AMC1306E05DWVR [TI]

具有曼彻斯特编码的 ±50mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125;
AMC1306E05DWVR
型号: AMC1306E05DWVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有曼彻斯特编码的 ±50mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125

光电二极管
文件: 总45页 (文件大小:2010K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
具有高 CMTI AMC1306x 小型、高精度、增强型  
隔离式 Δ-Σ 调制器  
1 特性  
3 说明  
1
针对基于分流电阻器的电流测量进行优化的引脚可  
兼容系列:  
AMC1306 是一款高精度 Δ-Σ 调制器,通过抗电磁干扰  
性能极强的电容式双隔离层将输出与输入电路隔离开。  
该隔离层经过认证,可以按照 DIN VDE V 0884-11 和  
UL1577 标准提供高达 7000VPEAK 的增强型隔离。与  
隔离式电源结合使用时,该隔离式调制器可将以不同共  
模电压等级运行的系统的各器件隔开,并防止较低电压  
器件损坏。  
输入电压范围为 ±50mV ±250mV  
曼彻斯特编码或未编码的位流选项  
出色的直流性能:  
失调电压误差:±50µV ±100µV(最大值)  
温漂:1µV/°C(最大值)  
增益误差:±0.2%(最大值)  
AMC1306 的输入针对直接连接分流电阻器或其他低电  
压等级信号源进行了优化。器件具有独特的 ±50mV 低  
输入电压范围,可通过分流器显著降低功率耗散,同时  
具有出色的交流和直流性能。AMC1306 的输出位流采  
用曼彻斯特编码 (AMC1306Ex) 或未编码  
增益漂移:±40ppm/°C(最大值)  
瞬态抗扰性:100kV/µs(典型值)  
系统级诊断 功能  
安全相关认证:  
7000VPEAK 增强型隔离,符合 DIN VDE V  
0884-11: 2017-01 标准  
(AMC1306Mx),具体情况因导数而异。通过使用集成  
式数字滤波器(如 TMS320F2807x 或  
符合 UL1577 标准且长达 1 分钟的 5000VRMS  
隔离  
TMS320F2837x 微控制器系列中的滤波器)来抽取位  
流,该器件可在 78kSPS 数据速率下实现 85dB 动态  
范围的 16 位分辨率。  
符合 CAN/CSA No. 5A 组件验收服务通知和  
IEC 62368-1 终端设备标准  
完整的额定工作温度范围:–40°C +125°C  
曼彻斯特编码的 AMC1306Ex 版本的位流输出支持单  
线数据和时钟传输,无需考虑接收设备的设置和保持时  
间要求。  
2 应用  
基于分流电阻器的电流感应和隔离式电压测量,包  
括:  
器件信息(1)  
器件型号  
封装  
SOIC (8)  
封装尺寸(标称值)  
工业电机驱动  
AMC1306x  
5.85mm × 7.50mm  
光电逆变器  
不间断电源  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
Floating  
Power Supply  
HV+  
AMC1306Mx  
3.3 V or 5.0 V  
AVDD  
DVDD  
3.0 V, 3.3 V, or 5.0 V  
AGND  
AINN  
AINP  
DGND  
DOUT  
CLKIN  
TMS320F28x7x  
Optional  
Optional  
RSHUNT  
To Load  
SD-Dx  
Optional  
SD-Cx  
PWMx  
HV-  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS734  
 
 
 
 
 
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 21  
8.2 Functional Block Diagram ....................................... 21  
8.3 Feature Description................................................. 22  
8.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 27  
9.1 Application Information............................................ 27  
9.2 Typical Applications ................................................ 28  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Power Ratings........................................................... 5  
7.6 Insulation Specifications............................................ 6  
7.7 Safety-Related Certifications..................................... 7  
7.8 Safety Limiting Values .............................................. 7  
7.9 Electrical Characteristics: AMC1306x05................... 8  
7.10 Electrical Characteristics: AMC1306x25............... 10  
7.11 Switching Characteristics...................................... 12  
7.12 Insulation Characteristics Curves ......................... 13  
7.13 Typical Characteristics.......................................... 14  
Detailed Description ............................................ 21  
9
10 Power Supply Recommendations ..................... 33  
11 Layout................................................................... 34  
11.1 Layout Guidelines ................................................. 34  
11.2 Layout Example .................................................... 34  
12 器件和文档支持 ..................................................... 35  
12.1 器件支持................................................................ 35  
12.2 文档支持................................................................ 35  
12.3 相关链接................................................................ 35  
12.4 接收文档更新通知 ................................................. 35  
12.5 社区资源................................................................ 35  
12.6 ....................................................................... 35  
12.7 静电放电警告......................................................... 35  
12.8 Glossary................................................................ 36  
13 机械、封装和可订购信息....................................... 36  
8
4 修订历史记录  
Changes from Revision B (June 2018) to Revision C  
Page  
已更改 更改了安全相关认证 项目符号(位于特性 部分):将 VDE 认证 版本从 DIN V VDE V 0884-10 (VDE V 0884-  
11) 更改为 DIN VDE V 0884-11,并将 IEC 60950-1 IEC 60065 更改为 IEC 62368-1..................................................... 1  
已更改 将 DIN V VDE V 更改为 DIN VDE V(位于说明 部分)............................................................................................. 1  
Changed CLR and CPG values from 9 mm to 8.5 mm in Insulation Specifications table ............................................... 6  
Changed Insulation Specifications table header row from DIN V VDE V 0884-11 (VDE V 0884-11): 2017-01 to DIN  
VDE V 0884-11: 2017-01 ....................................................................................................................................................... 6  
Changed VDE certification details in Safety-Related Certifications table............................................................................... 7  
Changed Safety Limiting Values table format as per current standard.................................................................................. 7  
Changed free air to ambient in condition statement of Switching Characteristics table ...................................................... 12  
Changed 6.05 dB to 6.02 dB in Equation 3.......................................................................................................................... 27  
Changed input common-mode voltage from 2 V to 1.9 V for consistency with Input Bias Current vs Common-Mode  
Input Voltage figure in What To Do and What Not To Do section........................................................................................ 32  
Changed VINx to AINx in Layout Guidelines section ........................................................................................................... 34  
Changed Recommended Layout of the AMC1306x figure to include connection to the shunt resistor and input filter  
components .......................................................................................................................................................................... 34  
Changes from Revision A (July 2017) to Revision B  
Page  
Changed Reinforced Isolation Capacitor Lifetime Projection figure .................................................................................... 13  
Changes from Original (March 2017) to Revision A  
Page  
AMC1306E05 AMC1306M05 已投入生产.......................................................................................................................... 1  
已添加 向第一个直流性能 子项目符号中添加了 ±50µV,以反映 AMC1306x05 器件的情.................................................. 1  
已更改 将第一个安全相关认证 子项目符号中的标准偏差从 0884-10 更改为 0884-11 ........................................................... 1  
2
版权 © 2017–2020, Texas Instruments Incorporated  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
已更改 将 VPEAK 8000 更改为 7000,将标准偏差从 0884-10 变更为 0884-11(均位于说明 部分的第一段) .................. 1  
Deleted Status column from Device Comparison Table......................................................................................................... 4  
Changed standard deviation from 0884-10 to 0884-11 in DIN V VDE V 0884-11 section of Insulation Specifications table 6  
Changed standard deviation from 0884-10 to 0884-11 in Safety-Related Certifications table .............................................. 7  
Changed prevent to minimize in condition statement of Safety Limiting Values table........................................................... 7  
Added Electrical Characteristics: AMC1306x05 table ........................................................................................................... 8  
Changed test conditions of Analog Inputs test conditions from (AINP – AINN) / 2 to AGND to (AINP + AINN) / 2 to  
AGND to include all possible conditions............................................................................................................................... 10  
Changed IIB test condition from Inputs shorted to AGND to AINP = AINN = AGND, IIB = IIBP + IIBN .................................... 10  
Added AINP = AINN = AGND to EO parameter test conditions .......................................................................................... 10  
Changed minus sign to plus or minus sign in typical specification of EG parameter ........................................................... 10  
Changed 10% to 90% to 90% to 10% in test conditions of tf parameter ............................................................................ 12  
Added AMC1306x05 devices to Typical Characteristics section ........................................................................................ 14  
Copyright © 2017–2020, Texas Instruments Incorporated  
3
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
5 Device Comparison Table  
DIFFERENTIAL INPUT  
RESISTANCE  
PART NUMBER  
INPUT VOLTAGE RANGE  
DIGITAL OUTPUT INTERFACE  
AMC1306E05  
AMC1306E25  
AMC1306M05  
AMC1306M25  
±50 mV  
±250 mV  
±50 mV  
4.9 kΩ  
22 kΩ  
4.9 kΩ  
22 kΩ  
Manchester coded CMOS  
Manchester coded CMOS  
Uncoded CMOS  
±250 mV  
Uncoded CMOS  
6 Pin Configuration and Functions  
DWV Package  
8-Pin SOIC  
Top View  
AVDD  
AINP  
1
2
3
4
8
7
6
5
DVDD  
CLKIN  
DOUT  
DGND  
AINN  
AGND  
Not to scale  
Pin Functions  
PIN  
I/O  
NO.  
NAME  
DESCRIPTION  
Analog (high-side) power supply, 3.0 V to 5.5 V.  
1
AVDD  
See the Power Supply Recommendations section for decoupling recommendations.  
2
3
4
5
6
7
AINP  
AINN  
I
I
Noninverting analog input  
Inverting analog input  
AGND  
DGND  
DOUT  
CLKIN  
O
I
Analog (high-side) ground reference  
Digital (controller-side) ground reference  
Modulator data output. This pin is a Manchester coded output for AMC1306Ex derivates.  
Modulator clock input: 5 MHz to 21 MHz (5-V operation) with internal pulldown resistor (typical value: 1.5 MΩ)  
Digital (controller-side) power supply, 2.7 V to 5.5 V.  
See the Power Supply Recommendations section for decoupling recommendations.  
8
DVDD  
4
Copyright © 2017–2020, Texas Instruments Incorporated  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
MAX  
6.5  
UNIT  
V
Supply voltage  
AVDD to AGND or DVDD to DGND  
Analog input voltage at AINP, AINN  
Digital input or output voltage at CLKIN or DOUT  
Input current to any pin except supply pins  
Junction temperature, TJ  
AGND – 6  
DGND – 0.5  
–10  
AVDD + 0.5  
DVDD + 0.5  
10  
V
V
mA  
°C  
°C  
150  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
3.0  
NOM  
5.0  
MAX  
5.5  
UNIT  
V
AVDD  
DVDD  
TA  
Analog (high-side) supply voltage (AVDD to AGND)  
Digital (controller-side) supply voltage (DVDD to DGND)  
Operating ambient temperature  
2.7  
3.3  
5.5  
V
–40  
125  
°C  
7.4 Thermal Information  
AMC1306x  
DWV (SOIC)  
8 PINS  
112.2  
(1)  
THERMAL METRIC  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
47.6  
RθJB  
ψJT  
Junction-to-board thermal resistance  
60.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
23.1  
ψJB  
60.0  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
91.85  
86.90  
UNIT  
AMC1306Ex, AVDD = DVDD = 5.5 V  
AMC1306Mx, AVDD = DVDD = 5.5 V  
Maximum power dissipation  
(both sides)  
PD  
mW  
Maximum power dissipation  
(high-side supply)  
PD1  
PD2  
AVDD = 5.5 V  
53.90  
mW  
mW  
AMC1306Ex, DVDD = 5.5 V  
AMC1306Mx, DVDD = 5.5 V  
37.95  
33.00  
Maximum power dissipation  
(low-side supply)  
Copyright © 2017–2020, Texas Instruments Incorporated  
5
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
7.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
CPG  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
8.5  
8.5  
mm  
mm  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the double insulation  
(2 × 0.0105 mm)  
DTI  
CTI  
Distance through insulation  
0.021  
mm  
V
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
600  
I
Rated mains voltage 300 VRMS  
I-IV  
I-IV  
I-III  
Overvoltage category per IEC 60664-1 Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
DIN VDE V 0884-11: 2017-01(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
VIOWM  
At ac voltage (bipolar)  
2121  
VPK  
At ac voltage (sine wave)  
1500  
2121  
7000  
8400  
VRMS  
VDC  
Maximum-rated isolation working  
voltage  
At dc voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
VIOTM Maximum transient isolation voltage  
VIOSM Maximum surge isolation voltage(3)  
VPK  
VPK  
Test method per IEC 60065, 1.2/50-μs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
8000  
Method a, after input/output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s,  
5  
Vpd(m) = 1.2 × VIORM = 2545 VPK, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s,  
Vpd(m) = 1.6 × VIORM = 3394 VPK, tm = 10 s  
qpd  
Apparent charge(4)  
pC  
5  
5  
Method b1, at routine test (100% production) and preconditioning  
(type test), Vini = VIOTM, tini = 1 s,  
Vpd(m) = 1.875 × VIORM = 3977 VPK, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
VIO = 0.5 VPP at 1 MHz  
~1  
> 1012  
> 1011  
> 109  
pF  
VIO = 500 V at TA = 25°C  
Insulation resistance, input to output(5) VIO = 500 V at 100°C TA 125°C  
Ω
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
2
40/125/21  
UL1577  
VTEST = VISO = 5000 VRMS or 7000 VDC, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed  
circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such as  
inserting grooves and ribs on the PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier are tied together, creating a two-pin device.  
6
Copyright © 2017–2020, Texas Instruments Incorporated  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
7.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11: 2017-01, DIN EN  
62368-1: 2016-05, EN 62368-1: 2014, and IEC 62368-1: 2014  
Recognized under 1577 component recognition and  
CSA component acceptance NO 5 programs  
Reinforced insulation  
Single protection  
File number: DIN 40040142  
File number: E181974  
7.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 112.2°C/W, AVDD = DVDD = 5.5 V,  
202.5  
TJ = 150°C, TA = 25°C  
θJA = 112.2°C/W, AVDD = DVDD = 3.6 V,  
TJ = 150°C, TA = 25°C  
θJA = 112.2°C/W, TJ = 150°C, TA = 25°C  
IS  
Safety input, output, or supply current  
mA  
R
309.4  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
R
1114(1)  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × AVDDmax + IS × AVDDmax, where AVDDmax is the maximum high-side supply voltage and DVDDmax is the maximum controller-  
side supply voltage.  
Copyright © 2017–2020, Texas Instruments Incorporated  
7
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
7.9 Electrical Characteristics: AMC1306x05  
minimum and maximum specifications apply from TA = –40°C to +125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V,  
AINP = –50 mV to 50 mV, AINN = AGND, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications are  
at TA = 25°C, CLKIN = 20 MHz, AVDD = 5 V, and DVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
VClipping Differential input voltage before clipping output  
VIN = AINP – AINN  
±64  
mV  
mV  
V
FSR  
Specified linear differential full-scale  
Absolute common-mode input voltage(1)  
Operating common-mode input voltage  
Common-mode overvoltage detection level(2)  
Single-ended input capacitance  
Differential input capacitance  
Input bias current  
VIN = AINP – AINN  
–50  
–2  
50  
AVDD  
(AINP + AINN) / 2 to AGND  
(AINP + AINN) / 2 to AGND  
(AINP + AINN) / 2 to AGND  
AINN = AGND  
VCM  
VCMov  
CIN  
–0.032  
AVDD - 2  
AVDD – 2.1  
V
V
4
2
pF  
pF  
μA  
kΩ  
kΩ  
nA  
kV/μs  
CIND  
IIB  
AINP = AINN = AGND, IIB = IIBP + IIBN  
AINN = AGND  
–97  
50  
–72  
4.75  
4.9  
–57  
RIN  
Single-ended input resistance  
Differential input resistance  
RIND  
IIO  
Input offset current  
±10  
100  
CMTI  
Common-mode transient immunity  
AINP = AINN, fIN = 0 Hz,  
–99  
VCM min VIN VCM max  
CMRR Common-mode rejection ratio  
dB  
AINP = AINN, fIN from 0.1 Hz to 50 kHz,  
–98  
800  
VCM min VIN VCM max  
BW  
DC ACCURACY  
Input bandwidth(3)  
kHz  
DNL  
Differential nonlinearity  
Resolution: 16 bits  
–0.99  
–4  
0.99  
4
LSB  
LSB  
Resolution: 16 bits, 4.5 V AVDD 5.5 V  
Resolution: 16 bits, 3.0 V AVDD 3.6 V  
Initial, at 25°C, AINP = AINN = AGND  
±1  
±1.5  
INL  
Integral nonlinearity(4)  
–5  
5
EO  
Offset error  
Offset error thermal drift(5)  
–50  
–1  
±2.5  
50  
1
µV  
TCEO  
EG  
±0.25  
±0.005%  
±20  
μV/°C  
Gain error  
Gain error thermal drift(6)  
Initial, at 25°C  
–0.2%  
–40  
0.2%  
40  
TCEG  
ppm/°C  
dB  
AINP = AINN = AGND,  
3.0 V AVDD 5.5 V, at dc  
–108  
PSRR  
Power-supply rejection ratio  
AINP = AINN = AGND,  
3.0 V AVDD 5.5 V,  
10 kHz, 100-mV ripple  
–107  
AC ACCURACY  
SNR  
Signal-to-noise ratio  
fIN = 1 kHz  
fIN = 1 kHz  
78  
82.5  
82.3  
dB  
dB  
SINAD Signal-to-noise + distortion  
77.5  
4.5 V AVDD 5.5 V,  
5 MHz fCLKIN 21 MHz, fIN = 1 kHz  
–98  
–84  
–83  
THD  
Total harmonic distortion  
dB  
dB  
3.0 V AVDD 3.6 V,  
5 MHz fCLKIN 20 MHz, fIN = 1 kHz  
–93  
100  
SFDR  
Spurious-free dynamic range  
fIN = 1 kHz  
83  
(1) Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal  
operation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.  
(2) The common-mode overvoltage detection level has a typical hysteresis of 90 mV.  
(3) This is the –3-dB, second-order roll-off frequency of the integrated differential input amplifier to consider for the antialiasing filter design.  
(4) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer  
function expressed as a number of LSBs or as a percent of the specified linear full-scale range (FSR).  
(5) Offset error drift is calculated using the box method, as described by the following equation:  
valueMAX - valueMIN  
TempRange  
TCEO  
=
(6) Gain error drift is calculated using the box method, as described by the following equation:  
value MAX - value MIN  
6
÷
÷
TCEG ( ppm) =  
ì10  
value ìTempRange  
«
8
Copyright © 2017–2020, Texas Instruments Incorporated  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
Electrical Characteristics: AMC1306x05 (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V,  
AINP = –50 mV to 50 mV, AINN = AGND, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications are  
at TA = 25°C, CLKIN = 20 MHz, AVDD = 5 V, and DVDD = 3.3 V  
PARAMETER  
DIGITAL INPUTS/OUTPUTS  
CMOS Logic With Schmitt-Trigger  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IIN  
Input current  
DGND VIN DVDD  
0
7
µA  
pF  
V
CIN  
VIH  
Input capacitance  
4
High-level input voltage  
Low-level input voltage  
Output load capacitance  
0.7 × DVDD  
–0.3  
DVDD + 0.3  
0.3 × DVDD  
VIL  
V
CLOAD  
30  
pF  
IOH = –20 µA  
IOH = –4 mA  
IOL = 20 µA  
IOL = 4 mA  
DVDD – 0.1  
DVDD – 0.4  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
0.1  
0.4  
VOL  
POWER SUPPLY  
AVDD  
High-side supply voltage  
3.0  
2.7  
5.0  
6.3  
7.2  
3.3  
5.5  
8.5  
9.8  
5.5  
V
mA  
V
3.0 V AVDD 3.6 V  
4.5 V AVDD 5.5 V  
IAVDD  
High-side supply current  
DVDD Controller-side supply voltage  
AMC1306Ex, 2.7 V DVDD 3.6 V,  
CLOAD = 15 pF  
4.1  
3.3  
5.0  
3.9  
5.5  
4.8  
6.9  
6.0  
AMC1306Mx, 2.7 V DVDD 3.6 V,  
CLOAD = 15 pF  
IDVDD  
Controller-side supply current  
mA  
AMC1306Ex, 4.5 V DVDD 5.5 V,  
CLOAD = 15 pF  
AMC1306Mx, 4.5 V DVDD 5.5 V,  
CLOAD = 15 pF  
Copyright © 2017–2020, Texas Instruments Incorporated  
9
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
7.10 Electrical Characteristics: AMC1306x25  
minimum and maximum specifications apply from TA = –40°C to +125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V,  
AINP = –250 mV to 250 mV, AINN = AGND, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications  
are at TA = 25°C, CLKIN = 20 MHz, AVDD = 5 V, and DVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
VClipping Differential input voltage before clipping output AINP – AINN  
±320  
mV  
mV  
V
FSR  
Specified linear differential full-scale  
Absolute common-mode input voltage(1)  
Operating common-mode input voltage  
Common-mode overvoltage detection level(2)  
Single-ended input capacitance  
Differential input capacitance  
Input bias current  
AINP – AINN  
–250  
–2  
250  
AVDD  
(AINP + AINN) / 2 to AGND  
(AINP + AINN) / 2 to AGND  
(AINP + AINN) / 2 to AGND  
AINN = AGND  
VCM  
VCMov  
CIN  
–0.16  
AVDD – 2.1  
V
AVDD – 2  
V
2
1
pF  
pF  
µA  
kΩ  
kΩ  
nA  
kV/µs  
CIND  
IIB  
AINP = AINN = AGND, IIB = IIBP + IIBN  
AINN = AGND  
–82  
50  
–60  
19  
–48  
RIN  
Single-ended input resistance  
Differential input resistance  
RIND  
IIO  
22  
Input offset current  
±5  
CMTI  
Common-mode transient immunity  
100  
AINP = AINN, fIN = 0 Hz,  
–95  
VCM min VIN VCM max  
CMRR Common-mode rejection ratio  
dB  
AINP = AINN, fIN from 0.1 Hz to 50 kHz,  
–95  
900  
VCM min VIN VCM max  
BW  
DC ACCURACY  
Input bandwidth(3)  
kHz  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity(4)  
Resolution: 16 bits  
–0.99  
–4  
0.99  
4
LSB  
LSB  
µV  
Resolution: 16 bits  
±1  
±4.5  
EO  
Offset error  
Initial, at 25°C, AINP = AINN = AGND  
–100  
–1  
100  
1
TCEO  
EG  
Offset error thermal drift(5)  
Gain error  
Gain error thermal drift(6)  
±0.15  
µV/°C  
Initial, at 25°C  
–0.2%  
–40  
±0.005%  
±20  
0.2%  
40  
TCEG  
ppm/°C  
dB  
AINP = AINN = AGND,  
3.0 V AVDD 5.5 V, at dc  
–103  
PSRR Power-supply rejection ratio  
AINP = AINN = AGND,  
3.0 V AVDD 5.5 V,  
10 kHz, 100-mV ripple  
–92  
AC ACCURACY  
SNR  
Signal-to-noise ratio  
fIN = 1 kHz  
fIN = 1 kHz  
82  
86  
dB  
dB  
SINAD Signal-to-noise + distortion  
81.9  
85.7  
4.5 V AVDD 5.5 V,  
5 MHz fCLKIN 21 MHz, fIN = 1 kHz  
–98  
–86  
–85  
THD  
Total harmonic distortion  
dB  
dB  
3.0 V AVDD 3.6 V,  
5 MHz fCLKIN 20 MHz, fIN = 1 kHz  
–93  
100  
SFDR  
Spurious-free dynamic range  
fIN = 1 kHz  
83  
(1) Steady-state voltage supported by the device in case of a system failure; see the specified common-mode input voltage VCM for normal  
operation. Adhere to the analog input voltage range as specified in the Absolute Maximum Ratings table.  
(2) The common-mode overvoltage detection level has a typical hysteresis of 90 mV.  
(3) This parameter is the –3-dB, second-order, roll-off frequency of the integrated differential input amplifier to consider for antialiasing filter  
designs.  
(4) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer  
function expressed as number of LSBs or as a percent of the specified linear full-scale range FSR.  
valueMAX - valueMIN  
TempRange  
TCEO  
=
(5) Offset error drift is calculated using the box method, as described by the following equation:  
.
value MAX - value MIN  
6
÷
÷
TCEG ( ppm) =  
ì10  
value ìTempRange  
«
(6) Gain error drift is calculated using the box method, as described by the following equation:  
.
10  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
Electrical Characteristics: AMC1306x25 (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V,  
AINP = –250 mV to 250 mV, AINN = AGND, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications  
are at TA = 25°C, CLKIN = 20 MHz, AVDD = 5 V, and DVDD = 3.3 V  
PARAMETER  
DIGITAL INPUTS/OUTPUTS  
CMOS Logic with Schmitt-trigger  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IIN  
Input current  
DGND VIN DVDD  
0
7
μA  
pF  
V
CIN  
VIH  
Input capacitance  
4
High-level input voltage  
Low-level input voltage  
Output load capacitance  
0.7 × DVDD  
–0.3  
DVDD + 0.3  
0.3 × DVDD  
VIL  
V
CLOAD  
fCLKIN = 20 MHz  
IOH = –20 µA  
IOH = –4 mA  
IOL = 20 µA  
30  
pF  
DVDD – 0.1  
DVDD – 0.4  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
0.1  
0.4  
VOL  
IOL = 4 mA  
POWER SUPPLY  
AVDD High-side supply voltage  
3.0  
2.7  
5.0  
6.3  
7.2  
3.3  
5.5  
8.5  
9.8  
5.5  
V
mA  
V
3.0 V AVDD 3.6 V  
4.5 V AVDD 5.5 V  
IAVDD  
High-side supply current  
DVDD Controller-side supply voltage  
AMC1306Ex, 2.7 V DVDD 3.6 V,  
CLOAD = 15 pF  
4.1  
3.3  
5.0  
3.9  
5.5  
4.8  
6.9  
6.0  
AMC1306Mx, 2.7 V DVDD 3.6 V,  
CLOAD = 15 pF  
IDVDD  
Controller-side supply current  
mA  
AMC1306Ex, 4.5 V DVDD 5.5 V,  
CLOAD = 15 pF  
AMC1306Mx, 4.5 V DVDD 5.5 V,  
CLOAD = 15 pF  
Copyright © 2017–2020, Texas Instruments Incorporated  
11  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
7.11 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
4.5 V AVDD 5.5 V  
MIN  
5
TYP  
MAX  
UNIT  
21  
20  
fCLKIN  
CLKIN clock frequency  
MHz  
3.0 V AVDD 5.5 V  
4.5 V AVDD 5.5 V  
3.0 V AVDD 5.5 V  
5
47.6  
50  
20  
20  
200  
200  
120  
120  
tCLKIN  
CLKIN clock period  
ns  
tHIGH  
tLOW  
CLKIN clock high time  
CLKIN clock low time  
25  
25  
ns  
ns  
DOUT hold time after rising edge AMC1306Mx(1)  
,
tH  
tD  
3.5  
ns  
ns  
of CLKIN  
CLOAD = 15 pF  
Rising edge of CLKIN to DOUT  
valid delay  
AMC1306Mx(1), CLOAD = 15 pF  
15  
3.5  
3.9  
3.5  
3.9  
32  
10% to 90%, 2.7 V DVDD 3.6 V,  
0.8  
1.8  
0.8  
1.8  
CLOAD = 15 pF  
tr  
DOUT rise time  
DOUT fall time  
ns  
ns  
10% to 90%, 4.5 V DVDD 5.5 V,  
CLOAD = 15 pF  
90% to 10%, 2.7 V DVDD 3.6 V,  
CLOAD = 15 pF  
tf  
90% to 10%, 4.5 V DVDD 5.5 V,  
CLOAD = 15 pF  
DVDD at 2.7 V (min) to DOUT valid with  
AVDD 3.0 V  
CLKIN  
cycles  
tISTART Interface startup time  
tASTART Analog startup time  
32  
AVDD step to 3.0 V with DVDD 2.7 V,  
0.1% settling  
0.5  
ms  
(1) The output of the Manchester encoded versions of the AMC1306Ex can change with every edge of CLKIN with a typical delay of 6 ns;  
see the Manchester Coding Feature section for additional details.  
tCLKIN  
tHIGH  
CLKIN  
tLOW  
tH  
tD  
tr / tf  
DOUT  
Figure 1. Digital Interface Timing  
AVDD  
DVDD  
tASTART  
CLKIN  
DOUT  
...  
Bitream not valid  
(analog settling)  
Test Pattern  
Valid bitstream  
tISTART  
Figure 2. Device Startup Timing  
12  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
7.12 Insulation Characteristics Curves  
500  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
AVDD = DVDD = 3.6 V  
AVDD = DVDD = 5.5 V  
400  
300  
200  
100  
0
0
50  
100  
TA (°C)  
150  
200  
0
50  
100  
TA (°C)  
150  
200  
D001  
D002  
Figure 3. Thermal Derating Curve for Safety-Limiting  
Current per VDE  
Figure 4. Thermal Derating Curve for Safety-Limiting  
Power per VDE  
1.E+11  
Safety Margin Zone: 1800 VRMS, 254 Years  
Operating Zone: 1500 VRMS, 135 Years  
TDDB Line (<1 PPM Fail Rate)  
1.E+10  
87.5%  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
20%  
1.E+2  
1.E+1  
500 1500 2500 3500 4500 5500 6500 7500 8500 9500  
Stress Voltage (VRMS  
)
TA up to 150°C, stress-voltage frequency = 60 Hz,  
isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
Figure 5. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2017–2020, Texas Instruments Incorporated  
13  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
7.13 Typical Characteristics  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –50 mV to 50 mV (AMC1306x05) or –250 mV to 250 mV (AMC1306x25),  
AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless otherwise noted)  
4
3.5  
3
3.3  
3.25  
3.2  
3.15  
3.1  
2.5  
2
3.05  
3
1.5  
1
2.95  
2.9  
0.5  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D003  
D004  
Figure 6. Maximum Operating Common-Mode Input Voltage  
vs High-Side Supply Voltage  
Figure 7. Common-Mode Overvoltage Detection Level vs  
Temperature  
60  
40  
20  
0
0
AMC1306x25  
AMC1306x05  
-20  
-40  
-60  
-80  
-20  
-40  
-100  
-60  
AMC1306x25  
AMC1306x05  
-80  
-0.5  
-120  
0.1  
0
0.5  
1
1.5  
VCM (V)  
2
2.5 3 3.5  
1
10  
fIN (kHz)  
100  
1000  
D005  
D006  
Figure 8. Input Bias Current vs  
Common-Mode Input Voltage  
Figure 9. Common-Mode Rejection Ratio vs  
Input Signal Frequency  
4
100  
75  
AMC1306x  
AMC1306x05, AVDD = 3.3 V  
AMC1306x25  
AMC1306x05  
3.5  
3
50  
2.5  
2
25  
0
1.5  
1
-25  
-50  
-75  
-100  
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
D008  
D009  
Figure 10. Integral Nonlinearity vs Temperature  
Figure 11. Offset Error vs High-Side Supply Voltage  
14  
Copyright © 2017–2020, Texas Instruments Incorporated  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –50 mV to 50 mV (AMC1306x05) or –250 mV to 250 mV (AMC1306x25),  
AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless otherwise noted)  
100  
100  
AMC1306x25  
AMC1306x05  
80  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
9
13  
fCLKIN (MHz)  
17  
21  
D010  
D011  
Figure 12. Offset Error vs Temperature  
Figure 13. Offset Error vs Clock Frequency  
0.25  
0.2  
0.3  
0.2  
0.1  
0
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.1  
-0.2  
-0.3  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D012  
D013  
Figure 14. Gain Error vs High-Side Supply Voltage  
Figure 15. Gain Error vs Temperature  
0
-20  
0.3  
0.2  
0.1  
0
AMC1306x25  
AMC1306x05  
-40  
-60  
-80  
-0.1  
-0.2  
-0.3  
-100  
-120  
5
9
13  
fCLKIN (MHz)  
17  
21  
0.1 0.2 0.5  
1
2
3 45 7 10 2030 50 100 200 5001000  
Ripple Frequency (kHz)  
D014  
D015  
Figure 16. Gain Error vs Clock Frequency  
Figure 17. Power-Supply Rejection Ratio vs  
Ripple Frequency  
Copyright © 2017–2020, Texas Instruments Incorporated  
15  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –50 mV to 50 mV (AMC1306x05) or –250 mV to 250 mV (AMC1306x25),  
AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless otherwise noted)  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
AMC1306x25, SNR  
AMC1306x25, SINAD  
AMC1306x05, SNR  
AMC1306x05, SINAD  
AMC1306x25, SNR  
AMC1306x25, SINAD  
AMC1306x05, SNR  
AMC1306x05, SINAD  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D016  
D017  
Figure 18. Signal-to-Noise Ratio and Signal-to-Noise +  
Distortion vs High-Side Supply Voltage  
Figure 19. Signal-to-Noise Ratio and Signal-to-Noise +  
Distortion vs Temperature  
90  
88  
AMC1306x25, SNR  
AMC1306x25, SINAD  
AMC1306x05, SNR  
AMC1306x05, SINAD  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
86  
84  
82  
80  
78  
76  
74  
72  
70  
AMC1306x25, SNR  
AMC1306x25, SINAD  
AMC1306x05, SNR  
AMC1306x05, SINAD  
5
9
13  
fCLKIN (MHz)  
17  
21  
0.1  
1
10  
100  
fIN (kHz)  
D018  
D019  
Figure 20. Signal-to-Noise Ratio and Signal-to-Noise +  
Distortion vs Clock Frequency  
Figure 21. Signal-to-Noise Ratio and Signal-to-Noise +  
Distortion vs Input Signal Frequency  
100  
95  
AMC1306x25, SNR  
AMC1306x25, SINAD  
AMC1306x05, SNR  
AMC1306x05, SINAD  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
0
50 100 150 200 250 300 350 400 450 500  
VIN (mVpp)  
0
10  
20  
30  
40  
50  
VIN (mVpp)  
60  
70  
80  
90 100  
D020  
D042  
Figure 22. Signal-to-Noise Ratio and Signal-to-Noise +  
Distortion vs Input Signal Amplitude  
Figure 23. Signal-to-Noise Ratio and Signal-to-Noise +  
Distortion vs Input Signal Amplitude  
16  
Copyright © 2017–2020, Texas Instruments Incorporated  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –50 mV to 50 mV (AMC1306x05) or –250 mV to 250 mV (AMC1306x25),  
AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless otherwise noted)  
-86  
-86  
-88  
-88  
-90  
-90  
-92  
-92  
-94  
-94  
-96  
-96  
-98  
-98  
-100  
-102  
-104  
-106  
-108  
-110  
-100  
-102  
-104  
-106  
-108  
-110  
4.5  
4.75  
5
AVDD (V)  
5.25  
5.5  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
D021  
D039  
fCLKIN = 21 MHz  
fCLKIN = 20 MHz  
Figure 24. Total Harmonic Distortion vs  
High-Side Supply Voltage (5 V, nom)  
Figure 25. Total Harmonic Distortion vs  
High-Side Supply Voltage (3.3 V, nom)  
-86  
-88  
-86  
-88  
-90  
-90  
-92  
-92  
-94  
-94  
-96  
-96  
-98  
-98  
-100  
-102  
-104  
-106  
-108  
-110  
-100  
-102  
-104  
-106  
-108  
-110  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
9
13  
fCLKIN (MHz)  
17  
21  
D022  
D023  
Figure 26. Total Harmonic Distortion vs Temperature  
Figure 27. Total Harmonic Distortion vs Clock Frequency  
-85  
-70  
-75  
-80  
-90  
-95  
-85  
-90  
-100  
-105  
-110  
-115  
-120  
-95  
-100  
-105  
-110  
-115  
-120  
0.1  
1
fIN (kHz)  
10  
0
50 100 150 200 250 300 350 400 450 500  
VIN (mVpp)  
D024  
D025  
AMC1306x25  
Figure 28. Total Harmonic Distortion vs  
Input Signal Frequency  
Figure 29. Total Harmonic Distortion vs  
Input Signal Amplitude  
Copyright © 2017–2020, Texas Instruments Incorporated  
17  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –50 mV to 50 mV (AMC1306x05) or –250 mV to 250 mV (AMC1306x25),  
AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless otherwise noted)  
-65  
118  
114  
110  
106  
102  
98  
-70  
-75  
-80  
-85  
-90  
-95  
94  
-100  
-105  
-110  
-115  
90  
86  
82  
0
10  
20  
30  
40  
50  
VIN (mVpp)  
60  
70  
80  
90 100  
3
5
0
3.5  
4
4.5  
AVDD (V)  
5
5.5  
D043  
D026  
AMC1306x05  
Figure 30. Total Harmonic Distortion vs  
Input Signal Amplitude  
Figure 31. Spurious-Free Dynamic Range vs  
High-Side Supply Voltage  
118  
114  
110  
106  
102  
98  
118  
114  
110  
106  
102  
98  
94  
94  
90  
90  
86  
86  
82  
82  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
9
13  
fCLKIN (MHz)  
17  
21  
D027  
D028  
Figure 32. Spurious-Free Dynamic Range vs Temperature  
Figure 33. Spurious-Free Dynamic Range vs  
Clock Frequency  
118  
114  
110  
106  
102  
98  
125  
120  
115  
110  
105  
100  
95  
94  
90  
90  
85  
86  
80  
82  
75  
0.1  
1
fIN (kHz)  
10  
50 100 150 200 250 300 350 400 450 500  
VIN (mVpp)  
D029  
D030  
AMC1306x25  
Figure 34. Spurious-Free Dynamic Range vs  
Input Signal Frequency  
Figure 35. Spurious-Free Dynamic Range vs  
Input Signal Amplitude  
18  
Copyright © 2017–2020, Texas Instruments Incorporated  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –50 mV to 50 mV (AMC1306x05) or –250 mV to 250 mV (AMC1306x25),  
AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless otherwise noted)  
120  
115  
110  
105  
100  
95  
0
-20  
-40  
-60  
-80  
90  
-100  
-120  
-140  
-160  
85  
80  
75  
70  
0
10  
20  
30  
40  
50  
VIN (mVpp)  
60  
70  
80  
90 100  
0
5
10  
15  
Frequency (kHz)  
20  
25  
30  
35  
40  
D046  
D044  
AMC1306x05  
AMC1306x05, 4096-point FFT, VIN = 100 mVPP  
Figure 36. Spurious-Free Dynamic Range vs  
Input Signal Amplitude  
Figure 37. Frequency Spectrum with 1-kHz Input Signal  
0
-20  
0
-20  
-40  
-60  
-80  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
5
10  
15  
Frequency (kHz)  
20  
25  
30  
35  
40  
0
5
10  
15  
Frequency (kHz)  
20  
25  
30  
35  
40  
D045  
D031  
AMC1306x05, 4096-point FFT, VIN = 100 mVPP  
AMC1306x25, 4096-point FFT, VIN = 500 mVPP  
Figure 38. Frequency Spectrum with 10-kHz Input Signal  
Figure 39. Frequency Spectrum with 1-kHz Input Signal  
0
10  
9.5  
9
-20  
-40  
-60  
-80  
8.5  
8
7.5  
7
6.5  
6
-100  
-120  
-140  
-160  
5.5  
5
4.5  
4
0
5
10  
15  
20  
Frequency (kHz)  
25  
30  
35  
40  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
D032  
D033  
AMC1306x25, 4096-point FFT, VIN = 500 mVPP  
Figure 40. Frequency Spectrum with 10-kHz Input Signal  
Figure 41. High-Side Supply Current vs  
High-Side Supply Voltage  
Copyright © 2017–2020, Texas Instruments Incorporated  
19  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –50 mV to 50 mV (AMC1306x05) or –250 mV to 250 mV (AMC1306x25),  
AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless otherwise noted)  
10  
9.5  
9
10  
9.5  
9
8.5  
8
8.5  
8
7.5  
7
7.5  
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
9
13  
Clock Frequency (MHz)  
17  
21  
D034  
D035  
Figure 42. High-Side Supply Current vs Temperature  
Figure 43. High-Side Supply Current vs Clock Frequency  
8
7.5  
7
8
AMC1306Mx  
AMC1306Ex  
AMC1306Mx, DVDD = 3.3 V  
AMC1306Mx, DVDD = 5 V  
AMC1306Ex, DVDD = 3.3 V  
AMC1306Ex, DVDD = 5 V  
7.5  
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2.5  
2
2
2.7  
3.1  
3.5  
3.9  
DVDD (V)  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D036  
D037  
Figure 44. Controller-Side Supply Current vs  
Controller-Side Supply Voltage  
Figure 45. Controller-Side Supply Current vs Temperature  
8
7.5  
7
AMC1306Mx, DVDD = 3.3 V  
AMC1306Mx, DVDD = 5 V  
AMC1306Ex, DVDD = 3.3 V  
AMC1306Ex, DVDD = 5 V  
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
5
9
13  
fCLKIN (MHz)  
17  
21  
D038  
Figure 46. Controller-Side Supply Current vs  
Clock Frequency  
20  
Copyright © 2017–2020, Texas Instruments Incorporated  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
8 Detailed Description  
8.1 Overview  
The differential analog input (comprised of input signals AINP and AINN) of the AMC1306 is a fully-differential  
amplifier feeding the switched-capacitor input of a second-order, delta-sigma (ΔΣ) modulator stage that digitizes  
the input signal into a 1-bit output stream. The isolated data output DOUT of the converter provides a stream of  
digital ones and zeros that is synchronous to the externally-provided clock source at the CLKIN pin with a  
frequency in the range of 5 MHz to 21 MHz. The time average of this serial bitstream output is proportional to the  
analog input voltage.  
The Functional Block Diagram section shows a detailed block diagram of the AMC1306. The analog input range  
is tailored to directly accommodate a voltage drop across a shunt resistor used for current sensing. The silicon-  
dioxide (SiO2) based capacitive isolation barrier supports a high level of magnetic field immunity as described in  
the ISO72x Digital Isolator Magnetic-Field Immunity application report, available for download at www.ti.com. The  
external clock input simplifies the synchronization of multiple current-sensing channels on the system level. The  
extended frequency range of up to 21 MHz supports higher performance levels compared to the other solutions  
available on the market.  
8.2 Functional Block Diagram  
AVDD  
DVDD  
Reinforced  
Isolation  
Barrier  
AMC1306x  
AINP  
AINN  
ûModulator  
DOUT  
Band-Gap  
Reference  
CLKIN  
VCM, AVDD  
Diagnostic  
AGND  
DGND  
Copyright © 2017–2020, Texas Instruments Incorporated  
21  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Analog Input  
The AMC1306 incorporates front-end circuitry that contains a differential amplifier and a sampling stage, followed  
by a ΔΣ modulator. The gain of the differential amplifier is set by internal precision resistors to a factor of 4 for  
devices with a specified input voltage range of ±250 mV (this value is for the AMC1306x25), or to a factor of 20  
in devices with a ±50-mV input voltage range (for the AMC1306x05), resulting in a differential input impedance of  
4.9 kΩ (for the AMC1306x05) or 22 kΩ (for the AMC1306x25). For reduced offset and offset drift, the differential  
amplifier is chopper-stabilized with the switching frequency set at fCLKIN / 32. The switching frequency generates  
a spur as shown in Figure 47.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0.1  
1
10 100  
Frequency (kHz)  
1000  
10000  
D007  
sinc3 filter, OSR = 2, fCLKIN = 20 MHz, fIN = 1 kHz  
Figure 47. Quantization Noise Shaping  
Consider the input impedance of the AMC1306 in designs with high-impedance signal sources that can cause  
degradation of gain and offset specifications. The importance of this effect, however, depends on the desired  
system performance. Additionally, the input bias current caused by the internal common-mode voltage at the  
output of the differential amplifier is dependent on the actual amplitude of the input signal; see the Isolated  
Voltage Sensing section for more details on reducing these effects.  
There are two restrictions on the analog input signals (AINP and AINN). First, if the input voltage exceeds the  
range AGND – 6 V to AVDD + 0.5 V, the input current must be limited to 10 mA because the device input  
electrostatic discharge (ESD) diodes turn on. In addition, the linearity and noise performance of the device are  
ensured only when the differential analog input voltage remains within the specified linear full-scale range (FSR),  
that is ±250 mV (for the AMC1306x25) or ±50 mV (for the AMC1306x05), and within the specified input common-  
mode range.  
22  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
Feature Description (continued)  
8.3.2 Modulator  
The modulator implemented in the AMC1306 is a second-order, switched-capacitor, feed-forward ΔΣ modulator,  
such as the one conceptualized in Figure 48. The analog input voltage VIN and the output V5 of the 1-bit digital-  
to-analog converter (DAC) are differentiated, providing an analog voltage V1 at the input of the first integrator  
stage. The output of the first integrator feeds the input of the second integrator stage, resulting in output voltage  
V3 that is differentiated with the input signal VIN and the output of the first integrator V2. Depending on the polarity  
of the resulting voltage V4, the output of the comparator is changed. In this case, the 1-bit DAC responds on the  
next clock pulse by changing the associated analog output voltage V5, causing the integrators to progress in the  
opposite direction and forcing the value of the integrator output to track the average value of the input.  
fCLKIN  
V1  
V2  
V3  
V4  
VIN  
Integrator 1  
Integrator 2  
CMP  
0 V  
V5  
DAC  
Figure 48. Block Diagram of a Second-Order Modulator  
The modulator shifts the quantization noise to high frequencies, as shown in Figure 48. Therefore, use a low-  
pass digital filter at the output of the device to increase the overall performance. This filter is also used to convert  
from the 1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation). TI's  
microcontroller families TMS320F2807x and TMS320F2837x offer a suitable programmable, hardwired filter  
structure termed a sigma-delta filter module (SDFM) optimized for usage with the AMC1306 family. Also,  
SD24_B converters on the MSP430F677x microcontrollers offer a path to directly access the integrated sinc-  
filters for a simple system-level solution for multichannel, isolated current sensing. An additional option is to use a  
suitable application-specific device, such as the AMC1210 (a four-channel digital sinc-filter). Alternatively, a field-  
programmable gate array (FPGA) can be used to implement the filter.  
Copyright © 2017–2020, Texas Instruments Incorporated  
23  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Isolation Channel Signal Transmission  
The AMC1306 device uses an on-off keying (OOK) modulation scheme to transmit the modulator output  
bitstream across the capacitive SiO2-based isolation barrier. The transmitter modulates the bitstream at TX IN in  
Figure 49 with an internally-generated, 480-MHz carrier across the isolation barrier to represent a digital one and  
sends a no signal to represent the digital zero. The receiver demodulates the signal after advanced signal  
conditioning and produces the output. The symmetrical design of each isolation channel improves the CMTI  
performance and reduces the radiated emissions caused by the high-frequency carrier. The block diagram of an  
isolation channel integrated in the AMC1306 is shown in Figure 49.  
Transmitter  
Receiver  
OOK  
Modulation  
SiO2-Based  
Capacitive  
Reinforced  
Isolation  
TX IN  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
RX OUT  
Barrier  
Oscillator  
Figure 49. Block Diagram of an Isolation Channel  
Figure 50 shows the concept of the on-off keying scheme.  
TX IN  
Carrier Signal Across  
the Isolation Barrier  
RX OUT  
Figure 50. OOK-Based Modulation Scheme  
24  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
Feature Description (continued)  
8.3.4 Digital Output  
A differential input signal of 0 V ideally produces a stream of ones and zeros that are high 50% of the time. A  
differential input of 250 mV (for the AMC1306x25) or 50 mV (for the AMC1306x05) produces a stream of ones  
and zeros that are high 89.06% of the time. With 16 bits of resolution, that percentage ideally corresponds to the  
code 58368. A differential input of –250 mV (–50 mV for the AMC1306x05) produces a stream of ones and zeros  
that are high 10.94% of the time and ideally results in code 7168 with 16-bit resolution. These input voltages are  
also the specified linear ranges of the different AMC1306 versions with performance as specified in this  
document. If the input voltage value exceeds these ranges, the output of the modulator shows nonlinear behavior  
when the quantization noise increases. The output of the modulator clips with a stream of only zeros with an  
input less than or equal to –320 mV (–64 mV for the AMC1306x05) or with a stream of only ones with an input  
greater than or equal to 320 mV (64 mV for the AMC1306x05). In this case, however, the AMC1306 generates a  
single 1 (if the input is at negative full-scale) or 0 every 128 clock cycles to indicate proper device function (see  
the Fail-Safe Output section for more details). The input voltage versus the output modulator signal is shown in  
Figure 51.  
Modulator Output  
+FS (Analog Input)  
-FS (Analog Input)  
Analog Input  
Figure 51. Analog Input versus the AMC1306 Modulator Output  
The density of ones in the output bitstream for any input voltage value (with the exception of a full-scale input  
signal, as described in the Output Behavior in Case of a Full-Scale Input section) can be calculated using  
Equation 1:  
VIN + VClipping  
2ì VClipping  
(1)  
The AMC1306 system clock is provided externally at the CLKIN pin. For more details, see the Switching  
Characteristics table and the Manchester Coding Feature section.  
8.3.5 Manchester Coding Feature  
The AMC1306Ex offers the IEEE 802.3-compliant Manchester coding feature that generates at least one  
transition per bit to support clock signal recovery from the bitstream. A Manchester coded bitstream is free of dc  
components. The Manchester coding combines the clock and data information using exclusive or (XOR) logical  
operation and results in a bitstream as shown in Figure 52. The duty cycle of the Manchester encoded bitstream  
depends on the duty cycle of the input clock CLKIN.  
Clock  
Uncoded  
Bitstream  
0
1
0
1
0
1
1
1
0
0
1
1
0
0
1
Machester  
Coded  
Bitstream  
Figure 52. Manchester Coded Output of the AMC1306Ex  
Copyright © 2017–2020, Texas Instruments Incorporated  
25  
 
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Fail-Safe Output  
In the case of a missing high-side supply voltage AVDD, the output of a ΔΣ modulator is not defined and can  
cause a system malfunction. In systems with high safety requirements, this behavior is not acceptable.  
Therefore, the AMC1306 implements a fail-safe output function that ensures that the output DOUT of the device  
offers a steady-state bitstream of logic 0's in case of a missing AVDD, as shown in Figure 53.  
Additionally, if the common-mode voltage of the input reaches or exceeds the specified common-mode  
overvoltage detection level VCMov as defined in the Electrical Characteristics table, the AMC1306 offers a steady-  
state bitstream of logic 1's at the output DOUT, as also shown in Figure 53.  
tASTART  
tISTART  
CLKIN  
...  
AVDD  
AVDD GOOD  
Missing AVDD  
AVDD GOOD  
VCM  
VCM < VCMov  
VCM ≥ VCMov  
VCM < VCMov  
DOUT  
Valid Bit Stream  
1
0
Test Pattern  
1
Bit Stream Not Valid Valid Bit Stream  
Figure 53. Fail-Safe Output of the AMC1306  
8.4.2 Output Behavior in Case of a Full-Scale Input  
If a full-scale input signal is applied to the AMC1306 (that is, VIN VClipping), the device generates a single one or  
zero every 128 bits at DOUT, depending on the actual polarity of the signal being sensed, as shown in Figure 54.  
In this way, differentiating between a missing AVDD and a full-scale input signal is possible on the system level.  
CLKIN  
...  
...  
DOUT  
DOUT  
VIN ≤ œ320 mV (AMC1306x05: œ64 mV)  
...  
...  
...  
...  
VIN 320 mV (AMC1306x05: 64 mV)  
127 CLKIN Cycles  
127 CLKIN Cycles  
Figure 54. Overrange Output of the AMC1306  
26  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Digital Filter Usage  
The modulator generates a bitstream that is processed by a digital filter to obtain a digital word similar to a  
conversion result of a conventional analog-to-digital converter (ADC). A very simple filter, built with minimal effort  
and hardware, is a sinc3-type filter, as shown in Equation 2:  
3
-OSR  
1- z  
H z =  
( )  
÷
÷
1- z-1  
«
(2)  
This filter provides the best output performance at the lowest hardware size (count of digital gates) for a second-  
order modulator. All the characterization in this document is also done with a sinc3 filter with an oversampling  
ratio (OSR) of 256 and an output word width of 16 bits.  
The effective number of bits (ENOB) is often used to compare the performance of ADCs and ΔΣ modulators.  
Figure 55 shows the ENOB of the AMC1306 with different oversampling ratios. In this document, this number is  
calculated from the SINAD by using Equation 3:  
SINAD = 1.76 dB + 6.02 dB × ENOB  
(3)  
16  
14  
12  
10  
8
6
4
sinc3  
sinc2  
sinc1  
2
0
1
10  
100  
1000  
OSR  
D040  
Figure 55. Measured Effective Number of Bits versus Oversampling Ratio  
An example code for implementing a sinc3 filter in an FPGA is discussed in the Combining the ADS1202 with an  
FPGA Digital Filter for Current Measurement in Motor Control Applications application note, available for  
download at www.ti.com.  
Copyright © 2017–2020, Texas Instruments Incorporated  
27  
 
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
9.2 Typical Applications  
9.2.1 Frequency Inverter Application  
Isolated ΔΣ modulators are being widely used in frequency inverter designs because of their high ac and dc  
performance. Frequency inverters are critical parts of industrial motor drives, photovoltaic inverters (string and  
central inverters), uninterruptible power supplies (UPS), electrical and hybrid electrical vehicles, and other  
industrial applications.  
Figure 56 shows a simplified schematics of the AMC1306Mx in a typical frequency inverter application as used in  
industrial motor drives with shunt resistors (RSHUNT) used for current sensing. Depending on the system design,  
either all three or only two motor phase currents are sensed.  
The Manchester coded bitstream output of the AMC1306Ex minimizes the wiring efforts of the connection  
between the power board and the control board; see Figure 57. This bitstream output also allows the clock to be  
generated locally on the power board without the having to adjust the propagation delay time of each DOUT  
connection to fulfill the setup and hold time requirements of the microcontroller.  
In both examples, an additional fourth AMC1306 is used to support isolated voltage sensing of the dc link. This  
high voltage is reduced using a high-impedance resistive divider and is sensed by the device across a smaller  
resistor. The value of this resistor can degrade the performance of the measurement, as described in the Isolated  
Voltage Sensing section.  
Motor  
DC link  
RSHUNT  
L1  
L3  
L2  
RSHUNT  
RSHUNT  
AMC1306Mx  
3.3 V  
AVDD  
DVDD  
AINP CLKIN  
3.3 V  
DOUT  
DGND  
AINN  
AGND  
TMS320F28x7x  
AMC1306Mx  
AVDD  
3.3 V  
DVDD  
AINP CLKIN  
3.3 V  
SD-D1  
SD-C1  
DOUT  
DGND  
SD-D2  
SD-C2  
AINN  
AGND  
AMC1306Mx  
AVDD  
SD-D3  
SD-C3  
3.3 V  
DVDD  
AINP CLKIN  
3.3 V  
SD-D4  
SD-C4  
DOUT  
DGND  
AINN  
AGND  
AMC1306Mx  
AVDD  
CDCLVC1104  
PWMx  
3.3 V  
DVDD  
AINP CLKIN  
3.3 V  
DOUT  
DGND  
AINN  
AGND  
Power Board  
Control Board  
Figure 56. The AMC1306Mx in a Frequency Inverter Application  
28  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
Typical Applications (continued)  
Motor  
DC link  
RSHUNT  
L1  
L3  
RSHUNT  
RSHUNT  
L2  
AMC1306Ex  
3.3 V  
AVDD  
AINP  
DVDD  
CLKIN  
3.3 V  
AINN DOUT  
DGND  
AGND  
TMS320F28x7x  
AMC1306Ex  
AVDD  
3.3 V  
DVDD  
AINP CLKIN  
3.3 V  
DOUT  
DGND  
AINN  
SD-D1  
SD-D2  
SD-D3  
SD-D4  
AGND  
AMC1306Ex  
AVDD  
3.3 V  
DVDD  
AINP CLKIN  
3.3 V  
DOUT  
DGND  
AINN  
AGND  
AMC1306Ex  
AVDD  
3.3 V  
DVDD  
AINP CLKIN  
3.3 V  
DOUT  
DGND  
AINN  
AGND  
Clock Source  
Power Board  
Control Board  
Figure 57. The AMC1306Ex in a Frequency Inverter Application  
9.2.1.1 Design Requirements  
Table 1 lists the parameters for the typical application in the Frequency Inverter Application section.  
Table 1. Design Requirements  
PARAMETER  
High-side supply voltage  
VALUE  
3.3 V or 5 V  
Low-side supply voltage  
3.3 V or 5 V  
Voltage drop across the shunt for a linear response  
±250 mV (maximum)  
Copyright © 2017–2020, Texas Instruments Incorporated  
29  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
The high-side power supply (AVDD) for the AMC1306 device is derived from the power supply of the upper gate  
driver. Further details are provided in the Power Supply Recommendations section.  
The floating ground reference (AGND) is derived from one of the ends of the shunt resistor that is connected to  
the negative input of the AMC1306 (AINN). If a four-pin shunt is used, the inputs of the device are connected to  
the inner leads and AGND is connected to one of the outer shunt leads.  
Use Ohm's Law to calculate the voltage drop across the shunt resistor (VSHUNT) for the desired measured  
current: VSHUNT = I × RSHUNT  
.
Consider the following two restrictions to choose the proper value of the shunt resistor RSHUNT  
:
The voltage drop caused by the nominal current range must not exceed the recommended differential input  
voltage range: VSHUNT ±250 mV  
The voltage drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes  
a clipping output: |VSHUNT| |VClipping  
|
The typically recommended RC filter in front of a ΔΣ modulator to improve signal-to-noise performance of the  
signal path is not required for the AMC1306. By design, the input bandwidth of the analog front-end of the device  
is limited as specified in the Electrical Characteristics table.  
For modulator output bitstream filtering, a device from TI's TMS320F2807x family of low-cost microcontrollers  
(MCUs) or TMS320F2837x family of dual-core MCUs is recommended. These families support up to eight  
channels of dedicated hardwired filter structures that significantly simplify system level design by offering two  
filtering paths per channel: one providing high accuracy results for the control loop and one fast response path  
for overcurrent detection.  
9.2.1.3 Application Curve  
In motor control applications, a very fast response time for overcurrent detection is required. The time for fully  
settling the filter in case of a step-signal at the input of the modulator depends on the filter order; that is, a sinc3  
filter requires three data updates for full settling (with fDATA = fCLK / OSR). Therefore, for overcurrent protection,  
filter types other than sinc3 can be a better choice; an alternative is the sinc2 filter. Figure 58 compares the  
settling times of different filter orders.  
The delay time of the sinc filter with a continuous signal is half of the settling time.  
16  
14  
12  
10  
8
6
4
sinc1  
sinc2  
sinc3  
2
0
0
2
4
6
8
10  
12  
Settling Time (µs)  
14  
16  
18 20  
D041  
Figure 58. Measured Effective Number of Bits versus Settling Time  
30  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
9.2.2 Isolated Voltage Sensing  
The AMC1306 is optimized for usage in current-sensing applications using low-impedance shunts. However, the  
device can also be used in isolated voltage-sensing applications if the affect of the (usually higher) impedance of  
the resistor used in this case is considered.  
High Voltage  
Potential  
3.3 V  
or 5 V  
R1  
AVDD  
R2  
R4  
R5  
AINP  
IIB  
R3  
RIND  
ûModulator  
AINN  
R4'  
R5'  
R3'  
AGND  
VCM = 1.9 V  
AGND  
Figure 59. Using the AMC1306 for Isolated Voltage Sensing  
9.2.2.1 Design Requirements  
Figure 59 shows a simplified circuit typically used in high-voltage-sensing applications. The high impedance  
resistors (R1 and R2) are used as voltage dividers and dominate the current value definition. The resistance of  
the sensing resistor R3 is chosen to meet the input voltage range of the AMC1306. This resistor and the  
differential input impedance of the device (the AMC1306x25 is 22 kΩ, the AMC1306x05 is 4.9 kΩ) also create a  
voltage divider that results in an additional gain error. With the assumption of R1, R2, and RIN having a  
considerably higher value than R3, the resulting total gain error can be estimated using Equation 4, with EG  
being the gain error of the AMC1306.  
R3  
EGtot = EG  
+
RIN  
(4)  
This gain error can be easily minimized during the initial system-level gain calibration procedure.  
9.2.2.2 Detailed Design Procedure  
As indicated in Figure 59, the output of the integrated differential amplifier is internally biased to a common-mode  
voltage of 1.9 V. This voltage results in a bias current IIB through the resistive network R4 and R5 (or R4' and  
R5') used for setting the gain of the amplifier. The value range of this current is specified in the Electrical  
Characteristics table. This bias current generates additional offset error that depends on the value of the resistor  
R3. The initial system offset calibration does not minimize this effect because the value of the bias current  
depends on the actual common-mode amplitude of the input signal (as illustrated in Figure 60). Therefore, in  
systems with high accuracy requirements, a series resistor is recommended to be used at the negative input  
(AINN) of the AMC1306 with a value equal to the shunt resistor R3 (that is, R3' = R3 in Figure 59) to eliminate  
the effect of the bias current.  
Copyright © 2017–2020, Texas Instruments Incorporated  
31  
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
This additional series resistor (R3') influences the gain error of the circuit. The effect can be calculated using  
Equation 5 with R5 = R5' = 50 kΩ and R4 = R4' = 2.5 kΩ (for the AMC1306x05) or 12.5 kΩ (for the  
AMC1306x25).  
R4  
EG(%) = 1-  
ì100%  
÷
R4'+ R3'  
«
(5)  
9.2.2.3 Application Curve  
Figure 60 shows the dependency of the input bias current on the common-mode voltage at the input of the  
AMC1306.  
60  
40  
20  
0
-20  
-40  
-60  
AMC1306x25  
AMC1306x05  
-80  
-0.5  
0
0.5  
1
1.5  
VCM (V)  
2
2.5 3 3.5  
D005  
Figure 60. Input Bias Current vs Common-Mode Input Voltage  
9.2.3 What To Do and What Not To Do  
Do not leave the inputs of the AMC1306 unconnected (floating) when the device is powered up. If both modulator  
inputs are left floating, the input bias current drives these inputs to the output common-mode of the analog front-  
end of approximately 1.9 V. If that voltage is above the specified input common-mode range, the front gain  
diminishes and the modulator outputs a bitstream resembling a zero input differential voltage.  
32  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
10 Power Supply Recommendations  
In a typical frequency-inverter application, the high-side power supply (AVDD) for the device is directly derived  
from the floating power supply of the upper gate driver. For lowest system-level cost, a Zener diode can be used  
to limit the voltage to 5 V or 3.3 V (±10%). Alternatively a low-cost low-drop regulator (LDO), for example the  
LM317-N, can be used to adjust the supply voltage level and minimize noise on the power-supply node. A low-  
ESR decoupling capacitor of 0.1 µF is recommended for filtering this power-supply path. Place this capacitor (C2  
in Figure 61) as close as possible to the AVDD pin of the AMC1306 for best performance. If better filtering is  
required, an additional 10-µF capacitor can be used.  
The floating ground reference (AGND) is derived from the end of the shunt resistor that is connected to the  
negative input (AINN) of the device. If a four-pin shunt is used, the device inputs are connected to the inner leads  
and AGND is connected to one of the outer leads of the shunt.  
For decoupling of the digital power supply on the controller side, a 0.1-µF capacitor is recommended to be  
placed as close to the DVDD pin of the AMC1306 as possible, followed by an additional capacitor in the range of  
1 µF to 10 µF.  
Floating  
Power Supply  
20 V  
HV+  
R1  
800  
AMC1306Mx  
Gate Driver  
3.0 V,  
3.3 V,  
or 5.0 V  
5.1 V  
AVDD  
DVDD  
C1  
10 F  
C4  
0.1 F  
C2  
0.1 F  
C5  
2.2 F  
Z1  
1N751A  
AGND  
AINN  
AINP  
DGND  
DOUT  
CLKIN  
RSHUNT  
To Load  
SD-Dx  
SD-Cx  
PWMx  
Gate Driver  
TMS320F2837x  
HV-  
Figure 61. Decoupling the AMC1306  
Copyright © 2017–2020, Texas Instruments Incorporated  
33  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A layout recommendation showing the critical placement of the decoupling capacitors (as close as possible to the  
AMC1306) and placement of the other components required by the device is shown in Figure 62. For best  
performance, place the shunt resistor close to the AINP and AINN inputs of the AMC1306 and keep the layout of  
both connections symmetrical.  
11.2 Layout Example  
Clearance area,  
to be kept free of any  
conductive materials.  
0.1 µF  
2.2 µF  
2.2 µF  
0.1 µF  
SMD  
0603  
SMD  
0603  
SMD  
0603  
SMD  
0603  
To Floating  
Power  
Supply  
1
AVDD  
AINP  
DVDD  
CLKIN  
DOUT  
DGND  
16  
SMD  
RFLT  
From Clock  
Source  
0603  
CFLT  
AMC1306x  
SMD  
0603  
To Digital  
Filter  
(MCU)  
SMD  
RFLT  
AINN  
AGND  
0603  
LEGEND  
Copper Pour and Traces  
High-Side Area  
Controller-Side Area  
Via to Ground Plane  
Via to Supply Plane  
Figure 62. Recommended Layout of the AMC1306x  
34  
版权 © 2017–2020, Texas Instruments Incorporated  
 
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
www.ti.com.cn  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
12.1.1.1 隔离相关术语  
请参阅《隔离相关术语》  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
《适用于二阶 Δ-Σ 调制器的 AMC1210 四路数字滤波器》  
MSP430F677x 多相位仪表计量 SoC》  
TMS320F2807x Piccolo™ 微控制器》  
TMS320F2837xD 双核 Delfino™ 微控制器》  
ISO72x 数字隔离器磁场抗扰度》  
《将 ADS1202 FPGA 数字滤波器结合,以便在电机控制应用中进行 电流测量》  
CDCLVC11xx 3.3V 2.5V LVCMOS 高性能时钟缓冲器系列》  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
2. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
AMC1306E05  
AMC1306E25  
AMC1306M05  
AMC1306M25  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2017–2020, Texas Instruments Incorporated  
35  
AMC1306E05, AMC1306E25, AMC1306M05, AMC1306M25  
ZHCSG26C MARCH 2017REVISED JANAURY 2020  
www.ti.com.cn  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
36  
版权 © 2017–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1306E05DWV  
AMC1306E05DWVR  
AMC1306E25DWV  
AMC1306E25DWVR  
AMC1306M05DWV  
AMC1306M05DWVR  
AMC1306M25DWV  
AMC1306M25DWVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DWV  
DWV  
DWV  
DWV  
DWV  
DWV  
DWV  
DWV  
8
8
8
8
8
8
8
8
64  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1306E05  
1000 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
1306E05  
1306E25  
1306E25  
1306M05  
1306M05  
1306M25  
1306M25  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC1306E05DWVR  
AMC1306E25DWVR  
AMC1306M05DWVR  
AMC1306M25DWVR  
SOIC  
SOIC  
SOIC  
SOIC  
DWV  
DWV  
DWV  
DWV  
8
8
8
8
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
12.05 6.15  
12.05 6.15  
12.05 6.15  
12.05 6.15  
3.3  
3.3  
3.3  
3.3  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AMC1306E05DWVR  
AMC1306E25DWVR  
AMC1306M05DWVR  
AMC1306M25DWVR  
SOIC  
SOIC  
SOIC  
SOIC  
DWV  
DWV  
DWV  
DWV  
8
8
8
8
1000  
1000  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
AMC1306E05DWV  
AMC1306E25DWV  
AMC1306M05DWV  
AMC1306M25DWV  
DWV  
DWV  
DWV  
DWV  
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
64  
64  
64  
64  
505.46  
505.46  
505.46  
505.46  
13.94  
13.94  
13.94  
13.94  
4826  
4826  
4826  
4826  
6.6  
6.6  
6.6  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AMC1306E25

具有曼彻斯特编码的 ±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306E25DWV

具有曼彻斯特编码的 ±250mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125
TI

AMC1306E25DWVR

具有曼彻斯特编码的 ±250mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125
TI

AMC1306M05

±50mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306M05-Q1

汽车类 ±50mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306M05DWV

±50mV 输入、精密电流检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1306M05DWVR

±50mV 输入、精密电流检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1306M05QDWVRQ1

汽车类 ±50mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125
TI

AMC1306M25

±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306M25-Q1

汽车类 ±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306M25DWV

±250mV 输入、精密电流检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1306M25DWVR

±250mV 输入、精密电流检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI