AFE5816 [TI]

噪声为 0.95nV/rtHz 并具有 CW 无源混频器的全集成式 16 通道超声波模拟前端;
AFE5816
型号: AFE5816
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

噪声为 0.95nV/rtHz 并具有 CW 无源混频器的全集成式 16 通道超声波模拟前端

文件: 总163页 (文件大小:2824K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
具有 90mW/通道功耗、1-nV/Hz 噪声、14 65MSPS 或  
12 80MSPS ADC 以及 CW 无源混频器的 AFE5816 16 通道超声波  
AFE  
1
1 特性  
面向超声波应用的 16 通道 应用应用的 32 通道  
AFE:  
出色的器件间增益匹配:  
±0.5dB(典型值)  
输入衰减器、低噪声放大器 (LNA)、低通滤波器  
(LPF)、模数转换器 (ADC) 和  
连续波 (CW) 混频器  
低谐波失真等级:–60dBc  
快速且持续的过载恢复  
连续波 (CW) 路径:  
信号链针对时间增益补偿 (TGC) CW 模式进  
行了优化  
无源混频器  
低近端相位噪声:  
1KHz 时为 -148dBc/Hz  
数字时间增益补偿 (DTGC)  
总增益范围:6dB 45dB  
线性输入范围:1 VPP  
相位分辨率:λ/16  
支持 16X8X4X 1X CW 时钟  
三阶和五阶谐波 12dB 抑制  
具有 DTGC 功能的输入衰减器:  
衰减范围为 0dB 8dB(步长为 0.125dB)  
小型封装:15mm × 15mm NFBGA-289  
支持匹配的阻抗:  
50Ω 800Ω 的源阻抗  
2 应用  
具有 DTGC 功能的低噪声放大器 (LNA):  
医疗超声波成像  
增益范围为 14dB 45dB(步长为 0.125dB)  
低输入电流噪声:1.2pA/Hz  
无损检测设备  
声纳成像设备  
三阶线性相位低通滤波器 (LPF):  
10MHz15MHz20MHz 25MHz  
具有可编程分辨率的模数转换器 (ADC):  
多通道高速数据采集  
3 说明  
14 ADC65MSPS 时的空闲通道信噪比  
(SNR)  
75dBFS  
AFE5816 是一套高度集成的模拟前端 (AFE) 解决方  
案,专用于需要高性能、低功耗和小尺寸的超声波系  
统。  
12 ADC80MSPS 时  
的空闲通道 SNR 72dBFS  
器件信息(1)  
器件型号  
AFE5816  
封装  
封装尺寸(标称值)  
LVDS 接口,速率最高达  
1GBPS  
nFBGA (289)  
15.00mm × 15.00mm  
针对噪声和功耗进行了优化:  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
90mW/通道,1nV/Hz65MSPSTGC 模  
式)  
55mW/通道,1.45nV/Hz40MSPS,  
TGC 模式)  
59mW/通道(CW 模式)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS688  
 
 
 
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
简化框图  
SPI OUT  
SPI IN  
SPI Logic  
ATTEN  
INP  
3rd-Order LPF with  
10 MHz, 15 MHz,  
20 MHz, and 25  
MHz  
Digital  
Processing  
(Optional)  
LNA  
14 dB to  
45 dB  
12-, 14-Bit  
ADC  
LVDS  
INM  
1 of 16 Channels  
16 x 16 Cross-  
Point Switch  
CW Mixer  
Reference  
TGC Control  
Signals  
DTGC Engine  
16-Phase  
Generator  
CW Clocks  
CW Current Outputs  
2
版权 © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
目录  
9.3 Feature Description................................................. 31  
9.4 Device Functional Modes........................................ 74  
9.5 Programming........................................................... 79  
10 Application and Implementation........................ 81  
10.1 Application Information.......................................... 81  
10.2 Typical Application ................................................ 81  
10.3 Do's and Don'ts..................................................... 85  
10.4 Initialization Set Up ............................................... 85  
11 Power Supply Recommendations ..................... 86  
11.1 Power Sequencing and Initialization..................... 86  
12 Layout................................................................... 87  
12.1 Layout Guidelines ................................................. 87  
12.2 Layout Example .................................................... 88  
13 Register Maps...................................................... 95  
13.1 Serial Register Map .............................................. 95  
14 器件和文档支持 ................................................... 159  
14.1 文档支持 ............................................................. 159  
14.2 社区资源.............................................................. 159  
14.3 ..................................................................... 159  
14.4 静电放电警告....................................................... 159  
14.5 Glossary.............................................................. 159  
15 机械、封装和可订购信息..................................... 159  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
说明 (续.............................................................. 4  
Device Family Comparison Table ........................ 6  
Pin Configuration and Functions......................... 7  
Specifications....................................................... 11  
8.1 Absolute Maximum Ratings .................................... 11  
8.2 ESD Ratings............................................................ 11  
8.3 Recommended Operating Conditions..................... 11  
8.4 Thermal Information................................................ 13  
8.5 Electrical Characteristics: TGC Mode..................... 13  
8.6 Electrical Characteristics: CW Mode....................... 16  
8.7 Digital Characteristics ............................................. 17  
8.8 Output Interface Timing Requirements................... 18  
8.9 Serial Interface Timing Requirements..................... 19  
8.10 Typical Characteristics: TGC Mode ...................... 20  
8.11 Typical Characteristics: CW Mode........................ 28  
Detailed Description ............................................ 29  
9.1 Overview ................................................................. 29  
9.2 Functional Block Diagram ....................................... 30  
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (November 2015) to Revision E  
Page  
Deleted Output and Gain Code Step Response vs Time figure........................................................................................... 25  
Deleted condition statement from Output and Gain Code Step Response vs Time figure.................................................. 25  
Changed Device Power vs Gain Code figure....................................................................................................................... 26  
Deleted Device Power vs Gain Code (TGC_CONS register bit = 1) figure ......................................................................... 26  
Changed VCA Power vs Gain Code figure .......................................................................................................................... 26  
Changed AVDD_1P9 Supply Current vs Gain Code figure.................................................................................................. 27  
Deleted contour curves from Typical Characteristics: TGC Mode section........................................................................... 27  
Changed Input Signal Support in TGC Mode section .......................................................................................................... 33  
Added footnote 2 to Profile Description for Up, Down Ramp Mode table ........................................................................... 40  
Changed TGC_SLOPE and TGC_UP_DN clock traces in External Non-Uniform Mode figure........................................... 41  
Added footnote 2 to Profile Description for External Non-Uniform Mode table ................................................................... 42  
Changed Figure 72 .............................................................................................................................................................. 46  
Added footnote 2 to Internal Non-Uniform Mode Profile Definition table ............................................................................ 48  
Added Latency Between a Transition in TGC_SLOPE and the Resulting Change in Gain table and associated  
paragraph to Timing Specifications section.......................................................................................................................... 48  
Changed second sentence in sixth paragraph of Continuous-Wave (CW) Beamformer section ....................................... 52  
Changed Figure 77 .............................................................................................................................................................. 53  
Changed last paragraph of 16 × ƒcw Mode section ............................................................................................................. 54  
Changed Clock Configurations figure .................................................................................................................................. 57  
Changed Number of samples from "2045" to "2047" in Table 15 ........................................................................................ 68  
Changed HPF_ROUND_ENABLE register bit (register 21, bit 5) to HPF_ROUND_EN_CH1-8 and  
HPF_ROUND_EN_CH9-16 bits in last paragraph of Digital HPF section ........................................................................... 70  
版权 © 2015–2017, Texas Instruments Incorporated  
3
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
修订历史记录 (接下页)  
已添加 last paragraph to Partial Power-Up and Power-Down Mode section ...................................................................... 77  
已添加 PLL initialization method (step 4) to Initialization Set Up section............................................................................. 85  
已添加 PLL Initialization section ........................................................................................................................................... 87  
Changed PIN_PAT_LVDS to PAT_LVDS15[2:0] in register 59 of ADC Register Map table .............................................. 98  
Added registers 65 and 66 to ADC Register Map table ....................................................................................................... 98  
Changed 001 row description from half frame 0, half frame 1 to half frame 1, half frame 0 in Pattern Mode Bit  
Description table ................................................................................................................................................................ 100  
Changed HPF_ROUND_EN to HPF_ROUND_EN_CH1-8 in register 21 ......................................................................... 109  
Changed bit 5 from 0 to HPF_ROUND_EN_CH9-16 in register 45 .................................................................................. 123  
Changed bits 7-5 from PIN_PAT_LVDS to PAT_LVDS15[2:0] in register 59 ................................................................... 131  
Added register descriptions for registers 65 and 66 .......................................................................................................... 133  
Deleted register 202 from VCA Register Map table .......................................................................................................... 135  
已删除 从相关文档 部分删除了 WEBENCH ....................................................................................................................... 159  
Changes from Revision C (August 2015) to Revision D  
Page  
将完整文档发布至 Web:添加了器件比较表引脚配置和功能 部分、规范 部分、详细 说明 部分、应用和实施 部  
分、电源相关建议 部分、布局 部分以及寄存器映射 部分 ...................................................................................................... 1  
已更改特性部分:已在第一个 特性 要点中添加第二个分项,已更改 ADC 针对噪声和功率进行了优化 特性 要点,  
并已添加第一个分项和最后一个分项至 CW 特性 要点部分) ................................................................................................ 1  
已更改器件信息表和简化框图 ................................................................................................................................................. 1  
已更改说明部分....................................................................................................................................................................... 5  
添加了社区资源部分 ........................................................................................................................................................... 159  
Changes from Revision B (June 2015) to Revision C  
Page  
从文档中删除了 AFE58JD16 .................................................................................................................................................. 1  
Changed Functional Block Diagram: removed references to AFE58JD16 ......................................................................... 30  
Changes from Revision A (April 2015) to Revision B  
Page  
产品预览改为量产数据” ................................................................................................................................................... 1  
5 说明 (续)  
AFE5816 是一款集成模拟前端 (AFE),针对医疗超声波应用进行了优化。AFE5816 是一款多芯片模块 (MCM) 器  
件,包含两个芯片:VCA ADC_CONV。每个芯片均有 16 条通道。  
VCA 芯片中的每条通道均可配置为两种模式:时间增益补偿 (TGC) 模式和连续波 (CW) 模式。在 TGC 模式下,每  
条通道包含一个输入衰减器 (ATTEN)、一个带有可变增益的低噪声放大器 (LNA) 以及一个三阶低通滤波器 (LPF)。  
衰减器支持的衰减范围为 0dB 8dBLNA 支持的增益范围为 14dB 45dBLPF 的截止频率可配置为  
10MHz15MHz20MHz 25 MHz,以便支持频率不同的超声波 应用 。在 CW 模式下,每条通道包含一个增  
益固定为 18dB LNA 以及一个具有 16 种可选相位延迟的低功耗无源混频器。通过对每个模拟输入信号施加不同  
的相位延迟可执行片上波束赋形操作。CW 混频器中的谐波滤波器通过抑制三阶和五阶谐波来增强 CW 多普勒测量  
的灵敏度。CW 模式支持三种时钟模式:16 倍频、8 倍频和 4 倍频。  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
ADC_CONV 芯片的每条通道都具有一个高性能模数转换器 (ADC),该转换器的分辨率可编程为 14 位或 12 位。  
ADC 14 位 和 12 位模式下分别可实现 75dBFS 72dBFS 的信噪比 (SNR)。该 ADC 在低通道增益时仍具有出  
色的 SNR。该器件的最高运行速度为 65MSPS 80MSPS,分别提供 14 位和 12 位输出。ADC 设计为根据采样  
率调整其功耗。ADC 的输出接口为低压差分信令 (LVDS) 接口,可轻松与低成本现场可编程门阵列 (FPGA) 连接。  
AFE5816 还允许选择多种功率和噪声组合,从而优化系统性能。因此,对于电池寿命要求严格的系统而言,这些  
器件是一套非常适合的超声波 AFE 解决方案。AFE5816 采用 15mm × 15mm NFBGA-289 封装(ZAV 封装,S-  
PBGA-N289),额定工作温度范围为 –40°C +85°C。此器件还与 AFE5818 系列器件引脚兼容。的最后一段  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
6 Device Family Comparison Table  
DEVICE  
DESCRIPTION  
PACKAGE  
BODY SIZE (NOM)  
16-channel, ultrasound, analog front-end (AFE) with 124-mW/channel, 0.75-nV/Hz  
noise, 14-bit, 65-MSPS or 12-bit, 80-MSPS ADC and passive CW mixer  
AFE5818  
AFE5812  
AFE5809  
AFE5808A  
AFE5807  
NFBGA (289)  
15.00 mm × 15.00 mm  
Fully integrated, 8-channel ultrasound AFE with passive CW mixer, and digital I/Q  
demodulator, 0.75 nV/Hz, 14 and 12 bits, 65 MSPS, 180 mW/ch  
NFBGA (135)  
NFBGA (135)  
NFBGA (135)  
NFBGA (135)  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
8-channel ultrasound AFE with passive CW mixer, and digital I/Q demodulator,  
0.75 nV/Hz, 14 and 12 bits, 65 MSPS, 158 mW/ch  
8-channel ultrasound AFE with passive CW mixer, 0.75 nV/Hz, 14 and 12 bits,  
65 MSPS, 158 mW/ch  
8-channel ultrasound AFE with passive CW mixer, 1.05 nV/Hz, 12 bits, 80 MSPS,  
117 mW/ch  
AFE5803  
AFE5805  
AFE5804  
8-channel ultrasound AFE, 0.75 nV/Hz, 14 and 12 bits, 65 MSPS, 158 mW/ch  
8-channel ultrasound AFE, 0.85 nV/Hz, 12 bits, 50 MSPS, 122 mW/ch  
8-channel ultrasound AFE, 1.23 nV/Hz, 12 bits, 50 MSPS, 101 mW/ch  
NFBGA (135)  
NFBGA (135)  
NFBGA (135)  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
8-channel variable-gain amplifier (VGA) with octal high-speed ADC, 5.5 nV/Hz,  
12 bits, 65 MSPS, 65 mW/ch  
AFE5801  
AFE5851  
VCA5807  
VQFN (64)  
VQFN (64)  
HTQFP (80)  
9.00 mm × 9.00 mm  
9.00 mm × 9.00 mm  
14.00 mm × 14.00 mm  
16-channel VGA with high-speed ADC, 5.5 nV/Hz, 12 bits, 32.5 MSPS, 39 mW/ch  
8-channel voltage-controlled amplifier for ultrasound with passive CW mixer,  
0.75 nV/Hz, 99 mW/ch  
VCA8500  
ADS5294  
ADS5292  
ADS5295  
8-channel, ultralow-power VGA with low-noise pre-amp, 0.8 nV/Hz, 65 mW/ch  
Octal-channel, 14-bit, 80-MSPS ADC, 75-dBFS SNR, 77 mW/ch  
Octal-channel, 12-bit, 80-MSPS ADC, 70-dBFS SNR, 66 mW/ch  
Octal-channel, 12-bit, 100-MSPS ADC, 70.6-dBFS SNR, 80 mW/ch  
VQFN (64)  
HTQFP (80)  
HTQFP (80)  
HTQFP (80)  
9.00 mm × 9.00 mm  
14.00 mm × 14.00 mm  
14.00 mm × 14.00 mm  
14.00 mm × 14.00 mm  
10-bit, 200-MSPS, 4-channel, 61-dBFS SNR, 150-mW/ch and 12-bit, 80-MSPS,  
8-channel, 70-dBFS SNR, 65-mW/ch ADC  
ADS5296A  
VQFN (64)  
9.00 mm × 9.00 mm  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
7 Pin Configuration and Functions  
ZAV Package  
289-Bumps NFBGA  
Top View  
4
5
6
7
8
10  
11  
12  
13  
14  
15  
16  
17  
1
2
3
9
A
B
INP16  
INP15  
INP14  
INP13  
NC  
INP8  
INP7  
INP6  
INP12  
INP11  
INP10  
INP9  
INP5  
INP4  
INP3  
INP2  
INP1  
NC  
INM16  
NC  
NC  
INM15  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
INM5  
NC  
NC  
NC  
NC  
NC  
INM14  
INM13  
INM8  
INM7  
INM6  
C
D
E
F
INM12  
INM11  
INM10  
INM9  
INM4  
INM3  
AVSS  
AVSS  
AVSS  
AVSS  
INM2  
AVSS  
INM1  
AVSS  
CW_IP_  
OUTM  
CW_IP_  
OUTP  
AVDD_  
3P15  
AVDD_  
3P15  
AVDD_  
3P15  
AVDD_  
3P15  
BIAS_  
2P5  
AVDD_  
3P15  
AVDD_  
3P15  
AVDD_  
3P15  
SRC_  
BIAS  
AVDD_  
1P9  
AVDD_  
1P9  
AVDD_  
1P9  
AVDD_  
1P9  
AVDD_  
1P9  
AVDD_  
1P9  
CLKP_  
16X  
CLKM_  
16X  
NC  
NC  
NC  
NC  
NC  
NC  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
DVSS  
DVSS  
DVSS  
NC  
AVSS  
AVSS  
NC  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
DVSS  
DVSS  
DVSS  
FCLKM  
DOUTP9  
AVDD_  
1P9  
AVDD_  
1P9  
LNA_  
INCM  
AVDD_  
1P9  
AVDD_  
1P9  
AVDD_  
1P9  
AVDD_  
1P9  
NC  
NC  
AVSS  
AVSS  
CW_QP_  
OUTM  
CW_QP_  
OUTP  
AVDD_  
1P9  
AVDD_  
1P9  
BAND_  
GAP  
AVDD_  
1P9  
AVDD_  
1P9  
CLKM_  
1X  
CLKP_  
1X  
NC  
NC  
AVSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
G
H
J
TGC_  
SLOPE  
AVDD_  
1P9  
AVDD_  
1P9  
TGC_  
PROF<2>  
AVDD_  
1P9  
AVDD_  
1P9  
TR_  
EN<3>  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
SDOUT  
NC  
SCLK  
SEN  
ADC_  
CLKP  
ADC_  
CLKM  
TGC_  
UP_DN  
AVDD_  
1P9  
AVDD_  
1P9  
TGC_  
PROF<1>  
AVDD_  
1P9  
AVDD_  
1P9  
TR_  
EN<4>  
TR_  
EN<2>  
AVSS  
AVDD_  
1P9  
AVDD_  
1P9  
AVDD_  
1P9  
AVDD_  
1P9  
TR_  
EN<1>  
AVSS  
NC  
AVSS  
NC  
NC  
NC  
AVSS  
NC  
NC  
K
DVDD_  
1P2  
AVDD_  
1P8  
AVDD_  
1P8  
AVDD_  
1P8  
AVDD_  
1P8  
AVDD_  
1P8  
AVDD_  
1P8  
AVSS  
NC  
SDIN  
RESET  
L
M
N
P
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
PDN_  
FAST  
NC  
NC  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
TX_TRIG  
PDN_GBL  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
NC  
DVSS  
NC  
NC  
NC  
NC  
NC  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P2  
DVDD_  
1P2  
NC  
DVSS  
NC  
DOUTP16 DOUTP15 DOUTP14  
DOUTM16 DOUTM15 DOUTM14  
FCLKP  
DOUTP8  
DOUTM8  
DOUTM6  
DOUTP7  
DOUTM7  
DOUTP6  
DOUTP5  
DOUTM5  
NC  
DOUTM11 DOUTP11  
NC  
DOUTP3  
DOUTM3  
NC  
DOUTP2  
DOUTM2  
NC  
DOUTP1  
DOUTM1  
NC  
R
T
NC  
DCLKP  
DCLKM  
DOUTP13 DOUTP12 DOUTP10  
DOUTP4  
DOUTM4  
NC  
NC  
NC  
NC  
DOUTM13 DOUTM12 DOUTM10 DOUTM9  
U
Copyright © 2015–2017, Texas Instruments Incorporated  
7
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Pin Functions  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
Differential clock input pin used for ADC conversion, negative. A single-ended clock is also  
supported. Connect ADC_CLKM to dc ground when using a single-ended clock.  
ADC_CLKM  
J2  
I
Differential clock input pin used for ADC conversion, positive. A single-ended clock is also  
supported. Connect the ADC clock to the ADC_CLKP pin when using a single-ended clock.  
ADC_CLKP  
AVDD_1P8  
J1  
I
L5-L7, L11-L13  
P
Analog supply pins, 1.8 V (ADC_CONV die)  
Analog supply pins, 1.9 V (VCA die)(1)  
Analog supply pins, 3.15 V (VCA die)  
Analog ground pins  
E6, E7, E11-E14, F6, F7,  
F11-F14, G6, G7, G11, G12,  
H6, H7, H11, H12, J6, J7,  
J11, J12, K6, K7, K11, K12  
AVDD_1P9  
AVDD_3P15  
AVSS  
P
P
G
D6-D12  
D15-D17, E8-E10, E15, F8-  
F10, F15-F17, G8-G10, G15,  
H1-H3, H8-H10, J3, J8-J10,  
K1-K3, K8-K10, L8-L10  
BAND_GAP  
BIAS_2P5  
G5  
D5  
O
O
Bypass to analog ground with a 1-µF capacitor.  
Bypass to analog ground with a 1-µF capacitor.  
Differential clock input for the 1X CW clock, negative. A single-ended clock is also supported.  
In single-ended clock mode, the CLKM_1X pin is internally pulled to ground.  
CLKM_1X  
CLKP_1X  
CLKM_16X  
G16  
G17  
E17  
I
I
I
In 1X clock mode, this pin is the negative quadrature-phase clock input for the CW mixer.(2)  
Differential clock input for the 1X CW clock, positive. A single-ended clock is also supported.  
Connect the 1X CW clock to the CLKP_1X pin when using a single-ended clock.  
In 1X clock mode, this pin is the positive quadrature-phase clock input for the CW mixer.(2)  
Differential clock input for the 16X, 8X, and 4X CW clocks, negative.  
A single-ended clock is also supported.  
In single-ended clock mode, the CLKM_16X pin is internally pulled to ground.(2)  
Differential clock input for the 16X, 8X, and 4X CW clocks, positive.  
A single-ended clock is also supported.  
Connect the 16X CW clock to the CLKP_16X pin when using a single-ended clock.  
In 1X CW clock mode, this pin is the positive in-phase clock input for the CW mixer.(2)  
CLKP_16X  
E16  
I
CW_IP_OUTM  
CW_IP_OUTP  
CW_QP_OUTM  
CW_QP_OUTP  
DCLKM  
D3  
D4  
O
O
O
O
In-phase CW differential summed current output, negative.(2)  
In-phase CW differential summed current output, positive.(2)  
Quadrature-phase CW differential summed current output, negative.(2)  
Quadrature-phase CW differential summed current output, positive.(2)  
G3  
G4  
U9  
Low-voltage differential signaling (LVDS) serialized data clock outputs  
(receiver bit alignment)  
O
O
O
O
O
O
O
O
O
O
DCLKP  
T9  
DOUTM1  
DOUTP1  
T16  
R16  
T15  
R15  
T14  
R14  
U13  
T13  
U12  
T12  
R11  
R12  
U11  
T11  
U10  
T10  
U8  
LVDS serialized differential data outputs for channel 1  
LVDS serialized differential data outputs for channel 2  
LVDS serialized differential data outputs for channel 3  
LVDS serialized differential data outputs for channel 4  
LVDS serialized differential data outputs for channel 5  
LVDS serialized differential data outputs for channel 6  
LVDS serialized differential data outputs for channel 7  
LVDS serialized differential data outputs for channel 8  
LVDS serialized differential data outputs for channel 9  
DOUTM2  
DOUTP2  
DOUTM3  
DOUTP3  
DOUTM4  
DOUTP4  
DOUTM5  
DOUTP5  
DOUTM6  
DOUTP6  
DOUTM7  
DOUTP7  
DOUTM8  
DOUTP8  
DOUTM9  
DOUTP9  
T8  
(1) In low-power mode, the typical power supply for AVDD_1P9 is 1.8 V.  
(2) When CW mode is not used, this pin can be floated.  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Pin Functions (continued)  
PIN  
NAME  
DOUTM10  
DOUTP10  
DOUTM11  
DOUTP11  
DOUTM12  
DOUTP12  
DOUTM13  
DOUTP13  
DOUTM14  
DOUTP14  
DOUTM15  
DOUTP15  
DOUTM16  
DOUTP16  
NO.  
U7  
T7  
R6  
R7  
U6  
T6  
U5  
T5  
T4  
R4  
T3  
R3  
T2  
R2  
I/O  
DESCRIPTION  
O
LVDS serialized differential data outputs for channel 10  
LVDS serialized differential data outputs for channel 11  
LVDS serialized differential data outputs for channel 12  
LVDS serialized differential data outputs for channel 13  
LVDS serialized differential data outputs for channel 14  
LVDS serialized differential data outputs for channel 15  
O
O
O
O
O
O
LVDS serialized differential data outputs for channel 16  
1.2-V digital supply pins for the ADC digital block  
L3, M4-M6, M12-M14, N2-N6,  
N12-N16, P2, P3, P15, P16  
DVDD_1P2  
DVDD_1P8  
DVSS  
P
P
G
1.8-V digital supply pins for the ADC digital, digital I/Os, phase-locked loop (PLL), and LVDS  
interface blocks  
P4-P7, P11-P14  
M3, M7-M11, N7-N11, P8-  
P10  
Digital ground (ADC_CONV die).  
FCLKM  
FCLKP  
INM1  
INM2  
INM3  
INM4  
INM5  
INM6  
INM7  
INM8  
INM9  
INM10  
INM11  
INM12  
INM13  
INM14  
INM15  
INM16  
INP1  
R8  
R10  
C17  
C16  
C15  
C14  
C13  
C12  
C11  
C10  
C8  
O
LVDS serialized differential frame clock outputs (receiver word alignment).  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Complementary analog input for channel 1.(3)  
Complementary analog input for channel 2.(3)  
Complementary analog input for channel 3.(3)  
Complementary analog input for channel 4.(3)  
Complementary analog input for channel 5.(3)  
Complementary analog input for channel 6.(3)  
Complementary analog input for channel 7.(3)  
Complementary analog input for channel 8.(3)  
Complementary analog input for channel 9.(3)  
Complementary analog input for channel 10.(3)  
Complementary analog input for channel 11.(3)  
Complementary analog input for channel 12.(3)  
Complementary analog input for channel 13.(3)  
Complementary analog input for channel 14.(3)  
Complementary analog input for channel 15.(3)  
Complementary analog input for channel 16.(3)  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A8  
Analog input for channel 1. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 2. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 3. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 4. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 5. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 6. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 7. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 8. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 9. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 10. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 11. AC-couple to device input with a 10-nF capacitor.  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
INP8  
INP9  
INP10  
INP11  
A7  
A6  
(3) The LNA high-pass filter (HPF) response of the channel depends on the capacitor connected at the INMx pin. By default, leave this pin  
floating. For very low-frequency applications, connect a capacitor > 1 µF.  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
NO.  
A5  
A4  
A3  
A2  
A1  
F5  
I/O  
DESCRIPTION  
INP12  
INP13  
INP14  
INP15  
INP16  
I
I
Analog input for channel 12. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 13. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 14. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 15. AC-couple to device input with a 10-nF capacitor.  
Analog input for channel 16. AC-couple to device input with a 10-nF capacitor.  
Bypass to ground with a 1-μF capacitor.  
I
I
I
LNA_INCM  
O
A9, B1-B17, C9, D1, D2, D13,  
E1-E5, F1-F4, G1, G2, G13,  
G14, H13, H14, H17, J13,  
J14, K4, K5, K13, K14, K16,  
L1, L2, L4, L14, L15, M1, M2,  
R5, R9, R13, N1, N17, P1,  
R1, R17, P17, T1, T17, U1-  
U4, U14-U17  
NC  
Unused pins; do not connect  
Partial power-down control pin for the entire device with an internal 16-kΩ pulldown resistor;  
PDN_FAST  
PDN_GBL  
M17  
M16  
I
I
active high.(4)  
Global (complete) power-down control pin for the entire device with an internal 16-kΩ  
pulldown resistor; active high.(4)  
RESET  
SCLK  
L17  
J17  
L16  
H16  
K17  
D14  
I
I
Hardware reset pin with an internal 16-kΩ pull-down resistor; active high.(4)  
Serial programming interface clock pin with an internal 16-kΩ pulldown resistor.(4)  
Serial programming interface data pin with an internal 16-kΩ pulldown resistor.(4)  
Serial programming interface readout pin. This pin is in tri-state by default.(4)  
Serial programming interface enable pin, active low. This pin has a 16-kΩ pullup resistor.(4)  
Bypass to ground with a 1-μF capacitor.  
SDIN  
I
SDOUT  
SEN  
O
I
SRC_BIAS  
O
Digital TGC profile 1 select pin.  
TGC_PROF<1>  
TGC_PROF<2>  
J5  
I
I
This pin has an internal 150-kΩ pulldown resistor; active high.(4)  
Digital TGC profile 2 select pin.  
H5  
This pin has an internal 150-kΩ pulldown resistor; active high.(4)  
TGC_SLOPE  
TGC_UP_DN  
H4  
J4  
I
I
Digital TGC control pin. This pin has an internal 150-kΩ pulldown resistor.(4)  
Digital TGC control pin. This pin has an internal 150-kΩ pulldown resistor.(4)  
TR enable pin 1; disconnects the LNA HPF from the input pins of channels 1 to 4.(4)  
This pin has an internal 150-kΩ pullup resistor.  
TR enable pin 2; disconnects the LNA HPF from the input pins of channels 5 to 8.(4)  
This pin has an internal 150-kΩ pullup resistor.  
TR enable pin 3; disconnects the LNA HPF from the input pins of channels 9 to 12.(4)  
This pin has an internal 150-kΩ pullup resistor.  
TR enable pin 4; disconnects the LNA HPF from the input pins of channels 13 to 16.(4)  
This pin has an internal 150-kΩ pullup resistor.  
TR_EN<1>  
TR_EN<2>  
TR_EN<3>  
TR_EN<4>  
TX_TRIG  
K15  
J16  
I
I
I
I
I
H15  
J15  
This pin synchronizes test patterns across devices.  
This pin has a 20-kΩ pulldown resistor.(4)  
M15  
(4) A 1.8-V logic level is required.  
Table 1. Pin Name to Signal Name Map  
SIGNAL NUMBER  
PIN NAME  
ADC_CLKP – ADC_CLKM  
CLKP_1X – CLKM_1X  
SIGNAL NAME  
ADC_CLK  
CW_CLK1X  
CW_CLK_NX  
CW_IP_OUT  
CW_QP_OUT  
DOUT  
1
2
3
4
5
6
7
8
9
CLKP_16X – CLKM_16X  
CW_IP_OUTP – CW_IP_OUTM  
CW_QP_OUTP – CW_QP_OUTM  
DOUTPx – DOUTMx  
FCLKP – FCLKM  
FCLK  
DCLKP – DCLKM  
DCLK  
CMLx_OUTP – CMLx_OUTM  
CMLx_OUT  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
2.2  
UNIT  
AVDD_1P8  
AVDD_1P9  
2.2  
Supply voltage range  
AVDD_3P15  
DVDD_1P2  
DVDD_1P8  
3.9  
V
1.35  
2.2  
Minimum [2.2,  
(AVDD_1P9 + 0.3)]  
Voltage at analog inputs  
Voltage at digital inputs  
–0.3  
–0.3  
V
V
Minimum [2.2, (AVDD_1P9 +  
0.3), (DVDD_1P8 + 0.3)]  
Maximum junction temperature (TJ),  
any condition  
105  
150  
Temperature  
°C  
Storage, Tstg  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range, unless otherwise noted  
PARAMETER  
MIN TYP MAX  
UNIT  
SUPPLIES  
VA_1P8  
AVDD_1P8 voltage  
AVDD_1P9 voltage  
1.7  
1.8  
1.8  
1.9  
1.9  
2.0  
2.0  
3.3  
V
V
Low-noise mode, medium-power mode  
Low-power mode  
VA_1P9  
1.75  
3
1.8  
VA_3P15  
VD_1P2  
VD_1P8  
AVDD_3P15 voltage  
DVDD_1P2 voltage  
DVDD_1P8 voltage  
3.15  
V
V
V
1.15  
1.7  
1.2 1.25  
1.8  
1.9  
85  
TEMPERATURE  
TA  
Ambient temperature  
–40  
°C  
BIAS VOLTAGES  
ADC_CLKP, ADC_CLKM in differential mode  
0.7  
1.5  
0.9  
1
CLKP_1X, CLKM_1X, CLKP_16X, CLKM_16X in differential mode  
Common-mode voltage(1)  
V
CW_IP_OUTP, CW_IP_OUTM, CW_QP_OUTP, CW_QP_OUTM  
(INM1, INP1), (INM2, INP2)…(INM16, INP16)  
BAND_GAP  
BIAS_2P5  
LNA_INCM  
SRC_BIAS  
1.2  
2.5  
1
Bias voltage(1)  
V
0.5  
(1) Internally set by the device.  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
over operating free-air temperature range, unless otherwise noted  
PARAMETER  
MIN TYP MAX  
UNIT  
ADC CLOCK INPUT: ADC_CLK  
14-bit ADC resolution  
5
5
65  
80  
fCLKIN  
ADC clock frequency  
MHz  
12-bit ADC resolution  
Sine-wave, ac-coupled  
0.7  
VDEADC  
Differential clock amplitude LVPECL, ac-coupled  
LVDS, ac-coupled  
1.6  
0.7  
VPP  
Single-ended clock  
amplitude  
VSEADC  
DADC  
LVCMOS on ADC_CLKP with ADC_CLKM grounded  
1.8  
V
ADC_CLK duty cycle  
40% 50% 60%  
CW CLOCK INPUT: CW_CLK1X, CW_CLK_NX  
CW_CLK1X across CW clock modes in relation to CW_CLK1X;  
8
MHz  
see the CW_CLK_MODE register bits in register 192  
16X mode  
16X  
8X  
CWCLK  
CW clock frequency  
CW_CLK_NX across CW clock modes;  
CW_  
CLK1X  
see the CW_CLK_MODE register bits in 8X mode  
register 192  
4X mode  
4X  
VDECW  
VSECW  
DCW  
Differential clock amplitude CW_CLK1X, CW_CLK_NX. LVDS, ac-coupled  
0.7  
VPP  
V
Single-ended clock  
amplitude  
LVCMOS on CLKP_1X, CLKP_16X with CLKM_1X, CLKM_16X  
grounded or floating  
3.15  
CLK duty cycle  
CW_CLK1X, CW_CLK_NX  
40% 50% 60%  
DIGITAL OUTPUT (LVDS)  
RL Differential load resistance  
100  
Ω
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
8.4 Thermal Information  
AFE5816  
THERMAL METRIC(1)  
ZAV (NFBGA)  
289 PINS  
26.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.6  
11.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
11.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
8.5 Electrical Characteristics: TGC Mode  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, and  
DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is  
applied with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK.  
Device settings: gain code = 319 (total gain = 45 dB), 14-bit ADC resolution, LVDS interface to capture ADC data, and  
output amplitude VOUT = –1 dBFS. Minimum and maximum values are specified across the full temperature range.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
At INP_SOURCE node; see the Functional Block Diagram section  
At INPx node; see the Functional Block Diagram section  
1
0.4  
35  
VMAX  
Maximum linear input voltage  
VPP  
pF  
CINP  
Input capacitance  
Gain code(1)  
GCODE  
Programs the total gain  
0
319  
(6 + 0.125 ×  
GCODE  
Low-noise mode and medium-power mode  
)
GTOT  
Total gain  
dB  
(12 + 0.125 ×  
GCODE  
Low-power mode  
)
GRANGE  
GSLOPE  
TTGC  
Gain range  
39  
0.125  
10  
dB  
dB/GCODE  
µs  
Gain slope  
TGC response time  
GCODE changed from 64 to 319  
Low-noise mode  
1
RS = 0 Ω, calculated in band of 4-MHz  
to 6-MHz frequency  
Low-power mode  
Across low-noise, medium-power, and low-power mode  
Low-noise mode  
VN,IRN  
Input voltage noise  
Medium-power mode  
1.3  
1.45  
1.2  
3.6  
4.5  
5.0  
1.2  
1.5  
1.6  
nV/Hz  
pA/Hz  
dB  
IN,IRN  
Input-referred current noise  
RS = 50 Ω  
Medium-power mode  
Low-power mode  
Low-noise mode  
NF  
Noise figure(2)  
RS = 400 Ω  
Medium-power mode  
Low-power mode  
dB  
(1) The gain code range from 0 to 63 controls the input attenuation and the gain code range from 64 to 319 controls the LNA gain.  
(2) NF is measured as the SNR at the output of the device relative to the SNR at the input resulting from ths noise of source resistance RS.  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, and  
DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is  
applied with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK.  
Device settings: gain code = 319 (total gain = 45 dB), 14-bit ADC resolution, LVDS interface to capture ADC data, and  
output amplitude VOUT = –1 dBFS. Minimum and maximum values are specified across the full temperature range.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
GENERAL (continued)  
RS = 330 Ω  
–20  
–26  
–17  
–14  
–13  
Without a signal, calculated in a 1-MHz  
to 10-MHz bandwidth  
RS = 100 Ω  
Total gain = 45 dB  
Total gain = 26 dB  
Total gain = 45 dB  
With a signal, calculated in a 1-MHz to  
10-MHz bandwidth  
Channel-to-channel noise  
correlation factor(3)  
KCORR  
dB  
With a signal, calculated in a 1-MHz  
bandwidth around a 5-MHz input signal  
frequency  
Total gain = 26 dB  
–10  
Total gain = 14 dB  
Total gain = 45 dB  
65  
55  
68  
58  
SNR calculated in 750 kHz to Nyquist  
bandwidth  
SNR  
Signal-to-noise ratio  
Narrow-band SNR  
dBFS  
dBFS  
SNR calculated in 2-MHz bandwidth  
around input signal frequency  
SNRNB  
Total gain = 30 dB  
72.5  
76  
10  
15  
Low-noise and medium-  
power mode  
20  
–3-dB cutoff frequency across  
LPF_PROG register settings;  
see register 199  
25  
LPF  
3rd-order, low-pass filter  
LPF bandwidth variation  
MHz  
5
7.5  
10  
Low-power mode  
12.5  
±5%  
ΔLPF  
ΔGr  
Channel-to-channel group  
delay matching  
2-MHz to 15-MHz input signal frequency  
15-MHz signal  
2
ns  
Channel-to-channel phase  
matching  
Δφ  
11  
Degrees  
GCODE < 64  
GCODE > 64  
GCODE < 64  
GCODE > 64  
±0.5  
±0.5  
±0.5  
±0.5  
–65  
–55  
–60  
–60  
–58  
–54  
Device-to-device, average across  
channels  
–1  
–1  
1
1
GMATCH  
Gain matching  
dB  
Channel-to-channel, same device  
Output amplitude = –1 dBFS, gain = 45 dB  
Output amplitude = –1 dBFS, gain = 6 dB  
Output amplitude = –1 dBFS, gain = 45 dB  
Output amplitude = –1 dBFS, gain = 6 dB  
Output amplitude = –1 dBFS, gain = 45 dB  
Output amplitude = –1 dBFS, gain = 6 dB  
Second-order harmonic  
distortion  
HD2  
HD3  
THD  
dBc  
dBc  
dBc  
Third-order harmonic  
distortion  
Total harmonic distortion  
Third-order intermodulation  
distortion  
Input frequency 1 = 5 MHz at –1 dBFS,  
input frequency 2 = 5.01 MHz at –21 dBFS  
IMD3  
–75  
–55  
dBc  
dBc  
Signal applied to a single channel. Crosstalk measured on neighboring  
channel.  
XTALK  
Fundamental crosstalk  
PN1kHz  
VORO  
Phase noise  
Output offset  
Calculated at 1-kHz offset from 5-MHz input signal frequency  
–129  
±600  
dBc/Hz  
LSB  
LNA gain range in TGC  
mode  
GLNA  
14 to 45  
dB  
(3) The noise-correlation factor is defined as 10 × log10[Nc / (Nc + Nu)], where Nc is the correlated noise power in a single channel and Nu  
is the uncorrelated noise power in a single channel. The noise-correlation factor measurement is described by the equation:  
Nc  
N_16Ch  
1
=
-
(Nu +Nc) (N_1Chì240) 15  
where N_16CH is the noise power of the summed 16 channels and N_1CH is the noise power of one channel.  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Electrical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, and  
DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is  
applied with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK.  
Device settings: gain code = 319 (total gain = 45 dB), 14-bit ADC resolution, LVDS interface to capture ADC data, and  
output amplitude VOUT = –1 dBFS. Minimum and maximum values are specified across the full temperature range.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
GENERAL (continued)  
75  
150  
300  
600  
–1-dB cutoff frequency across LNA_HPF_PROG register settings;  
see register 199  
HPFTGC  
LNA High-pass filter  
kHz  
ADC SPECIFICATIONS  
14-bit resolution  
12-bit resolution  
Without a signal  
5
5
65  
80  
fS  
Sample rate  
MSPS  
75  
72.5  
72  
14-bit resolution  
With a –1-dBFS signal  
amplitude  
SNR  
Signal-to-noise ratio  
dBFS  
VPP  
Without a signal  
12-bit resolution  
With a –1-dBFS signal  
69.5  
2
amplitude  
VMAX,ADC  
ADC input full-scale range  
POWER DISSIPATION  
TGC low-noise mode, 500-mVPP input signal up to 1% duty cycle  
applied to 16 channels  
94  
72  
Power dissipation per  
channel: 12-bit ADC  
resolution and 80-MSPS  
ADC clock  
TGC medium-power mode, 500-mVPP input signal up to 1% duty cycle  
applied to 16 channels  
PTGC/Ch  
mW/Ch  
TGC low-power mode, 500-mVPP input signal up to 1% duty cycle  
applied to 16 channels  
62  
TGC low-noise mode, 500-mVPP input signal up to 1% duty cycle  
applied to 16 channels  
430  
240  
160  
20  
TGC medium-power mode, 500-mVPP input signal up to 1% duty cycle  
applied to 16 channels  
IA_1P9  
AVDD_1P9 current (1.9 V)(4)  
AVDD_3P15 current(4)  
mA  
mA  
TGC low-power mode, 500-mVPP input signal up to 1% duty cycle  
applied to 16 channels  
TGC low-noise, medium-power, and low-power modes, 500-mVPP  
input signal up to 1% duty cycle applied to 16 channels  
IA_3P15  
IA_1P8  
ID_1P2  
IA_1P8  
AVDD_1P8 current(4)  
DVDD_1P2 current(4)  
DVDD_1P8 current(4)  
For a 12-bit ADC resolution and an 80-MSPS system clock  
For a 12-bit ADC resolution and an 80-MSPS system clock  
For a 12-bit ADC resolution and an 80-MSPS system clock  
170  
110  
100  
mA  
mA  
mA  
AC PERFORMANCE (Power)  
AVDD_1P9  
–65  
–90  
AC power-supply rejection  
AVDD_3P15  
PSRR1 kHz  
ratio: tone at output relative  
to tone on supply  
100 mVPP, 1-kHz tone on supply  
dBc  
dBc  
AVDD_1P8, DVDD_1P8, and  
DVDD_1P2  
–70  
AVDD_1P9  
–45  
–45  
AC power-supply modulation  
ratio: intermodulation tone at  
output resulting from tones at  
supply and input measured  
relative to input tone  
100 mVPP, 1-kHz tone on supply and  
–1-dBFS, 5-MHz tone at input  
AVDD_3P15  
PSMR1 kHz  
AVDD_1P8, DVDD_1P8, and  
DVDD_1P2  
–80  
POWER DOWN  
Partial power-down when PDN_FAST = high  
Complete power-down when PDN_GBL = high  
17  
3
Power dissipation in  
PDOWN  
mW/Ch  
power-down mode  
Power-up time  
Partial power-down when PDN_FAST = high and the device is in  
partial power-down time for < 500 µs  
3
1
µs  
tUP  
Complete power-down when PDN_GBL = high  
ms  
(4) Designing the power supply with 2X of the typical current capacity is recommended to take care of current variation across devices,  
switching current, signal current, and so forth.  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.6 Electrical Characteristics: CW Mode  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 2 MHz, CW_CLK1X = 2-MHz differential clock, and CW_CLK_NX = 32-  
MHz differential clock. Device settings: CW clock mode = 16X, and 1X and 16X clock buffer in differential mode and ADC in  
power-down mode. Minimum and maximum values are specified across the full temperature range.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
GENERAL  
VMAX, CW  
Maximum input swing  
300  
500  
mVPP  
Voltage-to-current resistor  
at LNA output  
RV2I  
IOPP  
VN,IRCW  
Ω
Peak-to-peak output  
current per channel  
4.8  
mA/Ch  
1 channel  
1.55  
0.45  
19  
Input voltage noise  
Output current noise  
nV/Hz  
16 channels  
1 channel  
IN,ORCW  
pA/Hz  
16 channels  
80  
RS = 100 Ω, 1 channel  
4
NFCW  
Noise figure(1)  
dB  
dB  
RS = 100 Ω, 16 channels  
4.8  
4
LCWM  
CW mixer conversion loss  
Phase noise  
Signal to 1 channel  
–151  
–161  
16X CW clock mode, calculated at  
1-kHz frequency  
PN1 kHz,CW  
dBc/Hz  
Signal to 16 channels  
fIN1 = 5 MHz, fIN2 = 5.01 MHz, both tones at –6-dBFS  
amplitude,  
input to all the 16 channels.  
–60  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBc  
fIN1 = 5 MHz, fIN2 = 5.01 MHz, both tones at –6-dBFS  
amplitude, input to single channel  
–70  
16X and 8X CW clock mode  
4X CW clock mode  
±0.06  
±0.08  
±0.05  
±0.15  
–49  
ΔIQG  
I/Q channel gain matching  
dB  
16X and 8X CW clock mode  
4X CW clock mode  
I/Q channel phase  
matching  
ΔIQP  
Degrees  
16X and 8X CW clock mode  
4X CW clock mode  
IMREJ  
Image rejection ratio  
LNA gain in CW mode  
dBc  
dB  
–46  
GLNACW  
18  
75  
150  
–1-dB cutoff frequency across LNA_HPF_PROG register  
settings; see register 199  
HPFCW  
High-pass filter  
kHz  
300  
600  
POWER DISSIPATION  
Power dissipation  
No signal  
60  
68  
CW mode, CW_CLK1X = 5 MHz,  
PCW/Ch  
mW/Ch  
mA  
300-mVPP input signal  
CW_CLK_NX = 80 MHz  
per channel (CW mode)  
to all 16 channels  
No signal  
385  
450  
70  
AVDD_1P9 current  
(1.9 V)(2)  
CW mode, CW_CLK1X = 5 MHz,  
IA_1P9  
300-mVPP input signal  
CW_CLK_NX = 80 MHz  
to all 16 channels  
No signal  
CW mode, CW_CLK1X = 5 MHz,  
IA_3P15  
AVDD_3P15 current(2)  
mA  
300-mVPP input signal  
CW_CLK_NX = 80 MHz  
70  
to all 16 channels  
(1) NF is measured as the SNR at the output of the device relative to the SNR at the input resulting from ths noise of source resistance RS.  
(2) Designing the power supply with 2X of the typical current capacity is recommended to take care of current variation across devices,  
switching current, signal current, and so forth.  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Electrical Characteristics: CW Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 2 MHz, CW_CLK1X = 2-MHz differential clock, and CW_CLK_NX = 32-  
MHz differential clock. Device settings: CW clock mode = 16X, and 1X and 16X clock buffer in differential mode and ADC in  
power-down mode. Minimum and maximum values are specified across the full temperature range.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
AC PERFORMANCE (Power)  
AC power-supply rejection  
ratio: tone at output  
relative to tone on supply  
AVDD_1P9  
–60  
–75  
–50  
PSRR1 kHz  
100 mVPP, 1-kHz tone on supply  
dBc  
AVDD_3P15  
AVDD_1P9  
AC power-supply  
modulation ratio:  
intermodulation tone at  
output resulting from tones  
at supply and input  
measured relative to input  
tone  
100 mVPP, 1-kHz tone on supply  
and –1-dBFS, 5-MHz tone at input  
PSMR1 kHz  
dBc  
AVDD_3P15  
–50  
8.7 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. Typical values are at TA = 25°C, minimum and maximum values are across the full temperature range of TMIN  
=
–40°C to TMAX = 85°C, AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 = 1.2 V, DVDD_1P8 =  
1.8 V, external differential load resistance between the LVDS output pair, and RLOAD = 100 Ω, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS  
(PDN_FAST, PDN_GBL, RESET, SCLK, SDIN, SEN, TGC_PROF<1>, TGC_PROF<2>, TGC_SLOPE, TGC_UP_DN, TR_EN<1>,  
TR_EN<2>, TR_EN<3>, TR_EN<4>, TX_TRIG)(1)  
0.75 × max [AVDD_  
1P9, DVDD_1P8]  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
0.25 × min [AVDD_  
1P9, DVDD_1P8]  
IIH  
IIL  
Ci  
High-level input current  
Low-level input current  
Input capacitance  
150  
150  
8
µA  
µA  
pF  
DIGITAL OUTPUTS (SDOUT)(1)  
VOH  
VOL  
zo  
High-level output voltage  
Low-level output voltage  
Output impedance  
1.6  
1.8(2)  
V
V
Ω
0
0.2  
50  
LVDS DIGITAL OUTPUTS (DOUT)(1)  
100-Ω external load connected differentially  
across DOUT  
|VOD  
|
Output differential voltage  
320  
0.9  
400  
480  
mV  
V
Output offset voltage  
(common-mode voltage of  
DOUTPI and DOUTMI)  
100-Ω external load connected differentially  
across DOUT  
VOS  
1.03  
1.15  
(1) All digital specifications are characterized across operating temperature range but are not tested at production.  
(2) When SDOUT operation is performed in VCA die, typical output voltage of SDOUT is 1.9 V.  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.8 Output Interface Timing Requirements  
Typical values are at TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 = 1.2 V,  
DVDD_1P8 = 1.8 V, differential ADC clock, LVDS load CLOAD = 5 pF, RLOAD = 100 Ω, 14-bit ADC resolution, and sample rate  
= 65 MSPS, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN = –40°C to  
TMAX = 85°C.  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
tAP  
Aperture delay(1)  
1.6  
±0.5  
0.5  
ns  
ns  
ps  
Aperture delay variation from device to device  
(at same temperature and supply)  
δtAP  
tAPJ  
Aperture jitter with LVPECL clock as input clock  
ADC TIMING  
Default after reset(1)  
ADC latency  
8.5  
4.5  
Cd  
ADC clocks  
Low-latency mode  
LVDS TIMING(2)  
fF  
Frame clock frequency(1)  
fCLKIN  
50%  
MHz  
Bits  
DFRAME  
NSER  
Frame clock duty cycle  
Number of bits serialization of each ADC word  
1X output data rate  
mode  
Output rate of serialized data  
2X output data rate  
12  
16  
NSER × fCLKIN  
1000  
fD  
Mbps  
MHz  
2 × NSER × fCLKIN  
1000  
500  
mode  
fB  
Bit clock frequency  
fD / 2  
50%  
DBIT  
tD  
Bit clock duty cycle  
Data bit duration(1)  
Clock propagation delay(1)  
1
1000 / fD  
6 × tD+ 5  
ns  
ns  
tPDI  
Clock propagation delay variation from device to device  
(at same temperature and supply)  
δtPROP  
±2  
ns  
ns  
DOUT, DCLK, FCLK rise and fall time, transition time  
between –100 mV and +100 mV  
tORF  
0.2  
tOSU  
Minimum serial data, serial clock setup time(1)  
Minimum serial data, serial clock hold time(1)  
Minimum data valid window(3)(1)  
tD / 2 – 0.4  
tD / 2 – 0.4  
tD – 0.65  
ns  
ns  
ns  
tOH  
tDV  
TX_TRIG TIMING  
tTX_TRIG_DEL  
Delay between TX_TRIG and TX_TRIGD(4)  
0.5  
0.4 × tS  
ns  
ns  
(5)  
Setup time related to latching TX_TRIG relative to the  
rising edge of the system clock  
tSU_TX_TRIGD  
tH_TX_TRIGD  
0.6  
0.4  
Hold time related to latching TX_TRIG relative to the  
rising edge of the system clock  
ns  
(1) See Figure 1.  
(2) All LVDS specifications are characterized but are not tested at production.  
(3) The specification for the minimum data valid window is larger than the sum of the minimum setup and hold times because there can be  
a skew between the ideal transitions of the serial output data with respect to the transition of the bit clock. This skew can vary across  
channels and across devices. A mechanism to correct this skew can therefore improve the setup and hold timing margins. For example,  
the LVDS_DCLK_DELAY_PROG control can be used to shift the relative timing of the bit clock with respect to the data.  
(4) TX_TRIGD is the internally delayed version of TX_TRIG that gets latched on the rising edge of the ADC clock.  
(5) tS is the ADC clock period in nanoseconds (ns).  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
8.9 Serial Interface Timing Requirements(1)  
Typical values are at TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 = 1.2 V, and  
DVDD_1P8 = 1.8 V, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN  
–40°C to TMAX = 85°C.  
=
MIN  
50  
20  
20  
5
TYP  
MAX  
UNIT  
ns  
(2)  
tSCLK  
tSCLK_H  
tSCLK_L  
SCLK period  
(2)  
(2)  
SCLK high time  
ns  
SCLK low time  
ns  
(2)  
tDSU  
Data setup time  
ns  
(2)  
tDH  
Data hold time  
5
ns  
(2)  
tSEN_SU  
tSEN_HO  
tOUT_DV  
SEN falling edge to SCLK rising edge  
Time between last SCLK rising edge to SEN rising edge  
SDOUT delay  
8
ns  
(2)  
(3)  
8
ns  
12  
20  
28  
ns  
(1) All serial interface timing specifications are characterized but are not tested at production.  
(2) See 100 for more details.  
(3) See 101 for more details.  
Sample N  
Input Signal  
TAP  
Cd Clock  
Cycles Latency  
Input Clock (ADC_CLK)  
Frequency = fCLKIN  
TF  
tPDI  
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 7 x fCLKIN  
Output Data (DOUT)  
Data Rate = 14 x fCLKIN  
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
(12) (13)  
(9) (10) (11) (12) (13)  
(9) (10) (11) (12) (13) (0)  
(9) (10) (11) (12) (13)  
Sample N-1  
Sample N  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
13  
(0)  
DOUT1  
D0  
D1  
D2  
D3  
D4  
Bit Clock (DCLK)  
tD  
tD  
tOH  
tOSU  
tB  
Bit Clock (DCLK)  
tDV  
tDV  
Figure 1. LVDS Output Timing Specification  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.10 Typical Characteristics: TGC Mode  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK. Device  
settings: gain code = 319 (total gain = 45 dB), LPF filter cutoff frequency = 15 MHz, low-noise mode, 14-bit ADC resolution,  
LVDS interface to capture ADC data, output amplitude VOUT = –1 dBFS, and SNR is measured from 750 kHz to Nyquist  
bandwidth. Minimum and maximum values are specified across the full temperature range.  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Low Noise  
Medium Power  
Low Power  
-40 èC  
25 èC  
85 èC  
0
0
0
40  
80  
120  
160  
200  
240  
280  
319  
0
40  
80  
120  
160  
200  
240  
280  
319  
Gain Code (LSB)  
Gain Code (LSB)  
Across power modes  
Across temperature  
Figure 2. Gain vs Gain Code  
Figure 3. Gain vs Gain Code  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3200  
2800  
2400  
2000  
1600  
1200  
800  
600  
400  
400  
200  
0
0
Gain Matching (dB)  
Gain Matching (dB)  
Gain = 14 dB (14288 channels)  
Gain = 30 dB (14288 channels)  
Figure 4. Gain Matching Histogram  
Figure 5. Gain Matching Histogram  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Gain Matching (dB)  
Gain Matching (dB)  
Gain = 38 dB (14288 channels)  
Gain = 45 dB (14288 channels)  
Figure 6. Gain Matching Histogram  
Figure 7. Gain Matching Histogram  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Typical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK. Device  
settings: gain code = 319 (total gain = 45 dB), LPF filter cutoff frequency = 15 MHz, low-noise mode, 14-bit ADC resolution,  
LVDS interface to capture ADC data, output amplitude VOUT = –1 dBFS, and SNR is measured from 750 kHz to Nyquist  
bandwidth. Minimum and maximum values are specified across the full temperature range.  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
500  
400  
250  
200  
0
0
ADC Output (LSB)  
ADC Output (LSB)  
Gain = 14 dB (14288 channels)  
Gain = 45 dB (14288 channels)  
Figure 8. Output Offset Histogram  
Figure 9. Output Offset Histogram  
8000  
6000  
4000  
2000  
0
-40  
-50  
-60  
-70  
-80  
-90  
0.5 0.7  
1
2
3
4
5 6 78 10  
20 30 4050 70 100  
0.5 0.7  
1
2
3
4
5 6 78 10  
20 30 4050 70 100  
Frequency (MHz)  
Frequency (MHz)  
Figure 10. Input Impedance Magnitude vs Frequency  
Figure 11. Input Impedance Phase vs Frequency  
5
3
0
0
-5  
-3  
-6  
-10  
-15  
-20  
-25  
-9  
-12  
-15  
-18  
-21  
10 MHz  
15 MHz  
20 MHz  
25 MHz  
75 kHz  
-30  
-35  
-40  
-24  
-27  
-30  
150 kHz  
300 kHz  
600 kHz  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
20  
30 40 50 70 100  
200 300  
500 700 1000  
Frequency (MHz)  
Frequency (kHz)  
Across LPF corner settings  
Across LNA HPF corner settings  
Figure 12. Full-Channel, Amplitude Response vs  
Frequency  
Figure 13. Full-Channel, Low-Frequency Amplitude  
Response vs Frequency  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK. Device  
settings: gain code = 319 (total gain = 45 dB), LPF filter cutoff frequency = 15 MHz, low-noise mode, 14-bit ADC resolution,  
LVDS interface to capture ADC data, output amplitude VOUT = –1 dBFS, and SNR is measured from 750 kHz to Nyquist  
bandwidth. Minimum and maximum values are specified across the full temperature range.  
5
40  
35  
30  
25  
20  
15  
10  
5
Low Noise  
Medium Power  
Low Power  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
With INM Capacitor of 1mF  
Without INM Capacitor  
0
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (kHz)  
0
40  
80  
120  
160  
200  
240  
280  
319  
Gain Code (LSB)  
Across INM capacitor  
Across power modes  
Figure 15. Input-Referred Noise vs Gain Code  
Figure 14. Full-Channel, Low-Frequency Amplitude  
Response vs Frequency  
3.5  
600  
Low Noise  
Medium Power  
Low Power  
Low Noise  
Medium Power  
Low Power  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.5  
1.5  
0.5  
0
260  
270  
280  
290  
300  
310  
319  
0
40  
80  
120  
160  
200  
240  
280  
319  
Gain Code (LSB)  
Gain Code (LSB)  
Across power modes  
Across power modes  
Figure 16. Input-Referred Noise vs Gain Code (Zoomed)  
Figure 17. Output-Referred Noise vs Gain Code  
5500  
5000  
75 kHz  
150 kHz  
5000  
300 kHz  
600 kHz  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
4000  
3000  
2000  
1000  
0
0
1.5k  
10k  
100k  
1M  
3M  
1.5k  
10k  
100k  
1M  
3.5M  
Frequency (Hz)  
Frequency (Hz)  
Across LNA HPF corner settings  
With INMx capacitor = 1 µF  
Figure 18. Low-Frequency, Output-Referred Noise vs  
Frequency  
Figure 19. Low-Frequency, Output-Referred Noise vs  
Frequency  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Typical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK. Device  
settings: gain code = 319 (total gain = 45 dB), LPF filter cutoff frequency = 15 MHz, low-noise mode, 14-bit ADC resolution,  
LVDS interface to capture ADC data, output amplitude VOUT = –1 dBFS, and SNR is measured from 750 kHz to Nyquist  
bandwidth. Minimum and maximum values are specified across the full temperature range.  
260  
240  
220  
200  
180  
160  
140  
120  
100  
1.6  
1.4  
1.2  
1
0.8  
0.6  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Frequency (MHz)  
Frequency (MHz)  
Figure 20. Input-Referred Noise vs Frequency  
Figure 21. Output-Referred Noise vs Frequency  
70  
68  
66  
64  
62  
60  
58  
56  
6
Low Noise  
Medium Power  
Low Power  
5
4
3
2
1
0
54  
Low Noise  
Medium Power  
52  
Low Power  
50  
6
9
12 15 18 21 24 27 30 33 36 39 42 45  
Gain (dB)  
50  
100  
150  
200  
250  
300  
350  
400  
Source Impedance (W)  
Across power modes  
Across power modes  
Figure 22. Signal-to-Noise Ratio vs Gain  
Figure 23. Noise Figure vs Source Impedance  
-50  
-55  
-60  
-65  
-70  
-75  
-45  
Low Noise  
Medium Power  
Low Power  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
Low Noise  
Medium Power  
Low Power  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Frequency (MHz)  
Frequency (MHz)  
Across power modes  
Across power modes  
Figure 25. Third-Order Harmonic Distortion vs Frequency  
Figure 24. Second-Order Harmonic Distortion vs Frequency  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK. Device  
settings: gain code = 319 (total gain = 45 dB), LPF filter cutoff frequency = 15 MHz, low-noise mode, 14-bit ADC resolution,  
LVDS interface to capture ADC data, output amplitude VOUT = –1 dBFS, and SNR is measured from 750 kHz to Nyquist  
bandwidth. Minimum and maximum values are specified across the full temperature range.  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
Low Noise  
Medium Power  
Low Power  
Low Noise  
Medium Power  
Low Power  
6
9
12 15 18 21 24 27 30 33 36 39 42 45  
Gain (dB)  
6
9
12 15 18 21 24 27 30 33 36 39 42 45  
Gain (dB)  
Across power modes  
Across power modes  
Figure 26. Second-Order Harmonic Distortion vs Gain  
Figure 27. Third-Order Harmonic Distortion vs Gain  
-50  
-50  
fIN1 = 2 MHz, fIN2 = 2.01 MHz  
fIN1 = 5 MHz, fIN2 = 5.01 MHz  
fIN1 = 2 MHz, fIN2 = 2.01 MHz  
fIN1 = 5 MHz, fIN2 = 5.01 MHz  
-55  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
6
9
12 15 18 21 24 27 30 33 36 39 42 45  
Gain (dB)  
6
9
12 15 18 21 24 27 30 33 36 39 42 45  
Gain (dB)  
fOUT1 = –1 dBFS, fOUT2 = –21 dBFS  
fOUT1 = –7 dBFS, fOUT2 = –7 dBFS  
Figure 28. IMD3 vs Gain  
Figure 29. IMD3 vs Gain  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-65  
-70  
Gain Code = 0  
Gain Code = 0  
Gain Code = 153  
Gain Code = 249  
Gain Code = 319  
Gain Code = 153  
Gain Code = 249  
Gain Code = 319  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
5 678 10  
20 30 50 70 100 200 300 500 1000 2000  
Supply Frequency (kHz)  
5 678 10  
20 30 50 70 100 200 300 500 1000 2000  
Supply Frequency (kHz)  
Across gain codes  
Across gain codes  
Figure 30. AVDD_1P9 Power-Supply Modulation Ratio vs  
100-mVPP Supply Noise Frequencies  
Figure 31. AVDD_3P15 Power-Supply Modulation Ratio vs  
100-mVPP Supply Noise Frequencies  
24  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Typical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK. Device  
settings: gain code = 319 (total gain = 45 dB), LPF filter cutoff frequency = 15 MHz, low-noise mode, 14-bit ADC resolution,  
LVDS interface to capture ADC data, output amplitude VOUT = –1 dBFS, and SNR is measured from 750 kHz to Nyquist  
bandwidth. Minimum and maximum values are specified across the full temperature range.  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
25  
Gain Code = 0  
Gain Code = 0  
Gain Code = 153  
Gain Code = 249  
Gain Code = 319  
Gain Code = 153  
Gain Code = 249  
Gain Code = 319  
0
-25  
-50  
-75  
-100  
5 678 10  
20 30 50 70 100 200 300 500 1000 2000  
5 678 10  
20 30 50 70 100 200 300 500 1000 2000  
Supply Frequency (kHz)  
Supply Frequency (kHz)  
Across gain codes  
Across gain codes  
Figure 32. AVDD_1P9 Power-Supply Rejection Ratio vs  
100-mVPP Supply Noise Frequencies  
Figure 33. AVDD_3P15 Power-Supply Rejection Ratio vs  
100-mVPP Supply Noise Frequencies  
14000  
12000  
10000  
8000  
360  
300  
240  
180  
120  
60  
14000  
12000  
10000  
8000  
360  
300  
240  
180  
120  
60  
Output Code  
Gain Code  
Output Code  
Gain Code  
6000  
6000  
4000  
4000  
2000  
0
2000  
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Time(ms)  
D034  
Time(ms)  
D035  
Figure 34. Output and Gain Code Step Response vs Time  
Figure 35. Output and Gain Code Step Response vs Time  
1.2  
10000  
Positive Overload (P)  
Negative Overload (N)  
0.8  
Positive Overload (P)  
Negative Overload (N)  
Average (P+N)  
6000  
1
8000  
0.6  
0.4  
0.2  
0
4000  
2000  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-2000  
-4000  
-6000  
-8000  
-10000  
-1.2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
35  
Time (ms)  
Time (ms)  
For the input in Figure 36, gain = 21 dB, across positive and  
negative overload  
Figure 37. Device Pulse Inversion Output vs Time  
Figure 36. Pulse Inversion Asymmetrical Input vs Time  
Copyright © 2015–2017, Texas Instruments Incorporated  
25  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK. Device  
settings: gain code = 319 (total gain = 45 dB), LPF filter cutoff frequency = 15 MHz, low-noise mode, 14-bit ADC resolution,  
LVDS interface to capture ADC data, output amplitude VOUT = –1 dBFS, and SNR is measured from 750 kHz to Nyquist  
bandwidth. Minimum and maximum values are specified across the full temperature range.  
10000  
8000  
6000  
4000  
2000  
0
800  
600  
400  
200  
0
Positive Overload (P)  
Negative Overload (N)  
Average (P+N)  
-2000  
-4000  
-6000  
-8000  
-10000  
-200  
-400  
-600  
-800  
0
5
10 15 20 25 30 35 40 45 50 55 60  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (ms)  
Time (ms)  
For the input in Figure 36, gain = 21 dB, across positive and  
negative overload  
VIN = large amplitude (50 mVPP  
followed by small amplitude (500 µVPP  
)
)
Figure 38. Device Pulse Inversion Output vs Time (Zoomed)  
Figure 39. Output Code Overload Recovery vs Time  
2000  
1600  
1200  
800  
10  
0
-10  
400  
-20  
HPF_CORNER_CHxy = 2  
HPF_CORNER_CHxy = 3  
0
-30  
-40  
-50  
-60  
HPF_CORNER_CHxy = 4  
HPF_CORNER_CHxy = 5  
HPF_CORNER_CHxy = 6  
HPF_CORNER_CHxy = 7  
HPF_CORNER_CHxy = 8  
HPF_CORNER_CHxy = 9  
HPF_CORNER_CHxy = 10  
-400  
-800  
-1200  
-1600  
-2000  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.01  
0.05  
0.2 0.5  
1
2 3 45 710 20 50 100 200  
Time (ms)  
Frequency (MHz)  
VIN = large amplitude (50 mVPP  
)
Across digital HPF corner settings  
followed by small amplitude (500 µVPP  
)
Figure 40. Output Code Overload Recovery vs Time  
(Zoomed)  
Figure 41. Digital High-Pass Filter Gain Response vs  
Frequency  
110  
70  
Low Noise  
Medium Power  
Low Power  
Low Noise  
Medium Power  
Low Power  
100  
90  
80  
70  
60  
50  
60  
50  
40  
30  
20  
0
40  
80  
120  
160  
200  
240  
280  
319  
0
40  
80  
120  
160  
200  
240  
280  
319  
Gain Code (LSB)  
Gain Code (LSB)  
D045  
D060  
Across power modes  
Figure 42. Device Power vs Gain Code  
Across power modes  
Figure 43. VCA Power vs Gain Code  
26  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Typical Characteristics: TGC Mode (continued)  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal is ac-coupled to INP with a 10-nF capacitor and is applied  
with source resistance RS = 50 Ω at frequency fIN = 5 MHz, and a 50-MHz differential clock is applied on ADC_CLK. Device  
settings: gain code = 319 (total gain = 45 dB), LPF filter cutoff frequency = 15 MHz, low-noise mode, 14-bit ADC resolution,  
LVDS interface to capture ADC data, output amplitude VOUT = –1 dBFS, and SNR is measured from 750 kHz to Nyquist  
bandwidth. Minimum and maximum values are specified across the full temperature range.  
38  
36  
34  
32  
30  
28  
26  
24  
22  
550  
500  
450  
400  
350  
300  
250  
200  
150  
ADC Resolution 12 bit  
ADC Resolution 14 bit  
Low Noise  
Medium Power  
Low Power  
10  
20  
30  
40  
50  
60  
70  
80  
0
40  
80  
120  
160  
200  
240  
280  
319  
ADC Sample Rate (MHz)  
Gain Code (LSB)  
D063  
Across ADC resolution  
Across power modes  
Figure 44. ADC Power vs ADC Sample Rate  
Figure 45. AVDD_1P9 Supply Current vs Gain Code  
170  
18.2  
AVDD_1P8  
DVDD_1P8  
DVDD_1P2  
Low Noise  
Medium Power  
Low Power  
160  
150  
18.15  
18.1  
18.05  
18  
140  
130  
120  
110  
100  
90  
80  
70  
17.95  
17.9  
60  
50  
40  
0
40  
80  
120  
160  
200  
240  
280  
319  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
ADC Sample Rate (MHz)  
Gain Code (LSB)  
Across power modes  
12-bit resolution  
Figure 46. AVDD_3P15 Supply Current vs Gain Code  
Figure 47. AVDD_1P8, DVDD_1P8 and DVDD_1P2 Supply  
Current vs ADC Sample Rate  
160  
100  
AVDD_1P8  
DVDD_1P8  
Low Noise  
Medium Power  
150  
95  
140  
130  
120  
110  
100  
90  
DVDD_1P2  
Low Power  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
80  
70  
60  
50  
40  
10 15 20 25 30 35 40 45 50 55 60 65  
ADC Sample Rate (MHz)  
10 15 20 25 30 35 40 45 50 55 60 65  
ADC Sample Rate (MHz)  
D051  
14-bit resolution  
For all power modes  
Figure 48. AVDD_1P8, DVDD_1P8 and DVDD_1P2 Supply  
Current vs ADC Sample Rate  
Figure 49. Total Power Dissipation vs ADC Sample Rate  
Copyright © 2015–2017, Texas Instruments Incorporated  
27  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.11 Typical Characteristics: CW Mode  
At TA = 25°C, unless otherwise noted. Supply: AVDD_1P8 = 1.8 V, AVDD_1P9 = 1.9 V, AVDD_3P15 = 3.15 V, DVDD_1P2 =  
1.2 V, and DVDD_1P8 = 1.8 V. Input to the device: input signal = 2 MHz, CW_CLK1X = 2-MHz differential, and  
CW_CLK_NX = 32-MHz differential. Device settings: CW clock mode = 16X, and 1X and 16X clock buffer in differential  
mode, and ADC in power-down mode. Minimum and maximum values are specified across the full temperature range.  
3
0
-140  
-142  
-144  
-146  
-148  
-150  
-152  
-154  
-156  
-158  
-160  
16X Clock Mode  
8X Clock Mode  
4X Clock Mode  
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
75 kHz  
150 kHz  
300 kHz  
600 kHz  
20  
30 40 50 70 100  
200 300  
500 700 1000  
100 200300 500 1000 2000  
5000 10000 20000 50000  
Frequency (kHz)  
Frequency (Hz)  
Across LNA HPF corner settings  
fIN = 2 MHz, one channel across CW clock modes  
Figure 50. Full-Channel, Low-Frequency Amplitude  
Response vs Frequency  
Figure 51. CW Phase Noise vs Frequency  
-142  
-144  
Phase Noise 1 Channel  
Phase Noise 16 Channels  
-146  
16X Clock Mode  
8X Clock Mode  
4X Clock Mode  
-144  
-146  
-148  
-148  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
100 200300 500 1000 2000  
5000 10000 20000 50000  
100 200300 500 1000 2000  
5000 10000 20000 50000  
Frequency (Hz)  
Frequency (Hz)  
fIN = 2 MHz, across one channel and 16 channels  
fIN = 2 MHz, 16 channels across CW clock modes  
Figure 52. CW Phase Noise vs Frequency  
Figure 53. CW Phase Noise vs Frequency  
450  
425  
400  
375  
350  
72  
68  
64  
60  
56  
61  
AVDD_1P9 Current  
AVDD_3P15 Current  
60  
59  
58  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
CW_CLK1X (MHz)  
CW_CLK1X (MHz)  
Across all CW clock modes  
Figure 54. AVDD_1P9 and AVDD_3P15 Supply Current vs  
CW Clock Frequency  
Figure 55. Power vs CW 1X Clock Frequency  
28  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9 Detailed Description  
9.1 Overview  
The AFE5816 is a highly-integrated, analog front-end (AFE) solution specifically designed for ultrasound systems  
where high performance and higher integration are required. The device integrates a complete time-gain  
compensation (TGC) imaging path and a continuous-wave Doppler (CWD) path. The device also enables users  
to select from a variety of power and noise combinations to optimize system performance. The device contains  
16 dedicated channels, each comprising an attenuator, low-noise amplifier (LNA), low-pass filter (LPF), and  
either a 14-bit or 12-bit analog-to-digital converter (ADC). At the output of the 16 ADCs is a low-voltage  
differential signaling (LVDS) serializer to transfer digital data. In addition, the device also contains a continuous  
wave (CW) mixer. Multiple features in the device are suitable for ultrasound applications (such as programmable  
termination, individual channel control, fast power-up and power-down response, fast and consistent overload  
recovery, and integrated digital processing). Therefore, this device brings premium image quality to ultra-  
portable, handheld systems all the way up to high-end ultrasound systems. In addition, the signal chain of the  
device can handle signal frequencies as low as 10 kHz and as high as 25 MHz. This broad analog frequency  
range enables the device to be used in both sonar and medical applications; see the Functional Block Diagram  
section for a simplified function block diagram.  
Copyright © 2015–2017, Texas Instruments Incorporated  
29  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.2 Functional Block Diagram  
VCM  
BIAS_2P5  
Reference Voltage/  
Current Generator  
BAND_GAP  
LNA_INCM  
SRC_BIAS  
TR_EN<1>  
INP1  
INP_SOURCE  
!ÇÇ9bÜ!Çhw  
LPF  
10, 15,  
LNA  
with  
10nF  
+
ADC 1  
œ
HPF  
20, 25 MHz  
INM1  
TGC CONTROL  
CW  
Mixer  
10nF  
LVDS  
CW_CH1  
DOUTP1  
CW_CLOCK  
16X16 Cross  
point SW  
DOUTM1  
DOUTP2  
DOUTM2  
INP2  
TR_EN<1>  
INP_SOURCE  
!ÇÇ9bÜ!Çhw  
LPF  
10, 15,  
LNA  
with  
10nF  
+
ADC 2  
œ
HPF  
20, 25 MHz  
INM2  
TGC CONTROL  
CW  
Mixer  
10nF  
CW_CH2  
DOUTP16  
DOUTM16  
CW_CLOCK  
16X16 Cross  
point SW  
FCLKP  
FCLKM  
DCLKP  
DCLKM  
INP_SOURCE  
TR_EN<4>  
INP16  
!ÇÇ9bÜ!Çhw  
LPF  
10, 15,  
LNA  
with  
10nF  
+
ADC 16  
œ
HPF  
20, 25 MHz  
INM16  
TGC CONTROL  
CW  
Mixer  
10nF  
CW_CH16  
CW_CLOCK  
16X16 Cross  
point SW  
TR_EN<1>  
TR_EN<2>  
TR_EN<3>  
TR_EN<4>  
TR_EN<1>  
TR_EN<2>  
TR_EN<3>  
TR_EN<4>  
TGC  
CONTROL  
CW_CLOCK  
Clock  
Generator  
TGC Control  
Engine  
SERIAL  
INTERFACE  
CLKP_16x  
SYNC GEN  
SDOUT  
CLKM_16x  
16 Phase  
Generator  
CLKP_1x  
CLKM_1x  
CW_IP/QP_OUTP/M  
30  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3 Feature Description  
The device supports two signal chains: TGC mode and CW mode. Table 2 describes the functionality of various  
blocks in CW and TGC mode.  
Table 2. Various Block Functionality in TGC and CW Mode  
TGC MODE  
CW MODE  
BLOCK  
ENABLED,  
DISABLED  
ENABLED,  
DISABLED  
COMMENT  
COMMENT  
Attenuator supports attenuation  
range of 8 dB to 0 dB  
In CW mode, the attenuator is disabled  
automatically  
Attenuator  
Enabled  
Enabled  
Disabled  
Disabled  
Attenuator high-pass  
filter  
Low-noise amplifier  
(LNA)  
LNA supports gain range of 14 dB  
to 45 dB  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
LNA supports a fixed gain of 18 dB  
LNA high-pass filter  
In CW mode, the LPF is disabled  
automatically  
Low pass filter (LPF)  
In CW mode, the DTGC is disabled  
automatically  
Digital TGC (DTGC)  
Enabled  
Enabled  
Disabled  
Enabled  
In CW mode, the ADC remains active.  
The ADC can be powered down in CW  
mode using a power-down pin or power-  
down register bit.  
Analog-to-digital  
converter (ADC)  
9.3.1 Attenuator  
The first stage of the signal chain is an attenuator followed by a low-noise amplifier (LNA). Fundamentally, an  
attenuator functions as a time-varying passive termination. In ultrasound imaging systems, near-field reflected  
signals are of very high amplitude. This high-amplitude signal can be attenuated using an attenuator in order to  
bring the signal amplitude down to within the LNA input amplitude range. The attenuator supports time-gain  
compensation [that is, the attenuation level is from –8 dB to 0 dB with time in steps of 0.125 dB (64 steps)]. The  
attenuation level is controlled by the TGC control engine in the device.  
9.3.1.1 Implementation  
The attenuator is implemented as a resistor divider network that uses the principle of voltage division between a  
source resistance (RS) and attenuator resistance (RATTEN); see Figure 56. At the signal frequency, attenuation  
provided by this resistor network is given by Equation 1:  
VINP  
RATTEN  
Attenuation =  
=
VINP_SOURCE RS+RATTEN  
(1)  
Copyright © 2015–2017, Texas Instruments Incorporated  
31  
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Device  
TGC Control Engine  
INP  
INP_SOURCE  
RS  
CINP = 10 nF  
LNA Input  
INP-INM  
LNA  
RATTEN  
CINM = 10 nF  
INM  
Transducer  
CINM_EXT  
Optional  
Figure 56. Attenuator Block Diagram  
In Equation 1, the value of the RATTEN resistor is controlled by the TGC control engine. Further details of the TGC  
control engine are provided in the Digital TGC (DTGC) section. The correct RATTEN network must be selected for  
a given RS using the INP_RES_SEL register because attenuation is a function of both source resistance (RS)  
and attenuator resistance (RATTEN). The range of input resistance RS supported is listed in Table 122.  
NOTE  
The attenuator block remains active only in TGC mode. The attenuator block is disabled in  
CW mode.  
9.3.1.2 Maximum Signal Amplitude Support  
In TGC mode, the maximum input signal amplitude of the low-noise amplifier is approximately 400 mVPP. In  
Figure 56, the source is modeled as a voltage source at the INP_SOURCE node in series with its (source)  
impedance RS. The attenuation is achieved by the voltage division between the series combination of the source  
impedance RS and the attenuator resistance a RATTEN. Therefore, the maximum signal amplitude supported at  
the INP_SOURCE node is given by 400 mVPP divided by the attenuation. For a given value of source resistance  
RS, the attenuator provides the maximum attenuation of 8 dB. Thus, the maximum signal supported at the  
INP_SOURCE node is 1 VPP  
.
9.3.1.3 Attenuator High-Pass Filter (ATTEN HPF)  
A high-pass filter can be realized through the attenuator. The frequency response of the high-pass filter is  
governed by the CINM (internal to the device), CINM_EXT (optional and external to the device), and CINP (external  
ac-coupling capacitor) capacitors, and the source resistance RS and attenuator resistance RATTEN  
.
For the input circuit shown in Figure 56, the LNA input is given by Equation 2:  
CINPìCINM_ T  
CINP+CINM_ T  
sì R +R  
ì
)
«
÷
÷
(
)
S
ATTEN  
VINP-VINM  
VINP_SOURCE RS+RATTEN  
RATTEN  
=
ì
CINPìCINM_ T  
1+ sì R +R  
ì
«
÷
÷
(
S
ATTEN  
CINP+CINM_ T  
where  
CINM_T represents the total capacitor (= CINM + CINM_EXT) at the INM node.  
(2)  
32  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Equation 2 describes a high-pass response with a corner frequency given by Equation 3:  
[1 / (RS + RATTEN)] × [(CINP + CINM_T) / ( CINP × CINM_T)]  
(3)  
Therefore, when RATTEN changes with the TGC, the HPF cutoff frequency also changes.  
Figure 57 shows typical values of RATTEN across attenuation and INP_RES_SEL settings. Figure 58 and  
Figure 59 show the HPF corner frequency across attenuation and INP_RES_SEL settings for CINP = CINM_T  
=
10 nF and CINP = CINM_T = 1 µF, respectively. For low-frequency application systems (for example, sonar systems  
that require a very-low, high-pass filter corner), larger value capacitors of CINP and CINM_EXT can be used in order  
to reduce the HPF corner frequency.  
7000  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
50  
50  
100  
200  
400  
800  
100  
200  
400  
800  
50  
25  
0
0
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
Attenuation (dB)  
Attenuation (dB)  
Across INP_RES_SEL register settings  
Across INP_RES_SEL register settings, CINP = CINM_T = 10 nF  
Figure 57. Attenuation Resistance vs Attenuation  
Figure 58. HPF Corner vs Attenuation  
4
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
50  
100  
200  
400  
800  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
Attenuation (dB)  
Across INP_RES_SEL register settings, CINP = CINM_T= 1 µF  
Figure 59. HPF Corner vs Attenuation  
9.3.2 Low-Noise Amplifier (LNA)  
In many high-gain systems, a LNA is critical to achieve overall performance. The device uses a proprietary  
architecture and a metal-oxide-semiconductor field-effect transistor (MOSFET) input transistor to achieve  
exceptional low-noise performance when operating on a low-quiescent current. The LNA takes a single-ended  
input signal and converts it to a differential output signal.  
9.3.2.1 Input Signal Support in TGC Mode  
In TGC mode, the LNA supports time-gain compensation [that is, the LNA gain can be changed from 14 dB to  
45 dB in steps of 0.125 dB (256 steps total) with time]. Similar to the attenuator, the LNA gain is also controlled  
by the TGC control engine.  
In TGC mode, the maximum differential swing supported at the LNA output is 2 VPP. Therefore, the maximum  
swing supported at the LNA input is given by 2 VPP divided by the LNA gain. For an LNA gain of 14 dB, the  
maximum swing supported at the LNA input is 400 mVPP  
.
Copyright © 2015–2017, Texas Instruments Incorporated  
33  
 
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.3.2.2 Input Signal Support in CW Mode  
In CW mode, the LNA is automatically configured to a 18-dB, fixed-gain mode. In CW mode, the LNA supports a  
maximum linear input range of 300 mVPP  
.
9.3.2.3 Input Circuit  
In both CW and TGC modes, the LNA input pin (INPx) is internally biased at approximately 1 V. AC-couple the  
input signal to the INPx pin with an adequately-sized capacitor, CINP; a 10-nF capacitor is recommended. For  
low-frequency applications, a 1-µF capacitor is recommended for both CINP and CINM_EXT. The electrical interface  
of the input attenuator and the LNA to the external world is shown in Figure 60.  
DEVICE  
TGC Control Engine  
INPx  
+
TR_EN<x>  
CINP  
LNA  
RATTEN  
INMx  
-
CINM = 10 nF  
CINM_EXT  
LPF  
Figure 60. Device Input Circuit  
9.3.2.4 LNA High-Pass Filter (LNA HPF)  
The LPF circuit in Figure 60 is a low-pass transfer function between the positive and negative inputs of the LNA.  
The LPF results in a high-pass transfer function between the LNA input and output and can be used to reject  
unwanted low-frequency leakage signal from the transducer. The high-pass filter in the LNA is active for both CW  
and TGC mode. The effective corner frequency of the HPF is determined by the capacitor connected at the INMx  
pin of the device. Internal to the device, a 10-nF capacitor is connected at the INMx node. A large capacitor  
(such as 1 μF) can be connected externally at the INMx pin for setting the low corner frequency (< 2 kHz) of the  
LNA dc offset correction circuit. By default, a capacitor is not required to be connected at the INMx pin. To  
disable this HPF, set the LNA_HPF_DIS register bit to 1. This bit powers down the unity feedback buffer  
connected between positive and negative input of the LNA shown in Figure 60. For a given INMx capacitor, the  
corner frequency of the HPF can be programmed using the LNA_HPF_PROG bit. Table 3 lists the HPF corner  
frequency as a function of the CINM_EXT capacitor connected at the INMx pin across various LNA_HPF_PROG bit  
settings.  
Table 3. HPF Corner Programming Bits  
HPF CORNER WITHOUT CONNECTING A  
CAPACITOR AT THE INMx PIN  
HPF CORNER WITH A CINM_EXT CAPACITOR  
CONNECTED AT THE INMx PIN  
LNA_HPF_PROG  
00  
01  
10  
11  
75 kHz  
150 kHz  
300 kHz  
600 kHz  
75 kHz × 10 nF / (10 nF + CINM_EXT)  
150 kHz × 10 nF / (10 nF + CINM_EXT  
300 kHz × 10 nF / (10 nF + CINM_EXT  
600 kHz × 10 nF / (10 nF + CINM_EXT  
)
)
)
34  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.2.4.1 Disconnecting the LNA HPF During Overload  
In ultrasound systems, the device detects a large-amplitude, overloaded signal during transmit phase. The AFE  
used for such systems is expected to quickly switch from a high overloaded state to a normal state.  
To implement a very low LNA high-pass filter corner, the device uses a large capacitor at the INMx node. The  
INMx node voltage changes as a result of the large overload signal, which ultimately leads to a low-frequency  
settling at the device output. To avoid any significant disturbance on the INMx node voltage change resulting  
from an overloaded input signal, the LNA HPF circuit can be disconnected from the INPx pin by using a series  
switch; see Figure 60. This switch is controlled by the TR_EN<x>pins (TR_EN<1>, TR_EN<2>, TR_EN<3>, and  
TR_EN<4> control channels 1 to 4, 5 to 8, 9 to 13, and 14 to 16, respectively). Figure 61 shows an example of  
TR_EN<x> control signals. Figure 62, Figure 63, Figure 64, and Figure 65 illustrate a positive overload input  
signal, negative overload input signal, and the corresponding device output for both without and with TR_EN<x>  
pin functionality, respectively. The TR_EN<x> pin functionality refers to using a low-going pulse on TR_EN<x>  
during an overload input signal to disconnect the LNA HPF. This functionality is useful when there is not a low-  
frequency signal immediately after an overload signal.  
Input Signal  
Overload  
Signal  
1.8  
TR_EN<x>  
0
Figure 61. TR_EN Control Signal  
1.2  
1.05  
0.9  
1.2  
1.05  
0.9  
0.75  
0.6  
0.75  
0.6  
0.45  
0.3  
0.45  
0.3  
0.15  
0
0.15  
0
-0.15  
-0.3  
-0.45  
-0.6  
-0.75  
-0.9  
-1.05  
-1.2  
-0.15  
-0.3  
-0.45  
-0.6  
-0.75  
-0.9  
-1.05  
-1.2  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
Time (ms)  
Time (ms)  
Figure 62. Pulse Inversion Positive Input vs Time  
Figure 63. Pulse Inversion Negative Input vs Time  
Copyright © 2015–2017, Texas Instruments Incorporated  
35  
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
10000  
10000  
8000  
6000  
4000  
2000  
0
Positive Overload  
Negative Overload  
Positive Overload  
Negative Overload  
8000  
6000  
4000  
2000  
0
-2000  
-4000  
-6000  
-8000  
-10000  
-2000  
-4000  
-6000  
-8000  
-10000  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
Time (ms)  
Time (ms)  
Figure 64. Overload Recovery Output vs Time Without  
TR_EN Functionality  
Figure 65. Overload Recovery Output vs Time with TR_EN  
Functionality  
9.3.2.5 LNA Noise Contribution  
The noise specification is critical for the LNA and determines the dynamic range of the entire system. The device  
LNA achieves low power, an exceptionally low-noise voltage of 0.95 nV/Hz at 45-dB gain, and a low-current  
noise of 1.2 pA/Hz in low-noise mode.  
Voltage noise is the dominant source of noise; however, the LNA current noise flowing through the source  
impedance (RS) generates additional voltage noise. The total LNA noise can be computed with Equation 4.  
LNA _Noisetotal  
=
VL2NAnoise +RS2 ìIL2NAnoise  
(4)  
The device achieves a low noise figure (NF) over a wide range of source resistances; see Figure 23.  
9.3.3 High-Pass Filter (HPF)  
Two high-pass filters (HPFs) exist in the signal chain. The first high-pass filter is the HPF that is part of the input  
attenuator and the other filter is the HPF in the low-noise amplifier (LNA). In the preceding sections (see the LNA  
High-Pass Filter (LNA HPF) and Attenuator High-Pass Filter (ATTEN HPF) sections) the HPF corner expression  
of the attenuator and LNA is explained, assuming only a single HPF is active at a time. If both HPFs are enabled  
at the same time, the overall HPF corner is approximately given by the maximum of the two corner frequencies.  
For instance, if the HPF corner of the attenuator is (fATTEN) Hz and the HPF corner of the LNA is (fLNA) Hz, the  
overall HPF corner is given by the maximum of (fATTEN, fLNA) Hz. In CW mode, the attenuator HPF is disabled  
and the LNA HPF remains active so the overall HPF corner is given by fLNA  
.
9.3.4 Low-Pass Filter (LPF)  
In TGC mode, the LNA output is fed to a low-pass filter (LPF). The LPF is designed as a differential, active, third-  
order filter with Butterworth characteristics and a typical 18 dB per octave roll-off. Programmable through the  
serial interface, the –3-dB corner frequency can be set to different combinations across power modes, as shown  
in Table 4. The filter bandwidth is set for all channels simultaneously.  
Note that in CW mode, the LPF is automatically disabled.  
Table 4. LPF Corner Frequency Combinations  
POWER MODE  
Low noise  
LPF CORNER FREQUENCY (MHz)  
10, 15, 20, 25  
Medium power  
Low power  
10, 15, 20, 25  
5, 7.5, 10, 12.5  
36  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.5 Digital TGC (DTGC)  
This section discusses the operation of the digital TGC control engine. The DTGC is relevant only in TGC mode;  
see the DTGC Register Map for register settings and descriptions.  
9.3.5.1 DTGC Overview  
As described previously, the device consists of a programmable attenuator, a variable-gain LNA, and a TGC  
control engine that controls the gain of the device, as shown in Figure 66. In combination, these blocks can be  
used to implement a digital time gain control (DTGC) scheme. The attenuator block attenuation can be changed  
from 8 dB to 0 dB in 0.125-dB steps (64 steps) and the LNA gain can be changed from 14 dB to 45 dB in  
0.125-dB steps (256 steps). Thus, the total channel gain can be varied from 6 dB to 45 dB in 0.125-dB steps  
(320 steps). These gain settings are controlled as a function of time based on the different profile settings of the  
TGC control engine. The TGC control engine operates on the same clock as the ADC_CLK.  
Input  
Attenuator  
LNA  
Output  
ADC_CLK  
TGC Control Engine  
Figure 66. Digital TGC  
9.3.5.2 DTGC Programming  
Various functions of the digital TGC operation can be programmed using the registers listed in the DTGC  
Register Map. To program register settings in the DTGC register map, set the DTGC_WR_EN bit to 1.  
9.3.5.2.1 DTGC Profile  
The TGC engine supports four different modes (programmable fixed-gain, up, down ramp, external non-uniform,  
and internal non-uniform mode) to change the device gain with time. The gain versus time curve for each mode  
is set using a set of combined parameters referred to as a profile. Four such profiles can be programmed in  
advance, which enables a given mode to switch between one of four profiles based on either a pin control or  
based on a single register control. Table 5 shows the profile mapping with register bits.  
Table 5. Profile Registers Address  
PROFILE  
REGISTER BITS IN THE DTGC REGISTER MAP  
0
1
2
3
Registers 161 (bits 15-0), 162 (bits 15-0), 163 (bits 15-0), 164 (bits 15-0), 165 (bits 15-0), and 185 (bits 15-8)  
Registers 166 (bits 15-0), 167 (bits 15-0), 168 (bits 15-0), 169 (bits 15-0), 170 (bits 15-0), and 185 (bits 7-0)  
Registers 171 (bits 15-0), 172 (bits 15-0), 173 (bits 15-0), 174 (bits 15-0), 175 (bits 15-0), and 186 (bits 15-8)  
Registers 176 (bits 15-0), 177 (bits 15-0), 178 (bits 15-0), 179 (bits 15-0), 180 (bits 15-0), and 186 (bits 7-0)  
Copyright © 2015–2017, Texas Instruments Incorporated  
37  
 
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.3.5.2.1.1 Profile Selection  
When programmed, there are two ways that any one of the four profiles can be selected and switched to  
program the settings in the TGC mode: either with the device pin or by register settings.  
1. Device pin. To select the profile using pin control, set the PROFILE_EXT_DIS bit to 0. Then, the different  
combinations of logic level at the TGC_PROF<2> and TGC_PROF<1> pins listed in Table 6 dictate which  
profile is selected.  
2. Register settings. To select the profile with register settings, set the PROFILE_EXT_DIS bit to 1. Then, the  
different combinations of the PROFILE_REG_SEL bits listed in Table 6 dictate which profile must be used to  
program the corresponding TGC mode.  
Table 6. Profile Selection Using the Device Pin or the PROFILE_REG_SEL Bits  
PIN CONTROL (PROFILE_EXT_DIS = 0)  
REGISTER CONTROL (PROFILE_EXT_DIS = 1)  
SELECTED PROFILE  
TGC_PROF<2>  
TGC_PROF<1>  
PROFILE_REG_SEL  
0
0
1
1
0
1
0
1
00  
01  
10  
11  
Profile 0  
Profile 1  
Profile 2  
Profile 3  
9.3.5.3 DTGC Modes  
The device supports four schemes to change the device gain. These schemes are referred to as the four DTGC  
modes. The device can be programmed in any of these modes by using the MODE_SEL register bit, as shown in  
Table 7.  
Table 7. DTGC Modes  
MODE_SEL REGISTER BITS SETTING  
DTGC MODE  
Programmable fixed-gain  
Up, down ramp  
10  
01  
00  
11  
External non-uniform  
Internal non-uniform  
9.3.5.3.1 Programmable Fixed-Gain Mode  
In this mode, the device gain is set directly by writing a gain code in the MANUAL_GAIN_DTGC register. See  
Figure 2 for a description of device gain versus gain code across power modes. Note that the allowed value of  
the gain code is from 0 to 319. The gain codes from 0 to 63 control the attenuator and the codes from 64 to 319  
control the LNA. If the gain code is programmed outside the 0 to 319 range, then the gain code value  
automatically becomes 0.  
For Low-Noise or Medium-Power mode: Gain = 6 + Gain code × 0.125  
For Low-Power mode: Gain = 12 + Gain code × 0.125  
38  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.5.3.2 Up, Down Ramp Mode  
Figure 67 shows the change in device gain with time in the up, down ramp mode. This mode generates an  
ascending gain ramp followed by a descending gain ramp.  
Down gain ramp  
Stage  
Up gain ramp  
Stage  
Start  
Stage  
Stop  
Stage  
Start  
Stage  
Positive Step  
Frequency  
Negative Step  
Frequency  
Stop Gain  
Positive Step  
Negative Step  
Start Gain  
Start Gain  
Start TGC  
Stop TGC  
Time  
TGC_SLOPE  
TGC_UP_DN  
TGC profile changes are not  
reflected in this region.  
Figure 67. Up, Down Ramp Mode  
The different stages of the up, down ramp mode are:  
1. Start: At device reset or a DTGC mode change (that is, when changing the DTGC mode to any other mode  
and returning to up, down ramp mode), the device gain is equal to the start gain.  
2. Up gain ramp. The up gain ramp stage starts when the TGC_SLOPE pin voltage level goes high. During the  
up gain ramp stage, the device gain increases by a positive step at the rate of the positive step frequency.  
3. Stop gain. Any device gain in the up gain ramp stage keeps increasing until a stop gain stage is reached.  
Any pules given at the TGC_SLOPE or TGC_UP_DN pins during the up gain ramp stage are ignored.  
4. Down gain ramp. The down gain ramp stage starts when the TGC_UP_DN pin voltage level goes high.  
During the down gain ramp stage, the device gain decreases by a negative step at the rate of the negative  
step frequency. Any device gain in the down gain ramp stage keeps decreasing until a gain reaches the  
value specified by start gain. Thereafter, the TGC curve proceeds to the start stage.  
5. Profile. Different parameters (such as start gain, positive step, positive step frequency, and so forth) of  
different gain stages are programmed with profile registers. A single profile consists of five 16-bit registers  
and one 8-bit register that can be programmed with the serial interface registers. The functions of these  
registers in up, down ramp mode are listed in Table 8. Note that changing the profile number updates the  
parameters only during the start gain stage.  
6. Timing requirement. See the section for timing requirements on the TGC_SLOPE and TGC_UP_DN pins  
with respect to the ADC clock.  
Copyright © 2015–2017, Texas Instruments Incorporated  
39  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 8. Profile Description for Up, Down Ramp Mode  
REGISTER CONTROL  
NOTATION IN  
REGISTER  
MAP  
DEFAULT ALLOWED  
NAME  
DESCRIPTION  
VALUE  
RANGE  
PROFILE 0 PROFILE 1 PROFILE 2 PROFILE 3  
These bits set the gain code for the  
start gain. For an N value (in decimal),  
these bits set the start gain stage to  
(6 + N × 0.25) dB.(1)  
161  
(bits 15-8)  
166  
(bits 15-8)  
171  
(bits 15-8)  
176  
(bits 15-8)  
START_GAIN_x  
[15:8]  
Start gain  
0
0 to 159  
These bits set the gain code for the  
stop gain. For an N value, these bits  
set the stop gain stage to  
161  
(bits 7-0)  
166  
(bits 7-0)  
171  
(bits 7-0)  
176  
(bits 7-0)  
Stop gain  
STOP_GAIN_x[7:0]  
159  
0 to 159  
(6 + N × 0.25) dB.(1)  
162  
167  
172  
177  
Positive  
step  
For an N value, these bits set the  
positive step to (N + 1) × 0.125 dB.  
POS_STEP_x[7:3]  
POS_STEP_x[2:0]  
NEG_STEP_x[7:3]  
NEG_STEP_x[2:0]  
0
0
0 to 31(2)  
0 to 7  
(bits 15-11) (bits 15-11) (bits 15-11) (bits 15-11)  
For an N value, gain steps at a  
periodicity of [fS / 2(7 – N)]. Where fS is  
the ADC clock frequency.(1)  
Positive  
step  
frequency  
162  
(bits 10-8)  
167  
(bits 10-8)  
172  
(bits 10-8)  
177  
(bits 10-8)  
162  
(bits 7-3)  
167  
(bits 7-3)  
172  
(bits 7-3)  
177  
(bits 7-3)  
Negative  
step  
For an N value, these bits set the  
31  
7
0 to 31  
0 to 7  
negative step to (N + 1) × 0.125 dB.(1)  
For an N value, gain steps at a  
periodicity of [fS / 2(7 – N)]. Note that fS  
is the ADC clock frequency.(1)  
Negative  
step  
frequency  
162  
(bits 2-0)  
167  
(bits 2-0)  
172  
(bits 2-0)  
177  
(bits 2-0)  
163 to 165 168 to 170 173 to 175 178 to 180  
0
N/A  
(bits 15-0)  
(bits 15-0)  
(bits 15-0)  
(bits 15-0)  
185  
185  
186  
186  
0 = Default  
1 = Enable fixed attenuation mode  
FIX_ATTEN_x  
0 to 1  
(bit 15)  
(bit 7)  
(bit 15)  
(bit 7)  
When the FIX_ATTEN_EN_x bit is set  
to 1, the attenuation level of the  
attenuator block is set by the  
ATTENUATION_0 bits. A value of N  
written in the ATTENUATION_x  
register sets the attenuation level at  
–8 + N × 0.125 dB.(1)  
185  
(bits 14-8)  
185  
(bits 6-0)  
186  
(bits 14-8)  
186  
(bits 6-0)  
ATTENUATION_x  
0
0 to 64  
(1) N refers to the decimal equivalent of the multi-bit word.  
(2) Best image quality is achieved with a value of N = 0 (positive step of 0.125 dB). Using a higher positive step can result in glitches at the  
gain transitions, causing a reduction in image quality.  
40  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.5.3.3 External Non-Uniform Mode  
Figure 68 shows the change in device gain with time in external non-uniform mode. This mode generates an  
ascending gain ramp followed by a descending gain ramp. This mode can be made to generate a non-uniform  
gain profile using appropriate controls on the TGC_SLOPE and TGC_UP_DN pins.  
Start Stage  
Increase or decrease gain stage  
Start Stage  
Stop Gain  
Positive Step  
Negative Step  
Start Gain  
Time  
TGC_SLOPE  
TGC_UP_DN  
1.8 V  
0 V  
Figure 68. External Non-Uniform Mode  
The different stages of the external non-uniform mode are:  
1. Start: At device reset or a DTGC mode change (that is, when changing the DTGC mode to any other mode  
and returning to external non-uniform mode), the device gain is equal to the start gain.  
2. Increase or decrease gain. When a positive edge transition is received on the device TGC_SLOPE pin, the  
device gain increases or decreases by either a positive step or negative step based on the TGC_UP_DN pin  
voltage level. If the TGC_UP_DN pin is set to a level 0, device gain increases and if the TGC_UP_DN pin is  
set to 1, device gain decreases. The signal frequency at the TGC_SLOPE pin must be less than or equal to  
the ADC clock.  
3. Profile. Different parameters (such as start gain, positive step, negative step, and so forth) of different gain  
stages are programmed with profile registers. A single profile consists of five 16-bit registers and one 8-bit  
register that can be programmed with the serial programming interface (SPI). The functions of these registers  
in external non-uniform mode are listed in Table 9. Note that changing the profile number updates the  
parameters at any stage of the gain curve.  
4. Timing requirement. See the section for timing requirements on the TGC_SLOPE and TGC_UP_DN pins  
with respect to the ADC clock.  
Copyright © 2015–2017, Texas Instruments Incorporated  
41  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 9. Profile Description for External Non-Uniform Mode  
REGISTER CONTROL  
BIT IN  
REGISTER  
MAP  
DEFAULT ALLOWED  
NAME  
DESCRIPTION  
VALUE  
RANGE  
PROFILE 0 PROFILE 1 PROFILE 2 PROFILE 3  
These bits set the gain code for the  
start gain stage. For an N value (in  
decimal), these bits set the start gain  
stage to (6 + N × 0.25) dB.(1)  
161  
(bits 15-8)  
166  
(bits 15-8)  
171  
(bits 15-8)  
176  
(bits 15-8)  
START_GAIN_x  
[15:8]  
Start gain  
0
0 to 159  
These bits set the gain code for the  
stop gain stage. For an N value, these  
bits set the stop gain stage to  
(6 + N × 0.25) dB.(1)  
161  
(bits 7-0)  
166  
(bits 7-0)  
171  
(bits 7-0)  
176  
(bits 7-0)  
Stop gain  
STOP_GAIN_x  
159  
0 to 159  
162  
(bits 15-8)  
167  
(bits 15-8)  
172  
(bits 15-8)  
177  
(bits 15-8)  
Positive  
step  
For an N value, these bits set the  
POS_STEP_x  
NEG_STEP_x  
0
255  
0
0 to 255(2)  
0 to 255  
positive step to (N + 1) × 0.125 dB.(1)  
162  
(bits 7-0)  
167  
(bits 7-0)  
172  
(bits 7-0)  
177  
(bits 7-0)  
Negative  
step  
For an N value, these bits set the  
negative step to (N + 1) × 0.125 dB.(1)  
163 to 165 168 to 170 173 to 175 178 to 180  
(bits 15-0)  
(bits 15-0)  
(bits 15-0)  
(bits 15-0)  
185  
(bit 15)  
185  
(bit 7)  
186  
(bit 15)  
186  
(bit 7)  
0 = Default  
1 = Enable fixed attenuation mode  
FIX_ATTEN_x  
0 to 1  
When the FIX_ATTEN_EN_x bit is set  
to 1, the attenuation level of the  
attenuator block is set by the  
ATTENUATION_0 bits. A value of N  
written in the ATTENUATION_x  
register sets the attenuation level at  
–8 + N × 0.125 dB.(1)  
185  
(bits 14-8)  
185  
(bits 6-0)  
186  
(bits 14-8)  
186  
(bits 6-0)  
ATTENUATION_x  
0
0 to 64  
(1) N refers to the decimal equivalent of the multi-bit word.  
(2) Best image quality is achieved with a value of N = 0 (positive step of 0.125 dB). Using a higher positive step can result in glitches at the  
gain transitions, causing a reduction in image quality.  
42  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.5.3.4 Internal Non-Uniform Mode  
Figure 69 shows the change in device gain with time in internal non-uniform mode. A gain profile is completely  
user defined by programming a set of profile registers and a bank of memory consisting of 160 16-bit registers.  
Programming the profile register is covered in the DTGC Profile section. Memory architecture and other  
information are explained in detail in the Memory section.  
Start  
Stage  
Wait to Start  
Stage  
Ramp  
Stage  
Wait to Stop  
Stage  
Ramp Down  
Stage  
Start  
Stage  
Stop Gain Time  
Stop Gain  
Positive Step  
Negative Step  
Start Gain  
Time  
Start Gain Time  
Wait Time  
TGC_SLOPE  
Figure 69. Internal Non-Uniform Mode  
9.3.5.3.4.1 Memory  
In the device are a total of four memory banks (bank 0 to bank 3), with each bank containing 160 rows and each  
row is 16 bits in length, as shown in Figure 70. Each memory bank contains the information of the non-uniform  
gain curve for a particular profile.  
Bank 2  
160 x 16  
Bits  
Bank 0  
160 x 16  
Bits  
Bank 1  
160 x 16  
Bits  
Bank 3  
160 x 16  
Bits  
16  
16  
16  
16  
0
3
1
2
Profile Select  
MUX  
2
16  
Memory Word  
Figure 70. Memory Bank  
Copyright © 2015–2017, Texas Instruments Incorporated  
43  
 
 
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.3.5.3.4.1.1 Write Operation for the Memory  
The device supports two write operation modes: normal write mode and burst write mode. The following steps  
describe the memory write operation in normal write mode:  
1. Select the memory bank whose contents must be programmed using the MEM_BANK_SEL register bit.  
Table 10 shows the mapping of the MEM_BANK_SEL and memory bank.  
Table 10. Memory Bank Selection  
MEM_BANK_SEL  
MEMORY BANK  
00  
01  
10  
11  
0
1
2
3
2. After selecting the memory bank, any memory bank word can be programmed by writing the MEM_WORD_0  
to MEM_WORD_159 registers. For example, to program word 1 to word 160 of memory bank 0, first write  
MEM_BANK_SEL = 00 and write the memory content at the MEM_WORD_0 to MEM_WORD_159 registers.  
The following steps describe the memory write operation in burst write mode:  
1. Select the memory bank whose contents must be programmed using the MEM_BANK_SEL register bit.  
Table 10 shows the mapping of the MEM_BANK_SEL and memory bank.  
2. After selecting the memory bank, any memory bank word can be programmed in burst by giving the register  
address only one time. After giving the register address, provide continuous data on the SDIN pin and keep  
the SEN signal low. The device automatically internally increments the register address and writes the data  
to the next memory word.  
44  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Figure 71 shows the normal and burst write mode operations.  
SEN  
Data Latched on SCLK Rising Edge  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
Register MEM_WROD_x Address  
Memory Word Data  
Normal Write Operation  
SEN  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13  
D1  
D0 D15 D14 D13  
D2  
D1  
D0  
SDIN  
Memory Data for Word x+1  
Register MEM_WROD_x Address  
Memory Data for Word x  
Burst Write Operation  
Figure 71. Memory Write Mode  
9.3.5.3.4.1.2 Read Operation for the Memory  
The memory bank content can be read back in the same manner by reading the registers of the DTGC register  
map; see the Register Readout section. To read the content of memory banks 0, 1, 2, or 3, first set the  
MEM_BANK_SEL to 00, 01, 10, or 11 respectively, then place the device in DTGC register read mode and read  
the MEM_WORD_x register to read word x on the SDOUT pin.  
NOTE  
Simultaneous memory read and write operation is not supported.  
Copyright © 2015–2017, Texas Instruments Incorporated  
45  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.3.5.3.4.2 Gain Curve Description for the Internal Non-Uniform Mode  
The internal non-uniform mode operation is described in Figure 72 via a flow chart.  
Device Reset or TGC Mode Change  
Device Gain = Start Gain  
No  
Is TGC_SLOPE  
= 1?  
Yes  
Reduce Device Gain by  
Negative Step on Each  
ADC Clock Until Gain  
Reaches Start Gain  
Wait for START_GAIN_TIME_x Number of ADC Clock Cycles  
Read 16-Bit Memory Word at Address START_INDEX_x  
No  
Yes  
Is Word[7] = 0?  
Decrease Device Gain by Negative Step after Waiting  
Increase Device Gain by Positive Step after Waiting for  
Word[6:0] x 2(SLOPE_FAC<3:0>) ADC Clock Cycles  
for  
Word[6:0] x 2(SLOPE_FAC<3:0>) ADC Clock Cycles  
No  
Yes  
Is Word[15] = 0?  
Decrease Device Gain by Negative Step after Waiting  
Increase Device Gain by Positive Step after Waiting for  
Word[14:8] x 2(SLOPE_FAC<3:0>) ADC Clock Cycles  
for  
Word[14:8] x 2(SLOPE_FAC<3:0>) ADC Clock Cycles  
Increment Memory Address  
No  
Yes  
Is Memory Address =  
STOP_INDEX_x?  
Wait for STOP_GAIN_TIME_x Number of  
ADC Clock Cycles  
Read 16 Bit Memory Word  
Figure 72. Internal Non-Uniform Mode Operation  
46  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
The different stages of the internal non-uniform mode are:  
1. Start: At device reset or a DTGC mode change (that is, when changing the DTGC mode to any other mode  
and returning to internal non-uniform mode), the device gain is equal to the start gain.  
2. Wait to start: When the TGC_SLOPE pin voltage level goes high, the device gain remains at the start gain  
stage for the number of ADC clock cycles defined in the START_GAIN_TIME_x register (x is the profile  
number).  
3. Ramp:  
a. After waiting for START_GAIN_TIME_x number of ADC clock cycles, the TGC engine reads a 16-bit  
memory word (word[15:0]) at the START_INDEX_x address and performs the following operation:  
i. If memory word[7] = 0, the device gain increases by a positive step gain after waiting for the  
word[6:0] × 2SLOPE_FAC<3:0>number of ADC clock cycles. If memory word[7] = 1, the device gain  
decreases by a negative step gain after waiting for the word[6:0] × 2 SLOPE_FAC<3:0>number of ADC  
clock cycles.  
ii. If memory word[15] = 0, the device gain increases by a positive step gain after waiting for the  
word[14:8] × 2SLOPE_FAC<3:0>number of ADC clock cycles. If memory word[15] = 1, the device gain  
decreases by a negative step gain after waiting for the word[14:8] × 2SLOPE_FAC<3:0>number of ADC  
clock cycles.  
b. The TGC engine increases the memory address by 1. If the new address is less than STOP_INDEX_x,  
the TGC engine reads a 16-bit memory word at the new address and repeats steps i and ii.  
4. Wait to stop: The TGC engine increases the memory address by 1. If the new memory address is equal to  
STOP_INDEX_x, then the device waits for the STOP_GAIN_TIME_x number of ADC clock cycles.  
5. Ramp down: After waiting for the STOP_GAIN_TIME_x number of ADC clock cycles, the device gain starts  
reducing by a negative step gain on each ADC clock until the gain reaches the start gain stage.  
6. Profile: Different parameters (such as start gain, positive step, positive step frequency, and so forth) of  
different gain stages are programmed with profile registers. A single profile consists of five 16-bit registers  
and one 8-bit register that can be programmed with the serial programming interface (SPI). The functions of  
these registers in internal non-uniform mode are listed in Table 11. Note that changing the profile number  
updates the parameters only during the start gain stage.  
7. Timing requirement. See the Timing Specifications section for timing requirements on the TGC_SLOPE pin  
with respect to the ADC clock.  
Copyright © 2015–2017, Texas Instruments Incorporated  
47  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 11. Internal Non-Uniform Mode Profile Definition  
REGISTER CONTROL  
BIT IN  
REGISTER  
MAP  
DEFAULT ALLOWED  
NAME  
DESCRIPTION  
VALUE  
RANGE  
PROFILE 0 PROFILE 1 PROFILE 2 PROFILE 3  
These bits set the gain code for the  
start gain stage. For an N value (in  
decimal), these bits set the start gain  
stage to (6 + N × 0.25) dB.  
161  
(bits 15-8)  
166  
(bits 15-8)  
171  
(bits 15-8)  
176  
(bits 15-8)  
START_GAIN_x  
[15:8]  
Start gain  
0
0 to 159  
161  
(bits 7-0)  
166  
(bits 7-0)  
171  
(bits 7-0)  
176  
(bits 7-0)  
STOP_GAIN_x[7:0] Always write 159  
159  
0
0 to 159  
0 to 255(1)  
0 to 255  
0 to 159  
0 to 159  
162  
(bits 15-8)  
167  
(bits 15-8)  
172  
(bits 15-8)  
177  
(bits 15-8)  
Positive  
step  
For an N value, these bits set the  
positive step to (N + 1) × 0.125 dB.  
POS_STEP_x[7:0]  
NEG_STEP_x[7:0]  
START_INDEX_x  
STOP_INDEX_x  
162  
(bits 7-0)  
167  
(bits 7-0)  
172  
(bits 7-0)  
177  
(bits 7-0)  
Negative  
step  
For an N value, these bits set the  
negative step to (N + 1) × 0.125 dB.  
255  
0
163  
(bits 15-8)  
168  
(bits 15-8)  
173  
(bits 15-8)  
178  
(bits 15-8)  
Memory  
start index  
Memory start index  
Memory stop index  
163  
(bits 7-0)  
168  
(bits 7-0)  
173  
(bits 7-0)  
178  
(bits 7-0)  
Memory  
stop index  
159  
0
164  
(bits 15-0)  
169  
(bits 15-0)  
174  
(bits 15-0)  
179  
(bits 15-0)  
Start gain  
time  
START_GAIN_  
TIME_x  
For an N value, these bits set the start  
gain time to N × ADC clock cycles.  
0 to (216 – 1  
0 to (216 – 1  
0 to 1  
)
165  
(bits 15-0)  
170  
(bits 15-0)  
175  
(bits 15-0)  
180  
(bits 15-0)  
Stop gain  
time  
STOP_GAIN_  
TIME_x  
For an N value, these bits set the stop  
gain time to N × ADC clock cycles.  
0
)
185  
(bit 15)  
185  
(bit 7)  
186  
(bit 15)  
186  
(bit 7)  
0 = Default  
1 = Enable fixed attenuation mode  
FIX_ATTEN_x  
0
When the FIX_ATTEN_EN_x bit is set  
to 1, the attenuation level of the  
attenuator block is set by the  
ATTENUATION_0 bits. A value of N  
written in the ATTENUATION_x  
register sets the attenuation level at  
–8 + N × 0.125 dB.  
185  
(bits 14-8)  
185  
(bits 6-0)  
186  
(bits 14-8)  
186  
(bits 6-0)  
ATTENUATION_x  
0
0 to 64  
(1) Best image quality is achieved with a value of N = 0 (positive step of 0.125 dB). Using a higher positive step can result in glitches at the  
gain transitions, causing a reduction in image quality.  
9.3.5.4 Timing Specifications  
For all DTGC modes, a signal applied on the TGC_SLOPE and TGC_UP_DN pins must meet the timing  
constraints with respect to the ADC clock signal, as shown in Figure 73.  
NOTE  
Failure to meet the timing constraints in the up, down ramp mode results in a locked state.  
To come out of a locked start state, change MODE_SEL to another mode and return to  
up, down ramp mode or reset the device.  
>3 ns  
>2 ns  
ADC_CLKP  
TGC_SLOPE,  
TGC_UP_DN  
Figure 73. TGC Timing Diagram  
A transition on TGC_SLOPE triggers the associated gain change event with a latency. This latency varies  
depending on the DTGC modes. Table 12 lists the latency for each mode in terms of number of ADC_CLK  
cycles. To determine the total latency from a transition on TGC_SLOPE to a transition in the output code, the  
latency of the ADC must be added to the number in Table 12.  
48  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Table 12. Latency Between a Transition in TGC_SLOPE and the Resulting Change in Gain  
LATENCY FROM TGC_SLOPE TRANSITION TO A CHANGE IN  
DTGC MODE  
GAIN  
Up, down ramp  
External non-uniform  
Internal non-uniform  
6 ADC_CLKs  
2 ADC_CLKs  
11 ADC_CLKs  
No timing constraints are required on signals applied at the TGC_PROF<2> and TGC_PROF<1> pins.  
9.3.6 Continuous-Wave (CW) Beamformer  
The continuous-wave Doppler (CWD) is a key function in mid-end to high-end ultrasound systems. Compared to  
the TGC mode, the CW path must handle high dynamic range along with strict phase noise performance. CW  
beamforming is often implemented in the analog domain because of these strict requirements. Multiple  
beamforming methods are implemented in ultrasound systems, including a passive delay line, active mixer, and  
passive mixer. Among these approaches, the passive mixer achieves optimized power and noise. This mixer  
satisfies the CW processing requirements (such as wide dynamic range, low phase noise, and accurate gain and  
phase matching).  
The output signal in the CW path is a current output unlike the TGC path that has a voltage output. The down-  
converted and phase-shifted currents of all the channels are summed and given to a single node; see Figure 74.  
Connect this node to the virtual ground of an external differential amplifier for correct operation; see Figure 75.  
NOTE  
The local oscillator inputs of the passive mixer are cos (ωt) for the I channel and sin (ωt)  
(where ω is local oscillator frequency) for the Q channel, respectively. Depending on the  
application-specific CWD complex FFT processing, swapping the I and Q channels in  
either the field-programmable gate array (FPGA) or digital signal processor (DSP) can be  
required in order to obtain correct blood flow direction.  
All blocks include well-matched, in-phase, quadrature channels to achieve good image frequency rejection as  
well as beamforming accuracy. As a result, the image rejection ratio from an I/Q channel is excellent, which is  
desired in ultrasound systems.  
NOTE  
The TGC path in the device is automatically disabled when the CW path is enabled. The  
device does not support both TGC and CW modes simultaneously. However though not  
used, the ADC remains powered up by default in the CW mode. The ADC can be powered  
down using register bit GLOBAL_PDN.  
Copyright © 2015–2017, Texas Instruments Incorporated  
49  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
I-CLK  
I-Channel  
Q-Channel  
Voltage-to-Current  
LNA1  
Converter  
Q-CLK  
CW_IP_OUTP  
CW_IP_OUTM  
(1 × fcw  
)
1 × fcw CLK  
Clock Distribution  
Circuits  
N × fcw CLK  
CW_QP_OUTP  
CW_QP_OUTM  
I-CLK  
(1 × fcw  
)
I-Channel  
Q-Channel  
Voltage-to-Current  
LNA16  
Converter  
Q-CLK  
Figure 74. Simplified Block Diagram of the CW Path  
50  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Mixer Clock 1  
500  
INP1  
INM1  
External Amplifier  
LNA1  
Input 1  
Cext  
500 ꢀ  
500 ꢀ  
Mixer Clock 2  
Rext  
CW_AMP_OUTP  
INP2  
INM2  
CW_OUTM  
I2V Sum  
Amp  
3 - 5 Ω  
3 - 5 Ω  
LNA2  
Input 2  
CW_OUTP  
CW_AMP_OUTM  
500 ꢀ  
Rext  
Cext  
Mixer Clock 16  
500 ꢀ  
500 ꢀ  
INP16  
INM16  
Input 16  
LNA16  
CW I- or Q- Channel Structure  
NOTE: The 3-Ω to 6-Ω resistors at CW_OUTP and CW_OUTM result from the internal device routing and can create  
a slight attenuation in the signal.  
Figure 75. A Circuit Representation of a In-Phase or Quadrature-Phase Channel  
The CW mixing operation attempts to down-convert the signal band to approximately dc such that the Doppler  
frequency is translated to a low-frequency signal. This process is done by a complex mixing of the signal with a  
clock that is at the same frequency as the center frequency of the signal. The complex mixing of the signal  
requires the I- and Q- version of the clock. Furthermore, different channels can have different phase delays in the  
path of their analog inputs. Thus, the programmability of the phase of the I- and Q- clock is essential to have.  
The CW mixer uses two clocks; a high speed clock (16X, 8X, or 4X of the mixing clock) that is used to generate  
multiple phases of a 1X clock, which is at the frequency of the mixing clock.  
The CW mixer in the device is passive and switch based; the passive mixer adds less noise than active mixers.  
The CW mixer achieves good performance at low power. Figure 76, Table 13, and the calculations of Equation 5  
describe the principles of the mixer operation. LO(t) is square-wave based and includes odd harmonic  
components.  
Vi(t)  
Vo(t)  
LO(t)  
Figure 76. CW Mixer Operation Block Diagram  
Copyright © 2015–2017, Texas Instruments Incorporated  
51  
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 13. Symbol Definition for CW Mixing  
SYMBOL  
DEFINITION  
Vi(t)  
Vo(t)  
LO(t)  
ω0  
Input signal to the mixer  
Output of the mixer  
Local oscillator signal (1X clock) with appropriate phase  
Input signal center frequency in radians per second  
Input signal center frequency in Hz  
f0  
ωd  
Doppler shift frequency in radians per second  
Time  
t
φ
Input signal phase relative to the phase of LO(t)  
Vi t = sin  
( )  
w0t +  
wdt +  
j
(
)
4
1
1
»
ÿ
LO t =  
sin  
w
t + sin 3w0t + sin 5w0t ... -Fourier series of square wave  
( )  
(
)
(
)
(
)
0
Ÿ
p
3
5
2
»
ÿ
+...  
Vo t =  
cos  
wdt +  
j
-cos 2  
w0t +  
wdt +  
j
( )  
(
)
(
)
p
(5)  
All the symbol definitions for Equation 5 are given in Table 13.  
The first term in Equation 5 represents the ideal down-connected Doppler frequency component desired from the  
CW mixer. Though not shown in Equation 5, the third- and fifth-order harmonics from LO(t) can either mix with  
the third- and fifth-order harmonic of the Vi(t) signal or the noise around the third- and fifth-order harmonics of  
Vi(t). This higher-order mixing can result in additional undesired down-converted components that lead to  
degraded mixer performance. In order to eliminate this side-effect resulting from the square-wave demodulation,  
a proprietary harmonic-suppression circuit is implemented in the device. The third- and fifth-order harmonic  
components from the LO can be suppressed by over 12 dB. Thus, the LNA output noise around the third- and  
fifth-order harmonic bands are not down-converted to base band. Thus, a better noise figure is achieved. The  
conversion loss of the mixer is approximately –4 dB, (20log10 2 / π).  
The mixed current output of the 16 channels must be summed externally; see Figure 75. The external differential  
amplifier converts the current signal to differential voltage and can also provide a filtering action for the higher  
frequency components in Equation 5. The common-mode voltage at the CW_OUT nodes is 0.9 V. Setting the  
output common-mode of the external amplifier to 0.9 V is recommended to avoid common-mode loading. The  
amplifier must be able to support the maximum output current of the device, which is 80 mAPP. The amplifier  
noise and matching have a direct impact on the I/Q channel performance and therefore must be selected  
cautiously. Amplifiers with input-referred voltage noise lower than 2 nV/Hz can be selected. The OPA1632 and  
THS4130 for are recommended as external amplifiers, both of which satisfy the above criteria.  
The CW I/Q channels are well-matched internally to suppress image frequency components in the Doppler  
spectrum. Use low-tolerance (0.1%) components and precise operational amplifiers to achieve good matching in  
the external circuits as well. The circuit illustrated in Figure 75 achieves a first-order filter with a corner frequency  
of fC, as given by Equation 6:  
1
fC =  
2ìp ìRext ì Cext  
(6)  
The CW path gain (see Figure 75 ) for an in-band signal (frequency less than fC) at one of the channels is given  
by the combination of LNA gain, mixer loss, and gain provided by the external amplifier. The LNA gain is 18 dB  
and the mixer attenuation is 4 dB. The gain of the external amplifier is determined by the ratio of the external  
resistor (Rext) and the internal resistor (500 ). The CW gain is given by Equation 7.  
R
ext  
Gain dB =18 - 4 + 20ìlog10  
(
)
«
÷
500  
(7)  
The 3-Ω to 5-Ω resistors shown in Figure 75 create a small loss. Multiple clock options are supported in the  
device CW path. Two CW clock inputs are required: an N × ƒcw clock and a 1 × ƒcw clock, where ƒcw is the CW  
transmitting frequency and N can be 16, 8, 4, or 1. The most convenient system clock solution can be selected  
for the device. In the 16 × ƒcw and 8 × ƒcw modes, the third- and fifth-order harmonic suppression feature is  
supported. Thus, the 16 × ƒcw and 8 × ƒcw modes achieve better performance than the 4 × ƒcw and 1 × ƒcw  
modes.  
52  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.6.1 16 × ƒcw Mode  
The 16 × ƒcw mode achieves the best phase accuracy compared to the other modes. This mode is the default  
mode for CW operation. In this mode, 16 × ƒcw and 1 × ƒcw clocks are required. 16 × fcw generates the 16 × ƒcw  
LO signals with 16 accurate phases. Multiple devices can be synchronized by the 1 × ƒcw (that is, LO signals in  
multiple AFEs can have the same starting phase). The phase noise specification is critical only for the 16X clock.  
The 1X clock is for synchronization only and does not require low phase noise.  
The top-level clock distribution diagram is shown in Figure 77. Each mixer clock is distributed through a 16 × 16  
cross-point switch. The inputs of the cross-point switch are 16 different phases of the 1X clock. Synchronizing the  
1 × ƒcw and 16 × ƒcw clocks is recommended; see Figure 78.  
INV  
fIN 16X Clock  
fIN 1X Clock  
D
Q
16-Phase Generator  
1X Clock  
Phase 0º  
1X Clock  
Phase 22.5º  
1X Clock  
Phase 292.5º  
1X Clock  
Phase 315º  
1X Clock  
Phase 337.5º  
SPI  
16:16 Crosspoint Switch  
Mixer 1  
1X Clock  
Mixer 2  
1X Clock  
Mixer 3  
1X Clock  
Mixer 14  
1X Clock  
Mixer 15  
1X Clock  
Mixer 16  
1X Clock  
Figure 77. CW Clock Distribution Scheme  
Copyright © 2015–2017, Texas Instruments Incorporated  
53  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
CW_CLK1X  
CW_CLK_NX  
1X Clock  
Phase 0°  
1X Clock  
Phase 22.5°  
1X Clock  
Phase 67.5°  
CW_CLK1X  
thold  
tset > 4 ns,  
thold > 1 ns  
CW_CLK_NX  
tset  
1X Clock  
Phase 0  
Figure 78. 1X and 16X CW Clock Timing Diagram  
The cross-point switch distributes the clocks with an appropriate phase delay to each mixer. The mixer phase  
delay is used to compensate for the delay in the input signal. For instance, if a received signal Vi(t) is delayed  
with a time of 1 / (16 × fo) (where fo is the input signal frequency in Hz), apply a delayed LO(t) to the mixer in  
order to compensate for the 1 / (16 × fo) delay. Thus, a 22.5delayed clock (that is, 2π / 16) is selected for this  
channel. The mathematical calculation is expressed in Equation 8. Therefore, after the I/Q mixers, the phase  
delay in the received signals is compensated. The mixer outputs from all channels are aligned and added linearly  
to improve the signal-to-noise ratio.  
1
Vi(t) = sin[w0 (t -  
) +  
wdt] = sin[w0t - 22.5è +  
wdt]  
16 f0  
4
1
4
LO(t) = sin[  
w0 (t -  
)] = sin[w0t - 22.5è]  
p
16 f0  
p
2
Vo(t) = cos(  
w
d t) + f ( nt)  
w
p
(8)  
Vo(t) represents the demodulated Doppler signal of each channel. When the Doppler signals from N channels  
are summed, the signal-to-noise ratio improves. ωd is the Doppler frequency, ωo is the local oscillator frequency,  
and ωn represents the high-frequency components that are filtered out.  
54  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.6.2 8 × ƒcw and 4 × ƒcw Modes  
The 8 × ƒcw and 4 × ƒcw modes are alternative modes when a higher frequency clock solution (that is, a 16 × ƒcw  
clock) is not available in the system. The block diagram of these two modes is shown in Figure 79.  
INV  
Device  
External Amplifier  
4X, 8X Clock  
I/Q CLK  
Generator  
D
Q
1X Clock  
LNA2 to 16  
Summed  
In-Phase  
In-Phase  
CLK  
Quadrature  
CLK  
I/V  
I/V  
Weight  
Weight  
LNA1  
Weight  
Weight  
Summed  
Quadrature  
Figure 79. 8 × ƒcw and 4 × ƒcw Block Diagram  
Good phase accuracy and matching are also maintained in these modes. The quadrature clock generator is used  
to create in-phase and quadrature clocks with exactly a 90° phase difference. The difference between the 8 × ƒcw  
and 4 × ƒcw modes is the accessibility of the third- and fifth-order harmonic suppression filter. In the 8 × ƒcw  
mode, the suppression filter can be supported. Although the phases of the 1X clock that can be directly ensured  
in the 8 × ƒcw and 4 × ƒcw modes are fewer than in the 16 × ƒcw mode, the intermediate phases can be generated  
by appropriate weighting and combination of I- and Q- signals. For example, if a delay of 1 / (16 × fo) or 22.5° is  
targeted corresponding to LO(t), the weighting coefficients must follow Equation 9 (assuming Iin and Qin are sin  
(ω0t) and cos (ω0t), respectively).  
2
p
2
p
1
16 f0  
1
I
delayed (t) = Iin cos(- ) + Qin sin(- ) = Iin (t -  
16 16  
)
2
p
2p  
Qdelayed (t) = Qin cos(- ) - Iin sin(- ) = Qin (t -  
16 16  
)
16 f0  
(9)  
NOTE  
The timing requirements for the 4 × ƒcw clock relative to the 1 × fcw clock are illustrated in  
Figure 80. A similar timing requirement (tset and thold) is also applicable for the 8 × ƒcw  
clock.  
Copyright © 2015–2017, Texas Instruments Incorporated  
55  
 
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
CW_CLK1X  
CW_CLK_NX  
1X Clock  
Phase 0  
1X Clock  
Phase 90°  
1X Clock  
Phase 270°  
CW_CLK1X  
tset > 4 ns,  
thold > 1 ns  
thold  
CW_CLK_NX  
tset  
1X Clock  
Phase 0  
Figure 80. 8 × ƒcw and 4 × ƒcw Timing Diagram  
9.3.6.3 1 × ƒcw Mode  
The 1 × ƒcw mode requires in-phase and quadrature clocks with low-phase noise specifications. A block diagram  
for this mode is shown in Figure 81. Here again, the intermediate phases can be obtained through appropriate  
weighting and combining of the I- and Q- signals, as described in the 8 × ƒcw and 4 × ƒcw Modes section.  
Device  
External Amplifier  
Synchronized  
I/Q Clocks  
LNA2 to 16  
Summed  
In-Phase  
In-Phase  
CLK  
Quadrature  
CLK  
I/V  
I/V  
Weight  
Weight  
LNA1  
Weight  
Weight  
Summed  
Quadrature  
Figure 81. 1 × ƒcw Mode Block Diagram  
56  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.6.4 CW Clock Selection  
For the CW clocks, the device can accept differential LVDS, LVPECL, and other differential clock inputs as well  
as a single-ended CMOS clock. An internally-generated VCM of 1.5 V is applied to CW clock inputs (that is,  
CW_CLK_NX and CW_CLK1X). Because this 1.5-V VCM is different from the one used in standard LVDS or  
LVPECL clocks, ac coupling is required between clock drivers and the device CW clock inputs. When the CMOS  
clock is used, tie CLKM_1X and CLKM_16X either to ground or leave CLKM_1X floating. Common clock  
configurations are shown in Figure 82. Appropriate termination is recommended to achieve good signal integrity.  
NOTE  
The configurations shown in Figure 82 can also be used as a reference for the ADC clock  
input.  
3.3 V  
130 W  
83 W  
0.1 mF  
0.1 mF  
3.3 V  
130 W  
LMK048x,  
CDCM7005,  
CDCE7010  
AFE  
Clocks  
LVPECL  
83 W  
(a) LVPECL Configuration  
0.1 mF  
100 W  
AFE  
Clocks  
CDCE72010  
0.1 mF  
LVDS  
(b) LVDS Configuration  
C1  
100 nF  
0.1 mF  
0.1 mF  
0.1 mF  
R1  
50 W  
AFE  
Clock  
Clocks  
Source  
(c) Transformer-Based Configuration  
CMOS CLK  
Driver  
AFE  
CMOS CLK  
CMOS  
(d) CMOS Configuration  
Figure 82. Clock Configurations  
Copyright © 2015–2017, Texas Instruments Incorporated  
57  
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
The combination of the clock noise and the CW path noise can degrade CW performance. The internal clocking  
circuit is designed for achieving excellent phase noise required by CW operation. The phase noise of the mixer  
clock inputs must be better than the phase noise of the CW path.  
In the 16, 8, and 4 × ƒcw operation modes, a low-phase noise clock is required for the 16, 8, and 4 × ƒcw clocks  
(that is, the CW_CLK_NX ) in order to maintain good CW phase noise performance. The 1 × ƒcw clock is only  
used to synchronize multiple device chips and is not used for demodulation. Thus, the 1 × ƒcw clock phase noise  
is not a concern. However, in the 1 × ƒcw operation mode, low-phase noise clocks are required for both the  
CLKP_16X, CLKM_16X and CLKP_1X, CLKM_1X pins because both pins are used for mixer demodulation. In  
general, a higher slew rate clock has lower phase noise. Thus, clocks with high amplitude and fast slew rate are  
preferred in CW operation.  
Internal to the device, there is a division of the Nx clock (for example, N = 16, 8, or 4) to generate LO(t). A clock  
division results in improvement of the phase noise. The phase noise of a divided clock can be improved  
approximately by a factor of 20logN dB, where N is the dividing factor of 16, 8, or 4. If the target phase noise of  
the mixer LO clock 1 × fcw is 160 dBc/Hz at a 1-kHz off the carrier, the 16 × fcw clock phase noise must be  
greater than (160 – 20log16 = 136 dBc/Hz). TI’s jitter cleaners (LMK048x, CDCM7005, and CDCE72010) exceed  
this requirement and can be selected to work with the device. In the 4X and 1X modes, higher-quality input  
clocks are expected to achieve the same performance because N is smaller. Thus, the 16X mode is a preferred  
mode because this mode reduces the phase noise requirement for the system clock design.  
Note that in the 16X operation mode, the CW operation range is limited to 8 MHz as a result of the 16X clock.  
The maximum clock frequency for the 16X clock is 128 MHz. In the 8X, 4X, and 1X modes, higher CW signal  
frequencies up to 15 MHz can be supported with a degradation in performance. For example, the phase noise is  
degraded by 9 dB at 15 MHz, compared to 2 MHz.  
As the channel number in a system increases, clock distribution becomes more complex. Using one clock driver  
output is not preferred to drive multiple AFEs because the clock buffer load capacitance increases by a factor of  
N (N is the number of AFEs in a system). See the System Clock Configuration for Multiple Devices section for  
further details of the system clock configuration. When clock phase noise is not a concern (for example, the 1 ×  
ƒcw clock in the 16, 8, and 4 × ƒcw operation modes), one clock driver output can excite more than one device.  
Nevertheless, special considerations must be applied for such a clock distribution network design. Preferably, all  
clocks are generated from the same clock source in typical ultrasound systems (such as 16 × ƒcw and 1 × ƒcw  
clocks, audio ADC clocks, RF ADC clocks, pulse repetition frequency signals, frame clocks, and so on). By using  
the same clock source, interference resulting from clock asynchronization can be minimized.  
9.3.6.5 CW Supporting Circuits  
As a general practice in the CW circuit design, in-phase and quadrature channels must be strictly symmetrical by  
using well-matched layout and high-accuracy components. Additional high-pass wall filters (20 Hz to 500 Hz) and  
low-pass audio filters (10 kHz to 100 kHz) with multiple poles are usually required in ultrasound systems. Noise  
under this range is critical because the CW Doppler signal ranges from 20 Hz to 20 kHz. Consequently, low-  
noise audio operational amplifiers are suitable to build these active filters for CW post-processing (that is, the  
OPA1632, OPA2211, or THS4131). More filter design techniques can be found at www.ti.com. The TI active filter  
design tool is the WEBENCH® Filter Designer. The filtered audio CW I/Q signals are sampled by audio ADCs  
and processed by the DSP or PC. Although the CW signal frequency is from 20 Hz to 20 KHz, higher sampling-  
rate ADCs are still preferred for further decimation and SNR enhancement. Because of the large dynamic range  
of CW signals, high-resolution ADCs (16 bits) are required [such as the ADS8413 (2 MSPS, 16 bits, 92-dBFS  
SNR) and the ADS8472 (1 MSPS, 16 bits, 95-dBFS SNR)]. ADCs for in-phase and quadrature-phase channels  
must be strictly matched, not only for amplitude matching but also for phase matching in order to achieve the  
best I/Q matching. In addition, the in-phase and quadrature ADC channels must be sampled simultaneously.  
58  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.7 Analog-to-Digital Converter (ADC)  
The device supports a high-performance, 14-bit ADC that achieves 72-dBFS SNR. This ADC ensures excellent  
SNR at low-chain gain. The ADC can operate at maximum speeds of 65 MSPS and 80 MSPS, providing a 14-bit  
and a 12-bit output, respectively. The low-voltage differential signaling (LVDS) outputs of the ADC enable a  
flexible system integration that is desirable for miniaturized systems. In the following sections, a full description of  
all inputs and outputs of the ADC with different configurations are provided along with suitable examples.  
NOTE  
The ADC is part of the TGC signal chain. An ADC is not used in CW mode and can be  
powered down in this mode using the appropriate register controls.  
9.3.7.1 System Clock Input  
The 16 channels on the device operate from a single clock input. To ensure that the aperture delay and jitter are  
the same for all channels, the device uses a clock tree network to generate individual sampling clocks for each  
channel. The clock lines for all channels are matched from the source point to the sampling circuit for each of the  
16 internal ADCs. The delay variation is described by the aperture delay parameter of the Output Interface  
Timing Characteristics table. Variation over time is described by the aperture jitter parameter of the Output  
Interface Timing Characteristics table.  
This system clock input can be driven differentially (sine wave, LVPECL, or LVDS) or single-ended (LVCMOS).  
The device clock input has an internal buffer and clock amplifier (as shown in Figure 83) that are enabled or  
disabled automatically, depending on the type of clock provided (auto-detect feature).  
AVDD_1P8  
0.7 V  
VCM  
100 pF  
5 kQ  
5 kQ  
CLKP  
6 pF  
6 pF  
CLKM  
Figure 83. Internal Clock Buffer for Differential Clock Mode  
Copyright © 2015–2017, Texas Instruments Incorporated  
59  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
If the preferred clocking scheme for the device is single-ended, connect the single-ended clock to ADC_CLKP  
and connect the ADC_CLKM pin to ground (in other words, short ADC_CLKM directly to AVSS, as shown in  
Figure 84). In this case, the auto-detect feature shuts down the internal clock buffer and the device automatically  
goes into a single-ended clock mode. Connect the single-ended clock source directly (without decoupling) to the  
ADC_CLKP pin. Low-jitter, square signals (LVCMOS levels, 1.8-V amplitude) are recommended to drive the ADC  
in single-ended clock mode (refer to technical brief SLYT075 for further details).  
CMOS Clock Input  
ADC_CLKP  
ADC_CLKM  
Figure 84. Single-Ended Clock Driving Circuit  
For single-ended sinusoidal clocks, or for differential clocks (such as differential sine wave, LVPECL, LVDS, and  
so forth), enable the clock amplifier with the connection scheme shown in Figure 85. The 10-nF capacitor used to  
ac-couple the clock input is as shown in Figure 85.  
If a transformer is used with the secondary coil floating (for instance, to convert from single-ended to differential),  
the transformer can be connected directly to the clock inputs without requiring the 10-nF series capacitors,  
provided that center tap of the transformer is either floating or ac-grounded.  
10 nF  
ADC_CLKP  
Differential Sine Wave  
or PECL or LVDS Clock Signal  
10 nF  
ADC_CLKM  
Figure 85. Differential Clock Driving Circuit  
60  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.7.2 System Clock Configuration for Multiple Devices  
To ensure that the aperture delay and jitter are the same for all channels, the device uses a clock tree network to  
generate individual sampling clocks for each channel. For all channels, the clock is matched from the source  
point to the sampling circuit of each of the eight internal devices. The variation on this delay is described in the  
Aperture Delay parameter of the Output Interface Timing Characteristics table. Variation is described by the  
aperture jitter parameter of the Output Interface Timing Characteristics table.  
Figure 86 shows a clock distribution network.  
FPGA Clock,  
Noisy Clock  
n × (5-MHz to 80-MHz)  
TI Jitter Cleaner  
LMK048X  
CDCE72010  
CDCM7005  
5-MHz to 80-MHz  
ADC CLK  
CDCLVP1208  
The CDCE72010 has 10  
LMK0030X  
outputs  
LMK01000  
8 Synchronized  
DUT System CLKs  
Figure 86. System Clock Distribution Network  
Copyright © 2015–2017, Texas Instruments Incorporated  
61  
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.3.8 LVDS Interface  
The device supports an LVDS output interface in order to transfer device digital data serially to an FPGA. The  
device has a total of 18 LVDS output lines. One of these pairs is a serial data clock, another pair is a data  
framing clock, and the remaining 16 pairs are dedicated for data transfer. A graphical representation of the LVDS  
output is shown in Figure 87.  
LVDS Buffer  
DOUTP1  
DOUTM1  
DOUTP2  
DOUTM2  
Digital Output  
DOUTP16  
DOUTM16  
DCLKP  
Serial Clock  
DCLKM  
FCLKP  
Frame Clock  
FCLKM  
Figure 87. LVDS Output  
62  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.8.1 LVDS Buffer  
The equivalent circuit of each LVDS output buffer is shown in Figure 88. The buffer is designed for a normal  
output impedance of 100 (ROUT). Terminate the differential outputs at the receiver end by a 100-Ω termination.  
The buffer output impedance functions like a source-side series termination. By absorbing reflections from the  
receiver end, the buffer output impedance helps improve signal integrity. Note that this internal termination  
cannot be disabled nor can its value be changed.  
Device  
OUTP  
+0.4 V  
External  
100-Load  
OUTM  
ROUT  
1.03 V  
-0.4 V  
Switch impedance is  
nominally 50 (ê10%).  
Figure 88. LVDS Output Circuit  
Copyright © 2015–2017, Texas Instruments Incorporated  
63  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.3.8.2 LVDS Data Rate Modes  
The LVDS interface supports two data rate modes, as described in this section.  
9.3.8.2.1 1X Data Rate Mode  
In 1X data rate mode, each LVDS output carries data from a single ADC. Figure 89 and Figure 90 show the  
output data, serial clock, and frame clock LVDS lines for the 14-bit and 12-bit 1X mode, respectively.  
Input Signal  
Sample N  
TA  
Cd Clock  
Cycles Latency  
Input Clock (ADC_CLK)  
Frequency = fCLKIN  
T
tPDI  
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 7 x fCLKIN  
Output Data (DOUT)  
Data Rate = 14 x fCLKIN  
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
1
(
(12) (13)  
(9) (10) (11) (12) (13)  
(9) (10) (11) (12) (13) (0)  
(9) (10) (11) (12) (13)  
Sample N-1  
Sample N  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
13  
(0)  
(1) K = ADC resolution.  
Figure 89. 14-Bit, 1X Data Rate Output Timing Specification  
Sample N  
Input Signal  
TA  
Cd Clock Cycles Latency  
Input Clock (ADC_CLK)  
Frequency = fCLKIN  
tPDI  
T
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 6 x fCLKIN  
Output Data (DOUT)  
Data Rate = 12 x fCLKIN  
1
(10)  
0
(11)  
11  
(0)  
10  
(1)  
9
(2)  
8
(3)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
(9)  
1
(10)  
0
(11)  
11  
(0)  
10  
(1)  
9
(2)  
8
(3)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
(9)  
1
(10)  
0
(11)  
11  
(0)  
10  
(1)  
9
(2)  
8
(3)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
(9)  
1
(10)  
0
(11)  
11  
(0)  
10  
(1)  
Sample N-1  
Sample N  
Sample N+1  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
1
(10)  
Figure 90. 12-Bit, 1X Data Rate Output Timing Specification  
9.3.8.2.2 2X Data Rate Mode  
In 2X data rate mode, only half of the LVDS lines are used to transfer data. Thus, this mode is useful for saving  
power when lower sampling frequency ranges permit. This mode is enabled with the LVDS_RATE_2X register bit  
(register 1, bit 14). After enabling this mode, the digital data from two ADCs are transmitted with a single LVDS  
lane. When compared to the 1X data rate mode, the 2X data rate mode serial clock frequency is doubled, but the  
frame clock frequency remains the same (for the same serialization factor and ADC resolution).  
When the frame clock is high, data on DOUT1 correspond to channel 1, data on DOUT2 correspond to channel  
3, and so forth. When the frame clock is low, DOUT1 transmits channel 2 data, DOUT2 transmits channel 4 data,  
and so forth.  
64  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Figure 91 and Figure 92 show a timing diagram for the 14-bit and 12-bit 2X mode, respectively. Channel and  
LVDS data line mapping for this mode are listed in Table 14. Note that idle LVDS lines are not powered down by  
default. To save power, these lines can be powered down using the corresponding power-down bits  
(PDN_LVDSx).  
Input Signal  
Sample N  
TA  
tPDI  
Input Clock (ADC_CLK)  
Frequency = fCLKIN  
T
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 14 x fCLKIN  
Output Data (DOUT)  
Data Rate = 28 x fCLKIN  
11  
(2)  
4
(8)  
3
(9)  
2
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
(10) (12) (13)  
(9) (10) (11) (12) (13)  
(9) (10) (11) (12) (13) (0)  
(9) (10) (11) (12) (13)  
ADC first channel, Sample N+1  
ADC second channel, Sample N  
ADC first channel, Sample N  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
13  
(0)  
Figure 91. 14-Bit, 2X Data Rate Output Timing Specification  
Input Signal  
Sample N  
TA  
tPDI  
Input Clock (ADC_CLK)  
Frequency = fCLKIN  
T
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 12 x fCLKIN  
Output Data (DOUT)  
Data Rate = 24 x fCLKIN  
4
(7)  
3
(8)  
8
(3)  
8
(3)  
7
(4)  
1
0
11  
(0)  
10  
(1)  
9
(2)  
8
(3)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
1
0
11  
10  
(1)  
9
(2)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
1
0
11  
10  
(1)  
9
(2)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
1
0
11  
10  
(1)  
2
(9)  
(10) (11)  
(9) (10) (11) (0)  
(9) (10) (11) (0)  
(9) (10) (11) (0)  
ADC first channel, Sample N  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
ADC second channel, Sample N  
ADC first channel, Sample N+1  
1
(10)  
Figure 92. 12-Bit, 2X Data Rate Output Timing Specification  
Table 14 illustrates which LVDS output lines are active in 2X data rate mode. The idle channels can be powered  
down using appropriate register controls.  
Copyright © 2015–2017, Texas Instruments Incorporated  
65  
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 14. Channel and ADC Data Line Mapping (2X Rate)  
CHANNELS  
DOUT1  
MAPPING  
ADC data for channels 1 and 2  
DOUT2  
ADC data for channels 3 and 4  
DOUT3  
ADC data for channels 5 and 6  
DOUT4  
ADC data for channels 7 and 8  
DOUT5  
Idle  
DOUT6  
Idle  
DOUT7  
Idle  
DOUT8  
Idle  
DOUT9  
ADC data for channels 9 and 10  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
DOUT14  
DOUT15  
DOUT16  
ADC data for channels 11 and 12  
ADC data for channels 13 and 14  
ADC data for channels 15 and 16  
Idle  
Idle  
Idle  
Idle  
9.3.9 ADC Register, Digital Processing Description  
The ADC has extensive digital processing functionalities that can be used to enhance ADC output performance.  
The digital processing blocks are arranged as shown in Figure 93.  
ADC 2  
Output  
Digital Test Patterns  
8b, 10b, 12b, 14b  
Final  
MUX  
Digital  
Output  
ADC1  
Output  
Digital Average  
Default = No  
Digital Gain  
Default = 0  
Digital HPF  
Default = No  
8b, 10b, 12b, 14b  
Digital Offset  
Default = No  
Figure 93. ADC Digital Block Diagram  
66  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.9.1 Digital Offset  
Digital functionality provides for channel offset correction. Setting the DIG_OFFSET_EN bit to 1 enables the  
subtraction of the offset value from the ADC output. There are two offset correction modes, as shown in  
Figure 94.  
DIG_OFFSET_EN  
0
Data Output,  
Bits 13-0  
Bits 13-0  
MUX  
(0s appended as LSBs when in 12-bit resolutions.)  
Analog  
Inputs  
ADCx  
+
1
-
AUTO_OFFSET_REMOVAL_  
ACC_CYCLES  
OFFSET_REMOVAL_SELF  
(Register 4, Bit 15)  
(Register 4, Bits 12-9)  
OFFSET_REMOVAL_START_SEL  
(Register 4, Bit 14)  
Bits  
29-0  
OFFSET_REMOVAL_  
Truncation and  
Rounding Data  
Bits  
Bits 13-0  
1
START_MANUAL  
(Register 4, Bit 13)  
0
Accumulator  
Start  
MUX  
MUX  
1
TX_TRIG Pin  
Bits 9-0  
0
Extending Sign  
Bit to 14 Bits  
OFFSET_CHx  
Bits 13-0  
Figure 94. Digital Offset Correction Block Diagram  
9.3.9.1.1 Manual Offset Correction  
If the channel offset is known, the appropriate value can be written in the OFFSET_CHx register for channel x.  
The offset value programmed in the OFFSET_CHx register subtracts out from the ADC output. The offset of  
each of the 16 ADC output channels can be independently programmed. The same offset value must be  
programmed into two adjacent offset registers. For instance, when programming the channel 1 offset value  
0000011101, write the same offset value of 0000011101 in registers 13 (bits 9-0) and 14 (bits 9-0). The offset  
values are to be written in twos complement format.  
Copyright © 2015–2017, Texas Instruments Incorporated  
67  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.3.9.1.2 Auto Offset Correction Mode (Offset Correction using a Built-In Offset Calculation Function)  
The auto offset calculation module can be used to calculate the channel offset that is then subtracted from the  
ADC output. To enable the auto offset correction mode, set the OFFSET_REMOVAL_SELF bit to 0.  
In auto offset correction mode, the dc component of the ADC output (assumed to be the channel offset) is  
estimated using a digital accumulator. The ADC output sample set used by the accumulator is determined by a  
start time or by the first sample and number of samples to be used. Figure 94 illustrates the options available to  
determine the accumulator sample set.  
A
high pulse on the TX_TRIG pin or setting the  
OFFSET_REMOVAL_START_MANUAL register can be used to determine the accumulator first sample. To set  
the number of samples, the AUTO_OFFSET_REMOVAL_ACC_CYCLES register (bits 12-9) must be  
programmed according to Table 15.  
If a pulse on the TX_TRIG pin is used to set the first sample, additional flexibility in setting the first sample is  
provided. A programmable delay between the TX_TRIG pulse and first sample can be set by writing to the  
OFFSET_CORR_DELAY_FROM_TX_TRIG register.  
The determined offset value can be read out channel-wise. Set the channel number in the  
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL register and read the offset value for the corresponding channel  
in the AUTO_OFFSET_REMOVAL_VAL_RD register.  
Table 15. Auto Offset Removal Accumulator Cycles  
NUMBER OF SAMPLES USED FOR OFFSET VALUE  
AUTO_OFFSET_REMOVAL_ACC_CYCLES (Bits 3-0)  
EVALUATION  
0
2047  
127  
1
2
255  
3
511  
4
1023  
2047  
4095  
8191  
16383  
32767  
65535  
5
6
7
8
9
10 to 15  
68  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.9.2 Digital Average  
The signal-to-noise ratio (SNR) of the signal chain can be improved by providing the same input signal to two  
channels and averaging their output digitally. To enable averaging, set the AVG_EN register bit (register 2, bit  
11). The way that data are transmitted on the digital output lines in this mode is described in Table 16.  
Table 16. Channel and ADC Data Line Mapping (Averaging Enabled)  
CHANNELS  
DOUT1  
MAPPING  
Average of channels 1 and 2  
DOUT2  
Average of channels 3 and 4  
DOUT3  
Average of channels 5 and 6(1)  
DOUT4  
Average of channels 7 and 8(1)  
DOUT5  
Idle  
DOUT6  
Idle  
DOUT7  
Idle  
DOUT8  
Idle  
DOUT9  
Average of channels 9 and 10  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
DOUT14  
DOUT15  
DOUT16  
Average of channels 11 and 12  
Average of channels 13 and 14(1)  
Average of channels 15 and 16(1)  
Idle  
Idle  
Idle  
Idle  
(1) Idle when AVG_EN = 1 and when the LVDS data rate is set to 2X mode.  
NOTE  
Idle LVDS lines are not powered down by default. To save power, these lines can be  
powered down using the corresponding power-down bits (PDN_LVDSx).  
The serialization factor must be greater than the ADC resolution to obtain SNR  
improvement after averaging in 12b resolution.  
9.3.9.3 Digital Gain  
To enable the digital gain block, set DIG_GAIN_EN (register 3, bit 12) to 1. When enabled, the gain value for  
channel x (where x is from 1 to 16) can be set with the 4-bit register control for the corresponding channel  
(GAIN_CHx). Gain is given as (0 dB + 0.2 dB × GAIN CHx). For instance, if GAIN_CH5 = 3 (decimal equivalent  
of the 4-bit word), then channel 5 is increased by a 0.6-dB gain. GAIN_CHx = 31 produces the same effect as  
GAIN_CHx = 30, which sets the gain of channel x to 6 dB.  
9.3.9.4 Digital HPF  
To enable the digital high-pass filter (HPF) of channels 1 to 4, 5 to 8, 9 to 12, and 13 to 16, set the  
DIG_HPF_EN_CH1-4,  
respectively.  
DIG_HPF_EN_CH5-8,  
DIG_HPF_EN_CH9-12,  
and  
DIG_HPF_EN_CH13-16,  
The HPF_CORNER_CHxy register bits (where xy are 1-4, 5-8, 9-12, or 13-16) control the characteristics of a  
digital high-pass transfer function applied to the output data, based on Equation 10. These bits correspond to bits  
4-1 in registers 21, 33, 45, and 57, respectively (these register settings describe the value of K). The valid values  
of K are 2 to 10. The digital HPF can be used to suppress low-frequency noise. Table 17 describes the cutoff  
frequency versus K.  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
(10)  
69  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 17. Digital HPF, –1-dB Corner Frequency versus K and fS  
CORNER FREQUENCY (kHz)  
CORNER FREQUENCY (k)  
(HPF_CORNER_CHxy Register)  
fS = 40 MSPS  
fS = 50 MSPS  
fS = 65 MSPS  
2
3
2780  
1490  
738  
369  
185  
111  
49  
3480  
1860  
230  
461  
230  
138  
61  
4520  
2420  
1200  
600  
300  
180  
80  
4
5
6
7
8
9
25  
30  
40  
10  
12.  
15  
20  
The HPF output is mapped to the ADC resolution bits either by truncation or a round-off operation. By default,  
the HPF output is truncated to map to the ADC resolution. To enable the rounding operation to map the HPF  
output to the ADC resolution, set the HPF_ROUND_EN_CH1-8 and HPF_ROUND_EN_CH9-16 bits to 1.  
9.3.9.5 LVDS Synchronization Operation  
Different test patterns can be synchronized on the LVDS serialized output lines to help set and program the  
FPGA timing that receives the LVDS serial output. Of these test patterns, the ramp, toggle, and pseudo-random  
sequence (PRBS) test patterns can be reset or synchronized by providing a synchronization pulse on the  
TX_TRIG pin or by setting and resetting a specific register bit. The synchronization pulse on the TX_TRIG pin  
must meet the setup and hold time constraints with respect to the system clock, as shown in Figure 95.  
Parameter values are listed in the Output Interface Timing Requirements table.  
tTX_TRIG_DEL  
TX_TRIG  
tSU_TX_TRIGD  
tH_TX_TRIGD  
tH_TX_TRIGD  
TX_TRIGD  
(Internal signal latched by  
System clock rising edge)  
System Clock  
Figure 95. Setup and Hold Time Constraint for the TX_TRIG Signal  
ADC data may be corrupted for four to six clocks immediately after applying TX_TRIG. The phase reset from  
TX_TRIG can be disabled using MASK_TX_TRIG.  
9.3.10 Power Management  
Power management plays a critical role to extend battery life and to ensure a long operation time. The device  
has a fast and flexible power-up and power-down control that can maximize battery life. The device can be either  
powered down or up through external pins or internal registers.  
This section describes the functionality of different power-down pins and register bits available in the device. The  
device can be divided in two major blocks: the VCA and ADC; see Figure 96 and Figure 97.  
70  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
VCM  
BIAS_2P5  
BAND_GAP  
LNA_INCM  
SRC_BIAS  
Reference Voltage,  
Current Generator  
hne /ꢀannel .lock  
TR_EN<1>  
INP1  
INP_SOURCE  
!ttenuator  
LPF  
10, 15,  
LNA  
with  
10 nF  
+
œ
HPF  
20, 25 MHz  
INM1  
TGC Control  
CW  
Mixer  
10 nF  
CW_CH1  
CW_CLOCK  
16X16 Cross  
Point SW  
INP2  
TR_EN<1>  
INP_SOURCE  
!ttenuator  
LPF  
10, 15,  
LNA  
with  
10 nF  
+
œ
HPF  
20, 25 MHz  
INM2  
TGC Control  
CW  
Mixer  
10 nF  
CW_CH2  
CW_CLOCK  
16X16 Cross  
Point SW  
INP_SOURCE  
TR_EN<4>  
INP16  
!ttenuator  
LPF  
10, 15,  
LNA  
with  
10 nF  
+
œ
HPF  
20, 25 MHz  
INM16  
TGC Control  
CW  
Mixer  
10 nF  
CW_CH16  
CW_CLOCK  
16X16 Cross  
Point SW  
TR_EN<1>  
TR_EN<2>  
TR_EN<3>  
TR_EN<4>  
TR_EN<1>  
TR_EN<2>  
TR_EN<3>  
TR_EN<4>  
TGC Control  
CW_CLOCK  
TGC Control  
Engine  
CLKP_16x  
Serial Interface  
SDOUT  
CLKM_16x  
16 Phase  
Generator  
CLKP_1x  
CLKM_1x  
CW_IP_OUTP,  
CW_IP_OUTM,  
CW_QP_OUTP,  
CW_QP_OUTM  
Figure 96. VCA Block Diagram  
Copyright © 2015–2017, Texas Instruments Incorporated  
71  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Reference Voltage,  
Current Generator  
Band-Gap Circuit  
VCM  
ADC1  
LVDS Data  
Serializer and  
Buffer  
DOUTP1  
DOUTM1  
ADC Analog  
ADC Digital  
LVDS Data  
Serializer and  
Buffer  
DOUTP2  
DOUTM2  
ADC Analog  
ADC Digital  
ADC2  
VCA Output  
ADC16  
LVDS Outputs  
LVDS Data  
Serializer and  
Buffer  
DOUTP16  
DOUTM16  
ADC Analog  
ADC Digital  
FCLKP  
FCLKM  
LVDS Frame,  
Clock  
Serializer, and  
Buffer  
DCLKP  
DCLKM  
PLL  
Serial  
Interface  
SDOUT  
ADC Clock  
Buffer  
Figure 97. ADC Block Diagram  
72  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.3.10.1 Voltage-Controlled Attenuator (VCA) Power Management  
The VCA consists of the following blocks:  
Band-gap circuit,  
Serial interface,  
Reference voltage and current generator,  
A total of 16 channel blocks (each channel block includes an attenuator, LNA, LPF, CW mixer, and a 16 × 16  
cross-point switch),  
TGC control engine, and  
Phase generator for CW mode.  
Of these VCA blocks, the band-gap, attenuator, and serial interface block cannot be powered down by using  
power-down pins or bits. Table 18 lists all the VCA blocks that are powered down using various pin and bit  
settings.  
Table 18. VCA Power-Down Mode Descriptions  
16 × 16  
CROSS-  
POINT  
TYPE  
(Pin or  
Register)  
TGC  
CONTROL  
ENGINE  
CW  
MIXER  
PHASE  
GENERATOR  
NAME  
LNA  
LPF  
REFERENCE  
CHANNEL  
SWITCH  
PDN_GBL  
GBL_PDWN  
PDN_FAST  
FAST_PDWN  
PDCHxx  
Pin  
Yes(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
No  
All(2)  
All  
Register  
Pin  
All  
Register  
Register  
Register  
No  
No  
All  
No  
No  
Individual  
All  
PDWN_LNA  
No  
No  
No  
PDWN_  
FILTER  
Register  
No  
Yes  
No  
No  
No  
No  
No  
All  
(1) Yes = powered down; no = active.  
(2) All = all channels are powered down; individual = only a single channel is powered down, depending upon the corresponding bit.  
If more than one bit is simultaneously enabled, then all blocks listed as Yes for each bit setting are powered  
down.  
9.3.10.2 Analog-to-Digital Converter (ADC) Power Management  
The ADC consists of the following blocks:  
Band-gap circuit,  
Serial interface,  
Reference voltage and current generator,  
ADC analog block that performs a sampling and conversion,  
ADC digital block that includes all the digital post processing blocks (such as the offset, gain, digital HPF, and  
so forth),  
LVDS data serializer and buffer that converts the ADC parallel data to a serial stream,  
LVDS frame and clock serializer and buffer, and  
PLL (phase-locked loop) that generates a high-frequency clock for both the ADC and serializer.  
Copyright © 2015–2017, Texas Instruments Incorporated  
73  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Of all these blocks, only the band-gap and serial interface block cannot be powered down using power-down pins  
or bits. Table 19 lists which blocks in the ADC are powered down using different pins and bits.  
Table 19. Power-Down Modes Description for the ADC  
LVDS FRAME  
LVDS DATA  
SERIALIZER,  
BUFFER  
REFERENCE +  
ADC CLOCK  
BUFFER  
TYPE (Pin or  
Register)  
ADC  
ANALOG  
ADC  
DIGITAL  
AND CLOCK  
SERIALIZER,  
BUFFER  
NAME  
PLL  
CHANNEL  
PDN_GBL  
GLOBAL_PDN  
PDN_FAST  
Pin  
Yes(1)  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
All(2)  
All  
Register  
Pin  
All  
DIS_LVDS  
Register  
Register  
Register  
Register  
Yes  
No  
All  
PDN_ANA_CHx  
PDN_DIG_CHx  
PDN_LVDSx  
Yes  
No  
No  
Individual  
Individual  
Individual  
Yes  
No  
No  
No  
No  
Yes  
No  
(1) Yes = powered down; no = active.  
(2) All = all channels are powered down; individual = only a single channel is powered down, depending upon the corresponding bit.  
9.4 Device Functional Modes  
9.4.1 ADC Test Pattern Mode  
9.4.1.1 Test Patterns  
9.4.1.1.1 LVDS Test Pattern Mode  
The ADC data coming out of the LVDS outputs can be replaced by different kinds of test patterns. The different  
test patterns are described in 20.  
20. Description of LVDS Test Patterns  
PROGRAMMING THE MODE  
TEST  
THE PATTERN IS SELECTIVELY  
PATTERN  
MODE  
THE SAME PATTERN MUST BE COMMON  
TO ALL DATA LINES (DOUT)  
REQUIRED ON ONE OR MORE DATA  
LINE (DOUT)  
TEST PATTERNS  
REPLACE(1)  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
Zeros in all bits  
(00000000000000)  
All 0s  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
Ones in all bits  
(11111111111111)  
All 1s  
Deskew  
Sync  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
The ADC data is replaced by  
alternate 0s and 1s  
(01010101010101)  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
ADC data are replaced by  
half 1s and half 0s  
(11111110000000)  
The word written in the  
CUSTOM_PATTERN control  
(taken from the MSB side)  
replaces ADC data.  
Set the mode using PAT_MODES[2:0]. Set  
the desired custom pattern using the  
CUSTOM_PATTERN register control.  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
(For instance,  
Custom  
CUSTOM_PATTERN =  
1100101101011100 and  
ADC data =  
11001011010111 when the  
serialization factor is 14.)  
(1) Shown for a serialization factor of 14.  
74  
版权 © 2015–2017, Texas Instruments Incorporated  
 
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Device Functional Modes (接下页)  
20. Description of LVDS Test Patterns (接下页)  
PROGRAMMING THE MODE  
TEST  
PATTERN  
MODE  
THE PATTERN IS SELECTIVELY  
THE SAME PATTERN MUST BE COMMON  
TO ALL DATA LINES (DOUT)  
REQUIRED ON ONE OR MORE DATA  
LINE (DOUT)  
TEST PATTERNS  
REPLACE(1)  
The ADC data are replaced  
by a word that increments by  
1 LSB every conversion clock  
starting at negative full-scale,  
increments until positive full-  
scale, and wraps back to  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
Ramp  
Set the mode using PAT_MODES[2:0]  
negative full-scale. Step size  
of RAMP pattern is function  
of ADC resolution (N) and  
serialization factor (S) and  
given by 2(S-N)  
.
The ADC data alternate  
between two words that are  
all 1s and all 0s. At each  
setting of the toggle pattern,  
the start word can either be  
all 0s or all 1s. (Alternate  
between 11111111111111  
and 00000000000000.)  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
Toggle  
PRBS  
Set the mode using PAT_MODES[2:0]  
Set PAT_SELECT_IND = 1. Select either  
custom or ramp pattern with  
PAT_LVDSx[2:0]. Enable PRBS mode on  
Set SEL_PRBS_PAT_GBL = 1. Select either  
custom or ramp pattern with  
PAT_MODES[2:0]. Enable PRBS mode  
using PRBS_EN. Select the desired PRBS  
mode using PRBS_MODE. Reset the PRBS  
generator with PRBS_SYNC.  
A 16-bit pattern is generated  
by a 23-bit (or 9-bit) PRBS  
DOUTx with the PAT_PRBS_LVDSx control. pattern generator (taken from  
Select the desired PRBS mode using  
PRBS_MODE. Reset the PRBS generator  
with PRBS_SYNC.  
the MSB side) and replaces  
the ADC data.  
All patterns listed in 20 (except the PRBS pattern) can also be forced on the frame clock output line by using  
PAT_MODES_FCLK[2:0]. To force a PRBS pattern on the frame clock, use the SEL_PRBS_PAT_FCLK,  
PRBS_EN, and PAT_MODES_FCLK register controls.  
The ramp, toggle, and pseudo-random sequence (PRBS) test patterns can be reset or synchronized by providing  
a synchronization pulse on the TX_TRIG pin or by setting and resetting a specific register bit. A block diagram for  
the test patterns is provided in 98.  
版权 © 2015–2017, Texas Instruments Incorporated  
75  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
PAT_MODES[2:0]  
PAT_MODES[2:0]  
Global  
Pattern  
ADC1  
0
1
PAT_SELECT_IND  
0
DOUTP1,  
DOUTM1  
Serializer  
1
0
1
Individual  
Pattern for  
LVDS1  
PAT_LVDS1[2:0]  
ADC16  
0
1
PAT_SELECT_IND  
0
DOUTP16,  
DOUTM16  
Serializer  
1
0
1
Individual  
Pattern for  
LVDS16  
PAT_LVDS16[2:0]  
98. Test Pattern Block Diagram  
76  
版权 © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.4.2 Partial Power-Up and Power-Down Mode  
The partial power-up and power-down mode is also called fast power-up and power-down mode. The VCA can  
be programmed in partial power-down mode either by setting the PDN_FAST pin high or setting the  
FAST_PDWN register bit to 1. Similarly, the ADC can be programmed in this mode by setting the PDN_FAST pin  
high. In this mode, many blocks in the signal path are powered down. However, the internal reference circuits,  
LVDS frame, and data clock buffers remain active. The partial power-down function allows the device to quickly  
wake-up from a low-power state. This configuration ensures that the external capacitors are discharged slowly;  
thus, a minimum wake-up time is required as long as the charges on these capacitors are restored. The longest  
wake-up time depends on the capacitors connected at INP and INM, because the wake-up time is the time  
required to recharge the capacitors to the desired operating voltages. For larger capacitors, this time is longer.  
The ADC wake-up time is approximately 1 μs. Thus, the device wake-up time is more dependent on the VCA  
wake-up time with the assumption that the ADC clock is running for at least 50 μs before the normal operating  
mode resumes. The power-down time is instantaneous, less than 2 μs. This fast wake-up response is desired for  
portable ultrasound applications where power savings is critical. The pulse repetition frequency (PRF) of an  
ultrasound system can vary from 50 kHz to 500 Hz, and the imaging depth (that is, the active period for a receive  
path) varies from tens of µs to hundreds of μs. The power savings can be quite significant when a system PRF is  
low. In some cases, only the VCA is powered down when the ADC runs normally to ensure minimal interference  
to the FPGAs; see the Electrical Characteristics: TGC Mode table to determine device power dissipation in partial  
power-down mode.  
The AFE uses PLLs that generate the high speed clock for the interfaces. Switching activity on the PDN_FAST  
pin can possibly result in disturbance to the PLL operation because of board-level coupling mechanisms. Such a  
disturbance can result in a loss of synchronization at the FPGA and may require re-synchronization on  
resumption of normal operation.  
9.4.3 Global Power-Down Mode  
To achieve the lowest power dissipation, the device can be placed into a complete power-down mode. This  
mode is controlled through the GBL_PDWN (for the VCA) or GLOBAL_PDN (for the ADC) registers or the  
PDN_GBL pin (for both the VCA and ADC). In complete power-down mode, all circuits (including reference  
circuits within the device) are powered down and the capacitors connected to the device are discharged. The  
wake-up time depends on the time that the device spends in shutdown mode. A 0.01-μF capacitor at INP without  
a capacitor at INM provides a wake-up time of approximately 1 ms.  
9.4.4 TGC Configuration  
By default, the VCA is configured in TGC mode after reset. Depending upon the system requirements, the device  
can be programmed in a suitable power mode using the MEDIUM_POW (register 206, bit 14) and LOW_POW  
(register 200, bit 12) register bits.  
9.4.5 Digital TGC Test Modes  
The available test mode bits in the TGC engine are: ENABLE_INT_START, NEXT_CYCLE_WAIT_TIME,  
MANUAL_START, FLIP_ATTEN, and DIS_ATTEN.  
版权 © 2015–2017, Texas Instruments Incorporated  
77  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.4.5.1 ENABLE_INT_START and NEXT_CYCLE_WAIT_TIME  
In internal non-uniform digital TGC mode, the device gain starts changing after the TGC_SLOPE pin level goes  
high. Instead of applying a signal on the TGC_SLOPE pin, the device generates a signal to start the device gain.  
To generate a signal internally, set the ENABLE_INT_START bit (register 181, bit 14) to 1. When a complete  
cycle of the gain curve completes and the device gain returns to the start gain stage, the next start pulse is  
generated after the NEXT_CYCLE_WAIT_TIME (register 183, bits 15-0) number of ADC clock cycles, as shown  
in 99.  
Stop_Gain_Time  
Stop Gain  
Positive Step  
Negative Step  
Start Gain  
Time  
Wait_Time  
Pulse Generated  
in Device  
NEXT_CYCLE_WAIT_TIME  
99. Internal Non-Uniform Test Mode  
9.4.5.2 MANUAL_START  
In up, down ramp mode and internal non-uniform mode, a single TGC start pulse provided on the TGC_SLOPE  
pin can be generated by the device when the MANUAL_START bit is enabled. In up, down ramp mode, the  
MANUAL_START bit also generates a pulse that performs the same functionality that applying a pulse on the  
TGC_UP_DOWN pin does (that is, reduces the signal gain from stop gain to start gain).  
9.4.5.3 FLIP_ATTEN  
By default, the attenuation of an attenuator block is varied and followed by an LNA gain variation in all TGC  
modes. When the FLIP_ATTEN bit (register 182, bit 6) is enabled, the LNA gain is varied first and then followed  
by the attenuation of an attenuator block.  
9.4.5.4 DIS_ATTEN  
When the DIS_ATTEN bit is set to 1, the attenuation block is disabled.  
9.4.5.5 Fixed Attenuation Mode  
The attenuator block can be programmed in fixed attenuation mode (that is, the attenuation does not change with  
time by enabling the FIX_ATTEN_x (x is the profile number) bit in the DTGC Register Map). When the  
FIX_ATTEN_x bit is set to 1, the attenuation value is set using the ATTENUATION_x register bits. A value of N  
written in the ATTENUATION_x register sets the attenuation level at –8 + N × 0.125 dB.  
78  
版权 © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
9.4.6 CW Configuration  
To configure the device in CW mode, set the CW_TGC_SEL register bit (register 192, bit 0) to 1. To save power,  
the ADC can be powered down completely using the GLOBAL_PDN bit (register 1, bit 0). Usually only half the  
number of channels in a system are active in the CW mode. Thus, the individual channel control can power-  
down unused channels and save power; see Table 18 and Table 19. Enabling CW mode automatically  
configures the LNA from TGC mode to CW mode and disables the LPF stage.  
9.4.7 TGC + CW Mode  
This device does not support TGC and CW mode simultaneously. Only one mode can remain active at a time.  
9.5 Programming  
9.5.1 Serial Peripheral Interface (SPI) Operation  
This section discusses the read and write operations of the SPI interface.  
9.5.1.1 Serial Register Write Description  
Several different modes can be programmed with the serial peripheral interface (SPI). This interface is formed by  
the SEN (serial interface enable), SCLK (serial interface clock), SDIN (serial interface data), and RESET pins.  
The SCLK, SDIN, and RESET pins have a 16-kΩ pulldown resistor to ground. SEN has a 16-kΩ pullup resistor to  
supply. Serially shifting bits into the device is enabled when SEN is low. SDIN serial data are latched at every  
SCLK rising edge when SEN is active (low). SDIN serial data are loaded into the register at every 24th SCLK  
rising edge when SEN is low. If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data  
can be loaded in multiples of 24-bit words within a single active SEN pulse (an internal counter counts the  
number of 24 clock groups after the SEN falling edge). Data are divided into two main portions: the register  
address (8 bits) and data (16 bits). 100 shows the timing diagram for serial interface write operation.  
SEN  
tSEN_SU  
Data Latched On  
SCLK Rising Edge  
tSCLK_H  
tSEN_HO  
tSCLK  
SCLK  
tSCLK_L  
tDH  
tDSU  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
RESET  
100. Serial Interface Timing  
版权 © 2015–2017, Texas Instruments Incorporated  
79  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Programming (接下页)  
9.5.1.2 Register Readout  
The device includes an option where the contents of the internal registers can be read back. This readback can  
be useful as a diagnostic test to verify the serial interface communication between the external controller and  
AFE. First, the REG_READ_EN bit must be set to 1. Then, initiate a serial interface cycle specifying the address  
of the register (A[7:0]) whose content must be read. The data bits are don’t care. The device outputs the contents  
(D[15:0]) of the selected register on the SDOUT pin. For lower-speed SCLKs, SDOUT can be latched on the  
SCLK rising edge. For higher-speed SCLKs, latching SDOUT at the next SCLK falling edge is preferable. The  
read operation timing diagram is shown in 101. In readout mode, the REG_READ_EN bit can be accessed  
with SDIN, SCLK, and SEN. To enable serial register writes, set the REG_READ_EN bit back to 0.  
SEN  
SCLK  
tOUT_DV  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT  
SDIN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
101. Serial Interface Register, Read Operation  
The device SDOUT buffer is 3-stated and is only enabled when the REG_READ_EN bit is enabled. SDOUT pins  
from multiple devices can therefore be tied together without any pullup resistors. The SN74AUP1T04 level shifter  
can be used to convert 1.8-V logic to 2.5-V or 3.3-V logic, if necessary.  
80  
版权 © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The device supports a wide-frequency bandwidth signal in the range of several kHz to several MHz. The device  
is a highly-integrated solution that includes an attenuator, low-noise amplifier (LNA), an antialiasing filter, an  
analog-to-digital converter (ADC), and a continuous-wave (CW) mixer. As a result of the device functionality, the  
device can be used in various applications (such as in medical ultrasound imaging systems, sonar imaging  
equipment, radar, and other systems that require a very large dynamic range).  
10.2 Typical Application  
Çransmitter  
1
{ꢂL /ontrol  
ꢀ Çó_ÇwLD  
10 nC  
/hannel 1  
Lbꢂ1  
Çꢀw {ꢁitch  
/lamping  
5iode  
[ë5{  
weceiver  
[ë5{ lines  
!C9 1  
Çransmitter  
16  
10 nC  
/hannel 16  
Lbꢂ16  
Çꢀw {ꢁitch  
CꢂD!  
5ata  
ꢂrocessing  
!nd  
/lamping  
5iode  
64  
/hannels  
Çransducer  
!rray  
{torage  
[ë5{ lines  
[ë5{  
weceiver  
!C9 4  
Çransmitter  
64  
10 nC  
/hannel 64  
Lbꢂ16  
/lock  
Denerator  
Çꢀw {ꢁitch  
/lamping  
5iode  
102. Simplified Schematic for a Medical Ultrasound Imaging System  
版权 © 2015–2017, Texas Instruments Incorporated  
81  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Application (接下页)  
1.9 VA  
10 F  
1.8 VA  
10 F  
3.15 VA  
10 F  
1.2 VD  
10 F  
1.8 VD  
10 F  
0.1 F  
0.1 F  
ADC_CLKP  
N × 0.1 F  
N × 0.1 F  
N × 0.1 F  
N × 0.1 F  
N × 0.1 F  
ADC_CLKM  
AVSS  
AVSS  
AVSS  
DVSS  
DVSS  
AFE5816  
CLKP_16X  
CLKM_16X  
10 nF  
10 nF  
DOUTP1  
DOUTM1  
DOUTP2  
INP1  
INP2  
Clock Inputs  
IN CH1  
IN CH2  
0.1 F  
0.1 F  
CLKP_1X  
CLKM_1X  
DOUTM2  
SDOUT  
SDIN  
DOUTP3, DOUTM3 to  
DOUTP14, DOUTM14  
INP3 to INP14  
SCLK  
TX_TRIG  
DOUTP15  
DOUTM15  
DOUTP16  
SEN  
10 nF  
10 nF  
RESET  
PDN_FAST  
PDN_GBL  
INP15  
INP16  
AFE5816  
IN CH15  
IN CH16  
DOUTM16  
Digital Inputs,  
Outputs  
DCLKP  
DCLKM  
FCLKP  
AFE5816  
Analog Inputs,  
TGC_PROF<2:1>  
TGC_SLOPE  
Analog Outputs,  
BIAS Decoupling,  
LVDS Outputs  
FCLKM  
TGC_UP_DN  
TR_EN <4:1>  
1 F  
1 F  
1 F  
BIAS_2P5  
Summing  
Amplifier  
CW_IP_OUTM  
CW_IP_OUTP  
+
BAND_GAP  
LNA_INCM  
1 F  
SRC_BIAS  
Summing  
Amplifier  
CW_QP_OUTM  
CW_QP_OUTP  
+
NCs  
AVSS  
DVSS  
103. Application Circuit  
82  
版权 © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Typical Application (接下页)  
10.2.1 Design Requirements  
Typical requirements for a medical ultrasound imaging system are listed in 21.  
21. Design Parameters  
DESIGN PARAMETER  
Signal center frequency  
Signal bandwidth  
EXAMPLE VALUES  
5 MHz  
2 MHz  
Maximum overloaded signal  
Maximum input signal amplitude  
Transducer noise level  
Dynamic range  
1 VPP  
100 mVPP  
1 nV/Hz  
151 dBc/Hz  
40 dB  
Time-gain compensation range  
Total harmonic distortion  
40 dBc  
10.2.2 Detailed Design Procedure  
Medical ultrasound imaging is a widely-used diagnostic technique that enables visualization of internal organs,  
their size, structure, and blood flow estimation. An ultrasound system uses a focal imaging technique that  
involves time shifting, scaling, and intelligently summing the echo energy using an array of transducers to  
achieve high imaging performance. The concept of focal imaging provides the ability to focus on a single point in  
the scan region. By subsequently focusing at different points, an image is assembled.  
See 102 for a simplified schematic of a 64-channel ultrasound imaging system. When initiating an ultrasound  
image, a pulse is generated and transmitted from each of the 64 transducer elements. The pulse, now in the  
form of mechanical energy, propagates through the body as sound waves, typically in the frequency range of 1  
MHz to 15 MHz.  
The sound waves weaken rapidly as they travel through the objects being imaged, falling off as the square of the  
distance traveled. As the signal travels, portions of the wave front energy are reflected. Signals that are reflected  
immediately after transmission are very strong because they are from reflections close to the surface; reflections  
that occur long after the transmit pulse are very weak because they are reflecting from deep in the body. As a  
result of the limitations on the amount of energy that can be put into the imaging object, the industry developed  
extremely sensitive receive electronics. Receive echoes from focal points close to the surface require little, if any,  
amplification. This region is referred to as the near field. However, receive echoes from focal points deep in the  
body are extremely weak and must be amplified by a factor of 100 or more. This region is referred to as the far  
field. In the high-gain (far field) mode, the limit of performance is the sum of all noise sources in the receive  
chain.  
In high-gain (far field) mode, system performance is defined by its overall noise level, which is limited by the  
noise level of the transducer assembly and the receive low-noise amplifier (LNA). However, in the low-gain (near  
field) mode, system performance is defined by the maximum amplitude of the input signal that the system can  
handle. The ratio between noise levels in high-gain mode and the signal amplitude level in low-gain mode is  
defined as the dynamic range of the system.  
The high integration and high dynamic range of the device make the AFE5816 ideally-suited for ultrasound  
imaging applications. The device includes an integrated attenuator, an LNA (with variable gain that can be  
changed with enough time to handle both near- and far-field systems), a low-pass antialiasing filter to limit the  
noise bandwidth, an ADC with high SNR performance, and a CW mixer. 103 illustrates an application circuit of  
the device.  
版权 © 2015–2017, Texas Instruments Incorporated  
83  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
The following steps detail how to design medical ultrasound imaging systems:  
1. Use the signal center frequency and signal bandwidth to select an appropriate ADC sampling frequency.  
2. Use the time-gain compensation range to select the range of the LNA gain.  
3. Use the transducer noise level and maximum input signal amplitude to select the appropriate LNA gain. The  
device input-referred noise level reduces with higher LNA gain. However, higher LNA gain leads to lower  
input signal swing support.  
4. See 103 to select different passive components for different device pins.  
5. See the CW Clock Selection section to select the clock configuration for the ADC and CW clocks.  
10.2.3 Application Curves  
104 and 105 show the FFT of a device output for gain code = 64 and gain code = 319, respectively, with  
an input signal at 5 MHz captured at a sample rate of 50 MHz. 104 shows the spectrum for a far-field imaging  
scenario with the full Nyquist band, default device settings, and gain code = 319. 105 shows the spectrum for  
a near-field imaging scenario for the full Nyquist band with default device settings and gain code = 64.  
10  
-10  
0
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-120  
-110  
-130  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
104. FFT for Gain Code = 14 dB  
105. FFT for Gain Code = 45 dB  
84  
版权 © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
10.3 Do's and Don'ts  
Driving the inputs (analog or digital) beyond the power-supply rails. For device reliability, an input must not  
go more than 300 mV below the ground pins or 300 mV above the supply pins, as suggested in the Absolute  
Maximum Ratings table. Exceeding these limits, even on a transient basis, can cause faulty or erratic operation  
and can impair device reliability.  
Driving the device signal input with an excessively high-level signal. The device offers consistent and fast  
overload recovery with a 6-dB overloaded signal. For very large overload signals (> 6 dB of the linear input signal  
range), TI recommends back-to-back Schottky clamping diodes at the input to limit the amplitude of the input  
signal.  
Not meeting timing requirements on the TGC_SLOPE and TGC_UP_DN pins. If timing is not met between  
the TGC_SLOPE and TGC_UP_DN signals and the ADC clock signal, then the TGC engine is placed into a  
locked state. See the Timing Specifications section for more details.  
Using a clock source with excessive jitter, an excessively long input clock signal trace, or having other  
signals coupled to the ADC or CW clock signal trace. These situations cause the sampling interval to vary,  
causing an excessive output noise and a reduction in SNR performance. For a system with multiple devices, the  
clock tree scheme must be used to apply an ADC or CW clock. See the System Clock Configuration for Multiple  
Devices section for clock mismatch between devices, which can lead to latency mismatch and reduction in SNR  
performance.  
LVDS routing length mismatch. The routing length of all LVDS lines routed to the FPGA must be matched to  
avoid any timing-related issues. For systems with multiple devices, the LVDS serialized data clock (DCLKP,  
DCLKM) and the frame clock (FCLKP, FCLKM) of each individual device must be used to deserialize the  
corresponding LDVS serialized data (DOUTP, DOUTM).  
Failure to provide adequate heat removal. Use the appropriate thermal parameter listed in the Thermal  
Information table and an ambient, board, or case temperature in order to calculate device junction temperature. A  
suitable heat removal technique must be used to keep the device junction temperature below the maximum limit  
of 105°C.  
Incorrect register programming. After resetting the device, write register 1, bit 2 = 1 and register 1, bit 4 = 1. If  
these bits are not set as specified, the device does not function properly.  
10.4 Initialization Set Up  
After bringing up all the supplies, follow these steps to initialize the device:  
1. Apply a hardware reset pulse on the RESET pin with a minimum pulse duration of 100 ns. Note that after  
powering up the device, a hardware reset is required.  
2. After applying a hardware reset pulse, wait for a minimum time of 100 ns.  
3. Set register 1, bit 2 and bit 4 to 1 using SPI signals.  
4. 100 µs or later after the start of clock, write the PLLRST1 and PLLRST2 bits to 1. Then, after waiting for at  
least 10 µs, write both these bits to 0, which helps initialize the PLL in a proper manner. This method of PLL  
initialization is also required whenever the device comes out of a global power-down mode or when  
ADC_CLK is switched off and turned on again.  
5. Write any other register settings as required.  
版权 © 2015–2017, Texas Instruments Incorporated  
85  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
11 Power Supply Recommendations  
The device requires a total of five supplies in order to operate properly. These supplies are: AVDD_3P15,  
AVDD_1P9, AVDD_1P8, DVDD_1P8, and DVDD_1P2. See the Recommended Operating Conditions table for  
detailed information regarding the minimum and maximum operating voltage specifications of different supplies.  
11.1 Power Sequencing and Initialization  
11.1.1 Power Sequencing  
106 shows the suggested power-up sequencing and reset timing for the device. Note that the DVDD_1P2  
supply must rise before the AVDD_1P8 supply. If the AVDD_1P8 supply rises before the DVDD_1P2 supply, the  
AVDD_1P8 supply current is several times larger than the normal current until the DVDD_1P2 supply reaches a  
1.2-V level.  
t1  
t2  
DVDD_1P2  
DVDD_1P8,  
t3  
t7  
AVDD_1P8,  
AVDD_1P9,  
AVDD_3P15  
t4  
t5  
RESET  
t6  
Device ready for  
register write.  
SEN  
Write Initialization  
register  
SPI Register  
write  
Device ready for data  
conversion.  
Start of Clock  
ADC_CLK  
t8  
NOTE: 10 µs < t1 < 50 ms, 10 µs < t2 < 50 ms, t3 > t1, t4 > 10 ms, t5 > 100 ns, t6 > 100 ns, t7 > 4 ADC clock cycles,  
and t8 > 100 µs.  
106. Recommended Power-Up Sequencing and Reset Timing Diagram  
86  
版权 © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Power Sequencing and Initialization (接下页)  
11.1.2 PLL Initialization  
100 µs or later after the start of clock, write the PLLRST1 and PLLRST2 bits to 1. Then, after waiting for at least  
10 µs, write both these bits to 0, which helps initialize the PLL in a proper manner. This method of PLL  
initialization is also required whenever the device comes out of a global power-down mode or when ADC_CLK is  
switched off and turned on again.  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Power Supply, Grounding, and Bypassing  
In a mixed-signal system design, the power-supply and grounding design play a significant role. The device  
distinguishes between two different grounds: AVSS (analog ground) and DVSS (digital ground). In most cases,  
designing the printed circuit board (PCB) to use a single ground plane is adequate, but in high-frequency or high-  
performance systems care must be taken so that this ground plane is properly partitioned between various  
sections within the system to minimize interactions between analog and digital circuitry. Alternatively, the digital  
supply set consisting of the DVDD_1P8, DVDD_1P2, and DVSS pins can be placed on separate power and  
ground planes. For this configuration, tie the AVSS and DVSS grounds together at the power connector in a star  
layout. In addition, optical or digital isolators (such as the ISO7240) can completely separate the analog portion  
from the digital portion. Consequently, such isolators prevent digital noise from contaminating the analog portion.  
22 lists the related circuit blocks for each power supply.  
22. Supply versus Circuit Blocks  
POWER SUPPLY  
GROUND  
CIRCUIT BLOCKS(1)  
Reference voltage and current generator, LNA, VCNTRL, CW mixer, CW clock buffer,  
16 × 16 cross-point switch, and 16-phase generator blocks  
AVDD_3P15  
AVSS  
Band-gap circuit, reference voltage and current generator, LNA, PGA, LPF, and VCA  
SPI blocks  
AVDD_1P9  
AVDD_1P8  
AVSS  
AVSS  
ADC analog, reference voltage and current generator, band-gap circuit, ADC clock  
buffer  
DVDD_1P8  
DVDD_1P2  
DVSS  
DVSS  
LVDS serializer and buffer, and PLL blocks  
ADC digital and serial interface blocks  
(1) See Figure 96 and Figure 97 for further details.  
Reference all bypassing and power supplies for the device to their corresponding ground planes. Bypass all  
supply pins with 0.1-μF ceramic chip capacitors (size 0603 or smaller). In order to minimize the lead and trace  
inductance, the capacitors must be located as close to the supply pins as possible. Where double-sided  
component mounting is allowed, these capacitors are best placed directly under the package. In addition, larger  
bipolar decoupling capacitors (2.2 μF to 10 μF, effective at lower frequencies) can also be used on the main  
supply pins. These components can be placed on the PCB in close proximity (< 0.5 inch or 12.7 mm) to the  
device itself.  
The device has a number of reference supplies that must be bypassed, such as BIAS_2P5, LNA_INCM,  
BAND_GAP, and SRC_BIAS. Bypass these pins with at least a 1-μF capacitor; higher value capacitors can be  
used for better low-frequency noise suppression. For best results, choose low-inductance ceramic chip  
capacitors (size 0402, > 1 μF) placed as close as possible to the device pins.  
版权 © 2015–2017, Texas Instruments Incorporated  
87  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
12.1.2 Board Layout  
High-speed, mixed-signal devices are sensitive to various types of noise coupling. One primary source of noise is  
the switching noise from the serializer and the output buffer and drivers. For the device, care must be taken to  
ensure that the interaction between the analog and digital supplies within the device is kept to a minimal amount.  
The extent of noise coupled and transmitted from the digital and analog sections depends on the effective  
inductances of each supply and ground connection; smaller effective inductances of the supply and ground pins  
result in better noise suppression. For this reason, multiple pins are used to connect each supply and ground set.  
Low inductance properties must be maintained throughout the design of the PCB layout by the use of proper  
planes and layer thickness.  
To avoid noise coupling through supply pins, keep sensitive input pins (such as the INM and INP pins) away from  
the AVDD_3P15 and AVDD_1P9 planes. For example, do not route the traces or vias connected to these pins  
across the AVDD_3P15 and AVDD_1P9 planes. That is, avoid the power planes under the INM and INP pins.  
In order to maintain proper LVDS timing, all LVDS traces must follow a controlled impedance design. In addition,  
all LVDS trace lengths must be equal and symmetrical; keep trace length variations less than 150 mil (0.150 inch  
or 3.81 mm).  
In addition, appropriate delay matching must be considered for the CW clock path, especially in systems with a  
high channel count. For example, if the clock delay is half of the 16X clock period, a phase error of 22.5°C can  
exist. Thus, the timing delay difference among channels contributes to the beamformer accuracy.  
Additional details on the NFBGA PCB layout techniques can be found in the Texas Instruments application report  
SSYZ015 that can be downloaded from www.ti.com.  
12.2 Layout Example  
107 and 108 illustrate example layouts for the top and bottom layers, respectively.  
107. Top Layer  
88  
版权 © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Layout Example (接下页)  
108. Bottom Layer  
版权 © 2015–2017, Texas Instruments Incorporated  
89  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Layout Example (接下页)  
109 shows the routing of input traces and differential CW outputs.  
109. Input Routing  
90  
版权 © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Layout Example (接下页)  
110 shows routing examples for different power planes.  
110. Ground Plane  
版权 © 2015–2017, Texas Instruments Incorporated  
91  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Layout Example (接下页)  
111, 112, and 113 illustrate routing examples for different power planes.  
111. AVDD_1P9 and DVDD_1P8 Power Plane  
92  
版权 © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Layout Example (接下页)  
112. AVDD_1P8 Power Plane  
Copyright © 2015–2017, Texas Instruments Incorporated  
93  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Layout Example (接下页)  
113. AVDD_3P15 and DVDD_1P2 Power Plane  
94  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13 Register Maps  
13.1 Serial Register Map  
The device is a multichip module (MCM) with two dies: the VCA die and the ADC_CONV die, as shown in  
Figure 114. Figure 114 also describes the channel mapping of the VCA die to the input pins. Both dies share the  
same SPI control signals (SCLK, SDIN, and SEN).  
ADC_CONV die  
VCA Die  
INP1  
INP2  
INP3  
INP4  
INP5  
VCA_IN1  
VCA_IN2  
VCA_IN3  
VCA_IN4  
VCA_IN5  
VCA_OUT1  
VCA_OUT2  
VCA_OUT3  
VCA_OUT4  
VCA_OUT5  
ADC_IN1  
ADC_IN2  
ADC_IN3  
ADC_IN4  
ADC_IN5  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
INP6  
INP7  
VCA_IN6  
VCA_IN7  
VCA_OUT6  
VCA_OUT7  
ADC_IN6  
ADC_IN7  
DOUT6  
DOUT7  
INP8  
INP9  
VCA_IN8  
VCA_IN9  
VCA_OUT8  
VCA_OUT9  
ADC_IN8  
ADC_IN9  
ADC_IN10  
ADC_IN11  
ADC_IN12  
ADC_IN13  
DOUT8  
DOUT9  
INP10  
INP11  
INP12  
INP13  
VCA_IN10 VCA_OUT10  
VCA_IN11 VCA_OUT11  
VCA_IN12 VCA_OUT12  
VCA_IN13 VCA_OUT13  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
INP14  
INP15  
VCA_IN14 VCA_OUT14  
VCA_IN15 VCA_OUT15  
ADC_IN14  
ADC_IN15  
DOUT14  
DOUT15  
INP16  
VCA_IN16 VCA_OUT16  
ADC_IN16  
DOUT16  
Device  
Figure 114. Channel Mapping: VCA Dies  
A reset process is required at the device initialization stage.  
NOTE  
Initialization can be accomplished with a hardware reset by applying a positive pulse to  
the RESET pin. After reset, all ADC and VCA registers are set to default values. Note that  
during register programming, all unnamed register bits must be set to 0 for the register  
that is being programmed.  
The device consists of the following register maps:  
1. Global register map. This register map is common to both the ADC_CONV and VCA dies. The global register  
map consists of register 0. To program the global register map, set the DTGC_WR_EN bit to 0.  
2. ADC register map. This register map programs the ADC die. The ADC register map consists of register 1 to  
register 67. To program the ADC register map, set the DTGC_WR_EN bit to 0.  
3. VCA register map. This register map contains register 192 to register 230 and programs all VCA blocks  
except the DTGC engine. To program the VCA register map, set the DTGC_WR_EN bit to 0.  
4. DTGC register map. This register map contains register 1 to register 186 and programs the TGC control  
engine of the VCA die. To program the DTGC register map, set the DTGC_WR_EN bit to 1.  
Copyright © 2015–2017, Texas Instruments Incorporated  
95  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Serial Register Map (continued)  
Because these register maps share the same address space, the DTGC_WR_EN bit is used to program the  
different register maps, as listed in Table 23.  
Table 23. Register Configuration  
REGISTER MAP  
Global register map  
ADC register map  
VCA register map  
DTGC register map  
ADDRESS  
0
DTGC_WR_EN BIT  
0
0
0
1
1 to 67  
192 to 230  
1 to 186  
13.1.1 Global Register Map  
This section discusses the global register. This register map is shown in Table 24.  
DTGC_WR_EN must be set to 0 before programming other bits of the global register map.  
Table 24. Global Register Map  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
DECIMAL HEX  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DTGC_  
WR_EN  
REG_READ_  
EN  
SOFTWARE_  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(1) The default value of all registers is 0.  
13.1.1.1 Description of Global Register  
13.1.1.1.1 Register 0 (address = 0h)  
Figure 115. Register 0  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
1
W-0h  
7
0
6
0
5
0
4
3
0
2
0
0
REG_READ_  
EN  
SOFTWARE_  
RESET  
DTGC_WR_EN  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value  
Table 25. Register 0 Field Descriptions  
Bit  
15-5  
4
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DTGC_WR_EN  
W
0h  
0 = Enables programming of the global, ADC, and VCA register maps  
1 = Enables programming of the DTGC register map  
3-2  
1
0
W
W
0h  
0h  
Must write 0  
REG_READ_EN  
0 = Register readout mode disabled  
1 = Register readout mode enabled  
0
SOFTWARE_RESET  
W
0h  
0 = Disabled  
1 = Enabled (this setting returns the device to a reset state). This bit is a  
self-clearing register bit.  
96  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2 ADC Register Map  
This section discusses the ADC register map. A register map is available in Table 26.  
DTGC_WR_EN must be set to 0 before programming the ADC register map.  
Table 26. ADC Register Map  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
DECIMAL HEX  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LVDS_  
RATE_2X  
GLOBAL_  
PDN  
1
2
1
2
0
0
0
0
0
0
0
0
0
DIS_LVDS  
1
0
1
0
LOW_  
LATENCY_  
EN  
SEL_PRBS  
_PAT_  
FCLK  
SEL_PRBS  
_PAT_GBL  
PAT_MODES_FCLK[2:0]  
SER_DATA_RATE  
AVG_EN  
0
PAT_MODES[2:0]  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0]  
DIG_  
OFFSET_  
EN  
DIG_GAIN_  
EN  
OFFSET_CORR_DELAY_  
FROM_TX_TRIG[7:6]  
3
4
3
4
0
0
0
0
0
0
0
0
0
0
OFFSET_  
REMOVAL_ REMOVAL_  
START_  
SEL  
OFFEST_  
OFFSET_  
REMOVAL_  
SELF  
PAT_  
SELECT_  
IND  
PRBS_  
SYNC  
PRBS_  
MODE  
MSB_  
FIRST  
AUTO_OFFSET_REMOVAL_ACC_CYCLES[3:0]  
PRBS_EN  
ADC_RES  
START_  
MANUAL  
5
7
5
7
8
B
CUSTOM_PATTERN[15:0]  
CHOPPER  
_EN  
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL[4:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
AUTO_OFFSET_REMOVAL_VAL_RD[13:0]  
EN_  
11  
0
0
0
0
0
0
0
0
DITHER  
13  
14  
15  
16  
17  
18  
19  
20  
D
E
GAIN_CH1  
0
0
0
0
0
0
0
0
OFFSET_CH1  
0
OFFSET_CH1  
OFFSET_CH2  
OFFSET_CH2  
OFFSET_CH3  
OFFSET_CH3  
OFFSET_CH4  
OFFSET_CH4  
F
GAIN_CH2  
10  
11  
12  
13  
14  
0
GAIN_CH3  
0
GAIN_CH4  
0
HPF_  
ROUND_  
EN_CH1-8  
PAT_PRBS PAT_PRBS PAT_PRBS PAT_PRBS  
DIG_HPF_  
EN_CH1-4  
21  
15  
PAT_LVDS1[2:0]  
PAT_LVDS2[2:0]  
HPF_CORNER_CH1-4[3:0]  
PAT_LVDS4[2:0]  
_LVDS1  
_LVDS2  
_LVDS3  
_LVDS4  
23  
24  
17  
18  
0
0
0
0
0
0
0
0
PAT_LVDS3[2:0]  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
0
0
PDN_DIG_ PDN_DIG_ PDN_DIG_ PDN_DIG_  
PDN_  
LVDS4  
PDN_  
LVDS3  
PDN_  
LVDS2  
PDN_  
LVDS1  
INVERT_  
CH4  
INVERT_  
CH3  
INVERT_  
CH2  
INVERT_  
CH1  
CH4  
CH3  
CH2  
GAIN_CH5  
0
CH1  
CH4 CH3 CH2 CH1  
25  
26  
27  
28  
29  
19  
1A  
1B  
1C  
1D  
0
0
0
0
0
OFFSET_CH5  
OFFSET_CH5  
OFFSET_CH6  
OFFSET_CH6  
OFFSET_CH7  
GAIN_CH6  
0
GAIN_CH7  
(1) Default value of all registers is 0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
97  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 26. ADC Register Map (continued)  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
DECIMAL  
HEX  
1E  
15  
14  
13  
12  
11  
10  
0
9
8
7
6
5
4
3
2
1
0
30  
31  
32  
0
OFFSET_CH7  
1F  
GAIN_CH8  
0
0
OFFSET_CH8  
OFFSET_CH8  
20  
0
PAT_PRBS PAT_PRBS PAT_PRBS PAT_PRBS  
DIG_HPF_  
EN_CH5-8  
33  
35  
36  
21  
23  
24  
PAT_LVDS5[2:0]  
0
PAT_LVDS6[2:0]  
0
HPF_CORNER_CH5-8[3:0]  
PAT_LVDS8[2:0]  
_LVDS5  
_LVDS6  
_LVDS7  
_LVDS8  
0
0
0
0
0
0
0
PAT_LVDS7[2:0]  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
0
0
PDN_DIG_ PDN_DIG_ PDN_DIG_ PDN_DIG_  
PDN_  
LVDS8  
PDN_  
LVDS7  
PDN_  
LVDS6  
PDN_  
LVDS5  
INVERT_  
CH8  
INVERT_  
CH7  
INVERT_  
CH6  
INVERT_  
CH5  
CH8  
CH7  
CH6  
CH5  
CH8  
CH7  
CH6  
CH5  
37  
38  
39  
40  
41  
42  
43  
44  
25  
26  
27  
28  
29  
2A  
2B  
2C  
GAIN_CH9  
0
0
0
0
0
0
0
0
OFFSET_CH9  
0
OFFSET_CH9  
OFFSET_CH10  
OFFSET_CH10  
OFFSET_CH11  
OFFSET_CH11  
OFFSET_CH12  
OFFSET_CH12  
GAIN_CH10  
0
GAIN_CH11  
0
GAIN_CH12  
0
HPF_ROU  
ND_EN_CH  
1-8  
DIG_HPF_  
EN_  
CH9-12  
PAT_PRBS PAT_PRBS PAT_PRBS PAT_PRBS  
45  
2D  
PAT_LVDS9[2:0]  
0
PAT_LVDS10[2:0]  
HPF_CORNER_CH9-12[3:0]  
PAT_LVDS12[2:0]  
_LVDS9  
_LVDS10  
_LVDS11  
_LVDS12  
47  
48  
2F  
30  
0
0
0
0
0
0
0
PAT_LVDS11[2:0]  
0
0
PDN_DIG_ PDN_DIG_ PDN_DIG_ PDN_DIG_  
PDN_  
LVDS12  
PDN_  
LVDS11  
PDN_  
LVDS10  
PDN_  
LVDS9  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
INVERT_  
CH12  
INVERT_  
CH11  
INVERT_  
CH10  
INVERT_  
CH9  
CH12  
CH11  
CH10  
CH9  
CH12  
CH11  
CH10  
CH9  
49  
50  
51  
52  
53  
54  
55  
56  
31  
32  
33  
34  
35  
36  
37  
38  
GAIN_CH13  
0
0
0
0
0
0
0
0
OFFSET_CH13  
0
OFFSET_CH13  
OFFSET_CH14  
OFFSET_CH14  
OFFSET_CH15  
OFFSET_CH15  
OFFSET_CH16  
OFFSET_CH16  
GAIN_CH14  
0
GAIN_CH15  
0
GAIN_CH16  
0
DIG_HPF_  
EN_  
CH13-16  
PAT_PRBS PAT_PRBS PAT_PRBS PAT_PRBS  
57  
39  
PAT_LVDS13[2:0]  
0
PAT_LVDS14[2:0]  
0
HPF_CORNER_CH13-16[3:0]  
PAT_LVDS16[2:0]  
_LVDS13  
_LVDS14  
_LVDS15  
_LVDS16  
59  
60  
3B  
3C  
0
0
0
0
0
0
0
PAT_LVDS15[2:0]  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
0
0
PDN_DIG_ PDN_DIG_ PDN_DIG_ PDN_DIG_  
PDN_  
LVDS16  
PDN_  
LVDS15  
PDN_  
LVDS14  
PDN_  
LVDS13  
INVERT_  
CH16  
INVERT_  
CH15  
INVERT_  
CH14  
INVERT_  
CH13  
CH16  
PLLRST1  
PLLRST2  
0
CH15  
CH14  
CH13  
CH16  
CH15  
CH14  
CH13  
65  
66  
67  
41  
42  
43  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LVDS_DCLK_DELAY_PROG[3:0]  
98  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1 Description of ADC Registers  
13.1.2.1.1 Register 1 (address = 1h)  
Figure 116. Register 1  
15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
8
0
LVDS_RATE_  
2X  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
4
1
3
0
2
1
1
0
0
DIS_LVDS  
R/W-0h  
GLOBAL_PDN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 27. Register 1 Field Descriptions  
Bit  
15  
14  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LVDS_RATE_2X  
0h  
0 = 1X rate; normal operation (default)  
1 = 2X rate. This setting combines the data of two LVDS pairs  
into a single LVDS pair. This feature can be used when the ADC  
clock rate is low; see the LVDS Interface section for further  
details.  
13-6  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
DIS_LVDS  
0 = LVDS interface is enabled (default)  
1 = LVDS interface is disabled  
4
3
2
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
Must write 1  
Must write 0  
Must write 1  
Must write 0  
0
1
0
GLOBAL_PDN  
0 = Device operates in normal mode (default)  
1 = ADC enters complete power-down mode  
Copyright © 2015–2017, Texas Instruments Incorporated  
99  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.2 Register 2 (address = 2h)  
Figure 117. Register 2  
15  
14  
13  
5
12  
11  
10  
9
8
LOW_  
LATENCY_EN  
SEL_PRBS_  
PAT_FCLK  
PAT_MODES_FCLK[2:0]  
R/W-0h  
AVG_EN  
PAT_MODES[2:0]  
R/W-0h  
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
7
6
1
0
PAT_  
MODES[2:0]  
SEL_PRBS_  
PAT_GBL  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 28. Register 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
PAT_MODES_FCLK[2:0]  
R/W  
0h  
These bits enable different test patterns on the frame clock line;  
see Table 29 for bit descriptions and the Test Patterns section  
for further details.  
12  
11  
LOW_LATENCY_EN  
AVG_EN  
R/W  
R/W  
0h  
0h  
0 = Default latency with digital features supported  
1 = Low latency with digital features bypassed  
0 = No averaging  
1 = Enables averaging of two channels to improve signal-to-  
noise ratio (SNR); see the LVDS Interface section for further  
details.  
10  
9-7  
6
SEL_PRBS_PAT_FCLK  
PAT_MODES[2:0]  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0 = Normal operation  
1 = Enables the PRBS pattern to be generated on fCLK; see the  
Test Patterns section for further details  
These bits enable different test patterns on the LVDS data lines;  
see Table 29 for bit descriptions and the Test Patterns section  
for further details.  
SEL_PRBS_PAT_GBL  
0 = Normal operation  
1 = Enables the PRBS pattern to be generated; see the Test  
Patterns section for further details  
5-0  
OFFSET_CORR_DELAY_  
FROM_TX_TRIG[5:0]  
This 8-bit register initiates an offset correction after the TX_TRIG  
input pulse (each step is equivalent to one sample delay); the  
remaining two MSB bits are the  
OFFSET_CORR_DELAY_FROM_TX_TRIG[7:6] bits (bits 10-9)  
in register 3.  
Table 29. Pattern Mode Bit Description  
PAT_MODES[2:0]  
DESCRIPTION  
000  
001  
010  
011  
100  
101  
110  
111  
Normal operation  
Sync (half frame 1, half frame 0)  
Alternate 0s and 1s  
Custom pattern(1)  
All 1s  
Toggle mode  
All 0s  
Ramp pattern(1)  
(1) Either the custom or the ramp pattern setting is required for PRBS pattern selection.  
100  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.3 Register 3 (address = 3h)  
Figure 118. Register 3  
15  
14  
13  
12  
11  
0
10  
9
8
OFFSET_CORR_DELAY_FROM  
_TX_TRIG[7:6]  
DIG_  
OFFSET_EN  
SER_DATA_RATE  
R/W-0h  
DIG_GAIN_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 30. Register 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
SER_DATA_RATE  
R/W  
0h  
These bits control the LVDS serialization rate.  
000 = 12X  
001 = 14X  
100 = 16X  
101, 110, 111, 010, 011 = Unused  
12  
DIG_GAIN_EN  
0
R/W  
0h  
0 = Digital gain disabled  
1 = Digital gain enabled  
11  
R/W  
R/W  
0h  
0h  
Must write 0  
10-9  
OFFSET_CORR_DELAY_  
FROM_TX_TRIG[7:6]  
This 8-bit register initiates an offset correction after the TX_TRIG  
input pulse (each step is equivalent to one sample delay); the  
remaining six LSB bits are the  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0] bits (bits 5-0) in  
register 2.  
8
DIG_OFFSET_EN  
0
R/W  
R/W  
0h  
0h  
0 = Digital offset subtraction disabled  
1 = Digital offset subtraction enabled  
7-0  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
101  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.4 Register 4 (address = 4h)  
Figure 119. Register 4  
15  
14  
13  
12  
11  
10  
9
8
OFFSET_REM OFFSET_REM  
OVAL_START_ OVAL_START_  
OFFSET_REM  
OVAL_SELF  
PAT_  
SELECT_IND  
AUTO_OFFSET_REMOVAL_ACC_CYCLES  
SEL  
MANUAL  
R/W-0h  
7
R/W-0h  
R/W-0h  
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
6
5
PRBS_  
SYNC  
PRBS_  
MODE  
PRBS_EN  
R/W-0h  
MSB_FIRST  
R/W-0h  
0
0
ADC_RES  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 31. Register 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
OFFSET_REMOVAL_SELF  
R/W  
0h  
0 = Auto offset correction mode is enabled  
1 = Offset correction via register is enabled  
14  
OFFSET_REMOVAL_START_SEL R/W  
0h  
0 = Auto offset correction is initiated when the  
OFFSET_REMOVAL_START_MANUAL bit is set to 1  
1 = Auto offset correction is initiated with a pulse on the  
TX_TRIG pin  
13  
12-9  
8
OFFSET_REMOVAL_START_  
MANUAL  
R/W  
R/W  
R/W  
0h  
0h  
0h  
This bit initiates an offset correction manually instead of with a  
TX_TRIG pulse  
AUTO_OFFSET_REMOVAL_  
ACC_CYCLES  
These bits define the number of samples required to generate  
an offset in auto offset correction mode  
PAT_SELECT_IND  
0 = All LVDS output lines have the same pattern, as determined  
by the PAT_MODES[2:0] bits  
1 = Different test patterns can be sent on different LVDS lines,  
depending upon the channel and register; see the Test Patterns  
section for further details  
7
6
5
PRBS_SYNC  
PRBS_MODE  
PRBS_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation  
1 = PRBS generator is in a reset state  
0 = 23-bit PRBS generator  
1 = 9-bit PRBS generator  
0 = PRBS sequence generation block disabled  
1 = PRBS sequence generation block enabled; see the Test  
Patterns section for further details  
4
MSB_FIRST  
R/W  
0h  
0 = The LSB is transmitted first on serialized output data  
1 = The MSB is transmitted first on serialized output data  
3
2
0
R/W  
R/W  
R/W  
0h  
0h  
0h  
Must write 0  
Must write 0  
0
1-0  
ADC_RES  
These bits control the ADC resolution.  
00 = 12-bit resolution  
01 = 14-bit resolution  
10, 11 = Unused  
102  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.5 Register 5 (address = 5h)  
Figure 120. Register 5  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CUSTOM_PATTERN[15:0]  
R/W-0h  
4
3
CUSTOM_PATTERN[13:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 32. Register 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
CUSTOM_PATTERN[15:0]  
R/W  
0h  
If the pattern mode is programmed to a custom pattern mode,  
then the custom pattern value can be provided by programming  
these bits; see the Test Patterns section for further details.  
13.1.2.1.6 Register 7 (address = 7h)  
Figure 121. Register 7  
15  
14  
13  
12  
11  
10  
0
9
0
8
0
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CHOPPER_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 33. Register 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
AUTO_OFFSET_REMOVAL_  
VAL_RD_CH_SEL  
R/W  
0h  
Write the channel number to read the offset value in auto offset  
correction mode for a corresponding channel number (read the  
offset value in register 8, bits 13-0)  
10-1  
0
0
R/W  
R/W  
0h  
0h  
Must write 0  
CHOPPER_EN  
The chopper can be used to move low-frequency, 1 / f noise to  
an fS / 2 frequency.  
0 = Chopper disabled  
1 = Chopper enabled  
Copyright © 2015–2017, Texas Instruments Incorporated  
103  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.7 Register 8 (address = 8h)  
Figure 122. Register 8  
15  
0
14  
0
13  
5
12  
11  
10  
9
1
8
0
AUTO_OFFSET_REMOVAL_VAL_RD[13:0]  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
4
3
2
AUTO_OFFSET_REMOVAL_VAL_RD[13:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 34. Register 8 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
15-14  
13-0  
0
Must write 0  
AUTO_OFFSET_REMOVAL_VAL_RD  
0h  
Read the offset value applied in auto offset correction mode  
for a specific channel number as defined in the  
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL[4:0] register  
bit.  
13.1.2.1.8 Register 11 (address = Bh)  
Figure 123. Register 11  
15  
0
14  
0
13  
0
12  
0
11  
10  
0
9
0
8
0
EN_DITHER  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 35. Register 11 Field Descriptions  
Bit  
15-12  
11  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
EN_DITHER  
0h  
Dither can be used to remove higher-order harmonics.  
0 = Dither disabled  
1 = Dither enabled  
Note: Enabling the dither converts higher-order harmonics power  
in noise. Thus, enabling this mode removes harmonics but  
degrades SNR.  
10-0  
0
R/W  
0h  
Must write 0  
104  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.9 Register 13 (address = Dh)  
Figure 124. Register 13  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH1  
R/W-0h  
OFFSET_CH1  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH1  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 36. Register 13 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH1  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 1 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH1  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 1 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 14, bits 9-0.  
13.1.2.1.10 Register 14 (address = Eh)  
Figure 125. Register 14  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH1  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 37. Register 14 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH1  
0h  
When the DIG_OFFSET_EN bit is set to 1, then the offset value  
for channel 1 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 13, bits 9-0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
105  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.11 Register 15 (address = Fh)  
Figure 126. Register 15  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH2  
R/W-0h  
OFFSET_CH2  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH2  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 38. Register 15 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH2  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 2 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH2  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 2 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 16, bits 9-0.  
13.1.2.1.12 Register 16 (address = 10h)  
Figure 127. Register 16  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH2  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH2  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 39. Register 16 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH2  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 2 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 15, bits 9-0.  
106  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.13 Register 17 (address = 11h)  
Figure 128. Register 17  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH3  
R/W-0h  
OFFSET_CH3  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH3  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 40. Register 17 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH3  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 3 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH3  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 3 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 18, bits 9-0.  
13.1.2.1.14 Register 18 (address = 12h)  
Figure 129. Register 18  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH3  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH3  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 41. Register 18 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH3  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 3 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 17, bits 9-0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
107  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.15 Register 19 (address = 13h)  
Figure 130. Register 19  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH4  
R/W-0h  
OFFSET_CH4  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH4  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 42. Register 19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH4  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 4 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH4  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 4 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 20, bits 9-0.  
13.1.2.1.16 Register 20 (address = 14h)  
Figure 131. Register 20  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH4  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH4  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 43. Register 20 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH4  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 4 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 19, bits 9-0.  
108  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.17 Register 21 (address = 15h)  
Figure 132. Register 21  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS1  
PAT_PRBS_  
LVDS2  
PAT_PRBS_  
LVDS3  
PAT_PRBS_  
LVDS4  
PAT_  
LVDS2[2:0]  
PAT_LVDS1[2:0]  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
HPF_ROUND_  
EN_CH1-8  
DIG_HPF_EN_  
CH1-4  
PAT_LVDS2[2:0]  
R/W-0h  
HPF_CORNER_CH1-4[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 44. Register 21 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS1  
R/W  
0h  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 1 can be enabled with this bit; see the Test  
Patterns section for further details.  
14  
13  
PAT_PRBS_LVDS2  
PAT_PRBS_LVDS3  
PAT_PRBS_LVDS4  
PAT_LVDS1[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 2 can be enabled with this bit; see the Test  
Patterns section for further details.  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 3 can be enabled with this bit; see the Test  
Patterns section for further details.  
12  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 4 can be enabled with this bit; see the Test  
Patterns section for further details.  
11-9  
8-6  
5
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 1 can be programmed with these bits; see  
Table 45 for bit descriptions.  
PAT_LVDS2[2:0]  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 2 can be programmed with these bits; see  
Table 45 for bit descriptions.  
HPF_ROUND_EN_CH1-8  
0 = Rounding in the ADC HPF is disabled for channel 1 to 8.  
HPF output is truncated to be mapped to the ADC resolution  
bits.  
1 = HPF output of channel 1 to 8 is mapped to the ADC  
resolution bits by the round-off operation.  
4-1  
HPF_CORNER_CH1-4[3:0]  
R/W  
0h  
When the DIG_HPF_EN_CH1-4 bit is set to 1, the digital HPF  
characteristic for the corresponding channels can be  
programmed by setting the value of k with these bits.  
Characteristics of a digital high-pass transfer function applied to  
the output data for a given value of k is defined by:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
Note that the value of k can be from 2 to 10 (0010b to 1010b);  
see the Digital HPF section for further details.  
0
DIG_HPF_EN_CH1-4  
R/W  
0h  
0 = Digital HPF disabled for channels 1 to 4 (default)  
1 = Enables digital HPF for channels 1 to 4  
Copyright © 2015–2017, Texas Instruments Incorporated  
109  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 45. Pattern Mode Bit Description  
PAT_MODES[2:0]  
DESCRIPTION  
Normal operation  
Sync (half frame 0, half frame 1)  
Alternate 0s and 1s  
Custom pattern  
All 1s  
000  
001  
010  
011  
100  
101  
110  
111  
Toggle mode  
All 0s  
Ramp pattern  
13.1.2.1.18 Register 23 (address = 17h)  
Figure 133. Register 23  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
PAT_LVDS3[2:0]  
R/W-0h  
PAT_LVDS4[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 46. Register 23 Field Descriptions  
Bit  
15-8  
7-5  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PAT_LVDS3[2:0]  
0h  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 3 can be programmed with these bits; see  
Table 45 for bit descriptions.  
4-2  
1-0  
PAT_LVDS4[2:0]  
0
R/W  
R/W  
0h  
0h  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 4 can be programmed with these bits; see  
Table 45 for bit descriptions.  
Must write 0  
110  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.19 Register 24 (address = 18h)  
Figure 134. Register 24  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
CH4  
PDN_DIG_  
CH3  
PDN_DIG_  
CH2  
PDN_DIG_  
CH1  
PDN_LVDS4  
PDN_LVDS3  
PDN_LVDS2  
PDN_LVDS1  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
CH4  
PDN_ANA_  
CH3  
PDN_ANA_  
CH2  
PDN_ANA_  
CH1  
INVERT_  
CH4  
INVERT_  
CH3  
INVERT_  
CH2  
INVERT_  
CH1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 47. Register 24 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_CH4  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 4  
14  
13  
12  
11  
10  
9
PDN_DIG_CH3  
PDN_DIG_CH2  
PDN_DIG_CH1  
PDN_LVDS4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 3  
0 = Normal operation (default)  
1 = Powers down the digital block for channel2  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 1  
0 = Normal operation (default)  
1 = Powers down LVDS output line 4  
PDN_LVDS3  
0 = Normal operation (default)  
1 = Powers down LVDS output line 3  
PDN_LVDS2  
0 = Normal operation (default)  
1 = Powers down LVDS output line 2  
8
PDN_LVDS1  
0 = Normal operation (default)  
1 = Powers down LVDS output line 1  
7
PDN_ANA_CH4  
PDN_ANA_CH3  
PDN_ANA_CH2  
PDN_ANA_CH1  
INVERT_CH4  
INVERT_CH3  
INVERT_CH2  
INVERT_CH1  
0 = Normal operation (default)  
1 = Powers down the analog block for channel 4  
6
0 = Normal operation (default)  
1 = Powers down the analog block for channel 3  
5
0 = Normal operation (default)  
1 = Powers down the analog block for channel 2  
4
0 = Normal operation (default)  
1 = Powers down the analog block for channel 1  
3
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 4(1)  
2
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 3(1)  
1
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 2(1)  
0
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 1(1)  
(1) Has no effect on test patterns.  
Copyright © 2015–2017, Texas Instruments Incorporated  
111  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.20 Register 25 (address = 19h)  
Figure 135. Register 25  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH5  
R/W-0h  
OFFSET_CH5  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH5  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 48. Register 25 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH5  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 5 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH5  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 5 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 26, bits 9-0.  
13.1.2.1.21 Register 26 (address = 1Ah)  
Figure 136. Register 26  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH5  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH5  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 49. Register 26 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH5  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 5 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 25, bits 9-0.  
112  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.22 Register 27 (address = 1Bh)  
Figure 137. Register 27  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH6  
R/W-0h  
OFFSET_CH6  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH6  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 50. Register 27 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH6  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 6 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH6  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 6 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 28, bits 9-0.  
13.1.2.1.23 Register 28 (address = 1Ch)  
Figure 138. Register 28  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH6  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH6  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 51. Register 28 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH6  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 6 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 27, bits 9-0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
113  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.24 Register 29 (address = 1Dh)  
Figure 139. Register 29  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH7  
R/W-0h  
OFFSET_CH7  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH7  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 52. Register 29 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH7  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 7 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH7  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 7 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 30, bits 9-0.  
13.1.2.1.25 Register 30 (address = 1Eh)  
Figure 140. Register 30  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH7  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH7  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 53. Register 30 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH7  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 7 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 29, bits 9-0.  
114  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.26 Register 31 (address = 1Fh)  
Figure 141. Register 31  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH8  
R/W-0h  
OFFSET_CH8  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH8  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 54. Register 31 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH8  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 8 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH8  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 8 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 32, bits 9-0.  
13.1.2.1.27 Register 32 (address = 20h)  
Figure 142. Register 32  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH8  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH8  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 55. Register 32 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH8  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 16 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 31, bits 9-0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
115  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.28 Register 33 (address = 21h)  
Figure 143. Register 33  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS5  
PAT_PRBS_  
LVDS6  
PAT_PRBS_  
LVDS7  
PAT_PRBS_  
LVDS8  
PAT_  
LVDS6[2:0]  
PAT_LVDS5[2:0]  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
DIG_HPF_EN_  
CH5-8  
PAT_LVDS6[2:0]  
R/W-0h  
0
HPF_CORNER_CH5-8[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 56. Register 33 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS5  
R/W  
0h  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 5 can be enabled with this bit; see the Test  
Patterns section for further details.  
14  
13  
PAT_PRBS_LVDS6  
PAT_PRBS_LVDS7  
PAT_PRBS_LVDS8  
PAT_LVDS5[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 6 can be enabled with this bit; see the Test  
Patterns section for further details.  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 7 can be enabled with this bit; see the Test  
Patterns section for further details.  
12  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 8 can be enabled with this bit; see the Test  
Patterns section for further details.  
11-9  
8-6  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 5 can be programmed with these bits; see  
Table 45 for bit descriptions.  
PAT_LVDS6[2:0]  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 6 can be programmed with these bits; see  
Table 45 for bit descriptions.  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
4-1  
HPF_CORNER_CH5-8[3:0]  
When the DIG_HPF_EN_CH5-8 bit is set to 1, the digital HPF  
characteristic for the corresponding channels can be  
programmed by setting the value of k with these bits.  
Characteristics of a digital high-pass transfer function applied to  
the output data for a given value of k is defined by:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
Note that the value of k can be from 2 to 10 (0010b to 1010b);  
see the Digital HPF section for further details.  
0
DIG_HPF_EN_CH5-8  
R/W  
0h  
0 = Digital HPF disabled for channels 5 to 8 (default)  
1 = Enables digital HPF for channels 5 to 8(1)  
(1) Should be set same as DIG_HPF_EN_CH1-4  
116  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.29 Register 35 (address = 23h)  
Figure 144. Register 35  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
PAT_LVDS7[2:0]  
R/W-0h  
PAT_LVDS8[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 57. Register 35 Field Descriptions  
Bit  
15-8  
7-5  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PAT_LVDS7[2:0]  
0h  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 7 can be programmed with these bits; see  
Table 45 for bit descriptions.  
4-2  
1-0  
PAT_LVDS8[2:0]  
0
R/W  
R/W  
0h  
0h  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 8 can be programmed with these bits; see  
Table 45 for bit descriptions.  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
117  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.30 Register 36 (address = 24h)  
Figure 145. Register 36  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
CH8  
PDN_DIG_  
CH7  
PDN_DIG_  
CH6  
PDN_DIG_  
CH5  
PDN_LVDS8  
PDN_LVDS7  
PDN_LVDS6  
PDN_LVDS5  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
CH8  
PDN_ANA_  
CH7  
PDN_ANA_  
CH6  
PDN_ANA_  
CH5  
INVERT_  
CH8  
INVERT_  
CH7  
INVERT_  
CH6  
INVERT_  
CH5  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 58. Register 36 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_CH8  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 8  
14  
13  
12  
11  
10  
9
PDN_DIG_CH7  
PDN_DIG_CH6  
PDN_DIG_CH5  
PDN_LVDS8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 7  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 6  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 5  
0 = Normal operation (default)  
1 = Powers down LVDS output line 8  
PDN_LVDS7  
0 = Normal operation (default)  
1 = Powers down LVDS output line 7  
PDN_LVDS6  
0 = Normal operation (default)  
1 = Powers down LVDS output line 6  
8
PDN_LVDS5  
0 = Normal operation (default)  
1 = Powers down LVDS output line 5  
7
PDN_ANA_CH8  
PDN_ANA_CH7  
PDN_ANA_CH6  
PDN_ANA_CH5  
INVERT_CH8  
INVERT_CH7  
INVERT_CH6  
INVERT_CH5  
0 = Normal operation (default)  
1 = Powers down the analog block for channel 8  
6
0 = Normal operation (default)  
1 = Powers down the analog block for channel 7  
5
0 = Normal operation (default)  
1 = Powers down the analog block for channel 6  
4
0 = Normal operation (default)  
1 = Powers down the analog block for channel 5  
3
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 8(1)  
2
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 7(1)  
1
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 6(1)  
0
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 5(1)  
(1) Has no effect on test patterns.  
118  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.31 Register 37 (address = 25h)  
Figure 146. Register 37  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH9  
R/W-0h  
OFFSET_CH9  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH9  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 59. Register 37 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH9  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 9 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH9  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 9 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 38, bits 9-0.  
13.1.2.1.32 Register 38 (address = 26h)  
Figure 147. Register 38  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH9  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH9  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 60. Register 38 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH9  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 9 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 37, bits 9-0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
119  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.33 Register 39 (address = 27h)  
Figure 148. Register 39  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH10  
R/W-0h  
OFFSET_CH10  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH10  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 61. Register 39 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH10  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 10 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH10  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 10 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 40, bits 9-0.  
13.1.2.1.34 Register 40 (address = 28h)  
Figure 149. Register 40  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH10  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH10  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 62. Register 40 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH10  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 10 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 39, bits 9-0.  
120  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.35 Register 41 (address = 29h)  
Figure 150. Register 41  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH11  
R/W-0h  
OFFSET_CH11  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH11  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 63. Register 41 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH11  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 11 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH11  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 11 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 42, bits 9-0.  
13.1.2.1.36 Register 42 (address = 2Ah)  
Figure 151. Register 42  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH11  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH11  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 64. Register 42 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH11  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 11 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 41, bits 9-0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
121  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.37 Register 43 (address = 2Bh)  
Figure 152. Register 43  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH12  
R/W-0h  
OFFSET_CH12  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH12  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 65. Register 43 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH12  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 12 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH12  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 12 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 44, bits 9-0.  
13.1.2.1.38 Register 44 (address = 2Ch)  
Figure 153. Register 44  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH12  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH12  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 66. Register 44 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH12  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 12 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 43, bits 9-0.  
122  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.39 Register 45 (address = 2Dh)  
Figure 154. Register 45  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS9  
PAT_PRBS_  
LVDS10  
PAT_PRBS_  
LVDS11  
PAT_PRBS_  
LVDS12  
PAT_  
LVDS10[2:0]  
PAT_LVDS9[2:0]  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
HPF_ROUND_  
EN_CH9-16  
DIG_HPF_EN_  
CH9-12  
PAT_LVDS10[2:0]  
R/W-0h  
HPF_CORNER_CH9-12[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 67. Register 45 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS9  
R/W  
0h  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 9 can be enabled with this bit; see the Test  
Patterns section for further details.  
14  
13  
PAT_PRBS_LVDS10  
PAT_PRBS_LVDS11  
PAT_PRBS_LVDS12  
PAT_LVDS9[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 10 can be enabled with this bit; see the Test  
Patterns section for further details.  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 11 can be enabled with this bit; see the Test  
Patterns section for further details.  
12  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 12 can be enabled with this bit; see the Test  
Patterns section for further details.  
11-9  
8-6  
5
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 9 can be programmed with these bits; see  
Table 45 for bit descriptions.  
PAT_LVDS10[2:0]  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 10 can be programmed with these bits; see  
Table 45 for bit descriptions.  
HPF_ROUND_EN_CH9-16  
0 = Rounding in the ADC HPF is disabled for channels 9-16.  
The HPF output is truncated to be mapped to the ADC  
resolution bits.  
1 = HPF output of channels 9-16 is mapped to the ADC  
resolution bits by the round-off operation.  
4-1  
HPF_CORNER_CH9-12[3:0]  
R/W  
0h  
When the DIG_HPF_EN_CH9-12 bit is set to 1, the digital HPF  
characteristic for the corresponding channels can be  
programmed by setting the value of k with these bits.  
Characteristics of a digital high-pass transfer function applied to  
the output data for a given value of k is defined by:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
Note that the value of k can be from 2 to 10 (0010b to 1010b);  
see the Digital HPF section for further details.  
0
DIG_HPF_EN_CH9-12  
R/W  
0h  
0 = Digital HPF disabled for channels 9 to 12 (default)  
1 = Enables digital HPF for channels 9 to 12  
Copyright © 2015–2017, Texas Instruments Incorporated  
123  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.40 Register 47 (address = 2Fh)  
Figure 155. Register 47  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
PAT_LVDS11[2:0]  
R/W-0h  
PAT_LVDS12[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 68. Register 47 Field Descriptions  
Bit  
15-8  
7-5  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PAT_LVDS11[2:0]  
0h  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 11 can be programmed with these bits; see  
Table 45 for bit descriptions.  
4-2  
1-0  
PAT_LVDS12[2:0]  
0
R/W  
R/W  
0h  
0h  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 12 can be programmed with these bits; see  
Table 45 for bit descriptions.  
Must write 0  
124  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.41 Register 48 (address = 30h)  
Figure 156. Register 48  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
CH12  
PDN_DIG_  
CH11  
PDN_DIG_  
CH10  
PDN_DIG_  
CH9  
PDN_LVDS12 PDN_LVDS11 PDN_LVDS10  
PDN_LVDS9  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
CH12  
PDN_ANA_  
CH11  
PDN_ANA_  
CH10  
PDN_ANA_  
CH9  
INVERT_  
CH12  
INVERT_  
CH11  
INVERT_  
CH10  
INVERT_  
CH9  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 69. Register 48 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_CH12  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 12  
14  
13  
12  
11  
10  
9
PDN_DIG_CH11  
PDN_DIG_CH10  
PDN_DIG_CH9  
PDN_LVDS12  
PDN_LVDS11  
PDN_LVDS10  
PDN_LVDS9  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 11  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 10  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 9  
0 = Normal operation (default)  
1 = Powers down LVDS output line 12  
0 = Normal operation (default)  
1 = Powers down LVDS output line 11  
0 = Normal operation (default)  
1 = Powers down LVDS output line 10  
8
0 = Normal operation (default)  
1 = Powers down LVDS output line 9  
7
PDN_ANA_CH12  
PDN_ANA_CH11  
PDN_ANA_CH10  
PDN_ANA_CH9  
INVERT_CH12  
INVERT_CH11  
INVERT_CH10  
INVERT_CH9  
0 = Normal operation (default)  
1 = Powers down the analog block for channel 12  
6
0 = Normal operation (default)  
1 = Powers down the analog block for channel 11  
5
0 = Normal operation (default)  
1 = Powers down the analog block for channel 10  
4
0 = Normal operation (default)  
1 = Powers down the analog block for channel 9  
3
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 12(1)  
2
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 11(1)  
1
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 10(1)  
0
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 9(1)  
(1) Has no effect on test patterns.  
Copyright © 2015–2017, Texas Instruments Incorporated  
125  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.42 Register 49 (address = 31h)  
Figure 157. Register 49  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH13  
R/W-0h  
OFFSET_CH13  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH13  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 70. Register 49 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH13  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 13 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH13  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 13 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 50, bits 9-0.  
13.1.2.1.43 Register 50 (address = 32h)  
Figure 158. Register 50  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH13  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH13  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 71. Register 50 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH13  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 13 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 49, bits 9-0.  
126  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.44 Register 51 (address = 33h)  
Figure 159. Register 51  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH14  
R/W-0h  
OFFSET_CH14  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH14  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 72. Register 51 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH14  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 14 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH14  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 14 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 52, bits 9-0.  
13.1.2.1.45 Register 52 (address = 34h)  
Figure 160. Register 52  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH14  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH14  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 73. Register 52 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH14  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 14 can be obtained with this 10-bit register. The offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 51, bits 9-0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
127  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.46 Register 53 (address = 35h)  
Figure 161. Register 53  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH15  
R/W-0h  
OFFSET_CH15  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH15  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 74. Register 53 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH15  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 15 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH15  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 15 can be obtained with this 10-bit register. the offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 54, bits 9-0.  
13.1.2.1.47 Register 54 (address = 36h)  
Figure 162. Register 54  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH15  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH15  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 75. Register 54 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH15  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 15 can be obtained with this 10-bit register. the offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 53, bits 9-0.  
128  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.48 Register 55 (address = 37h)  
Figure 163. Register 55  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH16  
R/W-0h  
OFFSET_CH16  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH16  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 76. Register 55 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH16  
R/W  
0h  
When the DIG_GAIN_EN bit is set to 1, the digital gain value for  
channel 16 can be obtained with this register. For an N value  
(decimal equivalent of binary) written to these bits, the digital  
gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH16  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 16 can be obtained with this 10-bit register. the offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 56, bits 9-0.  
13.1.2.1.49 Register 56 (address = 38h)  
Figure 164. Register 56  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH16  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH16  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 77. Register 56 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH16  
0h  
When the DIG_OFFSET_EN bit is set to 1, the offset value for  
channel 16 can be obtained with this 10-bit register. the offset  
value is in twos complement format and its LSB corresponds to  
a 14-bit LSB. Write the same offset value in register 55, bits 9-0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
129  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.50 Register 57 (address = 39h)  
Figure 165. Register 57  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS13  
PAT_PRBS_  
LVDS14  
PAT_PRBS_  
LVDS15  
PAT_PRBS_  
LVDS16  
PAT_  
LVDS14[2:0]  
PAT_LVDS13[2:0]  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
DIG_HPF_EN_  
CH13-16  
PAT_LVDS14[2:0]  
R/W-0h  
0
HPF_CORNER_CH13-16[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 78. Register 57 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS13  
R/W  
0h  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 13 can be enabled with this bit; see the Test  
Patterns section for further details.  
14  
13  
PAT_PRBS_LVDS14  
PAT_PRBS_LVDS15  
PAT_PRBS_LVDS16  
PAT_LVDS13[2:0]  
PAT_LVDS14[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 14 can be enabled with this bit; see the Test  
Patterns section for further details.  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 15 can be enabled with this bit; see the Test  
Patterns section for further details.  
12  
When the PAT_SELECT_IND bit is set to 1, the PRBS pattern  
on LVDS output 16 can be enabled with this bit; see the Test  
Patterns section for further details.  
11-9  
8-6  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 13 can be programmed with these bits; see  
Table 45 for bit descriptions.  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 14 can be programmed with these bits; see  
Table 45 for bit descriptions.  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
4-1  
HPF_CORNER_CH13-16[3:0]  
When the DIG_HPF_EN_CH13-16 bit is set to 1, the digital HPF  
characteristic for the corresponding channels can be  
programmed by setting the value of k with these bits.  
Characteristics of a digital high-pass transfer function applied to  
the output data for a given value of k is defined by:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
Note that the value of k can be from 2 to 10 (0010b to 1010b);  
see the Digital HPF section for further details.  
0
DIG_HPF_EN_CH13-16  
R/W  
0h  
0 = Digital HPF disabled for channels 13 to 16 (default)(1)  
1 = Enables digital HPF for channels 13 to 16  
(1) Should be set same as DIG_HPF_EN_CH9-12  
130  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.51 Register 59 (address = 3Bh)  
Figure 166. Register 59  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
PAT_LVDS15[2:0]  
R/W-0h  
PAT_LVDS16[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 79. Register 59 Field Descriptions  
Bit  
15-8  
7-5  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PAT_LVDS15[2:0]  
0h  
When the PAT_SELECT_IND bit is set to 1, the different pattern  
on LVDS output 15 can be programmed with these bits; see  
Table 45 for bit descriptions.  
4-2  
1-0  
PAT_LVDS16[2:0]  
0
R/W  
R/W  
0h  
0h  
When the PAT_SELECT_IND bit is set to 1, then the different  
pattern on LVDS output 16 can be programmed with these bits;  
see Table 45 for bit descriptions.  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
131  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.52 Register 60 (address = 3Ch)  
Figure 167. Register 60  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
CH16  
PDN_DIG_  
CH15  
PDN_DIG_  
CH14  
PDN_DIG_  
CH13  
PDN_LVDS16 PDN_LVDS15 PDN_LVDS14 PDN_LVDS13  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
CH16  
PDN_ANA_  
CH15  
PDN_ANA_  
CH14  
PDN_ANA_  
CH13  
INVERT_  
CH16  
INVERT_  
CH15  
INVERT_  
CH14  
INVERT_  
CH13  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 80. Register 60 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_CH16  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 16  
14  
13  
12  
11  
10  
9
PDN_DIG_CH15  
PDN_DIG_CH14  
PDN_DIG_CH13  
PDN_LVDS16  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 15  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 14  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 13  
0 = Normal operation (default)  
1 = Powers down LVDS output line 16  
PDN_LVDS15  
0 = Normal operation (default)  
1 = Powers down LVDS output line 15  
PDN_LVDS14  
0 = Normal operation (default)  
1 = Powers down LVDS output line 14  
8
PDN_LVDS13  
0 = Normal operation (default)  
1 = Powers down LVDS output line 13  
7
PDN_ANA_CH16  
PDN_ANA_CH15  
PDN_ANA_CH14  
PDN_ANA_CH13  
INVERT_CH16  
INVERT_CH15  
INVERT_CH14  
INVERT_CH13  
0 = Normal operation (default)  
1 = Powers down the analog block for channel 16  
6
0 = Normal operation (default)  
1 = Powers down the analog block for channel 15  
5
0 = Normal operation (default)  
1 = Powers down the analog block for channel 14  
4
0 = Normal operation (default)  
1 = Powers down the analog block for channel 13  
3
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 16(1)  
2
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 15(1)  
1
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 14(1)  
0
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 13(1)  
(1) Has no effect on test patterns.  
132  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.2.1.53 Register 65 (address = 41h)  
Figure 168. Register 65  
15  
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
PLLRST1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 81. Register 65 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PLLRST1  
R/W  
0h  
Part of initialization sequence.  
To initialize PLL1, first set PLLRST1 to '1' and again set  
PLLRST1 to '0'  
14-0  
0
R/W  
0h  
Must write 0  
13.1.2.1.54 Register 66 (address = 42h)  
Figure 169. Register 66  
15  
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
PLLRST2  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 82. Register 66 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PLLRST2  
R/W  
0h  
Part of initialization sequence.  
To initialize PLL2, first set PLLRST2 to '1' and again set  
PLLRST1 to '0'  
14-0  
0
R/W  
0h  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
133  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.2.1.55 Register 67 (address = 43h)  
Figure 170. Register 67  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
1
0
0
LVDS_DCLK_DELAY_PROG[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 83. Register 67 Field Descriptions  
Bit  
15-5  
4-1  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LVDS_DCLK_DELAY_PROG[3:0]  
0h  
The LVDS DCLK output delay is programmable with 110-ps  
steps. Delay values are in twos complement format. Increasing  
the positive delay increases setup time and reduces hold time,  
and vice-versa for the negative delay.  
0000 = No delay  
0001 = 110 ps  
0010 = 220 ps  
1110 = –220 ps  
1111 = –110 ps  
0
0
R/W  
0h  
Must write 0  
134  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.3 VCA Register Map  
This section discusses the VCA register map. A register map is available in Table 84.  
DTGC_WR_EN must be set to 0 before programming the VCA register map.  
Table 84. VCA Register Map  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
DECIMAL  
HEX  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1X_CLK_  
BUF_  
MODE  
16X_CLK_  
BUF_  
MODE  
CW_TGC_  
SEL  
192  
C0  
0
0
0
0
0
0
0
0
0
0
0
CW_CLK_MODE  
193  
194  
195  
196  
197  
C1  
C2  
C3  
C4  
C5  
CW_MIX_PH_CH4  
CW_MIX_PH_CH8  
CW_MIX_PH_CH12  
CW_MIX_PH_CH16  
CW_MIX_PH_CH3  
CW_MIX_PH_CH7  
CW_MIX_PH_CH11  
CW_MIX_PH_CH15  
CW_MIX_PH_CH2  
CW_MIX_PH_CH6  
CW_MIX_PH_CH10  
CW_MIX_PH_CH14  
CW_MIX_PH_CH1  
CW_MIX_PH_CH5  
CW_MIX_PH_CH9  
CW_MIX_PH_CH13  
PDCH16  
0
PDCH15  
0
PDCH14  
0
PDCH13  
0
PDCH12  
0
PDCH11  
0
PDCH10  
0
PDCH9  
0
PDCH8  
0
PDCH7  
0
PDCH6  
0
PDCH5  
0
PDCH4  
PDCH3  
PDCH2  
PDCH1  
PDWN_  
FILTER  
PDWN_  
LNA  
GBL_  
PDWN  
FAST_  
PDWN  
198  
C6  
LNA_HPF_  
DIS  
199  
200  
206  
C7  
C8  
CE  
0
0
0
0
0
0
0
0
0
LNA_HPF_PROG  
LPF_PROG  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LOW_POW  
0
0
0
0
0
0
0
0
0
0
0
MEDIUM_  
POW  
TR_EXT_  
DIS  
230  
E6  
0
0
0
0
0
0
0
0
0
0
0
TR_DIS4  
TR_DIS3  
TR_DIS2  
TR_DIS1  
(1) The default value of all registers is 0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
135  
 
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.3.1 Description of VCA Registers  
13.1.3.1.1 Register 192 (address = C0h)  
Figure 171. Register 192  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
1
0
1X_CLK_BUF_ 16X_CLK_BUF  
CW_CLK_MODE  
R/W-0h  
CW_TGC_SEL  
R/W-0h  
MODE  
_MODE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 85. Register 192 Field Descriptions  
Bit  
15-5  
4
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
1X_CLK_BUF_MODE  
0h  
0 = Accepts CMOS clocks  
1 = Accepts differential clocks  
3
16X_CLK_BUF_MODE  
CW_CLK_MODE  
R/W  
R/W  
0h  
0h  
0 = Accepts differential clocks  
1 = Accepts CMOS clocks  
2-1  
Programs CW path clock mode  
00 = 16X mode  
01 = 8X mode  
10 = 4X mode  
11 = 1X mode  
0
CW_TGC_SEL  
R/W  
0h  
0 = TGC mode  
1 = CW mode  
Note: In CW mode, the LNA gain changes to a fixed value of 18 dB  
and the input attenuator block and low-pass filter are disabled. Thus,  
TGC and CW mode cannot be used at the same time.  
136  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.3.1.2 Register 193 (address = C1h)  
Figure 172. Register 193  
15  
7
14  
13  
12  
11  
10  
9
8
0
CW_MIX_PH_CH4  
R/W-0h  
CW_MIX_PH_CH3  
R/W-0h  
6
5
4
3
2
1
CW_MIX_PH_CH2  
R/W-0h  
CW_MIX_PH_CH1  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 86. Register 193 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
CW_MIX_PH_CH4  
R/W  
0h  
These bits control the CW mixer phase for channel 4.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
11-8  
7-4  
CW_MIX_PH_CH3  
CW_MIX_PH_CH2  
CW_MIX_PH_CH1  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits control the CW mixer phase for channel 3.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
These bits control the CW mixer phase for channel 2.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
3-0  
These bits control the CW mixer phase for channel 1.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
13.1.3.1.3 Register 194 (address = C2h)  
Figure 173. Register 194  
15  
7
14  
13  
12  
11  
10  
9
8
0
CW_MIX_PH_CH8  
R/W-0h  
CW_MIX_PH_CH7  
R/W-0h  
6
5
4
3
2
1
CW_MIX_PH_CH6  
R/W-0h  
CW_MIX_PH_CH5  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 87. Register 194 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
CW_MIX_PH_CH8  
R/W  
0h  
These bits control the CW mixer phase for channel 8.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
11-8  
7-4  
CW_MIX_PH_CH7  
CW_MIX_PH_CH6  
CW_MIX_PH_CH5  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits control the CW mixer phase for channel 7.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
These bits control the CW mixer phase for channel 6.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
3-0  
These bits control the CW mixer phase for channel 5.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
Copyright © 2015–2017, Texas Instruments Incorporated  
137  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.3.1.4 Register 195 (address = C3h)  
Figure 174. Register 195  
15  
7
14  
13  
12  
11  
10  
9
8
0
CW_MIX_PH_CH12  
R/W-0h  
CW_MIX_PH_CH11  
R/W-0h  
6
5
4
3
2
1
CW_MIX_PH_CH10  
R/W-0h  
CW_MIX_PH_CH9  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 88. Register 195 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
CW_MIX_PH_CH12  
R/W  
0h  
These bits control the CW mixer phase for channel 12.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
11-8  
7-4  
CW_MIX_PH_CH11  
CW_MIX_PH_CH10  
CW_MIX_PH_CH9  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits control the CW mixer phase for channel 11.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
These bits control the CW mixer phase for channel 10.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
3-0  
These bits control the CW mixer phase for channel 9.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
13.1.3.1.5 Register 196 (address = C4h)  
Figure 175. Register 196  
15  
7
14  
CW_MIX_PH_CH16  
R/W-0h  
13  
12  
11  
10  
9
8
0
CW_MIX_PH_CH15  
R/W-0h  
6
5
4
3
2
1
CW_MIX_PH_CH14  
R/W-0h  
CW_MIX_PH_CH13  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 89. Register 196 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
CW_MIX_PH_CH16  
R/W  
0h  
These bits control the CW mixer phase for channel 16.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
11-8  
7-4  
CW_MIX_PH_CH15  
CW_MIX_PH_CH14  
CW_MIX_PH_CH13  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits control the CW mixer phase for channel 15.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
These bits control the CW mixer phase for channel 14.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
3-0  
These bits control the CW mixer phase for channel 13.  
Writing N to these bits sets the corresponding channel phase to  
N × 22.5° (N = 0 to 15); see Table 90 for further details.  
138  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
Table 90. CW Mixer Phase Delay vs Register Settings  
BIT SETTINGS  
0000  
CW_MIX_PH_CHX, CW_MIX_PH_CHY PHASE SHIFT  
0
0001  
22.5°  
45°  
0010  
0011  
67.5°  
90°  
0100  
0101  
112.5°  
135°  
0110  
0111  
157.5°  
180°  
1000  
1001  
202.5°  
225°  
1010  
1011  
247.5°  
270°  
1100  
1101  
292.5°  
315°  
1110  
1111  
337.5°  
13.1.3.1.6 Register 197 (address = C5h)  
Figure 176. Register 197  
15  
14  
13  
12  
11  
10  
9
8
PDCH16  
R/W-0h  
PDCH15  
R/W-0h  
PDCH14  
R/W-0h  
PDCH13  
R/W-0h  
PDCH12  
R/W-0h  
PDCH11  
R/W-0h  
PDCH10  
R/W-0h  
PDCH9  
R/W-0h  
7
6
5
4
3
2
1
0
PDCH8  
R/W-0h  
PDCH7  
R/W-0h  
PDCH6  
R/W-0h  
PDCH5  
R/W-0h  
PDCH4  
R/W-0h  
PDCH3  
R/W-0h  
PDCH2  
R/W-0h  
PDCH1  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 91. Register 197 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDCH16  
R/W  
0h  
0 = Default  
1 = Channel 16 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
14  
13  
12  
11  
10  
PDCH 15  
PDCH 14  
PDCH 13  
PDCH 12  
PDCH 11  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0 = Default  
1 = Channel 15 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 14 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 13 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 12 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 11 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
Copyright © 2015–2017, Texas Instruments Incorporated  
139  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 91. Register 197 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
9
PDCH 10  
R/W  
0h  
0 = Default  
1 = Channel 10 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
8
7
6
5
4
3
2
1
0
PDCH 9  
PDCH 8  
PDCH 7  
PDCH 6  
PDCH 5  
PDCH 4  
PDCH 3  
PDCH 2  
PDCH 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Default  
1 = Channel 9 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 8 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 7 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 6 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 5 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 4 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 3 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 2 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
0 = Default  
1 = Channel 1 is powered down.  
This bit powers down the channel of the VCA die only (LNA,  
LPF, CW mixer). This bit does not affect the ADC channel.  
140  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.3.1.7 Register 198 (address = C6h)  
Figure 177. Register 198  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
2
1
0
PDWN_FILTER  
R/W-0h  
PDWN_LNA  
R/W-0h  
GBL_PDWN  
R/W-0h  
FAST_PDWN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 92. Register 198 Field Descriptions  
Bit  
15-4  
3
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Must write 0  
0 = Default  
0
PDWN_FILTER  
0h  
1 = The LPF in the VCA die is powered down  
2
1
PDWN_LNA  
GBL_PDWN  
R/W  
R/W  
0h  
0h  
0 = Default  
1 = The LNA in the VCA is powered down  
0 = Normal operation  
1 = The LNA, LPF, CW mixer, and TGC control engine are  
completely powered down (slow wake response) for the VCA  
die.  
Note that enabling this bit does not power-down the ADC. This  
bit only powers down the VCA die.  
0
FAST_PDWN  
R/W  
0h  
0 = Normal operation  
1 = The LNA, LPF, and CW mixer are partially powered down  
(fast wake response) for the VCA die.  
Note that enabling this bit does not power-down the ADC. This  
bit only powers down the VCA die.  
Copyright © 2015–2017, Texas Instruments Incorporated  
141  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.3.1.8 Register 199 (address = C7h)  
Figure 178. Register 199  
15  
0
14  
0
13  
0
12  
0
11  
LNA_HPF_PROG  
R/W-0h  
10  
9
8
LNA_HPF_DIS  
R/W-0h  
LPF_PROG  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
LPF_PROG  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 93. Register 199 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
15-12  
11-10  
0
Must write 0  
LNA_HPF_PROG  
0h  
These bits control the LNA HPF cutoff frequency.  
00 = 75 kHz  
01 = 150 kHz  
10 = 300 kHz  
11 = 600 kHz  
9
LNA_HPF_DIS  
LPF_PROG  
R/W  
R/W  
0h  
0h  
0 = LNA HPF enabled  
1 = LNA HPF disabled  
8-7  
These bits program the cutoff frequency of the antialiasing LPF.  
00 = 15 MHz in low-noise and medium-power mode, 7.5 MHz in  
low-power mode  
01 = 10 MHz in low-noise and medium-power mode, 5 MHz in  
low-power mode  
10 = 25 MHz in low-noise and medium-power mode, 12.5 MHz  
in low-power mode  
11 = 20 MHz in low-noise and medium-power mode, 10 MHz in  
low-power mode  
6-0  
0
R/W  
0h  
Must write 0  
13.1.3.1.9 Register 200 (address = C8h)  
Figure 179. Register 200  
15  
0
14  
0
13  
0
12  
11  
0
10  
0
9
0
8
0
LOW_POW  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 94. Register 200 Field Descriptions  
Bit  
15-13  
12  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Must write 0  
0 = Default  
0
LOW_POW  
0h  
1 = In TGC mode the VCA die is set to low-power mode. No  
effect in CW mode.  
11-0  
0
R/W  
0h  
Must write 0  
142  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.3.1.10 Register 206 (address = CEh)  
Figure 180. Register 206  
15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
8
0
MEDIUM_POW  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 95. Register 206 Field Descriptions  
Bit  
15  
14  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Must write 0  
0 = Default  
0
MEDIUM_POW  
0h  
1 = In TGC mode, the VCA die is set to medium-power mode.  
The LOW_POW bit must be set to 0 to enable this mode. This  
bit has no effect in CW mode.  
13-0  
0
R/W  
0h  
Must write 0  
13.1.3.1.11 Register 230 (address = E6h)  
Figure 181. Register 230  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
1
0
TR_EXT_DIS  
R/W-0h  
TR_DIS4  
R/W-0h  
TR_DIS3  
R/W-0h  
TR_DIS2  
R/W-0h  
TR_DIS1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 96. Register 230 Field Descriptions  
Bit  
15-5  
4
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
TR_EXT_DIS(1)  
0h  
0 = The TR_EN<x> pins are used to disconnect the LNA HPF  
from the INP pins  
1 = The TR_DIS[4:1] register bits are used to disconnect the  
LNA HPF from the INP pin  
3
2
TR_DIS4(1)  
TR_DIS3(1)  
R/W  
R/W  
0h  
0h  
When the TR_EXT_DIS bit is set to 1:  
0 = Disconnects the LNA HPF from the input of channels 13, 14,  
15, and 16  
1 = Enables the LNA HPF at the input of channels 13, 14, 15,  
and 16  
When the TR_EXT_DIS bit is set to 1:  
0 = Disconnects the LNA HPF from the input of channels 9, 10,  
11, and 12  
1 = Enables the LNA HPF at the input of channels 9, 11, 11, and  
12  
1
0
TR_DIS2(1)  
TR_DIS1(1)  
R/W  
R/W  
0h  
0h  
When the TR_EXT_DIS bit set to 1:  
0 = Disconnects the LNA HPF from the input of channels 5, 6, 7,  
and 8  
1 = Enables the LNA HPF at the input of channels 5, 6, 7, and 8  
When the TR_EXT_DIS bit is set to 1:  
0 = Disconnects the LNA HPF from the input of channels 1, 2, 3,  
and 4  
1 = Enables the LNA HPF at the input of channels 1, 2, 3, and 4  
(1) Note that when this bit is enabled, the LNA HPF remains powered up and is disconnected only from the input. This feature can be used  
for better overload recovery by disconnecting the LNA HPF during AFE overload conditions.  
Copyright © 2015–2017, Texas Instruments Incorporated  
143  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.4 DTGC Register Map  
This section discusses the DTGC register map. A register map is available in Table 24.  
DTGC_WR_EN must be set to 1 before programming other bits of the global register map.  
Table 97. DTGC Register Map  
REGISTER ADDRESS  
REGISTER DATA  
DECIMAL  
1
HEX  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MEM_WORD_0  
2-160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
2-A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
MEM_WORD_1 to MEM_WORD_159  
START_GAIN_0  
POS_STEP_0  
STOP_GAIN_0  
NEG_STEP_0  
STOP_INDEX_0  
START_INDEX_0  
START_GAIN_TIME_0  
HOLD_GAIN_TIME_0  
START_GAIN_1  
POS_STEP_1  
STOP_GAIN_1  
NEG_STEP_1  
STOP_INDEX_1  
START_INDEX_1  
START_GAIN_TIME_1  
HOLD_GAIN_TIME_1  
START_GAIN_2  
POS_STEP_2  
STOP_GAIN_2  
NEG_STEP_2  
STOP_INDEX_2  
START_INDEX_2  
START_GAIN_TIME_2  
HOLD_GAIN_TIME_2  
START_GAIN_3  
POS_STEP_3  
STOP_GAIN_3  
NEG_STEP_3  
STOP_INDEX_3  
START_INDEX_3  
START_GAIN_TIME_3  
HOLD_GAIN_TIME_3  
ENABLE_  
INT_  
START  
SLOPE_  
FAC[0]  
MANUAL_  
START  
181  
B5  
MEM_BANK_SEL  
0
0
MANUAL_GAIN_DTGC  
PROFILE_  
EXT_DIS  
FLIP_  
ATTEN  
DIS_  
ATTEN  
182  
183  
B6  
B7  
MODE_SEL  
PROFILE_REG_SEL  
INP_RES_SEL  
SLOPE_FAC[3:1]  
0
0
NEXT_CYCLE_WAIT_TIME  
FIX_  
ATTEN_  
EN_0  
FIX_  
ATTEN_  
EN_1  
185  
186  
B9  
BA  
ATTENUATION_0  
ATTENUATION_2  
ATTENUATION_1  
ATTENUATION_3  
FIX_  
ATTEN_  
EN_2  
FIX_  
ATTEN_  
EN_3  
144  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.4.1 Description of DTGC Register  
13.1.4.1.1 DTGC Registers  
DTGC_WR_EN must be set to 1 to write these registers.  
13.1.4.1.1.1 Register 1 (address = 1h)  
Figure 182. Register 1  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
MEM_WORD_0  
R/W-Undefined  
4
3
MEM_WORD_0  
R/W-Undefined  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 98. Register 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
MEM_WORD_0  
R/W  
Undefined The memory word register 0 stores the gain step information  
that is used in internal non-uniform mode; see the Internal Non-  
Uniform Mode section for more details. A reset operation does  
not reset this register. After power-up, this register must be  
explicitly written to its desired content.  
13.1.4.1.1.2 Registers 2-160 (address = 2h-A0h)  
Figure 183. Registers 2-160  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
MEM_WORD_1 to MEM_WORD_159  
R/W-Undefined  
4
3
MEM_WORD_1 to MEM_WORD_159  
R/W-Undefined  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 99. Registers 2-160 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
MEM_WORD_1 to  
MEM_WORD_159  
R/W  
Undefined The memory word registers from 1 to 159 store the gain step  
information that is used in internal non-uniform mode; see the  
Internal Non-Uniform Mode section for more details. A reset  
operation does not reset this register. After power-up, this  
register must be explicitly written to its desired content.  
Copyright © 2015–2017, Texas Instruments Incorporated  
145  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.4.1.1.3 Register 161 (address = A1h)  
Figure 184. Register 161  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_GAIN_0  
R/W-0h  
4
3
STOP_GAIN_0  
R/W-9Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 100. Register 161 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
START_GAIN_0  
R/W  
0h  
These bits determine the start gain value for profile 0 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
7-0  
STOP_GAIN_0  
R/W  
9Fh  
These bits determine the stop gain value for profile 0 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
13.1.4.1.1.4 Register 162 (address = A2h)  
Figure 185. Register 162  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
POS_STEP_0  
R/W-0h  
4
3
NEG_STEP_0  
R/W-FFh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 101. Register 162 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
POS_STEP_0  
R/W  
0h  
These bits determine the positive step value for profile 0 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
7-0  
NEG_STEP_0  
R/W  
FFh  
These bits determine the negative step value for profile 0 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
146  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.4.1.1.5 Register 163 (address = A3h)  
Figure 186. Register 163  
15  
7
14  
6
13  
5
12  
START_INDEX _0  
R/W-0h  
11  
10  
2
9
1
8
0
4
3
STOP_INDEX _0  
R/W-9Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 102. Register 163 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
START_INDEX _0  
R/W  
0h  
These bits determine the start index value for profile 0, which is  
used in internal non-uniform mode; see the Internal Non-Uniform  
Mode section for more details.  
7-0  
STOP_INDEX _0  
R/W  
9Fh  
These bits determine the stop index value for profile 0, which is  
used internal non-uniform mode; see the Internal Non-Uniform  
Mode section for more details.  
13.1.4.1.1.6 Register 164 (address = A4h)  
Figure 187. Register 164  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_GAIN_TIME_0  
R/W-0h  
4
3
START_GAIN_TIME_0  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 103. Register 164 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
START_GAIN_TIME_0  
R/W  
0h  
These bits define the start gain time for profile 0 and are used in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
Copyright © 2015–2017, Texas Instruments Incorporated  
147  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.4.1.1.7 Register 165 (address = A5h)  
Figure 188. Register 165  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
HOLD_GAIN_TIME_0  
R/W-0h  
4
3
HOLD_GAIN_TIME_0  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 104. Register 165 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
HOLD_GAIN_TIME_0  
R/W  
0h  
These bits define the hold gain time for profile 0 and are used in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
13.1.4.1.1.8 Register 166 (address = A6h)  
Figure 189. Register 166  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_GAIN_1  
R/W-0h  
4
3
STOP_GAIN_1  
R/W-9Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 105. Register 166 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
START_GAIN_1  
R/W  
0h  
These bits determine the start gain value for profile 1 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
7-0  
STOP_GAIN_1  
R/W  
9Fh  
These bits determine the stop gain value for profile 1 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
148  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.4.1.1.9 Register 167 (address = A7h)  
Figure 190. Register 167  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
POS_STEP_1  
R/W-0h  
4
3
NEG_STEP_1  
R/W-FFh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 106. Register 167 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
POS_STEP_1  
R/W  
0h  
These bits determine the positive step value for profile 1 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
7-0  
NEG_STEP_1  
R/W  
FFh  
These bits determine the negative step value for profile 1 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
13.1.4.1.1.10 Register 168 (address = A8h)  
Figure 191. Register 168  
15  
7
14  
6
13  
5
12  
START_INDEX _1  
R/W-0h  
11  
10  
2
9
1
8
0
4
3
STOP_INDEX _1  
R/W-9Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 107. Register 168 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
START_INDEX _1  
R/W  
0h  
These bits determine the start index value for profile 1 that is  
used in internal non-uniform mode; see the Internal Non-Uniform  
Mode section for more details.  
7-0  
STOP_INDEX _1  
R/W  
9Fh  
These bits determine the stop index value for profile 1 that is  
used internal non-uniform mode; see the Internal Non-Uniform  
Mode section for more details.  
Copyright © 2015–2017, Texas Instruments Incorporated  
149  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.4.1.1.11 Register 169 (address = A9h)  
Figure 192. Register 169  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_GAIN_TIME_1  
R/W-0h  
4
3
START_GAIN_TIME_1  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 108. Register 169 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
START_GAIN_TIME_1  
R/W  
0h  
These bits define the start gain time for profile 1 and are used in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
13.1.4.1.1.12 Register 170 (address = AAh)  
Figure 193. Register 170  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
HOLD_GAIN_TIME_1  
R/W-0h  
4
3
HOLD_GAIN_TIME_1  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 109. Register 170 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
HOLD_GAIN_TIME_1  
R/W  
0h  
These bits define the hold gain time for profile 1 and are used in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
13.1.4.1.1.13 Register 171 (address = ABh)  
Figure 194. Register 171  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_GAIN_2  
R/W-0h  
4
3
STOP_GAIN_2  
R/W-9Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 110. Register 171 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
START_GAIN_2  
R/W  
0h  
These bits determine the start gain value for profile 2 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
7-0  
STOP_GAIN_2  
R/W  
9Fh  
These bits determine the stop gain value for profile 2 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
150  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.4.1.1.14 Register 172 (address = ACh)  
Figure 195. Register 172  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
POS_STEP_2  
R/W-0h  
4
3
NEG_STEP_2  
R/W-FFh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 111. Register 172 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
POS_STEP_2  
R/W  
0h  
These bits determine the positive step value for profile 2 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
7-0  
NEG_STEP_2  
R/W  
FFh  
These bits determine the negative step value for profile 2 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
13.1.4.1.1.15 Register 173 (address = ADh)  
Figure 196. Register 173  
15  
7
14  
6
13  
5
12  
START_INDEX _2  
R/W-0h  
11  
10  
2
9
1
8
0
4
3
STOP_INDEX _2  
R/W-9Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 112. Register 173 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
START_INDEX _2  
R/W  
0h  
These bits determine the start index value for profile 2 that is  
used in internal non-uniform mode; see the Internal Non-Uniform  
Mode section for more details.  
7-0  
STOP_INDEX _2  
R/W  
9Fh  
These bits determine the stop index value for profile 2 that is  
used internal non-uniform mode; see the Internal Non-Uniform  
Mode section for more details.  
Copyright © 2015–2017, Texas Instruments Incorporated  
151  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.4.1.1.16 Register 174 (address = AEh)  
Figure 197. Register 174  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_GAIN_TIME_2  
R/W-0h  
4
3
START_GAIN_TIME_2  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 113. Register 174 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
START_GAIN_TIME_2  
R/W  
0h  
These bits define start gain time for profile 2 and are used in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
13.1.4.1.1.17 Register 175 (address = AFh)  
Figure 198. Register 175  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
HOLD_GAIN_TIME_2  
R/W-0h  
4
3
HOLD_GAIN_TIME_2  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 114. Register 175 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
HOLD_GAIN_TIME_2  
R/W  
0h  
These bits define hold gain time for profile 2 and are used in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
13.1.4.1.1.18 Register 176 (address = B0h)  
Figure 199. Register 176  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_GAIN_3  
R/W-0h  
4
3
STOP_GAIN_3  
R/W-9Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 115. Register 176 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
START_GAIN_3  
R/W  
0h  
These bits determine the start gain value for profile 3 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
7-0  
STOP_GAIN_3  
R/W  
9Fh  
These bits determine the stop gain value for profile 3 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
152  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.4.1.1.19 Register 177 (address = B1h)  
Figure 200. Register 177  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
POS_STEP_3  
R/W-0h  
4
3
NEG_STEP_3  
R/W-FFh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 116. Register 177 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
POS_STEP_3  
R/W  
0h  
These bits determine the positive step value for profile 3 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
7-0  
NEG_STEP_3  
R/W  
FFh  
These bits determine the negative step value for profile 3 that is  
used in different DTGC modes; see the Digital TGC Modes  
section for more details.  
13.1.4.1.1.20 Register 178 (address = B2h)  
Figure 201. Register 178  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_INDEX _3  
R/W-0h  
4
3
NEG_STEP_0  
R/W-9Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 117. Register 178 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
START_INDEX _3  
R/W  
0h  
These bits determine the start index value for profile 3 that is  
used in internal non-uniform mode; see the Internal Non-Uniform  
Mode section for more details.  
7-0  
STOP_INDEX _3  
R/W  
9Fh  
These bits determine the stop index value for profile 3 that is  
used internal non-uniform mode; see the Internal Non-Uniform  
Mode section for more details.  
Copyright © 2015–2017, Texas Instruments Incorporated  
153  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.4.1.1.21 Register 179 (address = B3h)  
Figure 202. Register 179  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
START_GAIN_TIME_3  
R/W-0h  
4
3
START_GAIN_TIME_3  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 118. Register 179 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
START_GAIN_TIME_3  
R/W  
0h  
These bits define the start gain time for profile 3 and are used in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
13.1.4.1.1.22 Register 180 (address = B4h)  
Figure 203. Register 180  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
HOLD_GAIN_TIME_3  
R/W-0h  
4
3
HOLD_GAIN_TIME_3  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 119. Register 180 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
HOLD_GAIN_TIME_3  
R/W  
0h  
These bits define the hold gain time for profile 3 and are used in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
154  
Copyright © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.4.1.1.23 Register 181 (address = B5h)  
Figure 204. Register 181  
15  
14  
13  
12  
11  
0
10  
9
0
8
ENABLE_INT_  
START  
MANUAL_  
START  
MANUAL_GAIN_  
DTGC  
SLOPE_FAC[0]  
MEM_BANK_SEL  
R/W-0h  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
5
4
MANUAL_GAIN_DTGC  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 120. Register 181 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SLOPE_FAC[0]  
R/W  
0h  
This bit is used to control the TGC gain curve slope in internal  
non-uniform mode; see the Internal Non-Uniform Mode section  
for more details.  
14  
ENABLE_INT_START  
MEM_BANK_SEL  
R/W  
R/W  
0h  
0h  
0 = External TGC start signal  
1 = Periodic TGC start signal is generated by the device itself;  
see the Digital TGC Test Modes section for more details.  
13-12  
These bits select the memory bank; see the Internal Non-  
Uniform Mode section for more details.  
11, 9  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
MANUAL_START  
0 = No operation  
1 = The TGC start signal is generated internally for single-shot  
operation only; see the Digital TGC Test Modes section for more  
details.  
8-0  
MANUAL_GAIN_DTGC  
R/W  
0h  
The value of the gain code is determined with this register in  
programmable fixed-gain mode; see the Programmable Fixed  
Gain Mode section for more details.  
13.1.4.1.1.24 Register 182 (address = B6h)  
Figure 205. Register 182  
15  
14  
13  
12  
11  
10  
2
9
8
PROFILE_EXT  
_DIS  
MODE_SEL  
R/W-0h  
PROFILE_REG_SEL  
R/W-0h  
INP_RES_SEL  
R/W-0h  
R/W-0h  
7
6
5
4
3
1
0
0
0
INP_RES_SEL  
R/W-0h  
FLIP_ATTEN  
R/W-0h  
DIS_ATTEN  
R/W-0h  
SLOPE_FAC[3:1]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 121. Register 182 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
MODE_SEL  
R/W  
0h  
These bits determine the DTGC mode.  
00 = External non-uniform mode  
01 = Up, down ramp mode  
10 = Programmable fixed-gain mode  
11 = Internal non-uniform mode  
13-12  
PROFILE_REG_SEL  
R/W  
0h  
These bits determine which profile register to use when the  
PROFILE_EXT_DIS bit is 1.  
00 = Profile 0  
01 = Profile 1  
10 = Profile 2  
01 = Profile 3  
Copyright © 2015–2017, Texas Instruments Incorporated  
155  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 121. Register 182 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
11  
PROFILE_EXT_DIS  
R/W  
0h  
0 = Device pins TGC_PROF<2> and TGC_PROF<1> determine  
which profile to use  
1 = The PROFILE_REG_SEL register bits determine which  
profile to use  
10-7  
6
INP_RES_SEL  
FLIP_ATTEN  
R/W  
R/W  
0h  
0h  
Depending upon source resistance, proper input attenuation  
resistance must be selected to obtain 8-dB attenuation.  
Table 122 lists the values to be written for different source  
resistances.  
0 = In the TGC gain curve, the attenuation of the attenuator  
block varies first, followed by the LNA gain variation  
1 = In the TGC gain curve, the LNA gain varies first, followed by  
the attenuation of the attenuator block  
5
DIS_ATTEN  
R/W  
R/W  
0h  
0h  
0 = Attenuator is enabled  
1 = Attenuator is disabled  
4-2  
SLOPE_FAC[3:1]  
These bits are used to control the TGC gain curve slope in  
internal non-uniform mode; see the Internal Non-Uniform Mode  
section for more details.  
1-0  
0
R/W  
0h  
Must write 0  
Table 122. INP_RES_SEL Values  
BIT SETTING  
SOURCE RESISTANCE  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
50 Ω  
115 Ω  
70 Ω  
270 Ω  
60 Ω  
160 Ω  
90 Ω  
800 Ω  
60 Ω  
130 Ω  
80 Ω  
400 Ω  
65 Ω  
200 Ω  
100 Ω  
Open  
156  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
13.1.4.1.1.25 Register 183 (address = B7h)  
Figure 206. Register 183  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
NEXT_CYCLE_WAIT_TIME  
R/W-0h  
4
3
NEXT_CYCLE_WAIT_TIME  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 123. Register 183 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
NEXT_CYCLE_WAIT_TIME  
R/W  
0h  
When ENABLE_INT_START is set to 1, the periodicity of the  
internal start signal is controlled with this register; see the Digital  
TGC Test Modes section for more details.  
13.1.4.1.1.26 Register 185 (address = B9h)  
Figure 207. Register 185  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
FIX_ATTEN_EN_0  
R/W-0h  
ATTENUATION_0  
R/W-0h  
7
5
4
3
FIX_ATTEN_EN_1  
R/W-0h  
ATTENUATION_1  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 124. Register 185 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
FIX_ATTEN_EN_0  
R/W  
0h  
0 = Default  
1 = Enable fixed attenuation mode for profile 0  
14-8  
ATTENUATION_0  
R/W  
0h  
When the FIX_ATTEN_EN_0 bit is set to 1, the attenuation level  
of the attenuator block is set by the ATTENUATION_0 bits for  
profile 0. A value of N written in the ATTENUATION_0 register  
sets the attenuation level at –8 + N × 0.125 dB.  
7
FIX_ATTEN_EN_1  
ATTENUATION_1  
R/W  
R/W  
0h  
0h  
0 = Default  
1 = Enable fixed attenuation mode for profile 1  
6-0  
When the FIX_ATTEN_EN_1 bit is set to 1, the attenuation level  
of the attenuator block is set by the ATTENUATION_1 bits for  
profile 1. A value of N written in the ATTENUATION_1 register  
sets the attenuation level at –8 + N × 0.125 dB.  
Copyright © 2015–2017, Texas Instruments Incorporated  
157  
AFE5816  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13.1.4.1.1.27 Register 186 (address = BAh)  
Figure 208. Register 186  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
FIX_ATTEN_EN_2  
R/W-0h  
ATTENUATION_2  
R/W-0h  
7
5
4
3
FIX_ATTEN_EN_3  
R/W-0h  
ATTENUATION_3  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 125. Register 186 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
FIX_ATTEN_EN_2  
R/W  
0h  
0 = Default  
1 = Enable fixed attenuation mode for profile 2  
14-8  
ATTENUATION_2  
R/W  
0h  
When the FIX_ATTEN_EN_2 bit is set to 1, the attenuation level  
of the attenuator block is set by the ATTENUATION_2 bits for  
profile 2. A value of N written in the ATTENUATION_2 register  
sets the attenuation level at –8 + N × 0.125 dB.  
7
FIX_ATTEN_EN_3  
ATTENUATION_3  
R/W  
R/W  
0h  
0h  
0 = Default  
1 = Enable fixed attenuation mode for profile 3  
6-0  
When the FIX_ATTEN_EN_3 bit is set to 1, the attenuation level  
of the attenuator block is set by the ATTENUATION_3 bits for  
profile 3. A value of N written in the ATTENUATION_3 register  
sets the attenuation level at –8 + N × 0.125 dB.  
158  
版权 © 2015–2017, Texas Instruments Incorporated  
AFE5816  
www.ti.com.cn  
ZHCSDT7E APRIL 2015REVISED SEPTEMBER 2017  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关文档  
《具有 140mW/通道功耗、0.75nV/Hz 噪声、14 65MSPS 12 80MSPS ADC 以及 CW 无源混频器的  
AFE5818 16 通道超声波模拟前端》  
ADS8413 16 位、2MSPSLVDS 串行接口 SAR 模数转换器》  
《具有并行接口、基准的 ADS8472 16 位、1MSPS、伪双极、全差分输入、微功耗采样模数转换器》  
CDCE72010 10 路输出高性能时钟同步器、抖动消除器和时钟分配器》  
CDCM7005 3.3V 高性能时钟同步器和抖动消除器》  
ISO724x 高速四通道数字隔离器》  
《具有双环路 PLL LMK0480x 低噪声时钟抖动清除器》  
OPA1632 高性能、全差分音频运算放大器》  
OPA2x11 1.1-nv/Hz 噪声、低功耗、精密运算放大器》  
SN74AUP1T04 低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出单反相器门》  
THS413x 高速、低噪声、全差分 I/O 放大器》  
MicroStar BGA 封装参考指南》  
14.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
14.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2015–2017, Texas Instruments Incorporated  
159  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AFE5816ZAV  
ACTIVE  
NFBGA  
ZAV  
289  
126  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
AFE5816  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AFE5816ZAV  
ZAV  
NFBGA  
289  
126  
7 X 18  
150  
315 135.9 7620 17.2  
11.3 16.35  
Pack Materials-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AFE5816ZAV

噪声为 0.95nV/rtHz 并具有 CW 无源混频器的全集成式 16 通道超声波模拟前端 | ZAV | 289 | -40 to 85
TI

AFE5818

具有 CW 无源混频器的 16 通道超声波模拟前端,噪声为 0.75nV/rtHz,功耗为 124mW/通道
TI

AFE5818ZBV

具有 CW 无源混频器的 16 通道超声波模拟前端,噪声为 0.75nV/rtHz,功耗为 124mW/通道 | ZBV | 289 | -40 to 85
TI

AFE5828

具有 102mW/通道功率、LVDS 接口和 CW 无源混频器的 16 通道超声波 AFE
TI

AFE5828ZAV

具有 102mW/通道功率、LVDS 接口和 CW 无源混频器的 16 通道超声波 AFE | ZAV | 289 | 0 to 85
TI

AFE5832

具有 42mW/通道功率、LVDS 接口和 CW 无源混频器的 32 通道超声波 AFE
TI

AFE5832LP

具有 18.5mW/通道功率、LVDS 接口和 CW 无源混频器的低功耗 32 通道超声波 AFE
TI

AFE5832LPZAV

具有 18.5mW/通道功率、LVDS 接口和 CW 无源混频器的低功耗 32 通道超声波 AFE | ZAV | 289 | 0 to 85
TI

AFE5832ZBV

具有 42mW/通道功率、LVDS 接口和 CW 无源混频器的 32 通道超声波 AFE | ZBV | 289 | 0 to 85
TI

AFE5851

16 CHANNEL VARIABLE GAIN AMPLIFIER (VGA) WITH OCTAL HIGH SPEED ADC
TI

AFE5851IRGCR

16 CHANNEL VARIABLE GAIN AMPLIFIER (VGA) WITH OCTAL HIGH SPEED ADC
TI

AFE5851IRGCT

16 CHANNEL VARIABLE GAIN AMPLIFIER (VGA) WITH OCTAL HIGH SPEED ADC
TI