AMC1306M05-Q1 [TI]

汽车类 ±50mV 输入、精密电流检测增强型隔离式调制器;
AMC1306M05-Q1
型号: AMC1306M05-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 ±50mV 输入、精密电流检测增强型隔离式调制器

文件: 总34页 (文件大小:1936K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
AMC1306M05-Q1 车类高精度 ±50mV 入  
型隔离式 Δ-Σ 制器  
1 特性  
3 说明  
符合面向汽车应用的 AEC-Q100 标准:  
温度等级 1–40°C +125°CTA  
提供功能安全  
AMC1306M05-Q1 是一款精密 Δ-Σ 调制器,此调制  
器的输出与输入电路由抗电磁干扰性能极强的隔离层隔  
开。该隔离栅经认证可提供高达 7070VPEAK 的增强型  
隔离,符合 DIN VDE V 0884-11 UL1577 标准,并  
且可支持最高 1.5kVRMS 的工作电压。该隔离层可将系  
统中以不同共模电压电平运行的各器件隔开,防止高电  
压冲击导致低压侧器件电气损坏或对操作员造成伤害。  
有助于进行功能安全系统设计的文档  
线性输入电压范围:±50mV  
低直流误差:  
失调电压误差:±50μV(最大值)  
温漂:1μV/°C(最大值)  
增益误差:±0.2%(最大值)  
增益漂移:±40ppm/°C(最大值)  
CMTI100kV/µs(最小值)  
EMI:符合 CISPR-11 CISPR-25 标准  
安全相关认证:  
AMC1306M05-Q1 输入端经过了优化,可直接连  
接到分流电阻器或其他低电压电平信号源。具有出色  
的直流精度和低温漂,可支持精确的电流控制,适用于  
车载充电器 (OBC)、直流/直流转换器、牵引逆变器  
或其他高压应用。通过使用集成式数字滤波器(如  
TMS320F2807x TMS320F2837x 微控制器系列中  
的滤波器)来抽取位流,该器件可在 78kSPS 数据速  
率下实现 85dB 动态范围的 16 位分辨率。  
符合 DIN VDE V 0884-11 标准的 7070VPEAK  
强型隔离:2017-01  
符合 UL1577 标准且长达 1 分钟的 5000VRMS  
AMC1306M05-Q1 采用宽体 8 引脚 SOIC 封装,符合  
面向汽车应用的 AEC-Q100 标准,并支持 –40°C 至  
+125°C 的温度范围。  
隔离  
2 应用  
基于分流电阻器的电流感应和隔离式电压测量,包  
括:  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
牵引逆变器  
AMC1306M05-Q1  
SOIC (8)  
5.85mm × 7.50mm  
车载充电器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
直流/直流转换器  
混合动力汽车/电动汽车直流充电器  
录。  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
AMC1306M05-Q1  
AVDD  
DVDD  
CLKIN  
DOUT  
DGND  
I
INP  
INN  
+50 mV  
–50 mV  
0 V  
ISO  
-ADC  
MCU  
AGND  
典型应用  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBASAI0  
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 6  
6.7 Safety-Related Certifications...................................... 7  
Safety Limiting Values.......................................................7  
6.8 Electrical Characteristics.............................................8  
Switching Characteristics................................................10  
6.9 Timing Diagrams.......................................................10  
6.10 Insulation Characteristics Curves............................11  
6.11 Typical Characteristics............................................ 12  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
7.2 Functional Block Diagram.........................................18  
7.3 Feature Description...................................................19  
7.4 Device Functional Modes..........................................22  
8 Application and Implementation..................................23  
8.1 Application Information............................................. 23  
8.2 Typical Application.................................................... 23  
8.3 What to Do and What Not to Do............................... 26  
9 Power Supply Recommendations................................27  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Documentation Support.......................................... 28  
11.2 接收文档更新通知................................................... 28  
11.3 支持资源..................................................................28  
11.4 Trademarks............................................................. 28  
11.5 Electrostatic Discharge Caution..............................28  
11.6 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 28  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
February 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
AVDD  
INP  
1
2
3
4
8
7
6
5
DVDD  
CLKIN  
DOUT  
DGND  
INN  
AGND  
Not to scale  
5-1. DWV Package, 8-Pin SOIC (Top View)  
5-1. Pin Functions  
PIN  
NAME  
TYPE  
NO.  
1
DESCRIPTION  
AVDD  
INP  
High-side power  
Analog input  
Analog (high-side) power supply(1)  
Noninverting analog input  
Inverting analog input  
2
3
INN  
Analog input  
4
AGND  
DGND  
DOUT  
CLKIN  
DVDD  
High-side ground  
Low-side ground  
Digital output  
Analog (high-side) ground reference  
Digital (low-side) ground reference  
Modulator data output  
5
6
7
Digital input  
Modulator clock input with internal pulldown resistor (typical value: 1.5 MΩ)  
Digital (low-side) power supply(1)  
8
Low-side power  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC1306M05-Q1  
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
see(1)  
PARAMETER  
MIN  
–0.3  
MAX  
6.5  
UNIT  
AVDD to AGND  
Power-supply voltage  
V
DVDD to DGND  
INP, INN  
CLKIN  
–0.3  
6.5  
Analog input voltage  
Digital input voltage  
Digital output voltage  
AGND – 6  
DGND – 0.5  
DGND – 0.5  
AVDD + 0.5V  
DVDD + 0.5  
DVDD + 0.5  
V
V
V
DOUT  
Continuous, any pin except power-  
supply pins  
Input current  
Temperature  
–10  
10  
mA  
°C  
Junction, TJ  
Storage, Tstg  
150  
150  
–65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions . If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
,
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011,  
CDM ESD classification level C6  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
DVDD  
Hgh-side power supply  
Low-side power supply  
AVDD to AGND  
DVDD to DGND  
3
5.0  
3.3  
5.5  
5.5  
V
V
2.7  
ANALOG INPUT  
VClipping Differential input voltage before clipping output  
VIN = VINP – VINN  
±64  
mV  
mV  
V
VFSR  
VCM  
Specified linear differential full-scale voltage  
Operating common-mode input voltage  
VIN = VINP – VINN  
–50  
50  
(VINP + VINN) / 2 to AGND  
–0.032  
AVDD – 2.1  
DIGITAL I/O  
VIO  
Digital input / output voltage  
0
5
VDD  
V
4.5 V ≤ AVDD ≤ 5.5 V  
3.0 V ≤ AVDD ≤ 5.5 V  
20  
21  
20  
fCLKIN  
Input clock frequency  
MHz  
5
20  
25  
25  
tHIGH  
tLOW  
Input clock high time  
Input clock low time  
20  
20  
120  
120  
ns  
ns  
TEMPERATURE RANGE  
TA Specified ambient temperature  
–40  
125  
°C  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.4 Thermal Information  
AMC1306M05-Q1  
THERMAL METRIC(1)  
DWV (SOIC)  
8 PINS  
112.2  
47.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
60.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
23.1  
ψJB  
60.0  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
AVDD = DVDD = 5.5 V  
VALUE  
87  
UNIT  
PD  
Maximum power dissipation (both sides)  
mW  
AVDD = 3.6 V  
AVDD = 5.5 V  
DVDD = 3.6 V  
DVDD = 5.5 V  
31  
PD1  
Maximum power dissipation (high-side supply)  
Maximum power dissipation (low-side supply)  
mW  
mW  
54  
17  
PD2  
33  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
AMC1306M05-Q1  
www.ti.com.cn  
UNIT  
ZHCSPG8 – FEBRUARY 2022  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
≥ 8.5  
≥ 8.5  
mm  
mm  
CPG  
Shortest pin-to-pin distance across the package surface  
Distance through  
insulation  
DTI  
CTI  
Minimum internal gap (internal clearance) of the double insulation  
DIN EN 60112 (VDE 0303-11); IEC 60112  
≥ 0.021  
≥ 600  
mm  
V
Comparative tracking  
index  
Material group  
According to IEC 60664-1  
I
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-III  
Overvoltage category  
per IEC 60664-1  
DIN VDE V 0884-11: 2017-01(2)  
Maximum repetitive peak  
VIORM  
At AC voltage  
2120  
VPK  
isolation voltage  
At AC voltage (sine wave)  
1500  
2120  
7070  
8480  
VRMS  
VDC  
Maximum-rated isolation  
VIOWM  
working voltage  
At DC voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Maximum transient  
VIOTM  
VPK  
VPK  
isolation voltage  
Maximum surge  
VIOSM  
Test method per IEC 60065, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
8000  
≤ 5  
isolation voltage(3)  
Method a, after input/output safety test subgroups 2 & 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
≤ 5  
qpd  
Apparent charge(4)  
pC  
Method b1, at routine test (100% production) and preconditioning  
(type test),  
≤ 5  
Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875 × VIORM, tm = 1 s  
Barrier capacitance,  
input to output(5)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
~1.5  
pF  
Ω
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(5)  
VIO = 500 V at 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
2
40/125/21  
UL1577  
VTEST = VISO = 5000 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11 (VDE V 0884-11):  
2017-01,  
DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08, and  
DIN EN 60065 (VDE 0860): 2005-11  
Recognized under 1577 component recognition program  
Reinforced insulation  
Single protection  
Certificate number: pending  
File number: pending  
Safety Limiting Values  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RθJA = 112.2°C/W, AVDD = DVDD = 5.5 V,  
TJ = 150°C, TA = 25°C  
203  
309  
mA  
mA  
IS  
Safety input, output, or supply current  
RθJA = 112.2°C/W, AVDD = DVDD = 3.6 V,  
TJ = 150°C, TA = 25°C  
PS Safety input, output, or total power(1)  
TS Maximum safety temperature  
RθJA = 112.2°C/W, TJ = 150°C, TA = 25°C  
1114  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × AVDDmax + IS × DVDDmax, where AVDDmax is the maximum high-side voltage and DVDDmax is the maximum controller-side  
supply voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC1306M05-Q1  
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.8 Electrical Characteristics  
minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V, INP = –50  
mV to 50 mV, INN = 0 V, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications are at TA = 25°C,  
CLKIN = 20 MHz, AVDD = 5 V, and DVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUTS  
Commonmode overvoltage  
detection level  
VCMov  
(INP + INN) / 2 to AGND  
AVDD – 2  
V
CIN  
Single-ended input capacitance  
Differential input capacitance  
Single-ended input resistance  
Differential input resistance  
Input bias current  
INN = AGND  
4
2
pF  
pF  
kΩ  
kΩ  
CIND  
RIN  
INN = AGND  
4.75  
4.9  
RIND  
IIB  
INP = INN = AGND, IIB = IBP + IBN  
–97  
100  
–72  
±10  
150  
–57  
μA  
nA  
IIO  
Input offset current  
CMTI  
Common-mode transient immunity  
kV/μs  
INP = INN, fIN = 0 Hz,  
VCM min ≤ VIN ≤ VCM max  
–99  
CMRR  
BW  
Common-mode rejection ratio  
Input bandwidth  
dB  
INP = INN, fIN from 0.1 Hz to 50 kHz,  
VCM min ≤ VIN ≤ VCM max  
–98  
800  
kHz  
DC ACCURACY  
DNL  
INL  
Differential nonlinearity  
Resolution: 16 bits  
–0.99  
–4  
0.99  
4
LSB  
LSB  
Resolution: 16 bits,  
4.5 V ≤ AVDD ≤ 5.5 V  
±1  
Integral nonlinearity(2)  
Resolution: 16 bits,  
3.0 V ≤ AVDD ≤ 3.6 V  
–5  
±1.5  
5
LSB  
EO  
Offset error(1)  
TA = 25°C, INP = INN = GND1  
TA = 25°C  
–50  
–1  
±2.5  
±0.25  
50  
1
µV  
TCEO  
EG  
Offset error temperatrure drift(3)  
μV/°C  
Gain error  
–0.2%  
–40  
±0.005%  
±20  
0.2%  
TCEG  
Gain error temperature drift(4)  
40 ppm/°C  
dB  
INP = INN = AGND,  
AVDD from 3.0 V to 5.5 V, at DC  
–108  
–107  
PSRR  
Power-supply rejection ratio  
INP = INN = AGND,  
AVDD from 3.0 V to 5.5 V,  
10 kHz / 100 mV ripple  
AC ACCURACY  
SNR  
Signal-to-noise ratio  
fIN = 1 kHz  
fIN = 1 kHz  
78  
82.5  
82.3  
dB  
dB  
SINAD  
Signal-to-noise + distortion  
Total harmonic distortion(5)  
Spurious-free dynamic range  
77.5  
4.5 V ≤ AVDD ≤ 5.5 V, fIN = 1 kHz,  
5 MHz ≤ fCLKIN ≤ 21 MHz  
–98  
–84  
–83  
THD  
dB  
dB  
3.0 V ≤ AVDD ≤ 3.6 V, fIN = 1 kHz,  
5 MHz ≤ fCLKIN ≤ 20 MHz  
–93  
100  
SFDR  
fIN = 1 kHz  
83  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V, INP = –50  
mV to 50 mV, INN = 0 V, and sinc3 filter with OSR = 256 (unless otherwise noted); typical specifications are at TA = 25°C,  
CLKIN = 20 MHz, AVDD = 5 V, and DVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CMOS LOGIC WITH SCHMITT-TRIGGER  
IIN  
Input current  
DGND ≤ VIN ≤ DVDD  
0
7
μA  
pF  
CIN  
Input capacitance  
4
0.7 ×  
DVDD  
DVDD +  
0.3  
VIH  
High-level input voltage  
V
0.3 ×  
DVDD  
VIL  
Low-level input voltage  
Output load capacitance  
High-level output voltage  
Low-level output voltage  
–0.3  
V
pF  
V
CLOAD  
VOH  
VOL  
30  
DVDD –  
0.4  
IOH = –4 mA  
IOL = 4 mA  
0.4  
V
POWER SUPPLY  
3.0 V ≤ AVDD ≤ 3.6 V  
4.5 V ≤ AVDD ≤ 5.5 V  
6.3  
7.2  
8.5  
9.8  
IAVDD High-side supply current  
mA  
mA  
2.7 V ≤ DVDD ≤ 3.6 V,  
CLOAD = 15 pF  
3.3  
3.9  
4.8  
6.0  
IDVDD  
Low-side supply current  
4.5 V ≤ DVDD ≤ 5.5 V,  
CLOAD = 15 pF  
AVDD rising  
AVDD falling  
DVDD rising  
DVDD falling  
2.45  
2.4  
2.7  
2.6  
2.9  
2.8  
High-side undervoltage detection  
threshold  
AVDDUV  
DVDDUV  
V
V
2.2  
2.45  
2.65  
2.2  
Low-side undervoltage detection  
threshold  
1.75  
(1) This parameter is input referred.  
(2) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer  
function expressed as number of LSBs or as a percent of the specified linear full-scale range FSR.  
(3) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCEO = (EO,MAX – EO,MIN) / TempRange where EO,MAX and EO,MIN refer to the maximum and minimum EO values measured within the  
temperature range (–40 to 125).  
(4) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = ((EG,MAX - EG,MIN) / TempRange) x 104 where EG,MAX and EG,MIN refer to the maximum and minimum EG values (in %)  
measured within the temperature range (–40 to 125).  
(5) THD is the ratio of the rms sum of the amplitudes of first five higher harmonics to the amplitude of the fundamental.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DOUT hold time after rising edge  
of CLKIN  
tH  
CLOAD = 15 pF  
CLOAD = 15 pF  
3.5  
ns  
Rising edge of CLKIN to DOUT  
valid delay  
tD  
15  
ns  
ns  
10% to 90%, 2.7 V ≤ DVDD ≤ 3.6 V, CLOAD = 15 pF  
10% to 90%, 4.5 V ≤ DVDD ≤ 5.5 V, CLOAD = 15 pF  
10% to 90%, 2.7 V ≤ DVDD ≤ 3.6 V, CLOAD = 15 pF  
10% to 90%, 4.5 V ≤ DVDD ≤ 5.5 V,CLOAD = 15 pF  
2.5  
3.2  
2.2  
2.9  
6
6
6
6
tr  
DOUT rise time  
tf  
DOUT fall time  
ns  
AVDD step from 0 to 3.0 V with DVDD ≥ 2.7 V to  
bitstream valid, 0.1% settling  
tSTART  
Device start-up time  
0.5  
ms  
6.9 Timing Diagrams  
tCLKIN  
tHIGH  
CLKIN  
50%  
tLOW  
tH  
tD  
tr / tf  
90%  
10%  
DOUT  
6-1. Digital Interface Timing  
DVDD  
AVDD  
CLKIN  
DOUT  
tSTART  
Bitstream not valid (analog settling)  
Valid bitstream  
6-2. Device Start-Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.10 Insulation Characteristics Curves  
400  
1200  
1000  
800  
600  
400  
200  
0
AVDD = DVDD = 3.6 V  
AVDD = DVDD = 5.5 V  
300  
200  
100  
0
0
50  
100  
150  
0
25  
50  
75  
TA (°C)  
100  
125  
150  
TA (°C)  
D070  
D069  
6-4. Thermal Derating Curve for Safety-Limiting Power per  
6-3. Thermal Derating Curve for Safety-Limiting Current per  
VDE  
VDE  
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
6-5. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC1306M05-Q1  
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.11 Typical Characteristics  
at AVDD = 5 V, DVDD = 3.3 V, INP = –50 mV to 50 mV , INN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256  
(unless otherwise noted)  
4
3.5  
3
3.3  
3.25  
3.2  
3.15  
3.1  
2.5  
2
3.05  
3
1.5  
1
2.95  
2.9  
0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
Temperature (C)  
D002  
D001  
6-7. Common-Mode Overvoltage Detection Level vs  
6-6. Maximum Operating Common-Mode Input Voltage vs  
Temperature  
High-Side Supply Voltage  
60  
40  
0
-20  
20  
-40  
0
-60  
-20  
-40  
-60  
-80  
-80  
-100  
-120  
0.1  
1
10  
fIN (kHz)  
100  
1000  
-0.5  
0
0.5  
1
1.5  
VCM (V)  
2
2.5  
3
3.5  
D038  
D003  
6-9. Common-Mode Rejection Ratio vs Input Signal  
6-8. Input Bias Current vs Common-Mode Input Voltage  
Frequency  
4
100  
75  
AVDD = 3.3 V  
AVDD = 5.0 V  
3.5  
50  
3
2.5  
2
25  
0
-25  
-50  
-75  
-100  
1.5  
1
0.5  
0
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D027  
D030  
6-11. Offset Error vs High-Side Supply Voltage  
6-10. Integral Nonlinearity vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, INP = –50 mV to 50 mV , INN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256  
(unless otherwise noted)  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
9
13  
17  
21  
fCLKIN (MHz)  
D026  
D025  
6-12. Offset Error vs Temperature  
6-13. Offset Error vs Clock Frequency  
0.25  
0.2  
0.3  
0.2  
0.1  
0
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.1  
-0.2  
-0.3  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
D020  
Temperature (C)  
D021  
6-14. Gain Error vs High-Side Supply Voltage  
6-15. Gain Error vs Temperature  
0.3  
0.2  
0.1  
0
0
-20  
-40  
-60  
-80  
-0.1  
-0.2  
-0.3  
-100  
-120  
0.1  
1
10  
100  
1000  
5
9
13  
17  
21  
Ripple Frequency (kHz)  
fCLKIN (MHz)  
D041  
D022  
6-17. Power-Supply Rejection Ratio vs Ripple Frequency  
6-16. Gain Error vs Clock Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC1306M05-Q1  
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, INP = –50 mV to 50 mV , INN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256  
(unless otherwise noted)  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
SNR  
SINAD  
SNR  
SINAD  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
D034  
D035  
6-18. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
6-19. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
vs High-Side Supply Voltage  
vs Temperature  
90  
88  
86  
84  
82  
80  
78  
76  
74  
SNR  
SINAD  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
SNR  
SINAD  
72  
70  
5
9
13  
17  
21  
0.1  
1
10  
100  
fCLKIN (MHz)  
fIN (kHz)  
D036  
D033  
6-20. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
6-21. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
vs Clock Frequency  
vs Input Signal Frequency  
100  
-86  
-88  
SNR  
SINAD  
95  
-90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
-92  
-94  
-96  
-98  
-100  
-102  
-104  
-106  
-108  
-110  
4.5  
4.75  
5
5.25  
5.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
AVDD (V)  
VIN (mVpp)  
D056a  
D032  
fCLKIN = 21 MHz  
6-23. Total Harmonic Distortion vs High-Side Supply Voltage  
6-22. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
(5 V, nom)  
vs Input Signal Amplitude  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, INP = –50 mV to 50 mV , INN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256  
(unless otherwise noted)  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
-100  
-102  
-104  
-106  
-108  
-110  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
D056b  
fCLKIN = 20 MHz  
6-24. Total Harmonic Distortion vs High-Side Supply Voltage  
6-25. Total Harmonic Distortion vs Temperature  
(3.3 V, nom)  
-86  
-88  
-85  
-90  
-95  
-90  
-92  
-94  
-96  
-100  
-105  
-110  
-115  
-120  
-98  
-100  
-102  
-104  
-106  
-108  
-110  
5
9
13  
17  
21  
0.1  
1
10  
fCLKIN (MHz)  
fIN (kHz)  
D062  
D052  
6-26. Total Harmonic Distortion vs Clock Frequency  
6-27. Total Harmonic Distortion vs Input Signal Frequency  
-65  
-70  
118  
114  
110  
106  
102  
98  
-75  
-80  
-85  
-90  
-95  
94  
-100  
-105  
-110  
-115  
90  
86  
82  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
VIN (mVpp)  
D049  
D058  
6-28. Total Harmonic Distortion vs Input Signal Amplitude  
6-29. Spurious-Free Dynamic Range vs High-Side Supply  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC1306M05-Q1  
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, INP = –50 mV to 50 mV , INN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256  
(unless otherwise noted)  
118  
114  
110  
106  
102  
98  
118  
114  
110  
106  
102  
98  
94  
94  
90  
90  
86  
86  
82  
82  
5
9
13  
17  
21  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
fCLKIN (MHz)  
Temperature (C)  
D064  
D061  
6-31. Spurious-Free Dynamic Range vs Clock Frequency  
6-30. Spurious-Free Dynamic Range vs Temperature  
118  
114  
110  
106  
102  
98  
120  
115  
110  
105  
100  
95  
90  
94  
85  
90  
80  
86  
75  
82  
70  
0.1  
1
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
fIN (kHz)  
VIN (mVpp)  
D054  
D051  
6-32. Spurious-Free Dynamic Range vs Input Signal  
6-33. Spurious-Free Dynamic Range vs Input Signal  
Frequency  
Amplitude  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (kHz)  
Frequency (kHz)  
D014  
D015  
4096-point FFT, VIN = 100 mVPP  
4096-point FFT, VIN = 100 mVPP  
6-34. Frequency Spectrum With 1-kHz Input Signal  
6-35. Frequency Spectrum With 10-kHz Input Signal  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, INP = –50 mV to 50 mV , INN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256  
(unless otherwise noted)  
10  
9
10  
9
IAVDD vs AVDD  
IDVDD vs DVDD  
IAVDD  
IDVDD  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
VDD (V)  
Temperature (C)  
D043  
D044  
6-36. Supply Current vs Supply Voltage  
6-37. Supply Current vs Temperature  
10  
IAVDD  
IDVDD  
9
8
7
6
5
4
3
2
5
9
13  
fCLKIN (MHz)  
17  
21  
D045  
6-38. Supply Current vs Clock Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC1306M05-Q1  
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The input stage of the AMC1306M05-Q1 consists of a fully differential amplifier that feeds the switched-capacitor  
input of a second-order, delta-sigma (ΔΣ) modulator. The modulator converts the analog input signal into a  
digital bitstream that is transferred across the isolation barrier that separates the high-side from the low-side.  
The isolated data output DOUT of the converter provides a stream of digital ones and zeros that is synchronous  
to the externally provided clock source at the CLKIN pin. The time average of this serial bitstream output  
is proportional to the analog input voltage. The external clock input simplifies the synchronization of multiple  
current-sensing channels on the system level.  
The silicon-dioxide (SiO2) based capacitive isolation barrier supports a high level of magnetic field immunity as  
described in the ISO72x Digital Isolator Magnetic-Field Immunity application report. The digital modulation used  
in the AMC1306M05-Q1 to transmit data across the isolation barrier, and the isolation barrier characteristics  
itself, result in high reliability and common-mode transient immunity.  
7.2 Functional Block Diagram  
AVDD  
DVDD  
CLKIN  
DOUT  
DGND  
AMC1306M05-Q1  
Diagnostics  
Modulator  
INP  
Digital  
Interface  
INN  
AGND  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Input  
The differential amplifier input stage of the AMC1306M05-Q1 feeds a second-order, switched-capacitor, feed-  
forward ΔΣ modulator. The gain of the differential amplifier is set by internal precision resistors with a differential  
input impedance of RIND. The modulator converts the analog input signal into a bitstream that is transferred  
across the isolation barrier, as described in the Isolation Channel Signal Transmission section.  
For reduced offset and offset drift, the differential amplifier is chopper-stabilized with the switching frequency set  
at fCLKIN / 32. As shown in 7-1, the switching frequency generates a spur at 625 kHz.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
D016  
sinc3 filter, OSR = 2, fCLKIN = 20 MHz, fIN = 1 kHz  
7-1. Quantization Noise Shaping  
There are two restrictions on the analog input signals INP and INN. First, if the input voltages VINP or VINN  
exceed the range specified in the Absolute Maximum Ratings table, the input currents must be limited to the  
absolute maximum value because the electrostatic discharge (ESD) protection turns on. In addition, the linearity  
and parametric performance of the device are ensured only when the analog input voltage remains within  
the linear full-scale range (VFSR) and within the common-mode input voltage range (VCM) as specified in the  
Recommended Operating Conditions table.  
7.3.2 Modulator  
7-2 conceptualizes the second-order, switched-capacitor, feed-forward ΔΣ modulator implemented in the  
AMC1306M05-Q1. The analog input voltage VIN and the output V5 of the 1-bit digital-to-analog converter (DAC)  
are differentiated, providing an analog voltage V1 at the input of the first integrator stage. The output of the first  
integrator feeds the input of the second integrator stage, resulting in output voltage V3 that is differentiated with  
the input signal VIN and the output of the first integrator V2. Depending on the polarity of the resulting voltage  
V4, the output of the comparator is changed. In this case, the 1-bit DAC responds on the next clock pulse by  
changing the associated analog output voltage V5, causing the integrators to progress in the opposite direction,  
and forcing the value of the integrator output to track the average value of the input.  
fCLKIN  
V1  
V2  
V3  
V4  
VIN  
Integrator 1  
Integrator 2  
+
Σ
Σ
DOUT  
0 V  
V5  
DAC  
7-2. Block Diagram of a Second-Order Modulator  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC1306M05-Q1  
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
The modulator shifts the quantization noise to high frequencies, as illustrated in 7-1. Therefore, use a  
low-pass digital filter at the output of the device to increase the overall performance. This filter is also used to  
convert the 1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation).  
TI's C2000™ and Sitara™ microcontroller families offer a suitable programmable, hardwired filter structure  
termed a sigma-delta filter module (SDFM) optimized for usage with the AMC1306M05-Q1. Alternatively, a  
field-programmable gate array (FPGA) or complex programmable logic device (CPLD) can be used to implement  
the filter.  
7.3.3 Isolation Channel Signal Transmission  
The AMC1306M05-Q1 uses an on-off keying (OOK) modulation scheme, as shown in 7-3, to transmit the  
modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the  
Functional Block Diagram transmits an internally generated, high-frequency carrier across the isolation barrier  
to represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC1306M05-Q1 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and produces  
the output. The AMC1306M05-Q1 transmission channel is optimized to achieve the highest level of common-  
mode transient immunity (CMTI) and lowest level of radiated emissions caused by the high-frequency carrier and  
RX/TX buffer switching.  
Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
7-3. OOK-Based Modulation Scheme  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
7.3.4 Digital Output  
A differential input signal of 0 V ideally produces a stream of ones and zeros that are high 50% of the time. A  
differential input of 50 mV produces a stream of ones and zeros that are high 89.06% of the time. With 16 bits of  
resolution, that percentage ideally corresponds to code 58368. A differential input of –50 mV produces a stream  
of ones and zeros that are high 10.94% of the time and ideally results in code 7168 with 16-bit resolution. These  
input voltages are also the specified linear range of the AMC1306M05-Q1. If the input voltage value exceeds this  
range, the output of the modulator shows nonlinear behavior as the quantization noise increases. The output of  
the modulator clips with a constant stream of zeros with an input less than or equal to –64 mV or with a constant  
stream of ones with an input greater than or equal to 64 mV. In this case, however, the AMC1306M05-Q1  
generates a single 1 (if the input is at negative full-scale) or 0 (if the input is at positive full-scale) every 128 clock  
cycles to indicate proper device function (see the Output Behavior in Case of a Full-Scale Input section for more  
details). 7-4 shows the input voltage versus the output modulator signal.  
+ FS (Analog Input)  
Modulator Output  
– FS (Analog Input)  
Analog Input  
7-4. AMC1306M05-Q1 Modulator Output vs Analog Input  
The density of ones in the output bitstream can be calculated using 方程式 1 for any input voltage (VIN= VINP  
VINN) value with the exception of a full-scale input signal, as described in 方程式 1:  
V
+ V  
IN  
Clipping  
Clipping  
ρ =  
(1)  
2 × V  
7.3.4.1 Output Behavior in Case of a Full-Scale Input  
If a full-scale input signal is applied to the AMC1306M05-Q1 (that is, |VIN| ≥ |VClipping|), the device generates a  
single one or zero every 128 bits at DOUT, as shown in 7-5, depending on the actual polarity of the signal  
being sensed. In this way, differentiating between a missing AVDD and a full-scale input signal is possible on the  
system level.  
CLKIN  
DOUT  
DOUT  
VIN –64 mV  
VIN 64 mV  
127 CLKIN cycles  
127 CLKIN cycles  
7-5. Output of the AMC1306M05-Q1 in Case of an Input Overrange  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
7.3.4.2 Output Behavior in Case of Input Common-Mode Overrange  
If INN or INP is disconnected from the shunt resistor, the input bias current of the AMC1306M05-Q1 drives the  
disconnected terminal towards the positive supply rail, and the common-mode input voltage increases. A similar  
effect happens when there is no DC current path between INN, INP, and HGND. If the input common-mode  
voltage exceeds the common-mode overvoltage detection threshold VCMov, the device provides a constant  
bitstream of logic 1's at the output, as shown in 7-6; that is, DOUT is permanently high. A zero is not  
generated every 128 clock pulses, which differentiates this condition from a valid positive full-scale input. This  
feature is useful to identify interconnect problems on the board.  
CLKIN  
DOUT  
VCM  
Data valid  
1
Data valid  
VCM < VCMov  
VCM VCMov  
VCM < VCMov  
7-6. Output of the AMC1306M05-Q1 in Case of a Common-Mode Overvoltage  
There is no common-mode overvoltage detection in the negative direction; thus, if the common-mode input  
voltage is below the minimum VCM value specified in the Recommended Operating Conditions table, the  
bitstream at the DOUT output is not determined.  
7.3.4.3 Output Behavior in Case of a Missing High-Side Supply  
If the high-side supply is missing, the device provides a constant bitstream of logic 0's at the output, as shown in  
7-7; that is, DOUT is permanently low. A one is not generated every 128 clock pulses, which differentiates this  
condition from a valid negative full-scale input. This feature is useful to identify high-side power-supply problems  
on the board.  
CLKIN  
DOUT  
AVDD  
Data valid  
0
Data valid  
7-7. Output of the AMC1306M05-Q1 in Case of a Missing High-Side Supply  
7.4 Device Functional Modes  
The AMC1306M05-Q1 is operational when the power supplies AVDD and DVDD are applied as specified in the  
Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
The low analog input voltage range, excellent accuracy, and low temperature drift make the AMC1306M05-Q1  
a high-performance solution for automotive applications where shunt-based current sensing in the presence of  
high common-mode voltage levels is required.  
8.2 Typical Application  
The AMC1306M05-Q1 is ideally suited for shunt-based, current-sensing applications where accurate current  
monitoring is required in the presence of high common-mode voltages.  
8-1 shows the AMC1306M05-Q1 in a typical application. The load current flowing through an external shunt  
resistor RSHUNT produces a voltage drop that is sensed by the AMC1306M05-Q1. The AMC1306M05-Q1  
digitizes the analog input signal on the high-side, transfers the data across the isolation barrier to the low-side,  
and outputs the digital bitstream on the DOUT pin. The 5-V high-side power supply (AVDD) is generated from  
the floating gate driver supply using a resistor (R4) and a Zener diode (D1).  
The differential input, digital output, and the high common-mode transient immunity (CMTI) of the AMC1306M05-  
Q1 ensure reliable and accurate operation even in high-noise environments.  
Floating Gate  
Driver Supply  
+ DC Link  
Low-side supply  
(3.3 V or 5 V)  
R4  
1 uF 100 nF  
100 nF 1 uF  
5 V  
AMC1306M05-Q1  
AVDD  
DVDD  
CLKIN  
DOUT  
DGND  
D1  
10  
10  
10 nF  
INP  
RSHUNT  
MCU  
INN  
Load  
AGND  
– DC Link  
8-1. Using the AMC1306M05-Q1 for Current Sensing in a Typical Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
8.2.1 Design Requirements  
8-1 lists the parameters for this typical application.  
8-1. Design Requirements  
PARAMETER  
High-side supply voltage  
VALUE  
3.3 V or 5 V  
Low-side supply voltage  
3.3 V or 5 V  
Voltage drop across RSHUNT for a linear response  
±50 mV (maximum)  
8.2.2 Detailed Design Procedure  
In 8-1, the high-side power supply (AVDD) for the AMC1306M05-Q1 is derived from the floating power supply  
of the upper gate driver, using a resistor (R4) and a Zener diode (D1).  
The floating ground reference (AGND) is derived from the end of the shunt resistor that is connected to the  
negative input of the AMC1306M05-Q1 (INN). If a four-pin shunt is used, the inputs of the AMC1306M05-Q1 are  
connected to the inner leads and AGND is connected to the outer lead on the INN-side of the shunt. To minimize  
offset and improve accuracy, route the ground connection as a separate trace that connects directly to the shunt  
resistor rather than shorting AGND to INN directly at the input to the device. See the Layout section for more  
details.  
8.2.2.1 Shunt Resistor Sizing  
Use Ohm's Law to calculate the voltage drop across the shunt resistor (VSHUNT) for the desired measured  
current: VSHUNT = I × RSHUNT.  
Consider the following two restrictions when selecting the value of the shunt resistor, RSHUNT:  
The voltage drop caused by the nominal current range must not exceed the recommended differential input  
voltage range for a linear response: |VSHUNT| ≤ |VFSR  
The voltage drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes  
a clipping output: |VSHUNT| ≤ |VClipping  
|
|
8.2.2.2 Input Filter Design  
Place an RC filter in front of the isolated amplifier to improve signal-to-noise performance of the signal path.  
Design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency (fCLKIN  
)
of the ΔΣ modulator  
The input bias current does not generate significant voltage drop across the DC impedance of the input filter  
The impedances measured from the analog inputs are equal  
For most applications, the structure shown in 8-2 achieves excellent performance.  
AMC1306M05-Q1  
AVDD  
DVDD  
CLKIN  
DOUT  
DGND  
10  
10  
10 nF  
INP  
INN  
AGND  
8-2. Differential Input Filter  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
8.2.2.3 Bitstream Filtering  
The modulator generates a bitstream that is processed by a digital filter to obtain a digital word similar to a  
conversion result of a conventional analog-to-digital converter (ADC). As described by 方程式 2, a very simple  
filter built with minimal effort and hardware, is a sinc3-type filter:  
3
−OSR  
1 − z  
H z =  
(2)  
1  
1 − z  
This filter provides the best output performance at the lowest hardware size (count of digital gates) for a second-  
order modulator. All characterization in this document is also done with a sinc3 filter with an oversampling ratio  
(OSR) of 256 and an output word width of 16 bits, unless specified otherwise. The measured effective number of  
bits (ENOB) as a function of the OSR is illustrated in 8-3 of the Typical Application section.  
A Delta Sigma Modulator Filter Calculator is available for download at www.ti.com that aids in the filter design  
and selecting the right OSR and filter order to achieve the desired output resolution and filter response time.  
An example code for implementing a sinc3 filter in an FPGA is discussed in the Combining the ADS1202 with  
an FPGA Digital Filter for Current Measurement in Motor Control Applications application note, available for  
download at www.ti.com.  
For modulator output bitstream filtering, a device from TI's C2000or Sitaramicrocontroller families is  
recommended. These families support up to eight channels of dedicated hardwired filter structures that  
significantly simplify system level design by offering two filtering paths per channel: one providing high-accuracy  
results for the control loop and one fast-response path for overcurrent detection.  
A delta sigma modulator filter calculator is available for download at www.ti.com that aids in the filter design and  
selecting the right OSR and filter order to achieve the desired output resolution and filter response time.  
8.2.3 Application Curve  
The effective number of bits (ENOB) is often used to compare the performance of ADCs and ΔΣ modulators. 图  
8-3 shows the ENOB of the AMC1306M05-Q1 with different oversampling ratios. By using 方程式 3, this number  
can also be calculated from the SINAD:  
SINAD = 1.76 dB + 6.02 dB × ENOB  
(3)  
16  
14  
12  
10  
8
6
4
sinc3  
sinc2  
sinc1  
2
0
1
10  
100  
1000  
OSR  
D01430  
8-3. Measured Effective Number of Bits vs Oversampling Ratio  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC1306M05-Q1  
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
8.3 What to Do and What Not to Do  
Do not leave the inputs of the AMC1306M05-Q1 unconnected (floating) when the device is powered up. If the  
device inputs are left floating, the input bias current may drive the inputs to a positive value that exceeds the  
operating common-mode input voltage and DOUT is permanently high as described in the Output Behavior in  
Case of Input Common-Mode Overrange section.  
Connect the high-side ground (AGND) to INN, either by a hard short or through a resistive path. A DC current  
path between INN and AGND is required to define the input common-mode voltage. Take care not to exceed  
the input common-mode range as specified in the Recommended Operating Conditions table. For best accuracy,  
route the ground connection as a separate trace that connects directly to the shunt resistor rather than shorting  
AGND to INN directly at the input to the device. See the Layout section for more details.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
The AMC1306M05-Q1 does not require any specific power-up sequencing. The high-side power supply (AVDD)  
is decoupled with a low-ESR, 100-nF capacitor (C1) parallel to a low-ESR, 1-µF capacitor (C2). The low-side  
power supply (DVDD) is equally decoupled with a low-ESR, 100-nF capacitor (C3) parallel to a low-ESR, 1-µF  
capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible.  
The ground reference for the high-side (AGND) is derived from the end of the shunt resistor that is connected  
to the negative input (INN) of the device. For best DC accuracy, use a separate trace to make this connection  
instead of shorting AGND to INN directly at the device input. If a four-terminal shunt is used, the device inputs  
are connected to the inner leads and AGND is connected to the outer lead on the INN-side of the shunt. 9-1  
shows a decoupling diagram of the AMC1306M05-Q1.  
INP  
AVDD  
DVDD  
C2 1 µF  
C1 100 nF  
R2 10  
C4 1 µF  
AMC1306M05-Q1  
I
C3 100 nF  
AVDD  
DVDD  
CLKIN  
DOUT  
DGND  
INP  
from MCU  
to MCU  
C5  
10 nF  
R1 10  
INN  
AGND  
9-1. Decoupling of the AMC1306M05-Q1  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
10 Layout  
10.1 Layout Guidelines  
10-1 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC1306M05-Q1 supply pins) and placement of the other components required by the device.  
For best performance, place the shunt resistor close to the INP and INN inputs of the AMC1306M05-Q1 and  
keep the layout of both connections symmetrical.  
10.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
C2  
C1  
C4  
C3  
INP  
R2  
R1  
from MCU  
to MCU  
CLKIN  
DOUT  
AMC1306M05-Q1  
INN  
DGND  
AGND  
Top Metal  
Inner or Bottom Layer Metal  
Via  
10-1. Recommended Layout of the AMC1306M05-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
 
 
AMC1306M05-Q1  
ZHCSPG8 – FEBRUARY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Isolation Glossary application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report  
Texas Instruments, Delta Sigma Modulator Filter Calculator design tool  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.4 Trademarks  
C2000, Sitara, and TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AMC1306M05-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1306M05QDWVRQ1  
ACTIVE  
SOIC  
DWV  
8
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
1306M05Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF AMC1306M05-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2022  
Catalog : AMC1306M05  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AMC1306M05DWV

±50mV 输入、精密电流检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1306M05DWVR

±50mV 输入、精密电流检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1306M05QDWVRQ1

汽车类 ±50mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125
TI

AMC1306M25

±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306M25-Q1

汽车类 ±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306M25DWV

±250mV 输入、精密电流检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1306M25DWVR

±250mV 输入、精密电流检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1306M25QDWVRQ1

汽车类 ±250mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125
TI

AMC1311

2V 输入、精密电压检测增强型隔离式放大器
TI

AMC1311-Q1

汽车类 2V 输入、精密电压检测增强型隔离式放大器
TI

AMC1311BDWV

2V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -55 to 125
TI

AMC1311BDWVR

2V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -55 to 125
TI