AMC1333M10DWVR [TI]

具有 10MHz 内部时钟和 CMOS 接口的 ±1V 输入电压、增强型隔离调制器 | DWV | 8 | -40 to 125;
AMC1333M10DWVR
型号: AMC1333M10DWVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 10MHz 内部时钟和 CMOS 接口的 ±1V 输入电压、增强型隔离调制器 | DWV | 8 | -40 to 125

时钟
文件: 总36页 (文件大小:2064K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC1333M10  
ZHCSQM2 – MAY 2022  
AMC1333M10 具有 10MHz 内部时钟的  
±1V 入、增型隔离式 Δ-Σ 精密制器  
1 特性  
3 说明  
线性输入电压范围:±1V  
AMC1333M10 是一款精密 Δ-Σ 调制器,此调制器的输  
出与输入电路由抗电磁干扰性能极强的隔离层隔开。该  
隔离栅经认证可提供高达 8000VPEAK 的增强型隔离,  
符 合 DIN EN IEC 60747-17 (VDE 0884-17) 和  
UL1577 标准,并且可支持高达 1.5kVRMS 的工作电  
压。该隔离层可将系统中以不同共模电压电平运行的各  
器件隔开,防止高电压冲击导致低压侧器件电气损坏或  
对操作员造成伤害。  
高输入阻抗:2.4GΩ(典型值)  
低直流误差:  
失调电压误差:±0.5 mV(最大值)  
温漂±4µV/°C(最大值)  
增益误差:±0.2%(最大值)  
增益漂移:±40ppm/°C(最大值)  
CMTI100kV/µs(最小值)  
内部 10MHz 时钟发生器  
高侧电源缺失检测  
EMI:符合 CISPR-11 CISPR-25 标准  
安全相关认证:  
AMC1333M10 具有 ±1V 双极宽输入电压范围和高输  
入电阻,因此可直接连接高电压应用中的电阻分压器。  
AMC1333M10 的输出位流与内部生成的时钟同步。通  
过使用集成式数字滤波器(如 TMS320F2807x 或  
TMS320F2837x 微控制器系列中的数字滤波器)来抽  
取位流,该器件可在 39kSPS 数据速率下实现 16 位分  
辨率和 87dB 的动态范围。  
符合 DIN EN IEC 60747-17 (VDE 0884-17) 标  
准的 8000VPEAK 增强型隔离  
符合 UL1577 标准且长达 1 分钟的 5700VRMS  
隔离  
AMC1333M10 采用 8 引脚宽体 SOIC 封装,额定的工  
业级工作温度范围为 –40°C +125°C。  
额定的工业级工作温度范围:–40°C +125°C  
2 应用  
器件信息(1)  
电机驱动器  
器件型号  
封装  
封装尺寸(标称值)  
变频器  
AMC1333M10  
SOIC (8)  
5.85mm × 7.50mm  
保护继电器  
电源  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
VAC  
AMC1333M10  
AVDD  
INP  
DVDD  
CLKOUT  
DOUT  
+1 V  
–1 V  
0 V  
ISO  
-ADC  
MCU  
INN  
AGND  
DGND  
典型应用  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBASA71  
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Power Ratings.............................................................6  
6.6 Insulation Specifications............................................. 7  
6.7 Safety-Related Certifications...................................... 8  
6.8 Safety Limiting Values.................................................8  
6.9 Electrical Characteristics.............................................9  
6.10 Switching Characteristics........................................11  
6.11 Timing Diagrams..................................................... 11  
6.12 Insulation Characteristics Curves........................... 12  
6.13 Typical Characteristics............................................13  
7 Detailed Description......................................................17  
7.1 Overview...................................................................17  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................18  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application.................................................... 22  
8.3 What to Do and What Not to Do............................... 26  
9 Power Supply Recommendations................................27  
10 Layout...........................................................................28  
10.1 Layout Guidelines................................................... 28  
10.2 Layout Example...................................................... 28  
11 Device and Documentation Support..........................29  
11.1 Documentation Support.......................................... 29  
11.2 接收文档更新通知................................................... 29  
11.3 支持资源..................................................................29  
11.4 Trademarks............................................................. 29  
11.5 Electrostatic Discharge Caution..............................29  
11.6 术语表..................................................................... 29  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 29  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
May 2022  
*
Initial release.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
AVDD  
INP  
1
2
3
4
8
7
6
5
DVDD  
CLKOUT  
DOUT  
INN  
AGND  
DGND  
Not to scale  
5-1. DWV Package, 8-Pin SOIC (Top View)  
5-1. Pin Functions  
PIN  
NAME  
TYPE  
NO.  
1
DESCRIPTION  
AVDD  
INP  
High-side power  
Analog input  
Analog (high-side) power supply(1)  
Noninverting analog input  
Inverting analog input  
2
3
INN  
Analog input  
4
AGND  
DGND  
DOUT  
CLKOUT  
DVDD  
High-side ground  
Low-side ground  
Digital output  
Analog (high-side) ground reference  
Digital (low-side) ground reference  
Modulator data output  
5
6
7
Digital output  
Modulator clock output  
8
Low-side power  
Digital (low-side) power supply(1)  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC1333M10  
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
see(1)  
MIN  
–0.3  
MAX  
UNIT  
AVDD to AGND  
Power-supply voltage  
6.5  
6.5  
V
DVDD to DGND  
–0.3  
Analog input voltage  
Digital input voltage  
Digital output voltage  
Input current  
On the INP and INN pins  
AGND – 5  
DGND – 0.5  
DGND – 0.5  
–10  
AVDD + 0.5  
DVDD + 0.5  
DVDD + 0.5  
10  
V
V
On the CLKIN pin  
On the DOUT pin  
V
Continuous, any pin except power-supply pins  
Junction, TJ  
mA  
150  
Temperature  
°C  
Storage, Tstg  
–65  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions . If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per per ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
 
 
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
DVDD  
High-side supply voltage  
Low-side supply voltage  
AVDD to AGND  
DVDD to DGND  
3.0  
2.7  
5.0  
3.3  
5.5  
5.5  
V
V
ANALOG INPUT  
VClipping Differential input voltage before clipping output  
VIN = VINP – VINN  
±1.25  
V
V
V
VFSR  
Specified linear differential full-scale voltage  
Absolute common-mode input voltage(1)  
VIN = VAINP – VAINN  
(VINP + VINN) / 2 to AGND  
–1  
–2  
1
AVDD  
(VINP + VINN) / 2 to AGND,  
3.0 V ≤ AVDD < 4.5 V,  
|VINP – VINN| ≤ 1.25 V  
–0.8  
–0.8  
AVDD – 2.4  
2.1  
VCM  
Operating common-mode input voltage(2)  
V
(VINP + VINN) / 2 to AGND,  
4.5 V ≤ AVDD ≤ 5.5 V,  
|VINP – VINN| ≤ 1.25 V  
TEMPERATURE RANGE  
TA Specified ambient temperature  
–40  
25  
125  
°C  
(1) Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal  
operation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.  
(2) See the Analog Input section for more details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC1333M10  
 
 
 
 
AMC1333M10  
www.ti.com.cn  
UNIT  
ZHCSQM2 – MAY 2022  
6.4 Thermal Information  
DWV (SOIC)  
8 PINS  
94  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
36  
RθJB  
ΨJT  
ΨJB  
Junction-to-board thermal resistance  
46.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
11.5  
44.4  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
AVDD = DVDD = 5.5 V  
VALUE  
78  
UNIT  
PD  
Maximum power dissipation (both sides)  
mW  
27  
AVDD = 3.6 V  
AVDD = 5.5 V  
DVDD = 3.6 V  
DVDD = 5.5 V  
PD1  
Maximum power dissipation (high-side supply)  
Maximum power dissipation (low-side supply)  
mW  
mW  
46  
18  
32  
PD2  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
≥ 8.5  
≥ 8.5  
mm  
mm  
CPG  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the double  
insulation  
DTI  
CTI  
Distance through insulation  
≥ 0.021  
mm  
V
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
≥ 600  
I
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-III  
Overvoltage category  
per IEC 60664-1  
DIN EN IEC 60747-17 (VDE 0884-17)(2)  
Maximum repetitive peak  
VIORM  
At AC voltage  
2120  
VPK  
isolation voltage  
At AC voltage (sine wave)  
1500  
2120  
8000  
9600  
9800  
VRMS  
VDC  
Maximum-rated isolation  
VIOWM  
working voltage  
At DC voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Tested in air, 1.2/50-µs waveform per IEC 62368-1  
Maximum transient  
VIOTM  
VPK  
isolation voltage  
VIMP  
Maximum impulse voltage(3)  
VPK  
VPK  
Maximum surge  
Tested in oil (qualification test),  
1.2/50-µs waveform per IEC 62368-1  
VIOSM  
12800  
≤ 5  
isolation voltage(4)  
Method a, after input/output safety test subgroups 2 and 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
≤ 5  
qpd  
Apparent charge(5)  
pC  
Method b1, at routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875  
× VIORM, tm = 1 s  
≤ 5  
Barrier capacitance,  
input to output(6)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
~1.5  
pF  
Ω
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(6)  
VIO = 500 V at 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
2
55/125/21  
UL1577  
VTEST = VISO = 5700 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5700  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air to determine the surge immunity of the package.  
(4) Testing is carried in oil to determine the intrinsic surge immunity of the isolation barrier.  
(5) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(6) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC1333M10  
 
 
 
 
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
UL  
DIN EN IEC 60747-17 (VDE 0884-17),  
EN IEC 60747-17,  
DIN EN IEC 62368-1 (VDE 0868-1),  
EN IEC 62368-1,  
Recognized under 1577 component recognition program  
IEC 62368-1 Clause : 5.4.3 ; 5.4.4.4 ; 5.4.9  
Reinforced insulation  
Single protection  
Certificate number: 40040142  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RθJA = 94°C/W, TJ = 150°C, TA = 25°C,  
AVDD = DVDD = 5.5 V  
242  
Safety input, output,  
or supply current  
IS  
mA  
RθJA = 94°C/W, TJ = 150°C, TA = 25°C,  
AVDD = DVDD = 3.6 V  
369  
Safety input, output,  
or total power(1)  
PS  
TS  
RθJA = 94°C/W, TJ = 150°C, TA = 25°C  
1330  
150  
mW  
°C  
Maximum safety temperature  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × AVDDmax + IS × DVDDmax, where AVDDmax is the maximum high-side voltage and DVDDmax is the maximum controller-side  
supply voltage.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.9 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V, INP  
= –1 V to +1 V, and INN = AGND = 0 V; typical specifications are at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
RIN  
Single-ended input resistance  
Differential input resistance  
INN = AGND  
0.1  
0.1  
2.4  
3
GΩ  
GΩ  
RIND  
INP = INN = AGND,  
IIB = (IINP + IINN) / 2  
IIB  
Input bias current  
–10  
±3  
10  
5
nA  
TCIIB  
IIO  
Input bias current temperature drift  
Input offset current  
–7  
±1  
2
pA/°C  
nA  
IIO = IINP – IINN  
INN = AGND  
–5  
CIN  
Single-ended input capacitance  
Differential input capacitance  
Common-mode transient immunity  
pF  
CIND  
CMTI  
2
pF  
|AGND – DGND| = 1 kV  
100  
150  
kV/µs  
INP = INN, fIN = 0 Hz,  
VCM min ≤ VCM ≤ VCM max  
–104  
CMRR  
PSRR  
Common-mode rejection ratio  
Power-supply rejection ratio  
dB  
dB  
INP = INN, fIN = 10 kHz,  
–0.5 V ≤ VIN ≤ 0.5 V  
–89  
–86  
–86  
PSRR vs AVDD, at DC  
PSRR vs AVDD, 100-mV and  
10-kHz ripple  
DC ACCURACY  
EO  
Offset error(1) (2)  
INP = INN = AGND, TA = 25°C  
TA = 25°C  
–0.5  
–4  
±0.04  
±0.6  
0.5  
4
mV  
TCEO  
EG  
Offset error temperature drift(4)  
Gain error(2)  
µV/°C  
–0.2%  
–40  
±0.03%  
±20  
0.2%  
TCEG  
DNL  
INL  
Gain error temperature drift(5)  
Differential nonlinearity  
Integral nonlinearity(3)  
40 ppm/°C  
Resolution: 16 bits  
Resolution: 16 bits  
–0.99  
–5  
0.99  
LSB  
LSB  
±1.6  
–91  
15  
5
AC ACCURACY  
VIN = 2 VPP, fIN = 1 kHz,  
single-ended input (AINN = AGND)  
THD  
Total harmonic distortion(6)  
–82  
dB  
DIGITAL OUTPUT (CMOS)  
CLOAD  
Output load capacitance  
pF  
V
DVDD –  
0.1  
IOH = –20 µA  
IOH = –4 m  
VOH  
High-level output voltage  
Low-level output voltage  
DVDD –  
0.4  
IOL = 20 µA  
IOL = 4 m  
0.1  
0.4  
VOL  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC1333M10  
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V, INP  
= –1 V to +1 V, and INN = AGND = 0 V; typical specifications are at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
AVDD rising  
2.1  
1.95  
2.2  
2.65  
2.5  
AVDD undervoltage detection  
threshold  
AVDDUV  
DVDDUV  
IAVDD  
V
AVDD falling  
DVDD rising  
2.45  
2.65  
2.2  
V
V
DVDD undervoltage detection  
threshold  
DVDD falling  
1.8  
3 V ≤ AVDD ≤ 3.6 V  
4.5 V ≤ AVDD ≤ 5.5 V  
5.8  
6.4  
7.6  
High-side supply current  
mA  
8.4  
2.7 V ≤ DVDD ≤ 3.6 V,  
CLOAD = 15 pF  
4
5.1  
5.8  
IDVDD  
Low-side supply current  
mA  
4.5 V ≤ DVDD ≤ 5.5 V,  
CLOAD = 15 pF  
4.4  
(1) This parameter is input referred.  
(2) The typical value includes one sigma statistical variation.  
(3) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer  
function expressed as number of LSBs or as a percent of the specified linear full-scale range FSR.  
(4) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCEO = (EO,MAX – EO,MIN) / TempRange where EO,MAX and EO,MIN refer to the maximum and minimum EO values measured within the  
temperature range (–40 to 125).  
(5) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = ((EG,MAX - EG,MIN) / TempRange) x 104 where EG,MAX and EG,MIN refer to the maximum and minimum EG values (in %)  
measured within the temperature range (–40 to 125).  
(6) THD is the ratio of the rms sum of the amplitudes of first five higher harmonics to the amplitude of the fundamental.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
 
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
9.5  
TYP  
10  
MAX  
10.5  
55%  
UNIT  
fCLK  
Internal clock frequency  
Internal clock duty cycle  
MHz  
45%  
50%  
DOUT hold time after rising edge of  
CLKOUT  
tH  
tD  
CLOAD = 15 pF  
3.5  
ns  
ns  
DOUT hold time after rising edge of  
CLKOUT  
CLOAD = 15 pF  
15  
6
10% to 90%, 2.7 V ≤ DVDD ≤ 3.6 V,  
CLOAD = 15 pF  
2.5  
3.2  
2.2  
2.9  
tr  
DOUT and CLKOUT rise time  
ns  
10% to 90%, 4.5 V ≤ DVDD ≤ 5.5 V,  
CLOAD = 15 pF  
6
10% to 90%, 2.7 V ≤ DVDD ≤ 3.6 V,  
CLOAD = 15 pF  
6
tf  
DOUT and CLKOUT fall time  
Device start-up time  
ns  
10% to 90%, 4.5 V ≤ DVDD ≤ 5.5 V,  
CLOAD = 15 pF  
6
AVDD step from 0 to 3.0 V with  
DVDD ≥ 2.7 V to bitstream valid,  
0.1% settling  
tASTART  
0.25  
ms  
6.11 Timing Diagrams  
tCLKIN  
tHIGH  
CLKOUT  
50%  
tLOW  
tH  
tD  
tr / tf  
90%  
10%  
DOUT  
6-1. Digital Interface Timing  
DVDD  
AVDD  
CLKOUT  
DOUT  
tSTART  
Bitstream not valid (analog settling)  
Valid bitstream  
6-2. Device Start-Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC1333M10  
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.12 Insulation Characteristics Curves  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
50  
100  
150  
TA (°C)  
D070  
6-4. Thermal Derating Curve for Safety-Limiting Power per  
6-3. Thermal Derating Curve for Safety-Limiting Current per  
VDE  
VDE  
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
6-5. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.13 Typical Characteristics  
at AVDD = 5 V, DVDD = 3.3 V, INP = –1 V to 1 V, INN = AGND, and sinc3 filter with OSR = 256 (unless otherwise noted)  
0.2  
0.15  
0.1  
10  
TA = -40 C  
TA = 25 C  
TA = 85 C  
0.05  
0
1
-0.05  
-0.1  
-0.15  
-0.2  
Device 1  
Device 2  
Device 3  
0.1  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
(VINP - VINN) (V)  
D074  
Temperature (°C)  
D073  
Total uncalibrated output error (in %) is defined as:  
(Output Code / 216) – (VIN + 1.25 V) / 2.5 V) × 100,  
where VIN = (VINP – VINN  
)
6-7. Single-Ended Input Resistance vs Temperature  
6-6. Total Uncalibrated Output Error vs Input Voltage  
10  
8
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-1.4  
-1  
-0.6  
-0.2  
0.2  
0.6  
1
1.4  
VCM (V)  
D003  
6-8. Differential Input Resistance vs Temperature  
6-9. Input Bias Current vs Common-Mode Input Voltage  
10  
8
10  
8
6
6
4
4
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D004  
D005  
6-10. Input Bias Current vs High-Side Supply Voltage  
6-11. Input Bias Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC1333M10  
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, INP = –1 V to 1 V, INN = AGND, and sinc3 filter with OSR = 256 (unless otherwise noted)  
0
-20  
0
-20  
OSR = 8  
OSR = 256  
OSR = 8  
OSR = 256  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
fIN (kHz)  
fRipple (kHz)  
D038  
D041  
6-12. Common-Mode Rejection Ratio vs Ripple Frequency  
6-13. Power-Supply Rejection Ratio vs Ripple Frequency  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.1  
-0.2  
-0.3  
-0.3  
Device 1  
Device 1  
Device 2  
Device 3  
Device 2  
Device 3  
-0.4  
-0.5  
-0.4  
-0.5  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D027  
D026  
6-14. Offset Error vs High-Side Supply Voltage  
0.4  
6-15. Offset Error vs Temperature  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.1  
-0.2  
-0.3  
-0.4  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D020  
D021  
6-16. Gain Error vs High-Side Supply Voltage  
6-17. Gain Error vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, INP = –1 V to 1 V, INN = AGND, and sinc3 filter with OSR = 256 (unless otherwise noted)  
5
4
6
5
4
3
2
1
0
Device 1  
Device 2  
Device 3  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
VIN (V)  
Temperature (°C)  
D028  
D030  
6-18. Integral Nonlinearity vs Input Voltage  
6-19. Integral Nonlinearity vs Temperature  
-70  
-70  
Device 1  
Device 1  
Device 2  
Device 3  
Device 2  
Device 3  
-75  
-80  
-75  
-80  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
VDD (V)  
Temperature (°C)  
D056  
D059  
6-20. Total Harmonic Distortion vs High-Side Supply Voltage  
6-21. Total Harmonic Distortion vs Temperature  
-70  
-75  
-80  
-85  
-90  
-95  
-70  
Device 1  
Device 2  
Device 3  
-75  
-80  
-85  
-90  
-95  
-100  
-100  
-105  
-110  
Device 1  
Device 2  
Device 3  
-105  
-110  
0.01  
0.1  
1
10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
fIN (kHz)  
VIN (VPP)  
D052  
D049  
6-22. Total Harmonic Distortion vs Input Signal Frequency  
6-23. Total Harmonic Distortion vs Input Signal Amplitude  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC1333M10  
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at AVDD = 5 V, DVDD = 3.3 V, INP = –1 V to 1 V, INN = AGND, and sinc3 filter with OSR = 256 (unless otherwise noted)  
108  
107  
106  
105  
104  
103  
102  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
D017  
sinc3, OSR = 1, frequency bin width = 1 Hz  
sinc3, OSR = 256, VIN = 2 VPP  
6-24. Noise Density With Both Inputs Shorted to HGND  
6-25. Frequency Spectrum With 1-kHz Input Signal  
0
-20  
8.5  
IAVDD vs AVDD  
IDVDD vs DVDD  
7.5  
-40  
6.5  
5.5  
4.5  
3.5  
2.5  
-60  
-80  
-100  
-120  
-140  
-160  
0.1  
1
10  
20  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Frequency (kHz)  
D015  
xVDD (V)  
D043  
sinc3, OSR = 256, VIN = 2 VPP  
6-26. Frequency Spectrum With 10-kHz Input Signal  
6-27. Supply Current vs Supply Voltage  
8.5  
IAVDD  
IDVDD  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D044  
6-28. Supply Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The input stage of the AMC1333M10 consists of a fully differential amplifier that feeds the switched-capacitor  
input of a second-order, delta-sigma (ΔΣ) modulator. The modulator converts the analog input signal into a digital  
bitstream that is transferred across the isolation barrier that separates the high-side from the low-side. The  
isolated data output DOUT of the converter provides a stream of digital ones and zeros that is synchronous to  
the internally generated clock source at the CLKOUT pin. The time average of this serial bitstream output is  
proportional to the analog input voltage.  
The silicon-dioxide (SiO2) based capacitive isolation barrier supports a high level of magnetic field immunity, as  
described in the ISO72x Digital Isolator Magnetic-Field Immunity application report. The digital modulation used  
in the AMC1333M10 to transmit data across the isolation barrier, and the isolation barrier characteristics itself,  
result in high reliability and common-mode transient immunity.  
7.2 Functional Block Diagram  
AVDD  
DVDD  
AMC1333M10  
INP  
CLKOUT  
DOUT  
Digital  
Interface  
Modulator  
INN  
AGND  
DGND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC1333M10  
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Input  
The high-impedance input stage of the AMC1333M10 feeds a second-order, switched-capacitor, feed-forward  
ΔΣ modulator. The modulator converts the analog signal into a bitstream that is transferred over the isolation  
barrier, as described in the Isolation Channel Signal Transmission section. The high-impedance and low bias-  
current input makes the AMC1333M10 suitable for isolated, high-voltage-sensing applications that typically  
employ high-impedance resistor dividers.  
For reduced offset and offset drift, the input buffer is chopper-stabilized with the chopping frequency set at fCLK  
/
32. 7-1 shows the spur at 312.5 kHz that is generated by the chopping frequency for a modulator clock of 10  
MHz.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
D016  
sinc3 filter, OSR = 1, fIN = 1 kHz  
7-1. Quantization Noise Shaping  
There are two restrictions on the analog input signals (INP and INN). First, if the input voltage exceeds the input  
range specified in the Absolute Maximum Ratings table, the input current must be limited to 10 mA because the  
device input electrostatic discharge (ESD) diodes turn on. Second, the linearity and noise performance of the  
device are ensured only when the differential analog input voltage remains within the specified linear full-scale  
range VFSR and within the specified input common-mode voltage range VCM, as shown in 7-2 and as specified  
in the Recommended Operating Conditions table.  
7-2. Common-Mode Input Voltage Range With a Differential Input Signal of ±1.25 V  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
7.3.2 Modulator  
7-3 conceptualizes the second-order, switched-capacitor, feed-forward ΔΣ modulator implemented in the  
AMC1333M10. The output V5 of the 1-bit, digital-to-analog converter (DAC) is subtracted from the input voltage  
VIN = (VINN – VINP), providing an analog voltage V1 at the input of the first integrator stage. The output of the first  
integrator feeds the input of the second integrator stage, resulting in an output voltage V3 that is summed with  
the input signal VIN and the output of the first integrator V2. Depending on the polarity of the resulting voltage  
V4, the output of the comparator is changed. In this case, the 1-bit DAC responds on the next clock pulse by  
changing the associated analog output voltage V5, causing the integrators to progress in the opposite direction  
and forcing the value of the integrator output to track the average value of the input.  
fCLKIN  
V1  
V2  
V3  
V4  
VIN  
Integrator 1  
DAC  
Integrator 2  
+
Σ
Σ
DOUT  
0 V  
V5  
7-3. Block Diagram of a Second-Order Modulator  
The modulator shifts the quantization noise to high frequencies, as depicted in 7-1. Therefore, use a low-pass  
digital filter at the output of the device to increase the overall performance. This filter is also used to convert the  
1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation). TI's C2000™  
and Sitara™ microcontroller families offer a suitable programmable, hardwired filter structure, termed a sigma-  
delta filter module (SDFM), optimized for usage with the AMC1333M10. Alternatively, a field-programmable gate  
array (FPGA) or complex programmable logic device (CPLD) can be used to implement the filter.  
7.3.3 Isolation Channel Signal Transmission  
The AMC1333M10 uses an on-off keying (OOK) modulation scheme, as shown in 7-4, to transmit the  
modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) illustrated in the  
Functional Block Diagram transmits an internally generated, high-frequency carrier across the isolation barrier  
to represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC1333M10 is 480 MHz.  
7-4 shows the concept of the on-off keying scheme.  
Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
7-4. OOK-Based Modulation Scheme  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC1333M10  
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
7.3.4 Digital Output  
A differential input signal of 0 V ideally produces a stream of ones and zeros that are high 50% of the time.  
A differential input of 1 V produces a stream of ones and zeros that are high 90% of the time. With 16 bits of  
resolution, that percentage ideally corresponds to code 58982. A differential input of –1 V produces a stream  
of ones and zeros that are high 10% of the time and ideally results in code 6553 with 16-bit resolution. These  
input voltages are also the specified linear range of the AMC1333M10. If the input voltage value exceeds this  
range, the output of the modulator shows nonlinear behavior as the quantization noise increases. The output of  
the modulator clips with a constant stream of zeros with an input less than or equal to –1.25 V, or with a constant  
stream of ones with an input greater than or equal to 1.25 V. In this case, however, the AMC1333M10 generates  
a single 1 (if the input is at negative full-scale) or 0 (if the input is at positive full-scale) every 128 clock cycles to  
indicate proper device function (see the Output Behavior in Case of a Full-Scale Input section for more details).  
7-5 shows the input voltage versus the output modulator signal.  
+ FS (Analog Input)  
Modulator Output  
– FS (Analog Input)  
Analog Input  
7-5. Modulator Output vs Analog Input  
The density of ones in the output bitstream can be calculated using 方程式 1 for any input voltage (VIN = VINP  
– VINN) value with the exception of a full-scale input signal, as described in Output Behavior in Case of a  
Full-Scale Input:  
V
+ V  
IN  
Clipping  
Clipping  
ρ =  
(1)  
2 × V  
7.3.4.1 Output Behavior in Case of a Full-Scale Input  
If a full-scale input signal is applied to the AMC1333M10 (that is, |VIN| ≥ |VClipping|), the device generates a single  
one or zero every 128 bits at DOUT, as shown in 7-6, depending on the actual polarity of the signal being  
sensed. In this way, differentiating between a missing AVDD and a full-scale input signal is possible on the  
system level.  
CLKOUT  
DOUT  
DOUT  
VIN –1.25 V  
VIN 1.25 V  
127 CLKIN cycles  
127 CLKIN cycles  
7-6. Full-Scale Output of the AMC1333M10  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
7.3.4.2 Output Behavior in Case of a Missing High-Side Supply  
If the high-side supply is missing, the device provides a constant bitstream of logic 0's at the output, as shown in  
7-7; that is, DOUT is permanently low. A one is not generated every 128 clock pulses, which differentiates this  
condition from a valid negative full-scale input. This feature is useful to identify high-side power-supply problems  
on the board.  
CLKIN  
DOUT  
AVDD  
Data valid  
valid  
0
Data valid  
valid  
missing  
7-7. Output of the AMC1333M10 in Case of a Missing High-Side Supply  
7.4 Device Functional Modes  
The AMC1333M10 is operational when the power supplies AVDD and DVDD are applied as specified in the  
Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC1333M10  
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
The high input impedance, low input bias current, bipolar input voltage range, excellent accuracy, and low  
temperature drift make the AMC1333M10 a high-performance solution for industrial applications where isolated  
AC or DC voltage sensing is required.  
8.2 Typical Application  
Isolated modulators are widely used for voltage measurements in high-voltage applications that must be isolated  
from a low-voltage domain. Typical applications are AC line voltage measurements, either line-to-neutral or  
line-to-line in grid-connected equipment.  
8-1 illustrates a simplified schematic of an AC motor drive application that uses three AMC1333M10 devices  
to measure the AC line voltage on each phase of a three-phase system. The AC line voltage is divided down  
to an approximate ±1-V level across the bottom resistor (RSNS) of a high-impedance resistive divider that is  
sensed by the AMC1333M10. The digital output of the AMC1333M10 is galvanically isolated from the input  
and processed by a digital sigma-delta filter module (SDFM) inside the TMS320F28x7x microcontroller on the  
low-voltage side of the system. A common high-side power supply (AVDD) for all three AMC1333M10 devices  
is generated from the low-side supply (DVDD) of the system by an isolated DC/DC converter circuit. A low-cost  
solution is based on the push-pull driver SN6501 and a transformer that supports the desired isolation voltage  
ratings.  
The high-impedance input, high input voltage range, and the high common-mode transient immunity (CMTI) of  
the AMC1333M10 ensure reliable and accurate operation even in high-noise environments.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
DC-Link  
EMI  
Filter  
L1  
L2  
L3  
M
3~  
R1  
R2  
Number of unit resistors  
depends on  
design requirements.  
RSNS  
N
N
Low-side supply  
(3.3 V or 5 V)  
100 nF 1 uF  
100 nF 1 uF  
100 nF 1 uF  
AMC1333M10  
TMS320F28x7x  
AVDD  
DVDD  
INP  
CLKOUT  
DOUT  
SDx-C1  
SDx-D1  
INN  
AGND  
DGND  
1 μF 100 nF 100 pF  
1 μF 100 nF 100 pF  
1 μF 100 nF 100 pF  
AMC1333M10  
AVDD  
DVDD  
CLKOUT  
DOUT  
INP  
SDx-C2  
SDx-D2  
INN  
AGND  
DGND  
AMC1333M10  
AVDD  
DVDD  
CLKOUT  
DOUT  
INP  
SDx-C3  
SDx-D3  
INN  
AGND  
DGND  
TPS76350  
SN6501  
NC  
EN  
GND  
IN  
D1  
GND  
VCC  
D2  
VOUT = 5 V  
OUT  
GND  
10 μF 100 nF  
10 μF  
100 nF 4.7 μF  
8-1. Using the AMC1333M10 for AC Line-Voltage Sensing in an AC Motor Drive Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC1333M10  
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
8.2.1 Design Requirements  
8-1 lists the parameters for this typical application.  
8-1. Design Requirements  
PARAMETER  
120-VRMS LINE VOLTAGE  
120 V ±10%, 60 Hz  
3.3 V or 5 V  
230-VRMS LINE VOLTAGE  
System input voltage  
230 V ±10%, 50 Hz  
3.3 V or 5 V  
3.3 V or 5 V  
75 V  
High-side supply voltage  
Low-side supply voltage  
3.3 V or 5 V  
Maximum resistor operating voltage  
75 V  
Voltage drop across the sense resistor (RSNS) for a linear response  
Current through the resistive divider, ICROSS  
±1 V (maximum)  
100 μA  
±1 V (maximum)  
100 μA  
8.2.2 Detailed Design Procedure  
This discussion covers the 230-VRMS example. The procedure for calculating the resistive divider for the 120-  
VRMS use case is identical.  
The 100-μA, cross-current requirement at peak input voltage (360 V) determines that the total impedance of  
the resistive divider is 3.6 MΩ. The impedance of the resistive divider is dominated by the top resistors (shown  
exemplary as R1 and R2 in 8-1) and the voltage drop across RSNS can be neglected for a short time. The  
maximum allowed voltage drop per unit resistor is specified as 75 V; therefore, the total minimum number of unit  
resistors in the top portion of the resistive divider is 360 V / 75 V = 5. The calculated unit value is 3.6 MΩ / 5 =  
720 kΩ, and the next closest value from the E96 series is 715 kΩ.  
The sense resistor value RSNS is sized such that the voltage drop across the impedance at maximum input  
voltage (360 V) equals the linear full-scale input voltage (VFSR) of the AMC1333M10 (that is, +1 V). RSNS is  
calculated as RSNS = VFSR / (VPeak – VFSR) × RTOP, where RTOP is the total value of the top resistor string (5 ×  
715 kΩ = 3575 kΩ). The resulting value for RSNS is 10.04 kΩ, and the next closest value from the E96 series is  
10.0 kΩ.  
8-2 summarizes the design of the resistive divider.  
8-2. Resistor Value Examples  
PARAMETER  
120-VRMS LINE VOLTAGE  
230-VRMS LINE VOLTAGE  
Peak voltage  
190 V  
634 kΩ  
3
360 V  
715 kΩ  
5
Unit resistor value, RTOP  
Number of unit resistors in RTOP  
Sense resistor value, RSNS  
10.2kΩ  
1912.2 kΩ  
99.4 μA  
1.013 V  
6.3 mW  
18.9 mW  
10.0 kΩ  
3885.0 kΩ  
100.4 μA  
1.004 V  
7.2 mW  
36.2 mW  
Total resistance value (RTOP + RSNS)  
Resulting current through resistive divider, ICROSS  
Resulting full-scale voltage drop across sense resistor RSNS  
Peak power dissipated in RTOP unit resistor  
Total peak power dissipated in resistive divider  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
8.2.2.1 Input Filter Design  
Placing an RC filter in front of the isolated modulator improves signal-to-noise performance of the signal path.  
In practice, however, the impedance of the resistor divider is high and only a small value filter capacitor can be  
used not to limit the signal bandwidth to an unacceptable low value. Design the input filter such that the cutoff  
frequency of the filter is at least one order of magnitude lower than the sampling frequency (10 MHz) of the  
internal ΔΣ modulator.  
Most voltage-sensing applications use high-impedance resistor dividers in front of the isolated amplifier to scale  
down the input voltage. In this case, an additional resistor is not required and a single capacitor (as shown in 图  
8-2) is sufficient to filter the input signal.  
AMC1333M10  
AVDD  
DVDD  
CLKOUT  
DOUT  
100 pF  
INP  
INN  
AGND  
DGND  
8-2. Input Filter  
8.2.2.2 Bitstream Filtering  
The modulator generates a bitstream that is processed by a digital filter to obtain a digital word similar to a  
conversion result of a conventional analog-to-digital converter (ADC). 方程式 2 shows a sinc3-type filter, which is  
a very simple filter that is built with minimal effort and hardware.  
3
-OSR  
1- z  
H z =  
( )  
÷
÷
1- z-1  
«
(2)  
This filter provides the best output performance at the lowest hardware size (count of digital gates) for a second-  
order modulator. All characterization in this document is also done with a sinc3 filter with an oversampling ratio  
(OSR) of 256 and an output word width of 16 bits.  
An example code for implementing a sinc3 filter in an FPGA is discussed in the Combining the ADS1202 with  
an FPGA Digital Filter for Current Measurement in Motor Control Applications application note, available for  
download at www.ti.com.  
For modulator output bitstream filtering, a device from TI's C2000 or Sitara microcontroller families is  
recommended. These families support multichannel dedicated hardwired filter structures that significantly  
simplify system level design by offering two filtering paths per channel: one path provides high-accuracy results  
for the control loop and the other provides a fast-response path for overcurrent detection.  
A delta sigma modulator filter calculator is available for download at www.ti.com that aids in the filter design and  
selecting the right OSR and filter order to achieve the desired output resolution and filter response time.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC1333M10  
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
8.2.3 Application Curve  
The effective number of bits (ENOB) is often used to compare the performance of ADCs and ΔΣ modulators. 图  
8-3 shows the ENOB of the AMC1333M10 with different oversampling ratios.  
16  
sinc3  
sinc2  
14  
sinc1  
12  
10  
8
6
4
2
0
1
10  
100  
1000  
OSR  
D013  
8-3. Measured Effective Number of Bits vs Oversampling Ratio  
8.3 What to Do and What Not to Do  
Do not leave the inputs of the AMC1333M10 unconnected (floating) when the device is powered up. If either  
modulator input is left floating, the input bias current can drive this input beyond the specified common-mode  
input voltage range. If both inputs are beyond that range, the gain of the front-end diminishes and the output  
bitstream is not valid.  
Connect the high-side ground (AGND) to INN, either by a hard short or through a resistive path. A DC current  
path between INN and AGND is required to define the input common-mode voltage. Take care not to exceed the  
input common-mode range, as specified in the Recommended Operating Conditions table. For best accuracy,  
route the ground connection as a separate trace that connects directly to the sense resistor rather than shorting  
AGND to INN directly at the input to the device. See the Layout section for more details.  
Do not connect protection diodes to the inputs (INP or INN) of the AMC1333M10. Diode leakage current can  
introduce significant measurement error especially at high temperatures. The input pin is protected against high  
voltages by its ESD protection circuit and the high impedance of the external restive divider.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
In a typical application, the high-side power supply (AVDD) for the AMC1333M10 is generated from the low-side  
supply (DVDD) by an isolated DC/DC converter. A low-cost solution is based on the push-pull driver SN6501 and  
a transformer that supports the desired isolation voltage ratings.  
The AMC1333M10 does not require any specific power-up sequencing. The high-side power supply (AVDD)  
is decoupled with a low-ESR, 100-nF capacitor (C1) parallel to a low-ESR, 1-μF capacitor (C2). The low-side  
power supply (DVDD) is equally decoupled with a low-ESR, 100-nF capacitor (C3) parallel to a low-ESR, 1-μF  
capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible. 9-1 shows a  
decoupling diagram for the AMC1333M10.  
VAC  
R1  
DVDD  
C2 1 µF  
C4 1 µF  
AMC1333M10  
R2  
C1 100 nF  
C3 100 nF  
AVDD  
DVDD  
CLKOUT  
DOUT  
INP  
to MCU  
to MCU  
C5  
100 pF  
RSNS  
INN  
AGND  
DGND  
9-1. Decoupling of the AMC1333M10  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AMC1333M10  
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10-1 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC1333M10 supply pins) and placement of the other components required by the device. For  
best performance, place the sense resistor close to the device input pins (INN and INP).  
10.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
C2  
C1  
C4  
C3  
to MCU  
to MCU  
INP  
INN  
CLKOUT  
DOUT  
AMC1333M10  
DGND  
Top Metal  
Inner or Bottom Layer Metal  
Via  
10-1. Recommended Layout of the AMC1333M10  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AMC1333M10  
 
 
 
 
AMC1333M10  
ZHCSQM2 – MAY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Isolation Glossary application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report  
Texas Instruments, TMS320F28004x Piccolo™ Microcontrollers data sheet  
Texas Instruments, TMS320F2807x Piccolo™ Microcontrollers data sheet  
Texas Instruments, TMS320F2837xD Dual-Core Delfino™ Microcontrollers data sheet  
Texas Instruments, TPS763 Low-Power, 150-mA, Low-Dropout Linear Regulator data sheet  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity  
Texas Instruments, Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor  
Control Applications application report  
Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, Delta Sigma Modulator Filter Calculator design tool  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AMC1333M10  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1333M10DWVR  
ACTIVE  
SOIC  
DWV  
8
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
1333M10  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC1333M10DWVR  
SOIC  
DWV  
8
1000  
330.0  
16.4  
12.05 6.15  
3.3  
16.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DWV  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AMC1333M10DWVR  
8
1000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AMC1336

±1V 输入、精密电压检测增强型隔离式调制器
TI

AMC1336-Q1

汽车类 ±1V 输入、精密电压检测增强型隔离式 Δ-Σ 调制器
TI

AMC1336DWV

±1V 输入、精密电压检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1336DWVR

±1V 输入、精密电压检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1336QDWVRQ1

汽车类 ±1V 输入、精密电压检测增强型隔离式 Δ-Σ 调制器 | DWV | 8 | -40 to 125
TI

AMC1350

AMC1350 Precision, ±5-V Input, Reinforced Isolated Amplifier
TI

AMC1350-Q1

AMC1350-Q1 Automotive, Precision, ±5-V Input, Reinforced Isolated Amplifier
TI

AMC1350DWV

AMC1350 Precision, ±5-V Input, Reinforced Isolated Amplifier
TI

AMC1350DWVR

AMC1350 Precision, ±5-V Input, Reinforced Isolated Amplifier
TI

AMC1350QDWVRQ1

AMC1350-Q1 Automotive, Precision, ±5-V Input, Reinforced Isolated Amplifier
TI

AMC1350_V01

AMC1350 Precision, ±5-V Input, Reinforced Isolated Amplifier
TI

AMC1351

0-5V 输入、精密电压检测增强型隔离式放大器
TI