AMC1035 [TI]

具有 ±1V 双极输入和 2.5V 基准输出的精密 Δ-Σ 调制器;
AMC1035
型号: AMC1035
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 ±1V 双极输入和 2.5V 基准输出的精密 Δ-Σ 调制器

文件: 总35页 (文件大小:1910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
具有 ±1V 双极输入和 2.5V 基准电压输出的 AMC1035 Δ-Σ 调制器  
1 特性  
3 说明  
1
针对电压和温度感应进行了优化的 Δ-Σ 调制器:  
AMC1035 是一款精密 Δ-Σ 调制器,可在 3.0V 5.5V  
的单电源下运行,且具有 9MHz 21MHz 的时钟信  
号。在曼彻斯特模式下,额定时钟范围为 9MHz 至  
11MHz。该器件的差分 ±1V 输入结构经过优化,可适  
应工业应用中的典型高噪声 环境。  
±1V 输入电压范围  
高差分输入电阻:1.6GΩ(典型值)  
集成 2.5V±5mA 基准,可实现比例测量  
出色的直流性能:  
AMC1035 可选择曼彻斯特编码式输出位流,这样便无  
需考虑接收器件的设置和保留时间要求并减少总体电路  
布局工作。当用于与数字滤波器(例如集成到  
TMS320F28004xTMS320F2807x 或  
失调电压误差:±0.5mV(最大值)  
温漂:±6µV/°C(最大值)  
增益误差:±0.25%(最大值)  
增益漂移:±45ppm/°C(最大值)  
比例增益漂移:±15ppm/°C(最大值)  
TMS320F2837x 微控制器系列中)一起抽取输出位流  
时,该器件可在 82kSPS 的数据速率下实现具有 87dB  
动态范围的 16 位分辨率。  
可选曼彻斯特编码式或未编码式位流输出  
完整的额定工作温度范围:–40°C +125°C  
AMC1035 的内部基准源支持比例电路架构,可最大限  
度降低电源电压变化和温漂对测量精度的负面影响。  
2 应用  
工业应用中的交流电压和温度 感应:  
AMC1035 还可用于与数字隔离器和隔离电源一起实现  
交流电力线电压检测。  
电机驱动器  
光电逆变器  
不间断电源  
工业运输系统  
器件信息(1)  
器件型号  
AMC1035  
封装  
SOIC (8)  
封装尺寸(标称值)  
4.9mm x 3.9mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
应用示例  
3.3 V or 5 V  
AMC1035  
REFOUT  
VDD  
2.5 V, 3.3 V or 5 V  
Voltage  
Reference  
ISO7721  
VDD1 VDD2  
AINP  
OUTA  
INA  
OUTB  
GND2  
CLKIN  
DOUT  
û-Modulator  
Manchester  
Coding  
T
INB  
AINN  
GND  
MCE  
GND1  
GND2  
GND1  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS837  
 
 
 
 
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Applications ................................................ 20  
Power Supply Recommendations...................... 24  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 文档支持 ............................................................... 26  
11.2 接收文档更新通知 ................................................. 26  
11.3 社区资源................................................................ 26  
11.4 ....................................................................... 26  
11.5 静电放电警告......................................................... 26  
11.6 Glossary................................................................ 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (November 2018) to Revision B  
Page  
Deleted PSRR specification for TA > 85°C from Reference Output section of Electrical Characteristics table ..................... 6  
已更改 SINAD equation ........................................................................................................................................................ 22  
Changes from Original (August 2018) to Revision A  
Page  
已更改 将文档状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2018–2020, Texas Instruments Incorporated  
 
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
MCE  
AINP  
1
2
3
4
8
7
6
5
VDD  
CLKIN  
DOUT  
GND  
AINN  
REFOUT  
Not to scale  
Pin Functions  
PIN  
I/O  
NO.  
NAME  
DESCRIPTION  
Manchester coding enabled, active high, with internal pulldown resistor (typical value: 200 kΩ).  
The polarity of this signal must not be changed when the clock signal is applied.  
1
MCE  
I
2
3
4
5
AINP  
AINN  
I
I
Noninverting analog input.  
Inverting analog input.  
REFOUT  
GND  
O
Reference output: 2.5 V nominal, maximum ±5-mA sink and source capability.  
Ground reference.  
Modulator bitstream data output, updated with the rising edge of the clock signal present on CLKIN.  
6
DOUT  
O
This pin is a Manchester coded output if MCE is pulled high. Use the rising edge of the clock to latch the  
modulator bitstream at the input of the digital filter device.  
Modulator clock input: 9 MHz to 21 MHz with an internal pulldown resistor (typical value: 200 kΩ).  
7
8
CLKIN  
VDD  
I
The clock signal must be applied continuously for proper device operation; see the Clock Input section for  
additional details.  
Power supply, 3.0 V to 5.5 V.  
See the Power Supply Recommendations section for decoupling recommendations.  
Copyright © 2018–2020, Texas Instruments Incorporated  
3
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
–0.3  
MAX  
7
UNIT  
V
Supply voltage, VDD to GND  
Analog input voltage at AINP, AINN  
Analog output voltage at REFOUT  
Digital input voltage at CLKIN or MCE  
Digital output voltage at DOUT  
Input current to any pin except supply pins  
Junction temperature, TJ  
GND – 5  
GND – 0.5  
GND – 0.5  
GND – 0.5  
–10  
VDD + 0.5  
VDD + 0.5  
VDD + 0.5  
VDD + 0.5  
10  
V
V
V
V
mA  
°C  
°C  
150  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
3.3  
MAX UNIT  
POWER SUPPLY  
VDD  
Supply voltage  
VDD to GND  
3.0  
5.5  
V
ANALOG INPUT  
VClipping Differential input voltage before clipping output  
VIN = VAINP – VAINN  
±1.25  
V
V
V
VFSR  
Specified linear differential full-scale voltage  
Absolute common-mode input voltage(1)  
VIN = VAINP – VAINN  
–1  
–2  
1
(VAINP + VAINN) / 2 to GND  
VDD  
(VAINP + VAINN) / 2 to GND,  
3.0 V VDD < 4 V,  
VAINP = VAINN  
–1.4  
–0.8  
–1.4  
–0.8  
VDD – 1.4  
VDD – 2.4  
2.7  
(VAINP + VAINN) / 2 to GND,  
3.0 V VDD < 4.5 V,  
|VAINP – VAINN| = 1.25 V  
VCM  
Operating common-mode input voltage(2)  
V
(VAINP + VAINN) / 2 to GND,  
4 V VDD 5.5 V,  
VAINP = VAINN  
(VAINP + VAINN) / 2 to GND,  
4.5 V VDD 5.5 V,  
2.1  
|VAINP – VAINN| = 1.25 V  
DIGITAL INPUT  
Input voltage  
TEMPERATURE RANGE  
TA Operating ambient temperature  
VMCE or VCLKIN to GND  
GND  
–40  
VDD  
V
25  
125 °C  
(1) Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal  
operation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.  
(2) See the Analog Input section for more details.  
4
Copyright © 2018–2020, Texas Instruments Incorporated  
 
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
6.4 Thermal Information  
AMC1035  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
120  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
52  
61  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10  
ψJB  
60  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C, VDD = 3.0 V to 5.5 V, AINP = –1 V to 1 V, AINN =  
GND, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications are at TA = 25°C, CLKIN = 20 MHz, and  
VDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
(VAINP + VAINN) / 2, VAINP = VAINN  
(VAINP + VAINN) / 2, |VAINP – VAINN| = 1.25 V  
3.0 V VDD < 4 V, VAINP = VAINN  
3.0 V VDD < 4.5 V, |VAINP – VAINN| = 1.25 V  
4 V VDD 5.5 V, VAINP = VAINN  
4.5 V VDD 5.5 V, |VAINP – VAINN| = 1.25 V  
AINN = GND  
–1.45  
–0.85  
Negative common-mode undervoltage  
detection level(2)  
(1)  
VCMuv  
V
VDD – 1.35  
VDD – 2.35  
Positive common-mode overvoltage  
detection level(2)  
(1)  
VCMov  
V
2.75  
2.15  
0.1  
RIN  
RIND  
CIN  
CIND  
IIB  
Single-ended input resistance  
Differential input resistance  
Single-ended input capacitance  
Differential input capacitance  
Input bias current  
0.4  
1.6  
2
GΩ  
GΩ  
pF  
0.16  
AINN = GND  
2
pF  
AINP = AINN = GND, (IAINP + IAINN) / 2  
AINP = AINN = GND, (IAINP + IAINN) / 2  
IIO = IAINP – IAINN  
–10  
–5  
±3  
10  
5
nA  
TCIIB  
IIO  
Input bias current thermal drift  
Input offset current  
±5  
pA/°C  
nA  
±1  
AINP = AINN, fIN = 0 Hz, VCM min VIN VCM max  
–104  
CMRR  
Common-mode rejection ratio  
dB  
AINP = AINN, fIN from 0.1 Hz to 50 kHz,  
–0.5 V VIN 0.5 V  
–88  
DC ACCURACY  
Resolution(3)  
16  
–12  
Bits  
LSB  
mV  
INL  
Integral nonlinearity(4)  
Resolution: 16 bits  
±2  
±0.03  
±0.1  
12  
0.5  
EO  
Offset error  
Initial, at TA = 25°C, AINP = AINN = GND  
–0.5  
TCEO  
Offset error thermal drift(5)  
–6  
6
µV/°C  
Initial, at TA = 25°C  
–0.25%  
–0.3%  
–45  
±0.02%  
±0.02%  
±20  
0.25%  
0.3%  
45  
EG  
Gain error  
Initial, at TA = 25°C, ratiometric mode  
TCEG  
PSRR  
Gain error thermal drift(6)  
Power-supply rejection ratio  
ppm/°C  
dB  
Ratiometric mode  
–15  
±4  
15  
AINP = AINN = GND, at dc  
AINP = AINN = GND, 10 kHz, 100-mV ripple  
–90  
–84  
(1) See the Analog Input section for more details.  
(2) The common-mode overvoltage detection level has a typical hysteresis of 35 mV.  
(3) The filter output is truncated to 16 bits. 16 bits of no missing codes is specified by design.  
(4) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer  
function expressed as number of LSBs or as a percent of the specified linear full-scale range FSR.  
valueMAX - valueMIN  
TempRange  
TCEO  
=
(5) Offset error drift is calculated using the box method, as described by the following equation:  
.
value MAX - value MIN  
6
÷
÷
TCEG ( ppm) =  
ì10  
value ìTempRange  
«
(6) Gain error drift is calculated using the box method, as described by the following equation:  
Copyright © 2018–2020, Texas Instruments Incorporated  
.
5
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C, VDD = 3.0 V to 5.5 V, AINP = –1 V to 1 V, AINN =  
GND, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications are at TA = 25°C, CLKIN = 20 MHz, and  
VDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC ACCURACY  
SNR  
Signal-to-noise ratio  
fIN = 1 kHz  
fIN = 1 kHz  
fIN = 1 kHz  
fIN = 1 kHz  
81  
77  
87  
83  
dB  
dB  
dB  
dB  
SINAD  
THD  
Signal-to-noise + distortion  
Total harmonic distortion  
Spurious-free dynamic range  
–87  
87  
–78  
SFDR  
78  
REFERENCE OUTPUT  
VREFOUT  
TCVREFOUT  
IREFOUT  
Reference output voltage  
Initial, at TA = 25°C, no load  
2.495  
–50  
–5  
2.5  
2.505  
V
Reference output voltage drift  
Reference output current  
Load regulation  
±20  
50 ppm/°C  
mA  
CLOAD < 1 nF(7)  
5
Load to GND or VDD  
REFOUT to GND  
REFOUT to VDD  
0.15  
23  
0.35 mV/mA  
ISC  
Short-circuit current  
mA  
–21  
±30  
PSRR  
Power-supply rejection ratio  
–200  
200  
35  
µV/V  
DIGITAL INPUTS (CMOS Logic With Schmitt-Trigger)  
IIN  
Input current  
GND VIN VDD  
μA  
pF  
V
CIN  
VIH  
VIL  
Input capacitance  
High-level input voltage  
Low-level input voltage  
3
0.7 × VDD  
–0.3  
VDD + 0.3  
0.3 × VDD  
V
DIGITAL OUTPUT: CMOS  
CLOAD Output load capacitance  
fCLKIN = 21 MHz  
IOH = –20 µA  
IOH = –4 mA  
IOL = 20 µA  
15  
30  
pF  
V
VDD – 0.1  
VDD – 0.4  
VOH  
High-level output voltage  
Low-level output voltage  
0.1  
0.4  
VOL  
V
IOL = 4 mA  
POWER SUPPLY  
3.0 V VDD 3.6 V, IREFOUT = 0 mA, MCE = 0,  
CLOAD = 15 pF  
5.2  
4.6  
6.4  
5.4  
6.8  
6.1  
8.3  
7.2  
3.0 V VDD 3.6 V, IREFOUT = 0 mA, MCE = 1,  
CLOAD = 15 pF(8)  
IVDD  
High-side supply current  
mA  
4.5 V VDD 5.5 V, IREFOUT = 0 mA, MCE = 0,  
CLOAD = 15 pF  
4.5 V VDD 5.5 V, IREFOUT = 0 mA, MCE = 1,  
CLOAD = 15 pF(8)  
(7) Capacitive load with a value 1nF requires series resistor to be connected to the REFOUT pin. See the Reference Output section for  
more details.  
(8) Typical value is specified at fCLKIN = 10 MHz, maximum value is specified at fCLKIN = 11 MHz.  
6
Copyright © 2018–2020, Texas Instruments Incorporated  
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
9
TYP  
20  
MAX UNIT  
MCE = 0  
MCE = 1  
21  
fCLKIN  
CLKIN clock frequency  
MHz  
11  
9
10  
DutyCycle CLKIN clock duty cycle(1)  
40%  
6
50%  
60%  
ns  
tH1  
tH2  
tH3  
tD1  
tD2  
tD3  
DOUT hold time after rising edge of CLKIN  
MCE = 0, CLOAD = 15 pF  
MCE = 1, CLOAD = 15 pF  
MCE = 1, CLOAD = 15 pF  
MCE = 0, CLOAD = 15 pF  
MCE = 1, CLOAD = 15 pF  
MCE = 1, CLOAD = 15 pF  
DOUT hold time after rising edge of CLKIN  
DOUT hold time after falling edge of CLKIN  
Rising edge of CLKIN to DOUT valid delay  
Rising edge of CLKIN to DOUT valid delay  
Falling edge of CLKIN to DOUT valid delay  
6
23  
26  
25  
27  
30  
ns  
ns  
ns  
ns  
ns  
10  
11  
15  
10% to 90%, 3.0 V VDD 3.6 V,  
CLOAD = 15 pF  
2.5  
1.5  
5
3.5  
5.8  
4.4  
tr  
DOUT rise time  
ns  
10% to 90%, 4.5 V VDD 5.5 V,  
CLOAD = 15 pF  
90% to 10%, 3.0 V VDD 3.6 V,  
CLOAD = 15 pF  
2.5  
tf  
DOUT fall time  
ns  
90% to 10%, 4.5 V VDD 5.5 V,  
CLOAD = 15 pF  
1.8  
VDD step to 3.0 V, 0.1% settling,  
CLKIN applied  
tASTART  
Analog startup time  
0.25  
ms  
(1) The duty cycle of DOUT equals the clock duty cycle of the applied CLKIN signal.  
tCLKIN  
CLKIN  
tHIGH  
tLOW  
tH1  
tD1  
tr / tf  
DOUT  
(MCE = 0)  
tD2  
tD3  
tH2  
tH3  
tr / tf  
DOUT  
(MCE = 1)  
1. Digital Interface Timing  
VDD  
tASTART  
CLKIN  
DOUT  
...  
Bitstream not valid (analog settling)  
Valid bitstream  
2. Device Startup Timing  
版权 © 2018–2020, Texas Instruments Incorporated  
7
 
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
6.7 Typical Characteristics  
at VDD = 3.3 V, AINP = –1 V to 1 V, AINN = GND, fCLKIN = 20 MHz, MCE = 0, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
0
-20  
10  
7.5  
5
-40  
2.5  
0
-60  
-2.5  
-5  
-80  
-100  
-7.5  
-10  
-120  
-0.65 -0.3  
0.05  
0.4  
0.75  
VCM (V)  
1.1  
1.45  
1.8  
2.15  
0.01  
0.1  
1
10  
100  
1000  
fIN (kHz)  
D001  
D002  
VDD = 5.5 V  
3. Input Bias Current vs  
4. Common-Mode Rejection Ratio vs  
Common-Mode Input Voltage  
Input Signal Frequency  
12  
9
12  
10  
8
MCE = 0, fCLKIN = 20 MHz  
MCE = 1, fCLKIN = 10 MHz  
6
3
0
6
-3  
-6  
-9  
-12  
4
2
0
-1  
-0.75 -0.5 -0.25  
0
VIN (mV)  
0.25  
0.5  
0.75  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D031  
D003  
5. Integral Nonlinearity vs Input Voltage  
6. Integral Nonlinearity vs Temperature  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Device 1  
Device 2  
Device 3  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D004  
D005  
7. Offset Error vs Supply Voltage  
8. Offset Error vs Temperature  
8
版权 © 2018–2020, Texas Instruments Incorporated  
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
Typical Characteristics (接下页)  
at VDD = 3.3 V, AINP = –1 V to 1 V, AINN = GND, fCLKIN = 20 MHz, MCE = 0, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
MCE = 0  
MCE = 1  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
D006  
D007  
9. Offset Error vs Clock Frequency  
10. Gain Error vs Supply Voltage  
0.25  
0.2  
0.3  
0.2  
0.1  
0
Device 1  
Device 2  
Device 3  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.1  
-0.2  
-0.3  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D008  
D009  
11. Gain Error vs Temperature  
12. Ratiometric Gain Error vs Temperature  
0.3  
0.2  
0.1  
0
0
-20  
MCE = 0  
MCE = 1  
-40  
-60  
-0.1  
-0.2  
-0.3  
-80  
-100  
-120  
9
11  
13  
15  
fCLKIN (MHz)  
17  
19  
21  
0.1  
1
10  
Ripple Frequency (kHz)  
100  
1000  
D010  
D011  
13. Gain Error vs Clock Frequency  
14. Power-Supply Rejection Ratio vs  
Ripple Frequency  
版权 © 2018–2020, Texas Instruments Incorporated  
9
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 3.3 V, AINP = –1 V to 1 V, AINN = GND, fCLKIN = 20 MHz, MCE = 0, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
91  
89  
87  
85  
83  
81  
79  
77  
91  
89  
87  
85  
83  
81  
79  
77  
SNR  
SINAD  
SNR  
SINAD  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
VDD (V)  
D012  
D013  
15. Signal-to-Noise Ratio and  
16. Signal-to-Noise Ratio and  
Signal-to-Noise + Distortion vs Supply Voltage  
Signal-to-Noise + Distortion vs Temperature  
91  
89  
87  
85  
83  
81  
79  
77  
91  
89  
87  
85  
83  
81  
79  
77  
75  
73  
SNR, MCE = 0  
SNR, MCE = 1  
SINAD, MCE = 0  
SINAD, MCE = 1  
SNR  
SINAD  
9
11  
13  
15  
fCLKIN (MHz)  
17  
19  
21  
0.1  
1
10  
100  
fIN (kHz)  
D014  
D015  
17. Signal-to-Noise Ratio and  
Signal-to-Noise + Distortion vs Clock Frequency  
18. Signal-to-Noise Ratio and  
Signal-to-Noise + Distortion vs Input Signal Frequency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
-76  
SNR  
SINAD  
-80  
-84  
-88  
-92  
-96  
-100  
-104  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
VIN (Vpp)  
2
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
D016  
D017  
19. Signal-to-Noise Ratio and  
Signal-to-Noise + Distortion vs Input Signal Amplitude  
20. Total Harmonic Distortion vs Supply Voltage  
版权 © 2018–2020, Texas Instruments Incorporated  
10  
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
Typical Characteristics (接下页)  
at VDD = 3.3 V, AINP = –1 V to 1 V, AINN = GND, fCLKIN = 20 MHz, MCE = 0, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
-76  
-76  
MCE = 0  
MCE = 1  
-80  
-80  
-84  
-84  
-88  
-88  
-92  
-92  
-96  
-96  
-100  
-104  
-100  
-104  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
9
11  
13  
15  
fCLKIN (MHz)  
17  
19  
21  
D018  
D019  
21. Total Harmonic Distortion vs Temperature  
22. Total Harmonic Distortion vs Clock Frequency  
-76  
-80  
-76  
-80  
-84  
-84  
-88  
-88  
-92  
-92  
-96  
-96  
-100  
-104  
-100  
-104  
0.1  
1
fIN (kHz)  
10  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
VIN (Vpp)  
2
D020  
D021  
23. Total Harmonic Distortion vs  
24. Total Harmonic Distortion vs  
Input Signal Frequency  
Input Signal Amplitude  
109  
105  
101  
97  
109  
105  
101  
97  
93  
93  
89  
89  
85  
85  
81  
81  
77  
77  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
VDD (V)  
D022  
D023  
25. Spurious-Free Dynamic Range vs Supply Voltage  
版权 © 2018–2020, Texas Instruments Incorporated  
26. Spurious-Free Dynamic Range vs Temperature  
11  
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 3.3 V, AINP = –1 V to 1 V, AINN = GND, fCLKIN = 20 MHz, MCE = 0, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
109  
105  
101  
97  
109  
105  
101  
97  
MCE = 0  
MCE = 1  
93  
93  
89  
89  
85  
85  
81  
81  
77  
77  
9
0
0
11  
13  
15  
fCLKIN (MHz)  
17  
19  
21  
0.1  
1
fIN (kHz)  
10  
D024  
D025  
27. Spurious-Free Dynamic Range vs  
28. Spurious-Free Dynamic Range vs  
Clock Frequency  
Input Signal Frequency  
109  
105  
101  
97  
0
-20  
-40  
-60  
93  
-80  
89  
-100  
-120  
-140  
-160  
85  
81  
77  
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
VIN (Vpp)  
2
0
5
10  
15  
20  
Frequency (kHz)  
25  
30  
35  
40  
D026  
D027  
4096-point FFT, VIN = 2 VPP  
30. Frequency Spectrum With 1-kHz Input Signal  
29. Spurious-Free Dynamic Range vs  
Input Signal Amplitude  
0
-20  
2.505  
2.503  
2.501  
2.499  
2.497  
2.495  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
5
10  
15  
Frequency (kHz)  
20  
25  
30  
35  
40  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
D028  
D029  
4096-point FFT, VIN = 2 VPP  
31. Frequency Spectrum With 5-kHz Input Signal  
32. Reference Output Voltage vs Supply Voltage  
版权 © 2018–2020, Texas Instruments Incorporated  
12  
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
Typical Characteristics (接下页)  
at VDD = 3.3 V, AINP = –1 V to 1 V, AINN = GND, fCLKIN = 20 MHz, MCE = 0, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
2.52  
2.515  
2.51  
11  
10  
9
Device 1  
Device 2  
Device 3  
MCE = 0  
MCE = 1  
2.505  
2.5  
8
7
2.495  
2.49  
6
5
2.485  
2.48  
4
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
D030  
D032  
33. Reference Output Voltage vs Temperature  
34. Supply Current vs Supply Voltage  
11  
10  
9
11  
10  
9
MCE = 0  
MCE = 1  
MCE = 1  
MCE = 0  
8
8
7
7
6
6
5
5
4
4
3
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
9
11  
13  
15  
fCLKIN (MHz)  
17  
19  
21  
D033  
D034  
35. Supply Current vs Temperature  
36. Supply Current vs Clock Frequency  
版权 © 2018–2020, Texas Instruments Incorporated  
13  
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The differential analog input (comprised of input signals AINP and AINN) of the AMC1035 is a chopper-stabilized  
buffer, followed by the switched-capacitor input of a second-order, delta-sigma (ΔΣ) modulator stage that digitizes  
the input signal into a 1-bit output stream. The data output DOUT of the converter provides a stream of digital  
ones and zeros that is synchronous to the externally-provided clock source at the CLKIN pin with a frequency in  
the range of 9 MHz to 21 MHz. The time average of this serial bitstream output is proportional to the analog input  
voltage.  
The Functional Block Diagram section shows a detailed block diagram of the AMC1035. The 1.6-GΩ differential  
input resistance of the analog input stage supports low gain-error signal sensing in high-voltage applications  
using resistive dividers. The external clock input simplifies the synchronization of multiple measurement channels  
on the system level. The extended frequency range of up to 21 MHz supports higher performance levels  
compared to the other solutions available on the market.  
7.2 Functional Block Diagram  
VDD  
MCE  
Manchester  
Coding  
DOUT  
CLKIN  
AINP  
AINN  
û-Modulator  
Voltage  
Reference  
REFOUT  
GND  
7.3 Feature Description  
7.3.1 Analog Input  
The AMC1035 incorporates front-end circuitry that contains a buffered sampling stage, followed by a ΔΣ  
modulator. To support a bipolar input range, the device uses a charge pump that allows single-supply operation  
to simplify the overall system design and minimize the circuit cost. For reduced offset and offset drift, the input  
buffer is chopper-stabilized with the switching frequency set at fCLKIN / 32. 37 shows the spur created by the  
switching frequency.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0.1  
1
10 100  
Frequency (kHz)  
1000  
10000  
D036  
sinc3 filter, OSR = 2, fCLKIN = 20 MHz, fIN = 1 kHz  
37. Quantization Noise Shaping  
14  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
Feature Description (接下页)  
The linearity and noise performance of the device are ensured only when the differential analog input voltage  
remains within the specified linear full-scale range (FSR), that is ±1 V, and within the specified input common-  
mode range.  
38 shows the specified common-mode input voltage that applies for the full-scale input voltage range as  
specified in this document along with the corresponding common-mode undervoltage and overvoltage threshold  
levels.  
If smaller input signals are used, the operational common-mode input voltage range widens. 39 shows the  
common-mode input voltage that applies with no differential input signal; that is, when the voltage applied on  
AINP is equal to the voltage applied on AINN. The common-mode input voltage range scales with the actual  
differential input voltage between this range and the range in 38.  
4
4
VCMov  
VCMuv  
VCMov  
VCMuv  
3
3
2
2
1
1
Specified VCM  
Range  
Specified VCM  
Range  
0
0
-1  
-1  
-2  
-2  
3
3.25  
3.5  
3.75  
4
4.25  
4.5  
5
5.5  
3
3.25  
3.5  
3.75  
4
4.25  
4.5  
5
5.5  
VDD (V)  
VDD (V)  
38. Common-Mode Input Voltage Range With a  
Full-Scale Differential Input Signal of ±1.25 V  
39. Common-Mode Input Voltage Range With a  
Zero Differential Input Signal  
版权 © 2018–2020, Texas Instruments Incorporated  
15  
 
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Modulator  
The modulator implemented in the AMC1035 (such as the one conceptualized in 40) is a second-order,  
switched-capacitor, feed-forward ΔΣ modulator. The analog input voltage VIN and the output V5 of the 1-bit  
digital-to-analog converter (DAC) are subtracted, providing an analog voltage V1 at the input of the first integrator  
stage. The output of the first integrator feeds the input of the second integrator stage, resulting in output voltage  
V3 that is summed with the input signal VIN and the output of the first integrator V2. Depending on the polarity of  
the resulting voltage V4, the output of the comparator is changed. In this case, the 1-bit DAC responds on the  
next clock pulse by changing the associated analog output voltage V5, causing the integrators to progress in the  
opposite direction and forcing the value of the integrator output to track the average value of the input.  
fCLKIN  
V1  
V2  
V3  
V4  
VIN  
Integrator 1  
Integrator 2  
CMP  
0 V  
V5  
DAC  
40. Block Diagram of a Second-Order Modulator  
As depicted in 37, the modulator shifts the quantization noise to high frequencies. Therefore, use a low-pass  
digital filter at the output of the device to increase the overall performance. This filter is also used to convert from  
the 1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation). TI's  
microcontroller families TMS320F28004x, TMS320F2807x, and TMS320F2837x offer a suitable programmable,  
hardwired filter structure termed a sigma-delta filter module (SDFM) optimized for usage with the AMC1035.  
Also, SD24_B converters on the MSP430F677x microcontrollers offer a path to directly access the integrated  
sinc-filters for a simple system-level solution for multichannel, isolated current sensing. An additional option is to  
use a suitable application-specific device, such as the AMC1210 (a four-channel digital sinc filter). Alternatively, a  
field-programmable gate array (FPGA) can be used to implement the filter.  
7.3.3 Reference Output  
The AMC1035 offers a voltage reference output that can source or sink current to significantly reduce the gain  
error thermal drift in ratiometric applications as specified in the Electrical Characteristics table. The IGBT  
Temperature Sensing section provides an example of a ratiometric use case for the AMC1035.  
The reference output can drive capacitive loads less than 1 nF. Use a series resistor to avoid oscillations and  
degradation of performance for capacitive loads 1 nF. 1 lists the recommended series resistor values for  
given capacitor value examples. Interpolate for capacitive loads with a value between the given examples.  
1. Series Resistor Value for Capacitive Loads 1 nF on REFOUT Pin  
CAPACITIVE LOAD ON  
1 nF  
3.3 nF  
10 nF  
33 nF  
100 nF  
330 nF  
1 µF  
3.3 µF  
10 µF  
REFOUT PIN  
Recommended series  
resistor  
33 Ω  
56 Ω  
47 Ω  
33 Ω  
15 Ω  
10 Ω  
5.6 Ω  
3.3 Ω  
1.8 Ω  
16  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
7.3.4 Clock Input  
The AMC1035 system clock is provided externally at the CLKIN pin. The clock signal must be applied  
continuously for proper device operation.  
To support the bipolar input voltage range with a single supply, the AMC1035 includes a charge pump. This  
charge pump stops operating if the clock signal is below the specified frequency range or if the signal is paused  
or missing. Additionally, the input bias current increases beyond the specified range and significantly reduces the  
input resistance of the device. When the clock signal is paused or missing, the modulator stops the analog signal  
conversion and the digital output signal remains frozen in the last logic state. When the clock signal is applied  
again after a pause, the internal analog circuitry biasing must settle for proper device performance. In this case,  
consider the tASTART specification in the Switching Characteristics table.  
7.3.5 Digital Output  
A differential input signal of 0 V ideally produces a stream of ones and zeros that are high 50% of the time. A  
differential input of 1 V produces a stream of ones and zeros that are high 90% of the time. With 16 bits of  
resolution, that percentage ideally corresponds to code 58982 (an unsigned code). A differential input of –1 V  
produces a stream of ones and zeros that are high 10% of the time and ideally results in code 6553 with 16-bit  
resolution. These input voltages are also the specified linear range of the AMC1035 with performance as  
specified in this document. If the input voltage value exceeds this range, the output of the modulator shows  
nonlinear behavior when the quantization noise increases. The output of the modulator clips with a stream of only  
zeros with an input less than or equal to –1.25 V or with a stream of only ones with an input greater than or equal  
to 1.25 V. In this case, however, the AMC1035 generates a single 1 (if the input is at negative full-scale) or 0  
every 128 clock cycles to indicate proper device function (see the Fail-Safe Output section for more details). 图  
41 shows the input voltage versus the output modulator signal.  
Modulator Output  
+FS (Analog Input)  
-FS (Analog Input)  
Analog Input  
41. Analog Input versus the AMC1035 Modulator Output  
公式 1 calculates the density of ones in the output bitstream for any input voltage value (with the exception of a  
full-scale input signal, as described in the Output Behavior in Case of a Full-Scale Input section):  
VIN + VClipping  
2ì VClipping  
(1)  
The modulator bitstream on the DOUT pin changes with the rising edge of the clock signal applied on the CLKIN  
pin. Use the rising edge of the clock to latch the modulator bitstream at the input of the digital filter device.  
版权 © 2018–2020, Texas Instruments Incorporated  
17  
 
 
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
7.3.6 Manchester Coding Feature  
The AMC1035 offers the IEEE 802.3-compliant Manchester coding feature that generates at least one transition  
per bit to support clock signal recovery from the bitstream. The Manchester coding combines the clock and data  
information using exclusive-OR (XOR) logical operation that results in a bitstream free of DC components. 42  
shows the resulting bitstream from this coding. The duty cycle of the Manchester encoded bitstream depends on  
the duty cycle of the input clock CLKIN. To enable Manchester coding on the AMC1035, pull the input pin MCE  
high. The DOUT signal is inverted if the MCE status changes when CLKIN is high.  
Clock  
Uncoded  
Bitstream  
0
1
0
1
0
1
1
1
0
0
1
1
0
0
1
Machester  
Coded  
Bitstream  
42. Manchester Coded Output of the AMC1035  
7.4 Device Functional Modes  
The AMC1035 is operational when the power supply VDD and clock signal CLKIN are applied, as specified in 图  
39 and the Switching Characteristics table.  
7.4.1 Output Behavior in Case of a Full-Scale Input  
If a full-scale input signal is applied to the AMC1035 (that is, |VIN| |VClipping|), the device generates a single one  
or zero every 128 bits at DOUT, as shown in 43, depending on the actual polarity of the signal being sensed.  
This feature is also supported with Manchester-coded output and allows full-scale and invalid input signals to be  
identified as described in the Fail-Safe Output section and can be used for advanced system-level diagnostics.  
127 CLKIN cycles  
127 CLKIN cycles  
CLKIN  
...  
...  
DOUT  
(MCE = 0)  
(VAINP t VAINN) t1.25 V  
...  
...  
DOUT  
(MCE = 1)  
...  
...  
...  
...  
DOUT  
(MCE = 0)  
(VAINP t VAINN) 1.25 V  
...  
...  
DOUT  
(MCE = 1)  
43. Overrange Output of the AMC1035  
18  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
Device Functional Modes (接下页)  
7.4.2 Fail-Safe Output  
44 shows that if the common-mode voltage of the input reaches or exceeds the specified common-mode  
undervoltage, VCMuv, or overvoltage detection level, VCMov as defined in the Electrical Characteristics table, the  
DOUT of the AMC1035 is held at steady-state high.  
VCMuv < VCM < VCMov  
VCMov G ëCM or VCM G ëCMuv  
VCM  
CLKIN  
DOUT  
(MCE = 0)  
DOUT  
(MCE = 1)  
44. Fail-Safe Output of the AMC1035  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Digital Filter Usage  
The modulator generates a bitstream that is processed by a digital filter to obtain a digital word similar to a  
conversion result of a conventional analog-to-digital converter (ADC). 公式 2 shows a sinc3-type filter, which is a  
very simple filter, built with minimal effort and hardware:  
3
-OSR  
1- z  
H z =  
( )  
÷
÷
1- z-1  
«
(2)  
This filter provides the best output performance at the lowest hardware size (count of digital gates) for a second-  
order modulator. All the characterization in this document is also done with a sinc3 filter with an oversampling  
ratio (OSR) of 256 and an output word width of 16 bits.  
An example code for implementing a sinc3 filter in an FPGA is discussed in the Combining the ADS1202 with an  
FPGA Digital Filter for Current Measurement in Motor Control Applications application note, available for  
download at www.ti.com.  
版权 © 2018–2020, Texas Instruments Incorporated  
19  
 
 
 
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 Voltage Sensing  
ΔΣ modulators are widely used in frequency inverter designs because of their high AC and DC performance.  
Frequency inverters are critical parts of industrial motor drives, photovoltaic inverters (string and central  
inverters), uninterruptible power supplies (UPS), and other industrial applications.  
45 shows a simplified schematic of a motor drive application with the AMC1035 used for the DC-link and  
output phase voltage sensing. In this example, all resistive dividers reference to the negative DC-link voltage that  
is also used as a ground reference point for the microcontroller. An additional fifth AMC1035 can be used for  
temperature sensing of the insulated-gate bipolar transistor (IGBT) module; see the IGBT Temperature Sensing  
section for more details.  
Current feedback is performed with shunt resistors (RSHUNT) and TI's AMC1306M25 isolated modulators.  
Depending on the system design, either all three or only two motor phase currents are sensed.  
Depending on the overall digital processing power requirements and with a total of eight ΔΣ modulator bitstreams  
to be processed by the MCU, a derivate from either the low-cost single-core TMS320F2807x or the dual-core  
TMS320F2837x families can be used in this application.  
+VBUS  
Motor  
IDC  
RSHUNT  
U
VBUS  
RDC1  
RDC2  
RSHUNT  
V
IAC  
RSHUNT  
W
RAC1  
RAC1  
RAC1  
3.3VISO  
3.3 V  
AMC1306M25  
AVDD  
INP  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
RAC2  
RAC2  
RAC2  
INN  
CLKIN  
RDC3  
AGND DGND  
RAC3  
RAC3  
RAC3  
3.3 V  
AMC1035  
-VBUS  
MCE  
VDD  
RFLT  
CFLT  
RFLT  
3.3 VISO  
TMS320F28x7x  
AINP  
DOUT  
3.3 VISO  
3.3 V  
SDFM1  
SD1_D1  
AMC1306M25  
AINN  
CLKIN  
REFOUT GND  
AVDD  
INP  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
SD1_D2  
SD1_D3  
SD1_D4  
SD1_C1  
SD1_C2  
SD1_C3  
SD1_C4  
3.3 V  
AMC1306M25  
INN  
CLKIN  
AVDD  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
AGND DGND  
INP  
3.3 V  
AMC1035  
INN  
CLKIN  
AGND DGND  
MCE  
VDD  
RFLT  
CFLT  
RFLT  
AINP  
DOUT  
SDFM2  
SD2_D1  
3.3 V  
AMC1035  
AINN  
CLKIN  
SD2_D2  
SD2_D3  
SD2_D4  
SD2_C1  
SD2_C2  
SD2_C3  
SD2_C4  
MCE  
VDD  
RFLT  
CFLT  
RFLT  
REFOUT GND  
AINP  
DOUT  
AINN  
CLKIN  
REFOUT GND  
3.3 V  
AMC1035  
MCE  
VDD  
RFLT  
CFLT  
RFLT  
AINP  
DOUT  
CDCLVC1106  
AINN  
CLKIN  
PWMx  
Y0  
Y2  
Y4  
REFOUT GND  
Y1  
Y2  
1G  
Y5  
3.3 V  
CLKIN  
45. The AMC1035 in a Frequency Inverter Application  
20  
版权 © 2018–2020, Texas Instruments Incorporated  
 
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
Typical Applications (接下页)  
8.2.1.1 Design Requirements  
2 lists the parameters for this typical application.  
2. Design Requirements  
PARAMETER  
VALUE  
3.3 V  
Supply voltage  
Voltage drop across the sensing resistor RDC1 for a linear response  
Voltage drop across the sensing resistors RACx for a linear response  
Current through the sensing resistors RACx  
1 V (maximum)  
±1 V (maximum)  
±100 µV (maximum)  
8.2.1.2 Detailed Design Procedure  
Use Ohm's Law to calculate the minimum total resistance of the resistive dividers to limit the cross current to the  
desired values:  
For the voltage sensing on the DC bus: RDC1 + RDC2 + RDC3 = VBUS / IDC  
For the voltage sensing on the output phases U, V, and W: RAC1 + RAC2 + RAC3 = VPHASE (max) / IAC  
Consider the following two restrictions to choose the proper value of the resistors RDC3 and RAC3  
:
The voltage drop caused by the nominal voltage range of the system must not exceed the recommended  
input voltage range of the AMC1035: VxC3 VFSR  
The voltage drop caused by the maximum allowed system overvoltage must not exceed the input voltage that  
causes a clipping output: VxC3 VClipping  
Use similar approach for calculation of the shunt resistor values RSHUNT and see the AMC1306M25 data sheet  
for further details.  
3 lists examples of nominal E96-series (1% accuracy) resistor values for systems using 600 V and 800 V on  
the DC bus.  
3. Resistor Value Examples for DC Bus Sensing  
PARAMETER  
600-V DC BUS  
3.01 MΩ  
3.01 MΩ  
10 kΩ  
800-V DC Bus  
4.22 MΩ  
4.22 MΩ  
10.5 kΩ  
Resistive divider resistor RDC1  
Resistive divider resistor RDC2  
Sense resistor RDC3  
Resulting current through resistive divider IDC  
Resulting voltage drop on sense resistor VRDC3  
99.5 µA  
94.7 µA  
0.995 V  
0.994 V  
4 lists examples of nominal E96-series (1% accuracy) resistor values for systems using 230 V and 690 V on  
the output phases.  
4. Resistor Value Examples for Output Phase Voltage Sensing  
PARAMETER  
±400-VAC PHASE  
2.0 MΩ  
±690-VAC PHASE  
3.48 MΩ  
Resistive divider resistor RAC1  
Resistive divider resistor RAC2  
2.0 MΩ  
3.48 MΩ  
Sense resistor RAC3  
10.0 kΩ  
10.0 kΩ  
Resulting current through resistive divider IAC  
Resulting voltage drop on sense resistor VRAC3  
99.8 µA  
99.0 µA  
±0.998 V  
±0.990 V  
版权 © 2018–2020, Texas Instruments Incorporated  
21  
 
 
 
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
Use a power supply with a nominal voltage of 3.3 V to directly connect all modulators to the microcontroller.  
For modulator output bitstream filtering, a device from TI's TMS320F2807x family of low-cost microcontrollers  
(MCUs) or TMS320F2837x family of dual-core MCUs is recommended. These MCU families support up to eight  
channels of dedicated hardwired filter structures called sigma-delta filter modules (SDFMs) that significantly  
simplify system level design by offering two filtering paths per channel: one providing high accuracy results for  
the control loop and one that offers a fast response path for overcurrent detection. Use one of the pulse-width  
modulation (PWM) sources inside the MCU to generate the clock for the modulators and for easy  
synchronization of all feedback signals and the switching control of the gate drivers.  
45 uses a clock buffer to distribute the clock reference signal generated on one of the PWM outputs of the  
MCU (called PWMx in 45) to all modulators used in the circuit and as a reference for the digital filters in the  
MCU. In this example, TI's CDCLVC1106 is used for this purpose. Each CDCLVC1106 output can drive a load of  
8 pF that is sufficient to drive up to two modulator and up to four SDFM clock inputs.  
8.2.1.3 Application Curve  
The effective number of bits (ENOB) is often used to compare the performance of ADCs and ΔΣ modulators. 图  
46 shows the ENOB of the AMC1035 with different oversampling ratios on a sinc3 filter. This number is  
calculated from the SINAD by using 公式 3 in this document.  
SINAD = 1.76 dB + 6.02 dB x ENOB  
(3)  
16  
15  
14  
13  
12  
11  
10  
9
8
7
10  
100  
OSR  
1000  
D035  
Sinc3 filter  
46. Measured Effective Number of Bits vs Oversampling Ratio  
22  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
8.2.2 IGBT Temperature Sensing  
The high input impedance of the AMC1035 is optimized for usage in voltage-sensing applications. Additionally,  
the internal voltage reference supports temperature sensing using a positive temperature coefficient (PTC) or a  
negative temperature coefficient (NTC) sensor often integrated in the IGBT module.  
The same reference is internally used by the modulator, resulting in a ratiometric system solution that minimizes  
the overall temperature drift of the sensing path. 47 shows a simplified schematic of the AMC1035 used for  
temperature sensing of the IGBT module.  
3.3 V  
VDD  
REFOUT  
AMC1035  
MCE  
TMS320F28x7x  
IGBT Module  
Digital  
Filter  
AINP  
AINN  
DOUT  
CLKIN  
SD-Dx  
SD-Cx  
GND  
T
PWMx  
47. Using the AMC1035 for Temperature Sensing  
8.2.3 What to Do and What Not to Do  
Do not leave the analog inputs of the AMC1035 unconnected (floating) when the device is powered up. If either  
modulator input is left floating, the input bias current may drive this input beyond the specified common-mode  
input voltage range. If both inputs are beyond that range, the gain of the front-end diminishes. In both cases, the  
modulator outputs a fail-safe bitstream as described in the Fail-Safe Output section.  
版权 © 2018–2020, Texas Instruments Incorporated  
23  
 
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
For decoupling of the power supply, a 0.1-µF capacitor is recommended to be placed as close to the VDD pin of  
the AMC1035 as possible, as shown in 48, followed by an additional capacitor in the range of 1 µF to 10 µF.  
Phase X  
R1  
AMC1035  
VDD  
GND  
3.0 V to 3.6 V  
C1  
0.1 F  
C2  
2.2 F  
MCE  
optional  
anti-aliasing filter  
R2  
R3  
TMS320F2837x  
DOUT  
CLKIN  
AINP  
AINN  
SD-Dx  
ûModulator  
SD-Cx  
PWMx  
48. Decoupling the AMC1035  
Safety considerations or high common-mode voltage levels may require the AMC1035 to be galvanically isolated  
from other parts of the system. 49 shows an example of a circuit that uses the ISO7721 to isolate the signal  
path and the SN6501 and a transformer to generate the required isolated power.  
AMC1035  
ISO7721  
AINP  
AINN  
DOUT  
CLKIN  
DATA  
CLK  
ûModulator  
VDD2  
VDD1  
VDD  
GND  
VDD1  
GND1  
VDD2  
GND2  
2.2 F 0.1 F  
0.1 F  
0.1 F  
MCE  
GND2  
GND1  
GND1  
TLV70450  
OUT  
GND  
IN  
SN6501  
D1 VCC  
10 F  
0.1 F 10 F  
20 V  
0.1 F  
D2 GND  
GND1  
10 F  
20 V  
GND1  
GND2  
49. Galvanic Isolation of the AMC1035  
50 shows an alternative solution that uses the ISOW7821 to isolate the signal path and provide the isolated  
power supply for the AMC1035.  
AMC1035  
ISOW7821  
3.3 V  
3.3 V or 5 V  
DATA  
CLK  
0.1 F 10 F  
AINP  
AINN  
DOUT  
CLKIN  
ûModulator  
VDD  
MCE  
GND  
VISO  
SEL  
VCC  
EN1  
0.1 F 2.2 F  
10 F 0.1 F  
GND2  
GND1  
GND1  
GND2  
50. Galvanic Isolation of the AMC1035 for PCB Space-Constrained Applications  
24  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
AMC1035  
www.ti.com.cn  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
10 Layout  
10.1 Layout Guidelines  
51 shows two layout recommendations for designs based on 1206-SMD or 0603-SMD size decoupling  
capacitors placed as close as possible to the AMC1035. For best performance, place the AMC1035 as close as  
possible to the source of the analog signal to be converted and keep the layout of the AINP and AINN traces  
symmetrical.  
10.2 Layout Example  
AMC1035  
AMC1035  
MCE  
VDD  
MCE  
VDD  
AINP  
AINN  
CLKIN  
DOUT  
GND  
AINP  
AINN  
CLKIN  
DOUT  
GND  
To  
digital  
filter  
To  
digital  
filter  
0.1 µF  
1206  
2.2 µF  
1206  
To  
Sensor  
To  
Sensor  
REFOUT  
REFOUT  
LEGEND  
Copper Pour and Traces  
Via to Ground Plane  
Via to Supply Plane  
51. Recommended Layout of the AMC1035  
版权 © 2018–2020, Texas Instruments Incorporated  
25  
 
AMC1035  
ZHCSIP8B AUGUST 2018REVISED APRIL 2020  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TMS320F28004x Piccolo™ 微控制器》数据表  
德州仪器 (TI)TMS320F2807x Piccolo™ 微控制器》数据表  
德州仪器 (TI)TMS320F2837xD 双核 Delfino™ 微控制器》数据表  
德州仪器 (TI)《具有优异 EMC 性能的 ISO772x 高速双通道数字隔离器》数据表  
德州仪器 (TI)MSP430F677x 多相位仪表计量片上系统》数据表  
德州仪器 (TI)《适用于二阶 Δ-Σ 调制器的 AMC1210 四路数字滤波器》数据表  
德州仪器 (TI)《将 ADS1202 FPGA 数字滤波器结合,以便在电机控制应用中进行 电流测量》中的电流》  
应用报告  
德州仪器 (TI)《具有高 CMTI AMC1306x 小型、高精度、增强型隔离式 Δ-Σ 调制器》数据表  
德州仪器 (TI)CDCLVC11xx 3.3V 2.5V LVCMOS 高性能时钟缓冲器系列》数据表  
德州仪器 (TI)LM117LM317-N 宽温度范围三引脚可调稳压器》数据表  
德州仪器 (TI)《用于隔离式电源的 SN6502 低噪声 350mA 410kHz 变压器驱动器》数据表  
德州仪器 (TI)《具有集成式高效低辐射直流/直流转换器的 ISOW7821 高性能 5000VRMS 增强型双通道数字隔  
离器》数据表  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2018–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1035D  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
MC1035  
MC1035  
AMC1035DR  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC1035DR  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
340.5 336.1 25.0  
AMC1035DR  
D
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
AMC1035D  
D
8
75  
507  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AMC1035-Q1

具有 ±1V 双极性输入和 2.5V 基准输出的汽车精密 Δ-Σ 调制器
TI

AMC1035D

具有 ±1V 双极输入和 2.5V 基准输出的精密 Δ-Σ 调制器 | D | 8 | -40 to 125
TI

AMC1035DR

具有 ±1V 双极输入和 2.5V 基准输出的精密 Δ-Σ 调制器 | D | 8 | -40 to 125
TI

AMC1035QDRQ1

具有 ±1V 双极性输入和 2.5V 基准输出的汽车精密 Δ-Σ 调制器 | D | 8 | -40 to 125
TI

AMC105SN0-1

MICROPHONE GOOSENECK
ETC

AMC10DCKD

CONN EDGE DUAL FMALE 20POS 0.100
ETC

AMC10DCKD-S288

CONN EDGE DUAL FMALE 20POS 0.100
ETC

AMC10DCKH

CONN EDGE DUAL FMALE 20POS 0.100
ETC

AMC10DCKH-S288

CONN EDGE DUAL FMALE 20POS 0.100
ETC

AMC10DCKI

CONN EDGE DUAL FMALE 20POS 0.100
ETC

AMC10DCKI-S288

CONN EDGE DUAL FMALE 20POS 0.100
ETC

AMC10DCKN

CONN EDGE DUAL FMALE 20POS 0.100
ETC