BQ25100BYFPR [TI]

具有 4.284V 充电电压和可编程预充电功能的独立型单节电池 250mA 线性电池充电器 | YFP | 6 | -5 to 125;
BQ25100BYFPR
型号: BQ25100BYFPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 4.284V 充电电压和可编程预充电功能的独立型单节电池 250mA 线性电池充电器 | YFP | 6 | -5 to 125

电池
文件: 总33页 (文件大小:1253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
bq25100B  
ZHCSEY2 APRIL 2016  
bq25100B 250mA 单节锂离子电池充电器,1mA 终止电流、  
75nA 电池泄漏电流  
1 特性  
3 说明  
1
充电中  
bq25100B 器件是一款面向空间受限类便携式应用的高  
度集成锂离子和锂聚合物线性 充电器。具有输入过压  
保护的高输入电压范围支持低成本、未稳压的适配器。  
1% 充电电压准确度  
10% 充电电流准确度  
支持 充电电流 超低(10mA 250mA)的应用  
最低支持 1mA 充电终止电流  
bq25100B 具有一个可为电池充电的电源输出。如果在  
10 小时的安全定时器期间内平均系统负载无法让电池  
充满电,则可以使系统负载与电池并联。  
超低电池输出泄漏电流:75nA(最大值)  
可调节的终止和预充电阈值  
电池充电经历以下三个阶段:调节,恒定电流和恒定电  
压。在所有充电阶段,内部控制环路都会监控 IC 结  
温,当其超过内部温度阈值时,它会减少充电电流。  
高电压化学支持:4.30V  
保护  
30V 额定输入电压;具有 6.5V 输入过压保护  
输入电压动态电源管理  
充电器功率级和充电电流感测功能均完全集成。该充电  
器具有高精度电流和电压调节环路以及充电终止功能。  
预充电电流和终止电流阈值可通过 bq25100B 上的一  
个外部电阻进行编程。快速充电电流值也可通过一个外  
部电阻进行编程。  
125°C 热调节;150°C 热关断保护  
OUT 短路保护和 ISET 短路检测  
固定 10 小时安全定时器  
系统  
针对电池组缺失情况的自动终止和定时器禁用模  
(TTDM)  
本文档包含针对 bq25100B 系列中其他器件的引用。  
有关这些器件的更多信息,请参见相应数据表。本文档  
引用了 CHG 引脚和 JEITA 温度功能。  
采用小型 1.60mm × 0.90mm 芯片尺寸球状引  
脚栅格阵列 (DSBGA) 封装  
器件信息(1)  
封装  
2 应用  
器件型号  
bq25100B  
封装尺寸(标称值)  
DSBGA (6)  
1.60mm × 0.90mm  
健身配件  
智能手表  
Bluetooth®耳机  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
低功耗手持器件  
典型应用图  
SYSTEM  
USB Port or  
Adapter  
VBUS  
IN  
OUT  
TS  
D+  
D-  
1ÛF  
1ÛF  
VSS  
GND  
PACK+  
TEMP  
ISET  
HOST  
1.35k  
PRETERM  
PACK-  
6kΩ  
bq25100B  
CE  
Copyright  
© 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCG5  
 
 
 
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Application .................................................. 22  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions...................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics.......................................... 5  
7.6 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
10 Power Supply Recommendations ..................... 24  
10.1 Leakage Current Effects on Battery Capacity....... 24  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 25  
11.3 Thermal Considerations........................................ 25  
12 器件和文档支持 ..................................................... 26  
12.1 器件支持 ............................................................... 26  
12.2 相关链接................................................................ 26  
12.3 ....................................................................... 26  
12.4 静电放电警告......................................................... 26  
12.5 Glossary................................................................ 26  
13 机械、封装和可订购信息....................................... 26  
8
4 修订历史记录  
日期  
修订版本  
注释  
2016 4 月  
*
最初发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
5 Device Comparison Table  
PART NUMBER  
bq25100  
VO(REG)  
4.20 V  
4.20 V  
4.30 V  
4.284 V  
4.35 V  
4.35 V  
4.06 V  
VOVP  
6.5 V  
6.5 V  
6.5 V  
6.5 V  
6.5 V  
6.5 V  
6.5 V  
PreTerm /CHG  
PreTerm  
CHG  
TS  
TS (JEITA)  
bq25101  
TS (JEITA)  
TS  
bq25100A  
bq25100B(1)  
bq25100H  
bq25101H  
bq25100L(2)  
PreTerm  
PreTerm  
PreTerm  
CHG  
TS  
TS (JEITA)  
TS (JEITA)  
TS  
PreTerm  
(1) The bq25100B is part of the bq25100 family of devices. Please see 器件支持 for viewing other devices.  
(2) Product preview. Contact the local TI representative for device details.  
6 Pin Configuration and Functions  
YFP Package  
6-Pin DSBGA  
Top View  
1
2
!
.
/
hÜÇ  
Ç{  
Lb  
L{9Ç  
ë{{  
tw9-  
Ç9wa  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Input power, connected to external DC supply (AC adapter or USB port). Expected range of bypass  
capacitors 1 μF to 10 μF, connect from IN to VSS  
IN  
A2  
I
I
.
Programs the fast-charge current setting. External resistor from ISET to VSS defines fast charge  
current value. Recommended range is 13.5 k(10 mA) to 0.54 k(250 mA).  
ISET  
OUT  
B2  
A1  
Battery Connection. System Load may be connected. Expected range of bypass capacitors 1 μF to  
10 μF.  
O
Programs the current termination threshold ( 1% to 50% of IOUT, 1 mA minimum). The pre-charge  
current is twice the termination current level.  
PRE-TERM  
C1  
I
Expected range of programming resistor is 600 to 30 k(6k: ICHG/10 for term; ICHG/5 for  
precharge)  
Temperature sense pin connected to 10k at 25°C NTC thermistor, in the battery pack. Floating TS  
pin or pulling high puts part in TTDM Charger mode and disables TS monitoring, Timers and  
Termination. Pulling pin low disables the IC. If NTC sensing is not needed, connect this pin to VSS  
through an external 10-kresistor. A 250-kresistor from TS to ground will prevent IC entering  
TTDM mode when battery with thermistor is removed.  
TS  
B1  
C2  
I
VSS  
Ground pin  
Copyright © 2016, Texas Instruments Incorporated  
3
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
IN (with respect to VSS)  
30  
7
OUT (with respect to VSS)  
V
Input voltage  
PRE-TERM, ISET, TS, CHG  
(with respect to VSS)  
–0.3  
7
V
Input current  
IN  
300  
300  
15  
mA  
mA  
mA  
°C  
Output current (continuous) OUT  
Output sink current  
Junction temperature  
Storage temperature  
CHG  
TJ  
–40  
–65  
150  
150  
Tstg  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to the network ground terminal unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±8000  
UNIT  
IEC61000-4-2 contact discharge(1)  
IEC61000-4-2 air-gap discharge(1)  
Pins A1, A2, B1(2)  
Pins A1, A2, B1(2)  
Electrostatic  
discharge  
V(ESD)  
V
±15000  
(1) The test was performed on IC pins that may potentially be exposed to the customer at the product level. The bq2510x IC requires a  
minimum of the listed capacitance, external to the IC, to pass the ESD test.  
(2) 1 µF between IN (pin A2) and GND,  
1 µF between TS (pin B1) and GND,  
2 µF between OUT (pin A1) and GND,  
x5R ceramic or equivalent  
7.3 Recommended Operating Conditions  
(1)  
see  
MIN  
3.5  
NOM  
28  
UNIT  
V
IN voltage  
VIN  
IN operating voltage, restricted by VDPM and VOVP  
Input current, IN pin  
4.45  
6.45  
250  
250  
30  
V
IIN  
mA  
mA  
kΩ  
kΩ  
kΩ  
°C  
IOUT  
Current, OUT pin  
RPRE-TERM  
RISET  
RTS  
Programs precharge and termination current thresholds  
Fast-charge current programming resistor  
10k NTC thermistor range without entering BAT_EN or TTDM  
Junction temperature  
0.6  
0.54  
1.66  
–5  
13.5  
258  
125  
TJ  
(1) Operation with VIN less than 4.5V or in drop-out may result in reduced performance.  
4
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
7.4 Thermal Information  
bq25100B  
THERMAL METRIC(1)  
YFP (DSBGA)  
UNIT  
6 PINS  
132.9  
1.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-board thermal resistance  
21.8  
5.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
21.8  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
Over junction temperature range –5°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT  
UVLO  
Undervoltage lockout exit  
VIN: 0 V 4 V  
VIN: 4 V0 V;  
3.15  
3.3  
3.45  
130  
V
VHYS_UVLO  
Hysteresis on VUVLO_RISE falling  
263  
mV  
VUVLO_FALL = VUVLO_RISE – VHYS-UVLO  
Input power good detection  
threshold is VOUT + VIN-DT  
Input power good if VIN > VOUT + VIN-DT;  
VOUT = 3.6 V; VIN: 3.5 V 4 V  
VIN-DT  
15  
60  
31  
29  
mV  
mV  
ms  
VHYS-INDT  
tDGL(PG_PWR)  
tDGL(PG_NO-PWR)  
VOVP  
Hysteresis on VIN-DT falling  
VOUT = 3.6 V; VIN: 4 V 3.5 V  
Time measured from VIN: 0 V 5 V 1-μs rise-  
time to charge enables; VOUT = 3.6 V  
Deglitch time on exiting sleep  
Deglitch time on VHYS-INDT power Time measured from VIN: 5 V 3.2 V 1-μs fall-  
down. Same as entering sleep.  
29  
ms  
V
time to charge disables; VOUT = 3.6 V  
Input over-voltage protection  
threshold  
VIN: 5 V 12 V  
6.50  
4.25  
6.65  
6.84  
tDGL(OVP-SET)  
VHYS-OVP  
Input over-voltage blanking time  
Hysteresis on OVP  
VIN: 5 V 12 V  
VIN: 11 V 5 V  
113  
110  
μs  
mV  
Time measured from VIN: 12 V 5 V 1-μs fall-  
time to charge enables  
tDGL(OVP-REC)  
VIN-DPM  
Deglitch time exiting OVP  
450  
μs  
Low input voltage protection.  
Restricts lout at VIN-DPM  
Limit input source current to 50 mA;  
VOUT = 3.5 V; RISET = 1.35 kΩ  
4.31  
4.37  
470  
V
ISET SHORT CIRCUIT TEST  
Highest resistor value considered RISET: 540 Ω → 250 , Iout latches off;  
a fault (short). Cycle power to reset  
RISET_SHORT  
tDGL_SHORT  
IOUT_CL  
426  
1
Deglitch time transition from ISET Clear fault by disconnecting IN or cycling (high /  
short to Iout disable  
ms  
mA  
low) TS/BAT_EN  
Maximum OUT current limit  
regulation (Clamp)  
VIN = 5 V; VOUT = 3.6 V; RISET: 540 Ω → 250 ;  
IOUT latches off after tDGL-SHORT  
550  
600  
650  
BATTERY SHORT PROTECTION  
OUT pin short-circuit detection  
threshold/ precharge threshold  
VOUT(SC)  
VOUT:3 V 0.5 V; No deglitch  
0.75  
0.8  
77  
11  
0.85  
V
Recovery VOUT(SC) + VOUT(SC-HYS); Rising; No  
deglitch  
VOUT(SC-HYS)  
IOUT(SC)  
OUT pin Short hysteresis  
mV  
mA  
Source current to OUT pin during  
short-circuit detection  
9
13  
QUIESCENT CURRENT  
VIN = 0 V; 0°C to 125°C  
VIN = 0 V; 0°C to 85°C  
80  
50  
IOUT(PDWN)  
Battery current into OUT pin  
nA  
OUT pin current, charging  
terminated  
IOUT(DONE)  
IIN(STDBY)  
VIN = 6 V; VOUT > VOUT(REG)  
6
μA  
μA  
Standby current into IN pin  
TS = GND; VIN 6 V  
125  
TS = open, VIN = 6 V;  
ICC  
Active supply current, IN pin  
TTDM – no load on OUT pin; VOUT > VOUT(REG)  
;
0.75  
1
mA  
IC enabled  
Copyright © 2016, Texas Instruments Incorporated  
5
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over junction temperature range –5°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BATTERY CHARGER FAST-CHARGE  
TJ = -5°C to 125°C; IOUT = 0 mA to 250 mA;  
VIN = 5.0 V; VTS-45°CVTS VTS-0°C (bq25100B)  
4.25  
4.266  
10  
4.284  
4.284  
4.305  
V
VOUT(REG)  
Output voltage  
TJ = -5°C to 55°C; IOUT = 10mA to 75 mA;  
VIN = 5.0 V; VTS-45°CVTS VTS-0°C (bq25100B)  
4.305  
Programmed output “fast charge” VOUT(REG) > VOUT > VLOWV; VIN = 5 V;  
IOUT(RANGE)  
250  
400  
mA  
current range  
RISET = 0.54 kto 13.5 kΩ  
Adjust VIN down until IOUT = 0.2 A; VOUT = 4.15 V;  
RISET = 680 ; TJ 100°C  
VDO(IN-OUT)  
IOUT  
Drop-Out, VIN – VOUT  
Output “fast charge” formula  
240  
mV  
A
VOUT(REG) > VOUT > VLOWV; VIN = 5 V  
RISET = KISET /IOUT; 20 < IOUT < 250 mA  
RISET = KISET /IOUT; 5 < IOUT < 20 mA  
KISET/RISET  
135  
129  
125  
145  
145  
KISET  
Fast charge current factor  
AΩ  
135  
PRECHARGE – SET BY PRETERM PIN  
Pre-charge to fast-charge  
transition threshold  
VLOWV  
2.4  
2.5  
57  
32  
2.6  
V
Deglitch time on pre-charge to  
tDGL1(LOWV)  
μs  
ms  
fast-charge transition  
Deglitch time on fast-charge to  
tDGL2(LOWV)  
pre-charge transition  
IPRE-TERM  
Refer to the Termination Section  
Pre-charge current, default  
setting  
VOUT < VLOWV; RISET = 2.7 k; RPRE-TERM= High Z  
or for bq25101/101H  
%IOUT-  
18  
20  
22  
320  
347  
11  
CC  
%
PRECHG  
Pre-charge current formula  
% Pre-charge Factor  
RPRE-TERM = KPRE-CHG (/%) × %PRE-CHG (%)  
RPRE-TERM/KPRE-CHG%  
VOUT < VLOWV; VIN = 5 V;  
RPRE-TERM = 6 kΩ to 30 k;  
RISET = 1.8 k;  
280  
300  
305  
10  
/%  
/%  
RPRE-TERM = KPRE-CHG × %IPRE-CHG  
,
where %IPRE-CHG is 20 to 100%  
KPRE-CHG  
VOUT < VLOWV; VIN = 5 V;  
RPRE-TERM = 3 kΩ to 6 k;  
RISET = 1.8 k;  
265  
RPRE-TERM = KPRE-CHG × %IPRE-CHG  
where %IPRE-CHG is 10% to 20%  
,
TERMINATION – SET BY PRE-TERM PIN  
Termination threshold current,  
VOUT > VRCH; RISET = 2.7 kΩ; RPRE-TERM = High Z  
or for bq25101/101H  
%IOUT-  
9
default setting  
CC  
%
TERM  
Termination current threshold  
formula  
RPRE-TERM = KTERM (/%) × %TERM (%)  
RPRE-TERM/ KTERM  
VOUT > VRCH; VIN = 5 V;  
RPRE-TERM = 6 kΩ to 30 k;  
RISET = 1.8 k, RPRE-TERM=KTERM × %ITERM  
where %ITERM is 10 to 50%  
575  
600  
620  
680  
25  
640  
685  
1001  
27  
,
VOUT > VRCH; VIN = 5 V;  
RPRE-TERM = 3 kΩ to 6 k;  
RISET = 1.8 k, RPRE-TERM= KTERM × %ITERM  
where %ITERM is 5 to 10%  
KTERM  
% Term factor  
555  
352  
/%  
,
VOUT > VRCH; VIN = 5 V;  
RPRE-TERM = 750 to 3 k;  
RISET = 1.8 k, RPRE-TERM= KTERM × %ITERM  
where %ITERM is 1.25% to 5%  
,
Current for programming the  
term. and pre-chg with resistor,  
ITerm-Start is the initial PRE-TERM  
current  
IPRE-TERM  
RPRE-TERM = 6 kΩ; VOUT = 4.15 V  
23  
1
μA  
ITERM  
Termination current range  
Termination current formula  
Minimum absolute termination current  
mA  
%
%TERM  
RTERM/ KTERM  
29  
Deglitch time, termination  
detected  
tDGL(TERM)  
ms  
RECHARGE OR REFRESH  
Recharge detection threshold –  
VO(REG) VO(REG)–0.1 VO(REG)–0.0  
–0.125 01 75  
VRCH  
VIN = 5 V; VTS = 0.5 V; VOUT: 4.35 V VRCH  
V
normal temp  
6
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
Electrical Characteristics (continued)  
Over junction temperature range –5°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 5 V; VTS = 0.5 V;  
VOUT: 4.25 V 3.5V in 1 μs;  
tDGL(RCH) is time to ISET ramp  
Deglitch time, recharge threshold  
detected  
tDGL1(RCH)  
29  
ms  
VIN = 5 V; VTS = 0.5 V;  
VOUT = 3.5 V inserted;  
tDGL(RCH) is time to ISET ramp  
Deglitch time, recharge threshold  
detected in OUT-Detect Mode  
tDGL2(RCH)  
29  
ms  
BATTERY DETECT ROUTINE – (NOTE: In Hot mode VO(REG) becomes VO_HT(REG)  
)
VREG-BD  
VOUT reduced regulation during  
battery detect  
VO(REG)  
0.550  
-
VO(REG)  
0.500  
-
VO(REG)  
0.450  
-
V
VIN = 5 V; VTS = 0.5 V; Battery absent  
VIN = 5 V; VTS = 0.5 V; Battery absent  
VIN = 5 V; VTS = 0.5 V; Battery absent  
IBD-SINK  
Sink current during VREG-BD  
2
mA  
ms  
Regulation time at VREG or VREG-  
tDGL(HI/LOW REG)  
25  
BD  
VO(REG)  
0.150  
-
VO(REG)  
0.100  
-
VO(REG)-  
0.050  
VBD-HI  
VBD-LO  
High battery detection threshold  
Low battery detection threshold  
VIN = 5 V; VTS = 0.5 V; Battery absent  
VIN = 5 V; VTS = 0.5 V; Battery absent  
V
V
VREG-BD  
+0.05  
VREG-BD  
+0.1  
VREG-BD  
+0.15  
BATTERY CHARGING TIMERS AND FAULT TIMERS  
Restarts when entering pre-charge;  
Always enabled when in pre-charge.  
tPRECHG  
tMAXCH  
Pre-charge safety timer value  
Charge safety timer value  
1700  
1940  
2250  
s
s
Clears fault or resets at UVLO, TS disable, OUT  
Short, exiting LOWV and Refresh  
34000  
38800  
45000  
BATTERY-PACK NTC MONITOR (see Note 1); TS pin: 10k NTC  
INTC-10k  
NTC bias current  
VTS = 0.3 V  
VTS = 0 V  
48.5  
27  
50.5  
30  
52.5  
33  
μA  
μA  
10k NTC bias current when  
charging is disabled  
INTC-DIS-10k  
INTC is reduced prior to entering  
TTDM to keep cold thermistor  
from entering TTDM  
INTC-FLDBK-10k  
VTS: Set to 1.525 V  
4
5
6.5  
μA  
Termination and timer disable  
mode Threshold – Enter  
VTTDM(TS)  
VTS: 0.5 V 1.7 V; Timer held in reset  
1550  
1600  
1650  
mV  
VHYS-TTDM(TS)  
VCLAMP(TS)  
Hysteresis exiting TTDM  
VTS: 1.7 V 0.5 V; Timer enabled  
100  
mV  
mV  
TS maximum voltage clamp  
VTS = Open (float)  
1900  
1950  
2000  
Deglitch exit TTDM between  
states  
57  
8
ms  
tDGL(TTDM)  
Deglitch enter TTDM between  
states  
μs  
TS voltage where INTC is reduce INTC adjustment (90 to 10%; 45 to 6.6 uA) takes  
VTS_I-FLDBK  
to keep thermistor from entering  
TTDM  
place near this spec threshold;  
VTS: 1.425 V 1.525 V  
1475  
mV  
CTS  
Optional capacitance – ESD  
0.22  
μF  
Low temperature, charge  
pending  
Low temperature charging to pending;  
VTS: 1 V 1.5 V  
VTS-0°C  
1230  
775  
1255  
1280  
830  
mV  
At 0°C;  
VHYS-0°C  
VTS-10°C  
VHYS-10°C  
Hysteresis  
Charge pending to low temperature charging;  
VTS: 1.5 V 1 V  
100  
800  
55  
mV  
mV  
mV  
Normal charging to low temperature charging;  
VTS: 0.5 V 1 V  
Low temperature, half charge  
Hysteresis  
At 10°C;  
Low temperature charging to normal charging;  
VTS: 1 V 0.5 V  
At 4.1V (bq25100/101) or 4.2V (bq25100H/101H);  
Normal charging to high temperature charging;  
VTS: 0.5 V 0.2 V  
VTS-45°C  
VHYS-45°C  
VTS-60°C  
High temperature  
Hysteresis  
253  
160  
268  
20  
283  
180  
mV  
mV  
mV  
At 45°C;  
High tempemperature charging to normal  
charging;  
VTS: 0.2 V 0.5 V  
bq25100/01/100H/101H/100L;  
High temperature charge to pending;  
VTS: 0.2 V 0.1 V  
High temperature disable  
170  
Copyright © 2016, Texas Instruments Incorporated  
7
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over junction temperature range –5°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
At 60°C (bq25100/01/100H/101H/100L);  
Charge pending to high temperature charging;  
VTS: 0.1 V 0.2 V  
VHYS-60°C  
Hysteresis  
20  
mV  
Normal to cold operation; VTS: 0.6 V 1 V  
Cold to normal operation; VTS: 1 V 0.6 V  
50  
12  
tDGL(TS_10C)  
Deglitch for TS thresholds: 10C  
ms  
ms  
Deglitch for TS thresholds:  
0/45/60C  
tDGL(TS)  
Battery charging  
30  
92  
12  
Charge enable threshold, (10k  
NTC)  
VTS-EN-10k  
VTS-DIS_HYS-10k  
VTS: 0 V 0.175 V  
VTS: 0.125 V 0 V  
84  
100  
mV  
mV  
HYS below VTS-EN-10k to disable,  
(10k NTC)  
THERMAL REGULATION  
TJ(REG)  
Temperature regulation limit  
125  
155  
20  
°C  
°C  
°C  
TJ(OFF)  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
TJ(OFF-HYS)  
LOGIC LEVELS ON /CHG  
VOL  
Output low voltage  
Leakage current into IC  
ISINK = 5 mA  
V CHG = 5 V  
0.4  
1
V
ILEAK  
μA  
8
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
7.6 Typical Characteristics  
Setup: Typical Applications Schematic; VIN = 5 V, VBAT = 3.6 V (unless otherwise noted)  
VIN  
VIN 2 V/div  
2 V/div  
VOUT 2 V/div  
VOUT  
2 V/div  
IOUT 60 mA/div  
IOUT 60 mA/div  
VISET 1 V/div  
t-time – 10 ms/div  
t-time – 20 ms/div  
No Battery, No Load  
Hot Plug  
Figure 1. Power Up Timing  
Figure 2. OVP 7-V Adaptor  
VIN 2 V/div  
VIN 2 V/div  
VTS 500 mV/div  
VOUT 2 V/div  
IOUT 60 mA/div  
IOUT 60 mA/div  
VISET 1 V/div  
VISET 1 V/div  
t-time – 50 ms/div  
t-time – 50 ms/div  
VIN 0 V -5 V-7 V-5 V  
Figure 3. OVP from Normal Power-Up Operation  
Figure 4. TS Enable and Disable  
VIN 1 V/div  
VIN 5 V/div  
IOUT 60 mA/div  
VOUT 2 V/div  
VOUT 2 V/div  
IOUT 100 mA/div  
VISET 1 V/div  
VISET 1 V/div  
t-time – 5 ms/div  
t-time – 20 ms/div  
VIN Regulated  
Figure 5. DPM-Adaptor Current Limits  
Figure 6. Hot Plug Source  
with No Battery - Battery  
Detection  
Copyright © 2016, Texas Instruments Incorporated  
9
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Setup: Typical Applications Schematic; VIN = 5 V, VBAT = 3.6 V (unless otherwise noted)  
VIN 5 V/div  
VIN 5 V/div  
IOUT 100 mA/div  
VOUT 2 V/div  
VOUT 2 V/div  
VISET 1 V/div  
VISET 1 V/div  
IOUT 100 mA/div  
t-time – 20 ms/div  
t-time – 200 μs/div  
No Load  
Figure 7. Battery Removal  
Figure 8.  
ISET Shorted During Normal Operation  
VIN 5 V/div  
VIN 5 V/div  
VOUT 5 V/div  
VOUT 5 V/div  
IOUT 100 mA/div  
IOUT 100 mA/div  
VISET 1 V/div  
VISET 1 V/div  
t-time – 10 ms/div  
t-time – 10 ms/div  
20-Ω resistor at OUT, No input, VBAT = 3.7 V  
20-Ω resistor at OUT, No input, VBAT = 3.7 V  
Figure 10. Battery Removal  
Figure 9. Battery Plug In  
VIN 2 V/div  
VIN 2 V/div  
VISET 2 V/div  
VOUT 2 V/div  
ILOAD 70 mA/div  
IOUT 400 mA/div  
VISET 1 V/div  
IOUT 70 mA/div  
t-time – 10 ms/div  
t-time – 10 ms/div  
90-mA Load, 120-mA ICHG  
Figure 11. ISET Short Prior to Power Up  
Figure 12. Power Up  
10  
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
Typical Characteristics (continued)  
Setup: Typical Applications Schematic; VIN = 5 V, VBAT = 3.6 V (unless otherwise noted)  
4.21  
4.208  
4.206  
4.204  
4.202  
4.2  
4.202  
4.201  
4.2  
VREG = 0èC  
VREG = 25èC  
VREG = 85èC  
VREG = 125èC  
4.199  
4.198  
4.197  
4.196  
4.195  
4.194  
VREG = 0èC  
VREG = 25èC  
VREG = 85èC  
VREG = 125èC  
4.198  
4.196  
4.194  
4.192  
4.19  
1 mA 10 mA 50 mA 100 mA 150 mA 200 mA 250 mA  
Load Current (mA)  
4.5 V  
5 V  
5.5 V  
6 V  
6.5 V  
D001  
D002  
Input Voltage (V)  
Figure 13. Load Regulation Over Temperature  
Figure 14. Line Regulation Over Temperature  
80  
6.4  
112  
111  
110  
109  
108  
107  
106  
IOUT (mA)  
VOUT (V)  
70  
60  
50  
40  
30  
20  
10  
0
5.6  
4.8  
4
3.2  
2.4  
1.6  
0.8  
0
IO = 0èC  
IO = 25èC  
IO = 85èC  
IO = 125èC  
2.5 V  
3 V  
3.5 V  
4 V  
4.1 V  
D004  
D003  
Output Voltage (V)  
bq25100 charge cycle, ICHG = 75 mA, VBAT_REG = 4.2 V  
Figure 16. Battery Voltage vs Charge Current  
Figure 15. Current Regulation Over Temperature  
Copyright © 2016, Texas Instruments Incorporated  
11  
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The bq25100B is a highly integrated family of single cell Li-Ion and Li-Pol chargers. The charger can be used to  
charge a battery, power a system or both. The charger has three phases of charging: pre-charge to recover a  
fully discharged battery, fast-charge constant current to supply the charge safely and voltage regulation to safely  
reach full capacity. The charger is very flexible, allowing programming of the fast-charge current and Pre-  
charge/Termination Current. This charger is designed to work with a USB connection (100-mA limit) or Adaptor  
(DC output). The charger also checks to see if a battery is present. The following discussion reviews all products  
in the bq25100B family. Not all features apply to the bq25100B.  
The charger also comes with  
a
full set of safety features: JEITA Temperature Standard  
(bq25100/01/100H/101H), Over-Voltage Protection, DPM-IN, Safety Timers, and ISET short protection. All of  
these features and more are described in detail below.  
The charger is designed for a single power path from the input to the output to charge a single cell Li-Ion or  
Li-Pol battery pack. Upon application of a 5-V DC power source the ISET and OUT short checks are performed  
to assure a proper charge cycle.  
If the battery voltage is below the LOWV threshold, the battery is considered discharged and a preconditioning  
cycle begins. The amount of precharge current can be programmed using the PRE-TERM pin which programs a  
percent of fast charge current (10 to 100%) as the precharge current. This feature is useful when the system load  
is connected across the battery “stealing” the battery current. The precharge current can be set higher to account  
for the system loading while allowing the battery to be properly conditioned. The PRE-TERM pin is a dual  
function pin which sets the precharge current level and the termination threshold level. The termination "current  
threshold" is always half of the precharge programmed current level.  
Once the battery voltage has charged to the VLOWV threshold, fast charge is initiated and the fast charge  
current is applied. The fast charge constant current is programmed using the ISET pin. The constant current  
provides the bulk of the charge. Power dissipation in the IC is greatest in fast charge with a lower battery voltage.  
If the IC reaches 125°C, the IC enters thermal regulation, slows the timer clock by half, and reduces the charge  
current as needed to keep the temperature from rising any further. Figure 17 shows the charging profile with  
thermal regulation. Typically under normal operating conditions, the IC’s junction temperature is less than 125°C  
and thermal regulation is not entered.  
Once the cell has charged to the regulation voltage the voltage loop takes control and holds the battery at the  
regulation voltage until the current tapers to the termination threshold. The termination can be disabled if desired.  
Further details are described in the Operating Modes section.  
12  
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
Overview (continued)  
Thermal  
Regulation  
Phase  
Current  
Regulation  
Phase  
Voltage Regulation and  
Charge Termination  
Phase  
Pre-  
Conditioning  
Phase  
DONE  
V
O(REG)  
I
O(OUT)  
Battery Current,  
I
FAST-CHARGE  
CURRENT  
(OUT)  
Battery  
Voltage,  
V
(OUT)  
Charge  
Complete  
Status,  
Charger  
Off  
PRE-CHARGE  
CURRENT AND  
TERMINATION  
THRESHOLD  
V
O(LOWV)  
I
(TERM)  
I
O(PRECHG)  
T
(THREG)  
0A  
Temperature, Tj  
T
DONE  
(CHG)  
T
(PRECHG)  
Figure 17. Charging Profile With Thermal Regulation  
Copyright © 2016, Texas Instruments Incorporated  
13  
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
8.2 Functional Block Diagram  
Internal Charge  
Current Sense  
w/ Multiple Outputs  
IN  
OUT  
+
-
Input  
Power  
Detect  
80 mV  
IN  
OUT  
_
+
+
_
+
_
OUT  
IN-DPMREF  
OUTREGREF  
TJ  
Charge  
Pump  
_
+
FAST CHARGE  
PRE-CHARGE  
1.5V  
125˘CREF  
ISET  
IN  
_
+
PRE-CHG Reference  
_
+
22mA Startup Current  
Limit  
Internal Current  
Sensing Resistor  
Term Reference  
TJ  
+
_
_
+
150˘CREF  
Thermal Shutdown  
Charge  
Pump  
25mA  
PRE-TERM  
IN  
_
+
OVPREF  
+
_
OUT  
+
_
VTERM_EN  
CHARGE  
CONTROL  
VCOOL-10˘C  
_
+
_
+
VWARM-45˘C  
VCOLD-0˘C  
_
+
_
+
VHOT-60˘C  
LO=LDO MODE  
TS  
VLDO  
+
_
+
_
HI=CHIP DISABLE  
VDISABLE  
Cold Temperature Sink  
Current  
Disable Sink  
Current = 20mA  
= 45mA  
VCLAMP=1.4V  
+
_
+
_
5mA  
45mA  
Copyright  
© 2016, Texas Instruments Incorporated  
14  
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
8.3 Feature Description  
8.3.1 Overvoltage-Protection (OVP) – Continuously Monitored  
If the input source applies an overvoltage, the pass FET, if previously on, turns off after a deglitch, tBLK(OVP). The  
timer stops counting. Once the overvoltage returns to a normal voltage, the timer and charge continues.  
8.3.2 CHG Pin Indication (bq25101, bq25101H)  
The charge pin has an internal open drain FET which is on (pulls down to VSS) during the first charge only  
(independent of TTDM) and is turned off once the battery reaches voltage regulation and the charge current  
tapers to the termination threshold set by the PRE-TERM resistor. The bq25101/01H terminates at 10% of the  
programmed charge current. The charge pin is high impedance in sleep mode and OVP and returns to its  
previous state once the condition is removed. Cycling input power, removing and replacing the battery, pulling  
the TS pin low and releasing or entering pre-charge mode causes the CHG pin to go reset (go low if power is  
good and a discharged battery is attached) and is considered the start of a first charge.  
8.3.3 CHG Pin LED Pull-up Source (bq25101, bq25101H)  
For host monitoring, a pull-up resistor is used between the CHG pin and the VCC of the host and for a visual  
indication a resistor in series with an LED is connected between the /CHG pin and a power source. If the CHG  
source is capable of exceeding 7 V, a 6.2-V zener should be used to clamp the voltage. If the source is the OUT  
pin, note that as the battery changes voltage, and the brightness of the LEDs vary.  
8.3.4 IN-DPM (VIN-DPM or IN-DPM)  
The IN-DPM feature is used to detect an input source voltage that is folding back (voltage dropping), reaching its  
current limit due to excessive load. When the input voltage drops to the VIN-DPM threshold the internal pass FET  
starts to reduce the current until there is no further drop in voltage at the input. This would prevent a source with  
voltage less than VIN-DPM to power the out pin. This is an added safety feature that helps protect the source from  
excessive loads. This feature is not applicable for bq25100B.  
8.3.5 OUT  
The Charger’s OUT pin provides current to the battery and to the system, if present. This IC can be used to  
charge the battery plus power the system, charge just the battery or just power the system (TTDM) assuming the  
loads do not exceed the available current. The OUT pin is a current limited source and is inherently protected  
against shorts. If the system load ever exceeds the output programmed current threshold, the output will be  
discharged unless there is sufficient capacitance or a charged battery present to supplement the excessive load.  
8.3.6 ISET  
An external resistor is used to Program the Output Current (10 to 250 mA) and can be used as a current monitor.  
RISET = KISET ÷ IOUT  
(1)  
Where:  
IOUT is the desired fast charge current;  
KISET is a gain factor found in the electrical specification  
For greater accuracy at lower currents, part of the sense FET is disabled to give better resolution. Going from  
higher currents to low currents, there is hysteresis and the transition occurs around 50 mA.  
The ISET resistor is short protected and will detect a resistance lower than 420 . The detection requires at  
least 50 mA of output current. If a “short” is detected, then the IC will latch off and can be reset by cycling the  
power or cycling TS pin. The OUT current is internally clamped to a maximum current of 600 mA typical and is  
independent of the ISET short detection circuitry.  
For charge current that is below 50 mA, an extra RC circuit is recommended on ISET to acheive more stable  
current signal. More detail is available in 9.1 Application Information.  
Copyright © 2016, Texas Instruments Incorporated  
15  
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
Feature Description (continued)  
60/ 4ꢀ/  
10/  
trogrammed ë.!Ç_w9D  
0/  
ꢄo hperaꢁion  
5uring /old Caulꢁ  
weduced ë.!Ç_w9D  
trogrammed L/ID  
(100%)  
ꢀ0%  
/old Caulꢁ  
0
0ꢃ2  
0ꢃ4  
0ꢃ6  
0ꢃ8  
1ꢃ0  
1ꢃ2  
ë/h[5  
1ꢃ4  
1ꢃ6  
1ꢃ8  
Çerminaꢁion  
5isable  
ëIhÇ ëí!wꢂ  
ë/hh[  
Ç{ ëolꢁage-ë  
Figure 18. JEITA Operation Over TS Bias Voltage - bq25100, bq25100H, bq25101, bq25101H  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
Feature Description (continued)  
4ꢀ/  
10/  
trogrammed ë.!Ç_w9D  
0/  
ꢄo hperaꢁion  
5uring /old Caulꢁ  
Ioꢁ Caulꢁ  
/ꢅarge 5isable  
trogrammed L/ID  
(100%)  
ꢀ0%  
/old Caulꢁ  
0
0ꢃ2  
0ꢃ4  
0ꢃ6  
0ꢃ8  
1ꢃ0  
1ꢃ2  
ë/h[5  
1ꢃ4  
1ꢃ6  
1ꢃ8  
Çerminaꢁion  
5isable  
ëIhÇ ëí!wꢂ  
ë/hh[  
Ç{ ëolꢁage-ë  
Figure 19. Standard Operation Over TS Bias Voltage – bq25100B, bq25100A, bq25100L  
8.3.7 PRE_TERM – Pre-Charge and Termination Programmable Threshold  
Pre-Term is used to program both the pre-charge current and the termination current threshold. The pre-charge  
current level is a factor of two higher than the termination current level. The termination can be set between 5  
and 50% (recommended range) of the programmed output current level set by ISET. If left floating the  
termination and pre-charge are set internally at 10/20% respectively. The RPRE-TERM is ranged from 600 to 30  
kand the minimum termination current can be programmed to 1 mA. The pre-charge-to-fast-charge, Vlowv  
threshold is set to 2.5 V.  
RPRE-TERM = %Term × KTERM = %Pre-CHG × KPRE-CHG  
(2)  
Where:  
%Term is the percent of fast charge current where termination occurs;  
%Pre-CHG is the percent of fast charge current that is desired during precharge;  
KTERM and KPRE-CHG are gain factors found in the electrical specifications.  
8.3.8 TS  
The TS function for the bq25100B/bq25100A cuts the charge current level in half between 0°C and 10°C and  
disables charging when the NTC temperature is above 45°C. The TS function for the  
bq25100/bq25100H/bq25101/bq25101H is designed to follow the new JEITA temperature standard for Li-Ion and  
Li-Pol batteries. There are now four thresholds, 60°C, 45°C, 10°C, and 0°C. Normal operation occurs between  
10°C and 45°C. If between 0°C and 10°C the charge current level is cut in half and if between 45°C and 60°C  
the regulation voltage is reduced to 4.1 V max for bq25100 and 4.2 V max for bq25100H, see Figure 18.  
Copyright © 2016, Texas Instruments Incorporated  
17  
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
Feature Description (continued)  
The TS feature is implemented using an internal 50μA current source to bias the thermistor (designed for use  
with a 10-k NTC β = 3370 (SEMITEC 103AT-2 or Mitsubishi TH05-3H103F) connected from the TS pin to VSS. If  
this feature is not needed, a fixed 10-k can be placed between TS and VSS to allow normal operation. This may  
be done if the host is monitoring the thermistor and then the host would determine when to pull the TS pin low to  
disable charge.  
The TS pin has two additional features, when the TS pin is pulled low or floated/driven high. A low disables  
charge and a high puts the charger in TTDM.  
Above 45°C (60°C for bq25100/bq25100H/bq25101/bq25101H) or below 0°C the charge is disabled. Once the  
thermistor reaches –10°C the TS current folds back to keep a cold thermistor (between –10°C and –50°C) from  
placing the IC in the TTDM mode. If the TS pin is pulled low into disable mode, the current is reduce to 30 μA.  
Since the ITS curent is fixed along with the temperature thresholds, it is not possible to use thermistor values  
other than the 10-k NTC (at 25°C).  
8.3.9 Timers  
The pre-charge timer is set to 30 minutes. The pre-charge current, can be programmed to off-set any system  
load, making sure that the 30 minutes is adequate.  
The fast charge timer is fixed at 10 hours and can be increased real time by going into thermal regulation or IN-  
DPM. The timer clock slows by a factor of 2, resulting in a clock than counts half as fast when in these modes. If  
either the 30 minute or ten hour timer times out, the charging is terminated and for bq25101/1H the CHG pin  
goes high impedance if not already in that state. The timer is reset by disabling the IC, cycling power or going  
into and out of TTDM.  
8.3.10 Termination  
Once the OUT pin goes above VRCH, (reaches voltage regulation) and the current tapers down to the  
termination threshold, a battery detect route is run to determine if the battery was removed or the battery is full. If  
the battery is present, the charge current will terminate. If the battery was removed along with the thermistor,  
then the TS pin is driven high and the charge enters TTDM. If the battery was removed and the TS pin is held in  
the active region, then the battery detect routine will continue until a battery is inserted. The termination current  
can be programmed down to 625 uA, however, the accuracy will reduce acoordingly when the termination  
current is below 1 mA.  
8.4 Device Functional Modes  
8.4.1 Power-Down or Undervoltage Lockout (UVLO)  
The bq25100B family is in power down mode if the IN pin voltage is less than UVLO. The part is considered  
“dead” and all the pins are high impedance. Once the IN voltage rises above the UVLO threshold the IC will  
enter Sleep Mode or Active mode depending on the OUT pin (battery) voltage.  
8.4.2 Power-up  
The IC is alive after the IN voltage ramps above UVLO (see sleep mode), resets all logic and timers, and starts  
to perform many of the continuous monitoring routines. Typically the input voltage quickly rises through the  
UVLO and sleep states where the IC declares power good, starts the qualification charge at 22 mA, sets the  
charge current base on the ISET pin, and starts the safety timer.  
8.4.3 Sleep Mode  
If the IN pin voltage is between VOUT+VDT and UVLO, the charge current is disabled, the safety timer counting  
stops (not reset). As the input voltage rises and the charger exits sleep mode, the safety timer continues to count  
and the charge is enabled. See Figure 20.  
8.4.4 New Charge Cycle  
A new charge cycle is started when a good power source is applied, performing a chip disable/enable (TS pin),  
exiting Termination and Timer Disable Mode (TTDM), detecting a battery insertion or the OUT voltage dropping  
below the VRCH threshold.  
18  
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
Device Functional Modes (continued)  
!pply Lnpuꢀ  
tower  
Ls power good?  
ë.!ÇLbhët  
Üë[hLb  
bo  
òes  
bo  
Ls cꢁip enaꢂled?  
ëÇ{9b  
òes  
{eꢀ Lnpuꢀ /urrenꢀ [imiꢀ ꢀo 22m!  
!nd {ꢀarꢀ /ꢁarge  
terform L{9Ç & hÜÇ sꢁorꢀ ꢀesꢀs  
{eꢀ cꢁarge currenꢀ  
ꢂased on L{9Ç seꢀꢀing  
ꢃeꢀurn ꢀo  
/ꢁarge  
Figure 20. bq25100B Power-Up Flow Diagram  
Copyright © 2016, Texas Instruments Incorporated  
19  
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.5 Termination and Timer Disable Mode (TTDM) - TS Pin High  
The battery charger is in TTDM when the TS pin goes high from removing the thermistor (removing battery  
pack/floating the TS pin) or by pulling the TS pin up to the TTDM threshold.  
When entering TTDM, the 10 hour safety timer is held in reset and termination is disabled. A battery detect  
routine is run to see if the battery was removed or not. For bq25101/1H, if the battery was removed then the  
CHG pin will go to its high impedance state if not already there. If a battery is detected the CHG pin does not  
change states until the current tapers to the termination threshold, where the CHG pin goes to its high  
impedance state if not already there (the regulated output will remain on).  
The charging profile does not change (still has pre-charge, fast-charge constant current and constant voltage  
modes). This implies the battery is still charged safely and the current is allowed to taper to zero.  
When coming out of TTDM, the battery detect routine is run and if a battery is detected, then a new charge cycle  
begins.  
If TTDM is not desired upon removing the battery with the thermistor, one can add a 237-kΩ resistor between TS  
and VSS to disable TTDM. This keeps the current source from driving the TS pin into TTDM. This creates 0.1°C  
error at hot and a 3°C error at cold.  
8.4.6 Battery Detect Routine  
The battery detect routine should check for a missing battery while keeping the OUT pin at a useable voltage.  
The battery detect routine is run when entering and exiting TTDM to verify if battery is present, or run all the time  
if battery is missing and not in TTDM. On power-up, if battery voltage is greater than VRCH thereshold, a battery  
detect routine is run to determine if a battery is present.  
The battery detect routine is disabled while the IC is in TTDM, or has a TS fault. See Figure 21 for the Battery  
Detect Flow Diagram.  
8.4.7 Refresh Threshold  
After termination, if the OUT pin voltage drops to VRCH (100mV below regulation) then a new charge is initiated.  
8.4.8 Starting a Charge on a Full Battery  
The termination threshold is raised by 14% for the first minute of a charge cycle so if a full battery is removed  
and reinserted or a new charge cycle is initiated, that the new charge terminates (less than 1 minute). Batteries  
that have relaxed many hours may take several minutes to taper to the termination threshold and terminate  
charge.  
20  
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
Device Functional Modes (continued)  
Start  
BATT_DETECT  
Start 25ms timer  
No  
Timer Expired?  
Yes  
Battery Present  
Turn off Sink Current  
Return to flow  
Yes  
Is VOUT<VREG-100mV?  
No  
Set OUT REG  
to VREG-400mV  
Enable sink current  
Reset & Start 25ms timer  
No  
Timer Expired?  
Yes  
Yes  
Battery Present  
Turn off Sink Current  
Return to flow  
Is VOUT>VREG-300mV?  
No  
Battery Absent  
Don’t Signal Charge  
Turn off Sink Current  
Return to Flow  
Figure 21. Battery Detect Routine  
Copyright © 2016, Texas Instruments Incorporated  
21  
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq25100B series of devices are highly integrated Li-Ion and Li-Pol linear chargers targeted at space-limited  
portable applications. The fast charge current can be programmed from 10 mA to 250 mA through an external  
resistor on ISET pin. The pre_charge and termination current can also be programmed through the resistor  
connected on PRETERM pin. The device has complete system-level protection such as input under-voltage  
lockout (UVLO), input over-voltage protection (OVP), sleep mode, thermal regulation, safety timers, and NTC  
monitoring input.  
9.2 Typical Application  
This typical application shows a charger application design example.  
SYSTEM  
USB Port or  
Adapter  
VBUS  
IN  
OUT  
TS  
D+  
D-  
1ÛF  
1ÛF  
VSS  
PACK+  
GND  
TEMP  
HOST  
ISET  
2.7k  
3.4kΩ  
Optional  
RC  
PRETERM  
PACK-  
10 nF  
6kΩ  
bq25100B  
CE  
Copyright © 2016, Texas Instruments Incorporated  
9.2.1 Design Requirements  
Supply voltage = 5 V  
Fast charge current: IOUT-FC = 40 mA;  
Termination Current Threshold: %IOUT-FC = 10% of Fast Charge or ~4 mA  
Pre-Charge Current by default is twice the termination Current or ~8 mA  
TS – Battery Temperature Sense = 10-k NTC (103AT)  
/CE is an open drain control pin  
9.2.2 Detailed Design Procedures  
The regulation voltage is set to 4.2 V, the input voltage is 5 V and the charge current is programmed to 40  
mA.  
For charge current that is below 50 mA, an extra RC circuit is recommended on ISET to acheive more stable  
current signal. For applications that need higher charge current, the RC circuit is not needed.  
For applications that use more than 200-mA current, there could be a very low level ~1% of charge current  
ringing in the output. The ringing can be removed by increasing the input capacitance.  
22  
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
Typical Application (continued)  
9.2.2.1 Calculations  
9.2.2.1.1 Program the Fast Charge Current, ISET:  
RISET = [K(ISET) / I(OUT)  
]
from electrical characteristics table. . . K(SET) = 135 AΩ  
RISET = [135 A/0.04 A] = 3.4 kΩ  
Selecting the closest standard value, use a 3.4-kresistor between ISET and Vss.  
9.2.2.1.2 Program the Termination Current Threshold, ITERM:  
RPRE-TERM = K(TERM) × %IOUT-FC  
RPRE-TERM = 600 /% × 10% = 6 kΩ  
Selecting the closest standard value, use a 6-kresistor between PRETERM and Vss.  
One can arrive at the same value by using 20% for a pre-charge value (factor of 2 difference).  
RPRE-TERM = K(PRE-CHG) × %IOUT-FC  
RPRE-TERM = 300 /% × 20%= 6 kΩ  
9.2.2.1.3 TS Function  
Use a 10-k NTC thermistor in the battery pack (103AT).  
To Disable the temp sense function, use a fixed 10-kΩ resistor between the TS and VSS.  
9.2.2.1.4 Selecting IN and OUT Pin Capacitors  
In most applications, all that is needed is a high-frequency decoupling capacitor (ceramic) on the power pin, input  
and output pins. Using the values shown on the application diagram is recommended. After evaluation of these  
voltage signals with real system operational conditions, one can determine if capacitance values can be adjusted  
toward the minimum recommended values (DC load application) or higher values for fast, high amplitude, pulsed  
load applications. Note if designed for high input voltage sources (bad adaptors or wrong adaptors), the capacitor  
needs to be rated appropriately. Ceramic capacitors are tested to 2x their rated values so a 16-V capacitor may  
be adequate for a 30-V transient (verify tested rating with capacitor manufacturer).  
9.2.3 bq25100 Application Performance Plots  
VIN  
VIN 2 V/div  
2 V/div  
VOUT 2 V/div  
VOUT 2 V/div  
IOUT 60 mA/div  
IOUT 60 mA/div  
VISET 1 V/div  
VISET 1 V/div  
t-time – 20 ms/div  
t-time – 50 ms/div  
Hot Plug  
VIN 0 V -5 V-7 V-5 V  
Figure 22. OVP 7-V Adaptor  
Figure 23. OVP from Normal Power-Up Operation  
Copyright © 2016, Texas Instruments Incorporated  
23  
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
Typical Application (continued)  
VIN 2 V/div  
VIN 2 V/div  
VTS 500 mV/div  
VISET 2 V/div  
ILOAD 70 mA/div  
IOUT 60 mA/div  
VISET 1 V/div  
IOUT 70 mA/div  
t-time – 50 ms/div  
t-time – 10 ms/div  
90-mA Load, 120-mA IOUT  
Figure 24. TS Enable and Disable  
Figure 25. Power Up  
10 Power Supply Recommendations  
10.1 Leakage Current Effects on Battery Capacity  
To determine how fast a leakage current on the battery will discharge the battery is an easy calculation. The time  
from full to discharge can be calculated by dividing the Amp-Hour Capacity of the battery by the leakage current.  
For a 0.1-AHr battery and a 75-nA leakage current (100 mAHr/75 nA = 250000 Hours), it would take 1333k hours  
or 152 years to discharge. In reality the self discharge of the cell would be much faster so the 75-nA leakage  
would be considered negligible.  
11 Layout  
11.1 Layout Guidelines  
To obtain optimal performance, the decoupling capacitor from IN to GND and the output filter capacitors from  
OUT to GND should be placed as close as possible to the bq25100B, with short trace runs to both IN, OUT and  
GND.  
All low-current GND connections should be kept separate from the high-current charge or discharge paths  
from the battery. Use a single-point ground technique incorporating both the small signal ground path and the  
power ground path.  
The high current charge paths into IN pin and from the OUT pin must be sized appropriately for the maximum  
charge current in order to avoid voltage drops in these traces  
24  
Copyright © 2016, Texas Instruments Incorporated  
bq25100B  
www.ti.com.cn  
ZHCSEY2 APRIL 2016  
11.2 Layout Example  
Figure 26. Board Layout  
11.3 Thermal Considerations  
The most common measure of package thermal performance is thermal impedance (θJA ) measured (or  
modeled) from the chip junction to the air surrounding the package surface (ambient). The mathematical  
expression for θJA is:  
RθJA = (TJ – TA) / P  
where  
TJ = chip junction temperature  
TA = Ambient temperature  
P = device power dissipation  
(3)  
Factors that can influence the measurement and calculation of RθJA include:  
1. Whether or not the device is board mounted  
2. Trace size, composition, thickness, and geometry  
3. Orientation of the device (horizontal or vertical)  
4. Volume of the ambient air surrounding the device under test and airflow  
5. Whether other surfaces are in close proximity to the device being tested  
Due to the charge profile of Li-Ion and Li-Pol batteries the maximum power dissipation is typically seen at the  
beginning of the charge cycle when the battery voltage is at its lowest. Typically after fast charge begins the pack  
voltage increases to 3.4 V within the first 2 minutes. The thermal time constant of the assembly typically takes a  
few minutes to heat up so when doing maximum power dissipation calculations, 3.4 V is a good minimum voltage  
to use.  
The device power dissipation, P, is a function of the charge rate and the voltage drop across the internal  
PowerFET. It can be calculated from the following equation when a battery pack is being charged :  
P = [V(IN) – V(OUT)] × I(OUT)  
(4)  
版权 © 2016, Texas Instruments Incorporated  
25  
bq25100B  
ZHCSEY2 APRIL 2016  
www.ti.com.cn  
Thermal Considerations (continued)  
The thermal loop feature reduces the charge current to limit excessive IC junction temperature. It is  
recommended that the design not run in thermal regulation for typical operating conditions (nominal input voltage  
and nominal ambient temperatures) and use the feature for non typical situations such as hot environments or  
higher than normal input source voltage. With that said, the IC will still perform as described, if the thermal loop  
is always active.  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访  
问。  
1. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
bq25100  
bq25101  
bq25100A  
bq25100H  
bq25101H  
bq25100L  
12.3 商标  
Bluetooth is a registered trademark of Bluetooth SIG, Inc..  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25100BYFPR  
BQ25100BYFPT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFP  
YFP  
6
6
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-5 to 125  
-5 to 125  
25100B  
25100B  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
YFP0006  
DSBGA - 0.5 mm max height  
S
C
A
L
E
1
0
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
BALL TYP  
0.4  
TYP  
SYMM  
C
B
D: Max = 1.608 mm, Min =1.547 mm  
E: Max = 0.91 mm, Min = 0.85 mm  
0.8  
SYMM  
TYP  
0.4 TYP  
A
0.25  
0.21  
C A B  
6X  
0.015  
1
2
4223410/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFP0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
6X ( 0.23)  
2
1
A
B
(0.4) TYP  
SYMM  
C
SYMM  
LAND PATTERN EXAMPLE  
SCALE:50X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223410/A 11/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFP0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
6X ( 0.25)  
1
2
A
B
(0.4) TYP  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:50X  
4223410/A 11/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ25100BYFPT

具有 4.284V 充电电压和可编程预充电功能的独立型单节电池 250mA 线性电池充电器 | YFP | 6 | -5 to 125
TI

BQ25100H

具有 4.35V 充电电压和可编程预充电功能的独立型单节电池 250mA 线性电池充电器
TI

BQ25100HYFPR

具有 4.35V 充电电压和可编程预充电功能的独立型单节电池 250mA 线性电池充电器 | YFP | 6 | 0 to 125
TI

BQ25100HYFPT

具有 4.35V 充电电压和可编程预充电功能的独立型单节电池 250mA 线性电池充电器 | YFP | 6 | 0 to 125
TI

BQ25100YFPR

具有 4.2V 充电电压和可编程预充电功能的独立型单节电池 250mA 线性电池充电器 | YFP | 6 | 0 to 125
TI

BQ25100YFPT

具有 4.2V 充电电压和可编程预充电功能的独立型单节电池 250mA 线性电池充电器 | YFP | 6 | 0 to 125
TI

BQ25100_15

bq2510x 250-mA Single Cell Li-Ion Battery Chargers, 1-mA Termination, 75-nA Battery Leakage
TI

BQ25101

具有 4.2V 充电电压和充电状态指示功能的独立型单节电池 250mA 线性电池充电器
TI

BQ25101H

具有 4.35V 充电电压和充电指示功能的独立式单节电池 250mA 线性电池充电器
TI

BQ25101HYFPR

具有 4.35V 充电电压和充电指示功能的独立式单节电池 250mA 线性电池充电器 | YFP | 6 | 0 to 125
TI

BQ25101HYFPT

具有 4.35V 充电电压和充电指示功能的独立式单节电池 250mA 线性电池充电器 | YFP | 6 | 0 to 125
TI

BQ25101H_15

bq2510x 250-mA Single Cell Li-Ion Battery Chargers, 1-mA Termination, 75-nA Battery Leakage
TI