AWR2243ABGABLQ1 [TI]

AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver;
AWR2243ABGABLQ1
型号: AWR2243ABGABLQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver

文件: 总62页 (文件大小:3490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AWR2243  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver  
AEC-Q100 qualified  
AWR2243 advanced features  
1 Features  
FMCW transceiver  
– Embedded self-monitoring with limited Host  
processor involvement  
– Complex baseband architecture  
– Option of cascading multiple devices to  
increase channel count  
– Integrated PLL, transmitter, receiver, baseband,  
and A2D  
– 76- to 81-GHz coverage with 5 GHz available  
bandwidth  
– Four receive channels  
– Three transmit channels  
– Ultra-accurate chirp engine based on  
Fractional-N PLL  
– TX power: 13 dBm  
– RX noise figure: 12 dB  
– Phase noise at 1 MHz:  
– Embedded interference detection capability  
Power management  
– Built-in LDO Network for enhanced PSRR  
– I/Os support dual voltage 3.3 V/1.8 V  
Clock source  
– Supports externally driven clock (square/sine)  
at 40 MHz  
–96 dBc/Hz (76 to 77 GHz)  
–94 dBc/Hz (77 to 81 GHz)  
– Supports 40 MHz crystal connection with load  
capacitors  
Built-in calibration and self-test  
– Built-in firmware (ROM)  
– Self-calibrating system across frequency and  
temperature  
Host interface  
– Control interface with external processor over  
SPI or I2C interface  
– Data interface with external processor over  
MIPI D-PHY and CSI2 v1.1  
– Interrupts for Fault Reporting  
Functional Safety-Compliant targeted  
– Developed for functional safety applications  
– Documentation is available to aid ISO 26262  
functional safety system design  
– Hardware integrity up to ASIL B targeted  
– Safety-related certification  
Easy hardware design  
– 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip  
chip BGA package for easy assembly and low-  
cost PCB design  
– Small solution size  
Supports automotive temperature operating range  
2 Applications  
Automated Highway Driving  
Automatic Emergency Braking  
Adaptive Cruise Control  
Imaging Radar using Cascading Configuration  
ISO 26262 certification by TUV Sud planned  
Crystal  
Power Management  
RX1  
RX2  
Antenna  
Structure  
SPI/I2C  
RX3  
External  
MCU  
RX4  
Automotive  
Interface PHY  
AWR2243  
CSI2 (4 Lane Data + 1 Clock lane)  
TX1  
TX2  
Reset  
Error  
TX3  
MCU Clock  
Figure 2-1. Radar Sensor for Automotive Applications  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
3 Description  
The AWR2243 device is an integrated single-chip FMCW transceiver capable of operation in the 76- to 81-GHz  
band. The device enables unprecedented levels of integration in an extremely small form factor. AWR2243 is an  
ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive space.  
The AWR2243 device is a self-contained FMCW transceiver single-chip solution that simplifies the  
implementation of Automotive Radar sensors in the band of 76 to 81 GHz. It is built on TI’s low-power 45-nm  
RFCMOS process, which enables a monolithic implementation of a 3TX, 4RX system with built-in PLL and A2D  
converters. Simple programming model changes can enable a wide variety of sensor implementation (Short,  
Mid, Long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the  
device is provided as a complete platform solution including reference hardware design, software drivers,  
sample configurations, API guide, and user documentation.  
Device Information  
PART NUMBER(1)  
AWR2243ABGABLQ1 (Tray)  
AWR2243ABGABLRQ1 (Reel)  
AWR2243APBGABLQ1 (Tray)  
AWR2243APBGABLRQ1 (Reel)  
PACKAGE  
FCBGA (161)  
FCBGA (161)  
FCBGA (161)  
FCBGA (161)  
BODY SIZE  
10.4 mm × 10.4 mm  
10.4 mm × 10.4 mm  
10.4 mm × 10.4 mm  
10.4 mm × 10.4 mm  
(1) For more information, see Section 13, Mechanical Packaging and Orderable Information.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
4 Functional Block Diagram  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Digital Front-end  
(Decimation filter  
chain)  
ADC output  
interface  
ADC Buffer  
CSI2  
PA  
PA  
PA  
û-  
û-  
û-  
Phase  
Shifter  
Control (1)  
Synth  
(20 GHz)  
Ramp Generator  
x4  
Host control  
interface  
Synth Cycle  
Counter  
SPI/I2C  
Multi-chip cascading(2)  
RF Control / BIST  
Temp(3)  
GPADC  
Osc.  
VMON  
RF/Analog Subsystem  
Digital  
A. Phase Shift Control:  
0° / 180° BPM  
0° / 180° BPM and 5.625° resolution control option for AWR2243, AWR2243P, and AWR1843  
B. Multi-chip cascading feature is available in AWR2243P  
C. Internal temperature sensor accuracy is ± 7 °C.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagram................................................................ 8  
7.2 Signal Descriptions................................................... 12  
8 Specifications................................................................ 16  
8.1 Absolute Maximum Ratings ..................................... 16  
8.2 ESD Ratings............................................................. 16  
8.3 Power-On Hours (POH) ...........................................17  
8.4 Recommended Operating Conditions ......................17  
8.5 Power Supply Specifications ....................................18  
8.6 Power Consumption Summary ................................ 19  
8.7 RF Specification........................................................20  
8.8 Thermal Resistance Characteristics for FCBGA  
9.2 Functional Block Diagram.........................................36  
9.3 Subsystems.............................................................. 37  
9.4 Other Subsystems.................................................... 39  
10 Monitoring and Diagnostic Mechanisms...................41  
11 Applications, Implementation, and Layout............... 43  
11.1 Application Information............................................43  
11.2 Short-, Medium-, and Long-Range Radar...............43  
11.3 Imaging Radar using Cascade Configuration......... 44  
11.4 Reference Schematic..............................................45  
11.5 Layout..................................................................... 46  
12 Device and Documentation Support..........................51  
12.1 Device Nomenclature..............................................51  
12.2 Tools and Software................................................. 52  
12.3 Documentation Support.......................................... 53  
12.4 Support Resources................................................. 53  
12.5 Trademarks.............................................................53  
12.6 Electrostatic Discharge Caution..............................53  
12.7 Export Control Notice..............................................53  
12.8 Glossary..................................................................53  
13 Mechanical, Packaging, and Orderable  
Package [ABL0161] ....................................................21  
8.9 Timing and Switching Characteristics....................... 22  
9 Detailed Description......................................................36  
9.1 Overview...................................................................36  
Information.................................................................... 54  
13.1 Packaging Information............................................ 54  
5 Revision History  
Changes from February 11, 2020 to August 31, 2020 (from Revision * (February 2020) to  
Revision A (August 2020))  
Page  
Global: Updated the numbering format for tables, figures, and cross-references throughout the document..... 1  
Global: Added/Updated cascading feature in supported on the AWR2243P only..............................................1  
Global: Added/Updated Functional Safety-Compliant targeted information....................................................... 1  
Global: Updated AWR2243 Product Status from "Advance Information (AI)" to "Production Data (PD)"...........1  
(Device Information): Updated/Changed table to reflect production part numbers.............................................2  
(Functional Block Diagram): Updated/Changed footnotes to reflect AWR2243, AWR2243P, and AWR1843....3  
Table 6-1 (Device Features Comparison): Added AWR2243P device-specific features to table and updated  
associated footnotes...........................................................................................................................................6  
Table 6-1: Updated/Changed Max sampling rate FUNCTION to separate complex 1x and 2x cases............... 6  
Table 7-1 (Signal Descriptions): Updated/Changed the DEFAULT PULL STATUS and DESCRIPTION for  
NRESET (P12)................................................................................................................................................. 12  
Table 7-1: Added recommended connectivity for GPIO[0] (N4) during Debug.................................................12  
Section 8.1 (Absolute Maximum Ratings): Updated/Changed the MAX value for Operating junction  
temperature range from "125" to "140", as Automotive.................................................................................... 16  
Section 8.3 (Power-On Hours (POH)): Updated/Changed table to reflect automotive junction temp POH  
percentages......................................................................................................................................................17  
Section 8.4 (Recommended Operating Conditions): Added TJ, Operating junction temperature range.......... 17  
Section 8.6 (Power Consumption Summary): Added missing table reference to the paragraph......................19  
Table 8-3 (Maximum Current Ratings at Power Terminals): Added the current consumption VDDIN MAX value  
of "850 mA" for AWR2243P..............................................................................................................................19  
Section 8.7 (RF Specification): Updated/Changed the MAX values for IF bandwidth and A2D sampling rate  
for both "(real/complex 2x)" and "(complex 1x)" to reflect the AWR2243P and AWR2243 devices................. 20  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Section 8.7: Added 20GHz SYNC OUT output level max value of 10 dBm and 20GHz SYNC IN input level  
max value of 7 dBm with associated footnote. ................................................................................................ 20  
Section 8.7: Corrected the phase noise measurement conditions to reflect VCO1 value only.........................20  
Section 8.7: Updated/Changed the 1-dB compression point TYP value from "-8" to "-9" dBm, and updated the  
corresponding footnote frequency from "50" to "10" kHz..................................................................................20  
Figure 8-1 (Noise Figure, In-band P1dB vs Receiver Gain): Updated figure....................................................20  
Section 8.8 (Thermal Resistance Characteristics): Deleted the 125°C junction temperature reference from  
footnote (3).........................................................................................................................................................21  
Figure 8-2 (Device Wake-Up Sequence): Removed associated MCU_CLK_OUT footnote from image..........22  
Section 8.9.3.1 (Clock Specifications): Added the External Clock Mode Specifications table .........................24  
Section 8.9.4 (Multibuffered / Standard Serial Peripheral Interface (MibSPI)): Updated section..................... 26  
Figure 8-6 (SPI Communication): Updated figure.............................................................................................28  
Section 10 (Monitoring and Diagnostic Mechanisms): Added new section...................................................... 41  
Figure 11-1 (Short-, Medium-, and Long-Range Radar): Updated figure......................................................... 43  
Section 11.3 (Imaging Radar using Cascade Configuration): Updated figure.................................................. 44  
Figure 11-3 (Reference Schematic): Updated/Changed the VBGAP decoupling capacitor value from "0.22 uF"  
to "47 nF"..........................................................................................................................................................45  
Figure 12-1 (Device Nomenclature): Updated/Changed figure........................................................................ 51  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AWR2243  
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
6 Device Comparison  
Table 6-1. Device Features Comparison  
FUNCTION  
AWR2243P  
AWR2243  
AWR1243  
AWR1443  
AWR1642  
AWR1843  
Number of receivers  
4
4
4
4
4
4
Number of transmitters  
On-chip memory  
3(1)  
3(1)  
3
3
576KB  
2
1.5MB  
B-Targeted  
5
3(1)  
2MB  
ASIL  
B-Targeted  
B-Targeted  
B-Targeted  
15  
B-Targeted  
Max I/F (Intermediate Frequency) (MHz)  
5
20  
45  
15  
10  
25  
Max real/complex 2x sampling rate (Msps)  
Max complex 1x sampling rate (Msps)  
37.5  
12.5  
6.25  
12.5  
6.25  
37.5  
18.75  
18.75  
22.5  
12.5  
Processor  
MCU (R4F)  
Yes  
Yes  
Yes  
Yes  
Yes  
DSP (C674x)  
Peripherals  
Serial Peripheral Interface (SPI) ports  
1
1
1
1
2
2
Quad Serial Peripheral Interface (QSPI)  
Yes  
1
Yes  
1
Yes  
1
Inter-Integrated Circuit (I2C) interface  
1
1
Controller Area Network (DCAN) interface  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CAN FD  
Trace  
PWM  
Hardware In Loop (HIL/DMM)  
GPADC  
Yes  
Yes  
LVDS/Debug  
CSI2  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Hardware accelerator  
1-V bypass mode  
Cascade (20-GHz sync)  
JTAG  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Number of Tx that can be simultaneously  
used(1)  
3(1)  
3(1)  
2
2
2
3(1)  
Per chirp configurable Tx phase shifter  
PRODUCT PREVIEW (PP),  
Yes  
Yes  
Yes  
Product  
ADVANCE INFORMATION  
(AI),  
PD  
PD  
PD  
PD  
PD  
PD  
status(2)  
or PRODUCTION DATA (PD)  
(1) 3 Tx Simultaneous operation is supported only in AWR1843, AWR2243, and AWR2243P with 1V LDO bypass and PA LDO disable  
mode. In this mode 1V supply needs to be fed on the VOUT PA pin.  
(2) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
6.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave Sensors TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with less  
power using the smallest footprint mmWave sensor portfolio for automotive applications.  
Automotive  
TI’s automotive mmWave sensor portfolio offers high-performance radar front end to ultra-  
mmWave Sensors high resolution, small and low-power single-chip radar solutions. TI’s scalable sensor  
portfolio enables design and development of ADAS system solution for every performance,  
application and sensor configuration ranging from comfort functions to safety functions in  
all vehicles.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
Figure 7-1 shows the pin locations for the 161-pin FCBGA package. Figure 7-2, Figure 7-3, Figure 7-4, and  
Figure 7-5 show the same pins, but split into four quadrants.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
FM_CW  
_SYNCIN1  
VIN  
_18CLK  
VIN  
_18VCO  
FM_CW  
_CLKOUT  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
VIN  
_13RF2  
ANAMUX  
VSENSE  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
FM_CW  
_SYNCOUT  
VIN  
_13RF2  
VIOIN  
_18DIFF  
FM_CW  
_SYNCIN2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX4  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA  
VDDIN  
Reserved  
TDI  
CLKP  
CLKM  
VSSA  
VIN_18BB  
VSS  
VSS  
VSS  
VIN  
_13RF1  
CSI2  
_TXM[0]  
CSI2  
_TXP[0]  
G
H
J
VSSA  
RX3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VIN  
_13RF1  
CSI2  
_TXM[1]  
CSI2  
_TXP[1]  
VSS  
VIN  
_13RF1  
VSSA  
RX2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TDO  
CSI2_CLKM  
CSI2_CLKP  
CSI2  
_TXM[2]  
CSI2  
_TXP[2]  
K
L
VIN_18BB  
VSS  
VIOIN_18  
CSI2  
_TXM[3]  
CSI2  
_TXP[3]  
VSSA  
RX1  
VSS  
VSS  
TMS  
HS_M  
_Debug1  
HS_P  
_Debug1  
M
N
P
R
TCK  
WARM  
_RESET  
HS_M  
_Debug2  
HS_P  
_Debug2  
VSSA  
GPIO[0]  
RS232_RX  
RS232_TX  
GPIO[1]  
NERROR_OUTMCU_CLK_OUT  
Sync_in  
QSPI[3]  
VDDIN  
Sync_out  
QSPI[0]  
GPIO[2]  
Analog Test 1 Analog Test 2 Analog Test 3  
I2C_SCL  
MISO_1 SPI_HOST_INTR_NERROR_IN  
QSPI_CS  
MOSI_1  
QSPI[1]  
NRESET PMIC_CLK_OUT  
VNWA  
VDDIN  
Analog Test 4  
I2C_SDA  
VSSA  
Reserved  
Reserved  
VDDIN  
SPI_CS_1  
SPI_CLK_1  
QSPI_CLK  
QSPI[2]  
VIOIN  
VIN_SRAM  
VSS  
Not to scale  
Figure 7-1. Pin Diagram  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
FM_CW  
_SYNCIN1  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
FM_CW  
_SYNCOUT  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
RX4  
VIN_18BB  
VIN  
_13RF1  
G
VSSA  
VSSA  
VSS  
VSS  
VSS  
Not to scale  
1
2
4
3
Figure 7-2. Top Left Quadrant  
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
VSSA  
VSSA  
VIN  
_18CLK  
VIN  
_18VCO  
FM_CW  
_CLKOUT  
B
C
D
E
F
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
ANAMUX  
VSENSE  
VSSA  
VIOIN  
_18DIFF  
FM_CW  
_SYNCIN2  
VSS  
VSS  
VSS  
VSSA  
VDDIN  
CLKP  
CLKM  
VSSA  
VSS  
CSI2  
_TXM[0]  
CSI2  
_TXP[0]  
G
VSS  
Reserved  
Not to scale  
1
3
2
4
Figure 7-3. Top Right Quadrant  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
1
2
3
4
5
6
7
8
VIN  
_13RF1  
H
RX3  
VSSA  
VSS  
VIN  
_13RF1  
J
VSSA  
VSSA  
RX2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
VIN_18BB  
VSSA  
VSSA  
RX1  
VSS  
VSS  
M
N
P
R
VSSA  
VSSA  
GPIO[0]  
RS232_RX  
RS232_TX  
GPIO[1]  
NERROR_OUT  
Analog Test 1 Analog Test 2 Analog Test 3  
I2C_SCL  
MISO_1 SPI_HOST_INTR_NERROR_IN  
QSPI_CS  
Analog Test 4  
I2C_SDA  
VSSA  
Reserved  
Reserved  
VDDIN  
SPI_CS_1  
MOSI_1  
Not to scale  
1
3
2
4
Figure 7-4. Bottom Left Quadrant  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
9
10  
11  
12  
13  
14  
15  
CSI2  
_TXM[1]  
CSI2  
_TXP[1]  
H
J
VSS  
VSS  
TDI  
VSS  
VSS  
VSS  
TDO  
VIOIN_18  
TMS  
CSI2_CLKM  
CSI2_CLKP  
CSI2  
_TXM[2]  
CSI2  
_TXP[2]  
K
L
VSS  
VSS  
CSI2  
_TXM[3]  
CSI2  
_TXP[3]  
HS_M  
_Debug1  
HS_P  
_Debug1  
M
N
P
R
TCK  
WARM  
_RESET  
HS_M  
_Debug2  
HS_P  
_Debug2  
MCU_CLK_OUT  
Sync_in  
QSPI[3]  
VDDIN  
Sync_out  
QSPI[0]  
GPIO[2]  
QSPI[1]  
NRESET PMIC_CLK_OUT  
VNWA  
VDDIN  
SPI_CLK_1  
QSPI_CLK  
QSPI[2]  
VIOIN  
VIN_SRAM  
VSS  
Not to scale  
1
3
2
4
Figure 7-5. Bottom Right Quadrant  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
7.2 Signal Descriptions  
Table 7-1 lists the pins by function and describes that function.  
Note  
All IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are non-failsafe;  
hence, care needs to be taken that they are not driven externally without the VIO supply being present  
to the device.  
Table 7-1. Signal Descriptions  
PIN  
NUMBER  
PIN  
TYPE  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
TX1  
DESCRIPTION  
Single-ended transmitter1 o/p  
B4  
B6  
O
O
O
I
Transmitters  
TX2  
Single-ended transmitter2 o/p  
Single-ended transmitter3 o/p  
Single-ended receiver1 i/p  
Single-ended receiver2 i/p  
Single-ended receiver3 i/p  
Single-ended receiver4 i/p  
TX3  
B8  
RX1  
M2  
RX2  
K2  
I
Receivers  
RX3  
H2  
I
RX4  
F2  
I
CSI2_TXP[0]  
CSI2_TXM[0]  
CSI2_CLKP  
CSI2_CLKM  
CSI2_TXP[1]  
CSI2_TXM[1]  
CSI2_TXP[2]  
CSI2_TXM[2]  
CSI2_TXP[3]  
CSI2_TXM[3]  
HS_DEBUG1_P  
HS_DEBUG1_M  
HS_DEBUG2_P  
HS_DEBUG2_M  
FM_CW_CLKOUT  
FM_CW_SYNCOUT  
FM_CW_SYNCIN1  
FM_CW_SYNCIN2  
G15  
G14  
J15  
J14  
H15  
H14  
K15  
K14  
L15  
L14  
M15  
M14  
N15  
N14  
B15  
D1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Differential data Out – Lane 0 (for CSI and LVDS  
debug interface)  
Differential clock Out (for CSI and LVDS debug  
interface)  
Differential data Out – Lane 1 (for CSI and LVDS  
debug interface)  
Differential data Out – Lane 2 (for CSI and LVDS  
debug interface)  
CSI2 TX  
Differential data Out – Lane 3 (for CSI and LVDS  
debug interface)  
Differential debug port 1 (for LVDS debug interface)  
Differential debug port 2 (for LVDS debug interface)  
20-GHz single-ended output. Modulated waveform  
Chip-to-chip  
cascading  
O
I
synchronization  
B1  
20-GHz single-ended input. Only one of these pins  
should be used. Multiple instances for layout flexibility.  
signals(2)  
D15  
Reference clock output from clocking subsystem after  
cleanup PLL. Can be used by slave chip in multichip  
cascading  
Reference clock OSC_CLKOUT  
A14  
P11  
N10  
O
O
I
Low-frequency frame synchronization signal output.  
Can be used by slave chip in multichip cascading  
SYNC_OUT  
System  
Pull Down  
Pull Down  
Low-frequency frame synchronization signal input.  
This signal could also be used as a hardware trigger  
for frame start  
synchronization  
SYNC_IN  
SPI_CS_1  
R7  
R9  
R8  
P5  
P6  
I
I
Pull Up  
Pull Down  
Pull Up  
SPI chip select  
SPI clock  
SPI control  
interface from  
external MCU  
(default slave  
mode)  
SPI_CLK_1  
MOSI_1  
I
SPI data input  
SPI data output  
SPI interrupt to host  
MISO_1  
O
O
Pull Up  
SPI_HOST_INTR_1  
Pull Down  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Table 7-1. Signal Descriptions (continued)  
PIN  
NUMBER  
PIN  
TYPE  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
Reserved. For debug purposes, it is recommended to  
have test points on these pins.  
Reserved  
RESERVED  
R4, R5  
P12  
Power on reset for chip. Active low.  
The NRESET needs to be pulled low for a minimum  
of 20 μsec to ensure proper device reset.  
NRESET  
I
Reset  
Open-drain fail-safe warm reset signal. Can be used  
as a status signal that the device is going through  
reset.  
WARM_RESET(3)  
N12  
O
Open Drain  
SOP2  
SOP1  
P13  
P11  
I
I
The SOP pins are driven externally (weak drive) and  
the AWR device senses the state of these pins during  
bootup to decide the bootup mode. After boot the  
same pins have other functionality.  
Sense on Power  
[SOP2 SOP1 SOP0] = [0 0 1] -> Functional SPI mode  
[SOP2 SOP1 SOP0] = [1 0 1] -> Flashing mode  
[SOP2 SOP1 SOP0] = [0 1 1] -> debug mode  
[SOP2 SOP1 SOP0] = [1 1 1] -> Functional I2C mode  
SOP0  
J13  
I
Open-drain fail-safe output signal. Connected to  
PMIC/Processor/MCU to indicate that some severe  
criticality fault has happened. Recovery would be  
through reset.  
NERROR_OUT  
NERROR_IN  
N8  
P7  
O
I
Open Drain  
Open Drain  
Safety  
JTAG  
Fail-safe input to the device. Error output from any  
other device can be concentrated in the error  
signaling monitor module inside the device and  
appropriate action can be taken by firmware  
TMS  
TCK  
TDI  
L13  
M13  
H13  
J13  
I
I
Pull Up  
Pull Down  
Pull Up  
JTAG port for TI internal development.  
For debug purposes, it is recommended to have test  
points on these pins.  
I
TDO  
CLKP  
O
I
E14  
In XTAL mode: Differential port for reference crystal  
In External clock mode: Single ended input reference  
clock port (Output CLKM is grounded in this case)  
Reference  
oscillator  
CLKM  
F14  
B10  
O
O
Band-gap  
voltage  
VBGAP  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AWR2243  
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Table 7-1. Signal Descriptions (continued)  
PIN  
NUMBER  
PIN  
TYPE  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
VDDIN  
DESCRIPTION  
F13,N11,P15  
,R6  
POW  
1.2-V digital power supply  
VIN_SRAM  
VNWA  
R14  
P14  
POW  
POW  
1.2-V power rail for internal SRAM  
1.2-V power rail for SRAM array back bias  
I/O supply (3.3-V or 1.8-V): All CMOS I/Os would  
operate on this supply.  
VIOIN  
R13  
POW  
VIOIN_18  
K13  
B11  
POW  
POW  
POW  
POW  
POW  
POW  
POW  
POW  
1.8-V supply for CMOS IO  
1.8-V supply for clock module  
1.8-V supply for CSI2 port  
No connect  
VIN_18CLK  
VIOIN_18DIFF  
Reserved  
D13  
G13  
VIN_13RF1  
VIN_13RF2  
VIN_18BB  
G5,J5,H5  
C2,D2  
K5,F5  
B12  
1.3-V Analog and RF supply,VIN_13RF1 and  
VIN_13RF2 could be shorted on the board  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
VIN_18VCO  
E5,E6,E8,E1  
0,E11,F9,F11  
,G6,G7,G8,G  
10,H7,H9,H1  
Power supply  
VSS  
1,J6,J7,J8,J1 GND  
0,K7,K8,K9,  
K10,K11,L5,  
L6,L8,L10,R  
15  
Digital ground  
A1,A3,A5,A7  
,A9,A15,B3,  
B5,B7,B9,B1  
3,B14,C1,C3  
,C4,C5,C6,C  
7,C8,C9,C15  
,E1,E2,E3,E GND  
13,E15,F3,G  
1,G2,G3,H3,  
J1,J2,J3,K3,  
L1,L2,L3,  
VSSA  
Analog ground  
M3,N1,N2,N  
3,R1  
VOUT_14APLL  
A10  
A13  
O
O
VOUT_14SYNTH  
When internal PA LDO is used this pin provides the  
output voltage of the LDO. When the internal PA LDO  
is bypassed and disabled 1V supply should be fed on  
this pin. This is mandatory in 3TX simultaneous use  
case.  
Internal LDO  
output/inputs  
VOUT_PA  
A2,B2  
IO  
PMIC_CLK_OUT  
MCU_CLK_OUT  
P13  
N9  
O
O
Dithered clock input to PMIC  
External clock  
out  
Programmable clock given out to external MCU or the  
processor  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AWR2243  
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Table 7-1. Signal Descriptions (continued)  
PIN  
NUMBER  
PIN  
TYPE  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
GPIO[0]  
DESCRIPTION  
N4  
N7  
IO  
IO  
Pull Down  
Pull Down  
General-purpose IOs. These pins are also used to set  
the I2C address incase of functional I2C mode.  
GPIO[1]  
GPIO[2:0] -> 0x000 -> I2C address 0x28  
GPIO[2:0] -> 0x001 -> I2C address 0x29  
GPIO[2:0] -> 0x111 -> I2C address 0x2F  
General-  
purpose I/Os  
GPIO[2]  
N13  
IO  
Pull Down  
It is recommended that the GPIO[0] signal is  
connected to the host processor digital pin for debug.  
For proper operations, the host processor needs to be  
able to drive a pulse on this pin.  
I2C_SDA  
I2C_SCL  
R3  
P4  
IO  
I
Open Drain  
Open Drain  
I2C data  
I2C clock  
I2C interface  
from external  
MCU (slave  
mode)  
The host interface of I2C is selected by booting the  
device in SOP mode 7 [111]. The I2C address is  
selected using the GPIO[2:0] pins.  
Chip-select output from the device. Device is a  
master connected to serial flash slave.  
QSPI_CS  
P8  
O
O
Pull Up  
Clock output from the device. Device is a master  
connected to serial flash slave.  
QSPI_CLK  
R10  
Pull Down  
QSPI for Serial  
Flash  
QSPI[0]  
QSPI[1]  
QSPI[2]  
QSPI[3]  
RS232_TX  
R11  
P9  
IO  
IO  
IO  
IO  
O
Pull Down  
Pull Down  
Pull Up  
Data IN/OUT  
Data IN/OUT  
Data IN/OUT  
Data IN/OUT  
R12  
P10  
N6  
Pull Up  
Flash  
Pull Down  
UART pins for programming external flash  
For debug purposes, it is recommended to have test  
points on these pins.  
programming  
and RS232  
UART  
RS232_RX  
N5  
I
Pull Up  
Analog Test1  
Analog Test2  
Analog Test3  
Analog Test4  
ANAMUX  
P1  
P2  
IO  
IO  
IO  
IO  
IO  
IO  
Internal test signal  
Internal test signal  
Internal test signal  
Internal test signal  
Internal test signal  
Internal test signal  
Test and Debug  
output for  
preproduction  
phase. Can be  
pinned out on  
production  
P3  
R2  
C13  
C14  
hardware for  
field debug  
VSENSE  
(1) Status of PULL structures associated with the IO after device POWER UP.  
(2) Cascading feature is available only in the AWR2243P device .  
(3) For the AWR2243, WARM_RESET can be used as an output only pin for status indication.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
PARAMETERS  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
1.4  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
1.4  
1.4  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
–0.5  
3.8  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for CSI2 port  
–0.5  
–0.5  
–0.5  
2
2
2
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
VIN_13RF1  
1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could  
be shorted on the board.  
–0.5  
1.45  
V
1-V Internal LDO bypass mode. Device supports mode where  
external Power Management block can supply 1 V on  
VIN_13RF1 and VIN_13RF2 rails. In this configuration, the  
internal LDO of the device would be kept bypassed.  
–0.5  
1.4  
V
VIN_13RF2  
VIN_18BB  
VIN_18VCO supply  
RX1-4  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
–0.5  
–0.5  
2
V
2
V
Externally applied power on RF inputs  
Externally applied power on RF outputs(3)  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
10  
10  
dBm  
dBm  
TX1-4  
–0.3V  
VIOIN + 0.3  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
VIOIN + 20% up to  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
–0.5  
2
V
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
–20  
20  
mA  
TJ  
Operating junction temperature range  
–40  
–55  
140  
150  
°C  
°C  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma= 1 can be applied on  
the TX output.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
All pins  
All pins  
V(ESD) Electrostatic discharge  
V
Corner pins  
(A1, A15, R1, R15)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.3 Power-On Hours (POH)  
JUNCTION  
TEMPERATURE (Tj)  
OPERATING  
CONDITION  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)(1) (2)  
–40°C  
75°C  
600 (6%)  
2000 (20%)  
6500 (65%)  
800 (8%)  
95°C  
100% duty cycle  
1.2  
130°C  
140°C  
100 (1%)  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would  
not be applicable, if the Tx gain table is overwritten using an API.  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.14  
1.14  
1.14  
3.135  
1.71  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
1.8  
MAX  
1.32  
1.32  
1.32  
3.465  
1.89  
1.9  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for CSI2 port  
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.9  
1.9  
1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2  
could be shorted on the board  
1.23  
1.3  
1.36  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
0.95  
1
1.05  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN18BB  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.17  
2.25  
1.8  
1.8  
1.9  
1.9  
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
VOH  
VOL  
VIOIN – 450  
0.96  
mV  
mV  
450  
0.45  
VIH (1.8V Mode)  
NRESET  
SOP[2:0]  
V
VIL (3.3V Mode)  
0.65  
140  
VIH (3.3V Mode)  
1.57  
-40  
TJ  
Operating junction temperature range  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AWR2243  
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.5 Power Supply Specifications  
Table 8-1 describes the four rails from an external power supply block of the AWR2243 device.  
Table 8-1. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOS IN THE DEVICE  
Input: VIN_18VCO, VIN18CLK, VIN_18BB,  
VIOIN_18DIFF, VIOIN_18IO  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, CSI2  
1.8 V  
1.3 V (or 1 V in internal  
LDO bypass mode)(1)  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
Input: VIN_13RF2, VIN_13RF1  
LDO Output: VOUT_PA  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/Os  
Input VIOIN  
1.2 V  
Core Digital and SRAMs  
Input: VDDIN, VIN_SRAM  
(1) Three simultaneous transmitter operation is supported only in 1-V LDO bypass and PA LDO disable mode. In this mode 1V supply  
needs to be fed on the VOUT PA pin.  
The 1.3V (1.0V) and 1.8V power supply ripple specifications mentioned in Table 8-2 are defined to meet a target  
spur level of –105dBc (RF Pin = –15dBm) at the RX. The spur and ripple levels have a dB to dB relationship, for  
example, a 1dB increase in supply ripple leads to a ~1dB increase in spur level. Values quoted are rms levels for  
a sinusoidal input applied at the specified frequency.  
Table 8-2. Ripple Specifications  
RF RAIL  
VCO/IF RAIL  
FREQUENCY (kHz)  
1.0 V (INTERNAL LDO BYPASS)  
1.3 V (µVRMS  
)
1.8 V (µVRMS)  
(µVRMS  
)
137.5  
275  
7
5
648  
76  
22  
4
83  
21  
11  
6
550  
3
1100  
2200  
4400  
6600  
2
11  
13  
22  
82  
93  
117  
13  
19  
29  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.6 Power Consumption Summary  
Table 8-3 and Table 8-4 summarize the power consumption at the power terminals.  
Table 8-3. Maximum Current Ratings at Power Terminals  
PARAMETER(2)  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
500  
AWR2243P  
AWR2243  
Total current drawn by all  
nodes driven by 1.2V rail  
VDDIN, VIN_SRAM, VNWA  
850  
Total current drawn by all  
nodes driven by 1.3V (or  
1V in LDO Bypass mode)  
rail when 3 transmitters  
are used (1)  
VIN_13RF1, VIN_13RF2  
2500  
mA  
Current consumption  
VIOIN_18, VIN_18CLK, VIOIN_18DIFF,  
VIN_18BB, VIN_18VCO  
Total current drawn by all  
nodes driven by 1.8V rail  
850  
50  
Total current drawn by all  
nodes driven by 3.3V rail  
VIOIN  
(1) Three transmitters can simultaneously be deployed in the AWR2243 device with 1V / LDO bypass and PA LDO disable mode. In this  
mode 1V supply needs to be fed on the VOUT PA pin. For a 2Tx use case, the peak 1V supply current goes up to 2000 mA.  
(2) The specified current values are at typical supply voltage level.  
Table 8-4. Average Power Consumption at Power Terminals  
PARAMETER  
Average power  
consumption in single chip  
mode.  
CONDITION  
DESCRIPTION  
MIN  
TYP  
1.42  
1.62  
1.82  
MAX UNIT  
1TX, 4RX  
The frame is set to 50% duty cycle.  
4lane CSI interface is enabled at  
600Mbps for ADC data transfer  
1.0-V internal LDO  
bypass mode  
2TX, 4RX  
3TX, 4RX  
W
Average power  
consumption in master  
mode.  
The frame is set to 50% duty cycle.  
4lane CSI interface is enabled at  
600Mbps for ADC data transfer  
1.0-V internal LDO  
bypass mode  
3TX, 4RX  
3TX, 4RX  
1.97  
1.85  
W
W
Average power  
consumption in slave  
mode.  
The frame is set to 50% duty cycle.  
4lane CSI interface is enabled at  
600Mbps for ADC data transfer  
1.0-V internal LDO  
bypass mode  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AWR2243  
 
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.7 RF Specification  
over recommended operating conditions and with run time calibrations enabled (unless otherwise noted)  
PARAMETER  
Noise figure AWR2243P  
Noise figure AWR2243  
1-dB compression point (Out Of Band)(1)  
Maximum gain  
MIN  
TYP  
12  
13  
–9  
52  
20  
2
MAX UNIT  
dB  
dB  
dBm  
dB  
dB  
Gain range  
Gain step size  
dB  
Image Rejection Ratio (IMRR)  
30  
dB  
AWR2243P  
20 MHz  
15 MHz  
45 Msps  
37.5 Msps  
22.5 Msps  
18.75 Msps  
Bits  
IF bandwidth(2)  
AWR2243  
AWR2243P  
AWR2243  
AWR2243P  
AWR2243  
A2D sampling rate  
(Real/ Complex 2x)  
Receiver  
A2D sampling rate  
(Complex 1x)  
A2D resolution  
12  
<–10  
±0.5  
±3  
Return loss (S11)  
dB  
Gain mismatch variation (over temperature)  
Phase mismatch variation (over temperature)  
dB  
°
RX gain = 30dB  
In-band IIP2  
16  
24  
dBm  
dBm  
IF = 1.5, 2 MHz at -12 dBFS  
RX gain = 24dB  
Out-of-band IIP2  
IF = 10 KHz at -10 dBm,  
1.9 MHz at -30 dBm  
Idle Channel Spurs  
Output power  
–90  
13  
dBFS  
dBm  
Transmitter  
Phase shifter accuracy  
Amplitude noise  
Frequency range  
Ramp rate  
±5  
°
–145  
dBc/Hz  
76  
81 GHz  
266(3) MHz/µs  
Clock subsystem  
76 to 78 GHz (VCO1)(4)  
76 to 81 GHz (VCO2)  
–96  
–94  
Phase noise at 1-MHz offset  
dBc/Hz  
Frequency range  
Output power at the pin  
Return loss  
19  
3
20.25 GHz  
10 dBm  
dB  
7
20 GHz SYNC OUT signal  
(FM_CW_CLKOUT and  
FM_CW_SYNCOUT)(5)  
–9  
Impedance  
50  
Ω
Frequency range  
Input power at the pin  
Return loss  
19  
-6  
20.25 GHz  
7(6) dBm  
20 GHz SYNC IN signal  
(FM_CW_SYNCIN)(5)  
–10  
50  
dB  
Ω
Impedance  
(1) 1-dB Compression Point (Out Of Band) is measured by feeding a continuous wave tone below the lowest HPF cut-off frequency  
(10 kHz).  
(2) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set  
of available HPF corners is summarized as follows:  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Available HPF Corner Frequencies (kHz)  
HPF1  
HPF2  
175,235,350,700  
350, 700, 1400, 2800  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
(3) The max ramp rate depends on the PLL bandwidth configuration set using the"AWR_APLL_SYNTH_BW_CONTROL_SB" API. For  
more details, see the mmWave radar Interface Control Users Guide.  
(4) The phase noise numbers use the following configuration: SYNTH ICP TRIM = 3 , SYNTH RZ TRIM = 8 , and APLL ICP TRIM = 0x26.  
(5) Cascading Feature is available in AWR2243P variant.  
(6) At 140°C TJ, the max input level recommended is 3 dBm  
Figure 8-1 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain  
programmed.  
18  
17  
16  
15  
14  
13  
12  
11  
10  
-18  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
-42  
NF (dB)  
P1dB (dBm)  
28 30 32 34 36 38 40 42 44 46 48 50  
Rx Gain (dB)  
D001  
Figure 8-1. Noise Figure, In-band P1dB vs Receiver Gain  
8.8 Thermal Resistance Characteristics for FCBGA Package [ABL0161]  
THERMAL METRICS(1)  
°C/W(2) (3)  
5
JC  
JB  
JA  
JMA  
PsiJT  
PsiJB  
Junction-to-case  
Junction-to-board  
5.9  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
21.6  
15.3(4)  
0.69  
5.8  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(4) Air flow = 1 m/s  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AWR2243  
 
 
 
 
 
 
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9 Timing and Switching Characteristics  
8.9.1 Power Supply Sequencing and Reset Timing  
The AWR2243 device expects all external voltage rails and SOP lines to be stable before reset is deasserted.  
Figure 8-2 describes the device wake-up sequence.  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
Stable before  
nRESET  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
DC  
Power  
OK  
QSPI  
READ  
release  
VDDIN,  
VIN_SRAM  
VNWA  
VIOIN_18  
VIN18_CLK  
VIOIN_18DIFF  
VIN18_BB  
VIN_13RF1  
VIN_13RF2  
VIOIN  
SOP[2.1.0]  
nRESET  
Warm reset  
delay for crystal  
or ext osc  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
MCUCLK  
OUTPUT  
QSPI_CS  
OUTPUT  
7ms (XTAL Mode)  
500 µs (REFCLK Mode)  
Figure 8-2. Device Wake-up Sequence  
8.9.2 Synchronized Frame Triggering  
The AWR2243 device supports a hardware based mechanism to trigger radar frames. An external host can  
pulse the SYNC_IN signal to start radar frames. The typical time difference between the rising edge of the  
external pulse and the frame transmission on air (Tlag) is about 160 ns. There is also an additional  
programmable delay that the user can set to control the frame start time.  
The periodicity of the external SYNC_IN pulse should be always greater than the programmed frame periodic in  
the frame configurations in all instances.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Tactive_frame  
SYNC_IN  
(Hardware  
Trigger)  
Radar  
Frames  
Tpulse  
Tlag  
Frame-2  
Frame-1  
Figure 8-3. Sync In Hardware Trigger  
Table 8-5. Frame Trigger Timing  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
Tactive_frame  
Tpulse  
Active frame duration  
User defined  
25  
ns  
< Tactive_frame  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AWR2243  
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9.3 Input Clocks and Oscillators  
8.9.3.1 Clock Specifications  
An external crystal is connected to the device pins. Figure 8-4 shows the crystal implementation.  
Cf1  
CLKP  
Cp  
40 MHz  
CLKM  
Cf2  
Figure 8-4. Crystal Implementation  
Note  
The load capacitors, Cf1 and Cf2 in Figure 8-4, should be chosen such that Equation 1 is satisfied. CL  
in the equation is the load specified by the crystal manufacturer. All discrete components used to  
implement the oscillator circuit should be placed as close as possible to the associated oscillator  
CLKP and CLKM pins.Note that Cf1 and Cf2 include the parasitic capacitances due to PCB routing.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
Table 8-6 lists the electrical characteristics of the clock crystal.  
Table 8-6. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
40  
8
MAX  
UNIT  
MHz  
pF  
fP  
Parallel resonance crystal frequency  
CL  
Crystal load capacitance  
Crystal ESR  
5
12  
50  
ESR  
Ω
Temperature range Expected temperature range of operation  
–40  
150  
°C  
Frequency  
Crystal frequency tolerance(1) (2)  
tolerance  
-200  
200  
200  
ppm  
µW  
Drive level  
50  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM  
is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. Table 8-7  
lists the electrical characteristics of the external clock signal.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Table 8-7. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
Frequency  
40  
MHz  
mV (pp)  
ns  
AC-Amplitude  
700  
1200  
10  
DC-trise/fall  
Input Clock:  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
–132  
–143  
–152  
–153  
65  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
Phase Noise referred to 40 MHz  
35  
Freq Tolerance  
–50  
50  
ppm  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Period jitter @40Mhz  
Spur levels (sum of all spurs)  
-127  
-137  
-147  
1.75  
-52  
dBc/Hz  
dBc/Hz  
dBc/Hz  
ps rms  
dBc  
Input clock requirements for slave  
mode (assuming the 20Ghz clock is  
provided from the master device)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9.4 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
8.9.4.1 Peripheral Description  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream to be shifted  
into and out of the device at a programmed bit-transfer rate. The MibSPI/SPI is normally used for communication  
between the microcontroller and external peripherals or another microcontroller.  
Section 8.9.4.1.2 and Section 8.9.4.1.3 assume the operating conditions stated in Section 8.9.4.1.1, Section  
8.9.4.1.2, Section 8.9.4.1.3, and Figure 8-5 describe the timing and switching characteristics of the MibSPI.  
8.9.4.1.1 SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
8.9.4.1.2 SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output)  
NO.  
1
PARAMETER  
Cycle time, SPICLK  
MIN  
25  
TYP  
MAX  
UNIT  
ns  
tc(SPC)S  
2
tw(SPCH)S  
Pulse duration, SPICLK high  
10  
ns  
3
tw(SPCL)S  
Pulse duration, SPICLK low  
10  
ns  
4
td(SPCL-SOMI)S  
th(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low  
Hold time, SPISOMI data valid after SPICLK low  
10  
ns  
5
2
ns  
8.9.4.1.3 SPI Slave Mode Timing Requirements (SPICLK = input, SPISIMO = input, and SPISOMI = output)  
NO.  
6
MIN  
3
TYP  
MAX UNIT  
tsu(SIMO-SPCH)S  
th(SPCH-SIMO)S  
Setup time, SPISIMO before SPICLK high  
ns  
ns  
7
Hold time, SPISIMO data valid after SPICLK high  
1
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Figure 8-5. SPI Slave Mode External Timing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9.4.2 Typical Interface Protocol Diagram (Slave Mode)  
1. Host should ensure that there is a delay of at least two SPI clocks between CS going low and start of SPI  
clock.  
2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.  
Figure 8-6 shows the SPI communication timing of the typical interface protocol.  
Figure 8-6. SPI Communication  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9.5 Inter-Integrated Circuit Interface (I2C)  
The inter-integrated circuit (I2C) module is a multimaster communication module providing an interface between  
devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an I2C-bus™.  
This module will support any slave or master I2C compatible device.  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398  
393 40011)  
– Bit/Byte format transfer  
– 7-bit and 10-bit device addressing modes  
– General call  
– START byte  
– Multi-master transmitter/ slave receiver mode  
– Multi-master receiver/ slave transmitter mode  
– Combined master transmit/receive and receive/transmit mode  
– Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
Note  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the slave address second byte every  
time it sends the slave address first byte)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AWR2243  
AWR2243  
www.ti.com  
UNIT  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9.5.1 I2C Timing Requirements  
(1)  
STANDARD MODE  
FAST MODE  
MIN  
10  
MAX  
MIN  
2.5  
MAX  
tc(SCL)  
Cycle time, SCL  
μs  
μs  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
4.7  
0.6  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low  
4
0.6  
μs  
(for a START and a repeated START condition)  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
tw(SDAH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45(1)  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
4.7  
1.3  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high  
(for STOP condition)  
4
0.6  
0
μs  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2) (3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the  
SCL signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
Figure 8-7. I2C Timing Diagram  
Note  
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  
VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period  
(tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-mode  
I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will  
automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line tr max + tsu(SDA-SCLH)  
.
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9.6 LVDS Interface Configuration  
The AWR2243 supports seven differential LVDS IOs/Lanes to support debug where raw ADC data could be  
extracted. The lane configuration supported is four Data lanes (LVDS_TXP/M), one Bit Clock lane  
(LVDS_CLKP/M) one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface supports the following data  
rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
Figure 8-8. LVDS Interface Lane Configuration And Relative Timings  
8.9.6.1 LVDS Interface Timings  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
Figure 8-9. Timing Parameters  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AWR2243  
AWR2243  
www.ti.com  
UNIT  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Table 8-8. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
Duty Cycle Requirements  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
330  
80  
Jitter (pk-pk)  
ps  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: AWR2243  
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9.7 General-Purpose Input/Output  
Section 8.9.7.1 lists the switching characteristics of output timing relative to load capacitance.  
8.9.7.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)  
PARAMETER(1) (2)  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
10.2  
2.8  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
6.6  
ns  
ns  
ns  
9.8  
3.3  
7.2  
10.5  
3.1  
Slew control = 1  
6.6  
9.6  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
8.9.8 Camera Serial Interface (CSI)  
The CSI is a MIPI D-PHY compliant interface for connecting this device to a camera receiver module. This  
interface is made of four differential lanes; each lane is configurable for carrying data or clock. The polarity of  
each wire of a lane is also configurable. Section 8.9.8.1, Figure 8-10, Figure 8-11, and Figure 8-12 describe the  
clock and data timing of the CSI.The clock is always ON once the CSI IP is enabled. Hence it remains in HS  
mode.  
8.9.8.1 CSI Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
HPTX  
HSTXDBR  
fCLK  
Data bit rate  
(1/2/4 data lane PHY)  
(1/2/4 data lane PHY)  
150  
75  
600 Mbps  
DDR clock frequency  
300  
50  
MHz  
mV  
UI  
ΔVCMTX(LF)  
tR and tF  
LPTX DRIVER  
tEOT  
Common-level variation  
–50  
20% to 80% rise time and fall time  
0.3  
Time from start of THS-TRAIL period to start of LP-11 state  
105 +  
12*UI  
ns  
DATA-CLOCK Timing Specification  
UINOM  
Nominal Unit Interval  
1.67  
1.131  
–0.15  
13.33  
ns  
ns  
UIINST,MIN  
TSKEW[TX]  
Minimum instantaneous Unit Interval  
Data to clock skew measured at transmitter  
0.15 UIINST,  
MIN  
CSI2 TIMING SPECIFICATION  
TCLK-PRE  
Time that the HS clock shall be driven by the transmitter before  
any associated data lane beginning the transition from LP to HS  
mode.  
8
38  
ns  
TCLK-PREPARE  
Time that the transmitter drives the clock lane LP-00 line state  
immediately before the HS-0 line state starting the HS  
transmission.  
95  
ns  
TCLK-PREPARE + TCLK-ZERO TCLK-PREPARE + time that the transmitter drives the HS-0 state  
before starting the clock.  
300  
ns  
ns  
ns  
TEOT  
Transmitted time interval from the start of THS-TRAIL or TCLKTRAIL  
,
105 ns  
+ 12*UI  
to the start of the LP-11 state following a HS burst.  
THS-PREPARE  
Time that the transmitter drives the data lane LP-00 line state  
immediately before the HS-0 line state starting the HS  
transmission  
40 + 4*UI  
85 +  
6*UI  
THS-PREPARE + THS-ZERO  
THS-PREPARE + time that the transmitter drives the HS-0 state prior  
to transmitting the Sync sequence.  
145 ns +  
10*UI  
ns  
THS-EXIT  
Time that the transmitter drives LP-11 following a HS burst.  
100  
ns  
ns  
THS-TRAIL  
Time that the transmitter drives the flipped differential state after  
last payload data bit of a HS transmission burst  
max(8*UI, 60  
ns + 4*UI)  
TLPX  
TXXXransmitted length of any low-power state period  
50  
ns  
CSI2_CLK(P/M)  
0.5UI + Tskew  
CSI2_TX(P/M)  
1 UI  
Figure 8-10. Clock and Data Timing in HS Transmission  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Clock  
Lane  
Data Lane  
Dp/Dn  
TLPX  
THS-ZERO  
THS-SYNC  
Disconnect  
Terminator  
VOH  
THS-PREPARE  
VIH(min)  
VIL(max)  
VOL  
TREOT  
Capture  
1st Data Bit  
TD-TERM-EN  
THS-SKIP  
TEOT  
THS-TRAIL  
LP-11  
LP-11  
LP-01  
LP-00  
THS-SETTLE  
THS-EXIT  
LOW-POWER TO  
HIGH-SPEED  
TRANSITION  
START OF  
HS-ZERO TRANSMISSION  
SEQUENCE  
HIGH-SPEED TO  
HS-TRAIL LOW-POWER  
TRANSITION  
HIGH-SPEED DATA  
TRANSMISSION  
Figure 8-11. High-Speed Data Transmission Burst  
Disconnect  
Terminator  
Clock Lane  
Dp/Dn  
T
CLK-SETTLE  
VIH(min)  
VIL(max)  
T
LPX  
T
T
CLK-PRE  
CLK-ZERO  
T
CLK-PREPARE  
Data Lane  
Dp/Dn  
T
HS-PREPARE  
Disconnect  
Terminator  
T
LPX  
VIH(min)  
VIL(max)  
T
HS-SKIP  
T
HS-SETTLE  
A. The HS to LP transition of the CLK does not actually take place since the CLK is always ON in HS mode.  
Figure 8-12. Switching the Clock Lane Between Clock Transmission and Low-Power Mode  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
9 Detailed Description  
9.1 Overview  
The AWR2243 device is a single-chip highly integrated 77-GHz transceiver and front end that includes three  
transmit and four receive chains. The device can be used in long-range automotive radar applications such as  
automatic emergency braking and automatic adaptive cruise control. The AWR2243 has extremely small form  
factor and provides ultra-high resolution with very low power consumption. This device, when used with the  
TDA3X or TDA2X, offers higher levels of performance and flexibility through a programmable digital signal  
processor (DSP); thus addressing the standard short-, mid-, and long-range automotive radar applications.  
9.2 Functional Block Diagram  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Digital Front-end  
(Decimation filter  
chain)  
ADC output  
interface  
ADC Buffer  
CSI2  
PA  
û-  
û-  
û-  
Phase  
Shifter  
Control (1)  
Synth  
(20 GHz)  
Ramp Generator  
PA  
PA  
x4  
Host control  
interface  
Synth Cycle  
Counter  
SPI/I2C  
Multi-chip cascading(2)  
RF Control / BIST  
Temp(3)  
GPADC  
Osc.  
VMON  
RF/Analog Subsystem  
Digital  
A. Phase Shift Control  
0° / 180° BPM  
0° / 180° BPM and 5.625° resolution control option for AWR2243, AWR2243P, and AWR1843  
B. Internal temperature sensor accuracy is ± 7 °C.  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
9.3 Subsystems  
9.3.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer,  
IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The three transmit  
channels can be operated simultaneously for transmit beamforming purpose as required; whereas the four  
receive channels can all be operated simultaneously.  
The AWR2243 device supports simultaneous operation of 3 transmitters.  
9.3.1.1 Clock Subsystem  
The AWR2243 clock subsystem generates 76 to 81 GHz from an input reference of 40-MHz crystal. It has a  
built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF  
synthesizer is then processed by an X4 multiplier to create the required frequency in the 76 to 81 GHz spectrum.  
The RF synthesizer output is modulated by the timing engine block to create the required waveforms for effective  
sensor operation.  
The output of the RF synthesizer is available at the device pin boundary for multichip cascaded configuration.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the  
quality of the generated clock.  
Figure 9-1 describes the clock subsystem.  
RX LO  
x4  
MULT  
TX LO  
SYNC_OUT  
SYNC_IN  
Timing  
Engine  
RFSYNTH  
Lock Detect  
SoC Clock  
Clean-Up  
PLL  
XO /  
Slicer  
CLK Detect  
40 MHz  
* These pins are 20GHz LO input pins. Connect LO to one pin while grounding the  
other pin.  
Figure 9-1. Clock Subsystem  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
9.3.1.2 Transmit Subsystem  
The AWR2243 transmit subsystem consists of three parallel transmit chains, each with independent phase and  
amplitude control. All three transmitters can be used simultaneously or in time-multiplexed fashion. The device  
supports binary phase modulation for MIMO radar and interference mitigation. For AWR2243, additional phase  
shifters are associated with Tx channels, and these can programmed on a per chirp basis.  
Each transmit chain can deliver a maximum of 13 dBm at the antenna port on the PCB. The transmit chains also  
support programmable backoff for system optimization.  
Figure 9-2 describes the transmit subsystem.  
Loopback Path  
Fine Phase Shifter Control  
PCB  
6 bits  
13dBm  
@ 50 Ω  
û-  
LO  
0/180°  
(from Timing Engine)  
Self Test  
Figure 9-2. Transmit Subsystem (Per Channel)  
9.3.1.3 Receive Subsystem  
The AWR2243 receive subsystem consists of four parallel channels. A single receive channel consists of an  
LNA, mixer, IF filtering, A2D conversion, and decimation. All four receive channels can be operational at the  
same time an individual power-down option is also available for system optimization.  
Unlike conventional real-only receivers, the AWR2243 device supports a complex baseband architecture, which  
uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each receiver  
channel. The AWR2243 is targeted for fast chirp systems. The band-pass IF chain has configurable lower cutoff  
frequencies above 175 kHz and can support bandwidths up to 20 MHz.  
Figure 9-3 describes the receive subsystem.  
Self Test  
DAC  
Loopback  
Path  
DSM  
PCB  
I
RSSI  
50 W  
GSG  
LO  
Q
DSM  
DAC  
Figure 9-3. Receive Subsystem (Per Channel)  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
9.3.2 Host Interface  
The AWR2243 device communicates with the host radar processor over the following main interfaces:  
Reference Clock – Reference clock available for host processor after device wakeup  
Control – 4-port standard SPI (slave or I2C) for host control along with HOST INTR pin for async events.. All  
radio control commands (and response) flow through this interface.  
Data – High-speed serial port following the MIPI CSI2 format. Four data and one clock lane (all differential).  
Data from different receive channels can be multiplexed on a single data lane to optimize board routing. This  
is a unidirectional interface used for data transfer only.  
Reset – Active-low reset for device wakeup from host  
Out-of-band interrupt  
Error – Used for notifying the host in case the radio controller detects a fault  
9.4 Other Subsystems  
9.4.1 A2D Data Format Over CSI2 Interface  
The AWR2243 device uses MIPI D-PHY / CSI2-based format to transfer the raw A2D samples to the external  
MCU. This is shown in Figure 9-4.  
Supports four data lanes  
CSI-2 data rate scalable from 150 Mbps to 600 Mbps per lane  
Virtual channel based  
CRC generation  
Normal Mode  
Frame Period  
Acquisition Period  
Frame  
Ramp/Chirp  
1
2
3
N
Data Ready  
F
L
H
L
L
H
L
L
H
L
L
H
L
F
S
S
S
E
S
S
E
S
S
E
S
S
E
E
Short  
Packet  
Short  
Packet  
Long  
Packet  
Short  
Packet  
ST SP ET  
LPS  
ST SP ET  
.5μs-.8μs  
ST PH  
DATA  
PF ET LPS  
ST SP ET  
LPS  
LPS  
Chirp 1 data  
Data rate/Lane should be such that "Chirp + Interchirp" period  
should be able to accommodate the data transfer  
Copyright © 2017, Texas Instruments Incorporated  
Frame Start – CSi2 VSYNC Start Short Packet  
Line Start – CSI2 HSYNC Start Short Packet  
Line End – CSI2 HSYNC End Short Packet  
Frame End – CSi2 VSYNC End Short Packet  
Figure 9-4. CSI-2 Transmission Format  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
The data payload is constructed with the following three types of information:  
Chirp profile information  
The actual chirp number  
A2D data corresponding to chirps of all four channels  
– Interleaved fashion  
Chirp quality data (configurable)  
The payload is then split across the four physical data lanes and transmitted to the receiving D-PHY. The data  
packet packing format is shown in Figure 9-5  
First  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CH Chirp  
Profile  
Channel  
Number  
NU  
NU  
NU  
NU  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
11  
Channel 0 Sample 0 i  
Channel 1 Sample 0 i  
Channel 2 Sample 0 i  
Channel 3 Sample 0 i  
Channel 0 Sample 1 i  
Channel 1 Sample 1 i  
Channel 2 Sample 1 i  
Channel 3 Sample 1 i  
CQ Data [11:0]  
Channel 0 Sample 0 q  
11  
Channel 1 Sample 0 q  
11  
Channel 2 Sample 0 q  
11  
Channel 3 Sample 0 q  
11  
Channel 0 Sample 1 q  
11  
Channel 1 Sample 1 q  
11  
Channel 2 Sample 1 q  
11  
Channel 3 Sample 1 q  
Continues till the  
last sample. Max 1023  
11  
CQ Data [23:12]  
11  
CQ Data [35:24]  
CQ Data [47:36]  
11  
CQ Data [59:48]  
NU  
CQ Data [63:60]  
Last  
Figure 9-5. Data Packet Packing Format for 12-Bit Complex Configuration  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
10 Monitoring and Diagnostic Mechanisms  
Below is the list given for the main monitoring and diagnostic mechanisms available in the AWR2243  
Table 10-1. Monitoring and Diagnostic Mechanisms for AWR2243  
S No  
Feature  
Description  
AWR2243 architecture supports hardware logic BIST (LBIST) engine self-test Controller  
(STC). This logic is used to provide a very high diagnostic coverage (>90%) on the Master  
R4F CPU core and Vectored Interrupt Module (VIM) at a transistor level.  
LBIST for the CPU and VIM are triggered by the bootloader.  
Boot time LBIST For Master  
R4F Core and associated  
VIM  
1
Master R4F has three Tightly coupled Memories (TCM) memories TCMA, TCMB0 and  
TCMB1. AWR2243 architecture supports a hardware programmable memory BIST (PBIST)  
engine. This logic is used to provide a very high diagnostic coverage (March-13n) on the  
implemented Master R4F TCMs at a transistor level.  
PBIST for TCM memories is triggered by Bootloader at the boot time . CPU stays there in  
while loop and does not proceed further if a fault is identified.  
Boot time PBIST for Master  
R4F TCM Memories  
2
3
TCMs diagnostic is supported by Single error correction double error detection (SECDED)  
ECC diagnostic. An 8-bit code word is used to store the ECC data as calculated over the 64-  
bit data bus. ECC evaluation is done by the ECC control logic inside the CPU. This scheme  
provides end-to-end diagnostics on the transmissions between CPU and TCM. CPU is  
configured to have predetermined response (Ignore or Abort generation) to single and  
double bit error conditions.  
End to End ECC for Master  
R4F TCM Memories  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks. Faults in the bank addressing are detected by the CPU as an  
ECC fault.Further, bit multiplexing scheme implemented such that the bits accessed to  
generate a logical (CPU) word are not physically adjacent. This scheme helps to reduce the  
probability of physical multi-bit faults resulting in logical multi-bit faults; rather they manifest  
as multiple single bit faults. As the SECDED TCM ECC can correct a single bit fault in a  
logical word, this scheme improves the usefulness of the TCM ECC diagnostic.  
Master R4F TCM bit  
multiplexing  
4
AWR2243 architecture supports Three Digital Clock Comparators (DCCs) and an internal  
RCOSC. Dual functionality is provided by these modules – Clock detection and Clock  
Monitoring.  
DCCint is used to check the availability/range of Reference clock at boot otherwise the  
device is moved into limp mode (Device still boots but on 10MHz RCOSC clock source. This  
provides debug capability). DCCint is only used by boot loader during boot time. It is  
disabled once the APLL is enabled and locked.  
5
Clock Monitor  
DCC1 is dedicated for APLL lock detection monitoring, comparing the APLL output divided  
version with the Reference input clock of the device. Initially (before configuring APLL),  
DCC1 is used by bootloader to identify the precise frequency of reference input clock  
against the internal RCOSC clock source. Failure detection for DCC1 would cause the  
device to go into limp mode.  
Clock Compare module (CCC) module is used to compare the APLL divided down  
frequency with reference clock (XTAL). Failure detection is indicated by the nERROR OUT  
signal.  
Internal watchdog is enabled by the bootloader in a windowed watchdog (DWWD) mode..  
Watchdog expiry issues an internal warm reset and nERROR OUT signal to the host.  
6
7
RTI/WD for Master R4F  
MPU for Master R4F  
Cortex-R4F CPU includes an MPU. The MPU logic can be used to provide spatial  
separation of software tasks in the device memory. Cortex-R4F MPU supports 12 regions. It  
is expected that the operating system controls the MPU and changes the MPU settings  
based on the needs of each task. A violation of a configured memory protection policy  
results in a CPU abort.  
AWR2243 architecture supports a hardware programmable memory BIST (PBIST) engine  
for Peripheral SRAMs as well.  
PBIST for Peripheral interface PBIST for peripheral SRAM memories is triggered by the bootloader. The PBIST tests are  
8
SRAMs - SPI, I2C  
destructive to memory contents, and as such are typically run only at boot time. .  
Any fault detected by the PBIST results in an error indicated in PBIST and boot status  
response message.  
Peripheral interface SRAMs diagnostic is supported by Single error correction double error  
detection (SECDED) ECC diagnostic. When a single or double bit error is detected the error  
is indicated by nERROR (double bit error) or via SPI message (single bit error).  
ECC for Peripheral interface  
SRAMs – SPI, I2C  
9
Cyclic Redundancy Check – Cyclic Redundancy Check (CRC) module is available for the Master SS. The firmware uses  
Master SS this feature for data transfer checks in mailbox and SPI communication.  
10  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Table 10-1. Monitoring and Diagnostic Mechanisms for AWR2243 (continued)  
S No  
Feature  
Description  
AWR2243 architecture supports MPUs on Master SS DMAs. The firmware uses this for  
stack protection.  
11  
MPU for DMAs  
AWR2243 architecture supports hardware logic BIST (LBIST) even for BIST R4F core and  
associated VIM module. This logic provides very high diagnostic coverage (>90%) on the  
BIST R4F CPU core and VIM.  
This is triggered by Master R4F boot loader at boot time and it does not proceed further if  
the fault is detected.  
Boot time LBIST For BIST  
R4F Core and associated  
VIM  
12  
AWR2243 architecture supports a hardware programmable memory BIST (PBIST) engine  
for BIST R4F TCMs which provide a very high diagnostic coverage (March-13n) on the BIST  
R4F TCMs.  
Boot time PBIST for BIST  
R4F TCM Memories  
13  
14  
15  
PBIST is triggered at the power up of the BIST R4F.  
BIST R4F TCMs diagnostic is supported by Single error correction double error detection  
(SECDED) ECC diagnostic. Single bit error is communicated to the BIST R4FCPU while  
double bit error is communicated to Master R4F as an interrupt which sends a async event  
to the host.  
End to End ECC for BIST  
R4F TCM Memories  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks and helps to reduce the probability of physical multi-bit faults  
resulting in logical multi-bit faults.  
BIST R4F TCM bit  
multiplexing  
AWR2243 architecture supports various temperature sensors all across the device (next to  
power hungry modules such as PAs, DSP etc) which is monitored during the inter-frame  
period.(1)  
16  
17  
18  
Temperature Sensors  
Tx Power Monitors  
AWR2243 architecture supports power detectors at the Tx output.(2)  
When a diagnostic detects a fault, the error must be indicated. The AWR2243 architecture  
provides aggregation of fault indication from internal monitoring/diagnostic mechanisms  
using nERROR signaling or async event over SPI interface.  
Error Signaling  
Error Output  
Monitors Synthesizer’s frequency ramp by counting (divided-down) clock cycles and  
comparing to ideal frequency ramp. Excess frequency errors above a certain threshold, if  
any, are detected and reported.  
Synthesizer (Chirp) frequency  
monitor  
19  
20  
AWR2243 architecture supports a ball break detection mechanism based on Impedance  
measurement at the TX output(s) to detect and report any large deviations that can indicate  
a ball break.  
Ball break detection for TX  
ports (TX Ball break monitor) Monitoring is done by TIs code running on BIST R4F and failure is reported to the host.  
It is completely up to customer SW to decide on the appropriate action based on the  
message from BIST R4F.  
Built-in TX to RX loopback to enable detection of failures in the RX path(s), including Gain,  
inter-RX balance, etc.  
21  
22  
23  
RX loopback test  
Built-in IF (square wave) test tone input to monitor IF filter’s frequency response and detect  
IF loopback test  
failure.  
Provision to detect ADC saturation due to excessive incoming signal level and/or  
RX saturation detect  
interference.  
(1) Monitoring is done by the TI's code running on BIST R4F. There are two modes in which it could be configured to report the  
temperature sensed via API by customer application.  
a. Report the temperature sensed after every N frames  
b. Report the condition once the temperature crosses programmed threshold.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4Fvia Mailbox.  
(2) Monitoring is done by the TI's code running on BIST R4F.  
There are two modes in which it could be configured to report the detected output power via API by customer application.  
a. Report the power detected after every N frames  
b. Report the condition once the output power degrades by more than configured threshold from the configured.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F.  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
11 Applications, Implementation, and Layout  
Note  
Information in the following Applications section is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
11.1 Application Information  
A typical application addresses the standard short-, mid-, long-range, and high-performance imaging radar  
applications with this radar front end and external programmable MCU. Figure 11-1 shows a short-, medium-, or  
long-range radar application.  
11.2 Short-, Medium-, and Long-Range Radar  
Crystal  
Power Management  
RX1  
RX2  
Antenna  
Structure  
SPI/I2C  
RX3  
External  
MCU  
RX4  
Automotive  
Interface PHY  
AWR2243  
CSI2 (4 Lane Data + 1 Clock lane)  
TX1  
TX2  
Reset  
Error  
TX3  
MCU Clock  
Figure 11-1. Short-, Medium-, and Long-Range Radar  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AWR2243  
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
11.3 Imaging Radar using Cascade Configuration  
CSI-2 (4 lanes)  
RX1  
RX2  
RX3  
Control (SPI, GPIOs)  
Reset  
FMCW_SYNCOUT  
RX4  
AWR2243P  
Master  
TX1  
FMCW_SYNCIN  
SYNC_OUT  
TX2  
TX3  
SYNC_IN  
CLKP  
CLKM  
OSC_CLK_OUT  
External  
Host  
40MHz  
CLKP  
CLKM  
RX1  
RX2  
RX3  
RX4  
SYNC_IN  
FMCW_SYNCIN  
Reset  
AWR2243P  
Slave  
TX1  
Control (SPI, GPIOs, RESET)  
CSI-2 (4 lanes)  
TX2  
TX3  
Figure 11-2. Imaging Radar using Cascade Configuration  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
11.4 Reference Schematic  
Figure 11-3 shows the reference schematic for the AWR2243 device.  
Figure 11-3. AWR2243 Reference Schematic  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AWR2243  
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
11.5 Layout  
The top layer routing, top layer closeup, and bottom layer routing are shown in Figure 11-4, Figure 11-5, and  
Figure 11-6, respectively.  
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
11.5.1 Layout Guidelines  
Figure 11-4. Top Layer Routing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Figure 11-5. Top Layer Routing Closeup  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
Figure 11-6. Bottom Layer Routing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AWR2243  
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
11.5.2 Stackup Details  
1
2
0.689  
Rogers 4835 4.000  
1.260  
2.067  
4.000  
1.260  
100.000  
Rogers 4835 4mil coreH/1 Low Pro  
3.480  
73.000  
Iteq IT180A Prepreg 1080  
Iteq IT180A Prepreg 1080  
Dielectric  
Dielectric  
4.195  
4.195  
2.830  
2.830  
3.700  
3.700  
3
4
1.260  
28.000  
1.260  
1.260  
28.000  
1.260  
69.000  
48.000  
Iteq IT180A 28 mil core 1/1  
FR4  
4.280  
Iteq IT180A Prepreg 1080  
Iteq IT180A Prepreg 1080  
Dielectric  
Dielectric  
4.195  
4.195  
2.691  
2.691  
3.700  
3.700  
5
6
1.260  
4.000  
0.689  
1.260  
4.000  
2.067  
72.000  
Iteq IT180A 4 mil core 1/H  
FR4  
3.790  
100.000  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: AWR2243  
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions follow.  
12.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AWR2243). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ABL0161), the temperature range (for example, blank is the default commercial temperature  
range). Figure 12-1 provides a legend for reading the complete device name for any AWR2243 device.  
For orderable part numbers of AWR2243 devices in the ABL0161 package types, see the Package Option  
Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AWR2243 Device Errata.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
2
2
43  
B
AWR  
G
ABL  
Q1  
Qualification  
Q1 = AEC-Q100  
Blank = no special Qual  
Prefix  
XA = Pre-production  
AWR = Production  
Tray or Tape & Reel  
Generation  
2 = 76 œ 81 GHz  
R = Big Reel  
Blank = Tray  
Variant  
2 = FE  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP + 1.5 MB  
Package  
ABL = BGA  
Security  
Num RX/TX Channels  
G = General  
S = Secure  
D = Development Secure  
RX = 1,2,3,4  
TX = 1,2,3  
Silicon PG Revision  
Blank = Rev 1.0  
A = Rev 1.1  
Features  
Blank = Baseline  
P = High Performance  
Safety  
A = ASIL A Targeted  
B = ASIL B Targeted  
Figure 12-1. Device Nomenclature  
12.2 Tools and Software  
Development Tools  
AWR2243 Cascade Application Note Describes TI's cascaded mmWave radar system.  
Models  
AWR2243 BSDL Model Boundary scan database of testable input and output pins for IEEE 1149.1 of the  
specific device.  
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
12.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the DSP, related peripherals, and other technical collateral follows.  
Errata  
AWR2243 Device Errata Silicon Revisions 1.0 and 1.1  
Describes known advisories, limitations, and cautions on silicon and provides workarounds.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
12.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AWR2243  
 
 
 
 
 
 
AWR2243  
www.ti.com  
SWRS223A – FEBRUARY 2020 – REVISED AUGUST 2020  
13 Mechanical, Packaging, and Orderable Information  
13.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
CAUTION  
The following package information is subject to change without notice.  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: AWR2243  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AWR2243ABGABLQ1  
ACTIVE  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
ABL  
161  
161  
161  
161  
161  
176  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 140  
AWR2243  
BG  
583A  
583A ABL  
AWR2243ABGABLRQ1  
AWR2243APBGABLQ1  
AWR2243APBGABLRQ1  
XA2243PBGABL  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ABL  
ABL  
ABL  
ABL  
1000  
176  
1000  
1
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
-40 to 140  
-40 to 140  
-40 to 140  
-40 to 125  
AWR2243  
BG  
583A  
583A ABL  
Green (RoHS  
& no Sb/Br)  
AWR2243P  
BG  
583A  
583A ABL  
Green (RoHS  
& no Sb/Br)  
AWR2243P  
BG  
583A  
583A ABL  
Green (RoHS  
& no Sb/Br)  
(583, XAWR2243P)  
(ABL, BG)  
(583 ABL G1, 58  
3 ABL G1)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Sep-2020  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AWR2243ABGABLRQ1 FC/CSP  
AWR2243APBGABLRQ1 FC/CSP  
ABL  
ABL  
161  
161  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
10.7  
10.7  
10.7  
10.7  
1.65  
1.65  
16.0  
16.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Sep-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AWR2243ABGABLRQ1  
AWR2243APBGABLRQ1  
FC/CSP  
FC/CSP  
ABL  
ABL  
161  
161  
1000  
1000  
336.6  
336.6  
336.6  
336.6  
41.3  
41.3  
Pack Materials-Page 2  
PACKAGE OUTLINE  
ABL0161A  
FCBGA - 1.17 mm max height  
SCALE 1.400  
PLASTIC BALL GRID ARRAY  
10.5  
10.3  
B
A
BALL A1 CORNER  
10.5  
10.3  
1.17 MAX  
C
SEATING PLANE  
0.1 C  
BALL TYP  
0.37  
0.27  
TYP  
9.1 TYP  
PKG  
(0.65) TYP  
(0.65) TYP  
R
P
N
M
L
K
J
PKG  
H
G
F
9.1  
TYP  
E
D
C
0.45  
161X  
0.35  
0.15  
0.08  
C A B  
C
B
A
0.65 TYP  
BALL A1 CORNER  
1
3
4
5
6
7
8
9 10 11  
12 13 14 15  
2
0.65 TYP  
4222493/B 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ABL0161A  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
8
9
1
2
3
4
5
6
7
10 11  
12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.32)  
METAL  
(
0.32)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222493/B 10/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ABL0161A  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
8
9
1
2
3
4
5
6
7
10 11  
12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4222493/B 10/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

AWR2243ABGABLRQ1

AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver
TI

AWR2243APBGABLQ1

AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver
TI

AWR2243APBGABLRQ1

AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver
TI

AWR2243_V01

AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver
TI

AWR2943ABGALTQ1

适用于角雷达和远距离雷达的汽车类第二代 76GHz 至 81GHz 高性能 SoC | ALT | 266 | -40 to 140
TI

AWR2943ABGALTRQ1

适用于角雷达和远距离雷达的汽车类第二代 76GHz 至 81GHz 高性能 SoC | ALT | 266 | -40 to 140
TI

AWR2944

适用于角雷达和远距离雷达的汽车类第二代 76GHz 至 81GHz 高性能 SoC
TI

AWR2944ABGALTQ1

适用于角雷达和远距离雷达的汽车类第二代 76GHz 至 81GHz 高性能 SoC | ALT | 266 | -40 to 140
TI

AWR2944ABGALTRQ1

适用于角雷达和远距离雷达的汽车类第二代 76GHz 至 81GHz 高性能 SoC | ALT | 266 | -40 to 140
TI

AWR6443

集成 MCU 和雷达加速器的单芯片 60GHz 至 64GHz 汽车雷达传感器
TI

AWR6443ABGABLQ1

集成 MCU 和雷达加速器的单芯片 60GHz 至 64GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR6443ABGABLRQ1

集成 MCU 和雷达加速器的单芯片 60GHz 至 64GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI