BQ25180YBGR [TI]

采用 WCSP 封装且具有稳压电源路径的 1A 锂离子和磷酸铁锂 I²C 可编程线性充电器 | YBG | 8 | -40 to 85;
BQ25180YBGR
型号: BQ25180YBGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 WCSP 封装且具有稳压电源路径的 1A 锂离子和磷酸铁锂 I²C 可编程线性充电器 | YBG | 8 | -40 to 85

文件: 总58页 (文件大小:2016K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25180  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
BQ25180 具有电源路径和运输模式I2C 控制1 节电1A 线性电池充电器  
1 特性  
2 应用  
1A 电源路径线性电池充电器  
TWS 耳机和充电盒  
智能眼镜、AR VR  
智能手表和其他可穿戴设备  
零售自动化和支付  
楼宇自动化  
– 已针对电池间充电USB 适配器优化3.0V  
5.9V 输入电压工作范围  
– 可耐25V 的输入电压  
– 可配置的电池调节电压精度0.5%范围为  
3.6V 4.65V阶跃10mV  
5mA 1A 的可配置快速充电电流  
3 说明  
BQ25180 是一款线性电池充电器 IC专注于小解决方  
案尺寸和低静态电流以延长电池寿命。该器件采用 8  
焊球芯片级封装无需采用 HDI PCB 工艺进行制造,  
从而降低了 PCB 成本。该器件可支持高达 1A 的充电  
电流和高2.5A 的系统负载。  
55mΩFET 导通电阻  
– 高2.5A 的放电电流支持高系统负载  
– 可配置的终止电流支持低0.5mA  
– 可配置NTC 充电曲线阈值JEITA 支持  
– 用于恢复系统的下电上电和高级复位机制  
• 电源路径管理用于系统供电和电池充电  
器件信息  
封装(1)  
封装尺寸标称值)  
– 稳定系统电(SYS) 范围4.4V 4.9V此外  
还具有电池电压跟踪功能和输入直通选项  
– 可配置的输入电流限制  
器件型号  
BQ25180  
DSBGA (8)  
1.6 mm x 1.1 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 系统可选择适配器或电池电源  
– 动态电源路径管理可以对通过弱适配器充电进行  
优化  
• 超低静态电流模式  
SYS  
IN  
Regulated  
Load  
VBUS  
– 关断模式下15nA  
10uF  
1uF  
– 运输模式下3.2μA支持按钮唤醒  
– 仅电池模式下3μA  
– 睡眠模式下输入适配Iq 30μA  
• 单按钮唤醒和复位输入  
• 集成故障保护  
/INT  
Device  
Control  
SCL  
SDA  
BAT  
Host  
1uF  
+
VIO  
TS/MR  
– 输入过压保(VIN_OVP  
– 电池欠压保(VBUVLO  
)
)
NTC  
BQ25180  
– 电池短路保(BATSC)  
– 电池过流保(BATOCP)  
– 输入电流限制保(ILIM)  
– 热调(TREG) 和热关(TSHUT)  
– 电池热故障保(TS)  
– 看门狗和安全计时器故障  
– 系统短路保护  
GND  
简化版原理图  
– 系统过压保护  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSE99  
 
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
Table of Contents  
8.4 Device Functional Modes..........................................25  
8.5 Register Maps...........................................................26  
9 Application and Implementation..................................41  
9.1 Application Information............................................. 41  
9.2 Typical Application.................................................... 41  
10 Power Supply Recommendations..............................48  
11 Layout...........................................................................49  
11.1 Layout Guidelines................................................... 49  
11.2 Layout Example...................................................... 49  
12 Device and Documentation Support..........................50  
12.1 Device Support....................................................... 50  
12.2 接收文档更新通知................................................... 50  
12.3 支持资源..................................................................50  
12.4 Trademarks.............................................................50  
12.5 静电放电警告.......................................................... 50  
12.6 术语表..................................................................... 50  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Thermal Information....................................................5  
7.4 Recommended Operating Conditions.........................5  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements................................................10  
7.7 Typical Characteristics.............................................. 11  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................16  
Information.................................................................... 51  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (January 2022) to Revision C (January 2023)  
Page  
Removed figure from 8.3.1 ..........................................................................................................................16  
Changes from Revision A (December 2021) to Revision B (January 2022)  
Page  
Removed operating ambient...............................................................................................................................5  
Removed OTP_VLOWV.....................................................................................................................................6  
Removed Standalone......................................................................................................................................... 6  
Removed /PG Isink.............................................................................................................................................6  
Removed tHW_RESET and FI2C_CLK ....................................................................................................................10  
Updated conditions for Typical Characteristics ................................................................................................ 11  
Added legend for 7-1 ...................................................................................................................................11  
Changed 8-4 and 8-5 ..............................................................................................................................21  
Changed MR input to Pushbutton input in 8-6 ............................................................................................ 25  
Updated Section 8.5 Register Maps reset values.............................................................................................26  
Changed Device_ID description in the 8-21 ................................................................................................26  
Changes from Revision * (September 2021) to Revision A (December 2021)  
Page  
• 将“预告信息”更改为“量产数据”.................................................................................................................. 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25180  
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
5 说明)  
该器件采用标准锂离子或磷酸铁锂充电曲线分三个阶段对电池进行充电预充电、恒流和恒压。通过热调节提供  
最大充电电流同时管理器件温度。该充电器还针对电池间充电进行了优化3V 的最低输入电压并且可以  
25V 的绝对最大线路瞬变。该器件集成了单按钮输入和复位电路以减小解决方案的总尺寸。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25180  
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
6 Pin Configuration and Functions  
1
2
A
B
C
/INT  
IN  
SCL  
SYS  
SDA  
BAT  
D
TS/MR  
GND  
6-1. YBG Package 8-Pin DSBGA (Top View)  
6-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
IN  
A2  
P
DC Input Power Supply. IN is connected to the external DC supply. Bypass IN to GND with at  
least 1 μF of capacitance using a ceramic capacitor.  
SYS  
BAT  
B2  
C2  
P
P
Regulated System Output. Connect at least 10-μF ceramic capacitor (at least >1 μF of  
ceramic capacitance with DC bias derating) from SYS to GND as close to the SYS and GND  
pins as possible.  
Battery Connection. Connect to the positive terminal of the battery. Bypass BAT to GND with at  
least 1 μF of ceramic capacitance.  
GND  
SCL  
SDA  
/INT  
D2  
B1  
C1  
A1  
-
Ground connection. Connect to the ground plane of the circuit.  
I2C Interface Clock. Connect SCL to the logic rail through a 10-kpullup resistor.  
I2C Interface Data. Connect SDA to the logic rail through a 10-kpullup resistor.  
I/O  
I/O  
O
INT is an open-drain output that signals fault interrupts. When a fault occurs, a 128-μs active  
low pulse is sent out as an interrupt for the host. INT is enabled/disabled using the MASK_INT  
bit in the control register. Can be pulled up to the logic rail through a 1-kto 20-kresistor.  
TS/MR  
D1  
I/O  
Manual Reset Input/ NTC thermistor pin. TS/MR is a general purpose input that must be held  
low for greater than tLPRESS to go into Ship mode or perform a hardware reset. It can also be  
used to detect shorter button press durations such as tWAKE1 and tWAKE2 TSMR may be driven  
by a momentary push-button or a MOS switch. The TSMR pin can also have an NTC thermistor  
connected on to it.  
(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
MAX  
25  
UNIT  
Input Voltage  
IN  
V
V
A
A
Voltage  
All other pins  
5.5  
1.1  
1.5  
Input Current (DC)  
SYS Discharge Current(DC)  
IN  
SYS  
SYS Discharge Current (tpulse  
<20ms)  
SYS  
2.5  
A
Output Sink Current  
/INT  
20  
150  
150  
mA  
°C  
TJ  
Junction temperature  
Storage temperature  
-40  
-65  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Thermal Information  
BQ25180  
THERMAL METRIC  
YBG (DSBGA)  
UNIT  
8 PIN  
65  
RθJA  
Junction-to-ambient thermal resistance (EVM(2)  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance (JEDEC(1)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
107.1  
0.9  
RθJC(top)  
RθJB  
30.3  
0.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
30.3  
N/A  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) 1oz Copper, 2-layer board  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
4.6  
UNIT  
V
VBAT  
VIN  
Battery Voltage Range  
Input Voltage Range  
2.7  
5.5  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25180  
 
 
 
 
 
 
 
 
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
7.4 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
A
IIN  
Input Current Range (IN to SYS)  
1.1  
1.5  
IBAT  
TJ  
Battery Discharge Current (BAT to SYS)  
Operating Junction Temperature Range  
A
-40  
125  
°C  
7.5 Electrical Characteristics  
VIN = 5V, VBAT = 3.6V. -40°C < TJ < 125°C unless otherwise noted. Typical data at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CURRENTS  
VBAT = 3.6V, VIN = 5V, Charge enabled,  
ICHG = 0mA, SYSREG = 4.5V  
IQ_IN  
IQ_IN  
Input supply quiescent current  
Input supply quiescent current  
0.75  
1
mA  
VBAT = 3.6V, VIN = 5V, Charge enabled,  
ICHG = 0mA, SYSREG = Passthrough  
0.660  
30  
0.850  
mA  
µA  
ISLEEP_IN SLEEP input current  
VIN = 3.6V, VBAT = 3.7V  
VIN <VUVLO or floating, Watchdog  
disabled, Push button disabled, I2C  
functional. VBAT =3.6V TJ = 25°C  
IQ_BAT  
Battery quiescent current  
3
3.5  
5
µA  
VIN <VUVLO , VBAT =3.6V, Push-button  
function enabled, 0°C < TJ < 85°C  
IQ_BAT  
Battery quiescent current  
4
µA  
nA  
IBAT_SHUT  
VIN = 0V, Ship Mode, VBAT = 3.6V,  
Adapter Sense wake enabled.  
Battery discharge current in Ship Mode  
15  
DOWN  
VBAT = 3.6V, Push button function  
enabled (average current), 0°C < TJ <  
85°C  
IBAT_SHIP Battery discharge current in Ship Mode  
3.2  
4.5  
µA  
POWER-PATH MANAGEMENT AND INPUT  
VIN_OP  
Input voltage operating range  
Exit IN undervoltage lock-out  
3
5.5  
3
V
V
VIN_UVLO  
IN rising  
Z
VIN_UVLO Enter IN undervoltage lock-out  
VIN_LOWV IN voltage to start charging  
IN falling  
IN rising  
2.7  
V
V
3
3.15  
VIN_LOWV  
IN voltage to stop charging  
IN falling  
2.95  
3.1  
V
Z
VIN_PORZ IN voltage threshold to enter shipmode  
IN falling  
1.09  
100  
1.3  
135  
72  
1.66  
185  
V
mV  
mV  
V
VSLEEPZ Exit sleep mode threshold  
IN rising, VIN - VBAT, VBAT= 4V  
IN falling, VIN - VBAT, VBAT= 4V  
IN rising  
VSLEEP  
Sleep mode threshold hysteresis  
VIN_OVP VIN overvoltage rising threshold  
5.5  
5.7  
5.9  
VIN_OV_H  
IN overvoltage hysteresis  
IN falling  
125  
mV  
YS  
VBAT = 3.6V, IBAT_OCP= 00  
VBAT = 3.6V, IBAT_OCP= 01  
VBAT = 3.6V, IBAT_OCP= 10  
VBAT = 3.6V, IBAT_OCP= 11  
0.5  
1
A
A
A
A
IBAT_OCP BATOCP(Reverse OCP only)  
1.5  
Disabled  
VBAT = 3.6V, VBAT > VBUVLO, VSYS<  
VBAT-VBSUP1  
VBSUP1 Enter supplement mode threshold  
VBSUP2 Exit supplement mode threshold  
40  
20  
mV  
mV  
VBAT > VBUVLO, VSYS>VBAT-VBSUP2  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
7.5 Electrical Characteristics (continued)  
VIN = 5V, VBAT = 3.6V. -40°C < TJ < 125°C unless otherwise noted. Typical data at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
50  
MAX  
60  
UNIT  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VIN = 5V, ILIM =50mA  
40  
VIN = 5V, ILIM =100mA  
VIN = 5V, ILIM= 200mA  
VIN = 5V, ILIM= 300mA  
VIN = 5V, ILIM= 380mA  
VIN = 5V, ILIM= 500mA  
VIN = 5V, ILIM =665mA  
VIN = 5V, ILIM= 1050mA  
80  
90  
98  
180  
270  
360  
450  
630  
995  
200  
300  
380  
475  
665  
1050  
220  
330  
400  
498  
700  
1100  
ILIM  
Input Current Limit  
VINDPM_A  
VINDPM accuracy  
VINDPM target is not disabled  
VINDPM target =4.2V  
VINDPM target =4.5V  
VINDPM target =4.7V  
-3  
3
%
V
V
V
V
CC  
Input voltage threshold when input current  
is reduced  
4.2  
4.5  
4.7  
0.1  
Input voltage threshold when input current  
is reduced  
VINDPM  
Input voltage threshold when input current  
is reduced  
SYS voltage threshold when charge  
current is reduced  
VBAT = 3.6V, VSYS = VDPPM + VBAT  
before charge current is reduced.  
VDPPM  
VSYS_REG  
Programmable SYS voltage regulation  
accuracy  
VIN = 5V, VBAT = 3.6V, RSYS = 100ohm,  
SYS regulation target = 4.4V to 4.9V  
-2  
2
%
V
_ACCURAC  
Y
Minimum SYS voltage when in battery  
tracking mode  
VMINSYS  
VBAT < 3.6V  
3.8  
Voltage regulation threshold for SYS  
when VBAT >3.6V in battery tracking  
mode  
VSYS_TRA  
VBAT = 4V, VSYS = VBAT + VSYS_TRACK  
VSYS = 3.6V  
225  
25  
mV  
CK  
RSYS_PD SYS pull down resistance  
BATTERY CHARGER  
Ω
RON_BAT Battery FET on-resistance  
VBAT = 4.5V, IBAT =500mA  
IN = 5V, IIN = 1A  
55  
90  
mΩ  
mΩ  
RON_IN  
VREG_RA Typical BAT charge voltage regulation  
range  
Input FET on-resistance  
270  
470  
10mV steps, programmabe through I2C  
3.5  
0.5  
5
4.65  
0.5  
V
%
NGE  
VREG_AC BAT charge voltage accuracy, summary  
All VBATREG settings, typical  
measurement at VBATREG = 4.2V  
for all settings  
C
ICHG_RAN  
Typical charge current regulation range  
VOUT > VLOWV  
1000  
mA  
GE  
ICHG_ACC Charge current accuracy  
VIN = 5V, Fastcharge >=40mA  
Fastcharge current = 40mA  
Fastcharge current = 630mA  
10  
44  
%
10  
36  
ICHG_ACC Charge current accuracy  
ICHG_ACC Charge current accuracy  
40  
mA  
mA  
567  
630  
693  
Typical pre-charge current, as percentage  
IPRECHG  
of ICHG  
VOUT < VLOWV  
20  
%
%
IPRECHG_  
Precharge current accuracy  
Fastcharge current >=40mA  
VOUT = VBATREG  
10  
10  
ACC  
Typical termination current, as percentage  
of ICHG  
% of  
Icharge  
ITERM  
10  
ITERM_AC  
Termination current accuracy  
IBAT = 3mA (IFCHG = 30mA) Tj = 25°C  
IBAT = 3mA (IFCHG = 30mA) Tj = 25°C  
10  
%
10  
C
ITERM_AC  
Termination current accuracy  
2.7  
3.3  
mA  
C
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
7.5 Electrical Characteristics (continued)  
VIN = 5V, VBAT = 3.6V. -40°C < TJ < 125°C unless otherwise noted. Typical data at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pre-charge to fast-charge transition  
threshold  
VLOWV  
VLOWV  
VLOWVSEL = 3.0V, VBAT rising  
2.9  
3
3.1  
2.9  
V
Pre-charge to fast-charge transition  
threshold  
VLOWVSEL = 2.8V, VBAT rising  
All settings  
2.7  
2.8  
V
VLOWV_H  
Battery LOWV hysteresis  
100  
mV  
YS  
Battery UVLO, VBAT falling  
Battery UVLO, VBAT falling  
Battery UVLO, VBAT falling  
Battery UVLO, VBAT falling  
Battery UVLO, VBAT falling  
Battery UVLO, VBAT falling  
BUVLO setting = b000  
BUVLO setting = b011  
BUVLO setting = b100  
BUVLO setting = b101  
BUVLO setting = b110  
BUVLO setting = b111  
3
2.8  
2.6  
2.4  
2.2  
2.0  
V
V
V
V
V
V
VBUVLO  
VBUVLO_H  
Any BUVLO Setting, value above VBAT,  
VIN = 5V  
Battery UVLO hysteresis, VBAT rising  
110  
150  
190  
mV  
V
YS  
Battery only power up voltage, VBAT  
rising  
VBATPOR  
-40C < Tj < 125C  
3.08  
3.21  
3.46  
BAT falling, VRCH bit = 0  
BAT falling, VRCH bit = 1  
75  
100  
200  
130  
230  
mV  
mV  
VRCH  
175  
Short on battery threshold for trickle  
charge, VBAT rising  
VBATSC  
1.6  
1.8  
2.0  
V
VBATSC_H  
Battery short circuit voltage hysteresis  
Trickle Charge Current  
200  
8
mV  
mA  
YS  
IBATSC  
VBAT<VBATSC  
TERMPERATURE REGULATION AND TEMPERATURE SHUTDOWN  
TREG  
TREG  
Typical junction temperature regulation  
Typical junction temperature regulation  
THERM_REG = 00  
THERM_REG = 11  
100  
°C  
Disabled  
TSHUT_RI  
Thermal shutdown rising threshold  
Thermal shutdown falling threshold  
Temperature increasing  
Temperature decreasing  
150  
135  
°C  
°C  
SING  
TSHUT_FA  
LLING  
BATTERY NTC MONITOR  
ITS_BIAS TS nominal bias current  
VT1_Entry Cold - 00 @ Approx. 0°C, default  
VT2_Entry Cold - 01 @ Approx. 3°C  
VT3_Entry Cold - 10 @ Approx. 5°C  
VT4_Entry Cold - 11 @ Approx. -3°C  
VT5_Entry Cool - 00 @ Approx. 10°C, default  
VT6_Entry Warm - 00 @ Approx. 45°C, default  
VT7_Entry Hot - 00 @ Approx. 60°C, default  
VT8_Entry Hot - 01 @ Approx. 65°C  
VT9_Entry Hot - 10 @ Approx. 50°C  
VT10_Entry Hot - 11 @ Approx. 45°C  
36.5  
0.9575  
0.8450  
0.7775  
1.0850  
0.6350  
0.1730  
0.1050  
0.0875  
0.1475  
0.1750  
0.7775  
0.6875  
0.6350  
0.8800  
0.5225  
38  
1.0075  
0.8900  
0.8200  
1.1425  
0.6700  
0.1850  
0.1150  
0.0975  
0.1575  
0.1850  
0.8200  
0.7250  
0.6700  
0.9275  
0.5500  
39.5  
1.0575  
0.9325  
0.8600  
1.2000  
0.7025  
0.198  
µA  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
0.1250  
0.1075  
0.1675  
0.1950  
0.8600  
0.7600  
0.7025  
0.9725  
0.5775  
VT1_Exit  
VT2_Exit  
VT3_Exit  
VT4_Exit  
VT5_Exit  
Cold - 00 @ Approx. 5°C, default  
Cold - 01 @ Approx. 8°C  
Cold - 10 @ Approx. 10°C  
Cold - 11 @ Approx. 2°C  
Cool - 00 @ Approx. 15°C, default  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
7.5 Electrical Characteristics (continued)  
VIN = 5V, VBAT = 3.6V. -40°C < TJ < 125°C unless otherwise noted. Typical data at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
0.2080  
0.1250  
0.1050  
0.1750  
0.2100  
TYP  
0.2200  
0.1350  
0.1150  
0.1850  
0.2200  
MAX  
0.235  
UNIT  
VT6_Exit  
VT7_Exit  
VT8_Exit  
VT9_Exit  
Warm - 00 @ Approx. 41°C, default  
Hot - 00 @ Approx. 55°C, default  
Hot - 01 @ Approx. 60°C  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
VIN = 5V  
V
V
V
V
V
0.1450  
0.1250  
0.1950  
0.23  
Hot - 10 @ Approx. 45°C  
VT10_Exit Hot - 11 @ Approx. 40°C  
TS monitoring enable threshold  
VTS_ENZ VTSMR<VTS_ENZ for TS function to be TS Rising, VIN = 5V  
enabled  
1.8  
2.2  
2.1  
2.8  
2.8  
3.3  
V
V
VTS_CLAM  
TS maximum voltage clamp  
TS open-circuit (float), VIN = 5V  
P
PUSH BUTTON TIMERS AND THRESHOLDS  
ITSMR  
ITSMR  
Adapter present  
36.5  
38  
60  
39.5  
µA  
µA  
Battery only mode  
TSMR voltage to detect a button press  
event, battery only mode  
VTSMR  
VTSMR  
90  
90  
mV  
mV  
TSMR voltage to detect a button press  
event, adapter present  
MR_WAKE1_TIMER = 0  
MR_WAKE1_TIMER = 1  
MR_WAKE2_TIMER = 0  
MR_WAKE2_TIMER = 1  
300  
1
ms  
s
WAKE1 Timer. Time from TSMR low  
detection  
tWAKE1  
2
s
WAKE2 Timer. Time from TSMR low  
detection  
tWAKE2  
3
s
tRESET_W RESET_WARN Timer. Time prior to HW  
MR_RESET_WARN = 0  
0.9  
1
1.1  
s
RESET  
ARN  
MR_LPRESS = 00  
MR_LPRESS = 01  
MR_LPRESS = 10  
MR_LPRESS = 11  
AUTOWAKE = 00  
AUTOWAKE = 01  
AUTOWAKE = 10  
AUTOWAKE = 11  
4.5  
9
5
10  
15  
20  
0.5  
1
5.5  
11  
s
s
s
s
s
s
s
s
Long Press timer. Time from button press  
tLPRESS  
detection to long press action.  
13.5  
18  
16.5  
22  
tRESTART(  
RESTART Timer. Time from HW Reset to  
SYS power up  
AUTOWAKE  
2
)
4
BATTERY CHARGING TIMERS  
tMAXCHG Charge safety timer  
tPRECHG Precharge safety timer  
I2C INTERFACE  
Programmable range  
180  
720  
0.4  
min  
0.25 * tMAXCHG  
VIL  
Input low threshold level  
Input high threshold level  
Output low threshold level  
High-Level leakage current  
VPULLUP = 1.8V, SDA and SCL  
VPULLUP = 1.8V, SDA and SCL  
IL = 5mA, sink current, VPULLUP =1.8V  
VPULLUP = 1.8V  
V
V
VIH  
VOL  
ILKG  
1.3  
0.4  
1
V
µA  
LOGIC PINS  
VOL Output low threshold level  
ILKG High-Level leakage current  
IL = 5mA, sink current, VPULLUP  
=3.3V, /INT pin  
0.4  
1
V
VPULLUP = 3.3V, /INT pin  
µA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
INPUT  
tVIN_OVPZ_DGL  
tSLEEP_DGL  
VIN_OVP deglitch, VIN falling  
30  
64  
ms  
µs  
Deglitch time to enter SLEEP, VIN falling  
BATTERY CHARGER  
tREC_SC  
Recovery time, BATOCP during Discharge Mode  
250  
2
ms  
s
Retry window for SYS or BAT short circuit  
recovery(BATOCP)  
tRETRY_SC  
tBUVLO  
Deglitch time to disconnect the BATFET when VBAT <  
VBUVLO setting  
60  
µs  
tTS_DUTY_ON  
tTS_DUTY_OFF  
TS turnon-time (battery only mode)  
TS turnoff time (battery only mode)  
4
ms  
ms  
196  
DIGITAL CLOCK, WATCHDOG and PUSHBUTTON  
tWDOG  
I2C interface reset timer, adjustable  
40  
160 Disabled  
s
ms  
s
tI2CRESET  
tSHIPWAKE  
I2C interface inactive reset timer  
500  
2
Wake timer to count for shipmode (WAKE2 DefaultTimer)  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
7.7 Typical Characteristics  
VIN = 5 V, CIN = 2.2 µF, COUT = 10 µF, CBAT = 1 µF (unless otherwise specified)  
0.05%  
0.025%  
0
-1.74  
-1.77  
-1.8  
TJ = 25C  
TJ = -40C  
TJ = 85C  
TJ = 105C  
-1.83  
-1.86  
-1.89  
-1.92  
-1.95  
-1.98  
-2.01  
-2.04  
-0.025%  
-0.05%  
-0.075%  
-0.1%  
TJ = 25C  
TJ = 85C  
TJ = 105C  
TJ = -40C  
-0.125%  
-0.15%  
3.4  
3.6  
3.8  
4
4.2  
4.4  
4.6  
4.8  
0
100 200 300 400 500 600 700 800 900  
ICHARGE (mA)  
VBATREG (V)  
VIN = 5 V  
VIN = 5 V  
VBAT = 3.1 V  
7-1. Battery Regulation Voltage Accurary vs. VBATREG  
7-2. Charge Current Accuracy vs. ICHARGE Setting  
Setting  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
5
4.8  
4.6  
4.4  
4.2  
4
3.8  
3.6  
3.4  
TJ = 25C  
TJ = -40C  
TJ = 85C  
TJ = 105C  
SYS_REG = 000  
SYS_REG = 001  
SYS_REG = 010  
SYS_REG = 011  
SYS_REG = 100  
SYS_REG = 101  
SYS_REG = 110  
SYS_REG = 111  
3.2  
3
-1.2  
-1.4  
2.1  
2.2  
2.3  
2.4  
VBAT (V)  
2.5  
2.6  
2.7  
2.8  
0
200  
400  
600  
800  
1000  
SYS Load Current (mA)  
VIN = 5 V  
ICHG = 100 mA  
VIN = 5 V  
VBAT = 0 V  
7-3. Precharge Accuracy vs Battery Voltage  
7-4. SYS Load Regulation  
4.5054  
4.5052  
4.505  
4.5048  
4.5046  
4.5044  
4.5042  
4.504  
TJ = 25C  
TJ = -40C  
TJ = 85C  
TJ = 105C  
4.5038  
4.5036  
4.5034  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
SYS Load (A)  
VIN = 5 V  
SYS_REG_CTRL = 010 (4.5 V)  
7-5. SYS Load Regulation vs. Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8 Detailed Description  
8.1 Overview  
The BQ25180 integrates a linear charger that allows the battery to be charged with a programmable charge  
current of up to 1 A. In addition to the charge current, other charging parameters can be programmed through  
I2C such as the precharge, termination, battery regulation voltage, and input current limit.  
The power path allows the system to be powered from a regulated output, SYS, even when the battery is deeply  
discharged or charging, by drawing power from IN pin. It also prioritizes the system load in SYS, reducing the  
charging current, if necessary, in order support the load when input power is limited. If the input supply is  
removed and the battery voltage level is above VBUVLO, SYS will automatically and seamlessly switch to battery  
power.  
Charging is done through the internal battery MOSFET. There are several loops that influence the charge  
current: constant current loop (CC), constant voltage loop (CV), input current limit, thermal regulation, VDPPM  
,
and VINDPM. During the charging process, all loops are enabled and the one that is dominant takes control.  
The device supports multiple battery chemistries for single-cell applications, through adjustable battery  
regulation voltage regulation (VBATREG) and charge current (ICHG) options.  
8.1.1 Battery Charging Process  
When a valid input source is connected (VIN > VUVLO and VBAT+VSLEEPZ VIN < VIN_OVP), the state of the  
CHARGE_DISABLE bit and the TSMR pin determines whether a charge cycle is initiated. When the  
CHARGE_DISABLE bit is set to disable charging, VHOT < VTS < VCOLD and a valid input source is connected, the  
battery discharge FET is turned off, preventing any charging of the battery. Note that supplement behavior is  
independent of the CHARGE_DISABLE bit.  
The following figure illustrates a typical charge cycle.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
Connect VIN  
VBAT < VLOWV  
&
No  
VBAT > VBATSC  
No  
Yes  
Precharge safety timer  
expired?  
Start Precharge  
Yes  
Yes  
Stop Charging and  
interrupt  
No  
VBAT > VLOWV  
Yes  
Charging or VIN toggled  
No  
Start FastCharge  
Icharge set by I2C  
Yes  
Fast Charge  
safety timer  
expired?  
IBAT < ITERM  
Yes  
No  
Charge Done (Set  
bit, interrupt, and  
disconnect  
BATFET)  
No  
Yes  
VBAT < VRCH  
8-1. Charger Flow Diagram  
8.1.1.1 Trickle Charge  
In order to prevent damage to the battery, the device will charge the battery at a much lower current level  
(IBATSC) when the battery voltage (VBAT) is below the VBATSC threshold. During trickle charge, the device still  
counts against the precharge safety timer. Rather trickle charge and precharge are counting against the same  
duration of 25% of the fast charge timer.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.1.1.2 Precharge  
When battery voltage is above the VBATSC but lower than VLOWV threshold, the battery is charged with the  
precharge current level. The precharge current (IPRECHARGE) can be programmed through I2C and can be  
adjusted by the host. Once the battery voltage reaches VLOWV, the charger will then operate in Fast Charge  
mode, charging the battery at ICHG.  
During precharge, the safety timer is set to 25% of the safety timer value during fast charge. In the case where  
termination is disabled, precharge current is set to 20% of fast charge current setting.  
8.1.1.3 Fast Charge  
The charger has two main control loops that control charging when VBAT > VLOWV: the Constant Current (CC)  
and Constant Voltage (CV) loops. When the CC loop is dominant, the battery is charged at the maximum charge  
current level ICHG, unless there is a TS fault condition (JEITA operation), VINDPM is active, thermal regulation or  
DPPM is active. (See respective sections for details on these modes of operation). Once the battery voltage  
approaches the battery regulation target, the CV loops becomes more dominant and the charging current starts  
tapering off. Once the charging current reaches the termination current (ITERM) the charge is done, Charge_done  
status is set. If the I2C setting of VBATREG is set higher than 4.65 V, the battery regulation voltage is still  
maintained at 4.65 V. The device will switch to fastcharge mode based on VLOWV setting on the register map.  
8.1.1.4 Termination  
The device will automatically terminate charging once the charge current reaches ITERM, which is  
programmable through I2C. After termination the charger will operate in high impedance mode, disabling the  
BATFET to disconnect the battery. Power is provided to the system (SYS) by IN supply as long as VIN > VUVLO  
VIN > VBAT + VSLEEPZ and VIN < VIN_OVP  
,
.
Termination is only enabled when the charger CV loop is active in fast charge operation. Termination is disabled  
if the charge current reaches ITERM while the VINDPM, DPPM, or thermal regulation loops are active. The  
charger will only go into the termination when the current drops to ITERM due to the battery reaching the target  
voltage and not due to the charge current limitation imposed by the previously mentioned controlled loops.  
Post termination, the battery FET is disabled and the voltage on BAT pin is monitored to check if it has dropped  
to the VRCH threshold. If it does, a new charge cycle is established. The safety timers are reset. During charging  
or even when charge is done, a higher SYS load will be supported through the supplement operation.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
Regulation Voltage  
VSET  
VRCH  
Battery Voltage  
Charge Current  
Charge Current  
ISET  
VLOWV  
VBATSC  
IPRECHG  
ITERM  
IBATSC  
Trickle Charge  
Pre-charge  
Re-  
charge  
Fast-Charge  
CC  
Taper-Charge  
CV  
Charge  
Done  
Precharge Timer  
Safety Timer  
8-2. Typical Charging Profile of a Battery  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.2 Functional Block Diagram  
SYS  
Q1/Q2  
IN  
GND  
VIN_DPM  
Power Path and Charge Control  
IBATREG  
VBATREG  
BUVLO  
VIN  
SCL  
SDA  
I2C  
Interface  
Charge Control  
SYS Control  
Q3  
Thermal  
Shutdown  
Device Control  
BAT  
+
/INT  
VBUVLO  
Interrupts  
TS Interface and  
Push button  
controller  
TS/MR  
VTS_CLAMP  
ITSMR  
8-3. Functional Block Diagram  
8.3 Feature Description  
8.3.1 Input Voltage Based Dynamic Power Management (VINDPM)  
The VINDPM loop prevents the input voltage from collapsing to a point where charging could be interrupted due  
to adapter voltage crashing below VINDPM value. This is done by reducing the current drawn by the charger  
enough to keep VIN > VINDPM setting.  
During the normal charging process, if the input power source is not able to support the programmed or default  
charging current and system load, the supply voltage decreases. Once the supply drops to VINDPM, the input  
DPM current and voltage loops will reduce the input current through the blocking FETs Q1 and Q2 to prevent the  
further drop of the supply. The VINDPM threshold is programmable through the I2C register and can be  
completely disabled. This is set through the VINDPM_0 and VINDPM_1 selection bits. When the device enters  
this mode, the charge current may be lower than the set value and the VINDPM_ACTIVE_STAT bit is set. If the  
2x timer is set through the 2XTMR_EN bit, the safety timer is extended while VINDPM is active. Additionally,  
termination is disabled when VINDPM is active.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.3.2 Dynamic Power Path Management Mode (DPPM)  
With a valid input source connected, the power path management circuitry monitors the input voltage and current  
continuously. The current into IN is shared at SYS between charging the battery and powering the system load  
at SYS. If the sum of the charging and load currents exceeds the preset maximum input current, the input DPM  
loop reduces input current. If SYS drops below the DPPM voltage threshold, the charging current is reduced by  
the DPPM loop through the BATFET (Q3). If SYS falls below the supplement mode threshold after BATFET  
charging current is reduced to zero, the part will enter supplement mode. SYS voltage is maintained above  
battery voltage when the DPPM loop is in control. Battery termination is disabled when the DPPM loop is active.  
The VDPPM threshold is typically 100 mV above VBAT. The VDPPM disable bit (VDPPM_DIS = b1) will allow  
the charger to operate with lower headroom on VSYS. In VBAT tracking mode where VSYS is VBAT+225 mV,  
disabling this bit will have no effect.  
8.3.3 Battery Supplement Mode  
While in DPPM mode, if the charging current falls to zero and the system load current increases beyond the  
programmed input current limit, the voltage at SYS reduces further. When the SYS voltage drops below the  
battery voltage to VBSUP1, the battery supplements the system load. The battery stops supplementing the system  
load when the voltage on the SYS pin rises within the battery voltage to VBSUP2. During supplement mode, the  
battery supplement current is not regulated, however, the BATOCP protection circuit is active if enabled. Battery  
termination is disabled while in supplement mode. Battery voltage has to be higher than the battery undervoltage  
lockout threshold (VBUVLO) in order to supplement the system.  
8.3.4 SYS Power Control (SYS_MODE bit control)  
The device also offers the option to control SYS through the I2C SYS_MODE bits. These bits can force SYS to  
be supplied by BAT instead of IN (even if VIN > VBAT + VSLEEP), disconnect SYS from either supply, pull SYS  
down or leave it floating. The table below shows the device behavior based on SYS_MODE setting:  
8-1. Settings  
SYS_MODE  
DESCRIPTION  
SYS SUPPLY  
SYS PULLDOWN  
00  
Normal Operation  
IN or BAT  
Off except during HW reset  
Force BAT power (IN  
disconnected)  
01  
BAT  
Off except during HW reset  
10  
11  
None  
None  
Off  
On  
SYS Off Floating  
SYS Off Pulled Down  
SYS_MODE = 00  
This is the default state/normal operation of the device. SYS will be powered from IN if VIN > VUVLO, VIN > VBAT  
+ VSLEEPZ, and VIN < VIN_OVP. SYS will powered by BAT if these conditions are not met. SYS will only be  
disconnected from IN or BAT and pulled down when a HW Reset occurs or the device goes into Ship mode.  
SYS_MODE = 01  
When this configuration is set, SYS will be powered by BAT if VBAT > VBUVLO regardless of VIN state. This allows  
the host to minimize the current draw from the adapter while it is still connected as needed in the system. If  
SYS_MODE = 01 is set while VBAT < VBUVLO, the SYS_MODE = 01 setting will be ignored and the device will go  
to SYS_MODE = 00. In the same manner, if the adapter (VIN) is removed and then connected the device will  
also switch to SYS_MODE = 00. This prevents the device from needing a POR in order to restore power to the  
system thereby allowing battery charging. If SYS_MODE = 01 is set during charging, charging will be stopped  
and the battery will start to provide power to SYS as needed. The behavior is similar to that when the input  
adapter is disconnected.  
SYS_MODE = 10  
When this configuration is set, SYS will be disconnected and left floating. The device remains on and active.  
Toggling VIN(VIN <VINUVLO) will reset SYS_MODE to 00.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
SYS_MODE = 11  
When this configuration is set, SYS will be disconnected and pulled down to ground. Toggling VIN will reset  
SYS_MODE to 00.  
8.3.4.1 SYS Pulldown Control  
The device has an internal pulldown on the SYS pin which is enabled in the following cases:  
8-2. States  
STATE  
NOTES  
Pulldown on SYS is enabled once the device enters shipmode and  
after disconnecting the BATFET  
Shipmode  
Pulldown on SYS is enabled after the BATFET and input blocking  
FETs are disconnected and retained until the autowake timer expires  
HW_RESET  
Pulldown on SYS is enabled after the BATFET and input blocking  
FETs are disconnected and retained until either an I2C transaction is  
issued to change SYS_MODE or VIN is toggled.  
SYS_MODE = 11 (SYS pulldown mode)  
8.3.5 SYS Regulation  
The device includes a SYS voltage regulation loop. By regulating the SYS voltage the device prevents  
downstream devices connected to SYS from being exposed to voltages as high as VIN_OVP. SYS regulation is  
only active when VIN > VUVLO, VIN > VBAT + VSLEEPZ and VIN < VIN_OVP rather than meeting the VIN_Powergood  
condition.  
The SYS voltage regulation target can be controlled through the SYS_REG_CTRL_2:0 bits in the SYS_REG  
register to either track the battery, set to a fixed voltage, or enable pass through modes.  
In battery tracking mode, the minimum voltage is at the VMINSYS value for a battery < 3.6 V. As battery voltage  
increases VSYS is regulated to 225 mV above battery. If VIN < VMINSYS and VIN_Powergood is still active, then  
SYS will be in dropout.  
In fixed voltage mode, SYS voltage is regulated to a target set by the host ranging from 4.4 V to 4.9 V. If VIN  
voltage is less than the SYS target voltage, then the device will be in dropout mode.  
In pass through mode, the SYS path is unregulated and the VSYS voltage is equal to VIN.  
8-3. SYS Voltage Regulation Settings  
SYS_REG_CTRL  
VSYS TARGET  
000  
VBAT + 225 mV (3.8 V minimum)  
001  
4.4  
010 (default)  
011  
4.5  
4.6  
100  
4.7  
101  
4.8  
110  
4.9  
111  
Pass through  
8.3.6 ILIM Control  
The input current limit can be controlled through I2C by selecting the the ILIM bits.  
If the ILIM clamp is active, the ILIM_ACTIVE_STAT bit is set.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
MASK_ILIM will prevent an interrupt from being issued but does not override the ILIM behavior itself. The ILIM  
value can be programmed dynamically through the I2C by the host. The ILIM settings of 100mA and 500mA are  
designed to be the maximum value to support standard systems.  
8.3.7 Protection Mechanisms  
8.3.7.1 Input Overvoltage Protection  
Input overvoltage protection protects the device and downstream components connected to SYS, and BAT  
against damage from overvoltage on the input supply. When VIN > VIN_OVP, a VIN overvoltage condition is  
determined to exist. During the VIN overvoltage condition, the device turns the input FET OFF, battery discharge  
FET ON, sends a single 128-μs pulse on INT, and the fault bit (VIN_OVP_FAULT_FLAG) is updated over I2C.  
The VIN_PGOOD_STAT bit also is affected by the VIN overvoltage condition as the VIN powergood condition  
will fail. Once the VIN overvoltage condition is removed (VIN VIN_OVP - VIN_OV_HYS ), the VIN_OVP_STAT bit is  
cleared and the device returns to normal operation. Thereafter, a VIN powergood condition is determined if VIN  
> VBAT + VSLEEPZ and VIN > VIN_UVLO  
.
8.3.7.2 Battery Undervoltage Lockout  
In order to prevent deep discharge of the battery the device integrates a battery undervoltage lockout feature  
which will disengage the BAT to SYS path when voltage at the battery drops below the programmed BUVLO  
setting present in the CHARGERCTRL1 register. BUVLO status can also be read when a valid voltage on VIN is  
present.  
8.3.7.3 System Overvoltage Protection  
The system overvoltage protection is to prevent SYS from overshooting to a high voltage due to the input supply.  
SYS_OVP will momentarily disconnect the blocking FETs and re-engage when the thresholds have dropped to  
less than the SYS_OVP_FALLING threshold.  
The SYS_OVP_RISING threshold is typically 105% of the target SYS voltage and the SYS_OVP_FALLING  
threshold is 102.5% of the target SYS voltage.  
8.3.7.4 System Short Protection  
When a valid adapter is connected to the device, the device turns ON the input blocking FET for 5 ms and it  
detects the SYS pin to be shorted (voltage on SYS <1.6V). In this scenario, the device will turn OFF the input  
FET for ~200 μs and turn it back ON for 5 ms for SYS to rise above 1.6V. If after 10 tries, the SYS short still  
persists, the device will turn OFF SYS until adapter is connected again.  
8.3.7.5 Battery Overcurrent Protection  
In order to protect the device from overcurrent and prevent excessive battery discharge current, the device  
detects if the current on the battery FET exceeds IBAT_OCP. If the BATOCP limit is reached, the battery  
discharge FET is turned off and the device starts operating in hiccup mode, re-enabling the BATFET tREC_SC  
(250 ms) after being turned OFF by the overcurrent condition. If the overcurrent condition is triggered upon retry  
for 4 to 7 consecutive times in a 2-s window, the BATFET shall then remain off until a valid VIN is connected  
(VIN = VIN_POWERGOOD). If the overcurrent condition and hiccup operation occur while in supplement mode  
where VIN is already present, VIN must be toggled in order for the BATFET to be enabled and start another  
detection cycle.  
8.3.7.6 Safety Timer and Watchdog Timer  
At the beginning of each charge cycle mode (Precharge or Fast Charge), the device starts the respective mode  
safety timer. If charging has not terminated before the programmed safety time, tMAXCHG expires or the device  
does not exit the precharge mode before tPRECHG expires, charging is disabled. The precharge safety time,  
tPRECHG, is 25% of tMAXCHG. When a safety timer fault occurs, a single 128-μs pulse is sent on the INT pin and  
the STAT and FAULT bits of the status registers are updated over I2C.  
The charge enable bit or input power must be toggled in order to clear the safety timer fault.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
If the safety timer has expired, the device will produce an interrupt and update the SAFETY_TMR_FAULT_FLAG  
bit on the register map. The safety timer duration is programmable using the SAFETY_TIMER_1:0 bits. When  
the safety timer is active, changing the safety timer duration resets the safety timer. The device also contains a  
2XTMR_EN bit that doubles the safety timer duration to prevent premature safety timer expiration when the  
charge current is reduced by a high load on SYS (DPM operation- causing VDPPM to be enabled), VINDPM,  
thermal regulation, or a NTC (JEITA) condition. When the 2XTMR_EN bit is set, the timer is allowed to run at half  
speed when any loop is active other than CC or CV. In the event where during CC mode the battery voltage  
drops to push the charger into precharge mode, (due to a large load on battery, thermal events, and so forth) the  
safety timer will reset counting through precharge and then resetting the fast charge safety timer. If the device  
entered battery supplement mode while in precharge, CC or CV mode, while the charger is not disabled, the  
device will suspend the safety timer until charging can resume again. This prevents the safety timer from  
resetting when a supplement condition is caused.  
In addition to the safety timer, the device contains a watchdog timer that monitors the host through the I2C  
interface. The watchdog timer is enabled by default and may be disabled by the host through an I2C transaction.  
Once the initial transaction is received, the watchdog timer is started. The watchdog timer is reset by any  
transaction by the host using the I2C interface. If the watchdog timer expires without a reset from the I2C  
interface, all charger parameters registers (ICHG, IPRECHARGE, ITERM,VLOWV, and so forth) are reset to the  
default values. The watchdog timer can be set through the WATCHDOG_SEL_1:0 bits either in battery only  
mode or when an adapter is present.  
8-4. Watchdog Settings  
WATCHDOG_SEL_1:0  
ACTION  
00  
Device will only perform a software reset after 160s of the last I2C transaction  
01  
10  
11  
Device will issue a HW_Reset after 160s of last I2C transation  
Device will issue a HW_Reset after 40s of the last I2C transaction  
Watchdog functionality is completely disabled  
8.3.7.7 Thermal Protection and Thermal Regulation  
During operation, to protect the device from damage due to overheating, the junction temperature of the die, TJ,  
is monitored. When TJ reaches TSHUT_RISING, the device stops charging operation and VSYS is shutdown. If in  
the case where TJ > TSHUT_RISING prior to power being applied to the device (either battery or adapter), the input  
FET or BATFET will not turn ON, regardless of the TSMR pin. Thereafter if temperature falls below  
TSHUT_FALLING, the device will automatically power up if VIN is present or if in battery only mode.  
During the charging process, to prevent overheating in the device, the device monitors the junction temperature  
of the die and reduces the charging current once TJ reaches the thermal regulation threshold (TREG) based on  
bits set by the THERM_REG setting. If the charge current is reduced to 0, the battery supplies the current  
needed to supply the SYS output. Thermal regulation can be disabled through I2C.  
Ensure that system power dissipation is under the limit of the device. The power dissipated by the device can be  
calculated using the following equation:  
PDISS = PSYS + PBAT  
Where:  
PSYS = (VIN VSYS) * IIN  
PBAT = (VSYS VBAT) * IBAT  
The die junction temperature, TJ, can be estimated based on the expected board performance using the  
following equation:  
TJ = TA + θJA * PDISS  
θJA is largely driven by board layout. For more information about traditional and new thermal metrics, see the IC  
Package Thermal Metrics Application Report. Under typical conditions, the time spent in this state is very short.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.3.8 Pushbutton Wake and Reset Input  
The pushbutton function implemented through the TSMR pin has three main functions. First, it serves as a  
means to wake the device from ultra-low power modes like ship mode. Second, it serves as a short button press  
detector, sending an interrupt to the host when the button driving the TSMR pin has been pressed for Wake1,  
Wake2, or long press durations. This allows the implementation of different functions in the end application such  
as menu selection and control. Finally it serves as a means to get the device into ship mode or reset the system  
by performing a power cycle/ hardware reset (shut down SYS and automatically powering it back on) after  
detecting a long button press. The timing for the short and long button press duration is programmable through  
I2C for added flexibility and allows system designers to customize the end user experience of a specific  
application. Note that if a specific timer duration is changed through I2C while that timer is active and has not  
expired, the new programmed value will be ignored until the timer expires and/or is reset by new push button  
action. In battery only mode the device will automatically pulse the TSMR current source ON for tTS_DUTY_ON  
duration and turn it OFF for tTS_DUTY_OFF duration to check if a button is pressed. If a button press is registered,  
the device will begin counting against Wake1, Wake2 or long press durations. This button press detection routine  
in battery only mode is run as long as it is enabled by the EN_PUSH bit. When a valid adapter is present, the  
TSMR current source is always ON to monitor charging.  
8.3.8.1 Pushbutton Wake or Short Button Press Functions  
There are two programmable wake or short button press timers, WAKE1 and WAKE2. There are no specific  
actions taken by the tWAKE1 or tWAKE2 durations other than issuing an interrupt and updating the wake registers.  
For a wake from shipmode event when the button press is enabled, the push button has to be low for tshipwake  
before the device can turn ON the SYS rail.  
In the case where a valid VIN (VIN > VUVLO) is connected prior to the tshipwake timer expiring, the device will exit  
shipmode immediately regardless of the TS/MR or wake timer state. Refer to 8.5 for more details.  
8.3.8.2 Pushbutton Reset or Long Button Press Functions  
Depending on the configuration set on the pushbutton long press action register bits, the device will perform a  
shipmode entry or hardware reset or completely ignore the long button press action.  
tRESTART  
TS/MR  
VIN  
128us  
INT  
VSYS  
SW Reset  
PB_LPRESS_ACTION  
01 – Hardware Reset  
Don’t care  
Default  
8-4. Pushbutton Long Press Reset  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25180  
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
Shipmode enabled when  
TS/MR is high  
TS/MR  
VIN  
INT  
128 us  
SYS  
SHIPMODE  
Ready to Enter Shipmode  
Don’t care  
PB_LPRESS_ACTION  
8-5. Pushbutton Long Press Shipmode  
8.3.9 15-Second Timeout for HW Reset  
Based on the I2C register bit WATCHDOG_15S_ENABLE the device can perform a HW reset/power cycle in the  
same manner a long button press or HW_RESET would. This 15-second watchdog or timeout is gated upon  
VIN> VVBAT + VSLEEPZ so that the HW reset would only occur if the host does not respond after a charger is  
connected and VIN_PGOOD_STAT is set.  
If the charger is connected and the host responds before the 15-second watchdog expires, the part continues in  
normal operation and starts the normal 50-second watchdog timer if enabled. The 15-second watchdog may be  
enabled/disabled through I2C with the WATCHDOG_15S_ENABLE bit.  
8.3.10 Hardware Reset  
The device is capable of a hardware reset to completely powercycle the system. This is partcularly useful when  
a soft reset on the MCU or host fails to work. Below is a sequence of events during a hadware reset:  
1. Turn OFF (if adapter is present) input blocking FET (Q1/Q2)  
2. Turn OFF battery FET (Q3)  
3. Engage pulldown on SYS  
4. Start the Autowake timer  
5. Once the Autowake timer expires, disconnect the pulldown on SYS  
6. Reset all registers to default  
7. Turn ON battery FET and input FET (if applicable)  
8.3.11 Software Reset  
When a software reset is issued either through a watchdog action configurable through the WATCHDOG_SEL  
bits or register reset configurable through the REG_RST bit, the device will reset all of the registers to the  
defaults. Any bits loaded through OTP memory are also loaded. If the device was waiting to go to shipmode (all  
conditions for entering ship are fulfilled except adapter removal), a hardware or software reset will cancel the  
pending shipmode request. If the shipmode request was written through I2C, the host can cancel the ship entry  
by clearing the bit before shipmode entry has happened.  
8.3.12 Interrupt Indicator (/INT) Pin  
The device contains an open-drain output that signals its status and is valid only after the device has completed  
start-up into a valid state. If the part starts into a fault, interrupts will not be sent.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
The /INT pin is normally in high impedance and is pulled low for 128 μs when an interrupt condition occurs.  
When a fault or status change occurs or any other condition that generates an interrupt, a 128-μs pulse (/INT  
pin pulled down) is sent on /INT to notify the host.  
Interrupts can be masked through I2C. If the interrupt condition occurs while the interrupt is masked an interrupt  
pulse will not be sent. If the interrupt is unmasked while the fault condition is still present, an interrupt pulse will  
not be sent until the /INT trigger condition occurs while unmasked. Below are a list of interrupts that can be  
masked through I2C.  
8-5. Mask Bit  
MASK BIT  
ACTION  
ILIM_INT_MASK  
Do not issue an /INT pulse when ILIM limiting occurs  
VDPM_INT_MASK  
TS_INT_MASK  
Do not issue an /INT pulse when VINDPM or DDPM is active  
Do not issue an /INT pulse when any of the TS events have occured.  
TREG_INT_MASK  
PG_INT_MASK  
Do not issue an /INT pulse when TREG is actively reducing the current  
Do not issue an /INT pulse when VIN meets VIN_PG condition  
Do not issue an /INT pulse when BATOCP or BUVLO event is triggered  
Do not send an interrupt anytime there is a charging status change.  
BAT_INT_MASK  
CHG_STATUS_INT_MASK  
8.3.13 External NTC Monitoring (TS)  
8.3.13.1 TS Biasing and Function  
The device can be configured to meet JEITA requirements or a simpler HOT/COLD function only. Additionally,  
the TS charger control function can be disabled through the TS_EN bit. This will only disable the TS charge  
action but the faults are still reported based on the TS voltage. To satisfy the JEITA requirements, four  
temperature thresholds are monitored: cold battery threshold, cool battery threshold, warm battery threshold,  
and hot battery threshold. These temperatures correspond to the VCOLD, VCOOL, VWARM, and VHOT  
thresholds in the Electrical Characteristics table. Charging and safety timers are suspended when VTS < VHOT or  
VTS > VCOLD. When VCOOL < VTS < VCOLD, the charging current is reduced to the value programmed in the  
TS_Setting register/bit TS_ICHG_0. When VHOT < VTS < VWARM, the battery regulation voltage is reduced by 100  
mV or 200 mV based on the value programmed in the TS_VRCG_0 bit within the TS_Setting register.  
For devices where the TS function is not needed, tie a 10-kresistor to the TS pin.  
There is an active voltage clamp present on this device which will prevent the voltage on the TSMR pin from  
rising above the VTS_CLAMP threshold. This will particularly be ON when the TSMR pin is floating. The bit  
TS_OPEN_STAT is set when this clamp is active. This will also be ON regardless of the TS_EN bit. The interrupt  
is asserted as long as the TS_INT mask is not written.  
The bits TS_HOT/TS_COLD, TS_WARM, and TS_COOL will allow these thresholds to be adjusted. The  
hysteresis will also move along with these thresholds. When the TS_WARM condition occurs, the device will  
lower the battery target regulation voltage by TS_VRCG but will not modify the VBAT_CTRL register.  
The TS_ICHG bit will reduce charging current based on the factor described in the register map when the TSMR  
pin hits a TS_COOL condition. The TREG function will still be based on this reduced threshold.  
The TS_VRCG_0 bit will reduce the charging voltage when the TSMR pin hits the TS_WARM threshold. The  
factor will be based on the register map.  
When the button is detected as pressed (TSMR pin low) during the charging process, charging will be  
momentarily suspended until the button is high again. When charging is disabled in any of the TS faults, trickle  
charging is also disabled. In a TS fault where the current is reduced (COOL), the trickle charging current is not  
altered.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.3.14 I2C Interface  
The device uses an I2C compatible interface to program and read control parameters, status bits, and so forth.  
I2C ™ is a 2-wire serial interface developed by Philips Semiconductor (see I2C-Bus Specification, Version 2.1,  
January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the  
bus is idle, both SDA and SCL lines are pulled high. All of the I2C compatible devices connect to the I2C bus  
through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or a digital signal  
processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The  
master also generates specific conditions that indicate the START and STOP of data transfer. A slave device  
receives and/or transmits data on the bus under control of the master device.  
The device works as a preipheral and supports the following data transfer modes, as defined in the I2C Bus™  
Specification: standard mode (100 kbps) and fast mode (400 kbps). The interface adds flexibility to the battery  
charge solution, enabling most functions to be programmed to new values depending on the instantaneous  
application requirements.  
Register contents remain intact as long as VBAT or VIN voltages remain above their respective undervoltage  
lockout thresholds and the device is not in shutdown mode.  
The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as the  
F/S-mode in this document. The device only supports 7-bit addressing. The device 7-bit address is 0x6A (8-bit  
shifted address is 0xD4).  
8.3.14.1 F/S Mode Protocol  
The master initiates a data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 8-6. All I2C-compatible devices should  
recognize a start condition.  
DATA  
CLK  
S
P
START Condition  
STOP Condition  
8-6. START and STOP Condition  
The master then generates the SCL pulses, and transmits the 8-bit address and the read/write direction bit R/W  
on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires  
the SDA line to be stable during the entire high period of the clock pulse (see 8-7). All devices recognize the  
address sent by the master and compare it to their internal fixed addresses. Only the slave device with a  
matching address generates an acknowledge (see 8-8) by pulling the SDA line low during the entire high  
period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with  
a slave has been established.  
DATA  
CLK  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
8-7. Bit Transfer on the Serial Interface  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the  
slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an  
acknowledge signal can either be generated by the master or by the slave, depending on which one is the  
receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line  
from low to high while the SCL line is high (see 8-6). This releases the bus and stops the communication link  
with the addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of a  
stop condition, all devices know that the bus is released, and wait for a start condition followed by a matching  
address. If a transaction is terminated prematurely, the master needs to send a STOP condition to prevent the  
slave I2C logic from remaining in an incorrect state. Attempting to read data from register addresses not listed in  
this section will result in FFh being read out.  
Data Output  
by Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
SCL From  
Master  
9
8
1
2
Clock Pulse for  
Acknowledgement  
START  
Condition  
8-8. Ackowledge on the I2C Bus  
Recognize START or  
REPEATED START  
Condition  
Recognize STOP or  
REPEATED START  
Condition  
Generate ACKNOWLEDGE  
Signal  
P
SDA  
Acknowledgement  
Signal From Slave  
MSB  
Sr  
Address  
R/W  
SCL  
S
or  
Sr  
or  
P
ACK  
ACK  
Sr  
8-9. Bus Protocol  
8.4 Device Functional Modes  
The BQ25180 has four main modes of operation: Battery Mode, Ship Mode, Charge/Adapter Mode when a  
supply is connected to IN, and Shutdown mode. The table below summarizes the functions that are active for  
each operation mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25180  
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8-6. Function Availability Based on Primary Mode of Operation  
FUNCTION  
Input overvoltage  
Input undervoltage  
Battery overcurrent  
Battery undervoltage  
Input DPM  
CHARGE/ADAPTER MODE  
BATTERY MODE  
SHIP MODE  
SHUTDOWN MODE  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes, if enabled  
Yes  
Yes, if enabled  
No  
No  
Yes, if enabled  
Dynamic power path  
management  
Yes, if enabled  
No  
No  
No  
BATFET  
TS measurement  
Battery charging  
ILIM  
Yes  
Yes  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
No  
Yes, if enabled  
No  
Yes (Register Value)  
No  
Yes, if enabled  
Yes  
Pushbutton input  
INT output  
Yes  
Yes  
Yes  
I2C  
Yes  
8.5 Register Maps  
8.5.1 I2C Registers  
8-7 lists the memory-mapped registers for the I2C registers. All register offset addresses not listed in 8-7  
should be considered as reserved locations and the register contents should not be modified.  
8-7. I2C Registers  
Offset  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
Acronym  
Register Name  
Section  
Go  
STAT0  
Charger Status  
STAT1  
Charger Status and Faults  
Charger Flag Registers  
Battery Voltage Control  
Fast Charge Current Control  
Charger Control 0  
Go  
FLAG0  
Go  
VBAT_CTRL  
ICHG_CTRL  
CHARGECTRL0  
CHARGECTRL1  
IC_CTRL  
Go  
Go  
Go  
Charger Control 1  
Go  
IC Control  
Go  
TMR_ILIM  
SHIP_RST  
SYS_REG  
TS_CONTROL  
MASK_ID  
Timer and Input Current Limit Control  
Shipmode, Reset and Pushbutton Control  
SYS Regulation Voltage Control  
TS Control  
Go  
Go  
Go  
Go  
MASK and Device ID  
Go  
Complex bit access types are encoded to fit into small table cells. 8-8 shows the codes that are used for  
access types in this section.  
8-8. I2C Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8-8. I2C Access Type Codes (continued)  
Access Type  
Code  
Description  
RC  
R
C
Read  
to Clear  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.1 STAT0 Register (Offset = 0x0) [Reset = X]  
STAT0 is shown in 8-10 and described in 8-9.  
Return to the Summary Table.  
8-10. STAT0 Register  
7
6
5
4
3
2
1
0
TS_OPEN_STA  
T
CHG_STAT_1:0  
R-X  
ILIM_ACTIVE_ VDPPM_ACTIV VINDPM_ACTI THERMREG_A VIN_PGOOD_S  
STAT  
E_STAT  
VE_STAT  
CTIVE_STAT  
TAT  
R-X  
R-X  
R-X  
R-X  
R-X  
R-X  
8-9. STAT0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TS_OPEN_STAT  
R
X
TS Open Status  
1b0 = TSMR pin is not Open  
1b1 = TSMR pin is Open  
6-5  
CHG_STAT_1:0  
R
X
Charging Status Indicator  
2b00 = Not Charging while charging is enabled.  
2b01 = Constant Current Charging (Trickle Charge/ Pre Charge or in  
Fast Charge Mode)  
2b10 = Constant Voltage Charging  
2b11 = Charge Done or charging is disabled by the host.  
4
3
2
1
0
ILIM_ACTIVE_STAT  
R
R
R
X
X
X
X
X
Input Curent Limit Active  
1b0 = Not Active  
1b1 = Active  
VDPPM_ACTIVE_STAT  
VINDPM_ACTIVE_STAT  
VDPPM Mode Active  
1b0 = Not Active  
1b1 = Active  
VINDPM Mode Active  
1b0 = Not Active  
1b1 = Active  
THERMREG_ACTIVE_ST R  
AT  
Thermal Regulation Active  
1b0 = Not Active  
1b1 = Active  
VIN_PGOOD_STAT  
R
VIN Power Good  
1b0 = VIN Power Not Good  
1b1 = VIN Power Good  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.2 STAT1 Register (Offset = 0x1) [Reset = X]  
STAT1 is shown in 8-11 and described in 8-10.  
Return to the Summary Table.  
8-11. STAT1 Register  
7
6
5
4
3
2
1
0
VIN_OVP_STA BUVLO_STAT  
T
RESERVED  
TS_STAT_1:0  
R-2b00  
SAFETY_TMR_ WAKE1_FLAG WAKE2_FLAG  
FAULT_FLAG  
R-1b0  
R-X  
R-X  
RC-1b0  
RC-1b0  
RC-1b0  
8-10. STAT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VIN_OVP_STAT  
R
1b0  
VIN_OVP Fault  
1b0 = Not Active  
1b1 = Active  
6
BUVLO_STAT  
R
X
Battery UVLO Status  
1b0 = Not Active  
1b1 = Active  
5
RESERVED  
R
R
X
Reserved  
4-3  
TS_STAT_1:0  
2b00  
TS Status  
2b00 = Normal  
2b01 = VTS < VHOT or VTS > VCOLD(charging suspended)  
2b10 = VCOOL < VTS < VCOLD (Charging current reduced by value  
set by TS_Registers)  
2b11 = VWARM > VTS > VHOT (Charging voltage reduced by value  
set by TS_Registers)  
2
1
0
SAFETY_TMR_FAULT_F RC  
LAG  
1b0  
1b0  
1b0  
Safety Timer Expired Fault Cleared only after CE is toggled.  
1b0 = Not Active  
1b1 = Active  
WAKE1_FLAG  
WAKE2_FLAG  
RC  
RC  
Wake 1 Timer Flag  
1b0 = Does not meet Wake 1 Condition  
1b1 = Met Wake 1 Condition  
Wake 2 Timer Flag  
1b0 = Does not meet Wake 2 Condition  
1b1 = Met Wake2 Condition  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.3 FLAG0 Register (Offset = 0x2) [Reset = X]  
FLAG0 is shown in 8-12 and described in 8-11.  
Return to the Summary Table.  
8-12. FLAG0 Register  
7
6
5
4
3
2
1
0
TS_FAULT  
ILIM_ACTIVE_ VDPPM_ACTIV VINDPM_ACTI THERMREG_A VIN_OVP_FAU BUVLO_FAULT BAT_OCP_FAU  
FLAG  
E_FLAG  
VE_FLAG  
CTIVE_FLAG  
LT_FLAG  
_FLAG  
LT  
RC-X  
RC-X  
RC-X  
RC-X  
RC-X  
RC-X  
RC-X  
RC-X  
8-11. FLAG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TS_FAULT  
RC  
X
TS_Fault  
1b0 = No TS Fault detected  
1b1 = TS Fault detected  
6
5
4
3
2
1
0
ILIM_ACTIVE_FLAG  
VDPPM_ACTIVE_FLAG  
RC  
RC  
X
X
X
X
X
X
X
ILIM Active  
1b0 = NO ILIM Fault detected  
1b1 = ILIM Fault detected  
VDPPM FLAG  
1b0 = VDPPM fault not detected  
1b1 = VDPPM fault detected  
VINDPM_ACTIVE_FLAG RC  
VINDPM FLAG  
1b0 = VINDPM fault not detected  
1b1 = VINDPM fault detected  
THERMREG_ACTIVE_FL RC  
AG  
Thermal Regulation FLAG  
1b0 = No thermal regulation detected  
1b1 = Thermal regulation has occured  
VIN_OVP_FAULT_FLAG RC  
VIN_OVP FLAG  
1b0 = VIN_OVP fault not detected  
1b1 = VIN_OVP fault detected  
BUVLO_FAULT_FLAG  
BAT_OCP_FAULT  
RC  
RC  
Battery undervoltage FLAG  
1b0 = Battery undervoltage fault not detected  
1b1 = Battery undervoltage fault detected  
Battery overcurrent protection  
1b0 = Battery overcurrent condition not detected  
1b1 = Battery overcurrent condition detected  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.4 VBAT_CTRL Register (Offset = 0x3) [Reset = 0x46]  
VBAT_CTRL is shown in 8-13 and described in 8-12.  
Return to the Summary Table.  
8-13. VBAT_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-1b0  
VBATREG_6:0  
R/W-7b1000110  
8-12. VBAT_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
1b0  
Reserved  
6-0  
VBATREG_6:0  
7b1000110 Battery Regulation Voltage VBATREG= 3.5V + VBATREG_CODE *  
10mV.  
Maximum programmable voltage = 4.65V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.5 ICHG_CTRL Register (Offset = 0x4) [Reset = 0x05]  
ICHG_CTRL is shown in 8-14 and described in 8-13.  
Return to the Summary Table.  
8-14. ICHG_CTRL Register  
7
6
5
4
3
2
1
0
CHG_DIS  
R/W-1b0  
ICHG_6:0  
R/W-7b0000101  
8-13. ICHG_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CHG_DIS  
R/W  
1b0  
Charge Disable  
1b0 = Battery Charging Enabled  
1b1 = Battery Charging Disabled  
6-0  
ICHG_6:0  
R/W  
7b0000101 For ICHG <= 35mA = ICHGCODE +5mA For ICHG > 35mA = 40+  
((ICHGCODE-31)*10)mA.  
Maximum programmable current = 1000mA  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.6 CHARGECTRL0 Register (Offset = 0x5) [Reset = 0x2C]  
CHARGECTRL0 is shown in 8-15 and described in 8-14.  
Return to the Summary Table.  
8-15. CHARGECTRL0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-1b0  
IPRECHG  
R/W-1b0  
ITERM_1:0  
R/W-2b10  
VINDPM_1:0  
R/W-2b11  
THERM_REG_1:0  
R/W-2b00  
8-14. CHARGECTRL0 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
1b0  
Reserved  
6
IPRECHG  
1b0  
Precharge current = x times of term  
1b0 = Precharge is 2x Term  
1b1 = Precharge is Term  
5-4  
3-2  
1-0  
ITERM_1:0  
R/W  
R/W  
R/W  
2b10  
2b11  
2b00  
Termination current = % of Icharge  
2b00 = Disable  
2b01 = 5% of ICHG  
2b10 = 10% of ICHG  
2b11 = 20% of ICHG  
VINDPM_1:0  
VINDPM Level Selection  
2b00 = 4.2 V  
2b01 = 4.5 V  
2b10 = 4.7 V  
2b11 = Disabled  
THERM_REG_1:0  
Thermal Regulation Threshold  
2b00 = 100C  
2b11 = Disabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.7 CHARGECTRL1 Register (Offset = 0x6) [Reset = 0x56]  
CHARGECTRL1 is shown in 8-16 and described in 8-15.  
Return to the Summary Table.  
8-16. CHARGECTRL1 Register  
7
6
5
4
3
2
1
0
IBAT_OCP_1:0  
R/W-2b01  
BUVLO_2:0  
R/W-3b010  
CHG_STATUS_ ILIM_INT_MAS VDPM_INT_MA  
INT_MASK  
K
SK  
R/W-1b1  
R/W-1b1  
R/W-1b0  
8-15. CHARGECTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
IBAT_OCP_1:0  
R/W  
2b01  
Battery Discharge Current Limit  
2b00 = 500mA  
2b01 = 1000mA  
2b10 = 1500mA  
2b11 = Disabled  
5-3  
BUVLO_2:0  
R/W  
3b010  
Battery Undervoltage LockOut Falling Threshold.  
3b000 = 3.0V  
3b001 = 3.0V  
3b010 = 3.0V  
3b011 = 2.8V  
3b100 = 2.6V  
3b101 = 2.4V  
3b110 = 2.2V  
3b111 = 2.0V  
2
CHG_STATUS_INT_MAS R/W  
K
1b1  
Mask Charging Status Interrupt  
1b0 = Enable Charging Status Interrupt anytime there is a charging  
status change.  
1b1 = Mask Charging Status Interrupt  
1
0
ILIM_INT_MASK  
R/W  
R/W  
1b1  
1b0  
Mask ILIM Fault Interrupt  
1b0 = Enable ILIM Interrupt  
1b1 = Mask ILIM Interrupt  
VDPM_INT_MASK  
Mask VINDPM and VDPPM Interrupt  
1b0 = Enable VINDPM and VDPPM Interrupt  
1b1 = Mask VINDPM and VDPPM Interrupt  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.8 IC_CTRL Register (Offset = 0x7) [Reset = 0x84]  
IC_CTRL is shown in 8-17 and described in 8-16.  
Return to the Summary Table.  
8-17. IC_CTRL Register  
7
6
5
4
3
2
1
0
TS_EN  
R/W-1b1  
VLOWV_SEL  
R/W-1b0  
VRCH_0  
R/W-1b0  
2XTMR_EN  
R/W-1b0  
SAFETY_TIMER_1:0  
R/W-2b01  
WATCHDOG_SEL_1:0  
R/W-2b00  
8-16. IC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TS_EN  
R/W  
1b1  
TS Auto Function  
1b0 = TS auto function disabled (Only charge control is disabled. TS  
monitoring is enabled)  
1b1 = TS auto function enabled  
6
5
4
VLOWV_SEL  
VRCH_0  
R/W  
R/W  
R/W  
1b0  
1b0  
1b0  
Precharge Voltage Threshold (VLOWV)  
1b0 = 3V  
1b1 = 2.8V  
Recharge Voltage Threshold  
1b0 = 100mV  
1b1 = 200 mV  
2XTMR_EN  
Timer Slow  
1b0 = The timer is not slowed at any time  
1b1 = The timer is slowed by 2x when in any control other than CC  
or CV  
3-2  
1-0  
SAFETY_TIMER_1:0  
WATCHDOG_SEL_1:0  
R/W  
R/W  
2b01  
2b00  
Fast Charge Timer  
2b00 = 3 hour fast charge  
2b01 = 6 hour fast charge  
2b10 = 12 hour fast charge  
2b11 = Disable safety timer  
Watchdog Selection  
2b00 = 160s default register values  
2b01 = 160s HW_RESET  
2b10 = 40s HW_RESET  
2b11 = Disable watchdog function  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.9 TMR_ILIM Register (Offset = 0x8) [Reset = 0x4D]  
TMR_ILIM is shown in 8-18 and described in 8-17.  
Return to the Summary Table.  
8-18. TMR_ILIM Register  
7
6
5
4
3
2
1
0
MR_LPRESS_1:0  
MR_RESET_VI  
N
AUTOWAKE_1:0  
R/W-2b01  
ILIM_2:0  
R/W-2b01  
R/W-1b0  
R/W-3b101  
8-17. TMR_ILIM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
MR_LPRESS_1:0  
R/W  
2b01  
Push button Long Press duration timer  
2b00 = 5s  
2b01 = 10s  
2b10 = 15s  
2b11 = 20s  
5
MR_RESET_VIN  
AUTOWAKE_1:0  
R/W  
R/W  
1b0  
Hardware reset condition  
1b0 = Reset sent when long press duration is met  
1b1 = Reset sent when long press duration is met and  
VIN_Powergood  
4-3  
2b01  
Auto Wake Up Timer Restart  
2b00 = 0.5s  
2b01 = 1s  
2b10 = 2s  
2b11 = 4s  
2-0  
ILIM_2:0  
R/W  
3b101  
Input Current Limit Setting  
3b000 = 50mA  
3b001 = 100mA(max.)  
3b010 = 200mA  
3b011 = 300mA  
3b100 = 400mA  
3b101 = 500mA(max.)  
3b110 = 700mA  
3b111 = 1100mA  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.10 SHIP_RST Register (Offset = 0x9) [Reset = 0x11]  
SHIP_RST is shown in 8-19 and described in 8-18.  
Return to the Summary Table.  
8-19. SHIP_RST Register  
7
6
5
4
3
2
1
0
REG_RST  
R/W-1b0  
EN_RST_SHIP_1:0  
R/W-2b00  
PB_LPRESS_ACTION_1:0  
R/W-2b10  
WAKE1_TMR  
R/W-1b0  
WAKE2_TMR  
R/W-1b0  
EN_PUSH  
R/W-1b1  
8-18. SHIP_RST Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
REG_RST  
R/W  
1b0  
Software Reset  
1b0 = Do nothing  
1b1 = Software Reset  
6-5  
4-3  
EN_RST_SHIP_1:0  
R/W  
2b00  
2b10  
Shipmode Enable and Hardware Reset  
2b00 = Do nothing  
2b01 = Enable shutdown mode with wake on adapter insert only  
2b10 = Enable shipmode with wake on button press or adapter insert  
2b11 = Hardware Reset  
PB_LPRESS_ACTION_1: R/W  
0
Pushbutton long press action  
2b00 = Do nothing  
2b01 = Hardware Reset  
2b10 = Enable shipmode  
2b11 = Enable shutdown mode  
2
1
0
WAKE1_TMR  
WAKE2_TMR  
EN_PUSH  
R/W  
R/W  
R/W  
1b0  
1b0  
1b1  
Wake 1 Timer Set  
1b0 = 300ms  
1b1 = 1s  
Wake 2 Timer Set  
1b0 = 2s  
1b1 = 3s  
Enable Push Button and Reset Function on Battery Only  
1b0 = Disable  
1b1 = Enable  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.11 SYS_REG Register (Offset = 0xA) [Reset = 0x40]  
SYS_REG is shown in 8-20 and described in 8-19.  
Return to the Summary Table.  
8-20. SYS_REG Register  
7
6
5
4
3
2
1
0
SYS_REG_CTRL_2:0  
RESERVED  
SYS_MODE_1:0  
R/W-2b00  
WATCHDOG_1 VDPPM_DIS  
5S_ENABLE  
R/W-3b010  
R/W-1b0  
R/W-1b0  
R/W-1b0  
8-19. SYS_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
SYS_REG_CTRL_2:0  
R/W  
3b010  
SYS Regulation Voltgage  
3b000 = Battery Tracking Mode  
3b001 = 4.4V  
3b010 = 4.5V  
3b011 = 4.6V  
3b100 = 4.7V  
3b101 = 4.8V  
3b110 = 4.9V  
3b111 = Pass-Through (VSYS is VIN)  
4
RESERVED  
R/W  
R/W  
1b0  
Reserved  
3-2  
SYS_MODE_1:0  
2b00  
Sets how SYS is powered in any state, except SHIPMODE  
2b00 = SYS powered from VIN if present or VBAT  
2b01 = SYS powered from VBAT only, even if VIN present  
2b10 = SYS disconnected and left floating  
2b11 = SYS disconnected with pulldown  
1
0
WATCHDOG_15S_ENAB R/W  
LE  
1b0  
1b0  
I2C Watchdog  
1b0 = Mode Disabled  
1b1 = Do a HW reset after 15s if no I2C transaction after VIN  
plugged  
VDPPM_DIS  
R/W  
Disable VDPPM  
1b0 = Enable VDPPM  
1b1 = Disable VDPPM  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.12 TS_CONTROL Register (Offset = 0xB) [Reset = 0x00]  
TS_CONTROL is shown in 8-21 and described in 8-20.  
Return to the Summary Table.  
8-21. TS_CONTROL Register  
7
6
5
4
3
2
1
0
TS_HOT  
TS_COLD  
R/W-2b00  
TS_WARM  
R/W-1b0  
TS_COOL  
R/W-1b0  
TS_ICHG  
R/W-1b0  
TS_VRCG  
R/W-1b0  
R/W-2b00  
8-20. TS_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
TS_HOT  
R/W  
2b00  
TS Hot threshold register  
2b00 = Default 60C  
2b01 = 65C  
2b10 = 50C  
2b11 = 45C  
5-4  
TS_COLD  
R/W  
2b00  
TS Cold threshold register  
2b00 = Default 0C  
2b01 = 3C  
2b10 = 5C  
2b11 = -3C  
3
2
1
0
TS_WARM  
TS_COOL  
TS_ICHG  
TS_VRCG  
R/W  
R/W  
R/W  
R/W  
1b0  
1b0  
1b0  
1b0  
TS Warm threshold  
1b0 = Default 45C  
1b1 = Disabled  
TS Cool threshold register  
1b0 = Default 10C  
1b1 = Disabled  
Fast charge current when decreased by TS function  
1b0 = 0.5*ICHG  
1b1 = 0.2*ICHG  
Reduced target battery voltage during Warm  
1b0 = VBATREG -100mV  
1b1 = VBATREG -200mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
8.5.1.13 MASK_ID Register (Offset = 0xC) [Reset = 0xC0]  
MASK_ID is shown in 8-22 and described in 8-21.  
Return to the Summary Table.  
8-22. MASK_ID Register  
7
6
5
4
3
2
1
0
TS_INT_MASK TREG_INT_MA BAT_INT_MAS PG_INT_MASK  
Device_ID  
R-4b0000  
SK  
K
R/W-1b1  
R/W-1b1  
R/W-1b0  
R/W-1b0  
8-21. MASK_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TS_INT_MASK  
TREG_INT_MASK  
BAT_INT_MASK  
PG_INT_MASK  
Device_ID  
R/W  
1b1  
Mask TS  
1b0 = Enable TS Interrupt  
1b1 = Mask TS Interrupt  
6
5
R/W  
R/W  
R/W  
R
1b1  
Mask TREG  
1b0 = Enable TREG Interrupt  
1b1 = Mask TREG Interrupt  
1b0  
Mask BATOCP and BUVLO  
1b0 = Enable BOCP and BUVLO Interrupt  
1b1 = Mask BOCP and BUVLO Interrupt  
4
1b0  
Mask PG and VINOVP  
1b0 = Enable PG and VINOVP Interrupt  
1b1 = Mask PG and VINOVP Interrupt  
3-0  
4b0000  
Device ID  
4b0000 = BQ25180  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
A typical application of the BQ25180 consists of the device configured as an I2C controlled single cell Li-ion  
battery charger and power path manager or battery applications such as smart watches and wireless headsets.  
A battery thermistor may be connected to the TS pin to allow the device to monitor the battery temperature and  
control charging as desired.  
The system designer may connect the TS/MR pin input to a push button to send interrupts to the host as a  
button is pressed or to allow the application end user to reset the system.  
9.2 Typical Application  
SYS  
IN  
Regulated  
Load  
VBUS  
10uF  
1uF  
/INT  
Device  
Control  
SCL  
SDA  
BAT  
Host  
1uF  
+
VIO  
TS/MR  
NTC  
BQ25180  
GND  
9-1. Typical Application  
9.2.1 Design Requirements  
The design requirements for the following design example are shown in 9-1.  
9-1. Design Parameters  
PARAMETER  
VALUE  
IN supply voltage  
5 V  
Battery regulation voltage  
4.2 V  
9.2.2 Detailed Design Procedure  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25180  
 
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
9.2.2.1 Input (IN/SYS) Capacitors  
Low ESR ceramic capacitors such as X7R or X5R are preferred for input decoupling capacitors and should be  
placed as close as possible to the supply and ground pins for the IC. Due to the voltage derating of the  
capacitors, it is recommended that 25-V rated capacitors are used for the IN and SYS pins which can normally  
operate at 5 V. After derating the minimum capacitance must be higher than 1 µF.  
9.2.2.2 TS  
The ground connection for the NTC must be made as close as possible to the GND pin of the device or kelvin  
connected to it to minimize any error in TS measurement due to IR drops on the ground board lines.  
If the system designer does not wish to use the TS function for charging control, a 10-kΩ resistor must be  
connected from TS to ground.  
9.2.2.3 Recommended Passive Components  
9-2. Passive Components  
MIN  
NOM  
10  
1
MAX  
100  
-
UNIT  
μF  
CSYS  
CBAT  
CIN  
Capacitance on SYS pin  
Capacitance on BAT pin  
IN input bypass capacitance  
1
1
μF  
1
1
10  
μF  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
9.2.3 Application Curves  
CIN = 1 µF, COUT = 10 µF, VIN = 5 V, VOUT = 3.8 V, ICHG = 10 mA (unless otherwise specified)  
VIN = 5 V  
VBAT = Floating  
VIN = 5 V  
VBAT = 3.6 V  
9-2. Power Up with IN Supply Insertion with No  
9-3. Power Up from Shutdown Mode with VIN  
Battery  
Supply Insertion  
VBAT = 3.8 V  
MR_LPRESS = 00 (5s Long Press Timer)  
VIN = 0 V 5 V  
9-5. Power Up from Shipmode with /TSMR  
9-4. Power Up from Shipmode with VIN Insertion  
Button Press  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
MR_LPRESS = 00 (5s Long Press Timer)  
MR_LPRESS = 00 (5s Long Press Timer)  
PB_LPRESS_ACTION = 10  
PB_LPRESS_ACTION = 01 (Hardware Reset)  
9-6. Hardware Reset with /TSMR Press  
9-7. Enter Shipmode with Push Button Long  
Press  
9-8. Hardware Reset Through I2C  
EN_RST_SHIP = 01 (enable shutdown with wake on adapter  
insert only)  
9-9. Shutdown Entry on VIN Removal  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
EN_RST_SHIP = 10 (enable shutdown with wake on adapter  
VIN = 0 V 5 V 0 V  
insert only)  
9-11. Power Good Interrupt on /INT  
9-10. Shipmode Entry on VIN Removal  
VIN = 0 V  
SYS_REG_CTRL = 000 111 in steps  
PB_LPRESS_ACTION = 11 (enable shutown mode)  
MR_LPRESS = 00 (5 seconds)  
9-13. SYS Regulation Sweep  
9-12. Shutdown Mode Entry with Push Button  
Long Press  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
VIN = 5 V  
SYS_MODE = 00 01 10 11  
9-15. Wake1 Interrupt with VIN Present  
9-14. SYS Mode Sweep  
VIN = 5 V  
VIN = 5 V  
MR_LPRESS = 00 (5 seconds)  
PB_LPRESS_ACTION = Hardware Reset  
9-16. Wake2 Interrupt with VIN Present  
9-17. Long Press Interrupt with VIN Present  
VIN = 0 V  
VIN = 5 V  
9-18. Wake1 Interrupt without VIN  
9-19. Wake2 Interrupt without VIN Present  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
VIN = 0 V  
MR_LPRESS = 00 (5 seconds)  
PB_LPRESS_ACTION = 11 (Hardware Reset)  
9-20. Long Press Interrupt without VIN Present  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
10 Power Supply Recommendations  
The BQ25180 requires the adapter or IN supply to be between 2.7 V and 5.5 V. The battery voltage must be  
higher than 3.15 V or VBUVLO to ensure proper operation.  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
11 Layout  
11.1 Layout Guidelines  
To obtain optimal performance, the decoupling capacitor from IN to GND, the capacitor from SYS to GND and  
BAT to GND should be placed as close as possible to the device, with short trace runs to IN, SYS, BAT and  
GND.Have solid ground plane that is tied to the GND bump  
The pushbutton GND should be connected close to the device as possible.  
The high current charge paths into IN, SYS and BAT pins must be sized appropriately for the maximum  
charge current in order to avoid voltage drops in these traces.  
11.2 Layout Example  
Bo om  
Layer  
Top  
Layer  
GND  
0402  
IN  
0402  
IN  
/INT  
SYS  
SCL  
SYS  
BAT  
SDA  
0402  
BAT  
TS/MR  
GND  
11-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25180  
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25180  
 
 
 
 
 
 
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25180  
 
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25180  
BQ25180  
www.ti.com.cn  
ZHCSPC2C SEPTEMBER 2021 REVISED JANUARY 2023  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25180  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25180YBGR  
ACTIVE  
DSBGA  
YBG  
8
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
B180  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25180YBGR  
DSBGA  
YBG  
8
3000  
180.0  
8.4  
1.15  
1.75  
0.65  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YBG  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
BQ25180YBGR  
8
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ25181

采用 QFN 封装且具有电源路径的 I²C 可编程单节 1A 线性锂离子电池充电器
TI

BQ25300

BQ25303J Standalone 1-Cell, 17-V, 3.0-A Battery Charger with JEITA Battery Temperature Monitoring
TI

BQ25300RTER

BQ25300 Standalone 1-Cell, 17-V, 3.0-A Battery Charger
TI

BQ25302

BQ25303J Standalone 1-Cell, 17-V, 3.0-A Battery Charger with JEITA Battery Temperature Monitoring
TI

BQ25302RTER

BQ25302 Standalone 1-Cell 2.0-A Buck Battery Charger
TI

BQ25303J

BQ25303J Standalone 1-Cell, 17-V, 3.0-A Battery Charger with JEITA Battery Temperature Monitoring
TI

BQ25303JRTER

BQ25303J Standalone 1-Cell, 17-V, 3.0-A Battery Charger with JEITA Battery Temperature Monitoring
TI

BQ25306

独立型 17V、3A 1 至 2 节降压电池充电器
TI

BQ25306RTER

独立型 17V、3A 1 至 2 节降压电池充电器 | RTE | 16 | -40 to 85
TI

BQ2540-7P

DC-DC Regulated Power Supply Module,
BEL

BQ2540-7R

60...132 Watt DC-DC Converters
POWER-ONE

BQ2540-7R

DC-DC Regulated Power Supply Module,
BEL