BQ25616RTWR [TI]

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85;
BQ25616RTWR
型号: BQ25616RTWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85

电池
文件: 总50页 (文件大小:3335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
BQ25616/616J 具有电源路径1.2A 升压电流的独立单3.0A 降压电池充电器  
1 特性  
3 说明  
• 高1.5MHz 同步开关模式降压充电器  
BQ25616/616J 是适用于单节锂离子电池和锂聚合物电  
池、高度集成的 3A 开关模式电池充电管理和系统电源  
路径管理器件。该解决方案在系统和电池之间高度集成  
输入反向阻断 FETRBFETQ1、高侧开关 FET  
HSFETQ2、低侧开关 FETLSFETQ3以  
及电池 FETBATFETQ4。其低阻抗电源路径对  
开关模式运行效率进行了优化缩短了电池充电时间并  
延长了放电阶段的电池运行时间。  
2A 电流5V 输入下具92% 的充电效率  
±0.5% 充电电压调节  
– 通VSET 引脚实现的可调节充电电压支持  
4.1V4.2V 4.35 V 电压稳压精度±0.4%  
– 充电电流调节范围±6%  
– 输入电流调节范围±7.5%  
– 支JEITA (BQ25616J) 或热/(BQ25616) 温  
度感应曲线  
BQ25616/616J 是适用于锂离子电池和锂聚合物电池、  
高度集成的 3A 开关模式电池充电管理和系统电源路径  
管理器件。它可为扬声器、工业和医疗便携式设备等各  
种应用提供快速充电功能和高输入电压。其低阻抗电源  
路径对开关模式运行效率进行了优化缩短了电池充电  
时间并延长了放电阶段的电池运行时间。其输入电压和  
电流调节可以为电池提供最大的充电功率。  
10 小时充电安全计时器  
• 支USB On-The-Go (OTG)  
– 具有高1.2A 输出5V 升压转换器  
1A 输出下具92% 的升压效率  
– 精确的恒定电(CC) 限制  
– 高500µF 容性负载的软启动  
– 用于轻负载运行PFM 模式  
• 单个输入USB 输入以及高电压适配器或无线  
电源  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
BQ25616/616J  
WQFN (24)  
4.00mm × 4.00mm  
– 支4V 13.5V 输入电压范围绝对最大输入  
额定值22V  
130ns 快速关断输入过压保护可选的外部  
OVPFET 可承受高30V 的输入电压  
– 通ILIM 引脚实现可编程输入电流限制  
(IINDPM)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VAC  
SYS 3.5V œ 4.35V  
SW  
USB  
VBUS  
BTST  
SYS  
BAT  
– 通VINDPM 阈值自动跟踪电池电压从而实  
现最大功率  
– 自动检USB SDPCDPDCP 以及非标准适  
配器  
ACDRV  
ILIM  
ICHG  
CE  
ICHG  
REGN  
+
VDC (NVDC) 电源路径管理  
– 无需电池或使用深度放电的电池即可使系统瞬时  
启动  
VSET  
TS  
RDSON 19.5mΩBATFET可更大程度地降低充  
电损耗和延长电池运行时间  
• 在系统待机时具9.5µA 的低电池泄漏电流  
• 高集成度包括所MOSFET、电流感应和环路补偿  
• 安全相关认证:  
简化版应用  
IEC 62368-1 CB 认证  
2 应用  
电子销售(EPOS)  
无线扬声器  
工业便携式电子产品  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDF7  
 
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
9.4 Device Functional Modes..........................................28  
10 Application and Implementation................................29  
10.1 Application Information........................................... 29  
10.2 Typical Applications................................................ 29  
11 Power Supply Recommendations..............................37  
12 Layout...........................................................................38  
12.1 Layout Guidelines................................................... 38  
12.2 Layout Example...................................................... 38  
13 Device and Documentation Support..........................40  
13.1 Device Support....................................................... 40  
13.2 Documentation Support.......................................... 40  
13.3 接收文档更新通知................................................... 40  
13.4 支持资源..................................................................40  
13.5 Trademarks.............................................................40  
13.6 Electrostatic Discharge Caution..............................40  
13.7 术语表..................................................................... 40  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................4  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings........................................ 7  
8.2 ESD Ratings............................................................... 7  
8.3 Recommended Operating Conditions.........................7  
8.4 Thermal Information....................................................7  
8.5 Electrical Characteristics.............................................8  
8.6 Timing Requirements................................................13  
8.7 Typical Characteristics..............................................14  
9 Detailed Description......................................................16  
9.1 Overview...................................................................16  
9.2 Functional Block Diagram.........................................16  
9.3 Feature Description...................................................17  
Information.................................................................... 41  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (January 2020) to Revision A (February 2022)  
Page  
• 将“特性”中20 小时充电安全计时器更改10 小时充电安全计时器...........................................................1  
• 添加了“安全相关认证IEC 62368-1 CB 认证............................................................................................. 1  
Changed charge safety timer accuracy from 20 hr to 10 hr for BQ25616/J in the Device Comparison Table....4  
Deleted deglitch time and added charge voltage limit in the Device Comparison Table.................................... 4  
Changes TS and VAC pin descriptions in 7-1 ...............................................................................................5  
Changed voltage, BAT, SYS (converter not switching) MAX value from 17 V to 7 V in 8.1 .......................... 7  
Added CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE) in 8.5 ........................................ 8  
Deleted VBST_BAT and added VBATLOWV_OTG in 8.5 .......................................................................................8  
Deleted numerous test conditions in D+/D- Detection section in 8.5 ............................................................ 8  
Deleted IBST_OCP_Q1 in 8.5 ............................................................................................................................ 8  
Deleted accuracy from tTOP_OFF and CHG_TIMER = 20hr from tSAFETY in 8.6 ...........................................13  
Changed tSAFETY MIN/TYP/MAX values in 8.6 ............................................................................................13  
Deleted VBATREG = 4.4 V curve from 8-3 .....................................................................................................14  
Changed safety timer from 20 hours to 10 hours in 9-4 ..............................................................................23  
Changed T2 from 20 to 10 in 9-6 ................................................................................................................ 25  
Changed 9.3.9.5.3 .......................................................................................................................................28  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
5 说明)  
该解决方案在系统和电池之间高度集成输入反向阻断 FETRBFETQ1、高侧开关 FETHSFETQ2、低  
侧开关 FETLSFETQ3以及电池 FETBATFETQ4。它还集成了自举二极管以进行高侧栅极驱动从  
而简化系统设计。硬件设置和状态报告为充电解决方案提供了简单的配置。  
该器件支持多种输入源包括标准 USB 主机端口、USB 充电端口、兼容 USB 的高电压适配器和无线电源。该器  
件符合 USB 2.0 USB 3.0 电源规格具有输入电流和电压调节功能。该器件根据内置 USB 检测通过 D+/D- 引  
脚设置默认输入电流限值。当器件内置 USB 接口确定输入适配器未知时器件的输入电流限值是通过 ILIM 引脚  
设置电阻器值来决定的。  
该器件通过单个电感器将降压充电器和升压稳压器集成在一个解决方案中。它通过提供 5V 电压和高达 1.2A 的恒  
定电流限值USB On-the-Go (OTG) 运行功率额定值规格。  
在应用适配器时电源路径管理将系统电压调节至稍高于电池电压的水平但不会降至 3.5V 最小系统电压以下。  
借助于这个特性即使在电池电量完全耗尽或者电池被拆除时系统也能保持运行。当达到输入电流限值或电压  
限值时电源路径管理会自动减小充电电流。随着系统负载持续增加电池开始放电直到满足系统电源需求。  
该补充模式可防止输入源过载。  
此器件在无需软件控制情况下启动并完成一个充电周期。它感应电池电压并通过三个阶段为电池充电预充电、  
恒定电流和恒定电压。在充电周期的末尾当充电电流低于预设限值并且电池电压高于再充电阈值时充电器自  
动终止。如果已完全充电的电池降至再充电阈值以下则充电器自动启动另一个充电周期。  
此充电器提供针对电池充电和系统运行的多种安全特性其中包括电池负温度系数热敏电阻监视、充电安全性计  
时器和过压/过流保护。当结温超过 110°C 热调节会减小充电电流。STAT 输出报告充电状态和任何故障状  
况。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25616 BQ25616J  
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6 Device Comparison Table  
BQ25606  
BQ25616  
BQ25616J  
Quiescent battery current (BAT,  
SYS, SW)  
58 µA  
9.5 µA  
9.5 µA  
VBUS OVP Reaction-time  
Input voltage regulation accuracy  
TS profile  
200 ns  
±3%  
130 ns  
±2%  
130 ns  
±2%  
JEITA  
Hot/Cold  
10 hr  
JEITA  
10 hr  
Charge safety timer accuracy  
Charge voltage limit  
10 hr  
4.2 V/4.35 V/4.4 V  
±0.5%  
4.1 V/4.2 V/4.35 V  
±0.4%  
4.1 V/4.2 V/4.35 V  
Battery voltage regulation  
ACDRV  
±0.4%  
Yes  
No  
Yes  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
7 Pin Configuration and Functions  
VAC  
ACDRV  
D+  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
GND  
GND  
SYS  
SYS  
BAT  
BAT  
Thermal  
Pad  
Dœ  
STAT  
OTG  
Not to scale  
7-1. RTW Package 24-Pin WQFN Top View  
7-1. Pin Functions  
PIN  
TYPE(1)  
AO  
DESCRIPTION  
NAME  
NO.  
Charge pump output to drive external N-channel MOSFET (ACFET). It provides 6V voltage  
above VBUS as gate drive to turn on ACFET when VAC voltage is below ACOV threshold (14.2-  
V) and above UVLO. Leave ACDRV floating if external OVP is not being used.  
ACDRV  
2
13  
14  
Battery connection point to the positive terminal of the battery pack. The internal current sensing  
resistor is connected between SYS and BAT. Connect a 10 µF(2) closely to the BAT pin.  
BAT  
P
PWM high side driver positive supply. Internally, the BTST is connected to the cathode of the  
BTST  
CE  
21  
9
P
boot-strap diode. Connect the 0.047-μF bootstrap capacitor(2) from SW to BTST.  
DI  
Charge enable pin. When this pin is driven LOW, battery charging is enabled.  
Positive line of the USB data line pair. D+/Dbased USB host/charging port detection. The  
detection includes data contact detection (DCD), primary and secondary detection in BC1.2 and  
nonstandard adaptors  
D+  
3
4
AIO  
Negative line of the USB data line pair. D+/Dbased USB host/charging port detection. The  
detection includes data contact detection (DCD), primary and secondary detection in BC1.2 and  
nonstandard adaptors  
AIO  
P
D–  
17  
18  
GND  
ICHG  
Power ground and signal ground  
ICHG pin sets the charge current limit. A resistor is connected from ICHG pin to ground to set  
charge current limit as ICHG = KICHG/RICHG. The acceptable range for charge current is 300 mA  
3000 mA.  
10  
8
AI  
ILIM sets the input current limit when the input adapter is detected as unknown. Otherwise, the  
input current limit is set by D+/Ddetection outcome. A resistor is connected from ILIM pin to  
ground to set the input current limit as IINDPM = KILIM/RILIM. The acceptable range for ILIM  
current is 500 mA - 3200 mA.  
ILIM  
AI  
Boost mode enable pin. When this pin is pulled HIGH, boost mode is enabled. OTG pin cannot  
be floating.  
OTG  
PG  
6
7
DI  
Open drain active low power good indicator. Connect to the pull up rail through 10 kΩresistor.  
LOW indicates a good input if the input voltage is between UVLO and ACOV, above SLEEP  
mode threshold, and input current limit is above 30 mA.  
DO  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25616 BQ25616J  
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
7-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
PMID  
NO.  
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET. Place  
a 10-µF capacitor(2) on PMID to GND.  
23  
P
PWM low side driver positive supply output. Internally, REGN is connected to the anode of the  
boot-strap diode. Connect a 4.7-μF (10-V rating) ceramic capacitor(2) from REGN to analog  
GND. The capacitor should be placed close to the IC.  
REGN  
STAT  
22  
5
P
Open-drain interrupt output. Connect the STAT pin to a logic rail via 10-kresistor. The STAT pin  
indicates charger status.  
Charge in progress: LOW  
DO  
Charge complete or charger in SLEEP mode: HIGH  
Charge suspend (fault response): Blink at 1Hz  
19  
20  
Switching node connecting to output inductor. Internally SW is connected to the source of the n-  
channel HSFET and the drain of the n-channel LSFET. Connect the 0.047-μF bootstrap  
capacitor from SW to BTST.  
SW  
P
P
15  
16  
System output connection point. The internal current sensing resistor is connected between SYS  
and BAT. Connect a 10 µF (min) capacitor(2) close to the SYS pin.  
SYS  
Battery temperature qualification voltage input. Connect a negative temperature coefficient  
thermistor (NTC). Program temperature window with a resistor divider from REGN to TS to GND.  
Charge and boost mode suspend when TS pin voltage is out of range. When TS pin is not used,  
connect a 10-kΩresistor from REGN to TS and a 10-kΩresistor from TS to GND. It is  
recommended to use a 103AT-2 thermistor. BQ25616 supports hot/cold profile and BQ25616J  
supports JEITA profile.  
TS  
11  
AI  
Charger input voltage sensing. Optional external n-channel ACFET is placed between VAC and  
VBUS. When VAC voltage is below ACOV threshold (14.2-V) and above UVLO, ACFET turns on  
to connect VAC to VBUS, and power up the charger IC. Connect VAC and VBUS if ACFET is not  
to be used.  
VAC  
1
P
P
Charger input voltage. The internal n-channel reverse block MOSFET (RBFET) is connected  
between VBUS and PMID with VBUS on source. Place a 1-uF ceramic capacitor(2) from VBUS  
to GND and place it as close as possible to the device.  
VBUS  
24  
VSET pin sets default battery charge voltage . Program battery regulation voltage with a resistor  
pull-down from VSET to GND.  
RVSET > 50kΩ(float pin) = 4.208 V  
RVSET < 500Ω(short to GND) = 4.352 V  
5kΩ< RVSET < 25kΩ= 4.100 V  
VSET  
12  
AI  
P
Ground reference for the device that is also the thermal pad used to conduct heat from the  
device. This connection serves two purposes. The first purpose is to provide an electrical ground  
connection for the device. The second purpose is to provide a low thermal-impedance path from  
the device die to the PCB. This pad should be tied externally to a ground plane.  
Thermal  
Pad  
(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output,  
P = Power  
(2) All capacitors are ceramic unless otherwise specified  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
2  
MAX UNIT  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Output Sink Current  
TJ  
VAC (converter not switching)  
VBUS (converter not switching)  
PMID (converter not switching)  
SW  
30  
22  
22  
16  
7
V
V
-2  
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
V
BAT, SYS (converter not switching)  
BTST  
V
22  
40  
7
V
ACDRV  
V
D+. D-, STAT, OTG, PG, ILIM, CE, ICHG, TS, VSET  
STAT, PG  
V
6
mA  
°C  
°C  
Junction temperature  
Storage temperature  
150  
150  
40  
55  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
8.2 ESD Ratings  
VALUE  
±2000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
13.5  
4.35  
3.2  
3.2  
3
UNIT  
VVBUS  
VBAT  
IVBUS  
ISW  
Input voltage  
4
V
V
Battery voltage  
Input current  
A
Output current (SW)  
Fast charging current  
RMS discharge current  
Ambient temperature  
A
A
IBAT  
TA  
6
A
85  
°C  
40  
8.4 Thermal Information  
BQ25616/BQ25616J  
THERMAL METRIC(1)  
RTW (WQFN)  
UNIT  
24 Pins  
31.9  
27  
RθJA  
Junction-to-ambient thermal resistance (JEDEC(1)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
9.2  
Junction-to-top characterization parameter  
0.4  
ΨJT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25616 BQ25616J  
 
 
 
 
 
 
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.4 Thermal Information (continued)  
BQ25616/BQ25616J  
THERMAL METRIC(1)  
RTW (WQFN)  
24 Pins  
9.2  
UNIT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
ΨJB  
RθJC(bot)  
2.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
QUIESCENT CURRENTS  
VBAT = 4.5V, VBUS floating or VBUS  
= 0V - 5V, SCL, SDA = 0V or 1.8V, TJ  
< 85 °C, BATFET on.  
Quiescent battery current (BAT, SYS,  
SW)  
IQ_BAT  
IVBUS  
IBST  
9.5  
2.3  
2.4  
15  
µA  
mA  
mA  
Input current (VBUS) in buck mode  
when converter is switching  
VBUS=5V, charge disabled, converter  
switching, ISYS = 0A  
Quiescent battery current (BAT, SYS, VBAT = 4.5V, VBUS = 4.9V, boost  
SW) in boost mode when converter is mode enabled, converter switching,  
switching  
IVBUS = 0A  
VBUS / VBAT SUPPLY  
VVBUS_OP  
VBUS operating range  
4
13.5  
3.85  
V
V
VAC rising for ACFET turnon, no  
battery  
VVAC_UVLOZ  
VAC rising  
VAC falling  
3.55  
3.25  
10  
VAC falling for ACFET turnoff, no  
battery  
VVAC_UVLO  
VACDRV  
3.55  
V
V
External ACFET gate drive voltage  
with minimum 8nF CGS  
VVBUS_UVLOZ  
VVBUS_UVLO  
VVBUS_PRESENT  
VVBUS_PRESENTZ  
VBUS rising for active bias, no battery VBUS rising  
VBUS falling to turnoff bias, no battery VBUS falling  
3.3  
3
3.7  
3.3  
3.9  
3.4  
V
V
V
V
VBUS to enable REGN  
VBUS to disable REGN  
VBUS rising  
VBUS falling  
3.65  
3.15  
VBUS falling, VBUS - VBAT, VBAT =  
4V  
VSLEEP  
Enter Sleep mode threshold  
Exit Sleep mode threshold  
15  
115  
60  
220  
110  
340  
mV  
mV  
V
VBUS rising, VBUS - VBAT, VBAT =  
4V  
VSLEEPZ  
VAC overvoltage rising threshold to  
turnoff ACFET and switching  
VAC rising  
13.5  
14.2  
13.9  
14.85  
14.5  
VACOV  
VAC overvoltage falling threshold to  
turnon ACFET and switching  
VAC falling,  
13  
2.5  
V
V
V
VBAT_UVLOZ  
VBAT_DPLZ  
BAT voltage for active bias, no VBUS VBAT rising  
BAT depletion rising threshold to turn  
VBAT rising  
2.35  
2.8  
on BATFET  
BAT depletion falling threshold to turn  
VBAT falling  
VBAT_DPL  
2.18  
3.75  
2.62  
4.0  
V
V
off BATFET  
VPOORSRC  
Bad adapter detection threshold  
VBUS falling  
3.9  
POWER PATH MANAGEMENT  
Typical minimum system regulation  
VBAT=3.2V < SYS_MIN = 3.5V, ISYS  
= 0A  
VSYS_MIN  
3.5  
3.65  
4.7  
V
V
voltage  
VREG = 4.35V, Charge disabled, ISYS  
= 0A  
VSYS_OVP  
System overvoltage threshold  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RON_RBFET  
RON_HSFET  
RON_LSFET  
Blocking FET on-resistance  
High-side switching FET on-resistance  
Low-side switching FET on-resistance  
45  
mΩ  
62  
mΩ  
71  
mΩ  
BATFET forward voltage in  
supplement mode  
BAT discharge current 10mA,  
converter running  
VBATFET  
_
30  
mV  
FWD  
BATTERY CHARGER  
VREG = 4.1V, RVSET=10kΩ, TJ = 0°C  
- 85°C  
4.0836  
4.1832  
4.3326  
0
4.1 4.1164  
4.2 4.2168  
V
V
VREG = 4.2V, RVSET>50kΩ, TJ = 0°C  
- 85°C  
VREG_ACC  
Charge voltage accuracy  
VREG = 4.35V, RVSET<500Ω, TJ =  
0°C - 85°C  
4.35 4.3674  
3
V
Typical charge current regulation  
range  
ICHG_RANGE  
A
ICHG=KICHG/RICHG, VBAT = 3.1V, TJ =  
40°C - 85°C  
639  
677  
677  
715  
715  
AxΩ  
AxΩ  
A
KICHG  
ICHG pin setting ratio  
ICHG=KICHG/RICHG, VBAT = 3.8V, TJ =  
40°C - 85°C  
639  
RICHG = 1100 Ω, VBAT = 3.1V or 3.8V,  
TJ = 40°C - 85°C  
0.516  
0.615  
1.205  
0.715  
1.28  
1.89  
Fast charge current regulation  
accuracy  
RICHG = 562 Ω, VBAT = 3.1V or 3.8V,  
TJ = 40°C - 85°C  
ICHG_ACC  
1.14  
A
RICHG = 372 Ω, VBAT = 3.1V or 3.8V,  
TJ = 40°C - 85°C  
1.715  
1.82  
5
A
%
IPRECHG_RATIO  
Precharge current accuracy  
Precharge current accuracy  
As percentage of ICHG, VBAT = 2.6V  
RICHG = 1100 Ω, VBAT = 2.6V, TJ = –  
40°C - 85°C  
21  
48  
76  
30  
38  
67  
97  
mA  
RICHG = 562 Ω, VBAT = 2.6V, TJ = –  
40°C - 85°C  
IPRECHG_ACC  
60  
90  
mA  
mA  
%
RICHG = 372 Ω, VBAT = 2.6V, TJ = –  
40°C - 85°C  
As percentage of ICHG, VBAT =  
4.35V, (char, all codes)  
ITERM_RATIO  
Termination current accuracy  
Termination current accuracy  
5
RICHG = 1100 Ω, VBAT = 4.35V, TJ =  
0°C - 85°C  
9
36  
31  
57  
85  
mA  
mA  
mA  
V
RICHG = 562 Ω, VBAT = 4.35V, TJ =  
0°C - 85°C  
ITERM_ACC  
60  
RICHG = 372 Ω, VBAT = 4.35V, TJ =  
0°C - 85°C  
56  
91  
126  
2.35  
Battery short voltage rising threshold  
to start pre-charge  
VBAT_SHORTZ  
VBAT rising  
2.13  
2.25  
Battery short voltage falling threshold  
to stop pre-charge  
VBAT_SHORT  
IBAT_SHORT  
VBAT falling  
1.85  
70  
3
2
90  
2.15  
110  
V
mA  
V
Battery short trickle charging current  
VBAT < VBAT_SHORTZ  
VBAT rising  
Battery LOWV rising threshold to start  
fast-charge  
3.12  
3.24  
VBATLOWV  
Battery LOWV falling threshold to stop  
fast-charge  
VBAT falling  
VBAT falling  
2.7  
90  
2.8  
2.9  
V
VRECHG  
Battery recharge threshold  
100  
150  
mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
System discharge load current during  
SYSOVP  
ISYS_LOAD  
30  
mA  
TJ = -40°C - 85°C  
19.5  
19.5  
26  
30  
mΩ  
mΩ  
RON_BATFET  
Battery FET on-resistance  
TJ = -40°C - 125°C  
BATTERY OVERVOLTAGE PROTECTION  
Battery overvoltage rising threshold  
Battery overvoltage falling threshold  
VBAT rising, as percentage of VREG  
VBAT falling, as percentage of VREG  
103  
101  
104  
102  
105  
103  
%
%
VBAT_OVP  
INPUT VOLTAGE / CURRENT REGULATION  
Typical input voltage regulation  
VINDPM_ACC  
accuracy  
4.171  
4.45  
4.3  
4.429  
4.74  
V
V
VINDPM threshold to track battery  
VINDPM_TRACK  
voltage  
VBAT = 4.35V  
4.55  
IINDPM_ACC  
IINDPM_ACC  
IINDPM_ACC  
KILIM  
Input current regulation accuracy  
Input current regulation accuracy  
Input current regulation accuracy  
ILIM pin setting ratio  
IINDPM = 500mA (TJ=-40°C - 85°C)  
IINDPM = 900mA (TJ=-40°C-85°C)  
IINDPM = 1500mA (TJ=-40°C-85°C)  
450  
750  
465  
835  
500  
900  
mA  
mA  
1300  
459  
1390  
478  
1500  
500  
mA  
A x Ω  
D+ / D- DETECTION  
VDP_SRC  
D+ line source voltage  
500  
7
600  
10  
700  
14  
mV  
µA  
D+ line data contact detect current  
source  
IDP_SRC  
VD+ = 200 mV  
IDP_SINK  
D+ line sink current  
VD+ = 500 mV  
D+ pin Rising  
D+ pin Rising  
VD+ = 500 mV  
Pull up to 1.8 V  
50  
100  
150  
400  
800  
24.8  
1
µA  
mV  
mV  
kΩ  
µA  
mV  
µA  
mV  
kΩ  
µA  
VDP_DAT_REF  
VDP_LGC_LOW  
RDP_DWN  
ID+_LKG  
D+ line data detect voltage  
D+ line logic low.  
250  
D+ line pull-down resistance  
Leakage current into D+ line  
D- line source voltage  
14.25  
1  
500  
VDM_SRC  
IDM_SINK  
600  
100  
700  
150  
400  
24.8  
1
D- line sink current  
VD- = 500 mV  
D- pin Rising  
VD- = 500 mV  
Pull up to 1.8 V  
50  
VDM_DAT_REF  
RDM_DWN  
ID-_LKG  
D- line data detect voltage  
D- line pull-down resistance  
Leakage current into D- line  
250  
14.25  
1  
D+ High comparator threshold for 2.8V  
detection  
VD+ _2p8_hi  
VD+ _2p8_lo  
VD+ _2p8  
D+ pin rising  
D+ pin rising  
2.85  
3
3.1  
2.55  
2.85  
3.1  
V
V
V
V
V
V
V
V
D+ Low comparator threshold for 2.8V  
detection  
2.35  
2.55  
2.85  
2.35  
2.55  
2.15  
1.6  
2.45  
D+ comparator threshold for non-  
standard adapter  
D- High comparator threshold for 2.8V  
detection  
VD- _2p8_hi  
VD- _2p8_lo  
VD- _2p8  
D- pin rising  
D- pin rising  
3
D- Low comparator threshold for 2.8V  
detection  
2.45  
2.55  
2.85  
2.35  
1.85  
D- comparator threshold for non-  
standard adapter  
D+ High comparator threshold for 2.0V  
detection  
VD+ _2p0_hi  
VD+ _2p0_lo  
D+ pin rising  
D+ pin rising  
2.25  
1.7  
D+ Low comparator threshold for 2.0V  
detection  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
D+ comparator threshold for non-  
standard adapter  
VD+ _2p0  
1.85  
2.15  
2.35  
1.85  
2.15  
1.6  
V
V
V
V
V
V
V
V
V
V
D- High comparator threshold for 2.0V  
detection  
VD- _2p0_hi  
VD- _2p0_lo  
VD- _2p0  
D- pin rising  
2.15  
1.6  
2.25  
1.7  
D- Low comparator threshold for 2.0V  
detection  
D- pin rising  
D- comparator threshold for non-  
standard adapter  
1.85  
1.35  
0.85  
1.05  
1.35  
0.85  
1.05  
D+ High comparator threshold for 1.2V  
detection  
VD+ _1p2_hi  
VD+ _1p2_lo  
VD+ _1p2  
D+ pin rising  
D+ pin rising  
1.5  
D+ Low comparator threshold for 1.2V  
detection  
0.95  
1.05  
1.35  
1.6  
D+ comparator threshold for non-  
standard adapter  
D- High comparator threshold for 1.2V  
detection  
VD- _1p2_hi  
VD- _1p2_lo  
VD- _1p2  
D- pin rising  
D- pin rising  
1.5  
D- Low comparator threshold for 1.2V  
detection  
0.95  
1.05  
1.35  
D- comparator threshold for non-  
standard adapter  
THERMAL REGULATION AND THERMAL SHUTDOWN  
Junction temperature regulation  
accuracy  
TREG  
110  
°C  
TSHUT  
Thermal Shutdown Rising threshold  
Thermal Shutdown Falling threshold  
Temperature Increasing  
Temperature Decreasing  
150  
130  
°C  
°C  
CHARGE MODE THERMISTOR COMPARATOR (JEITA 616J or HOT/COLD 616)  
TS pin voltage rising threshold,  
Charge suspended above this voltage. 103AT)  
As Percentage to REGN (0°C w/  
VT1_RISE%  
72.4  
71.5  
73.3  
72  
74.2  
72.5  
%
%
TS pin voltage falling threshold.  
Charge re-enabled to 20% of ICHG  
and VREG below this  
voltage.  
VT1_FALL%  
As Percentage to REGN  
TS pin voltage rising threshold,  
Charge back to 20% of ICHG and  
VREG above this voltage (616J).  
As Percentage to REGN (10°C w/  
103AT)  
VT2_RISE %  
VT2_FALL%  
VT3_FALL%  
67.75  
66.45  
44.25  
68.25  
66.95  
44.75  
68.75  
67.45  
45.25  
%
%
%
TS pin voltage falling threshold.  
Charge back to ICHG and VREG  
below this voltage (616J)  
As Percentage to REGN  
TS pin voltage falling threshold.  
Charge back to ICHG and VREG  
below this voltage (616J)  
As Percentage to REGN (45°C w/  
103AT)  
TS pin voltage rising threshold.  
Charge back to ICHG and VREG  
above this voltage. (616J)  
VT3_RISE%  
VT5_FALL%  
VT5_RISE%  
As Percentage to REGN  
45.55  
33.7  
35  
46.05  
34.2  
35.5  
46.55  
35.1  
36  
%
%
%
TS pin voltage falling threshold,  
charge suspended below this voltage. 103AT)  
As Percentage to REGN (60°C w/  
TS pin voltage rising threshold.  
Charge back to ICHG and 4.1V above As Percentage to REGN  
this voltage.  
TS pin voltage rising threshold.  
As Percentage to REGN (0°C w/  
Charge suspended above this voltage.  
103AT)  
VT1_RISE_HC%  
72.4  
73.3  
74.2  
%
(616)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TS pin voltage falling threshold.  
Charge back to ICHG and VREG  
below this voltage. (616)  
VT1_FALL_HC%  
VT3_FALL_HC%  
VT3_RISE _HC%  
As Percentage to REGN  
71  
72  
73  
45.25  
46.55  
%
%
%
TS pin voltage falling threshold.  
Charge suspended below this voltage.  
(616)  
As Percentage to REGN (45°C w/  
103AT)  
44.25  
45.55  
44.75  
46.05  
TS pin voltage rising threshold.  
Charge back to ICHG and VREG  
above this voltage. (616)  
As Percentage to REGN  
BOOST MODE THERMISTOR COMPARATOR (HOT/COLD)  
TS pin voltage rising threshold, boost  
mode is suspended above this  
voltage.  
As Percentage to REGN (19.5°C w/  
103AT)  
VBCOLD_RISE%  
79.5  
30.2  
80  
80.5  
32.2  
%
As Percentage to REGN (0°C w/  
103AT)  
VBCOLD_FALL%  
VBHOT_FALL%  
VBHOT_RISE%  
TS pin voltage falling threshold  
72  
31.2  
44  
%
%
%
TS pin voltage threshold. boost mode As Percentage to REGN, (64°C w/  
is suspended below this voltage.  
103AT)  
As Percentage to REGN, (45°C w/  
103AT)  
TS pin voltage rising threshold  
CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE)  
HSFET cycle-by-cycle overcurrent  
IHSFET_OCP  
threshold  
5.2  
8.0  
A
SWITCHING CONVERTER  
FSW  
PWM switching frequency  
Maximum PWM Duty Cycle  
Oscillator frequency  
1.32  
1.5  
97  
1.68 MHz  
%
DMAX  
BOOST MODE CONVERTER  
Battery voltage exiting boost mode  
VVBAT falling  
VVBAT rising  
2.6  
2.9  
2.8  
3.0  
2.9  
V
V
VBATLOWV_OTG  
Battery voltage entering boost mode  
3.15  
Boost mode voltage regulation  
accuracy  
VBST_ACC  
IBST_ACC  
IVBUS = 0A, BOOST_V = 5V  
4.85  
1.2  
9
5
1.4  
10  
5.15  
1.6  
V
A
A
Boost mode current regulation  
accuracy  
Boost mode battery discharge current  
clamp on BATFET Q4  
ISYS_OCP_Q4  
REGN LDO  
VVBUS = 5V, IREGN = 20mA  
VVBUS = 9V, IREGN = 20mA  
VVBUS = 5V, VREGN = 3.8V  
4.58  
5.6  
50  
4.7  
6
4.8  
6.5  
V
V
VREGN  
REGN LDO output voltage  
REGN LDO current limit  
IREGN  
mA  
LOGIC INPUT PIN  
VIH  
Input high threshold level (/CE)  
Input low threshold level (/CE)  
High-level leakage current (/CE)  
1.3  
V
V
VIL  
0.4  
1
IIN_BIAS  
Pull up rail 1.8V  
µA  
LOGIC OUTPUT PIN  
VOL  
Output low threshold level (STAT, /PG) Sink current = 5mA  
High-level leakage current (STAT, /PG) Pull up rail 1.8V  
0.4  
1
V
IOUT_BIAS  
µA  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
VBUS / VBAT POWER UP  
tPOORSRC  
Bad adapter detection duration  
30  
2
ms  
s
tPOORSRC_RETRY  
BATTERY CHARGER  
tTERM_DGL  
Bad adapter detection retry wait time  
Deglitch time for charge termination  
Deglitch time for recharge threshold  
Typical top-off timer  
30  
30  
30  
10  
ms  
ms  
min  
hr  
tRECHG_DGL  
tTOP_OFF  
tSAFETY  
Charge safety timer accuracy  
8
12  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25616 BQ25616J  
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.7 Typical Characteristics  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
VBUS Voltage  
5 V  
65  
60  
9 V  
12 V  
0
0.2  
0.4  
0.6  
0.8  
Boost Output Current (A)  
1
1.2  
0
0.5  
1
1.5  
Charge Current (A)  
2
2.5  
3
D002  
D001  
VOTG = 5.0 V  
VBAT = 3.8 V  
fSW = 1.5 MHz  
VBAT = 3.8 V  
inductor DCR = 18 mΩ  
Inductor DCR = 18 mΩ  
8-2. Efficiency vs. OTG Current  
8-1. Charge Efficiency vs. Charge Current  
4.5  
4.4  
4.3  
4.2  
4.1  
4
2.75  
2.5  
2.25  
2
IINDPM = 1.8 A  
IINDPM = 1.28 A  
IINDPM = 0.52 A  
VBATREG = 4.208 V  
VBATREG = 4.352 V  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
-40  
-25  
-10  
5
20  
35  
50  
Junction Temperature (°C)  
65  
80  
95  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
D001  
D001  
VVBUS = 5 V  
8-3. BATREG Charge Voltage vs. Junction Temperature  
8-4. Input Current Limit vs. Junction Temperature  
2.6  
486  
ICHG = 1.8 A  
ICHG = 1.2 A  
ICHG = 0.68 A  
RILIM = 265 W  
RILIM = 374 W  
RILIM = 910 W  
2.4  
484  
482  
480  
478  
476  
474  
472  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40  
-25  
-10  
5
20  
35  
50  
Junction Temperature (°C)  
65  
80  
95  
-40 -25 -10  
5
20  
35  
50  
65  
Junction Temperature (°C)  
80  
95 110  
D001  
D001  
VVBUS = 5 V  
VBAT = 3.8 V  
VVBUS = 5 V  
VBAT = 3.8 V  
8-6. Input Current Limit Setting Ratio vs. Junction  
8-5. Charge Current vs. Junction Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.7 Typical Characteristics (continued)  
705  
700  
695  
690  
685  
680  
675  
670  
665  
RICHG = 372 W  
RICHG = 562 W  
RICHG = 1100 W  
660  
-40 -25 -10  
5
20  
35  
50  
65  
Junction Temperature (°C)  
80  
95 110  
D001  
VVBUS = 5 V  
VBAT = 3.8 V  
8-7. Charge Current Setting Ratio vs. Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The BQ25616/616J device is a highly integrated 3.0-A switch-mode battery charger for single cell Li-ion and Li-  
polymer battery. It includes an input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side gate  
drive.  
9.2 Functional Block Diagram  
VBUS  
PMID  
VIN  
VVVAC_PRESENT  
RBFET (Q1)  
+
UVLO  
SLEEP  
ACOV  
VVAC  
Q1 Gate  
Control  
œ
IVBUS  
VBAT + VSLEEP  
ACDRV  
VAC  
+
REGN  
BTST  
EN_REGN  
EN_HIZ  
VVAC  
REGN  
LDO  
œ
VVAC  
+
VVAC_OV  
œ
FBO  
VVBUS  
VBUS_OVP_BOOST  
+
VBST_OVP  
œ
IQ2  
Q2_UCP_BOOST  
Q3_OCP_BOOST  
+
VOTG_HSZCP  
VVBUS  
œ
œ
+
+
œ
+
œ
œ
+
HSFET (Q2)  
LSFET (Q3)  
IQ3  
VINDPM  
SW  
+
VOTG_BAT  
IVBUS  
CONVERTER  
Control  
œ
REGN  
IINDPM  
VBAT  
+
BATOVP  
UCP  
104% × VREG  
ILSFET_UCP  
IQ3  
IC TJ  
TREG  
PGND  
œ
IQ2  
VBAT  
VREG  
ICHG  
Q2_OCP  
+
œ
+
œ
+
+
IHSFET_OCP  
VSYS  
œ
œ
VSYS_MIN  
VBTST - VSW  
EN_HIZ  
EN_CHARGE  
EN_BOOST  
+
REFRESH  
VBTST_REFRESH  
ICHG_REG  
œ
SYS  
ICHG  
VREG  
ICHG_REG  
BATFET  
(Q4)  
Q4 Gate  
Control  
VPOORSRC  
VVBUS  
BAT  
POORSRC  
TSHUT  
+
REF  
DAC  
Converter  
Control State  
Machine  
œ
ILIM  
ICHG  
VSET  
IC TJ  
+
TSHUT  
œ
D+  
Input Source  
Detection  
USB  
Adapter  
DÅ  
VREG -VRECHG  
VBAT  
+
RECHRG  
OTG  
œ
ICHG  
+
TERMINATION  
BATLOWV  
ITERM  
œ
CHARGE  
CONTROL  
STATE  
VBATLOWV  
STAT  
PG  
+
VBAT  
MACHINE  
œ
BQ25616(J)  
VSHORT  
+
BATSHORT  
SUSPEND  
VBAT  
œ
Battery  
Sensing  
Thermistor  
TS  
(BQ25616, HOT/COLD)  
(BQ25616J, JEITA)  
CE  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Power-On-Reset (POR)  
The device powers internal bias circuits from the higher voltage of VBUS and BAT. When VVBUS rises above  
VVBUS_UVLOZ or VBAT rises above VBAT_UVLOZ, the sleep comparator, battery depletion comparator, and BATFET  
driver are active.  
9.3.2 Device Power Up From Battery Without Input Source  
If only the battery is present and the voltage is above depletion threshold (VBAT _DPLZ), the BATFET turns on and  
connects the battery to the system. The REGN stays off to minimize the quiescent current. The low RDSON of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors the discharge current through the BATFET. When the system is overloaded or  
shorted (IBAT > ISYS_OCP_Q4), the device turns off BATFET immediately until the input source plugs in again.  
9.3.3 Power Up From Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on the REGN LDO and  
all the bias circuits. It detects and sets the input current limit before the buck converter is started. The power-up  
sequence from input source is as listed:  
1. Power Up ACFET, see 9.3.3.1 (optional)  
2. Power Up REGN LDO, see 9.3.3.2  
3. Poor Source Qualification, see 9.3.3.3  
4. Input Source Type Detection is based on D+/Dto set default input current limit (IINDPM threshold), see 节  
9.3.3.4  
5. Input Voltage Limit Threshold Setting (VINDPM threshold), see 9.3.3.5  
6. Power Up Converter, see 9.3.3.6  
9.3.3.1 Power Up ACFET  
The external ACFET provides an additional layer of voltage protection for the device. During input surge up to 30  
V, the charger turns off ACFET and converter with 130-ns response time to disconnect VBUS from VAC. If users  
don't need ACFET, they shall connect VAC to VBUS and keep ACDRV pin floating. The ACFET is enabled when  
all the below conditions are valid.  
The ACFET is enabled when all the below conditions are valid.  
VVAC_PRESENT < VVAC < VACOV  
.
After tDEB (15 ms typ) delay is completed  
If one of the above conditions is not valid, ACFET keeps off. The battery powers the system If it is present.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25616 BQ25616J  
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
VACOV (rising)  
VAC*  
VVAC_PRESENT (rising)  
tON_VBUS  
90%  
VVAC_PRESENT (rising) < VAC < VACOV (rising)  
must be valid before ACDRV goes high.  
tDEB  
ACDRV  
10%  
90%  
VBUS  
10%  
(*) Stimulus from application  
Note: beginning of blue lines indicate the trigger, and the arrow end of the blue line indicates the action  
9-1. ACFET Startup Control  
9.3.3.2 Power Up REGN LDO  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. It also provides the  
bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The REGN LDO is  
enabled when all the below conditions are valid:  
VVBUS > VVBUS_UVLOZ  
In buck mode, ACFET turns on, VVBUS > VBAT + VSLEEPZ  
In boost mode, VVBUS < VBAT + VSLEEPZ  
After 220-ms delay is completed  
During high impedance mode , REGN LDO turns off. The battery powers up the system.  
9.3.3.3 Poor Source Qualification  
After the REGN LDO powers up, the device starts to check current capability of the input source. The first step is  
poor source detection.  
VBUS voltage above VPOORSRC when pulling IBADSRC (typical 30 mA)  
If the device fails the poor source detection, it repeats poor source qualification every 2 seconds.  
9.3.3.4 Input Source Type Detection (IINDPM Threshold)  
After poor source detection, the device runs input source detection through D+/Dlines . The D+/Ddetection  
follows the USB Battery Charging Specification 1.2 (BC1.2) to detect standard (SDP/CDP/DCP) and non-  
standard adapters through USB D+/Dlines.  
9.3.3.4.1 D+/DDetection Sets Input Current Limit  
The device contains a D+/Dbased input source detection to set the input current limit when a 5-V adapter is  
plugged-in. The D+/Ddetection includes standard USB BC1.2 and non-standard adapters. When an input  
source is plugged in, the device starts standard USB BC1.2 detection. The USB BC1.2 is capable of identifying  
Standard Downstream Port (SDP), Charging Downstream Port (CDP) and Dedicated Charging Port (DCP). The  
non-standard detection is used to distinguish vendor specific adapters (Apple and Samsung) based on their  
unique dividers on the D+/Dpins. If an adapter is detected as DCP, the input current limit is set at 2.4-A. If an  
adapter is detected as unknown, the input current limit is set by ILIM pin .  
The D+/Dautomatically runs when adapter plugs in. The D+/Ddetection contains three steps, DCD (Data  
Contact Detection), primary detection, and secondary detection.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
DCD (Data Contact Detection) uses a current source to detect when the D+/Dpins have made contact during  
an attach event. The protocol for data contact detect is as follows:  
Detect VBUS present and VBUS_GD (pass poor source detection)  
Turn on D+ IDP_SRC and the Dpull-down resistor RDM_DWN for 13 ms  
If the USB connector is properly attached, the D+ line goes from HIGH to LOW, wait up to 0.5 sec. When the  
DCD timer of 0.5 sec is expired, the non-standard adapter detection is applied to set the input current limit.  
Turn off IDP_SRC and disconnect RDM_DWN  
The primary detection is used to distinguish between USB host (Standard Down Stream Port, or SDP) and  
different type of charging ports (Charging Down Stream Port, or CDP, and Dedicated Charging Port, or DCP).  
The protocol for primary detection is as follows:  
Turn on VDP_SRC on D+ and IDM_Sink on Dfor 40 ms  
If portable device is attached to a USB host (SDP), the Dis below VREF_DAT. Otherwise, it is attached to  
either CDP or DCP.  
Turn off VDP_SRC and IDM_Sink  
The secondary detection is used to distinguish two types of charging ports (CDP and DCP). The protocol for  
secondary detection is as follows:  
Turn on VDM_SRC on D- and IDP_Sink on D+ for 40 ms  
If portable device is attached to a Charging Downstream Port (CDP), the D+ is below VDAT_REF. Otherwise, it  
is attached to DCP.  
Turn off VDM_SRC and IDP_Sink  
Most of the time, a CDP requires the portable device (such as smart phone, tablet) to send back an enumeration  
within 2.5 seconds of CDP plug-in. Otherwise, the port will power cycle back to SDP even the D+/Ddetection  
indicates CDP.  
9-1. Non-Standard Adapter Detection  
NON-STANDARD  
D+ THRESHOLD  
INPUT CURRENT LIMIT (A)  
DTHRESHOLD  
ADAPTER  
Divider 1  
Divider 2  
Divider 3  
Divider 4  
VD+ within VD+/D- _2p8  
VD+ within VD+/D- _1p2  
VD+ within VD+/D- _2p0  
VD+ within VD+/D- _2p8  
VDwithin VD+/D- _2p0  
VDwithin VD+/D- _1p2  
VDwithin VD+/D- _2p8  
VDwithin VD+/D- _2p8  
2.1  
2
1
2.4  
9-2. Input Current Limit Setting from D+/DDetection  
INPUT CURRENT LIMIT (IINDPM)  
D+/DDETECTION  
USB CDP  
1.5 A  
2.4 A  
USB DCP  
Divider 1  
2.1 A  
Divider 2  
2.0 A  
Divider 3  
1.0 A  
Divider 4  
2.4 A  
Unknown 5-V Adapter  
Set by ILIM pin  
9.3.3.5 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device has two modes to set the VINDPM threshold.  
Fixed VINDPM threshold. VINDPM is set at 4.3 V.  
VINDPM threshold tracks the battery voltage to optimize the converter headroom between input and output.  
The actual input voltage limit is the higher of the VINDPM setting (4.3-V) and VBAT + 200 mV.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25616 BQ25616J  
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.3.3.6 Power Up Converter in Buck Mode  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. The  
system voltage is powered from the converter instead of the battery. If battery charging is disabled, the BATFET  
turns off. Otherwise, the BATFET stays on to charge the battery.  
The device provides soft start when the system rail is ramping up. When the system rail is below VBAT_SHORT, the  
input current is limited to 200 mA . The system load should be appropriately planned not to exceed the 200-mA  
IINDPM limit. After the system rises above VBAT_SHORTZ, the device input current limit is the value set the by ILIM  
pin .  
As a battery charger, the device deploys a highly efficient 1.5-MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current, and temperature simplifying output filter design.  
The converter supports PFM operation by default for fast transient response during system voltage regulation  
and better light load efficiency.  
9.3.4 Boost Mode Operation From Battery  
The device supports boost converter operation to deliver power from the battery to other portable devices  
through a USB port. The output voltage is regulated at 5 V and output current is up to 1.2 A with constant current  
regulation.  
Boost operation is enabled if the conditions below are valid:  
1. OTG pin HIGH  
2. VBUS less than VBAT + VSLEEP (in sleep mode) before converter starts.  
3. Voltage at TS (thermistor) pin, as a percentage of VREGN, is within acceptable range (VBHOT_RISE% < VTS%  
VBCOLD_FALL%  
<
)
4. After 30-ms delay from boost mode enable .  
5. Not in any fault such as ISYS_OCP_Q4, TSHUT, ACOV or VBUS OV.  
The converter supports PFM operation at light load in Boost mode.  
9.3.5 Standalone Charger  
The BQ25616/616J is a standalone device without host control. Any change on CE, ICHG and ILIM pins will  
cause a real time internal reference change. Charging is enabled or disabled via the CE pin. D+/Dand ILIM  
pins control the input current limit settings. D+/Ddetection and VSET pin setting only takes effect upon  
adapter plug-in.  
Charge current must be programmed to a value within a range of 300 mA to 3000 mA with a pull-down resistor  
on the ICHG pin. The charge current is set as:  
IICHG = KICHG/RICHG  
(1)  
Input current limit must be programmed to a value within a range of 500 mA to 3200 mA with a pull-down resistor  
on the ILIM pin. The input current limit is set as:  
IIINDPM = KILIM/RILIM  
(2)  
The battery regulation voltage is programmed with a pull-down resistor on the VSET pin as follows:  
RVSET > 50 kΩ(float pin): VREG = 4.20 V  
RVSET < 500 Ω(short pin): VREG = 4.35 V  
5kΩ< RVSET < 25 kΩ: VREG = 4.10 V  
9-3. Standalone Device Configuration  
BQ25616/616J  
USB OTG  
5 V/1.2 A  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
9-3. Standalone Device Configuration (continued)  
BQ25616/616J  
USB Detection  
VINDPM  
D+/D–  
4.3 V and VBAT + 200 mV  
4 V - 13.5 V  
VBUS Operating Range  
VREG  
VSET pin (4.20 V, 4.35 V, or 4.10 V)  
10 hr fast charge  
2 hr  
Safety Timer  
Pre-charge Timer  
IPRECHG  
5% of ICHG  
ITERM  
5% of ICHG  
JEITA 0-60°C (BQ25616J), Hot/Cold  
0-45°C (BQ25616)  
Charging Temperature Profile  
OTG Temperature Profile  
20°C to +60°C  
If a fault is detected, the STAT pin will blink at 1 Hz. STAT pin will stop blinking when the fault goes away. All  
faults will be reset upon adapter re-connection. A boost mode fault will be cleared either by adapter re-  
connection or toggling of the OTG pin.  
9.3.6 Power Path Management  
The device accommodates a wide range of input sources such as USB, wall adapter, or car charger. The device  
provides automatic power path selection to supply the system (SYS) from the input source (VBUS), battery  
(BAT), or both.  
9.3.6.1 Narrow VDC Architecture  
When the battery is below the minimum system voltage setting, the BATFET operates in linear mode (LDO  
mode), and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage  
rises above the minimum system voltage, the BATFET is fully on and the voltage difference between the system  
and battery is the VDS of the BATFET.  
When battery charging is disabled and above the minimum system voltage setting or charging is terminated, the  
system is always regulated at typically 50 mV above the battery voltage.  
4.5  
Minimum System Voltage  
Charge Disabled  
Charge Enabled  
4.1  
4.3  
3.9  
3.7  
3.5  
3.3  
3.1  
2.7  
2.9  
3.1  
3.3  
3.5  
BAT (V)  
3.7  
3.9  
4.1  
4.3  
D002  
9-2. System Voltage vs Battery Voltage  
9.3.6.2 Dynamic Power Management  
To meet the maximum current limit in the USB specification and avoid overloading the adapter, the device  
features Dynamic Power Management (DPM), which continuously monitors the input current and input voltage.  
When input source is overloaded, either the current exceeds the input current limit (IINDPM) or the voltage falls  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
below the input voltage limit (VINDPM). The device then reduces the charge current until the input current falls  
below the input current limit or the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the supplement  
mode where the BATFET turns on and the battery starts discharging so that the system is supported from both  
the input source and battery.  
9-3 shows the DPM response with 9-V/1.2-A adapter, 3.2-V battery, 2.8-A charge current and 3.5-V minimum  
system voltage setting.  
Voltage  
VBUS  
9V  
SYS  
BAT  
3.6V  
3.4V  
3.2V  
3.18V  
Current  
4A  
ICHG  
3.2A  
2.8A  
ISYS  
1.2A  
1.0A  
IIN  
0.5A  
-0.6A  
DPM  
DPM  
Supplement  
9-3. DPM Response  
9.3.6.3 Supplement Mode  
When the system voltage falls below the battery voltage, the BATFET turns on and the BATFET gate is  
regulated so that the minimum BATFET VDS stays at 30 mV when the current is low. This prevents oscillation  
from entering and exiting the supplement mode.  
As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until  
the BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge  
current. 9-4 shows the V-I curve of the BATFET gate regulation operation. The BATFET turns off to exit  
supplement mode when the battery is below battery depletion threshold.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55  
V(BAT-SYS) (mV)  
D001  
Plot1  
9-4. BAFET V-I Curve  
9.3.7 Battery Charging Management  
The device charges a 1-cell Li-ion battery with up to 3.0-A charge current for a high capacity tablet battery. The  
19.5-mΩBATFET improves charging efficiency and minimizes the voltage drop during discharging.  
9.3.7.1 Autonomous Charging Cycle  
When battery charging is enabled (CE pin is LOW), the device autonomously completes a charging cycle. The  
device default charging parameters are listed in 9-4.  
9-4. Charging Parameter Default Settings  
DEFAULT MODE  
Charging voltage  
Charging current  
Pre-charge current  
Termination current  
BQ25616/616J  
VSET pin, 4.10 V/4.20 V/4.35 V  
ICHG pin  
5% of ICHG  
5% of ICHG  
JEITA (BQ25616J), Hot/Cold  
(BQ25616)  
Temperature profile  
Safety timer  
10 hours  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled (CE is low)  
No thermistor fault on TS.  
No safety timer fault  
The device automatically terminates the charging cycle when the charging current is below the termination  
threshold, the battery voltage is above the recharge threshold, and the device is not in DPM mode or thermal  
regulation. When a fully charged battery is discharged below recharge threshold, the device automatically starts  
a new charging cycle. After the charge is done, a toggle of the CE pin initiates a new charging cycle. Adapter  
removal and replug will also restart a charging cycle.  
The STAT output indicates charging status: charging (LOW), charging complete or charge disable (HIGH), or  
charging fault (blinking).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.3.7.2 Battery Charging Profile  
The device charges the battery in five phases: battery short, preconditioning, constant current, constant voltage,  
and top-off trickle charging. At the beginning of a charging cycle, the device checks the battery voltage and  
regulates current and voltage accordingly.  
9-5. Charging Current Setting  
VBAT  
< 2.2 V  
CHARGING CURRENT  
DEFAULT SETTING  
100 mA  
IBAT_SHORT  
2.2 V to 3 V  
> 3 V  
IPRECHG  
5% of ICHG pin setting  
ICHG pin setting  
ICHG  
Regulation Voltage  
Charge Current  
Battery Voltage  
Charge Current  
VBATLOWV (3 V)  
VSHORTZ (2.2 V)  
IPRECHG  
ITERM  
ISHORT  
Fast Charge and Voltage Regulation  
Trickle Charge  
Pre-charge  
Safety Timer  
Expiration  
Top-off Timer  
9-5. Battery Charging Profile  
9.3.7.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above the recharge threshold, and the current  
is below termination current. After the charging cycle has completed, the BATFET turns off. STAT is asserted  
HIGH to indicate charging is done. The converter keeps running to power the system, and BATFET can turn on  
again to engage 9.3.6.3.  
If the device is in IINDPM/VINDPM regulation, or thermal regulation, the actual charging current will be less than  
the termination value. In this case, termination is temporarily disabled.  
When termination occurs, the STAT pin goes HIGH.  
The top-off timer is reset at one of the following conditions:  
1. Charge disable to enable  
2. Charger enters termination  
9.3.7.4 Thermistor Qualification  
The device provides a single thermistor input for battery temperature monitoring.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.3.7.4.1 JEITA Guideline Compliance During Charging Mode (BQ25616J)  
To improve the safety of charging Li-ion batteries, the JEITA guideline was released on April 20, 2007. The  
guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low  
and high temperature ranges.  
To initiate a charge cycle, the voltage on TS pin, as a percentage of VREGN, must be within the VT1_FALL% to  
VT5_RISE% thresholds. If the TS voltage percentage exceeds the T1-T5 range, the controller suspends charging,  
a TS fault is reported and waits until the battery temperature is within the T1-T5 range.  
At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to 20% of ICHG. At warm  
temperature (T3-T5), JEITA recommends charge voltage less than 4.1 V.  
JEITA_WARM_ISET  
100% of ICHG  
JEITA_COOL_VSET  
VREG  
JEITA_WARM_VSET  
4.1V  
JEITA_COOL_ISET  
20% of ICHG  
T1  
0
T2  
T3  
T5  
60  
5
10 15 20  
25  
30 35  
40  
45 50  
Battery Thermistor Temperature (°C)  
9-6. JEITA Profile (BQ25616J)  
方程3 through 方程4 describe how to calculate resistor divider values on the TS pin.  
REGN  
RT1  
TS  
NTC  
103AT  
RT2  
9-7. TS Pin Resistor Network  
%
(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
%
%
%
%
(4)  
In the equations above, RNTC, T1 is the NTC thermistor resistance value at temperature T1 and RNTC, T5 is the  
NTC thermistor resistance value at temperature T5. Selecting a 0°C to 60°C range for a Li-ion or Li-polymer  
battery then:  
RNTC,T1 = 27.28 kΩ(0°C)  
RNTC,T5 = 3.02 kΩ(60°C)  
RT1 = 5.3 kΩ  
RT2 = 31.14 kΩ  
9.3.7.4.2 Hot/Cold Temperature Window During Charging Mode (BQ25616)  
The BQ25616 provides simple Hot/Cold window T1-T3 with VREG and ICHG set on the pins. When RT1 is 5.3 KΩ  
and RT2 is 31.14 KΩ, T1 is 0°C and T3 is 45°C.  
ICHG  
VREG  
T2  
15 20 25 30 35 40 45 50  
T3  
T5  
60  
T1  
0
5 10  
Battery Thermistor Temperature (°C)  
9-8. Hot/Cold Profile (BQ25616)  
9.3.7.4.3 Boost Mode Thermistor Monitor During Battery Discharge Mode  
For battery protection during Boost mode, the device monitors battery temperature to be within the VBCOLD and  
VBHOT thresholds. When RT1 is 5.3 kΩ and RT2 is 31.14 kΩ, TBCOLD default is -19.5°C and TBHOT default is  
64°C. When the temperature is outside of the temperature thresholds, Boost mode is suspended.  
9.3.7.5 Charging Safety Timer  
The device has a built-in safety timer to prevent an extended charging cycle due to abnormal battery conditions.  
The safety timer is 2 hours when the battery is below the VBATLOWV threshold and 10 hours when the battery is  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
higher than the VBATLOWV threshold. When the safety timer expires, the STAT pin is blinking at 1 Hz to report a  
safety timer expiration fault.  
During IINDPM/VINDPM regulation, or thermal regulation, the safety timer counts at a half clock rate, because  
the actual charge current is likely below the setting. For example, if the charger is in input current regulation  
throughout the whole charging cycle, and the safety time is set to 10 hours, the safety timer will expire in 20  
hours.  
During faults of BAT_FAULT, NTC_FAULT that lead to charging suspend, the safety timer is suspended as well.  
Once the fault goes away, the timer resumes. If the user stops the current charging cycle, and starts it again, the  
timer gets reset (toggle of CE pin).  
9.3.8 Status Outputs (PG, STAT)  
9.3.8.1 Power Good Indicator (PG Pin)  
The PG pin goes LOW to indicate a good input source when:  
VVBUS above VVBUS_UVLO  
VVBUS above battery (not in sleep)  
VVBUS below VACOV threshold  
VVBUS above VPOORSRC (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Completed 9.3.3.4  
9.3.8.2 Charging Status Indicator (STAT)  
The device indicates the charging state on the open drain STAT pin. The STAT pin can drive an LED.  
9-6. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Charging termination (top off timer may be running)  
HIGH  
Sleep mode, charge disable, Boost mode  
HIGH  
Charge suspend (input overvoltage, TS fault, safety timer fault, or system overvoltage)  
Blinking at 1 Hz  
9.3.9 Protections  
9.3.9.1 Input Current Limit  
The device's ILIM pin is to program maximum input current when D+/Ddetection identifies an unknown  
adaptor plugged in. The maximum input current is set by a resistor from ILIM pin to ground as:  
KILIM  
IINDPM  
=
RILIM  
(5)  
9.3.9.2 Voltage and Current Monitoring in Buck Mode  
9.3.9.2.1 Input Overvoltage Protection (ACOV)  
This device integrates the functionality of an overvoltage protector. The device can be paired with an external N-  
channel FET to block input voltages in excess of the VBUS rating. For correct operation, connect the cathode of  
the body diode to the VAC node. Back-to-back body diodes between VAC and VBUS are not recommended and  
will prevent correct operation. The input voltage is sensed via the VAC pin and the ACDRV pin is used to control  
the external FET gate for protection. The default OVP threshold is 14.2 V. The ACOV circuit has a reaction time  
of 130 ns (typical) to turn off the external ACFET. Note that turning off the external ACFET takes longer and  
depends on its gate capacitance. In addition to turning off the external ACFET, an ACOV event immediately  
stops converter switching whether in buck or Boost mode. The device automatically resumes normal operation  
once the input voltage drops back below the OVP threshold. During ACOV, REGN LDO is on, and the device  
does not enter HIZ mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.3.9.2.2 System Overvoltage Protection (SYSOVP)  
The charger device clamps the system voltage during a load transient so that the components connected to the  
system are not damaged due to high voltage. The VSYS_OVP threshold is about 300 mV above battery regulation  
voltage when battery charging is terminated. Upon SYSOVP, the converter stops switching immediately to clamp  
the overshoot. The charger pulls 30-mA ISYS_LOAD discharge current to bring down the system voltage.  
9.3.9.3 Voltage and Current Monitoring in Boost Mode  
9.3.9.3.1 Boost Mode Overvoltage Protection  
When PMID voltage rises above the regulation target and exceeds VBST_OVP, the device stops switching  
immediately and the device exits Boost mode after the Boost mode OVP lasts for 12 ms. Meanwhile, if VAC (and  
VBUS when shorted to VAC) voltage exceeds VACOV, the device exits Boost mode as well.  
9.3.9.4 Thermal Regulation and Thermal Shutdown  
9.3.9.4.1 Thermal Protection in Buck Mode  
Besides the battery temperature monitor on the TS pin, the device monitors the internal junction temperature TJ  
to avoid overheating the chip and limits the IC junction temperature in buck mode. When the internal junction  
temperature exceeds the thermal regulation limit (110°C), the device lowers down the charge current. During  
thermal regulation, the actual charging current is usually below the programmed battery charging current.  
Therefore, termination is disabled, the safety timer runs at half the clock rate.  
Additionally, the device has thermal shutdown to turn off the converter and the BATFET when the IC surface  
temperature exceeds TSHUT 150°C. The BATFET and converter are enabled to recover when IC temperature is  
130°C.  
9.3.9.4.2 Thermal Protection in Boost Mode  
Besides the battery temperature monitor on the TS pin, the device monitors the internal junction temperature to  
provide thermal shutdown during Boost mode. When the IC junction temperature exceeds TSHUT 150°C, Boost  
mode is disabled . When the IC junction temperature is below 145°C, the host can re-enable Boost mode.  
9.3.9.5 Battery Protection  
9.3.9.5.1 Battery Overvoltage Protection (BATOVP)  
The battery overvoltage limit is clamped at 4% above battery regulation voltage. When battery overvoltage  
occurs, the charger device immediately stops switching.  
9.3.9.5.2 Battery Overdischarge Protection  
When the battery is discharged below VBAT_DPL_FALL, the BATFET latches off to protect the battery from  
overdischarge. To recover from overdischarge latch-off, an input source plug-in is required at VAC/VBUS.  
9.3.9.5.3 System Overcurrent Protection  
When the system is shorted or significantly overloaded (IBAT > IBATOP) and the current exceeds BATFET  
overcurrent limit, the BATFET latched off. The BATFET latch can be reset with VBUS plug-in.  
9.4 Device Functional Modes  
The BQ25616/616J is a standalone device and therefore does not have I2C functions.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
A typical application consists of the device configured as a stand-alone power path management device and a  
single cell battery charger for Li-ion and Li-polymer batteries used in a wide range of smart phones and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The  
device also integrates a bootstrap diode for the high-side gate drive.  
External ACFET is optional. When external OVP is not used, short the VBUS and VAC pins and allow the  
ACDRV pin to float.  
10.2 Typical Applications  
10.2.1 BQ25616/616J Application without External OVP  
VAC  
INPUT  
3.9 Vœ 14V  
SYSTEM  
3.5V-4.35V  
1µH  
SW  
VBUS  
ACDRV  
PMID  
Q1  
1µF  
Q2  
10µF  
BTST  
47nF  
Q3  
REGN  
4. 7µF  
10µF  
PGND  
SYS  
SYS  
SYS  
Q4  
STAT  
PG  
BAT  
10µF  
D+  
D-  
REGN  
USB  
Host  
TS  
OTG  
CE  
+
ILIM  
BQ25616: HOT/COLD  
BQ25616J: JEITA  
ICHG  
Float: 4.2V  
Short: 4.35V  
10k: 4.1V  
VSET  
BQ25616(J)  
10-1. BQ25616/616J Application Diagram without External OVP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
10.2.1.1 Design Requirements  
For this design example, use the parameters shown in the table below.  
10-1. Design Parameters  
PARAMETER  
VALUE  
4-V to 13.5-V  
2.4-A  
VVBUS voltage range  
Input current limit ( D+/DDetection)  
Fast charge current limit ( ICHG pin)  
Minimum system voltage  
ICHG pin  
3.5-V  
Battery regulation voltage ( VSET pin )  
4.2-V  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Inductor Selection  
The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor  
saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
SAT ICHG + (1/2) IRIPPLE  
(6)  
The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching  
frequency (fS) and the inductance (L).  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(7)  
The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5. Usually  
inductor ripple is designed in the range between 20% and 40% maximum charging current as a trade-off  
between inductor size and efficiency for a practical design.  
10.2.1.2.2 Input Capacitor and Resistor  
Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The  
worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICIN occurs where the duty cycle is closest  
to 50% and can be estimated using 方程8.  
ICIN = ICHG ´ D ´ (1- D)  
(8)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high-side MOSFET and source of the low-side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. A rating of 25-V or higher capacitor is  
preferred for 12-V input voltage. Capacitance of minimum 10 μF is suggested for typical of 3-A charging current.  
During high current output over 700 mA in boost mode, a 10 kΩpull-down resistor on VBUS is recommended to  
keep VBUS low in case Q1 RBFET leakage gets high.  
10.2.1.2.3 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
方程9 shows the output capacitor RMS current ICOUT calculation.  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(9)  
The output capacitor voltage ripple can be calculated as follows:  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
æ
ç
è
ö
VOUT  
8LCfs2  
VOUT  
V
DVO =  
1-  
÷
IN ø  
(10)  
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
The charger device has internal loop compensation optimized for >10-μF ceramic output capacitance. The  
preferred ceramic capacitor is 10-V rating, X7R or X5R.  
10.2.1.3 Application Curves  
VVBUS = 5 V  
VVBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
10-2. Power-Up with Charge Disabled  
10-3. Power-Up with Charge Enabled  
VVBUS = 5 V  
VVBAT = 3.2 V  
VVBUS = 5 V to 17V  
VVBAT = 3.2 V  
10-4. OVPFET Turn-on during Power-Up  
10-5. OVPFET Turn-off during Input OVP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25616 BQ25616J  
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
VVBUS = 5 V  
VVBUS = 9 V  
ISYS = 50 mA  
ISYS = 50 mA  
Charge Disabled  
Charge Disabled  
10-6. PFM Switching in Buck Mode  
10-7. PFM Switching in Buck Mode  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.8 V  
VVBUS = 12 V  
ISYS = 50 mA  
Charge Disabled  
10-9. PWM Switching in Buck Mode  
10-8. PFM Switching in Buck Mode  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
VVBUS = 12 V  
ICHG = 2 A  
VVBAT = 3.8 V  
VVBUS = 5 V  
VVBAT = 3.2 V  
ICHG = 2 A  
10-10. PWM Switching in Buck mode  
10-11. Charge Enable  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
VVBAT = 4 V  
ILOAD= 50 mA  
PFM Enabled  
10-12. Charge Disable  
10-13. OTG Switching  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 1 A  
VVBAT = 4 V  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
ILOAD= 1 A  
PFM Enabled  
10-14. OTG Switching  
10-15. System Load Transient  
VVBUS = 5 V  
IINDPM = 2 A  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 2 A  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
ICHG = 1 A  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
10-16. System Load Transient  
10-17. System Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 2 A  
VVBUS = 5 V  
IINDPM = 2 A  
ICHG = 2 A  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
10-18. System Load Transient  
10-19. System Load Transient  
VVBUS = 5 V  
IINDPM = 2 A  
ICHG = 2 A  
VBAT = 3.8 V  
CLOAD = 470 µF  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
10-21. OTG Start-Up  
10-20. System Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
10.2.2 BQ25616/616J Application with External OVP  
VAC  
INPUT  
3.9 Vœ 14V  
SYSTEM  
3.5V-4.35V  
1µH  
SW  
VBUS  
Q1  
1µF  
ACFET  
Q2  
10µF  
BTST  
47nF  
ACDRV  
PMID  
Q3  
REGN  
4. 7µF  
10µF  
PGND  
SYS  
SYS  
SYS  
Q4  
STAT  
PG  
BAT  
10µF  
D+  
D-  
REGN  
USB  
Host  
TS  
OTG  
CE  
+
ILIM  
BQ25616: HOT/COLD  
BQ25616J: JEITA  
ICHG  
Float: 4.2V  
Short: 4.35V  
10k: 4.1V  
VSET  
BQ25616(J)  
10-22. BQ25616/616J Application Diagram with External OVP  
10.2.2.1 Design Requirements  
Refer to 10.2.1.1 for design requirements.  
10.2.2.2 Detailed Design Procedure  
Refer to 10.2.1.2 for detailed design procedure.  
10.2.2.3 Application Curves  
Refer to 10.2.1.3 for application curves.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
In order to provide an output voltage on SYS, the battery charger requires a power supply between 4 V and 13.5  
V input with at least a 100-mA current rating connected to VBUS and a single-cell Li-ion battery with battery  
voltage greater than VBAT_UVLOZ connected to BAT. The source current rating needs to be at least 3 A in order for  
the buck converter of the charger to provide maximum output power to SYS.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25616 BQ25616J  
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize the high frequency current path loop (see 12-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the  
proper layout.  
1. Place an input capacitor as close as possible to the PMID pin and GND pin connections and use the shortest  
copper trace connection or GND plane. Add a 1-nF small size (such as 0402 or 0201) decoupling cap for the  
high frequency noise filter and EMI improvement.  
2. Place the inductor input pin as close as possible to SW pin. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
3. Put the output capacitor near to the inductor and the device. Ground connections need to be tied to the IC  
ground with a short copper trace connection or GND plane.  
4. Route the analog ground separately from power ground. Connect the analog ground and connect power  
ground separately. Connect the analog ground and power ground together using the thermal pad as the  
single ground connection point. Or use a 0-Ωresistor to tie the analog ground to power ground.  
5. Use a single ground connection to tie the charger power ground to the charger analog ground just beneath  
the device. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.  
6. Place the decoupling capacitors next to the IC pins and make the trace connection as short as possible.  
7. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB  
ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on  
the other layers.  
8. Ensure that the number and sizes of vias allow enough copper for a given current path.  
See the BQ25618 BMS024 Evaluation Module User's Guide and BQ25619 BMS025 Evaluation Module EVM  
User's Guide for the recommended component placement with trace and via locations. For the VQFN  
information, refer to Quad Flatpack No-Lead Logic Packages Application Report and QFN and SON PCB  
Attachment Application Report.  
12.2 Layout Example  
+
+
œ
12-1. High Frequency Current Path  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
12-2. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25616 BQ25616J  
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
BQ25619 BMS025 Evaluation Module User's Guide  
BQ25618 BMS024 Evaluation Module User's Guide  
13.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25616 BQ25616J  
 
 
 
 
 
 
 
 
BQ25616, BQ25616J  
ZHCSKP6A JANUARY 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25616 BQ25616J  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25616JRTWR  
BQ25616JRTWT  
ACTIVE  
WQFN  
WQFN  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ  
25616J  
Samples  
Samples  
ACTIVE  
RTW  
NIPDAU  
BQ  
25616J  
BQ25616RTWR  
BQ25616RTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25616  
Samples  
Samples  
BQ25616  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25616JRTWR  
BQ25616JRTWT  
BQ25616RTWR  
BQ25616RTWT  
WQFN  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
RTW  
24  
24  
24  
24  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25616JRTWR  
BQ25616JRTWT  
BQ25616RTWR  
BQ25616RTWT  
WQFN  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
RTW  
24  
24  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ25616RTWT

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25618

采用 WCSP 封装、具有 20mA 终止电流和 1A 升压操作的 I2C 控制型 1.5A 单节降压型电池充电器
TI

BQ25618E

BQ25618E, BQ25619E I2C Controlled 1-Cell 1.5-A Battery Chargers with 20-mA Termination Current
TI

BQ25618EYFFR

BQ25618E, BQ25619E I2C Controlled 1-Cell 1.5-A Battery Chargers with 20-mA Termination Current
TI

BQ25618YFFR

采用 WCSP 封装、具有 20mA 终止电流和 1A 升压操作的 I2C 控制型 1.5A 单节降压型电池充电器 | YFF | 30 | -40 to 85
TI

BQ25618YFFT

采用 WCSP 封装、具有 20mA 终止电流和 1A 升压操作的 I2C 控制型 1.5A 单节降压型电池充电器 | YFF | 30 | -40 to 85
TI

BQ25619

具有 20mA 终止电流和 1A 升压电流的 I2C 控制型 1.5A 单节降压型电池充电器
TI

BQ25619E

BQ25618E, BQ25619E I2C Controlled 1-Cell 1.5-A Battery Chargers with 20-mA Termination Current
TI

BQ25619ERTWR

BQ25618E, BQ25619E I2C Controlled 1-Cell 1.5-A Battery Chargers with 20-mA Termination Current
TI

BQ25619RTWR

具有 20mA 终止电流和 1A 升压电流的 I2C 控制型 1.5A 单节降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25619RTWT

具有 20mA 终止电流和 1A 升压电流的 I2C 控制型 1.5A 单节降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25620

具有 18V 最大输入、集成 ADC 和 OTG 输出的 I²C 控制型单芯 3.5A 降压电池充电器
TI