput,  
TA = –40°C to +85°C  
5
5
6.5  
mA  
Active, 2.5-MSPS throughput,  
TA = –40°C to +125°C  
6.75  
AVDD supply current  
(AVDD = 1.8 V)  
IDD  
Static, ACQ state  
3.7  
500  
1
mA  
µA  
Low-power, NAP mode  
Power-down, PD state  
Active, 2.5-MSPS throughput,  
TA = –40°C to +85°C  
9
9
11.7  
mW  
Active, 2.5-MSPS throughput,  
TA = –40°C to +125°C  
12.15  
AVDD power dissipation  
(AVDD = 1.8 V)  
PD  
Static, ACQ state  
6.6  
900  
1.8  
mW  
µW  
Low-power, NAP mode  
Power-down, PD state  
TEMPERATURE RANGE  
TA Operating free-air temperature  
–40  
125  
°C  
(4) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.1 dB below full-scale,  
unless otherwise specified.  
(5) Calculated on the first nine harmonics of the input frequency.  
(6) As per the JESD8-7A standard. Specified by design; not production tested.  
6
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
6.6 Timing Requirements: Conversion Cycle  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2.5 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +125°C. All typical values are at TA = 25°C. See Figure 1.  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
fcycle  
Sampling frequency  
2.5  
MHz  
ns  
tcycle  
ADC cycle time period  
Pulse duration: CONVST high  
Pulse duration: CONVST low  
Acquisition time  
Quiet acquisition time(1)  
Quiet aperture time(1)  
400  
30  
twh_CONVST  
twl_CONVST  
tacq  
ns  
30  
ns  
100  
25  
ns  
tqt_acq  
ns  
td_cnvcap  
10  
ns  
TIMING SPECIFICATIONS  
tconv  
Conversion time  
270  
290  
ns  
(1) See Figure 47.  
6.7 Timing Requirements: Asynchronous Reset, NAP, and PD  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2.5 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +125°C. All typical values are at TA = 25°C. See Figure 2 and  
Figure 3.  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
twl_RST  
Pulse duration: RST low  
100  
ns  
TIMING SPECIFICATIONS  
td_rst  
Delay time: RST rising to RVS rising  
1250  
300  
µs  
ns  
µs  
tnap_wkup  
tPWRUP  
Wake-up time: NAP mode  
Power-up time: PD mode  
250  
6.8 Timing Requirements: SPI-Compatible Serial Interface  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2.5 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +125°C. All typical values are at TA = 25°C. See Figure 4.  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
fCLK  
Serial clock frequency  
75  
MHz  
ns  
tCLK  
Serial clock time period  
13.33  
0.45  
0.45  
5
tph_CK  
tpl_CK  
SCLK high time  
0.55  
0.55  
tCLK  
tCLK  
ns  
SCLK low time  
tsu_CSCK  
tsu_CKDI  
tht_CKDI  
tht_CKCS  
Setup time: CS falling to the first SCLK capture edge  
Setup time: SDI data valid to the SCLK capture edge  
Hold time: SCLK capture edge to (previous) data valid on SDI  
Delay time: last SCLK falling to CS rising  
1.2  
ns  
0.65  
5
ns  
ns  
TIMING SPECIFICATIONS  
tden_CSDO  
tdz_CSDO  
td_CKDO  
Delay time: CS falling to data enable  
4.5  
10  
6.5  
5
ns  
ns  
ns  
ns  
Delay time: CS rising to SDO going to 3-state  
Delay time: SCLK launch edge to (next) data valid on SDO  
Delay time: CS falling to RVS falling  
td_CSRDY_f  
After NOP operation  
10  
70  
Delay time:  
CS rising to RVS rising  
td_CSRDY_r  
ns  
After WR or RD operation  
Copyright © 2016, Texas Instruments Incorporated  
7
 
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
6.9 Timing Requirements: Source-Synchronous Serial Interface (External Clock)  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2.5 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +125°C. All typical values are at TA = 25°C. See Figure 5.  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
fCLK Serial clock frequency  
tCLK Serial clock time period  
TIMING SPECIFICATIONS(1)  
100  
MHz  
ns  
10  
td_CKSTR_r  
td_CKSTR_f  
toff_STRDO_f  
toff_STRDO_r  
Delay time: SCLK launch edge to RVS rising  
8.5  
8.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
Delay time: SCLK launch edge to RVS falling  
Time offset: RVS rising to (next) data valid on SDO  
Time offset: RVS falling to (next) data valid on SDO  
–0.5  
–0.5  
(1) Other parameters are the same as the Timing Requirements: SPI-Compatible Serial Interface table.  
6.10 Timing Requirements: Source-Synchronous Serial Interface (Internal Clock)  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2.5 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +125°C. All typical values are at TA = 25°C. See Figure 6.  
MIN  
TYP  
MAX  
UNIT  
TIMING SPECIFICATIONS(1)  
td_CSSTR  
Delay time: CS falling to RVS rising  
12  
–0.5  
–0.5  
9.9  
40  
0.5  
ns  
ns  
ns  
toff_STRDO_f  
toff_STRDO_r  
Time offset: RVS rising to (next) data valid on SDO  
Time offset: RVS falling to (next) data valid on SDO  
INTCLK option  
0.5  
11.1  
22.2  
44.4  
0.55  
0.55  
tSTR  
Strobe output time period  
INTCLK / 2 option  
INTCLK / 4 option  
19.8  
39.6  
0.45  
0.45  
ns  
tph_STR  
tpl_STR  
Strobe output high time  
Strobe output low time  
tSTR  
tSTR  
(1) Other parameters are the same as the Timing Requirements: SPI-Compatible Serial Interface table.  
8
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Sample  
S
Sample  
S+1  
twh_CONVST  
twl_CONVST  
CONVST  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
ADCST (Internal)  
CNV (C)  
ACQ (C+1)  
CS  
RVS  
Figure 1. Conversion Cycle Timing Diagram  
trst  
twl_RST  
RST  
CONVST  
CS  
td_rst  
SCLK  
RVS  
SDO-x  
Figure 2. Asynchronous Reset Timing Diagram  
Copyright © 2016, Texas Instruments Incorporated  
9
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Sample  
Sample  
S+1  
S
twh_CONVST  
CONVST  
tcycle  
tnap  
tconv  
tnap_wkup  
tacq  
tconv_max  
tconv_min  
ADCST  
(Internal)  
CNV C  
NAP + ACQ C+1  
ACQ C+1  
CS  
RVS  
t = 0  
Figure 3. NAP Mode Timing Diagram  
tCLK  
tph_CK  
tpl_CK  
CS  
SCLK(1)  
SDO-x  
SCLK(1)  
tsu_CKDI  
tht_CKDI  
tsu_CSCK  
tht_CKCS  
SDI  
tden_CSDO  
tdz_CSDO  
td_CKDO  
SDO-x  
(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.  
Figure 4. SPI-Compatible Serial Interface Timing Diagram  
10  
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
tCLK  
tph_CK  
tpl_CK  
CS  
SCLK  
td_CKSTR_f  
tsu_CSCK  
tht_CKCS  
td_CKSTR_r  
SCLK  
RVS  
tden_CSDO  
tdz_CSDO  
toff_STRDO_r  
toff_STRDO_f  
SDO-x  
(DDR)  
SDO-x  
td_CSRDY_f  
td_CSRDY_r  
toff_STRDO_r  
SDO-x  
(SDR)  
RVS  
Figure 5. Source-Synchronous Serial Interface Timing Diagram (External Clock)  
tSTR  
CS  
SDO-x  
RVS  
RVS  
tph_STR  
tpl_STR  
tden_CSDO  
tdz_CSDO  
toff_STRDO_r  
toff_STRDO_f  
SDO-x  
(DDR)  
td_CSRDY_f  
td_CSRDY_r  
toff_STRDO_r  
SDO-x  
(SDR)  
td_CSSTR  
Figure 6. Source-Synchronous Serial Interface Timing Diagram (Internal Clock)  
Copyright © 2016, Texas Instruments Incorporated  
11  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
6.11 Typical Characteristics  
at TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2.5 MSPS (unless otherwise noted)  
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-0.25  
-0.5  
-0.75  
-32768  
32767  
-32768  
32767  
ADC Output Code  
ADC Output Code  
D002  
D001  
Typical INL = ±0.25 LSB  
Typical DNL = ±0.25 LSB  
Figure 7. Typical INL  
Figure 8. Typical DNL  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
-0.6 -0.45 -0.3 -0.15  
0
0.15 0.3 0.45 0.6  
-0.6 -0.45 -0.3 -0.15  
0
0.15 0.3 0.45 0.6  
Integral Nonlinearity (LSB)  
Differential Nonlinearity (LSB)  
D040  
D041  
120 devices  
120 devices  
Figure 9. Typical INL Distribution  
Figure 10. Typical DNL Distribution  
0.75  
0.5  
0.75  
0.5  
Maximum  
Minimum  
Maximum  
Minimum  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-0.25  
-0.5  
-0.75  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (0C)  
Free-Air Temperature (èC)  
D004  
D003  
VREF = 5 V  
VREF = 5 V  
Figure 11. INL vs Temperature  
Figure 12. DNL vs Temperature  
12  
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2.5 MSPS (unless otherwise noted)  
0.75  
0.5  
0.75  
Maximum  
Minimum  
Maximum  
Minimum  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-0.25  
-0.5  
-0.75  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
Reference Voltage (V)  
Reference Voltage (V)  
D006  
D005  
TA = 25°C  
TA = 25°C  
Figure 13. INL vs Reference Voltage  
Figure 14. DNL vs Reference Voltage  
1200000  
900000  
600000  
300000  
0
600000  
450000  
300000  
150000  
0
32766  
32767  
32768  
32769  
32770  
32771  
32767  
32768  
32769  
32770  
32771  
32772  
ADC Output Code  
ADC Output Code  
D009  
D010  
Standard deviation = 0.35 LSB  
Figure 15. DC Input Histogram, Code Center  
Standard deviation = 0.35 LSB  
Figure 16. DC Input Histogram, Code Transition  
0
-50  
0
-50  
-100  
-150  
-100  
-150  
-200  
-200  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
fIN, Input Frequency ( kHz)  
fIN, Input Frequency ( kHz)  
D011  
D012  
fIN = 2 kHz, SNR = 96 dB, THD = –118 dB  
fIN = 100 kHz, SNR = 95.9 dB, THD = –102 dB  
Figure 17. Typical FFT  
Figure 18. Typical FFT  
Copyright © 2016, Texas Instruments Incorporated  
13  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2.5 MSPS (unless otherwise noted)  
97  
96  
95  
94  
93  
16  
-112  
-114  
-116  
-118  
-120  
124  
SNR  
SINAD  
ENOB  
THD  
SFDR  
15.75  
15.5  
15.25  
15  
122  
120  
118  
116  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (0C)  
Free-Air Temperature (èC)  
D013  
D014  
fIN = 2 kHz, VREF = 5 V  
fIN = 2 kHz, VREF = 5 V  
Figure 19. Noise Performance vs Temperature  
Figure 20. Distortion Performance vs Temperature  
98  
97  
96  
95  
94  
93  
92  
16.5  
SNR  
-116  
124  
123  
122  
121  
120  
THD  
SFDR  
SINAD  
ENOB  
16.25  
-117  
-118  
-119  
-120  
16  
15.75  
15.5  
15.25  
15  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
Reference Voltage (V)  
Reference Voltage (V)  
D015  
D016  
fIN = 2 kHz, TA = 25°C  
fIN = 2 kHz, TA = 25°C  
Figure 21. Noise Performance vs Reference Voltage  
Figure 22. Distortion Performance vs Reference Voltage  
98  
96  
94  
92  
90  
88  
16  
-96  
-102  
-108  
-114  
-120  
-126  
126  
120  
114  
108  
102  
96  
SNR  
SINAD  
ENOB  
THD  
SFDR  
15.8  
15.6  
15.4  
15.2  
15  
0
25  
50  
75 100 125 150 175 200 225 250  
fIN, Input Frequency (kHz)  
0
25  
50  
75 100 125 150 175 200 225 250  
fIN, Input Frequency (kHz)  
D017  
D018  
VREF = 5 V, TA = 25°C  
Figure 23. Noise Performance vs Input Frequency  
VREF = 5 V, TA = 25°C  
Figure 24. Distortion Performance vs Input Frequency  
14  
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2.5 MSPS (unless otherwise noted)  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2100  
1800  
1500  
1200  
900  
600  
300  
0
600  
400  
200  
0
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
-0.02  
-0.012  
-0.004  
0.004  
0.012  
0.02  
Offset (mV)  
Gain Error (%FS)  
D039  
D038  
3500 devices  
3500 devices  
Figure 25. Offset Typical Distribution  
Figure 26. Gain Error Typical Distribution  
0.01  
0.005  
0
1
0.5  
0
-0.5  
-0.005  
-1  
-0.01  
-40  
-7  
26  
59  
92  
125  
-40  
-15  
10  
35  
60  
85  
Free-Air Temperature (0C)  
Free-Air Temperature (0C)  
D019  
D020  
VREF = 5 V  
VREF = 5 V  
Figure 27. Offset vs Temperature  
Figure 28. Gain Error vs Temperature  
1
0.5  
0
0.01  
0.005  
0
-0.5  
-0.005  
-1  
-0.01  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
Reference Voltage (V)  
Reference Voltage (V)  
D021  
D022  
TA = 25°C  
TA = 25°C  
Figure 29. Offset vs Reference Voltage  
Figure 30. Gain Error vs Reference Voltage  
Copyright © 2016, Texas Instruments Incorporated  
15  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2.5 MSPS (unless otherwise noted)  
10  
8
6
4
2
I-AVDD (mA) - no NAP  
I-AVDD (mA) - with NAP  
8
6
4
2
0
0
-40  
-7  
26  
59  
92  
125  
2500  
2000  
1500  
1000  
500  
0
Free-Air Temperature (èC)  
fS, Throughput (kSPS)  
D026  
D027  
2.5 MSPS  
TA = 25°C  
Figure 31. Supply Current vs Temperature  
Figure 32. Supply Current vs Throughput  
2
1.5  
1
2
1.5  
1
0.5  
0.5  
0
0
-40  
-7  
26  
59  
92  
125  
2500  
2000  
1500  
1000  
500  
0
Free-Air Temperature (0C)  
fS, Throughput (kSPS)  
D028  
D029  
2.5 MSPS  
TA = 25°C  
Figure 33. Reference Current vs Temperature  
Figure 34. Reference Current vs Throughput  
œ86  
œ87  
œ88  
œ89  
œ90  
œ91  
œ92  
œ93  
0
150  
300  
fIN, Input Frequency (kHz)  
450  
600  
C025  
Figure 35. CMRR vs Input Frequency  
16  
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
7 Detailed Description  
7.1 Overview  
The ADS9120 is a high-speed, successive approximation register (SAR), analog-to-digital converter (ADC) based  
on the charge redistribution architecture. This compact device features high performance at a high throughput  
rate and at low power consumption.  
The ADS9120 supports unipolar, fully-differential analog input signals and operates with a 2.5-V to 5-V external  
reference, offering a wide selection of input ranges without additional input scaling.  
When a conversion is initiated, the differential input between the AINP and AINM pins is sampled on the internal  
capacitor array. The ADS9120 uses an internal clock to perform conversions. During the conversion process,  
both analog inputs are disconnected from the internal circuit. At the end of conversion process, the device  
reconnects the sampling capacitors to the AINP and AINM pins and enters acquisition phase.  
The device consumes only 15.5 mW of power when operating at the full 2.5-MSPS throughput. Power  
consumption at lower throughputs can be reduced by using the flexible low-power modes (NAP and PD).  
The new multiSPI™ interface simplifies board layout, timing, and firmware, and achieves high throughput at  
lower clock speeds, thus allowing easy interface to a variety of microprocessors, digital signal processors  
(DSPs), and field-programmable gate arrays (FPGAs).  
7.2 Functional Block Diagram  
From a functional perspective, the device comprises of two modules: the converter module and the interface  
module, as shown in this section.  
The converter module samples and converts the analog input into an equivalent digital output code whereas the  
interface module facilitates communication and data transfer with the host controller.  
REFP AVDD  
DVDD  
RST  
CONVST  
CS  
SCLK  
SDI  
AINP  
AINM  
Interface Module  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
Converter Module  
REFM  
GND  
Copyright © 2016, Texas Instruments Incorporated  
17  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Converter Module  
As shown in Figure 36, the converter module samples the analog input signal (provided between the AINP and  
AINM pins), compares this signal with the reference voltage (provided between the pair of REFP and REFM  
pins), and generates an equivalent digital output code.  
The converter module receives RST and CONVST inputs from the interface module and outputs the ADCST  
signal and the conversion result back to the interface module.  
REFP  
DVDD  
AVDD  
RST  
OSC  
CONVST  
CS  
RST  
SCLK  
SDI  
AINP  
AINM  
CONVST  
ADCST  
Sample-  
and-Hold  
Circuit  
Interface  
Module  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
ADC  
Conversion  
Result  
AGND  
Converter Module  
DGND  
REFM  
GND  
Figure 36. Converter Module  
7.3.1.1 Sample-and-Hold Circuit  
The device supports unipolar, fully-differential analog input signals. Figure 37 shows a small-signal equivalent  
circuit of the sample-and-hold circuit. Each sampling switch is represented by a resistance (Rs1 and Rs2, typically  
30 Ω) in series with an ideal switch (sw1 and sw2). The sampling capacitors, Cs1 and Cs2, are typically 60 pF.  
Rs1  
Device in Hold Mode  
4 pF  
sw1  
AINP  
AINN  
Cs1  
REFP  
4 pF  
GND  
Cs2  
GND  
sw2  
Figure 37. Input Sampling Stage Equivalent Circuit  
Rs2  
During the acquisition process (in ACQ state), both positive and negative inputs are individually sampled on Cs1  
and Cs2, respectively. During the conversion process (in CNV state), the device converts for the voltage  
difference between the two sampled values: VAINP – VAINM  
.
Each analog input pin has electrostatic discharge (ESD) protection diodes to REFP and GND. Keep the analog  
inputs within the specified range to avoid turning the diodes on.  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Feature Description (continued)  
Equation 1 and Equation 2 show the full-scale voltage range (FSR) and common-mode voltage range (VCM  
)
supported at the analog inputs for any external reference voltage (VREF).  
FSR = êVREF  
(1)  
V
REF  
VCM  
=
ê 0.1 V  
«
÷
2
(2)  
7.3.1.2 External Reference Source  
The input range for the device is set by the external voltage applied at the two REFP pins. The REFM pins  
function as the reference ground and must be connected to each reference capacitor.  
The device takes very little static current from the reference pins in the RST and ACQ states. During the  
conversion process (in CNV state), binary-weighted capacitors are switched onto the reference pins. The  
switching frequency is proportional to the conversion clock frequency, but the dynamic charge requirements are  
a function of the absolute values of the input voltage and the reference voltage. Reference capacitors decouple  
the dynamic reference loads and a low-impedance reference driver is required to keep the voltage regulated to  
within 1 LSB.  
Most reference sources have very high broadband noise. The voltage reference source is recommended to be  
filtered with a 160-Hz filter before being connected to the reference driver, as shown in Figure 38. See the ADC  
Reference Driver section for the reference capacitor and driver selection. Also, the reference inputs are sensitive  
to board layout; thus, the layout guidelines described in the Layout section must be followed.  
4
5
6
REFM  
REFP  
TI Device  
CREF  
10 µF  
RREF_FLT  
1 kW  
Voltage  
Reference  
Buffer  
CREF_FLT  
1 µF  
CREF  
10 µF  
CREF  
10 µF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 38. Reference Driver Schematic  
7.3.1.3 Internal Oscillator  
The device features an internal oscillator (OSC) that provides the conversion clock; see Figure 36. Conversion  
duration can vary but is bounded by the minimum and maximum value of tconv, as specified in the Timing  
Requirements: Conversion Cycle table.  
The interface module can use this internal clock (OSC) or an external clock (provided by the host controller on  
the SCLK pin) or a combination of the internal and external clocks for executing the data transfer operations  
between the device and host controller; see the Interface Module section for more details.  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.1.4 ADC Transfer Function  
The ADS9120 supports unipolar, fully-differential analog inputs. The device output is in twos compliment format.  
Figure 39 and Table 1 show the ideal transfer characteristics for the device.  
The LSB for the ADC is given by Equation 3:  
FSR  
216  
VREF  
216  
1 LSB =  
= 2ì  
(3)  
7FFF  
0000  
FFFF  
8001  
8000  
VIN  
VREF  
œ 1 LSB  
œVREF  
+ 1 LSB  
œ1 LSB  
0
Differential Analog Input  
(AINP - AINM)  
Figure 39. Differential Transfer Characteristics  
Table 1. Transfer Characteristics  
DIFFERENTIAL ANALOG INPUT VOLTAGE  
(AINP – AINM)  
OUTPUT CODE  
(Hex)  
< –VREF  
–VREF + 1 LSB  
–1 LSB  
8000  
8001  
FFFF  
0000  
0001  
7FFF  
0
1 LSB  
> VREF – 1 LSB  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
7.3.2 Interface Module  
The interface module facilitates the communication and data transfer between the device and the host controller.  
As shown in Figure 40, the module comprises of shift registers (both input data and output data), configuration  
registers, and a protocol unit.  
Interface Module  
Shift Registers  
RST  
Output Data Register (ODR)  
CONVST  
D19  
B19  
D18  
D1  
D0  
CS  
20 Bits  
20 Bits  
SCLK  
SDI  
B18  
B1  
B0  
Converter Module  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
Input Data Register (IDR)  
Command Processor  
SCLK  
Counter  
Configuration Registers  
Figure 40. Interface Module  
The Pin Configuration and Functions section provides descriptions of the interface pins; the Data Transfer Frame  
section details the functions of shift registers, the SCLK counter, and the command processor; the Data Transfer  
Protocols section details supported protocols; and the Register Maps section explains the configuration registers  
and bit settings.  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
7.4 Device Functional Modes  
As shown in Figure 41, the device supports three functional states: RST, ACQ, and CNV. The device state is  
determined by the status of the CONVST and RST control signals provided by the host controller.  
Power Up  
ACQ  
RST Rising Edge  
CONVST Rising Edge  
RST Falling Edge  
End of Conversion  
CNV  
RST  
RST Falling Edge  
Figure 41. Device Functional States  
7.4.1 RST State  
In the ADS9120, the RST pin is an asynchronous digital input. To enter RST state, the host controller must pull  
the RST pin low and keep it low for the twl_RST duration (as specified in the Timing Requirements: Asynchronous  
Reset, NAP, and PD table).  
In RST state, all configuration registers (see the Register Maps section) are reset to the default values, the RVS  
pins remain low, and the SDO-x pins are tri-stated.  
To exit RST state, the host controller must pull the RST pin high with CONVST and SCLK held low and CS held  
high, as shown in Figure 42. After a delay of td_rst, the device enters ACQ state and the RVS pin goes high.  
trst  
twl_RST  
RST  
td_rst  
CONVST  
CS  
SCLK  
RVS  
SDO-x  
Figure 42. Asynchronous Reset  
To operate the device in any of the other two states (ACQ or CNV), RST must be held high. With RST held high,  
transitions on the CONVST pin determine the functional state of the device.  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Device Functional Modes (continued)  
Figure 43 shows a typical conversion process. An internal signal, ADCST, goes low during conversion and goes  
high at the end of conversion. With CS held high, RVS reflects the status of ADCST.  
Sample  
S
Sample  
S+1  
twh_CONVST  
twl_CONVST  
CONVST  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
ADCST (Internal)  
CNV (C)  
ACQ (C+1)  
CS  
RVS  
Figure 43. Typical Conversion Process  
7.4.2 ACQ State  
In ACQ state, the device acquires the analog input signal. The device enters ACQ state on power-up, after any  
asynchronous reset, or after end of every conversion.  
An RST falling edge takes the device from an ACQ state to a RST state. A CONVST rising edge takes the  
device from an ACQ state to a CNV state.  
The device offers a low-power NAP mode to reduce power consumption in the ACQ state; see the NAP Mode  
section for more details on NAP mode.  
7.4.3 CNV State  
The device moves from ACQ state to CNV state on a rising edge of the CONVST pin. The conversion process  
uses an internal clock and the device ignores any further transitions on the CONVST signal until the ongoing  
conversion is complete (that is, during the time interval of tconv).  
At the end of conversion, the device enters ACQ state. The cycle time for the device is given by Equation 4:  
tcycle-min = tconv + tacq-min  
(4)  
NOTE  
The conversion time, tconv, can vary within the specified limits of tconv_min and tconv_max (as  
specified in the Timing Requirements: Conversion Cycle table). After initiating a  
conversion, the host controller must monitor for a low-to-high transition on the RVS pin or  
wait for the tconv_max duration to elapse before initiating a new operation (data transfer or  
conversion). If RVS is not monitored, substitute tconv in Equation 4 with tconv_max  
.
Copyright © 2016, Texas Instruments Incorporated  
23  
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
7.5 Programming  
The device features four configuration registers (as described in the Register Maps section) and supports two  
types of data transfer operations: data write (the host configures the device), and data read (the host reads data  
from the device).  
To access the internal configuration registers, the device supports the commands listed in Table 2.  
Table 2. Supported Commands  
OPCODE B[19:0]  
COMMAND ACRONYM  
COMMAND DESCRIPTION  
0000_0000_0000_0000_0000  
1001_<8-bit address>_0000_0000  
1010_<8-bit address>_<8-bit data>  
1111_1111_1111_1111_1111  
NOP  
RD_REG  
WR_REG  
NOP  
No operation  
Read contents from the <8-bit address>  
Write <8-bit data> to the <8-bit address>  
No operation  
These commands are reserved and treated by the  
device as no operation  
Remaining combinations  
Reserved  
In the ADS9120, any data write to the device is always synchronous to the external clock provided on the SCLK  
pin. The data read from the device can be synchronized to the same external clock or to an internal clock of the  
device by programming the configuration registers (see the Data Transfer Protocols section for details).  
In any data transfer frame, the contents of an internal, 20-bit, output data word are shifted out on the SDO pins.  
The D[19:4] bits of the 20-bit output data word for any frame (F+1), are determined by the:  
Settings of the DATA_PATN[2:0] bits applicable to frame F+1 (see the DATA_CNTL register) and  
Command issued in frame F  
If a valid RD_REG command is executed in frame F, then the D[19:12] bits in frame F+1 reflect the contents of  
the selected register and the D[11:0] bits are 0s.  
If the DATA_PATN[2:0] bits for frame F+1 are set to 1xxb, then the D[19:4] bits in frame F+1 are the fixed data  
pattern shown in Figure 44.  
For all other combinations, the D[19:4] bits for frame F+1 are the latest conversion result.  
Output  
Data Word  
D[19:0]  
A valid RG_READ command is  
received in the previous frame.  
D19  
D18  
Register Data  
<8-bit REGDATA>_<8-bit 0's>  
000  
001  
Conversion  
Result  
D[19:4]  
010  
011  
100  
0000h  
FFFFh  
5555h  
3333h  
101  
110  
111  
D5  
D4  
D3  
D2  
D1  
D0  
Parity Computation Unit  
DATA_PATN [2:0]  
0
0
Figure 44. Output Data Word (D[19:0])  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Figure 45 shows further details of the parity computation unit illustrated in Figure 44.  
Output Data Word  
D[19:0]  
Parity Computation Unit  
D19  
D18  
XOR  
D17  
D16  
XOR  
D15  
D14  
XOR  
D13  
D12  
XOR  
D11  
D10  
XOR  
D9  
D8  
XOR  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
XOR  
)
)
11  
10  
01  
00  
0
0
16 MSBs  
12 MSBs  
8 MSBs  
4 MSBs  
FLPAR  
FTPAR  
MUX  
PAR_EN FPAR_LOC[1:0]  
Figure 45. Parity Bits Computation  
With the PAR_EN bit set to 0, the D[3] and D[2] bits of the output data word are set to 0 (default configuration).  
When the PAR_EN bit is set to 1, the device calculates the parity bits (FLPAR and FTPAR) and appends them  
as bits D[3] and D[2].  
FLPAR is the even parity calculated on bits D[19:4].  
FTPAR is the even parity calculated on the bits defined by FPAR_LOC[1:0].  
See the DATA_CNTL register for more details on the FPAR_LOC[1:0] bit settings.  
The D[1] and D[0] bits are always set to 0.  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
7.5.1 Data Transfer Frame  
A data transfer frame between the device and the host controller is bounded between a CS falling edge and the  
subsequent CS rising edge. The host controller can initiate a data transfer frame (as shown in Figure 46) at any  
time irrespective of the status of the CONVST signal; however, the data read during such a data transfer frame is  
a function of relative timing between the CONVST and CS signals.  
Frame F  
CONVST  
CS  
RVS  
As per output protocol selection.  
td_RVS  
SCLK  
N SCLKs  
Valid Command  
SDI  
SDO-x  
ODR Data  
SCLK Counter  
SCLK Counter  
0
b
Output Data Word  
Input Data Register (IDR)  
D19  
D0  
B19  
B0  
D19  
D0  
D19  
D0  
Output Data Register (ODR)  
Command Processor  
Figure 46. Data Transfer Frame  
For this discussion, assume that the CONVST signal remains low.  
For a typical data transfer frame F:  
1. The host controller pulls CS low to initiate a data transfer frame. On the CS falling edge:  
RVS goes low, indicating the beginning of the data transfer frame.  
The SCLK counter is reset to 0.  
The device takes control of the data bus. As shown in Figure 46, the 20-bit contents of the output data  
word (see Figure 44) are loaded in to the 20-bit ODR (see Figure 40).  
The 20-bit IDR (see Figure 40) is reset to 00000h, corresponding to a NOP command.  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
2. During the frame, the host controller provides clocks on the SCLK pin:  
On each SCLK capture edge, the SCLK counter is incremented and the data bit received on the SDI pin  
is shifted in to the IDR.  
On each launch edge of the output clock (SCLK in this case), ODR data are shifted out on the selected  
SDO-x pins.  
The status of the RVS pin depends on the output protocol selection (see the Protocols for Reading From  
the Device section).  
3. The host controller pulls CS high to end the data transfer frame. On the CS rising edge:  
The SDO-x pins go to tri-state.  
RVS goes high (after a delay of td_RVS).  
As illustrated in Figure 46, the 20-bit contents of the IDR are transferred to the command processor (see  
Figure 40) for decoding and further action.  
After pulling CS high, the host controller must monitor for a low-to-high transition on the RVS pin or wait for the  
td_RVS time (see the Timing Requirements: SPI-Compatible Serial Interface table) to elapse before initiating a new  
operation (data transfer or conversion). The delay, td_RVS, for any data transfer frame F varies based on the data  
transfer operation executed in the frame F.  
At the end of the data transfer frame F:  
If the SCLK counter is < 20, it indicates that IDR has captured less than 20 bits from the SDI. In this case, the  
device treats the frame F as a short command frame. At the end of a short command frame frame, IDR is not  
updated and the device treats the frame as a no operation command.  
If the SCLK counter = 20, it indicates that the IDR has captured exactly 20 bits from SDI. In this case, the  
device treats the frame F as a optimal command frame. At the end of an optimal command frame, the  
command processor decodes the 20-bit contents of the IDR as a valid command word.  
If the SCLK counter > 20, it indicates that the IDR captured more than 20 bits from the SDI, and only the last  
20 bits have been retained. In this case, the device treats the frame F as a long command frame. At the end  
of a long command frame, the command processor treats the 20-bit contents of the IDR as a valid command  
word. There is no restriction on the maximum number of clocks that can be provided within any data transfer  
frame F. However, as explained above, the last 20 bits shifted into the device prior to the CS rising edge must  
constitute the desired command.  
In a short command frame, the write operation to the device is invalidated, however, the output data bits  
transferred during the frame are still valid output data. Therefore, the host controller can use such shorter data  
transfer frames to read only the required number of MSB bits from the 20-bit output data word. As shown in  
Figure 44, an optimal read frame for ADS9120 needs to read only the 16 MSB bits of the output data word. The  
length of an optimal read frame depends on the output protocol selection; refer to the Protocols for Reading  
From the Device section for more details.  
NOTE  
The example above shows data read and data write operations synchronous to the  
external clock provided on the SCLK pin.  
The device also supports data read operation synchronous to the internal clock; see the  
Protocols for Reading From the Device section for more details. In this case, while the  
ODR contents are shifted on the SDO(s) on the launch edge of the internal clock, the  
device continues to capture the SDI data into IDR (and increment the SCLK counter) on  
SCLK capture edges.  
Copyright © 2016, Texas Instruments Incorporated  
27  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
7.5.2 Interleaving Conversion Cycles and Data Transfer Frames  
The host controller can operate the ADS9120 at the desired throughput by interleaving the conversion cycles and  
the data transfer frames.  
The cycle time of the device, tcycle, is the time difference between two consecutive CONVST rising edges  
provided by the host controller. The response time of the device, tresp, is the time difference between the host  
controller initiating a conversion C and the host controller receiving the complete result for conversion C.  
Figure 47 shows three conversion cycles, C, C+1, and C+2. Conversion C is initiated by a CONVST rising edge  
at the t = 0 time and the conversion result becomes available for data transfer at the tconv time. However, this  
result is loaded into the ODR only on the subsequent CS falling edge. This CS falling edge must be provided  
before the completion of the conversion C+1 (that is, before the tcycle + tconv time).  
To achieve the rated performance specifications, the host controller must ensure that no digital signals toggle  
during the quiet acquisition time (tqt_acq) and quiet aperture time (td_cnvcap), as shown in Figure 47. Any noise  
during td_cnvcap can negatively affect the result of the ongoing conversion whereas any noise during tqt_acq can  
negatively affect the acquisition of the subsequent sample (and hence it's conversion result).  
Sample  
Sample  
Sample  
S
S + 1  
S + 2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone 1  
Zone 2  
Conversion  
Conversion  
C + 1  
Conversion  
C + 2  
C
t = 0  
Figure 47. Data Transfer Zones  
This architecture allows for two distinct time zones (zone1 and zone2) to transfer data for each conversion.  
Zone1 and zone2 for conversion C are defined in Table 3.  
Table 3. Data Transfer Zones Timing  
ZONE  
STARTING TIME  
ENDING TIME  
tcycle - tqt_acq  
tconv  
Zone1 for conversion C  
tcycle + td_cnvcap  
tcycle + tcycle - tqt_acq  
Zone2 for conversion C  
The response time includes the conversion time and the data transfer time, and is thus a function of the data  
transfer zone selected.  
28  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Figure 48 and Figure 49 illustrate interleaving of three conversion cycles (C, C+1, and C+2) with three data  
transfer frames (F, F+1, and F+2) in zone1 and in zone2, respectively.  
Sample  
Sample  
Sample  
S
S + 1  
S + 2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone 1  
C
Zone 1  
C + 1  
Zone 1  
C + 2  
Conversion  
C
Conversion  
C + 1  
Conversion  
C + 2  
Frame  
Frame  
Frame  
F
F + 1  
F + 2  
CS  
SDO  
tread-Z1  
tresp-Z1  
C
C + 1  
C + 2  
SCLK  
t = 0  
Figure 48. Zone1 Data Transfer  
Sample  
S
Sample  
S + 1  
Sample  
S + 2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone 2  
C
Zone 2  
C + 1  
Zone 2  
C + 2  
Conversion  
Conversion  
C + 1  
Conversion  
C + 2  
C
Frame  
Frame  
Frame  
F
F + 1  
F + 2  
CS  
SDO  
tread-Z2  
tresp-Z2  
C œ 1  
C
C + 1  
SCLK  
t = 0  
Figure 49. Zone2 Data Transfer  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
To achieve cycle time, tcycle, the read time in zone1 is given by Equation 5:  
tread-Z1 Ç tcycle - tconv - tqt_acq  
(5)  
For an optimal read frame, Equation 5 results in an SCLK frequency given by Equation 6:  
16  
fSCLK  
í
tread-Z1  
(6)  
(7)  
Then, the zone1 data transfer achieves a response time defined by Equation 7:  
tresp-Z1-min = tconv + tread-Z1  
As an example, when operating the ADS9120 at the full throughput of 2.5 MSPS, the host controller can achieve  
a response time of 400 ns provided that the data transfer in zone1 is completed within 85 ns. However, to  
achieve this response time, the SCLK frequency must be greater than 188 MHz.  
Note that the device does not support such high SCLK speeds.  
Data transfer in zone2 can acheive lower SCLK speeds for the same cycle time. The read time in zone2 is given  
by Equation 8:  
tread-Z2 Ç tcycle - td_cnvcap - tqt_acq  
(8)  
For an optimal data transfer frame, Equation 8 results in an SCLK frequency given by Equation 9:  
16  
fSCLK  
í
tread_Z2  
(9)  
Then, the zone2 data transfer achieves a response time defined by Equation 10:  
tresp-Z2-min = tcycle + td_cnvcap + tread-Z2  
(10)  
As an example, the host controller can operate the ADS9120 at the full throughput of 2.5 MSPS using zone2  
data transfer with a 44 MHz SCLK (and a read time of 365 ns). However, zone2 data transfer results in a  
response time of nearly 800 ns.  
There is no upper limit on tread-Z1 and tread-Z2, however, any increase in these read times will increase the  
response time and may increase the cycle time.  
For a given cycle time, the zone1 data transfer clearly achieves faster response time but also requires a higher  
SCLK speed (as evident from Equation 5, Equation 6, and Equation 7), whereas the zone2 data transfer clearly  
requires a lower SCLK speed but supports slower response time (as evident from Equation 8, Equation 9, and  
Equation 10).  
NOTE  
In zone2, the data transfer is active when the device is converting for the next analog  
sample. This digital activity can interfere with the ongoing conversion and cause some  
degradation in SNR performance.  
Additionally, a data transfer frame can begin in zone1 and then extend into zone2;  
however, the host controller must ensure that no digital transitions occur during the tqt_acq  
and td_cnvcap time intervals.  
30  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
7.5.3 Data Transfer Protocols  
The device features a multiSPI™ interface that allows the host controller to operate at slower SCLK speeds and  
still achieve the required cycle time with a faster response time. The multiSPI™ interface module offers two  
options to reduce the SCLK speed required for data transfer:  
1. An option to increase the width of the output data bus  
2. An option to enable double data rate (DDR) transfer  
These two options can be combined to achieve further reduction in SCLK speed.  
Figure 50 shows the delays between the host controller and the device in a typical serial communication.  
Digital Isolator  
TI Device  
Host Controller  
(Optional)  
tpcb_CK  
SCLK  
SCLK  
td_ckdo  
tsu_h  
td_ISO  
SDI  
SDO-x  
td_ISO  
tpcb_SDO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 50. Delays in Serial Communication  
If tpcb_CK and tpcb_SDO are the delays introduced by the PCB traces for the serial clock and SDO signals, td_CKDO is  
the clock-to-data delay of the device, td_ISO is the propagation delay introduced by the digital isolator, and tsu_h is  
the set up time specification of the host controller, then the total delay in the path is given by Equation 11:  
td_total_serial = tpcb_CK + td_iso + td_ckdo + td_iso + tpcb_SDO + tsu_h  
(11)  
In a standard SPI protocol, the host controller and the device launch and capture data bits on alternate SCLK  
edges. Therefore, the td_total_serial delay must be kept less than half of the SCLK duration. Equation 12 shows the  
fastest clock allowed by the SPI protocol.  
1
fclk-SPI  
Ç
2ìtd_total-serial  
(12)  
Larger values of the td_total_serial delay restrict the maximum SCLK speed for the SPI protocol, resulting in higher  
read and response times, and can increase cycle times. To remove this restriction on the SCLK speed, the  
multiSPI™ interface module supports an ADC-Clock-Master or a source-synchronous mode of operation.  
As illustrated in Figure 51, in the ADC-Clock-Master or source-synchronous mode, the device provides a  
synchronous output clock (on the RVS pin) along with the output data (on the SDO-x pins).  
For negligible values of toff_STRDO, the total delay in the path for a source-synchronous data transfer, is given by  
Equation 13:  
td_total_srcsync = tpcb_RVS -tpcb_SDO + tsu_h  
(13)  
As illustrated in Equation 11 and Equation 13, the ADC-Clock-Master or source-synchronous mode completely  
eliminates the affect of isolator delays (td_ISO) and the clock-to-data delays (td_CKDO), which are typically the  
largest contributors in the overall delay computation.  
Copyright © 2016, Texas Instruments Incorporated  
31  
 
 
 
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Digital Isolator  
(Optional)  
TI Device  
Host Controller  
tpcb_CK  
SCLK  
SCLK  
td_ckdo  
td_ISO  
SDO-x  
td_ckstr  
SDI  
td_ISO  
tsu_h  
toff_strdo  
tpcb_SDO  
RVS  
td_ISO  
tpcb_RVS  
Copyright © 2016, Texas Instruments Incorporated  
Figure 51. Delays in Source-Synchronous Communication  
Furthermore, the actual values of tpcb_RVS and tpcb_SDO do not matter. In most cases, the td_total_srcsync delay can be  
kept at a minimum by routing the RVS and SDO lines together on the PCB. Therefore, the ADC-Clock-Master or  
source-synchronous mode allows the data transfer between the host controller and the device to operate at  
much higher SCLK speeds.  
7.5.3.1 Protocols for Configuring the Device  
As shown in Table 4, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S,  
SPI-01-S, SPI-10-S, or SPI-11-S) to write data in to the device.  
Table 4. SPI Protocols for Configuring the Device  
SCLK POLARITY  
(At CS Falling  
Edge)  
#SCLK  
(Optimal Command  
Frame)  
SCLK PHASE  
(Capture Edge)  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
DIAGRAM  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
20  
20  
20  
20  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data  
read and data write operations.  
To select a different SPI-compatible protocol, program the SDI_MODE[1:0] bits in the SDI_CNTL register. This  
first write operation must adhere to the SPI-00-S protocol. Any subsequent data transfer frames must adhere to  
the newly selected protocol.  
Figure 52 to Figure 55 detail the four protocols using an optimal command frame; see the Timing Requirements:  
SPI-Compatible Serial Interface section for associated timing parameters.  
NOTE  
As explained in the Data Transfer Frame section, a valid write operation to the device  
requires a minimum of 20 SCLKs to be provided within a data transfer frame.  
Any data write operation to the device must continue to follow the SPI-compatible protocol  
selected in the SDI_CNTL register, irrespective of the protocol selected for the data read  
operation.  
32  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
CS  
SCLK  
SDI  
CS  
SCLK  
SDI  
B19  
B18  
B1  
B0  
B19  
B18  
B17  
B1  
B0  
RVS  
RVS  
Figure 53. SPI-01-S Protocol, Optimal Command Frame  
Figure 52. SPI-00-S Protocol, Optimal Command Frame  
CS  
SCLK  
SDI  
CS  
SCLK  
SDI  
B19  
B18  
B17  
B1  
B0  
B19  
B18  
B2  
B1  
B0  
RVS  
RVS  
Figure 54. SPI-10-S Protocol, Optimal Command Frame  
Figure 55. SPI-11-S Protocol, Optimal Command Frame  
7.5.3.2 Protocols for Reading From the Device  
The protocols for the data read operation can be broadly classified into three categories:  
1. Legacy, SPI-compatible (SPI-xy-S) protocols,  
2. SPI-compatible protocols with bus width options (SPI-xy-D and SPI-xy-Q), and  
3. Source-synchronous (SRC) protocols  
7.5.3.2.1 Legacy, SPI-Compatible (SYS-xy-S) Protocols  
As shown in Table 5, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S, SPI-  
01-S, SPI-10-S, or SPI-11-S) to read data from the device.  
Table 5. SPI Protocols for Reading From the Device  
SCLK  
#SCLK  
(Optimal Read  
Frame)  
POLARITY  
(At CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
DIAGRAM  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
CS falling  
1st SCLK rising  
CS falling  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
16  
16  
16  
16  
Figure 56  
Figure 57  
Figure 58  
Figure 59  
1st SCLK falling  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data  
read and data write operations. To select a different SPI-compatible protocol for both the data transfer  
operations:  
1. Program the SDI_MODE[1:0] bits in the SDI_CNTL register. This first write operation must adhere to the SPI-  
00-S protocol. Any subsequent data transfer frames must adhere to the newly selected protocol.  
2. Set the SDO_MODE[1:0] bits = 00b in the SDO_CNTL register.  
When using any of the SPI-compatible protocols, the RVS output remains low throughout the data transfer frame;  
see the Timing Requirements: SPI-Compatible Serial Interface table for associated timing parameters.  
NOTE  
It is recommended to use any of the four SPI-compatible protocols to execute the  
RD_REG and WR_REG operations specified in Table 2.  
Copyright © 2016, Texas Instruments Incorporated  
33  
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Figure 56 to Figure 59 explain the details of the four protocols using an optimal command frame to read all 20  
bits of the output data word. Table 5 shows the number of SCLK required in an optimal read frame for the  
different output protocol selections.  
With SDO_CNTL[7:0] = 00h, if the host controller uses a long data transfer frame, the device exhibits daisy-chain  
operation (see the Multiple Devices: Daisy-Chain Topology section).  
D19  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D19  
D18  
D1  
D0  
D18  
D17  
D1  
D0  
D19  
D18  
D17  
D0  
D19  
D19  
D18  
D18  
D17  
D1  
D0  
D1  
D0  
0
D19  
D18  
D1  
D0  
Figure 56. SPI-00-S Protocol, 20 SCLKs  
Figure 57. SPI-01-S Protocol, 20 SCLKs  
D19  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D19  
D18  
D17  
D1  
D0  
D19  
D18  
D17  
D1  
D0  
D19  
D19  
D18  
D18  
D2  
D1  
D0  
D18  
D17  
D1  
D0  
0
D2  
D1  
D0  
D19  
D18  
D1  
D0  
Figure 59. SPI-11-S Protocol, 20 SCLKs  
Figure 58. SPI-10-S Protocol, 20 SCLKs  
7.5.3.2.2 SPI-Compatible Protocols with Bus Width Options  
The device provides an option to increase the SDO bus width from one bit (default, single SDO) to two bits (dual  
SDO) or to four bits (quad SDO) when operating with any of the four legacy, SPI-compatible protocols.  
Set the SDO_WIDTH[1:0] bits in the SDO_CNTL register to select the SDO bus width.  
In dual SDO mode (SDO_WIDTH[1:0] = 10b), two bits of data are launched on the two SDO pins (SDO-0 and  
SDO-1) on every SCLK launch edge.  
In quad SDO mode (SDO_WIDTH[1:0] = 11b), four bits of data are launched on the four SDO pins (SDO-0,  
SDO-1, SDO-2, and SDO-3) on every SCLK launch edge.  
The SCLK launch edge depends upon the SPI protocol selection (as shown in Table 6).  
Table 6. SPI-Compatible Protocols with Bus Width Options  
SCLK  
#SCLK  
(Optimal Read  
Frame)  
POLARITY  
(At CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
DIAGRAM  
SPI-00-D  
SPI-01-D  
SPI-10-D  
SPI-11-D  
SPI-00-Q  
SPI-01-Q  
SPI-10-Q  
SPI-11-Q  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
Rising  
Falling  
Falling  
Rising  
CS falling  
First SCLK rising  
CS falling  
00h  
01h  
02h  
03h  
00h  
01h  
02h  
03h  
08h  
08h  
08h  
08h  
0Ch  
0Ch  
0Ch  
0Ch  
8
8
8
8
4
4
4
4
Figure 60  
Figure 61  
Figure 62  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
Figure 67  
First SCLK falling  
CS falling  
First SCLK rising  
CS falling  
First SCLK falling  
34  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
When using any of the SPI-compatible protocols, the RVS output remains low throughout the data transfer frame;  
see the Timing Requirements: SPI-Compatible Serial Interface table for associated timing parameters.  
Figure 60 to Figure 67 illustrate how the wider data bus allows the host controller to read all 20 bits of the output  
data word using shorter data transfer frames. Table 6 shows the number of SCLK required in an optimal read  
frame for the different output protocol selections.  
NOTE  
With SDO_CNTL[7:0] 00h, a long data transfer frame does not result in daisy-chain  
operation. On SDO pin(s), the 20 bits of output data word are followed by 0's.  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D3  
D2  
D1  
D0  
0
0
D19  
D18  
D17  
D16  
D3  
D2  
D1  
D0  
Figure 60. SPI-00-D Protocol  
Figure 61. SPI-01-D Protocol  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D3  
D2  
D1  
D0  
0
0
D19  
D18  
D17  
D16  
D5  
D4  
D3  
D1  
D0  
D2  
Figure 63. SPI-11-D Protocol  
Figure 62. SPI-10-D Protocol  
CS  
SCLK  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D3  
D2  
D1  
D0  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
0
0
0
0
D19  
D18  
D17  
D16  
D15 D7  
D14 D6  
D13 D5  
D12 D4  
D3  
D2  
D1  
D0  
Figure 64. SPI-00-Q Protocol  
Figure 65. SPI-01-Q Protocol  
Copyright © 2016, Texas Instruments Incorporated  
35  
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
CS  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D19  
D15  
D14  
D13  
D12  
D1  
D0  
D1  
D0  
0
0
0
0
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D18  
D17  
D16  
Figure 67. SPI-11-Q Protocol  
Figure 66. SPI-10-Q Protocol  
7.5.3.2.3 Source-Synchronous (SRC) Protocols  
As described in the Data Transfer Protocols section, the multiSPI™ interface supports an ADC-Clock-Master or a  
source-synchronous mode of data transfer between the device and host controller. In this mode, the device  
provides an output clock that is synchronous with the output data. Furthermore, the host controller can also  
select the output clock source, data bus width, and data transfer rate.  
7.5.3.2.3.1 Output Clock Source Options with SRC Protocols  
In all SRC protocols, the RVS pin provides the output clock. The device allows this output clock to be  
synchronous to either the external clock provided on the SCLK pin or to the internal clock of the device.  
Furthermore, this internal clock can be divided by a factor of two or four to lower the data rates.  
As shown in Figure 68, set the SSYNC_CLK_SEL[1:0] bits in the SDO_CNTL register to select the output clock  
source.  
SCLK  
OSC  
00  
INTCLK  
01  
Output Clock  
RVS  
INTCLK / 2  
INTCLK / 4  
10  
11  
/ 2  
/ 4  
SSYNC_CLK_SEL [1:0]  
Figure 68. Output Clock Source options with SRC Protocols  
36  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
7.5.3.2.3.2 Bus Width Options with SRC Protocols  
The device provides an option to increase the SDO bus width from one bit (default, single SDO) to two bits (dual  
SDO) or to four bits (quad SDO) when operating with any of the SRC protocols. Set the SDO_WIDTH[1:0] bits in  
the SDO_CNTL register to select the SDO bus width.  
In dual SDO mode (SDO_WIDTH[1:0] = 10b), two bits of data are launched on the two SDO pins (SDO-0 and  
SDO-1) on every SCLK rising edge.  
In quad SDO mode (SDO_WIDTH[1:0] = 11b), four bits of data are launched on the four SDO pins (SDO-0,  
SDO-1, SDO-2, and SDO-3) on every SCLK rising edge.  
7.5.3.2.3.3 Output Data Rate Options with SRC Protocols  
The device provides an option to transfer the data to the host controller at single data rate (default, SDR) or at  
double data rate (DDR). Set the DATA_RATE bit in the SDO_CNTL register to select the data transfer rate.  
In SDR mode (DATA_RATE = 0b), the RVS pin toggles from low to high and the output data bits are launched  
on the SDO pins on the output clock rising edge.  
In DDR mode (DTA_RATE = 1b), the RVS pin toggles and the output data bits are launched on the SDO pins on  
every output clock edge, starting with the first rising edge.  
The device supports all 24 combinations of output clock source, bus width, and output data rate, as shown in  
Table 7.  
Table 7. SRC Protocol Combinations  
#OUTPUT  
OUTPUT CLOCK  
SOURCE  
OUTPUT  
DATA RATE  
CLOCK  
(Optimal Read  
Frame)  
PROTOCOL  
BUS WIDTH  
SDI_CNTL  
SDO_CNTL  
DIAGRAM  
Figure 69  
Figure 70  
Figure 73  
Figure 74  
Figure 77  
Figure 78  
Figure 71  
Figure 72  
Figure 75  
Figure 76  
Figure 79  
Figure 80  
SRC-EXT-SS  
SRC-INT-SS  
SRC-IB2-SS  
SRC-IB4-SS  
SRC-EXT-DS  
SRC-INT-DS  
SRC-IB2-DS  
SRC-IB4-DS  
SRC-EXT-QS  
SRC-INT-QS  
SRC-IB2-QS  
SRC-IB4-QS  
SRC-EXT-SD  
SRC-INT-SD  
SRC-IB2-SD  
SRC-IB4-SD  
SRC-EXT-DD  
SRC-INT-DD  
SRC-IB2-DD  
SRC-IB4-DD  
SRC-EXT-QD  
SRC-INT-QD  
SRC-IB2-QD  
SRC-IB4-QD  
SCLK  
INTCLK  
Single  
Single  
Single  
Single  
Dual  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
03h  
43h  
83h  
C3h  
0Bh  
4Bh  
8Bh  
CBh  
0Fh  
4Fh  
8Fh  
CFh  
13h  
53h  
93h  
D3h  
1Bh  
5Bh  
9Bh  
DBh  
1Fh  
5Fh  
9Fh  
DFh  
16  
16  
16  
16  
8
INTCLK / 2  
INTCLK / 4  
SCLK  
INTCLK  
Dual  
8
INTCLK / 2  
INTCLK / 4  
SCLK  
Dual  
8
Dual  
8
Quad  
Quad  
Quad  
Quad  
Single  
Single  
Single  
Single  
Dual  
4
INTCLK  
4
INTCLK / 2  
INTCLK / 4  
SCLK  
4
4
00h, 01h,  
02h, or 03h  
8
INTCLK  
8
INTCLK / 2  
INTCLK / 4  
SCLK  
8
8
4
INTCLK  
Dual  
4
INTCLK / 2  
INTCLK / 4  
SCLK  
Dual  
4
Dual  
4
Quad  
Quad  
Quad  
Quad  
2
INTCLK  
2
INTCLK / 2  
INTCLK / 4  
2
2
Copyright © 2016, Texas Instruments Incorporated  
37  
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Figure 69 to Figure 80 show the details of varoous source synchronous protocols. Table 7 shows the number of  
output clocks required in an optimal read frame for the different output protocol selections.  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D19  
D18  
D17  
D1  
D0  
D19  
D18  
D2  
D1  
D0  
D19  
D18  
D2  
D1  
D0  
Figure 69. SRC-EXT-SS: SRC, SCLK, Single SDO, SDR  
Figure 70. SRC-INT-SS: SRC, INTCLK, Single SDO, SDR  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D18  
D2  
D0  
D19  
D17  
D19 D18  
D1  
D3  
D2  
D1  
D0  
D19 D18  
D3  
D2  
D1  
D0  
Figure 71. SRC-EXT-SD: SRC, SCLK, Single SDO, DDR  
Figure 72. SRC-INT-SD: SRC, INTCLK, Single SDO, DDR  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D5  
D4  
D3  
D2  
D1  
D0  
D19  
D18  
D17  
D16  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 74. SRC-INT-DS: SRC, INTCLK, Dual SDO, SDR  
Figure 73. SRC-EXT-DS: SRC, SCLK, Dual SDO, SDR  
38  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
CS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
SCLK  
SDO-1  
SDO-0  
RVS  
D19 D17  
D18 D16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D19 D17  
D18 D16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 75. SRC-EXT-DD: SRC, SCLK, Dual SDO, DDR  
Figure 76. SRC-INT-DD: SRC, INTCLK, Dual SDO, DDR  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D8  
D8  
Figure 77. SRC-EXT-QS: SRC, SCLK, Quad SDO, SDR  
Figure 78. SRC-INT-QS: SRC, INTCLK, Quad SDO, SDR  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D19 D15 D11 D7  
D18 D14 D10 D6  
D3  
D2  
D1  
D0  
D19 D15 D11 D7  
D18 D14 D10 D6  
D3  
D2  
D1  
D0  
D17 D13 D9  
D16 D12 D8  
D5  
D4  
D17 D13 D9  
D16 D12 D8  
D5  
D4  
Figure 79. SRC-EXT-QD: SRC, SCLK, Quad SDO, DDR  
Figure 80. SRC-INT-QD: SRC, INTCLK, Quad SDO, DDR  
Copyright © 2016, Texas Instruments Incorporated  
39  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
7.5.4 Device Setup  
The multiSPI™ interface and the device configuration registers offer multiple operation modes. This section  
describes how to select the hardware connection topology to meet different system requirements.  
7.5.4.1 Single Device: All multiSPI™ Options  
Figure 81 shows the connections between a host controller and a stand-alone device to exercise all options  
provided by the multiSPI™ interface.  
DVDD  
Isolation  
(Optional)  
RST  
CONVST  
CS  
SCLK  
SDI  
Host  
TI Device  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
Controller  
Copyright © 2016, Texas Instruments Incorporated  
Figure 81. multiSPI™ Interface, All Pins  
7.5.4.2 Single Device: Minimum Pins for a Standard SPI Interface  
Figure 82 shows the minimum-pin interface for applications using a standard SPI protocol.  
DVDD  
Isolation  
(Optional)  
(Optional)  
RST  
(Optional)  
CONVST  
CS  
SCLK  
SDI  
Host  
Controller  
TI Device  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
(Optional)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 82. SPI Interface, Minimum Pins  
The CS, SCLK, SDI, and SDO-0 pins constitute a standard SPI port of the host controller. The CONVST pin can  
be tied to CS, or can be controlled independently for additional timing flexibility. The RST pin can be tied to  
DVDD. The RVS pin can be monitored for timing benefits. The SDO-1, SDO-2, and SDO-3 pins have no external  
connections.  
40  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
7.5.4.3 Multiple Devices: Daisy-Chain Topology  
A typical connection diagram showing multiple devices in a daisy-chain topology is shown in Figure 83.  
Host Controller  
TI Device 1  
TI Device 2  
TI Device N  
Copyright © 2016, Texas Instruments Incorporated  
Figure 83. Daisy-Chain Connection Schematic  
The CONVST, CS, and SCLK inputs of all devices are connected together and controlled by a single CONVST,  
CS, and SCLK pin of the host controller, respectively. The SDI input pin of the first device in the chain (device 1)  
is connected to the SDO pin of the host controller, the SDO-0 output pin of device 1 is connected to the SDI input  
pin of device 2, and so forth. The SDO-0 output pin of the last device in the chain (device N) is connected to the  
SDI pin of the host controller.  
To operate multiple devices in a daisy-chain topology, the host controller must program the configuration  
registers in each device with identical values and must operate with any of the legacy, SPI-compatible protocols  
for data read and data write operations (SDO_CNT[7:0] = 00h). With these configurations settings, the 20-bit  
ODR and 20-bit IDR registers in each device collapse to form a single, 20-bit unified shift register (USR) per  
device, as shown in Figure 84.  
Host Controller  
SDO  
CONVST  
SCLK  
SDI  
CS  
20 Bits  
20 Bits  
20 Bits  
DB DB  
DB DB  
18 19  
DB DB  
DB DB  
18 19  
DB DB  
DB DB  
18 19  
SDI  
SDO-0  
SDI  
SDO-0  
SDI  
SDO-0  
0
1
0
1
0
1
Unified Shift Register (USR)  
Unified Shift Register (USR)  
Unified Shift Register (USR)  
TI Device 1  
TI Device 2  
TI Device N  
Copyright © 2016, Texas Instruments Incorporated  
Figure 84. Unified Shift Register  
Copyright © 2016, Texas Instruments Incorporated  
41  
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
All devices in the daisy-chain topology sample their analog input signals on the CONVST rising edge. The data  
transfer frame starts with a CS falling edge. On each SCLK launch edge, every device in the chain shifts out the  
MSB of its USR on to its SDO-0 pin. On every SCLK capture edge, each device in the chain shifts in data  
received on its SDI pin as the LSB bit of its USR. Therefore, in a daisy-chain configuration, the host controller  
receives the data of device N, followed by the data of device N-1, and so forth (in MSB-first fashion). On the CS  
rising edge, each device decodes the contents in its USR and takes appropriate action.  
A typical timing diagram for three devices connected in daisy-chain topology and using the SPI-00-S protocol is  
shown in Figure 85.  
CS  
1
2
19  
20  
21  
22  
39  
40  
41  
42  
Configuration Data Device -1  
B18 B1  
Configuration Data Device -2  
B38 B21  
Configuration Data Device -3  
B58 B41  
Output Data œ Device 1  
{D18}1 {D1}1  
59  
60  
SCLK  
{SDO}HOST  
{SDI}1  
B59  
B58  
B41  
B40  
B39  
B38  
B21  
B20  
B19  
B0  
{SDO-0}1  
{SDI}2  
{D19}1  
{D19}2  
{D19}3  
{D18}1  
{D18}2  
{D1}1  
{D1}2  
{D0}1  
{D0}2  
{D0}3  
B59  
B58  
B41  
B40  
{D0}1  
{D0}2  
B39  
B59  
B20  
B40  
{SDO-0}2  
{SDI}3  
{D19}1  
{D19}2  
{D18}1  
{D1}1  
Output Data œ Device 3  
{D18}3 {D1}3  
Output Data œ Device 2  
{D18}2 {D1}2  
{SDO-0}3  
{SDI}HOST  
{D19}1  
{D0}1  
Figure 85. Three Devices in Daisy-Chain Mode Timing Diagram  
Note that the overall throughput of the system is proportionally reduced with the number of devices connected in  
a daisy-chain topology.  
WARNING  
For N devices connected in daisy-chain topology, an optimal command frame  
must contain 20 × N SCLK capture edges. For a longer data transfer frame  
(number of SCLK in the frame > 20 x N), the host controller must appropriately  
align the configuration data for each device before bringing CS high. A shorter  
data transfer frame (number of SCLK in the frame < 20 x N) can result in an  
erroneous device configuration, and must be avoided.  
42  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
7.5.4.4 Multiple Devices: Star Topology  
A typical connection diagram showing multiple devices in the star topology is shown in Figure 86. The CONVST,  
SDI, and SCLK inputs of all devices are connected together and are controlled by a single CONVST, SDO, and  
SCLK pin of the host controller, respectively. Similarly, the SDO output pin of all devices are tied together and  
connected to the a single SDI input pin of the host controller. The CS input pin of each device is individually  
controlled by separate CS control lines from the host controller.  
Host Controller  
TI Device 1  
TI Device 2  
TI Device N  
Copyright © 2016, Texas Instruments Incorporated  
Figure 86. Star Topology Connection  
The timing diagram for N devices connected in the star topology is shown in Figure 87. In order to avoid any  
conflict related to multiple devices driving the SDO line at the same time, ensure that the host controller pulls  
down the CS signal for only one device at any particular time.  
1
2
19  
20  
21  
22  
39  
40  
41  
42  
59  
60  
SCLK  
{CS}1  
{CS}2  
{CS}3  
Configuration Data Device -1  
{B18}1 {B1}1  
Output Data œ Device 1  
{D18}1 {D1}1  
Configuration Data Device -2  
{B18}2 {B1}2  
Output Data œ Device 2  
{D18}2 {D1}2  
Configuration Data Device -3  
{B18}3 {B1}3  
Output Data œ Device 3  
{D18}3 {D1}3  
{SDO}HOST  
{SDI}1,2,3  
{B19}1  
{D19}1  
{B0}1  
{B19}2  
{B0}2  
{B19}3  
{B0}3  
{SDO-0}1,2,3  
{SDI}HOST  
{D0}1  
{D19}2  
{D0}2  
{D19}3  
{D0}3  
Figure 87. Three Devices Connected in Star Connection Timing Diagram  
Copyright © 2016, Texas Instruments Incorporated  
43  
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Device Configuration and Register Maps  
The device features four configuration registers, mapped as described in Table 8.  
Table 8. Configuration Registers Mapping  
REGISTER  
NAME  
ADDRESS  
REGISTER FUNCTION  
SECTION  
010h  
014h  
018h  
01Ch  
PD_CNTL  
SDI_CNTL  
SDO_CNTL  
DATA_CNTL  
Low-power modes control register  
SDI input protocol selection register  
SDO output protocol selection register  
Output data word configuration register  
PD Control  
SDI Control  
SDO Control  
DATA Control  
7.6.1.1 PD_CNTL Register (address = 010h)  
This register controls the low-power modes offered by the device and is protected using a key.  
Any writes to the PD_CNTL register must be preceded by a write operation with the register address set to 011h  
and the register data set to 69h.  
Figure 88. PD_CNTL Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
NAP_EN  
R/W-0b  
PDWN  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. PD_CNTL Register Field Descriptions  
Bit  
7-2  
1
Field  
0
Type  
R
Reset  
000000b  
0b  
Description  
Reserved bits. Reads return 000000b.  
NAP_EN  
R/W  
This bit enables NAP mode for the device.  
0b = NAP mode is disabled  
1b = NAP mode is enabled  
0
PDWN  
R/W  
0b  
This bit outputs the device in power-down mode.  
0b = Device is powered up  
1b = Device is powered down  
7.6.1.2 SDI_CNTL Register (address = 014h)  
This register configures the protocol used for writing data into the device.  
Figure 89. SDI_CNTL Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
SDI_MODE[1:0]  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. SDI_CNTL Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
Description  
0
000000b Reserved bits. Reads return 000000b.  
SDI_MODE[1:0]  
R/W  
00b  
These bits select the protocol for writing data into the device.  
00b = Standard SPI with CPOL = 0 and CPHASE = 0  
01b = Standard SPI with CPOL = 0 and CPHASE = 1  
10b = Standard SPI with CPOL = 1 and CPHASE = 0  
11b = Standard SPI with CPOL = 1 and CPHASE = 1  
44  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
7.6.1.3 SDO_CNTL Register (address = 018h)  
This register configures the protocol for reading data from the device.  
Figure 90. SDO_CNTL Register  
7
6
5
0
4
3
2
1
0
SSYNC_CLK_SEL[1:0]  
R/W-00b  
DATA_RATE  
R/W-0b  
SDO_WIDTH[1:0]  
R/W-00b  
SDO_MODE[1:0]  
R/W-00b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. SDO_CNTL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SSYNC_CLK_SEL[1:0]  
R/W  
00b  
These bits select the source and frequency of the clock for the source-  
synchronous data transmission and are valid only if SDO_MODE[1:0] =  
11b.  
00b = External SCLK echo  
01b = Internal clock (INTCLK)  
10b = Internal clock / 2 (INTCLK / 2)  
11b = Internal clock / 4 (INTCLK / 4)  
5
4
0
R
0b  
0b  
This bit must be always set to 0.  
DATA_RATE  
R/W  
This bit is ignored if SDO_MODE[1:0] = 00b. When SDO_MODE[1:0] =  
11b:  
0b = SDOs are updated at single data rate (SDR) with respect to the  
output clock  
1b = SDOs are updated at double data rate (DDR) with respect to the  
output clock  
3-2  
1-0  
SDO_WIDTH[1:0]  
SDO_MODE[1:0]  
R/W  
R/W  
00b  
00b  
These bits set the width of the output bus.  
0xb = Data are output only on SDO-0  
10b = Data are output only on SDO-0 and SDO-1  
11b = Data are output on SDO-0, SDO-1, SDO-2, and SDO-3  
These bits select the protocol for reading data from the device.  
00b = SDO follows the same SPI protocol as SDI; see the SDI_CNTL  
register  
01b = Invalid configuration, not supported by the device  
10b = Invalid configuration, not supported by the device  
11b = SDO follows the source-synchronous protocol  
Copyright © 2016, Texas Instruments Incorporated  
45  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
7.6.1.4 DATA_CNTL Register (address = 01Ch)  
This register configures the contents of the 20-bit output data word (D[19:0]).  
Figure 91. DATA_CNTL Register  
7
0
6
0
5
4
3
2
1
0
FPAR_LOC 0  
R/W-00b  
PAR_EN  
R/W-0b  
DATA_PATN[2:0]  
R/W-000b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. DATA_CNTL Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
00b  
Description  
0
Reserved bits. Reads return 00b.  
FPAR_LOC[1:0]  
R/W  
00b  
These bits control the data span for calculating the FTPAR bit (bit D[0] in  
the output data word).  
00b = D[2] reflects even parity calculated for 4 MSB bits  
01b = D[2] reflects even parity calculated for 8 MSB bits  
10b = D[2] reflects even parity calculated for 12 MSB bits  
11b = D[2] reflects even parity calculated for all 16 bits; that is, same as  
FLPAR  
3
PAR_EN  
R/W  
R/W  
0b  
0b = Output data does not contain any parity information  
spaceD[3] = 0  
spaceD[2] = 0  
1b = Parity information is appended to the LSB of the output data  
spaceD[3] = Even parity calculated on bits D[19:4]  
spaceD[2] = Even parity computed on the selected number of MSB bits of  
D[19:4] as per the FPAR_LOC[1:0] setting  
See Figure 45 for further details of parity computation.  
2-0  
DATA_PATN[2:0]  
000b  
These bits control bits D[19:4] of the output data word.  
0xxb = 16-bit conversion output  
100b = All 0s  
101b = All 1s  
110b = Alternating 0s and 1s (that is, 5555h)  
111b = Alternating 00s and 11s (that is, 3333h)  
See Figure 46 for more details.  
46  
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing these circuits, followed by an application circuit designed  
using the ADS9120.  
8.1.1 ADC Input Driver  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel  
RC filter. The amplifier is used for signal conditioning of the input signal and its low output impedance provides a  
buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate the  
sampling charge injection from the switched-capacitor input stage of the ADC and functions as an antialiasing  
filter to band-limit the wideband noise contributed by the front-end circuit. Careful design of the front-end circuit is  
critical to meet the linearity and noise performance of the ADS9120.  
8.1.2 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type as well as the performance  
goals of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter (see the  
Antialiasing Filter section) at the inputs of the ADC. Higher bandwidth also minimizes the harmonic distortion  
at higher input frequencies. In order to maintain the overall stability of the input driver circuit, select the  
amplifier with Unity Gain Bandwidth (UGB) as described in Equation 14:  
«
÷
1
UGB í 4 ì  
2p  
ì RFLT ì CFLT  
(14)  
Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in  
SNR performance of the system. Generally, to ensure that the noise performance of the data acquisition  
system is not limited by the front-end circuit, the total noise contribution from the front-end circuit must be  
kept below 20% of the input-referred noise of the ADC. Noise from the input driver circuit is band-limited by  
designing a low cutoff frequency RC filter, as explained in Equation 15.  
2
SNR  
(
dB  
)
÷
V
÷
-
1
_ AMP_PP  
p
2
1
5
VREF  
2
20  
+ en2_RMS  
ì
ì f-3dB  
Ç
ì
ì10  
f
«
NG ì 2 ì  
÷
÷
6.6  
«
where:  
V1 / f_AMP_PP is the peak-to-peak flicker noise in µV,  
en_RMS is the amplifier broadband noise density in nV/Hz,  
f–3dB is the 3-dB bandwidth of the RC filter, and  
NG is the noise gain of the front-end circuit that is equal to 1 in a buffer configuration.  
(15)  
Distortion. Both the ADC and the input driver introduce distortion in a data acquisition block. To ensure that  
the distortion performance of the data acquisition system is not limited by the front-end circuit, the distortion of  
the input driver must be at least 10 dB lower than the distortion of the ADC, as shown in Equation 16.  
THDAMP Ç THDADC - 10  
(
dB  
)
(16)  
Copyright © 2016, Texas Instruments Incorporated  
47  
 
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Application Information (continued)  
Settling Time. For dc signals with fast transients that are common in a multiplexed application, the input signal  
must settle within an 16-bit accuracy at the device inputs during the acquisition time window. This condition is  
critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data sheets specify  
the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the desired 16-bit  
accuracy. Therefore, always verify the settling behavior of the input driver by TINA™-SPICE simulations  
before selecting the amplifier.  
8.1.3 Antialiasing Filter  
Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher-frequency  
content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency  
spectrum. This process is called aliasing. Therefore, an analog, antialiasing filter must be used to remove the  
harmonic content from the input signal before being sampled by the ADC. An antialiasing filter is designed as a  
low-pass, RC filter, where the 3-dB bandwidth is optimized based on specific application requirements. For dc  
signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designed to allow  
accurately settling the signal at the inputs of the ADC during the small acquisition time window. For ac signals,  
keep the filter bandwidth low to band-limit the noise fed into the input of the ADC, thereby increasing the signal-  
to-noise ratio (SNR) of the system.  
Besides filtering the noise from the front-end drive circuitry, the RC filter also helps attenuate the sampling  
charge injection from the switched-capacitor input stage of the ADC. A filter capacitor, CFLT, is connected from  
each input pin of the ADC to the ground (as shown in Figure 92). This capacitor helps reduce the sampling  
charge injection and provides a charge bucket to quickly charge the internal sample-and-hold capacitors during  
the acquisition process. Generally, the value of this capacitor must be at least 15 times the specified value of the  
ADC sampling capacitance. For the ADS9120, the input sampling capacitance is equal to 60 pF, thus it is  
recommended to keep CFLT greater than 900 pF. The capacitor must be a COG- or NPO-type because these  
capacitor types have a high-Q, low-temperature coefficient, and stable electrical characteristics under varying  
voltages, frequency, and time.  
RFLT 10  
AINP  
CFLT 900 pF  
1
f-3dB  
=
TI Device  
2p  
ì RFLT ì CFLT  
AINM  
CFLT 900 pF  
RFLT 10 ꢀ  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 92. Antialiasing Filter Configuration  
Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design. For the ADS9120, limiting the value of RFLT to a maximum of 10-Ω is recommended  
in order to avoid any significant degradation in linearity performance. The tolerance of the selected resistors must  
be kept less than 1% to keep the inputs balanced.  
The driver amplifier must be selected such that its closed-loop output impedance is at least 5X less than the  
RFLT  
.
48  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Application Information (continued)  
8.1.4 ADC Reference Driver  
The external reference source to the ADS9120 must provide low-drift and very accurate voltage for the ADC  
reference input and support the dynamic charge requirements without affecting the noise and linearity  
performance of the device. The output broadband noise of most references can be in the order of a few hundred  
μVRMS. Therefore, to prevent any degradation in the noise performance of the ADC, the output of the voltage  
reference must be appropriately filtered by using a low-pass filter with a cutoff frequency of a few hundred hertz.  
After band-limiting the noise of the reference circuit, the next important step is to design a reference buffer that  
can drive the dynamic load posed by the reference input of the ADC. The reference buffer must regulate the  
voltage at the reference pin such that the value of VREF stays within the 1-LSB error at the start of each  
conversion. This condition necessitates the use of a large capacitor, CBUF_FLT (see Figure 38), between each  
pair of REFP and REFM pins for regulating the voltage at the reference input of the ADC. The effective  
capacitance of any large capacitor reduces with the applied voltage based on the voltage rating and type. Using  
X7R-type capacitors is strongly recommended.  
The amplifier selected as the reference driver must have an extremely low offset and temperature drift with a low  
output impedance to drive the capacitor at the ADC reference pins without any stability issues.  
Copyright © 2016, Texas Instruments Incorporated  
49  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
8.2 Typical Application  
30 k  
Reference Drive Circuit  
10 pF  
0.1 µF  
499 ꢀ  
1 kꢀ  
-
4.7 ꢀ  
OPA+  
-
OPA625  
2.49 kꢀ  
4.99 kꢀ  
+
+
OPA378  
1 kꢀ  
REF5045  
+
+
220 nF  
(See Reference Datasheet  
for Detailed Pin Configuration)  
OPA+  
OPA+  
0.1 µF  
1 µF  
1 nF  
10 µF  
1 kꢀ  
10 µF  
10 µF  
1 kꢀ  
1.18 VDC  
1 µF  
-
10 nF  
-VDIFF/2  
REFM REFP REFP REFM  
OPA625  
2.2 ꢀ  
AINP  
+
CONVST  
VINCM = 0 V  
TI Device  
CONVST  
AINM  
+
2.2 ꢀ  
OPA625  
GND  
AVDD  
DVDD  
10 nF  
+VDIFF/2  
-
1 kꢀ  
AVDD DVDD  
GND  
1 kꢀ  
Input Driver  
SAR ADC  
1 nF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 93. Differential Input DAQ Circuit for Lowest Distortion and Noise at 2.5 MSPS  
8.2.1 Design Requirements  
Design an application circuit optimized for using the ADS9120 to achieve:  
> 95-dB SNR, < –118-dB THD  
±0.5-LSB linearity and  
Maximum-specified throughput of 2.5 MSPS  
50  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Typical Application (continued)  
8.2.2 Detailed Design Procedure  
The application circuits are illustrated in Figure 93. For simplicity, power-supply decoupling capacitors are not  
shown in these circuit diagrams; see the Power-Supply Recommendations section for suggested guidelines.  
The input signal is processed through the OPA625 (a high-bandwidth, low-distortion, high-precision amplifier in  
an inverting gain configuration) and a low-pass RC filter before being fed into the ADC. Generally, the distortion  
from the input driver must be at least 10 dB less than the ADC distortion. The distortion resulting from variation in  
the common-mode signal is eliminated by using the OPA625 in an inverting gain configuration. The low-power  
OPA625 as an input driver provides exceptional ac performance because of its extremely low-distortion and high-  
bandwidth specifications. To exercise the complete dynamic range of the ADS9120, the common-mode voltage  
at the ADS9120 inputs is established at a value of 2.25 V (4.5 V / 2) by using the noninverting pins of the  
OPA625 amplifiers.  
In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low  
without adding distortion to the input signal.  
The reference driver circuit, illustrated in Figure 93, generates a voltage of 4.5 VDC using a single 5-V supply.  
This circuit is suitable to drive the reference of the ADS9120 at higher sampling rates up to 2.5 MSPS. The  
reference voltage of 4.5 V in this design is generated by the high-precision, low-noise REF5045 circuit. The  
output broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160  
Hz.  
The reference buffer is designed with the OPA625 and OPA378 in a composite architecture to achieve superior  
dc and ac performance at a reduced power consumption, compared to using a single high-performance amplifier.  
The OPA625 is a high-bandwidth amplifier with a very low open-loop output impedance of 1 Ω up to a frequency  
of 1 MHz. The low open-loop output impedance makes the OPA625 a good choice for driving a high capacitive  
load to regulate the voltage at the reference input of the ADC. The relatively higher offset and drift specifications  
of the OPA625 are corrected by using a dc-correcting amplifier (the OPA378) inside the feedback loop. The  
composite scheme inherits the extremely low offset and temperature drift specifications of the OPA378.  
8.2.3 Application Curves  
0
0.75  
0.5  
-50  
0.25  
0
-100  
-150  
-200  
-0.25  
-0.5  
-0.75  
0
250  
500  
750  
1000  
1250  
-32768  
32767  
fIN, Input Frequency ( kHz)  
ADC Output Code  
D101  
D102  
fIN = 2 kHz, SNR = 95.5 dB, THD = –118 dB  
Typical INL of ±0.25 LSB  
Figure 94. FFT with a 2-kHz Input Signal  
Figure 95. Typical INL  
Copyright © 2016, Texas Instruments Incorporated  
51  
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
9 Power-Supply Recommendations  
The device has two separate power supplies: AVDD and DVDD. The internal circuits of the device operate on  
AVDD; DVDD is used for the digital interface. AVDD and DVDD can be independently set to any value within the  
permissible range.  
9.1 Power-Supply Decoupling  
The AVDD and DVDD supply pins cannot share the same decoupling capacitor. As shown in Figure 96, separate  
1-μF ceramic capacitors are recommended. These capacitors avoid digital and analog supply crosstalk resulting  
from dynamic currents during conversion and data transfer.  
Digital  
Supply  
16  
DVDD  
15  
GND  
AVDD  
AVDD  
1 µF  
1 µF  
14  
13  
Analog  
Supply  
Figure 96. Supply Decoupling  
9.2 Power Saving  
In normal mode of operation, the device does not power down between conversions, and therefore achieves a  
high throughput of 2.5 MSPS. However, the device offers two programmable low-power modes (NAP and PD) to  
reduce power consumption when the device is operated at lower throughput rates. Figure 97 shows comparative  
power consumption between the different modes of the device.  
tconv  
CNV  
tacq  
tnap  
tpd  
Device Phase  
ACQ  
NAP  
PD  
~1.5X  
~10X  
~5000X  
IAVDD  
~1800X  
IREF  
Figure 97. Power Consumption in Different Operating Modes  
52  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Power Saving (continued)  
9.2.1 NAP Mode  
In NAP mode, some of the internal blocks of the device power down to reduce power consumption in the ACQ  
state.  
To enable NAP mode, set the NAP_EN bit in the PD_CNTL register. To exercise NAP mode, keep the CONVST  
pin high at the end of conversion process. The device then enters NAP mode at the end of conversion and  
continues in NAP mode until the CONVST pin is held high.  
A CONVST falling edge brings the device out of NAP mode; however, the host controller can initiate a new  
conversion (CONVST rising edge) only after the tnap_wkup time has elapsed.  
Figure 98 shows a typical conversion cycle with NAP mode enabled (NAP_EN = 1b).  
Sample  
S
Sample  
S+1  
twh_CONVST  
CONVST  
tcycle  
tnap  
tconv  
tnap_wkup  
tacq  
tconv_max  
tconv_min  
ADCST  
(Internal)  
CNV C  
NAP + ACQ C+1  
ACQ C+1  
CS  
RVS  
t = 0  
Figure 98. NAP Enabled Conversion Cycle  
The cycle time is given by Equation 17.  
tcycle = tconv + tnap + tnap_wkup  
(17)  
At lower throughputs, cycle time (tcycle) increases but the conversion time (tconv) remains constant, and therefore  
the device spends more time in NAP mode, thus giving power scaling with throughput as shown in Figure 99.  
Copyright © 2016, Texas Instruments Incorporated  
53  
 
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
Power Saving (continued)  
8
6
4
2
I-AVDD (mA) - no NAP  
I-AVDD (mA) - with NAP  
0
2500  
2000  
1500  
1000  
500  
0
fS, Throughput (kSPS)  
D027  
Figure 99. Power Scaling with Throughput with NAP Mode  
9.2.2 PD Mode  
The device also features a deep power-down mode (PD) to reduce the power consumption at very low  
throughput rates.  
To enter PD mode:  
1. Write 069h to address 011h to unlock the PD_CNTL register.  
2. Set the PDWN bit in the PD_CNTL register. The device enters PD mode on the CS rising edge.  
In PD mode, all analog blocks within the device are powered down. All register contents are retained and the  
interface remains active.  
To exit PD mode:  
1. Reset the PDWN bit in the PD_CNTL register.  
2. The RVS pin goes high, indicating that the device has processed the command and has started coming out  
of PD mode. However, the host controller must wait for the tPWRUP time to elapse before initiating a new  
conversion.  
10 Layout  
10.1 Layout Guidelines  
This section provides some recommended layout guidelines for achieving optimum performance with the  
ADS9120 device.  
10.1.1 Signal Path  
As illustrated in Figure 100, the analog input and reference signals are routed in opposite directions to the digital  
connections. This arrangement prevents noise generated by digital switching activity from coupling to sensitive  
analog signals.  
10.1.2 Grounding and PCB Stack-Up  
Low inductance grounding is critical for achieving optimum performance. Grounding inductance is kept below 1  
nH with 15-mil grounding vias and a printed circuit board (PCB) layout design that has at least four layers. Place  
all critical components of the signal chain on the top layer with a solid analog ground from subsequent inner  
layers to minimize via length to ground.  
Pins 11 and 15 of the ADS9120 can be easily grounded with very low inductance by placing at least four 8-mil  
grounding vias at the ADS9120 thermal pad. Afterwards, pins 11 and 15 can be connected directly to the  
grounded thermal path.  
54  
Copyright © 2016, Texas Instruments Incorporated  
ADS9120  
www.ti.com.cn  
ZHCSFH9 SEPTEMBER 2016  
Layout Guidelines (continued)  
10.1.3 Decoupling of Power Supplies  
Place the AVDD and DVDD supply decoupling capacitors within 20 mil from the supply pins and use a 15-mil via  
to ground from each capacitor. Avoid placing vias between any supply pin and its decoupling capacitor.  
10.1.4 Reference Decoupling  
Dynamic currents are also present at the REFP and REFM pins during the conversion phase and excellent  
decoupling is required to achieve optimum performance. Three 10-μF, X7R-grade, ceramic capacitors with 10-V  
rating are recommended, placed as illustrated in Figure 100. Select 0603- or 0805-size capacitors to keep ESL  
low. The REFM pin of each pair must be connected to the decoupling capacitor before a ground via.  
10.1.5 Differential Input Decoupling  
Dynamic currents are also present at the differential analog inputs of the ADS9120. C0G- or NPO-type  
capacitors are required to decouple these inputs because their capacitance stays almost constant over the full  
input voltage range. Lower quality capacitors (such as X5R and X7R) have large capacitance changes over the  
full input voltage range that can cause degradation in the performance of the ADS9120.  
10.2 Layout Example  
GND  
10 mF  
Digital Inputs  
and Outputs  
REFP  
REFM  
Reset  
Convert Start  
5 4  
1
7
8
Chip Select  
Serial Clock  
Data In  
REFM  
REFM  
GND  
GND  
AINP  
Multi Function  
Data Out 0  
Data Out 1  
GND  
AINN  
Data Out 2  
Data Out 3  
+
AVDD  
Differential  
Analog Input  
DVDD  
-
GND  
GND  
GND  
Figure 100. Recommended Layout  
版权 © 2016, Texas Instruments Incorporated  
55  
 
ADS9120  
ZHCSFH9 SEPTEMBER 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
ADS9120EVM-PDK 用户指南》(文献编号:SBAU262)  
《可实现最大 SNR 和采样率的 18 位、2MSPS 隔离式数据采集参考设计》(文献编号:TIDUB85)  
《电压基准对总谐波失真的影响》(文献编号:SLYY097)  
REF60xx 集成 ADC 驱动器缓冲器的高精度电压基准》(文献编号:SBOS708)  
OPAx625 高带宽、高精度、低 THD+N16 位和 18 ADC 驱动器》(文献编号:SBOS688)  
THS4551 低噪声、150MHz、精密全差分放大器》(文献编号:SBOS778)  
REF50xx 低噪声、极低漂移、高精度电压基准》(文献编号:SBOS410)  
OPAx378 低噪声、900kHzRRIO、精密运算放大器零漂移系列》(文献编号:SBOS417)  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
multiSPI, TINA, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
56  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS9120IRGER  
ADS9120IRGET  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
ADS9120  
ADS9120  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ADS9120IRGER

具有增强型 SPI 接口的 16 位、2.5MSPS、单通道 SAR ADC | RGE | 24 | -40 to 125
TI

ADS9120IRGET

具有增强型 SPI 接口的 16 位、2.5MSPS、单通道 SAR ADC | RGE | 24 | -40 to 125
TI

ADS9218

具有全差分 ADC 输入驱动器的双通道、同步采样、18 位、10MSPS SAR ADC
TI

ADS9224R

具有内部基准电压和增强型 SPI 的 16 位、3MSPS、双通道、同步采样 SAR ADC
TI

ADS9224RIRHBR

具有内部基准电压和增强型 SPI 的 16 位、3MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9224RIRHBT

具有内部基准电压和增强型 SPI 的 16 位、3MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9226

具有增强型 SPI 的 16 位、2.048MSPS、双通道、同步采样 SAR ADC
TI

ADS9226IRHBR

具有增强型 SPI 的 16 位、2.048MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9226IRHBT

具有增强型 SPI 的 16 位、2.048MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9234R

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC
TI

ADS9234RIRHBR

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9234RIRHBT

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI