BQ25672RQMR [TI]

具有双输入选择器和集成 ADC 的 I²C 控制型 1-4 节 3A 降压电池充电器 | RQM | 29 | -40 to 85;
BQ25672RQMR
型号: BQ25672RQMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双输入选择器和集成 ADC 的 I²C 控制型 1-4 节 3A 降压电池充电器 | RQM | 29 | -40 to 85

电池
文件: 总141页 (文件大小:3183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25672  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
BQ25672 I2C Controlled, 1- to 4-Cell, 3-A Buck Battery Charger with Dual-Input  
Selector, MPPT for Solar Panels and Integrated ADC  
1 Features  
2 Applications  
High power density, high integration buck charger  
for 1-4 cell batteries  
– Integrates switching MOSFETs, BATFET  
– Integrates input and charging current sensing  
Highly efficient  
Video doorbell, Smart home control  
Data concentrators, Robotic lawn mower, Vacuum  
robot  
Asset tracking, Mobile POS  
Multiparameter patient monitor, Electrocardiogram  
(ECG), Ultrasound smart probe  
– 750-kHz or 1.5-MHz switching frequencies  
– 3-A charging current with 10-mA resolution  
3 Description  
96.5% efficient: 16-V battery at 3A from 20V  
The BQ25672 is a fully integrated switch-mode buck  
charger for 1-4 cell Li-ion batteries and Li-polymer  
batteries. The BQ25672 is also capable of producing  
a buck-boost, 5 V to 12 V, output voltage on  
VBUS when operating in OTG Mode. The integration  
includes the switching MOSFETs, input and charging  
current sensing circuits, the battery FET and all the  
loop compensation of the converter. It uses NVDC  
power path management, regulating the system  
not dropping below a configurable minimum system  
voltage. When system power exceeds the input  
source rating, battery supplement mode supports the  
system without overloading the input source. It also  
maximizes power from photovoltaic panels using its  
built-in VOC scaling MPPT algorithm.  
Supports a wide range of input sources  
– Autonomously sampled VOC maximum power  
point tracking (MPPT) for charging from a  
photovoltaic panel  
– 3.6-V to 24-V wide input operating voltage  
range with 30-V absolute maximum rating  
– Maximum power tracking with input voltage  
dynamic power management (VINDPM) up  
to 22 V and input current dynamic power  
management (IINDPM) up to 3.3 A  
– Detects USB BC1.2, HVDCP and non-standard  
adapters  
Dual-input power mux controller (optional) for  
source selection  
Narrow voltage DC (NVDC) power path  
Powers USB port from battery (USB OTG)  
– 5-V to 12-V OTG buck-boost output voltage  
with 10-mV resolution  
Device Information  
PART NUMBER  
BQ25672  
PACKAGE(1)  
BODY SIZE (NOM)  
QFN (29)  
4.0 mm x 4.0 mm  
– OTG output current regulation up to 2 A with  
40-mA resolution  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Flexible autonomous and I2C mode for optimal  
system performance  
3.6V - 24V  
Adapter  
VBUS  
SW1  
PMID  
Integrated 16-bit ADC for voltage, current, and  
temperature monitoring  
Low battery quiescent current  
– 17 µA for battery only operation  
– 500 nA in Charger Shutdown Mode  
High accuracy  
SYS 2.5V - 19.4V  
SYS  
– -0.25% to +0.65% charge voltage regulation for  
2S batteries  
– ±5% charge current regulation  
– ±5% input current regulation  
Safety  
– Thermal regulation and thermal shutdown  
– Input/battery OVP and OCP  
– Converter MOSFETs OCP  
SW2  
BAT  
I2C Bus  
BATP  
Host  
1s to 4s  
Battery  
Host  
Control  
BQ25672  
GND  
– Charging safety timer  
Package  
– 29-Pin 4 mm × 4 mm QFN  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 7  
7.1 Absolute Maximum Ratings ....................................... 7  
7.2 ESD Ratings .............................................................. 7  
7.3 Recommended Operating Conditions ........................7  
7.4 Thermal Information ...................................................8  
7.5 Electrical Characteristics ............................................8  
7.6 Timing Requirements ...............................................16  
7.7 Typical Characteristics..............................................18  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................23  
8.3 Feature Description...................................................24  
8.4 Device Functional Modes..........................................50  
8.5 Register Map.............................................................52  
9 Application and Implementation................................123  
9.1 Application Information........................................... 123  
9.2 Typical Application.................................................. 124  
10 Power Supply Recommendations............................130  
11 Layout.........................................................................131  
11.1 Layout Guidelines................................................. 131  
11.2 Layout Example.................................................... 132  
12 Device and Documentation Support........................133  
12.1 Device Support..................................................... 133  
12.2 Documentation Support........................................ 133  
12.3 Receiving Notification of Documentation Updates133  
12.4 Support Resources............................................... 133  
12.5 Trademarks...........................................................133  
12.6 Electrostatic Discharge Caution............................133  
12.7 Glossary................................................................133  
13 Mechanical, Packaging, and Orderable  
Information.................................................................. 134  
4 Revision History  
Changes from Revision * (December 2020) to Revision A (May 2021)  
Page  
Changed from Advance Information to Production Data.................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
5 Description (continued)  
The charger supports the NVDC power path management, in which the system is regulated at a voltage slightly  
higher than the battery voltage, but not drop below the minimum system voltage. The system keeps operating  
even when the battery is completely discharged or removed. When load power exceeds input source rating, the  
battery gets into supplement mode and prevents the input source from being overloaded and the system from  
crashing.  
The input current optimizer (ICO) allows the detection of maximum power point of an unknown input source.  
Besides the I2C host controlled charging mode, this charger also supports autonomous charging mode. After  
power up, the charging is enabled with default register settings. The device can complete a charging cycle  
without any software engagements. It detects battery voltage and charges the battery in different phases: trickle  
charging, pre-charging, constant current (CC) charging and constant voltage (CV) charging. At the end of the  
charging cycle, the charger automatically terminates when the charge current is below a pre-set limit (termination  
current) in the constant voltage phase. When the full battery falls below the recharge threshold, the charger will  
automatically start another charging cycle.  
In the absence of input sources, this device supports USB On-the-Go (OTG) functionality by discharging the  
battery to generate an adjustable, buck-boost, 5-V to 12-V output voltage on VBUS with 10mV step size  
The charger provides various safety features for battery charging and system operations, including battery  
temperature negative thermistor monitoring, trickle charge, pre-charge and fast charge timers and over-voltage/  
over-current protections on battery and input. The thermal regulation reduces charge current when the junction  
temperature exceeds a programmable threshold. The STAT output of the device reports the charging status and  
any fault conditions. The INT pin immediately notifies host when fault occurs.  
The device also provides a 16-bit analog-to-digital converter (ADC) for monitoring charge current and input/  
battery/system (VAC, VBUS, BAT, SYS, TS) voltages.  
It is available in a 29-pin 4mm × 4mm QFN package.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
6 Pin Configuration and Functions  
STAT  
VBUS  
VBUS  
BTST1  
REGN  
D+  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
SDRV  
BAT  
BAT  
INT  
VQFN (29)  
4mm x 4mm  
PROG  
BTST2  
D-  
BATP  
ILIM_HIZ  
TS  
VAC2  
VAC1  
Figure 6-1. RQM Package 29-Pin VQFN Top View  
Table 6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Open Drain Charge Status Output – It indicates various charger operations. Connect to the pull up  
rail via a 10kΩ resistor. LOW indicates charging in progress. HIGH indicates charging completed or  
charging disabled. When any fault condition occurs, STAT pin blinks at 1Hz. The STAT pin function can  
be disabled when DIS_STAT bit is set to 1.  
STAT  
1
DO  
Charger Input Voltage – The power input terminal of the charger. An input current sensing circuit is  
connected between VBUS and PMID. The recommended capacitors at VBUS are 2 pieces of 10μF and  
one piece of 0.1μF ceramic capacitors. Place the 0.1μF ceramic capacitor as close as possible to the  
charger IC.  
VBUS  
BTST1  
REGN  
2-3  
4
P
P
P
Input High Side Power MOSFET Gate Driver Power Supply – Connect a 10V or higher rating, 47nF  
ceramic capacitor between SW1 and BTST1 as the bootstrap capacitor for driving high side switching  
MOSFET (Q1).  
The Charger Internal Linear Regulator Output – It is supplied from either VBUS or BAT dependent  
on which voltage is higher. Connect a 10V, 4.7μF ceramic capacitor from REGN to power ground. The  
REGN LDO output is used for the internal MOSFETs gate driving voltage and the voltage bias for TS  
pin resistor divider.  
5
Positive Line of the USB Data Line Pair – D+/D- based USB host/charging port detection for VIN1  
D+  
D-  
6
7
AIO input. The detection includes data contact detection (DCD), primary and secondary detection in BC1.2,  
and the adjustable high voltage adapter.  
Negative Line of the USB Data Line Pair – D+/D- based USB host/charging port detection for VIN1  
AIO input. The detection includes data contact detection (DCD), primary and secondary detection in BC1.2,  
and the adjustable high voltage adapter.  
VAC2 Input Detection – When a voltage between 3.6V and 24V is applied on VAC2, it represents a  
valid input being plugged into port #2. Connect to VBUS if the ACFET2 and RBFET2 are not installed.  
VAC2  
VAC1  
8
9
P
VAC1 Input Detection – When a voltage between 3.6V and 24V is applied on VAC1, it represents a  
valid input being plugged into port #1. Connect to VBUS if the ACFET1 and RBFET1 are not installed.  
P
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 6-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Input FETs Driver Pin 2 – The charge pump output to drive the port #2 input N-channel MOSFET  
(ACFET2) and the reverse blocking N-channel MOSFET (RBFET2). The charger turns on the back-to-  
back MOSFETs by increasing the ACDRV2 voltage 5V above the common drain connection of the  
ACFET2 and RBFET2 when the turn-on condition is met. Tie ACDRV2 to GND if no ACFET2 and  
RBFET2 installed.  
ACDRV2  
10  
P
Input FETs Driver Pin 1 – The charge pump output to drive the port #1 input N-channel MOSFET  
(ACFET1) and the reverse blocking N-channel MOSFET (RBFET1). The charger turns on the back-to-  
back MOSFETs by increasing the ACDRV1 voltage 5V above the common drain connection of the  
ACFET1 and RBFET1 when the turn-on condition is met. Tie ACDRV1 to GND if no ACFET1 and  
RBFET1 installed.  
ACDRV1  
11  
P
Ship FET Enable or System Power Reset Control Input – When the device is in ship mode or in the  
shutdown mode, the SDRV turns off the external ship FET to minimize the battery leakage current. A  
logic low on this pin with tSM_EXIT duration turns on ship FET to force the device to exit the ship mode.  
A logic low on this pin with tRST duration resets system power by turning off the ship FET for tRST_SFET  
(also setting the charger in HIZ mode when VBUS is high) and then turning on ship FET (also disabling  
the charger HIZ mode) to provide full system power reset. During tRST_SFET when the ship FET is off,  
the charger applies a 30mA discharging current on SYS to discharge system voltage. The pin contains  
an internal pull-up to maintain default high logic.  
QON  
CE  
12  
13  
DI  
DI  
Active Low Charge Enable Pin – Battery charging is enabled when EN_CHG bit is 1 and CE pin is  
LOW. CE pin must be pulled HIGH or LOW, do not leave floating.  
SCL  
SDA  
14  
15  
DI I2C Interface Clock – Connect SCL to the logic rail through a 10 kΩ resistor.  
DIO I2C Interface Data – Connect SDA to the logic rail through a 10 kΩ resistor.  
Temperature Qualification Voltage Input – Connect a negative temperature coefficient thermistor.  
AI Program temperature window with a resistor divider from REGN to TS to GND. Charge suspends when  
TS pin voltage is out of range. Recommend a 103AT-2 10kΩ thermistor.  
TS  
16  
Input Current Limit Setting and HIZ Mode Control Pin – Program ILIM_HIZ voltage by connecting  
a resistor divider from pull up rail to ILIM_HIZ pin to ground. The pin voltage is calculated as: VILIM_HIZ  
= 1V + 800mΩ × IINDPM, in which IINDPM is the target input current. The input current limit used by  
AI the charger is the lower setting of ILIM_HIZ pin and the IINDPM register. When the pin voltage is below  
0.75V, the buck converter enters non-switching mode with REGN on. When the pin voltage is above  
1V, the converter resumes switching. Connect ILIM_HIZ to REGN to set the maximum input current  
limit.  
ILIM_HIZ  
17  
Positive Input for Battery Voltage Sensing – Connect to the positive terminal of battery pack. Place  
100Ω series resistance between this pin and the battery positive terminal.  
BATP  
18  
19  
P
Output High Side Power MOSFET Gate Driver Power Supply – Connect a 10V or higher rating,  
47nF ceramic capacitor between SW2 and BTST2 as the bootstrap capacitor for driving high side  
switching MOSFET (Q4).  
BTST2  
P
Charger POR Default Settings Program – At power up, the charger detects the resistance tied to  
PROG pin to determine the default switching frequency and the default battery charging profile. The  
surface mount resistor with ±1% or ±2% tolerance is recommended. Please refer to more details in the  
section of PROG Pin Configuration.  
PROG  
20  
AI  
Open Drain Interrupt Output. – Connect the INT pin to a logic rail via a 10kΩ resistor. The INT pin  
sends an active low, 256μs pulse to the host to report the charger device status and faults.  
INT  
21  
DO  
P
The Battery Charging Power Connection – Connect to the positive terminal of the battery pack.  
The internal charging current sensing circuit is connected between SYS and BAT. The recommended  
capacitors at BAT are 2 pieces of 10μF ceramic capacitors.  
BAT  
22-23  
External N-channel Ship FET (SFET) Gate Driver Output – The driver pin of the external ship FET.  
The ship FET is always turned on when the ship mode is disabled, and it keeps off when the charger  
is in ship mode or shutdown mode. Connect a 1nF, 50V rated, 0402 package, ceramic capacitor from  
SDRV to GND or SDRV to BAT when the ship FET is not used.  
SDRV  
SYS  
24  
25  
P
P
The Charger Output Voltage to System – The internal N-channel high side MOSFET (Q4) is  
connected between SYS and SW2 with drain on SYS and source on SW2. The recommended  
capacitors at SYS are 5 pieces of 10μF and one piece of 0.1μF ceramic capacitors. Place the 0.1μF  
ceramic capacitor as close as possible to the charger IC.  
SW2  
GND  
SW1  
26  
27  
28  
P
P
P
Boost Side Half Bridge Switching Node Inductor connection to mid point of Q1 and Q2 switches.  
Ground Return  
Buck Side Half Bridge Switching Node Inductor connection to mid point of Q3 and Q4 switches.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 6-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Q1 MOSFET Drain Connection – An internal N-channel high side MOSFET (Q1) is connected  
between PMID and SW1 with drain on PMID and source on SW1. The recommended capacitors at  
PMID are 3 pieces of 10μF and one piece of 0.1μF ceramic capacitors. Place the 0.1μF ceramic  
capacitor as close as possible to the charger IC.  
PMID  
29  
P
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-2  
MAX  
30  
30  
30  
32  
23  
20  
29  
26  
30  
23  
UNIT  
V
VAC1, VAC2  
VBUS (converter not switching)  
PMID (converter not switching)  
ACDRV1, ACDRV2, BTST1  
SYS (converter not switching)  
-2  
V
-0.3  
V
-0.3  
V
-0.3  
V
Voltage range (with  
respect to GND)  
BATP, BAT  
BTST2  
SDRV  
SW1  
-0.3  
V
-0.3  
V
-0.3  
V
-2 (50ns)  
-2 (50ns)  
V
SW2  
V
QON, D+, D-, CE, STAT, SCL, SDA, INT, ILIM_HIZ, PROG,  
TS, REGN  
-0.3  
6
V
Output Sink Current  
Differential Voltage  
INT, STAT  
6
6
mA  
V
BTST1-SW1, BTST2-SW2  
PMID-VBUS  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
6
V
SYS-BAT  
16  
6
V
SDRV-BAT  
V
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
-55  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
24  
18.8  
3.3  
5
UNIT  
V
VVBUS  
VBAT  
IVBUS  
ISW  
Input voltage  
3.6  
Battery voltage  
V
Input current  
A
Output current (SW)  
Fast charging current  
RMS discharge current (continuously)  
Peak discharge current (upto 1 sec)  
Ambient temperature  
Junction temperature  
A
3
A
IBAT  
6
A
10  
85  
125  
A
TA  
TJ  
-40  
-40  
°C  
°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25672  
 
 
 
 
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
µF  
CVBUS  
CPMID  
CSYS  
CBAT  
Effective VBUS capacitance  
Effective PMID capacitance  
Effective SYS capacitance  
Effective BAT capacitance  
2
4
6
3
µF  
µF  
µF  
7.4 Thermal Information  
BQ25672  
RQM (QFN)  
29-PIN  
44.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
20.9  
9.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.5  
ΨJB  
9.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
QUIESCENT CURRENTS  
Quiescent battery current (BATP, VBAT = 8V, No VBUS, BATFET is  
BAT, SYS) when the charger is in enabled, I2C enabled, ADC disabled, not  
the battery only mode, battery FET in ship mode or shut down mode, system  
IQ_BAT_ON  
17  
24 µA  
is enabled, ADC is disabled  
is powered by battery. TJ < 85 °C  
Quiescent battery current (BATP)  
for when the charger is in ship  
mode.  
VBAT = 8V, No VBUS, I2C enabled, ADC  
disabled, in ship mode, TJ < 85 °C  
IQ_BAT_OFF  
11  
16 µA  
0.7 µA  
Shutdown battery current (BATP)  
when charger is in shut down  
mode.  
VBAT = 8V, No VBUS, I2C disabled, ADC  
disabled, in shut down mode, TJ < 85 °C  
ISD_BAT  
0.5  
Quiescent battery current (BATP,  
BAT, SYS) when the charger is in  
the battery only mode, battery FET  
is enabled, ADC is enabled  
VBAT = 8V, No VBUS, I2C enabled, ADC  
enabled, not in ship mode or shut down  
mode, TJ < 85 °C  
IQ_BAT_ON  
540  
µA  
VBUS = 15V, VBAT = 8V, charge  
disabled, converter switching, ISYS = 0A,  
OOA disabled  
3
5
mA  
mA  
IQ_VBUS  
Quiescent input current (VBUS)  
VBUS = 15V, VBAT = 8V, charge  
disabled, converter switching, ISYS = 0A,  
OOA enabled  
VBUS = 15V, HIZ mode, no battery, ADC  
disabled, ACDRV disabled  
386  
590  
µA  
µA  
Shutdown input current (VBUS) in  
HIZ  
ISD_VBUS  
VBUS = 15V, HIZ mode, no battery, ADC  
disabled, ACDRV enabled  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT = 8V, VBUS = 5V, OTG mode  
enabled, converter switching, IVBUS = 0A,  
OOA disabled  
3
mA  
Quiescent battery current (BATP,  
BAT, SYS) in OTG  
IQ_OTG  
VBAT = 8V, VBUS = 5V, OTG mode  
enabled, converter switching, IVBUS = 0A,  
OOA enabled  
5
mA  
VBUS / VBAT SUPPLY  
VAC present rising threshold to  
For both VAC1 and VAC2  
For both VAC1 and VAC2  
For both VAC1 and VAC2  
3.4  
3.2  
26  
3.5  
V
V
V
turn on the ACFET-RBFET  
VVAC_PRESENT  
VAC present falling threshold to  
turn off the ACFET-RBFET  
3.1  
VAC overvoltage rising threshold,  
when VAC_OVP[1:0]=00  
25.2  
26.8  
26.0  
VAC overvoltage  
falling threshold, when  
VAC_OVP[1:0]=00  
For both VAC1 and VAC2  
For both VAC1 and VAC2  
For both VAC1 and VAC2  
For both VAC1 and VAC2  
For both VAC1 and VAC2  
For both VAC1 and VAC2  
For both VAC1 and VAC2  
24.4  
17.4  
16.9  
11.6  
11.2  
6.7  
25.2  
18.0  
17.5  
12  
V
V
V
V
V
V
V
VAC overvoltage  
rising threshold, when  
VAC_OVP[1:0]=01  
18.6  
18.1  
12.4  
12.0  
7.3  
VAC overvoltage  
falling threshold, when  
VAC_OVP[1:0]=01  
VVAC_OVP  
VAC overvoltage  
rising threshold, when  
VAC_OVP[1:0]=10  
VAC overvoltage  
falling threshold, when  
VAC_OVP[1:0]=10  
11.6  
7
VAC overvoltage  
rising threshold, when  
VAC_OVP[1:0]=11  
VAC overvoltage  
falling threshold, when  
VAC_OVP[1:0]=11  
6.5  
6.8  
7.1  
VVBUS_OP  
VBUS operating range  
3.6  
24  
V
V
VBUS rising for active I2C, no  
battery  
VVBUS_UVLOZ  
VBUS rising  
VBUS falling  
3.25  
3.4  
3.2  
3.55  
VBUS falling to turn off I2C, no  
battery  
VVBUS_UVLO  
3.05  
3.35  
V
VVBUS_PRESENT  
VVBUS_PRESENTZ  
VVBUS_OVP  
VBUS to start switching  
VBUS to stop switching  
VBUS rising  
VBUS falling  
3.3  
3.1  
3.4  
3.2  
3.5  
3.3  
V
V
V
VBUS overvoltage rising threshold VBUS rising  
25.2  
25.7  
26.2  
VBUS overvoltage falling  
VBUS falling  
VVBUS_OVPZ  
24.0  
24.4  
24.8  
V
threshold  
IBUS_OCP  
IBUS over-current rising threshold  
IBUS over-current falling threshold  
7.0  
6.5  
8.0  
7.5  
9.0  
8.5  
A
A
IBUS_OCPZ  
VBAT rising, with the ship FET (SFET)  
installed  
3.25  
2.50  
3.40  
2.60  
3.55  
2.71  
V
V
BAT voltage for active I2C, no  
VBUS, no VAC  
VBAT_UVLOZ  
VBAT rising, without the ship FET (SFET)  
installed  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT rising, with the ship FET (SFET)  
installed  
3.05  
3.20  
3.31  
2.50  
2.9  
V
V
V
BAT voltage to turn off I2C, no  
VBUS, no VAC  
VBAT_UVLO  
VBAT falling, without the ship FET (SFET)  
installed  
2.30  
2.7  
2.40  
2.8  
BAT voltage rising threshold to  
enable OTG mode  
VBAT_OTG  
VBAT rising  
BAT voltage falling threshold to  
disable OTG mode  
VBAT_OTGZ  
VPOORSRC  
VPOORSRC  
VBAT falling  
2.4  
3.3  
2.5  
3.4  
2.6  
3.5  
V
V
Bad adapter detection threshold  
VBUS falling  
Bad adapter detection threshold  
hysteresis  
VBUS rising above VPOORSRC  
150  
200  
250 mV  
20 mA  
Bad adapter detection current  
source  
IPOORSRC  
7
12  
RVBUS_PD  
RVAC_PD  
VBUS pull down resistance  
VAC pull down resistance  
6
60  
kΩ  
Ω
V
V
V
V
V
V
V
V
For both VAC1 and VAC2  
VOC_PCT = 000 (0.5625), VOC = 18.0V  
VOC_PCT = 001 (0.625), VOC = 18.0V  
VOC_PCT = 010 (0.6875), VOC = 18.0V  
VOC_PCT = 011 (0.75), VOC = 18.0V  
VOC_PCT = 100 (0.8125), VOC = 18.0V  
VOC_PCT = 101 (0.875), VOC = 18.0V  
VOC_PCT = 110 (0.9375), VOC = 18.0V  
VOC_PCT = 111 (1.0), VOC = 18.0V  
10.125  
11.25  
12.375  
13.5  
VINDPM as set by the MPPT  
algorithm  
VVINDPM_MPPT  
14.625  
15.75  
16.875  
18.0  
POWER-PATH MANAGEMENT  
System voltage regulation range,  
VSYSMAX_REG_RNG  
3.2  
19  
V
measured on SYS  
VBAT = 16.8V (4s default)  
VBAT = 12.6V (3s default)  
VBAT = 8.4V (2s default)  
VBAT = 4.2V (1s default)  
16.82  
12.62  
8.44  
17.00  
12.80  
8.60  
17.25  
13.04  
8.77  
V
V
V
V
System voltage regulation  
accuracy (when VBAT>VSYSMIN,  
charging disabled, PFM disabled)  
VSYSMAX_REG_ACC  
4.268  
4.40  
4.550  
VSYSMIN regulation range,  
measured on SYS  
VSYSMIN_REG_RNG  
VSYSMIN_REG_STEP  
2.5  
16  
V
VSYSMIN regulation step size  
250  
12.2  
9.2  
mV  
V
4s battery  
3s battery  
2s battery  
1s battery  
11.9  
9.0  
12.5  
9.4  
V
System voltage regulation  
accuracy (when VBAT<VSYSMIN  
VSYSMIN_REG_ACC  
)
7.12  
3.5  
7.2  
7.32  
3.9  
V
3.7  
V
As a percentage of the system regulation  
voltage, to turnoff the converter.  
VSYS overvoltage rising threshold  
VSYS overvoltage falling threshold  
105.5  
95.5  
2.1  
110.0  
100  
2.2  
112.3  
102  
2.3  
%
%
V
VSYS_OVP  
As a percentage of the system regulation  
voltage, to re-enable the converter.  
VSYS short voltage falling  
threshold  
VSYS_SHORT  
BATTERY CHARGER  
VREG_RANGE  
Typical charge voltage regulation  
range  
3
18.8  
V
VREG_STEP  
Typical charge voltage step  
10  
mV  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
-0.65  
-0.85  
-0.25  
-0.45  
TYP  
MAX UNIT  
VREG = 16.8V  
0.55  
0.65  
0.65  
0.95  
%
%
%
%
VREG = 12.6V  
VREG = 8.4V  
VREG = 4.2V  
Charge voltage accuracy, TJ = –  
40°C - 85°C  
VREG_ACC  
Typical charge current regulation  
range  
ICHG_RANGE  
ICHG_STEP  
0.05  
3
A
Typical charge current regulation  
step  
10  
mA  
ICHG = 4A; VBAT=8V  
ICHG = 2A; VBAT=8V  
ICHG = 1A; VBAT=8V  
ICHG = 0.5A; VBAT=8V  
-5.5  
-6.5  
-5  
2.5  
3.5  
5
%
%
%
%
Typical buck mode PWM charge  
current accuracy, VBUS > VBAT,  
TJ = –40°C - 85°C  
ICHG_ACC  
-7.5  
40  
7.5  
IPRECHG_RANGE  
IPRECHG_STEP  
Typical pre-charge current range  
Typical pre-charge current step  
2000 mA  
mA  
40  
IPRECHG = 1000mA, VBAT = 6.5V  
IPRECHG = 480mA, VBAT = 6.5V  
IPRECHG = 200mA, VBAT = 6.5V  
IPRECHG = 120mA, VBAT = 6.5V  
-4.5  
-8  
3.5  
8
%
%
%
%
Typical LDO mode charge current  
accuracy when VBATP below  
VBAT_LOWV, VBUS > VBAT, TJ = –  
40°C - 85°C  
IPRECHG_ACC  
-20  
-30  
40  
20  
30  
ITERM_RANGE  
ITERM_STEP  
Typical termination current range  
Typical termination current step  
1000 mA  
mA  
40  
ITERM = 120mA, ICHG < 1000mA  
ITERM = 480mA, ICHG > 1000mA  
-20  
-14  
20  
14  
%
%
Termination current accuracy, TJ =  
–40°C - 85°C  
ITERM_ACC  
Battery short voltage rising  
threshold to start pre-charge  
VBAT_SHORTZ  
VBAT_SHORT  
IBAT_SHORT  
VBAT rising  
2.25  
2.06  
100  
V
V
Battery short voltage falling  
threshold to stop pre-charge  
VBAT falling  
Battery short trickle charging  
current  
VBAT < VBAT_SHORTZ  
mA  
VBAT_LOWV_1:0=00  
VBAT_LOWV_1:0=01  
VBAT_LOWV_1:0=10  
VBAT_LOWV_1:0=11  
13  
61.5  
67.0  
71.0  
15  
63.0  
68.0  
72.5  
17  
64.5  
69.0  
74.0  
%
%
%
%
Battery voltage rising threshold to  
start fast-charge, as percentage of  
VREG  
VBAT_LOWV_RISE  
Battery voltage threshold  
hysteresis to stop fast-charge on  
falling edge  
VBAT falling, as percentage of  
VREG, VBAT_LOWV_1:0=11  
VBAT_LOWV_HYS  
1.4  
%
VBAT falling, VRECHG=0011,  
VREG=8.4V  
200  
400  
mV  
mV  
VRECHG  
Battery recharge threshold  
VBAT falling, VRECHG=0111,  
VREG=16.8V  
IBAT_LOAD  
ISYS_LOAD  
RBATP  
Battery discharge load current  
System discharge load current  
BATP Input Resistance  
30  
30  
mA  
mA  
MΩ  
2.5  
BATFET  
MOSFET on resistance from SYS  
to BAT  
RBATFET  
11  
mΩ  
BATTERY PROTECTIONS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
103  
101  
TYP  
104  
102  
MAX UNIT  
VBAT rising, as percentage of VREG  
VBAT falling, as percentage of VREG  
105  
103  
%
%
VBAT_OVP  
Battery overvoltage threshold  
VBAT falling, to clamp the charging  
current as trickle charging current.  
2.06  
2.25  
V
V
A
VBAT_SHORT  
Battery short voltage  
VBAT rising, to release the trickle  
charging current clamp  
Battery discharging over-current  
rising threshold  
IBAT_OCP  
9.3  
3.6  
INPUT VOLTAGE / CURRENT REGULATION  
Typical input voltage regulation  
range  
VINDPM_RANGE  
VINDPM_STEP  
22  
V
Typical input voltage regulation  
step  
100  
mV  
VINDPM=18.6V  
VINDPM=4.3V  
-2  
-3  
-5  
2
3
5
%
%
%
VINDPM_ACC  
Input voltage regulation accuracy VINDPM=10.6V  
Typical input current regulation  
range  
IINDPM_RANGE  
IINDPM_STEP  
0.1  
3.3  
A
Typical input current regulation  
step  
10  
460  
940  
mA  
IINDPM = 500mA, VBUS=9V, TJ > -20°C  
415  
880  
500 mA  
IINDPM = 1000mA,  
VBUS=9V, TJ > -20°C  
1000 mA  
IINDPM_ACC  
Input current regulation accuracy  
IINDPM = 2000mA,  
VBUS=9V, TJ > -20°C  
1800  
2720  
1880  
2820  
1960 mA  
2920 mA  
IINDPM = 3000mA,  
VBUS=9V, TJ > -20°C  
Voltage range for input current  
regultion at ILIM_HIZ pin  
VILIM_REG_RNG  
1
4
V
ILEAK_ILIM  
ILIM_HIZ pin leakage current  
VILIM_HIZ = 4V  
-1.5  
1.5 µA  
D+ / D- DETECTION  
VD+ _600MVSRC  
ID+_10UASRC  
D+ voltage source (600 mV)  
D+ current source (10 µA)  
D+ current sink (100 µA)  
500  
7
600  
10  
700 mV  
14 µA  
VD+ = 200 mV,  
VD+ = 500 mV,  
ID+_100UASNK  
50  
90  
150 µA  
D+ comparator threshold for  
Secondary Detection  
VD+_0P325  
VD+_0P8  
D+ pin rising  
250  
775  
400 mV  
925 mV  
D+ comparator threshold for Data  
Contact Detection  
D+ pin rising  
HIZ mode  
850  
ID+_LKG  
Leakage current into D+  
D- voltage source (600 mV)  
D- current sink (100 µA)  
-1  
500  
50  
1
µA  
VD-_600MVSRC  
ID-_100UASNK  
600  
90  
700 mV  
150 µA  
VD- = 500 mV,  
D- pin Rising  
D- comparator threshold for  
Primary Detection  
VD-_0P325  
250  
400 mV  
ID-_LKG  
RD-_19K  
Leakage current into D-  
HIZ mode  
-1  
1
µA  
D- resistor to ground (19 kΩ)  
VD- = 500mV  
14.25  
24.8 kΩ  
D+ comparator threshold for non-  
standard adapter  
VD+ _2p8  
VD- _2p8  
(combined VD+_2p8_hi and VD+_2p8_lo  
)
2.55  
2.55  
2.85  
2.85  
V
V
D- comparator threshold for non-  
standard adapter  
(combined VD-_2p8_hi and VD-_2p8_lo)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
D+ comparator threshold for non-  
standard adapter  
VD+ _2p0  
VD- _2p0  
VD+ _1p2  
VD- _1p2  
(combined VD+_2p0_hi and VD+_2p0_lo  
)
)
1.85  
2.15  
2.15  
1.35  
1.35  
V
V
V
V
D- comparator threshold for non-  
standard adapter  
(combined VD-_2p0_hi and VD-_2p0_lo  
)
1.85  
1.05  
1.05  
D+ comparator threshold for non-  
standard adapter  
(combined VD+_1p2_hi and VD+_1p2_lo  
D- comparator threshold for non-  
standard adapter  
(combined VD-_1p2_hi and VD-_1p2_lo  
)
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG = 120°C  
TREG = 100°C  
TREG = 80°C  
TREG = 60°C  
120  
100  
80  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
Junction temperature regulation  
accuracy  
TREG  
60  
Temperature increasing (TSHUT[1:0]=00)  
Temperature increasing (TSHUT[1:0]=01)  
Temperature increasing (TSHUT[1:0]=10)  
Temperature increasing (TSHUT[1:0]=11)  
150  
130  
120  
85  
TSHUT  
Thermal shutdown rising threshold  
Thermal shutdown falling  
hysteresis  
TSHUT_HYS  
Temperature decreasing by TSHUT_HYS  
30  
°C  
JEITA THERMISTOR COMPARATOR (CHARGE MODE)  
T1 comparator rising threshold.  
VT1_RISE  
Charge is suspended above this  
voltage.  
As Percentage to REGN (0°C w/ 103AT)  
As Percentage to REGN (3°C w/ 103AT)  
72.4  
71.5  
73.3  
72  
74.2  
72.5  
%
%
T1 comparator falling threshold.  
Charge is re-enabled below this  
voltage.  
VT1_FALL  
As Percentage of REGN, JEITA_T2=5°C  
w/ 103AT  
70.6  
67.9  
65.0  
61.9  
69.3  
66.6  
63.7  
60.6  
49.2  
45.6  
42.0  
38.5  
71.1  
68.4  
65.5  
62.4  
69.8  
67.1  
64.2  
61.1  
49.7  
46.1  
42.5  
39  
71.6  
68.9  
66.0  
62.9  
70.3  
67.6  
64.7  
61.6  
50.2  
46.6  
43.0  
39.5  
%
%
%
%
%
%
%
%
%
%
%
%
As Percentage of REGN, JEITA_T2=10°C  
w/ 103AT  
VT2_RISE  
VT2_FALL  
VT3_RISE  
T2 comparator rising threshold.  
T2 comparator falling threshold.  
T3 comparator rising threshold.  
As Percentage of REGN, JEITA_T2=15°C  
w/ 103AT  
As Percentage of REGN, JEITA_T2=20°C  
w/ 103AT  
As Percentage of REGN, JEITA_T2=5°C  
w/ 103AT  
As Percentage of REGN, JEITA_T2=10°C  
w/ 103AT  
As Percentage of REGN, JEITA_T2=15°C  
w/ 103AT  
As Percentage of REGN, JEITA_T2=20°C  
w/ 103AT  
As Percentage of REGN, JEITA_T3=40°C  
w/ 103AT  
As Percentage of REGN, JEITA_T3=45°C  
w/ 103AT  
As Percentage of REGN, JEITA_T3=50°C  
w/ 103AT  
As Percentage of REGN, JEITA_T3=55°C  
w/ 103AT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage of REGN, JEITA_T3=40°C  
w/ 103AT  
47.9  
48.4  
48.9  
45.3  
41.7  
38.2  
%
%
%
%
As Percentage of REGN, JEITA_T3=45°C  
w/ 103AT  
44.3  
40.7  
37.2  
44.8  
41.2  
37.7  
VT3_FALL  
T3 comparator falling threshold.  
As Percentage of REGN, JEITA_T3=50°C  
w/ 103AT  
As Percentage of REGN, JEITA_T3=55°C  
w/ 103AT  
T5 comparator falling threshold.  
Charge is suspended below this  
voltage.  
VT5_FALL  
As Percentage of REGN (60°C w/ 103AT)  
As Percentage of REGN (58°C w/ 103AT)  
33.7  
35  
34.2  
35.5  
34.7  
36  
%
%
T5 comparator rising threshold.  
Charge is re-enabled above this  
voltage.  
VT5_RISE  
COLD / HOT THERMISTOR COMPARATOR (OTG MODE)  
As Percentage of REGN (–20°C w/  
103AT)  
79.5  
76.6  
78.2  
75.3  
37.2  
33.9  
30.8  
38.8  
35.2  
32.0  
80.0  
77.1  
78.7  
75.8  
37.7  
34.4  
31.3  
39.3  
35.7  
32.5  
80.5  
77.6  
79.2  
76.3  
38.2  
34.9  
31.8  
39.8  
36.2  
33.0  
%
%
%
%
%
%
%
%
%
%
TCOLD comparator rising  
VBCOLD_RISE  
threshold.  
As Percentage of REGN (–10°C w/  
103AT)  
As Percentage of REGN (–20°C w/  
103AT)  
TCOLD comparator falling  
threshold.  
VBCOLD_FALL  
As Percentage of REGN (–10°C w/  
103AT)  
As Percentage of REGN, (55°C w/  
103AT)  
THOT comparator falling  
threshold.  
As Percentage of REGN, (60°C w/  
103AT)  
VBHOT_FALL  
As Percentage of REGN, (65°C w/  
103AT)  
As Percentage of REGN, (55°C w/  
103AT)  
As Percentage of REGN, (60°C w/  
103AT)  
VBHOT_RISE  
THOT comparator rising threshold.  
As Percentage of REGN, (65°C w/  
103AT)  
SWITCHING CONVERTER  
1.5  
MHz  
kHz  
FSW  
PWM switching frequency  
Oscillator frequency  
750  
SENSE RESISTANCE AND MOSFET RDSON  
VBUS to PMID input sensing  
resistance  
Tj = -40°C-85°C (typical value is under  
25°C)  
RSNS  
8
mΩ  
mΩ  
Buck high-side switching MOSFET  
turnon resistance between PMID  
and SW1  
Tj = -40°C-85°C (typical value is under  
25°C)  
RQ1_ON  
RQ2_ON  
RQ3_ON  
RQ4_ON  
24  
Buck low-side switching MOSFET  
turnon resistance between SW1  
and PGND  
Tj = -40°C-85°C (typical value is under  
25°C)  
35  
28  
17  
mΩ  
mΩ  
mΩ  
Boost low-side switching MOSFET  
turnon resistance between SW2  
and PGND  
Tj = -40°C-85°C (typical value is under  
25°C)  
Boost high-side switching  
MOSFET turnon resistance  
between SW2 and SYS  
Tj = -40°C-85°C (typical value is under  
25°C)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OTG MODE CONVERTER  
Typical OTG mode voltage  
regulation range  
VOTG_RANGE  
VOTG_STEP  
5
12  
V
Typical OTG mode voltage  
regulation step  
10  
mV  
IVBUS = 0A, VOTG = 20V  
IVBUS = 0A, VOTG = 12V  
IVBUS = 0A, VOTG = 5V  
-3  
-2.5  
-2  
3
3
3
%
%
%
OTG mode voltage regulation  
accuracy  
VOTG_ACC  
Typical OTG mode current  
regulation range  
IOTG_RANGE  
IOTG_STEP  
0.12  
3.32  
A
Typical OTG mode current  
regulation step  
40  
mA  
IOTG = 3.0A  
IOTG = 1.52A  
IOTG = 0.52A  
-2.2  
-5  
2.2  
3
%
%
%
OTG mode current regulation  
accuracy  
IOTG_ACC  
-15  
8
OTG mode under voltage falling  
threshold  
VOTG_UVP  
2.1  
104  
90  
2.2  
113  
98  
3
2.3  
120  
104  
3.2  
V
%
%
A
OTG mode overvoltage rising  
threshold  
As percentage of VOTG regulation, OTG  
mode OOA disabled.  
VOTG_OVP  
OTG mode overvoltage falling  
threshold  
As percentage of VOTG regulation  
IBAT_REG_1:0 = 00, VBAT=8V,  
VOTG=9V  
2.8  
3.8  
4.8  
Battery current regulation in OTG IBAT_REG_1:0 = 01, VBAT=8V,  
mode  
IOTG_BAT  
4
4.2  
A
VOTG=9V  
IBAT_REG_1:0 = 10, VBAT=8V,  
VOTG=9V  
5
5.3  
A
REGN LDO  
VREGN  
VVBUS = 5V, IREGN = 20mA  
VVBUS = 15V, IREGN = 20mA  
VVBUS = 5V, VREGN = 4.5V  
4.6  
4.8  
30  
4.8  
5
5
V
V
REGN LDO output voltage  
REGN LDO current limit  
5.2  
IREGN  
mA  
I2C INTERFACE (SCL, SDA)  
VIH_SDA  
VIL_SDA  
VOL_SDA  
IBIAS_SDA  
VIH_SCL  
VIL_SCL  
Input high threshold level, SDA  
Pull up rail 1.8V  
Pull up rail 1.8V  
Sink current = 5mA  
Pull up rail 1.8V  
Pull up rail 1.8V  
Pull up rail 1.8V  
Pull up rail 1.8V  
1.3  
V
V
Input low threshold level  
Output low threshold level  
High-level leakage current  
Input high threshold level, SDA  
Input low threshold level  
High-level leakage current  
0.4  
0.4  
1
V
µA  
V
1.3  
0.4  
1
V
IBIAS_SCL  
µA  
LOGIC I PIN (CE, ILIM_HIZ, QON)  
VIH_CE Input high threshold level, CE  
VIL_CE  
1.3  
1.3  
V
V
Input low threshold level, CE  
High-level leakage current, CE  
Input high threshold level, QON  
Input low threshold level, QON  
Internal QON pull up  
0.4  
1
IIN_BIAS_CE  
VIH_QON  
VIL_QON  
VQON  
Pull up rail 1.8V  
µA  
V
0.4  
V
QON is pulled up internally  
3.2  
V
RQON  
Internal QON pull up resistance  
200  
kΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input high threshold level,  
ILIM_HIZ  
VIH_ILIM_HIZ  
VIL_ILIM_HIZ  
1
V
Input low threshold level, ILIM_HIZ  
0.75  
V
LOGIC O PIN (INT, PG, STAT)  
VOL_INT  
Output low threshold level, INT  
Sink current = 5mA  
0.4  
1
V
µA  
V
IOUT_BIAS_INT  
VOL_STAT  
High-level leakage current, INT  
Output low threshold level, STAT  
Pull up rail 1.8V  
Sink current = 5mA  
0.4  
1
IOUT_BIAS_STAT  
High-level leakage current, STAT Pull up rail 1.8V  
µA  
ADC MEASUREMENT ACCURACY AND PERFORMANCE  
ADC_SAMPLE[1:0] = 00  
24  
12  
6
ms  
ms  
ms  
ms  
bits  
bits  
bits  
bits  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 11  
ADC_SAMPLE[1:0] = 00  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 11  
Conversion time, each  
measurement  
tADC_CONV  
3
14  
13  
12  
10  
15  
14  
13  
11  
ADCRES  
Effective resolution  
ADC MEASUREMENT RANGE AND LSB  
Range  
LSB  
0
0
5
30  
A
mA  
V
ADC VBUS current reading  
IBUS_ADC  
(forward and OTG)  
1
Range  
LSB  
VBUS_ADC  
VAC_ADC  
VBAT_ADC  
VSYS_ADC  
IBAT_ADC  
TS_ADC  
ADC VBUS voltage reading  
ADC VAC voltage reading  
ADC BAT voltage reading  
ADC SYS voltage reading  
ADC BAT current reading  
ADC TS voltage reading range  
1
mV  
V
Range  
LSB  
0
30  
1
1
mV  
V
Range  
LSB  
0
20  
mV  
V
Range  
LSB  
0
24  
1
mV  
A
Range  
LSB  
0
8
1
mA  
%
Range  
LSB  
0
99.9  
0.098  
0.5  
%
Range  
LSB  
-40  
150 °C  
°C  
ADC die temperature reading  
range  
TDIE_ADC  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
BATTERY CHARGER  
TOPOFF_TMR[1:0] = 01  
TOPOFF_TMR[1:0] = 10  
TOPOFF_TMR[1:0] = 11  
12  
24  
36  
15  
30  
45  
18 min  
36 min  
54 min  
tTOP_OFF  
Top-off timer accuracy  
Charge safety timer in trickle  
charge  
tSAFETY_TRKCHG  
tSAFETY_PRECHG  
0.9  
1.8  
1
2
1.1 hr  
2.2 hr  
Charge safety timer in pre-charge PRECHG_TMR = 0  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.6 Timing Requirements (continued)  
PARAMETER  
TEST CONDITIONS  
CHG_TMR[1:0] = 00  
MIN  
4.5  
NOM  
5
MAX UNIT  
5.5 hr  
CHG_TMR[1:0] = 01  
CHG_TMR[1:0] = 10  
CHG_TMR[1:0] = 11  
7.2  
8
8.8 hr  
tSAFETY  
Charge safety timer accuracy  
10.8  
21.6  
12  
24  
13.2 hr  
26.4 hr  
I2C INTERFACE  
fSCL  
SCL clock frequency  
1000 kHZ  
WATCHDOG TIMER  
tLP_WDT  
Watchdog reset time  
Watchdog reset time  
EN_HIZ = 1, WATCHDOG = 160s  
EN_HIZ = 0, WATCHDOG = 160s  
100  
136  
160  
160  
s
s
tWDT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.7 Typical Characteristics  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120) and L2 = 2.2µH (WE-  
LHMI-74437346022)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
VBUS = 5V  
VBUS = 9V  
VBUS = 12V  
VBUS = 15V  
VBUS = 20V  
VBUS = 5V  
VBUS = 9V  
VBUS = 12V  
VBUS = 15V  
VBUS = 20V  
0
0.5  
1
1.5  
2
2.5  
3
3
3
0
0.5  
1
1.5  
2
2.5  
3
3
3
Charging Current (A)  
Charging Current (A)  
VBAT = 4V, Fsw = 750 kHz with L2 = 2.2µH, PFM disabled  
Figure 7-1. 1s Battery Charge Efficiency, 750 kHz  
100  
VBAT = 4V, Fsw = 1.5 MHz with L1 = 1.0 µH, PFM disabled  
Figure 7-2. 1s Battery Charge Efficiency, 1.5 MHz  
100  
95  
90  
85  
95  
90  
85  
80  
80  
VBUS = 9V  
VBUS = 12V  
VBUS = 15V  
VBUS = 20V  
VBUS = 9V  
VBUS = 12V  
VBUS = 15V  
VBUS = 20V  
75  
75  
70  
70  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Charging Current (A)  
Charging Current (A)  
VBAT = 8V, Fsw = 750 kHz with L2 = 2.2µH, PFM disabled  
Figure 7-3. 2s Battery Charge Efficiency, 750 kHz  
100  
VBAT = 8V, Fsw = 1.5 MHz with L1 = 1µH, PFM disabled  
Figure 7-4. 2s Battery Charge Efficiency, 1.5 MHz  
100  
95  
90  
85  
80  
75  
95  
90  
85  
80  
75  
VBUS = 15V  
VBUS = 20V  
VBUS = 15V  
VBUS = 20V  
70  
70  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Charging Current (A)  
Charging Current (A)  
VBAT = 12V, Fsw = 750 kHz with L2 = 2.2µH, PFM disabled  
VBAT = 12V, Fsw = 1.5 MHz with L1 = 1µH, PFM disabled  
Figure 7-5. 3s Battery Charge Efficiency, 750 kHz  
Figure 7-6. 3s Battery Charge Efficiency, 1.5 MHz  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.7 Typical Characteristics (continued)  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120) and L2 = 2.2µH (WE-  
LHMI-74437346022)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
VBUS = 20V  
2.5  
VBUS = 20V  
2.5  
0
0.5  
1
1.5  
2
3
3
3
0
0.5  
1
1.5  
2
3
3
3
Charging Current (A)  
Charging Current (A)  
VBAT = 16V, Fsw = 750 kHz with L2 = 2.2µH, PFM disabled  
VBAT = 16V, Fsw = 1.5 MHz with L1 = 1µH, PFM disabled  
Figure 7-8. 4s Battery Charge Efficiency, 1.5 MHz  
100  
Figure 7-7. 4s Battery Charge Efficiency, 750 kHz  
100  
95  
90  
85  
80  
95  
90  
85  
80  
VOTG = 12V  
VOTG = 9V  
VOTG = 12V  
VOTG = 9V  
VOTG = 5V  
75  
75  
70  
VOTG = 5V  
70  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
OTG Current (A)  
OTG Current (A)  
VBAT = 4.2V, Fsw = 750 kHz with L2 = 2.2 µH, PFM disabled  
VBAT = 4.2V, Fsw = 1.5 MHz with L1 = 1µH, PFM disabled  
Figure 7-9. 1s Battery OTG Efficiency, 750 kHz  
Figure 7-10. 1s Battery OTG Efficiency, 1.5 MHz  
100  
100  
95  
90  
85  
80  
95  
90  
85  
80  
VOTG = 12V  
VOTG = 9V  
VOTG = 12V  
VOTG = 9V  
75  
75  
VOTG = 5V  
VOTG = 5V  
70  
70  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
OTG Current (A)  
OTG Current (A)  
VBAT = 8.4V, Fsw = 750 kHz with L2 = 2.2µH, PFM disabled  
VBAT = 8.4V, Fsw = 1.5MHz with L1 = 1µH, PFM disabled  
Figure 7-11. 2s Battery OTG Efficiency, 750 kHz  
Figure 7-12. 2s Battery OTG Efficiency, 1.5 MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.7 Typical Characteristics (continued)  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120) and L2 = 2.2µH (WE-  
LHMI-74437346022)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
VOTG = 12V  
VOTG = 9V  
VOTG = 5V  
VOTG = 12V  
VOTG = 9V  
VOTG = 5V  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
OTG Current (A)  
OTG Current (A)  
VBAT = 12.6V, Fsw = 750 kHz with L2 = 2.2µH, PFM disabled  
VBAT = 12.6V, Fsw = 1.5 MHz with L1 = 1µH, PFM disabled  
Figure 7-13. 3s Battery OTG Efficiency, 750 kHz  
Figure 7-14. 3s Battery OTG Efficiency, 1.5 MHz  
100  
100  
95  
90  
85  
80  
95  
90  
85  
80  
VOTG = 12V  
VOTG = 9V  
VOTG = 12V  
VOTG = 9V  
75  
75  
VOTG = 5V  
VOTG = 5V  
70  
70  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
OTG Current (A)  
OTG Current (A)  
VBAT = 16.8V, Fsw = 750 kHz with L2 = 2.2µH, PFM disabled  
VBAT = 16.8V, Fsw = 1.5 MHz with L1 = 1µH, PFM disabled  
Figure 7-15. 4s Battery OTG Efficiency, 750 kHz  
Figure 7-16. 4s Battery OTG Efficiency, 1.5 MHz  
0
3
-3  
-6  
2
1
-9  
0
-12  
-1  
-2  
-3  
VBUS = 5V  
VBUS = 9V  
VBUS = 15V  
-15  
-18  
0
0.5  
1
IINDPM Register Setting (A)  
1.5  
2
2.5  
3
3.5  
2
4
6
8
10  
VINDPM Register Setting (V)  
12  
14  
16  
18  
20  
22  
VBAT = 8V, Fsw = 1.5MHz with L1 = 1µH  
VBAT = 8V, Fsw = 1.5MHz with L1 = 1µH  
Figure 7-17. Input Current Regulation (IINDPM) Accuracy  
Figure 7-18. Input Voltage Regulation (VINDPM) Accuracy  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
7.7 Typical Characteristics (continued)  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120) and L2 = 2.2µH (WE-  
LHMI-74437346022)  
3
2
0.8  
0.6  
0.4  
0.2  
0
PFM enabled  
PFM disabled  
1
0
-1  
-2  
-3  
5
6
7
8
9
10  
11  
12  
2
4
6
8
10 12  
VBAT (V)  
14  
16  
18  
20  
VOTG Register Setting (V)  
VBAT = 8.4V, Fsw = 1.5MHz with L1 = 1µH  
VBUS = 9V, Fsw = 1.5MHz with L1 = 1µH, ISYS = 0A, Charge  
Disabled  
Figure 7-19. OTG Voltage Regulation (VOTG) Accuracy  
Figure 7-20. Offset Voltage of SYS Regulation above VBAT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8 Detailed Description  
8.1 Overview  
The BQ25672 is a fully integrated switch-mode buck charger for 1 cell to 4 cell Li-ion battery and Li-polymer  
battery. For compact design and minimum components count, the charger integrates the switching MOSFETs,  
input and charging current sensing circuits, the battery FET (BATFET) and all the loop compensation of the buck  
converter.  
The charger supports narrow VDC (NVDC) power path management, in which the system is regulated at a  
voltage slightly higher than the battery voltage, but not drop below the minimum system voltage. The system  
keeps operating even when the battery is completely discharged or removed. When load power exceeds the  
input source rating, the battery gets into supplement mode and prevents the input source from being overloaded  
and the system from crashing.  
The optional dual-input source selector manages the power flowing from two different input sources. The host  
controls the input source selection through I2C with prioritizing the first available input source.  
To support fast charging using adjustable high voltage adapter (HVDCP), the device provides D+/D- handshake.  
The device is compliant with USB 2.0 and USB 3.0 power delivery specification with input current and voltage  
regulation. In addition, the Input Current Optimizer (ICO) allows the detection of maximum power point of an  
unknown input source. The BQ25672 also features a Maximum Power Point Tracking (MPPT) algorithm to  
optimize the energy drawn from a low-power photovoltaic panel. This MPPT algorithm measures the open-circuit  
voltage of the panel on a user-configurable period, then adjusts the VINDPM using the VOC_PCT setting to  
calculate the maximum power point as a percentage of the measured open-circuit voltage.  
Besides the I2C host controlled charging mode, BQ25672 also supports autonomous charging mode. After  
power up, the charging is defaulted enabled with all the registers default settings. The device can complete a  
charging cycle without any software engagements. It detects battery voltage and charges the battery in different  
phases: trickle charging, pre-charging, constant current (CC) charging and constant voltage (CV) charging. At  
the end of the charging cycle, the charger automatically terminates when the charge current is below a pre-set  
limit (termination current) in the constant voltage phase. When the full battery falls below the recharge threshold,  
the charger will automatically start another charging cycle.  
In the absence of input sources, BQ25672 supports USB On-the-Go (OTG) function, discharging the battery to  
generate an adjustable, buck-boost, 5V to 12V output voltage on VBUS with 10mV step size.  
The charger provides various safety features for battery charging and system operations, including battery  
temperature negative thermistor (NTC) monitoring, trickle charge, pre-charge and fast charge timers and over-  
voltage/over-current protections on the battery and the charger power input pin. The thermal regulation reduces  
charge current when the die temperature exceeds a programmable threshold. The STAT output of the device  
reports the charging status and any fault conditions. The INT pin immediately notifies host when fault occurs.  
The device also provides a 16-bit analog-to-digital converter (ADC) for monitoring charge current and input/  
battery/system voltages, the TS pin voltage and the die temperature. It is available in a QFN 4mm x 4mm, 29 pin  
package.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.2 Functional Block Diagram  
SW2  
BTST2  
PMID  
SW1  
BTST1  
REGN  
VBUS  
VVBUS_UVLOZ  
+
UVLO  
SYS  
PMID  
Q1  
+
REGN  
Q4  
REGN  
LDO  
VVBUS_OV  
EN_HIZ  
VBUS_OVP  
VOTG  
VO,REF  
VVBUS  
+
VVBUS  
VINDPM  
SYS  
+
Q2  
Q3  
VSYSMIN  
REGN  
REGN  
+
IIN  
BATSNS  
VBAT_REG  
+
+
+
+
IINDPM  
GND  
IC_TJ  
TREG  
ICHG  
ICHG_REG  
EN_CHARGE  
EN_OTG  
IQ1  
Q1_OCP  
+
+
+
+
IQ1_OCP  
GND  
EN_HIZ  
IQ2  
Q2_OCP  
Q3_OCP  
IQ2_OCP  
IQ3  
DC-DC  
CONTROL  
IQ3_OCP  
VVBUS  
OTG_OVP  
+
+
+
+
+
VOTG_OVP  
IQ4  
Q4_OCP  
CONVERTER  
CONTROL  
STATE  
IQ4_OCP  
VPOORSRC  
VOTG_UVP  
VVBUS  
+
+
POORSRC  
TSHUT  
OTG_UVP  
IBUS_OCP  
REF DAC  
VVBUS  
MACHINE  
ILIM_HIZ  
PROG  
VVBUS  
IC_TJ  
TSHUT  
IBUS  
VBUS_OVP  
+
+
VVBUS_OVP  
IBUS_OCP  
IBUS  
ICHG  
VBUS  
VAC1  
VAC2  
VBAT  
VSYS  
VTS  
BATSNS  
VBAT_OVP  
VBAT_OVP  
VSYS  
SYS_OVP  
VSYS_OVP  
VSYS_SHORT  
VSYS  
SYS_SHORT  
ADC  
VBTST2-VSW2  
VBTST1-VSW1  
REFRESH2  
REFRESH1  
+
+
VBTST2_REFRESH  
VBTST1_REFRESH  
TDIE  
TS  
VTS  
BATTERY  
SENSING  
THERMISTOR  
SYS  
TS_SUSPEND  
RECHRG  
STAT  
VREG - VRECHG  
+
+
+
+
+
ICHG  
BATSNS  
BATFET  
ICHG  
ITERM  
TERMINATION  
SYSMIN_REG  
BATUVLO  
VBAT_REG  
ICHG_REG  
BATFET  
CONTROL  
CHARGE  
CONTROL  
STATE  
VSYSMIN  
BATSNS  
INT  
BAT  
BQ25672  
Block Diagram  
MACHINE  
VBAT_UVLOZ  
BATSNS  
VBAT_SHORT  
BATSNS  
BAT_SHORT  
BATSNS  
BATSNS  
AMP  
BATP  
I2C  
INTERFACE  
SFET  
CONTROL  
SCL  
SDA  
CHARGE  
PUMP  
MUX  
CONTROL  
INPUT SELECTOR  
SDRV  
BAT  
VAC1 VAC2  
ACDRV1 ACDRV2  
CE  
QON  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.3 Feature Description  
8.3.1 Device Power-On-Reset  
The internal bias circuits are powered from the higher voltage, whichever VVBUS or VBAT through an integrated  
power selector. The valid voltage to power up the device has to be greater than either VVBUS_UVLOZ or  
VBAT_UVLOZ thresholds. When VVBUS < VVBUS_UVLOZ, VBAT < VBAT_UVLOZ and a voltage higher than VAC_PRESENT  
is present at either VAC1 or VAC2, the device will be powered from VAC1 or VAC2, depending on which comes  
first.  
Typically 5 ms after a valid voltage is first present at either VBAT, VBUS or VAC1 / VAC2, the charger wakes up,  
starts the ACFET-RBFET detection, reading the resistance at PROG pin, then configures the charger power  
on reset (POR) register setting accordingly. Approximately 20ms after input voltage presence, the I2C registers  
become accessible to the host.  
8.3.2 PROG Pin Configuration  
At POR, the charger detect the PROG pin pull down resistance, then sets the charger default POR switching  
frequency and the battery cell count. Please follow the resistance list in the table below to set the desired  
POR switching frequency and battery cell count. The surface mount resistor with ±1% or ±2% tolerance is  
recommended.  
Table 8-1. PROG Pin Resistance to Set Default Switching Frequency and Battery Cell Count  
SWITCHING FREQUENCY  
CELL COUNT  
TYPICAL RESISTANCE AT PROG PIN  
1.5 MHz  
1s  
1s  
2s  
2s  
3s  
3s  
4s  
4s  
3.0 kΩ  
4.7 kΩ  
750 kHz  
1.5 MHz  
6.04 kΩ  
8.2 kΩ  
750 kHz  
1.5 MHz  
10.5 kΩ  
13.7 kΩ  
17.4 kΩ  
27.0 kΩ  
750 kHz  
1.5 MHz  
750 kHz  
Some of the charging parameters default values are determined by the battery cell count identified by PROG pin  
configuration, which are summarized in the table below.  
Table 8-2. Charging Parameters Dependent on Battery Cell Count  
CELL (REG0x0A[7:6])  
ICHG (REG0x03/04)  
VSYSMIN (REG0x00[5:0])  
VREG (REG0x01/02)  
VREG Range  
1s  
2s  
3s  
4s  
1 A  
2 A  
2 A  
1 A  
3.5 V  
7 V  
9 V  
12 V  
4.2 V  
8.4 V  
12.6 V  
16.8 V  
14 V - 18.8 V  
3 V - 4.99 V  
5 V - 9.99 V  
10 V - 13.99 V  
After POR, the host can program the ICHG and VSYSMIN registers to any values within the ranges defined in  
the register tables. However, when programming the battery charging voltage (VREG), the host must ensure the  
VREG value falling into the right range associated with the CELL register (REG0x0A[7:6]) setting defined in the  
table above. When the CELL register is changed, the ICHG, VSYSMIN and VREG registers are reset to the  
POR default values associated with the CELL setting.  
For example, if the PROG pin resistance is a 2s battery configuration, the default POR CELL, ICHG, VSYSMIN  
and VREG settings will be 2s, 2 A, 7 V and 8.4 V respectively. After POR, the host can change ICHG and  
VSYSMIN to any other values, and change VREG to any other values between 5V and 9.99V. With the CELL  
bits stay at 2s battery configuration, when REG_RST bit or watchdog timer expired, the registers are reset to  
default values with ICHG, VSYSMIN and VREG automatically return to 2A, 7V, 8.4V respectively.  
When the CELL register is 2s battery configuration, any write out of the range of VREG (5 V - 9.99 V) is ignored  
by the charger. If VREG needs to be programmed out of the 5 V - 9.9 V range, like 11 V, the CELL bits have to  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
be changed to 3s setting. The ICHG, VSYSMIN and VREG registers are reset to the 3s POR default values first,  
which are 1 A, 9 V and 12.6 V. After that, the host can program VREG in the range of 10 V - 13.99 V. In addition,  
when the CELL setting is changed to 3s, ICHG, VSYSMIN and VREG return to 1 A, 9 V and 12.6 V, when the  
registers are reset to the default values by REG_RST bit or the watchdog timer expiration.  
8.3.3 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above UVLO threshold (VBAT_UVLOZ), the BATFET turns on and  
connects the battery to the system. The REGN LDO stays off to minimize the quiescent current. The low RDS(ON)  
of BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run  
time.  
The POR sequence when the charger is powered from VBAT is described as below:  
1. 5 ms (typical) after VBAT > VBAT_UVLOZ, the charger starts ACFET-RBFET detection, reads the resistance at  
the PROG pin, and then configures the charger POR register set accordingly.  
2. 20 ms (typical) after VBAT > VBAT_UVLOZ, the I2C registers become accessible to the host..  
3. The charger turns the battery FET on to allow the battery to power the system.  
8.3.4 Device Power Up from Input Source  
When an input source is present at VBUS, the device checks the input source voltage to turn on REGN LDO  
and all the bias circuits. It detects and sets the input current limit before the buck-boost converter is started. The  
power up sequence from input source is as listed below:  
1. The device begins the POR sequence when VVBUS > VVBUS_UVLOZ if there is a direct path from input to  
VBUS, or otherwise when VAC1 or VAC2 > VAC_PRESENT  
.
2. 5 ms (typical) after a valid voltage is first present at either VBUS or VAC1/VAC2 pins, the charger starts  
the ACFET-RBFET detection, reads the resistance at PROG pin, and then configures the charger power on  
reset (POR) default register settings accordingly.  
3. If ACFET-RBFET are detected on the input source pathway, the corresponding ACDRV turns on the pair.  
4. 20 ms (typical) after valid voltage voltage presence, the I2C registers become accessible to the host.  
5. As soon as VVBUS > VVBUS_UVLOZ (in step 1 or after step 3), VBUS_PRESENT_STAT is set to 1. 150 ms  
(typical) later, REGN is turned on.  
6. Once REGN is on, the charger starts the poor source detection. After a good input source is detected  
(typically 30 ms if there is no retry), PG_STAT is set to 1, then the ADC reads the ILIM_HIZ pin voltage and  
VBUS voltage and updates the IINDPM and VINDPM registers accordingly.  
7. When the poor source detection completes, the charger performs D+/D- detection and updates the  
VBUS_STAT and IINDPM registers accordingly.  
8. 30 ms (typical) after the D+/D- detection completes, the converter starts switching to power SYS and charge  
the battery.  
8.3.4.1 Power Up REGN LDO  
When the device is powered up from VBUS, the LDO is turned on when VVBUS_PRESENT < VBUS < VVBUS_OVP  
.
When the device is powered up from battery only condition, the LDO is turned on at either one of the following  
conditions:  
The charger is operated in the OTG mode  
VBAT is higher than 3.2V, and ADC TS channel is on (ADC_EN = 1 and TS_ADC_DIS = 0)  
The REGN LDO supplies internal bias circuits and the MOSFETs gate drivers. The pull-up rails of ILIM_HIZ, TS,  
and STAT can be connected to REGN. The INT pin pull-up rail is recommended to be an external 1.8V or 3.3V  
voltage source, rather than REGN, because at battery only condition, the REGN might not be available. Except  
the charger related pull up rails, the REGN is not recommended to source any other external circuit. The REGN  
has to power the internal MOSFETs gate drivers, which is very critical for the charger normal operation.  
8.3.4.2 Poor Source Qualification  
After the REGN LDO powers up, the device checks the current capability of the input source. The input source  
has to meet the following requirements in order to move forward to the next power on steps.  
1. VBUS voltage below VVBUS_OVP  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Once the conditions are met, the status register bit PG_STAT is set high and the INT pin is pulsed to signal the  
host.  
If VBUS_OVP is detected (failing condition 1 above), an INT pulse is asserted to alert the host if the  
VBUS_OVP_MASK = 0 or the PG_MASK = 0. The VBUS_OVP_STAT and VBUS_OV_FLAG fault registers  
get set, and the PG_STAT bit remains low. The device automatically retries input source qualification once the  
over-voltage fault goes away.  
If a poor source is detected (when pulling IPOORSRC, the VBUS voltage drops below VPOORSRC), the EN_HIZ bit  
is set to 1, PG_STAT bit remains low, PG_FLAG will be set to 1, and an INT pulse will be asserted if PG_MASK  
= 0. The device will repeat the poor source qualification routine every 7 minutes until either the adapter is  
removed or the source is qualified. Each failed poor source qualification will cause EN_HIZ and PG_FLAG to  
be set to 1, and an INT pulse will be asserted if PG_MASK = 0. In the 7 minute interim between poor source  
qualification attempts, the host may set EN_HIZ = 0 to force an immediate retry of the poor source qualification.  
The EN_HIZ bit is cleared automatically when the adapter is plugged in, so cycling the adapter will also force an  
immediate retry of the poor source qualification.  
8.3.4.3 ILIM_HIZ Pin  
At POR, before the charger converter starts switching, the charger ADC reads the ILIM_HIZ pin voltage, and  
calculates the input current limit (ILIM) set by this ILIM_HIZ pin, according to:  
VILIM_HIZ = 1V + 800 mΩ × ILIM  
(1)  
The ILIM_HIZ pin sets a high clamp for the IINDPM register. If the IINDPM setting from the D+/D- detection or  
the POR default 3A IINDPM setting is higher than the ILIM clamp, the IINDPM register stays at this ILIM clamp.  
In addition, the host cannot program the IINDPM register to any values higher than this ILIM clamp after POR,  
unless the register bit EN_EXTILIM is set to 0.  
The ILIM_HIZ pin can be biased from a resistor voltage divider tied to either REGN or another external voltage  
source. For both the forward charging mode and the OTG mode, when the ILIM_HIZ pin is pulled lower than  
0.75V, the charger stops switching and REGN stays on. The charger resumes switching if the ILIM_HIZ pin  
voltage becomes higher than 1V.  
If the ADC reads the ILIM_HIZ pin voltage is lower than 1.08V (1V + 800 mΩ × 100 mA), the charger considers  
the ILIM clamp to be 100mA, which is the minimal setting of the IINDPM register.  
8.3.4.4 Default VINDPM Setting  
In the POR sequence, right after the D+/D- detection, the charger initiates an ADC reading on the VBUS pin  
voltage without any load current (VBUS at no load condition, VBUS0) before the converter starts switching. The  
default VINDPM threshold is set to be VBUS0 - 1.4 V (VBUS0 >= 7 V) or VBUS0 - 0.7V (VBUS0 < 7 V).  
The VBUS0 can be remeasured at any time by setting the register bit FORCE_VINDPM_DET=1. The converter  
stops switching, the ADC measures the VBUS voltage, the VINDPM register field is updated, and then the  
FORCE_VINDPM_DET bit returns to 0. The force VINDPM detection only can be done when VSYS_STAT  
= 0 (VBAT > VSYSMIN), otherwise stopping the converter would cause VSYS to drop below VSYSMIN. If  
VSYS_STAT = 1 (VBAT < VSYSMIN), VBUS0 measurement does not start, the FORCE_VINDPM_DET bit  
resets to 0 and the VINDPM register retains its current value. The host must ensure there is a battery present  
prior to setting FORCE_VINDPDM_DET = 1, or to allow system to be supported by the battery during detection.  
When the measured VBUS0 is out of the VINDPM register range, the changer sets the VINDPM register to the  
minimum value (3.6V) or maximum (22V) value as appropriate.  
8.3.4.5 Input Source Type Detection  
After the input source is qualified, the charger runs Input Source Type Detection if AUTO_INDET_EN bit is set  
(default enabled).  
The charger follows the USB Battery Charging Specification 1.2 (BC1.2) to detect SDP/CDP/DCP/HVDC  
input sources and the non-standard adapters through the USB D+/D- lines. After BC1.2 detection is  
completed, the BC1.2_DONE_STAT bit is set to 1, and an INT pulse and BC1.2_DONE_FLAG are asserted  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
if BC1.2_DONE_MASK = 0. In addition, when USB DCP is detected, the charger initiates adjustable high voltage  
adapter handshake on D+/D- if HVDCP detection is enabled by the host. The input type might be changed after  
HVDCP detection is completed.  
After input source type detection, the following registers are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. VBUS_STAT bits change to reflect the detected source  
After detection is completed, the host can over-write IINDPM registers to change the input current limit if  
necessary. The charger input current is limited by the lower of IINDPM register or ILIM_HIZ pin (when  
EN_EXTILIM = 1) regardless of Input Current Optimizer (ICO) setting. When AUTO_INDET_EN is disabled,  
the Input Source Type Detection is bypassed, and the Input Current Limit (IINDPM) register remains unchanged  
from its previous value.  
8.3.4.5.1 D+/D– Detection Sets Input Current Limit  
The device contains a D+/D- based input source detection to set the input current limit. The D+/D- detection has  
four major steps: Data Contact Detect (DCD), Primary Detection, Secondary Detection and High Voltage DCP  
(HVDCP) detection.  
The D+/D- Primary Detection includes standard USB BC1.2 and non-standard adapters. When an input source  
is plugged in, the device starts standard USB BC1.2 detection first. The USB BC1.2 is capable of identifying  
Standard Downstream Port (SDP), Charging Downstream Port (CDP) and Dedicated Charging Port (DCP). The  
non-standard detection is used to distinguish vendor specific adapters based on the unique dividers they apply  
to the D+/D- pins. The secondary detection is used to distinguish two types of charging ports, CDP and DCP.  
A CDP usually requires the attached device to send back an enumeration within 2.5 seconds of CDP plug-in.  
Otherwise, the port will power cycle back to SDP even the D+/D- detection indicates CDP. This enumeration  
must be handled externally to the charger.  
Divider 1: 2.1A  
Non-Standard  
Adapter  
Divider 2: 2A  
Divider 3: 1A  
Divider 4: 2.4A  
DCP  
(3.25A)  
Adapter Plug-in  
or  
FORCE_INDET  
Data Detection  
Contact  
DCP/CDP  
Primary Detection  
(PD)  
Secondary  
Detection  
HVDCP  
Detection  
VBUS Detection  
(DCD)  
USB BC1.2 Standard  
SDP  
(500mA)  
CDP  
(1.5A)  
HVDCP  
(1.5A)  
Figure 8-1. D+/D– Detection Flow  
Table 8-3. Non-Standard Adapter Detection  
NON-STANDARD  
D+ THRESHOLD  
D– THRESHOLD  
INPUT CURRENT LIMIT  
ADAPTER  
Divider 1  
Divider 2  
Divider 3  
Divider 4  
VD+ within V2P8_VTH  
VD+ within V1P2_VTH  
VD+ within V2P0_VTH  
VD+ within V2P8_VTH  
VD– within V2P0_VTH  
VD+ within V1P2_VTH  
VD– within V2P8_VTH  
VD– within V2P8_VTH  
2.1 A  
2A  
1 A  
2.4 A  
When a Dedicated Charging Port (DCP) is detected, the charger initiates two high voltage adapter (HVDCP)  
handshakes to enable the corresponding adapter to output a higher voltage for fast charging. The HVDCP  
detection can be enabled by setting EN_HVDCP=1 and then setting either EN_9V=1 to increase the input  
voltage to 9V or EN_12V=1 to increase the input voltage to 12V. When EN_12V and EN_9V are both set to 1,  
the charger starts 12V first.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
After the input source type detection is done, the DPDM_STAT bit is set to 0, an INT pulse and  
DPDM_DONE_FLAG are asserted if DPDM_DONE_MASK = 0. In addition, REG06_Input_Current_Limit and  
VBUS_STAT are updated as shown in Table 8-4.  
Table 8-4. Input Current Limit Setting from D+/D– Detection  
D+/D– DETECTION  
INPUT CURRENT LIMIT (IINDPM)  
VBUS_STAT_3:0  
USB SDP  
500 mA  
1.5 A  
3.25 A  
1.5A  
3 A  
0001  
USB CDP  
0010  
USB DCP  
0011  
Adjustable High Voltage DCP (HVDCP)  
Unknown Adapter  
0100  
0101  
Non-Standard Adapter, Divider 1  
Non-Standard Adapter, Divider 2  
Non-Standard Adapter, Divider 3  
Non-Standard Adapter, Divider 4  
2.1 A  
2 A  
0110  
0110  
1 A  
0110  
2.4 A  
0110  
8.3.4.5.2 HVDCP Detection Procedure  
Figure 8-1 shows that an HVDCP source is first qualified as a DCP source in the USB BC1.2 standard detection  
stage, then qualified in the following HVDCP detection stage as an HVDCP source. When the HVDCP is first  
qualified as a DCP, the charger sets an IINDPM limit of 3.25A. The IIDPM is then updated to the HVDCP limit of  
1.5A after the HVDCP handshake completes. In some cases the higher IINDPM limit of 3.25A may interfere with  
the source's ability to transition to 9V or 12V if the transition is attemped before the IINDPM is updated to 1.5A.  
The recommended procedure for enabling detection of HVDCP sources is completed in the following steps:  
Before adapter insertion, the charger is configured with AUTO_INDET_EN = 1 and HVDCP_EN = 0. EN_12V  
and EN_9V are set as desired for the system.  
When an adapter is inserted, it will be detected as SDP, CDP, DCP or a Non-Standard adapter and an I2C  
interrupt is sent to the host. If any detection other than DCP is made, the host proceeds as usual.  
If the adapter is detected as DCP (VBUS_STAT[3:0] = 0011), the host first changes the Input Current Limit  
register to 1.5A and then changes HVDCP_EN = 1.  
After HVDCP detection is complete, the host sets HVDCP_EN = 0 to disable HVDCP support in preparation  
for the next input source detection sequence.  
8.3.4.5.3 Connector Fault Detection  
The host can apply different status on D+ pin including HIZ, 0V, 0.6V, 1.2V, 2.0V, 2.7V, 3.3V or "short to D-", and  
different status on D- pin including HIZ, 0.6V, 1.2V, 2.0V, 2.7V or 3.3V. The device also provides ADC readings of  
the D+ and D- pin voltages. The host can use the information to determine if connector is normal or in any faults.  
The voltage values are set using the DPLUS_DAC and DMINUS_DAC register. The D+/D- pins are only applied  
at the VAC1 input source. If the DPLUS_DAC or DMINUS_DAC are programmed when the adapter is plugged in  
and the D+/D- detection is in process, the device will ignore the register programming.  
8.3.5 Dual-Input Power Mux  
The BQ25672 has two ACDRV drivers to control two optional sets of back-to-back power N-FETs, selecting  
and managing the power from two different input sources. In the POR sequence, the charger detects whether  
the ACFETs-RBFETs are present, then updates the ACRB1_STAT or ACRB2_STAT status bits accordingly.  
The ACFET1-RBFET1 or ACFET2-RBFET2 can be controlled by setting the register bit EN_ACDRV1 or  
EN_ACDRV2. If the external ACFET-RBFET is not present, then tie VAC1 / VAC2 to VBUS and connect  
ACDRV1 / ACDRV2 to GND. The power MUX drivers support three different application cases, which are  
elaborated in detail below.  
8.3.5.1 VBUS Input Only  
In this scenario, only single input is connected to VBUS directly, no back-to-back power MOSFETs are required.  
VAC1 and VAC2 are recommended to be shorted to VBUS. Both ACDRV1 and ACDRV2 need to be pulled down  
to GND, as shown in the figure below.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
ACDRV2  
VAC2  
VBUS  
PMID  
VBUS  
ACDRV1  
VAC1  
Figure 8-2. Single Input Connected to VBUS Directly Without ACFET-RBFET  
At POR, the charger detects no ACFETs-RBFETs are present by sensing that the ACDRV1 and ACDRV2  
pins both shorted to GND.  
The charger updates the status bits ACRB1_STAT and ACRB2_STAT to 0, and locks EN_ACDRV1 = 0 and  
EN_ACDRV2 = 0.  
VAC1 and VAC2 are connected to VBUS directly. The ACDRV1 and ACDRV2 pins always stay low.  
8.3.5.2 One ACFET-RBFET  
In this configuration, only ACFET1-RBFET1 is present, ACFET2-RBFET2 is not. VAC1 is tied to the drain of  
ACFET1, ACDRV1 is connected to the gate of ACFET1. VAC2 is shorted to VBUS, ACDRV2 is pulled down to  
GND. This structure is illustrated in the figure below, which is able to support either single input (one from VAC1  
to VBUS through ACFET1-RBFET1, or one to VBUS directly) or dual-input (one from VAC1 to VBUS through  
ACFET1-RBFET1, the other one connected to VBUS directly) applications.  
VRX  
Wireless Charging  
ACDRV2  
VAC2  
PMID  
VBUS  
VIN1  
ACFET1  
RBFET1  
ACDRV1  
VAC1  
Figure 8-3. One ACFET-RBFET Structure Supporting One Input at VAC1 and/or One Input at VBUS  
At POR, the charger detects only ACFET1-RBFET1 presented, updates ACRB1_STAT to 1 and keeps  
ACRB2_STAT as 0.  
The charger locks the register bit EN_ACDRV2 at 0, and the ACDRV2 pin will always stay low.  
When a valid input is presented at VAC1, the charger will set EN_ACDRV1 = 1 and turn ACFET1-RBFET1  
on.  
To swap from the input at VAC1 to the input at VBUS, the host has to turn off the ACFET1-RBFET1 first by  
setting DIS_ACDRV=1 (forcing EN_ACDRV1 = 0), then enable the other input source which is connected to  
VBUS directly.  
In contrast, to swap from the input at VBUS to the input at VAC1, the host has to disable the input source  
connected to VBUS first, then turn on the ACFET1-RBFET1 by setting DIS_ACDRV = 0.  
8.3.5.3 Two ACFETs-RBFETs  
In this scenario, both ACFET1-RBFET1 and ACFET2-RBFET2 are present. VAC1 / VAC2 is tied to the drain  
of ACFET1 / ACFET2, ACDRV1 / ACDRV2 is connected to the gate of ACFET1 / ACFET2. This structure is  
developed to support dual-input connected at VA1 and VAC2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
RBFET2  
ACFET2  
VIN2  
ACDRV2  
VAC2  
PMID  
VBUS  
VIN1  
ACFET1  
RBFET1  
ACDRV1  
VAC1  
Figure 8-4. Two ACFETs-RBFETs Structure Supporting One Input at VAC1 and One Input at VAC2  
At POR, the charger detects both ACFET1-RBFET1 and ACFET2-RBFET2 presented, then updates  
ACRB1_STAT and ACRB2_STAT to 1.  
EN_ACDRV1 and EN_ACDRV2 are programmable in this case.  
The ACDRV turns on the ACFET-RBFET of the port with a valid input presented first. The other ACFET-  
RBFET stays off, even if there is an adapter being plugged in later.  
Programming EN_ACDRV1 = 1, EN_ACDRV2 = 1 at the same time to turn on both ACFET1-RBFET1 and  
ACFET2-RBFET2 is not allowed, which will be ignored by the charger.  
Assuming two valid voltages are presented at VAC1 and VAC2, ACFET1-RBFET1 turns on, connecting the  
input source at VAC1 to VBUS. If the voltage at VAC1 becomes invalid because of VAC_UVLO, VAC_OV  
or IBUS_OC, the charger swaps the input from VAC1 to VAC2, by turning off ACFET1-RBFET1 and then  
turning on ACFET2-RBFET2, without any host engagement. Swapping the input from VAC1 to VAC2 also  
can be controlled by the host. For example, to swap VAC1 to VAC2, the host can program REG0x13[7:6]  
(EN_ACDRV2, EN_ACDRV1) from 01b to 10b. The same control logic is applied to the input swapping from  
VAC2 to VAC1.  
The waveforms below show the charger input transition from VAC1 to VAC2 when VAC1 is disconnected. At the  
beginning, VAC1 = 12V and VAC2 = 8V are both present. When VAC1 = 12V is gone, the charger accomplishes  
the input source auto transition from VAC1 to VAC2 without host control.  
Powered by VAC1  
Powered by VAC2  
SW1  
Figure 8-5. Input Source Auto Transition from VAC1 to VAC2 when VAC1 is Gone  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
When VAC2 has been connected, even if VAC1 is re-plugged in again later, the charger still stays connecting  
VAC2 as the input source, which is illustrated as the waveforms below. The host has to be involved to swap the  
input source from VAC2 back to VAC1 if necessary.  
SW1  
Powered by VAC2  
Figure 8-6. VAC1 Re-Plugged in When VAC2 Connected as the Charger Input  
Some other critical notes for the application of this dual input power MUX are list below:  
The register bits, EN_ACDRV1 and EN_ACDRV2, are not only to control the turning on / off of ACFETs-  
RBFETs but also to indicate the on / off status of the FETs.  
The charger also provides the fault protection by turning ACFETs-RBFETs off, such as VAC_OVP and  
IBUS_OCP.  
With only one valid input presented at either VAC1 or VAC2, the ACFET1-RBFET1 and ACFET2-RBFET2  
can not be both turned off by setting REG0x13[7:6] = 00b, because the charger is always trying to connect  
the only one input voltage available to power the charger. At this condition, the host has to set DIS_ACDRV =  
1 to force both two ACFETs-RBFETs off. With two input sources presented at both VAC1 and VAC2, the host  
can turn of the two ACFETs-RBFETs by setting either REG0x13[7:6] = 00 or DIS_ACDRV = 1.  
In the transition from one input to the other one, after one ACFET-RBFET is turned off, the other one turns on  
until the VBUS voltage drops lower than VBUS_PRESENT. The converter stops switching for a short time period.  
When no battery presented or battery depleted, the system output would fall. The user has to be aware of this  
and avoid the input source swap when the battery voltage is too low.  
8.3.6 Buck Converter Operation  
The charger employs a synchronous buck converter that allows charging the 1s to 4s battery from an input  
power source.  
With a battery attached at BAT and input power at VBUS, the charger can provide at least the MINSYS voltage  
at SYS and charge current for the battery at BAT. Once the battery voltage reaches the MINSYS voltage, the  
SYS voltage follows the BAT voltage up. With no battery attached to BAT and input power at VBUS, the voltages  
at SYS and BAT vary depending on the whether or not charge is enabled.  
1. No battery or battery removed and charge disabled (by CE pin or EN_CHG register or thermistor removed  
from TS pin) - The charger keeps the BAT pin voltage at low-level, steady-state voltage and regulates SYS  
pin to MINSYS. The host can monitor the ADC BAT pin voltage and TS fault register to determine when a  
valid battery is attached.  
2. No battery or battery removed while charge enabled and TS pin funtion is disabled - The charger  
continuously tries to charge the BAT capacitance, typically resulting in the BAT voltage alternating between  
a low level and BATOVP fault. The SYS voltage follows the battery voltage up, potentially reaching SYSOVP  
fault but the converter never allows SYS to fall below the MINSYS threshold even if the BAT voltage falls  
below MINSYS. In order to determine if a battery is attached, the host must perididcally disable charge, force  
IBAT discharge current and then read the ADC BAT pin voltage. Alternatively, the host can monitor the INT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
pin for rapid interrupts and then read the charge status bits for fast (<1 s) toggling between charging, taper  
and termination.  
8.3.6.1 Force Input Current Limit Detection  
In host mode, the host can force the device to run Input Current Limit Detection by setting FORCE_INDET  
bit to 1. After the detection is completed, FORCE_INDET bit automatically returns to 0. After the detection is  
completed, the input REG06_Input_Current_Limit (IINDPM), and the VBUS_STAT bits may be changed by the  
device according to the detection result.  
8.3.6.2 Input Current Optimizer (ICO)  
The device provides Input Current Optimizer (ICO) to identify maximum power point in order to avoid overloading  
the input source. The algorithm automatically identifies maximum input current limit of an unknown power source  
and sets the charger IINDPM register properly, in order to prevent from entering the charger input voltage  
(VINDPM) regulation. This feature is disabled by default at POR (EN_ICO = 0) and only activates when EN_ICO  
bit is set to 1.  
After DCP type input source is detected based on the procedures described in Section 8.3.4.5, the algorithm  
runs automatically if EN_ICO bit is set. The algorithm can also be forced to execute by setting FORCE_ICO bit  
regardless of input source type detected. Please note that EN_ICO = 1 is required for FORCE_ICO to work.  
The actual input current limit used by the Dynamic Power Management is reported in the ICO_ILIM register  
whether set by ICO if enabled or IINDPM register if not. In addition, the current limit is clamped by the ILIM_HIZ  
pin unless EN_EXT_ILIM bit is 0 to disable the ILIM_HIZ pin function.  
When V(BAT) > VMINSYS, the ICO algorithm starts with the maximum allowed input current as reported in  
ICO_ILIM register as 500 mA then continually increases this limit until the optimal limit is found. When VBAT <  
VSYSMIN, the battery voltage can be too low to supplement a large system load if the charger buck converter  
is limited to 500 mA and then ramped up by the ICO algorithm. Therefore, when a VBAT < VSYSMIN, the  
ICO algorithm starts with the maximum allowed input current as reported in ICO_ILIM register to the input  
current-limit register value in REG0x06 and then continually decreses this limit until the optimal limit is found.  
Once the optimal input current is identified, the ICO_STAT[1:0] and ICO_FLAG bits are set. The actual input  
current is reported in the ICO_ILIM register and does not change unless the algorithm is triggered again by the  
following events :  
1. A new input source is plugged-in, or EN_HIZ bit is toggled  
2. IINDPM register is changed  
3. VINDPM register is changed  
4. FORCE_ICO bit is set to 1  
5. VBUS_OVP event  
These events also reset the ICO_STAT[1:0] bits to 01  
8.3.6.3 Maximum Power Point Tracking for Small PV Panel  
The device implements a simple algorithm to track the maximum power point (MPP) when the input source is a  
solar panel. The I-V and P-V curves of a solar panel are most strongly dependent on irradiation and temperature.  
The MPP is most commonly located between 70%~90% of the Open Circuit Voltage (VOC) of the solar panel.  
The algorithm automatically and periodically detects the charger input source VOC, and sets the VINDPM to be  
a ratio of the measured VOC. It is recommended to set the charging current to the maximum value, so that the  
VINDPM is always triggered and activated. The MPPT algorithm is disabled by default at POR (EN_MPPT = 0).  
The algorithm runs automatically when EN_MPPT bit is set to 1.  
Similar to the FORCE_VINDPM_DET feature, when the battery voltage is lower than VSYSMIN (VSYS_STAT  
= 1), the MPPT algorithm can not be enabled. The EN_MPPT bit will be reset back to 0 if it is written to  
1. In the MPPT process, the buck-boost charger stops switching and keeps in the non-switching status for a  
time period programmed by VOC_DLY[1:0]. When the charger stops switching, the system is powered by the  
battery discharging. Then the charger measures the open-circuit voltage of the input soruce attached at VBUS  
and updates the VINDPM to be VOC_PCT[2:0]*VOC. The converter starts up again for the VOC_RATE[1:0]  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
time interval, stops switching for another VOC_DLY[1:0], measures VOC, and updates the VINDPM register to  
complete the next cycle. When VBUS goes below VBUS_PRESENT, the EN_MPPT bit will be reset to 0, and forced  
to be 0 even if the host writes it to 1.  
For the EN_ICO, FORCE_VINDPM_DET and EN_MPPT three register bits, only one of them can be set to 1 at  
a given time. If one of them is enabled, the charger will block the host from enabling the other two features until  
the first is disabled.  
8.3.6.4 Pulse Frequency Modulation (PFM)  
In order to improve converter light-load efficiency, the device switches to PFM control at light load condition.  
The effective switching frequency decreases accordingly as load current decreases. The PFM operation can be  
disabled by setting PFM_FWD_DIS = 1. With PFM disabled, the converter stays at the PWM mode switching  
frequency and transitions into DCM operation at light load condition. The minimum effective switching frequency  
in PFM can be limited to 25 kHz to eliminate the audible noise concern if the out of audio (OOA) feature is  
enabled by setting DIS_FWD_OOA = 0. The host can disable the OOA by setting DIS_FWD_OOA = 1, which  
may result in the converter effective switching frequency dropping below 25 kHz at extremely light load. The  
PFM operation of OTG mode can be independently controlled using the PFM_OTG_DIS and DIS_OTG_OOA  
bits.  
8.3.6.5 Device HIZ State  
The charger enters HIZ mode when EN_HIZ bit is set to 1. The HIZ mode refers to a charger state, in which the  
REGN LDO is off, and the converter stops switching even if the adapter is present. Similar to the battery only  
condition, the charger is in a low quiescent current mode, turns off the ADC and turns on the BATFET to support  
the system load. The ADC can be re-enabled during HIZ by setting EN_ADC =1.  
Some of the faults like VBUS_OVP, VSYS_OVP, VBAT_OVP and OTG_OVP, force only the converter to stop  
switching but keep the REGN on. While some of the faults like VSYS_SHORT and IBUS_OCP, force the charger  
into HIZ mode by setting EN_HIZ=1. More details could be found in the Section 8.3.13.  
8.3.7 USB On-The-Go (OTG)  
8.3.7.1 OTG Mode to Power External Devices  
The device supports the OTG operation to deliver power from the battery to other external devices through the  
USB ports. The OTG voltage regulation is set in VOTG[10:0] register bits. The OTG current regulation is set in  
IOTG[6:0] register bits. To enable the OTG operation, the following conditions have to be valid:  
The battery voltage is higher than VBAT_OTG rising threshold, and not trigger the VBAT_OVP protection.  
The VBUS is below VVBUS_UVLO  
The voltage at TS pin is within the range configured by BHOT and BCOLD register bits  
.
If the ACFET1-RBFET1 and the ACFET2-RBFET2 are not detected (ACRB1_STAT = 0 and ACRB2_STAT = 0)  
at POR, the converter starts up with typical 5ms delay after the EN_OTG bit is set to 1, then the VBUS voltage  
ramps up to the VOTG register setting.  
The following cases explain the charger OTG mode behaviors when the ACFET1-RBFET1 or/and ACFET2-  
RBFET2 are present.  
If only ACRB1_STAT=1 OR only ACRB2_STAT = 1, which means only one input ACFET-RBFET is present,  
the converter stays in the non-switching mode after the EN_OTG bit is set, until the host writes EN_ACDRV1  
= 1 (when only ACRB1_STAT = 1) or EN_ACDRV2 = 1 (when only ACRB2_STAT = 1). The converter starts  
up with 5ms delay after the EN_ACDRV1 or EN_ACDRV2 bit is set to 1, then VBUS voltage ramps up to the  
VOTG register setting.  
If both ACRB1_STAT = 1 AND ACRB2_STAT = 1, which means two input ACFET-RBFET are present,  
the converter stays in the non-switching mode after the EN_OTG bit is set, until the host writes either  
EN_ACDRV1 = 1 or EN_ACDRV2 = 1. The converter starts up with 5ms delay after the EN_ACDRV1 or  
EN_ACDRV2 bit is set to 1, then VBUS voltage ramps up to the VOTG register setting.  
Regardless of ACRB1_STAT and ACRB2_STAT, if DIS_ACDRV = 1, the ACDRV is disabled. The converter  
starts up with 5ms delay after the EN_OTG bit is set to 1, then VBUS voltage ramps up to the VOTG register  
setting. The operation is the same as that when ACFET1-RBFET1 and ACFET2-RBFET2 are not detected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
For swapping the OTG output from port 1 to port 2, assuming EN_ACDRV2 is already 0, the host has to  
set EN_ACDRV1 = 0 to turn off ACFET1_RBFET1 first, which causes the converter to stop switching and  
VBUS to drop below VBUS_PRESENT. The host sets EN_ACDRV2 = 1, the converter starts switching again and  
ACDRV2 turns on ACFET2-RBFET2, which allows VBUS to ramp up. The similar procedure can be applied  
to the case of swapping the OTG output from port 2 to port 1.  
In OTG mode, the converter PFM operation can be disabled by setting PFM_OTG_DIS = 1 and the OOA can be  
disabled by setting DIS_OTG_OOA = 1.  
The simplified application diagram for the OTG mode operation is shown as the figure above, in which the power  
flow is illustrated by the blue arrows.  
The charger is also monitoring the battery discharging current in OTG mode. When IBAT rises higher than  
the IBAT_REG[1:0] register setting, the charger reduces the OTG output current and prioritizes the system  
load current if there is any. The IBAT_REG_STAT bit is set to 1 and an INT pulse is asserted and the  
IBAT_REG_FLAG is set to 1, if IBAT_REG_MASK = 0. If the OTG output current is decreased to zero and  
the system load pulls even more current, the charger can no longer limit the battery discharging current.  
8.3.8 Power Path Management  
The device accommodates a wide range of input voltages ranging from 3.6V to 24V covering the legacy 5V  
USB, HVDCP, USB-PD and the wall adapters. The device provides automatic power path selection to supply the  
system (SYS) from input source (VBUS), battery (BAT) or both.  
8.3.8.1 Narrow Voltage DC Architecture  
The device deploys the NVDC architecture with a BATFET separating the system from the battery. Even with a  
fully depleted battery, the system is regulated above the minimum system voltage. The minimum system voltage  
is set by VSYSMIN bits. The default minimum system voltage at POR is determined according to different  
battery cell settings.  
The NVDC architecture also provides the charging termination when the battery is fully charged. By turning off  
the BATFET, the adapter power is prioritized to support the system, which avoid the battery being continuously  
charged and discharged by the system load even if the adapter is present. This is very important to keep the  
battery in a healthy condition and extend the battery life time.  
When the battery voltage is below the minimum system voltage setting, the BATFET operates in linear mode  
(LDO mode), and the system is regulated at around 200 mV above the minimum system voltage setting.  
As the battery voltage rises above the minimum system voltage, the BATFET is fully on and the voltage  
difference between the system and battery is the Rdson of BATFET multiplied by the charging current. When  
battery charging is disabled and VBAT is above the minimum system voltage setting or charging is terminated,  
the system is always regulated at typically 200mV (PFM disabled) or typical 600mV (PFM enabled) above  
battery voltage. The status register VSYS_STAT bit goes high when the system is in minimum system voltage  
regulation.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
9.0  
8.6  
8.2  
Charge Enabled  
7.8  
7.4  
7.0  
Charge Disabled  
Minimum System Voltage  
6.6  
6.2  
5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6  
BAT (V)  
Figure 8-7. Typical System Voltage vs Battery Voltage for a 2S Battery Configuration  
8.3.8.2 Dynamic Power Management  
To meet the maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic  
Power Management (DPM), which continuously monitors the input current and input voltage. When the input  
power at the VBUS pin is too low to support the load from SYS pin and the battery charge current from BAT  
pin, the charger engages either IINDPM to limit its current or VINDPM to prevent further reduction in VBUS pin  
voltage.  
When the system voltage is regulated at VSYSMIN, the charger could be in trickle charge, pre-charge or fast  
charge stages, the SYS voltage drops lower than VSYSMIN, the VSYSMIN loop takes over and reduces the  
trickle charge, pre-charge or fast charge current, so that the SYS voltage remains at the VSYSMIN level.  
If the charge current falls to zero, but the input source is still overloaded, the SYS voltage will drop. Once the  
SYS voltage falls below the battery voltage, the device automatically enters Supplement Mode in which the  
BATFET turns on. The battery starts discharging so that the system is supported from both the input source and  
battery. In supplement mode, the battery FET is operated in ideal diode mode in which the charger regulates the  
battery FET gate voltage to keep the BATFET minimum VDS to approximately 25 mV when the current is low.  
This prevents SYS voltage oscillations from entering and exiting the supplement mode. As the discharge current  
increases, the charger regulates the BATFET gate to a higher voltage, in order to reduce the battery FET RDSON  
until the MOSFET is in full turn-on stage. At this point onwards, the VDS of the battery FET linearly increase  
with the discharge current. The figure below shows the V-I curve of the BATFET gate regulation operation. The  
BATFET turns off to exit Supplement Mode when the battery is below battery depletion threshold.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
55  
50  
45  
40  
35  
30  
25  
20  
1
1.5  
2
2.5  
3
IBAT (A)  
3.5  
4
4.5  
5
D001  
Figure 8-8. BATFET I-V Curve  
During DPM mode, the status register bits VINDPM_STAT (VINDPM) and/or IINDPM_STAT (IINDPM) go high.  
The figure below shows the DPM response with 9V/1.2A adapter, 3.2V battery, 2.8A charge current and 3.5V  
minimum system voltage setting.  
VBUS  
9.0V  
VSYS  
3.6V  
3.4V  
VBAT  
3.2V  
3.0V  
4A  
IBAT  
3A  
2A  
IBUS  
ISYS  
1A  
0A  
-1A  
DPM  
CC  
DPM  
CC  
Supplement  
Figure 8-9. DPM Response  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.3.9 Battery Charging Management  
BQ25672 charges 1S~4S Li-Ion batteries with up to 3A charge current for high capacity cells. The battery  
charging in different stages is controlled by the integrated BATFET. The low RDS(ON) BATFET improves charging  
efficiency and minimizes the voltage drop during discharging.  
8.3.9.1 Autonomous Charging Cycle  
When battery charging is enabled (EN_CHG bit =1 and CE pin is LOW), the device autonomously completes a  
charging cycle without host involvement. The device default charging parameters are listed in the table below.  
The host can always control the charging operation and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
Table 8-5. Charging Parameter Default Settings  
DEFAULT MODE  
Charging voltage  
Recharging voltage threshold  
Fast charge current  
4.2 V (1S), 8.4 V (2S), 12.6 V (3S), 16.8 V (4S)  
200 mV  
2 A (1S and 2S), 1 A (3S and 4S)  
Pre-charge current  
120 mA  
100 mA  
200 mA  
JEITA  
Trickle charge current  
Termination current  
Temperature profile  
Fast charge safety timer  
Pre charge safety Timer  
Trickle charge safety Timer  
12 hours  
2 hours  
1 hour  
A new charge cycle starts when the following conditions are valid:  
Converter starts up  
Battery charging is enabled by setting register bit EN_CHG = 1 and keeping CE pin LOW  
No thermistor fault on TS pin  
No safety timer fault  
The charger automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and the device is not in DPM mode or thermal  
regulation. When a fully charged battery voltage is discharged below recharge threshold (threshold selectable  
via VRECHG[1:0] bits), the device automatically starts a new charging cycle. After the charging terminates,  
toggling either CE pin or EN_CHG bit initiates a new charging cycle.  
The STAT output indicates the charging status of: charging (LOW), charging complete or charging disabled  
(HIGH) or charging fault (Blinking). The STAT output can be disabled by setting DIS_STAT = 1. In addition, the  
status register (CHG_STAT) indicates the different charging phases as:  
000 – Not Charging  
001 – Trickle Charge (VBAT < VBAT_SHORTZ  
)
010 – Pre-charge (VBAT_SHORTZ < VBAT < VBAT_LOWV  
011 – Fast Charge (CC mode)  
100 – Taper Charge (CV mode)  
101 – Reserved  
110 – Top-off Timer Active Charging  
111 – Charge Termination Done  
)
When the charger transitions to any of these states, including when the charge cycle completes, an INT is  
asserted to notify the host.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.3.9.2 Battery Charging Profile  
The device charges the battery in five phases: trickle charge, pre-charge, constant current, constant voltage, and  
top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage and  
regulates current/voltage accordingly.  
Table 8-6. Default Charging Current Setting  
VBAT  
CHARGING CURRENT  
REGISTER DEFAULT SETTING  
CHRG_STAT  
< VBAT_SHORT  
IBAT_SHORT  
100 mA  
120 mA  
001  
010  
VBAT_SHORTZ to VBAT_LOWV  
IPRECHG  
2 A (1S and 2S)  
1 A (3S and 4S)  
> VBAT_LOWV  
ICHG  
011  
If the charger is in DPM regulation or thermal regulation during charging, the actual charging current is less than  
the programmed value. In this case, termination is temporarily disabled and the charging safety timer is counted  
at half the clock rate, as explained in Charging Safety Timer.  
The BATFET LDO operation can be disabled by setting DIS_LDO = 1. At this condition, the pre-charge current  
and fast charge current are both regulated by the buck converter PWM current regulation loop. The SYS is not  
regulated at VSYSMIN any more when the LDO mode is disabled at the low battery voltage condition. When in  
trickle charge, setting DIS_LDO = 1 does not affect IBAT_SHORT or VSYSMIN operation.  
VBAT_LOWV is the battery voltage threshold for the transition from pre-charge to fast charge. It is defined as a  
ratio of battery voltage regulation limit (VREG). The VBAT_SHORTZ is the battery voltage threshold for the transition  
from trickle charge to pre-charge, which is fixed value 2.2V.  
Regulation Voltage  
VREG[10:0]  
Battery Voltage  
Charge Current  
ICHG[8:0]  
Charge Current  
VSYSMIN  
VBAT_LOWV  
VBAT_SHORTZ  
IPRECHG[5:0]  
ITERM[4:0]  
Trickle Charge  
001  
Pre-charge  
010  
Fast-Charge  
CC  
Taper-Charge  
CV  
Top-off Timer  
(optional)  
CHG_STAT[2:0]  
011  
110  
111  
100  
Safety Timer  
CHG_TMR[1:0]  
Pre-charge  
Timer  
(2hrs or 0.5hr)  
Trickle charge  
Timer  
(1hr fixed)  
Figure 8-10. Battery Charging Profile  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.3.9.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above the recharge threshold, the converter  
is operated in the battery constant voltage regulation loop and the current is below the termination current. After  
the charging cycle is completed, the BATFET turns off. The converter keeps running to power the system and  
the BATFET can turn on again if the supplement mode is triggered.  
When termination is done, the status register CHG_STAT is set to 111 and an INT pulse is asserted to the  
host. Termination is temporarily disabled when the charger device is in input current (IINDPM), input voltage  
(VINDPM) or thermal (TREG) regulation. Termination can be permanently disabled by writing 0 to EN_TERM  
bit prior to charging termination. Writing 0 to EN_TERM when the termination already occurred or in the top-off  
charging stage does not disable termination, until the next charging cycle has been restarted. If termination is  
reenabled by setting EN_TERM = 1 during the current charge cycle, the change is applied immediately to the  
current charging cycle.  
At low termination currents (like 40mA to 160mA), due to the comparator offset, the actual termination current  
may be up to 20%~40% higher than the termination target. In order to compensate for the comparator offset,  
a programmable top-off timer (default disabled) can be activated after termination is detected. Whlie the top-off  
timer is running, the device continues to charge the battery in constant voltage mode (BATFET stays on) until the  
top-off time expires. The top-off timer follows safety timer constraints, such that if the safety timer is suspended,  
so is the top-off timer. And if the safety timer is doubled, so is the top-off timer. CHG_STAT reports whether the  
top off timer is active via the 110 code. Once the top-off timer expires, the CHG_STAT register is set to 111 and  
an INT pulse is asserted to the host.  
The top-off timer gets reset (set to 0 and counting resumes when appropriate) for any of the following conditions:  
1. Charge disable to enable  
2. Termination status low to high  
3. REG_RST register bit is set (disables top-off timer)  
Once the charger detects termination, the charger reads the top-off timer (TOPOFF_TMR) settings.  
Programming the top-off timer value after termination has no effect unless a recharge cycle is initiated. The  
top-off timer only starts to count when the charger's termination criteria are met. If EN_TERM = 0, the charger  
never terminates charging, so the top-off timer does not start counting, even if it is enabled. An INT is asserted to  
the host when the top-off timer starts counting as well as when the top-off timer expires. All charge cycle related  
INT pulses (including top-off timer INT pulse) can be masked by CHG_MASK bit.  
8.3.9.4 Charging Safety Timer  
The device has a built-in safety timer to prevent an extended charging cycle due to abnormal battery conditions.  
The user can program the fast charge safety timer through I2C (CHG_TMR bits). When the fast charge safety  
timer expires, the fault register CHG_TMR_STAT bit is set to 1, and an INT pulse is asserted to the host. The  
trickle charge timer is fixed 1 hour. The pre-charge safety timer is adjustable 2 hours (POR default) or 0.5 hour.  
The fast charging timer POR default setting is 12 hours.  
The trickle charge, pre-charge and fast charge safety timers can be disabled by setting EN_TRICHG_TMR,  
EN_PRECHG_TMR or EN_CHG_TMR bit to 0. Each charging safety timer can be enabled anytime regardless  
of the current charging state. Each timer restarts counting when it is enabled. As soon as each charging stage  
is initiated, the associated safety timer starts to count, which is illustrated in the battery charging profile chart  
shown in the section Battery Charging Profile.  
During input voltage, current or thermal regulation, the safety timer counts at half-clock rate as the actual  
charge current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IINDPM_STAT = 1) throughout the whole charging cycle, and the safety timer is set to 5 hours, then the timer  
will expire in 10 hours. This half-clock rate feature can be disabled by setting TMR2X_EN = 0. If the host  
disables the half-clock rate while the charger is already running at half-clock rate, the charger keeps running at  
the half-clock rate and the half-clock rate is not disabled until the charger exit the voltage, current or thermal  
regulation.  
During faults which disable charging, or supplement mode, the timer is suspended. Since the timer is not  
counting in this state, the TMR2X_EN bit has no effect. Once the fault goes away, the safety timer resumes. If  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
the charging cycle is stopped and started, the timer resets. The pre-charge safety timer and the trickle charge  
safety timer follow the same rules as the fast charge safety timer in terms of getting suspended, reset and  
counting at half-rate when TMR2X_EN is set.  
The fast charge timer is reset at the following events:  
1. Charging cycle stop and restart (toggle CE pin, EN_CHG bit, or charged battery falls below recharge  
threshold after termination)  
2. BAT voltage changes from pre-charge to fast-charge or vice versa (in host-mode or default mode)  
3. A change of the value of CHG_TMR[1:0] register bits  
The pre-charge timer is reset at the following events:  
1. Charging cycle stop and restart (toggleCE pin, EN_CHG bit, or charged battery falls below recharge  
threshold)  
2. BAT voltage changes from trickle charge to pre-charge or vice versa, pre-charge to fast charge or vice versa  
(in host-mode or default mode)  
3. A change of the value of PRECHG_TMR register bit.  
The trickle charge timer is reset at the following events:  
1. Charging cycle stop and restart (toggleCE pin, EN_CHG bit, or charged battery falls below recharge  
threshold)  
2. BAT voltage changes from trickle charge to pre-charge or vice versa (in host-mode or default mode)  
8.3.9.5 Thermistor Qualification  
The charger device provides a single thermistor input for battery temperature monitoring.  
8.3.9.5.1 JEITA Guideline Compliance in Charge Mode  
To improve the safety of charging Li-ion batteries, the JEITA guideline was released on April 20, 2007. The  
guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low  
and high temperature ranges.  
To initiate a charge cycle, the voltage on the TS pin must be within the VT1 to VT5 thresholds. If TS voltage  
exceeds the VT1-VT5 range, the controller suspends charging and waits until the battery temperature is within  
the T1 to T5 range. At cool temperature T1-T2, JEITA recommends to reduce the charge current to be lower  
than half of the charge current at normal temperature T2-T3. The charger register bits JEITA_ISETC[1:0] provide  
the charge current programmability at T1-T2, to be 20%, 40% or 100% of the charge current in the T2-T3  
temperature range or charge suspend. At warm temperature T3-T5, JEITA recommends charge voltage less  
than 4.1V / cell. The charger register bits JEITA_VSET[2:0] provide the charge voltage programmability at T3-T5,  
to be with a voltage offset less than charge voltage in the T2-T3 temperature range or charge suspend.  
Charging termination is still enabled (when EN_TERM = 1) at cool temperature T1-T2 and warm temperature  
T3-T5. The termination current remains the same in all different temperature ranges. In normal operation, battery  
charging terminates when the charge current is lower than the termination current, the battery voltage is higher  
than the battery recharge voltage and the charger is in the battery voltage CV regulation loop. When the  
temperature enters the T1-T2 or T3-T5 ranges, the charge current may reduce to 20% or 40% of that in the  
T2-T3 range, which might be lower than the termination current setting. If at this moment, the battery voltage is  
already higher than the battery recharge voltage and the charger is in the battery voltage CV regulation loop, the  
charger terminates charge.  
In warm T3-T5 temperature range, the battery voltage regulation value become lower than that in the T2-T3  
temperature range. If the battery voltage is already very close to the T2-T3 regulation value, the JEITA warm  
automatic regulation voltage reduction might cause a battery over-voltage (VBAT_OVP) fault.  
In cool T1-T2 temperature range or warm T3-T5 temperature range, the charge current is different from that  
at the normal T2-T3 temperature range , the safety timer must be adjusted accordingly. The safety timer is  
suspended when the charge is suspended, and runs at half of the clock rate when the charge current is reduced  
to 20% or 40%, but stays the same when the charge current is unchanged.  
One typical JEITA charging values are shown as the figure below, in which the blue real line is the default setting  
and the red dash line is the programmable options.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
programmable  
programmable  
programmable  
100%  
VREG  
VREG - offset  
offset = 0mV, 100mV, 200mV,  
300mV, 400mV, 600mV or 800mV  
80%  
60%  
40%  
20%  
T1  
T2  
T3  
T5  
T1  
T2  
T3  
T5  
TS Temperature  
TS Temperature  
Figure 8-11. TS Charging Values  
The NTC monitoring on the battery temperature can be ignored by the charger if TS_IGNORE = 1. When the  
TS pin feedback is ignored, the charger considers the TS is always good for charging and OTG modes. The  
TS_STAT including TS_COLD_STAT, TS_COOL_STAT, TS_WARM_STAT and TS_HOT_STAT, always report  
000 with TS_IGNORE = 1.  
When TS_IGNORE = 0, the charger adjusts the charging profile based on the TS pin feedback information.  
When the battery temperature jumps from one temperature range to the other one, the associated TS status bits  
are updated accordingly. The TS flag bits are set for the temperature range for which the TS voltage is reporting,  
and an INT pulse is asserted to alert the host if TS_MASK is low. The FLAG and INT pulse can be individually  
masked by properly setting the associated mask bit, to prevent the INT pulse from alerting the host of battery  
temperature range changes.  
The typical TS resistor network is illustrated in the figure below.  
REGN  
10 k  
TS  
Figure 8-12. TS Resistor Network  
Assuming a 103AT NTC thermistor on the battery pack as shown above, the value of RT1 and RT2 can be  
determined by:  
(2)  
(3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
where VT# are the percentages of V(REGN) per the electrical specifications table. The BQ25672 provides  
the comparators with fixed thresholds for VT1 x V(REGN) and VT5 x V(REGN), and comparators with  
programmable thresholds for VT2 x V(REGN) and VT3 x V(REGN). The thresholds for VT2 x V(REGN) and VT3  
x V(REGN) are controlled by TS_COOL[1:0] and TS_WARM[1:0]. This programmability gives more flexibility for  
the configuration of the JEITA profile. Select T1=0°C and T5=60°C for Li-ion or Li-polymer battery, the RT1 and  
RT2 are calculated to be 5.24KΩ and 30.31KΩ respectively.  
8.3.9.5.2 Cold/Hot Temperature Window in OTG Mode  
For battery protection during OTG mode, the device monitors the battery temperature to be within the VBCOLD  
to VBHOT thresholds. When RT1 is 5.24 KΩ and RT2 is 31.31 KΩ, TBCOLD default is -10°C and TBHOT  
default is 60°C. When the temperature is outside of this range, OTG mode is suspended, the converter stops  
switching. The charger waits in OTG mode (EN_OTG = 1). In addition, the VBUS_STAT bits are set to 000  
and the corresponding TS_COLD_STAT or TS_HOT_STAT is reported. Once temperature returns to the normal  
temperature range, OTG mode is recovered and TS stauts bit is cleared. During TS fault, REGN still stays on.  
Temperature Range for OTG Mode  
VREGN  
OTG suspended  
VBCOLDx  
(œ10°C / œ20°C)  
OTG is ongoing  
VBHOTx  
(55°C / 60°C / 65°C)  
OTG suspended  
GND  
Figure 8-13. TS Pin Thermistor Sense Threshold in OTG Mode  
8.3.10 Integrated 16-Bit ADC for Monitoring  
The integrated 16-bit ADC in the device allows the user to get critical system information for optimizing the  
behavior of the charger. The ADC control is through the ADC Control register. The ADC_EN bit provides  
the ability to enable and disable the ADC in order to conserve power dissipation. The ADC_RATE bit allows  
continuous conversion or one-shot behavior. After a 1-shot conversion finishes, the ADC_EN bit is cleared,  
and must be re-asserted to start a new conversion. The ADC_AVG bit enables or disables (default) averaging.  
ADC_AVG_INIT starts average using the existing (default) or using a new ADC value.  
To enable the ADC, the ADC_EN bit must be set to 1. The ADC is allowed to operate if either the VAC > 3.4 V  
or VBUS > 3.4 V or VBAT > 2.9 V is valid. If ADC_EN is set to 1 before VAC1/VAC2, VBUS or VBAT reaches its  
valid threshold, then the ADC conversion is postponed until one of the power supplies reaches the threshold. If  
the charger is in HIZ mode, the ADC still can be enabled by setting ADC_EN = 1. At battery only condition, if the  
TS_ADC channel is enable, the ADC only works when battery voltage is higher than 3.2V, otherwise, the ADC  
works when the battery voltage is higher than 2.9V.  
The ADC_SAMPLE bits control the ADC sample speed, with conversion times of tADC_CONV. If the host changes  
the sample speed in the middle of an ADC conversion, the ADC conversion stops the channel being converted,  
and that channel is reconverted at the new rate. At that point, some of the ADC register values might have been  
converted with one sample rate and others with a different sample rate.  
By default, all ADC channels are enabled with 1-shot or continuous conversion mode unless the channel is  
disabled in the ADC_Function_Disable_0 or ADC_Function_Disable_1 register. If an ADC channel is disabled  
by setting the corresponding register bit, then the value in that register is from the last valid ADC conversion  
or the default POR value (all zeros if no conversions have been taken place). If an ADC channel is disabled in  
the middle of an ADC measurement cycle, the device finishes the conversion of that channel, but not convert  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
the channel at the next conversion cycle. Even though no conversion takes place when all ADC channels  
are disabled, the ADC circuitry is active and ready to begin conversion as soon as one of the bits in the  
ADC_Function_Disable_0 or ADC_Function_Disable_1 register is set to 0.  
The ADC_DONE_STAT and ADC_DONE_FLAG bits are set when a conversion is complete in 1-shot mode  
only. This event produces an INT pulse, which can be masked with ADC_DONE_MASK. During continuous  
conversion mode, the ADC_DONE_STAT and ADC_DONE_FLAG bits have no meaning and remain 0.  
ADC conversion operates independently of the faults present in the device. ADC conversion continues even  
after a fault has occurred (such as one that causes the power stage to be disabled) and the host must set  
ADC_EN = 0 to disable the ADC. ADC conversion is interrupted upon adapter plug-in and resumes after Input  
Source Type Detection default VINDPM setting are complete. ADC readings are only valid for DC states and not  
for transients.  
Enabling ADC does not require to bring up REGN, however, when the ADC TS channel is enabled, the charger  
will turn on the REGN to bias the TS pin. For the ICHG channel, the ADC is able to read the battery pre-charge  
and fast charge current in forward charging mode when the adapter is present. It also can read the battery  
discharging current in battery only mode, OTG mode . When the charger is in trickle charge, supplement mode  
or charge disabled, the ICHG ADC reading is zero. In battery only mode, the battery current sensing amplifier  
(CSA) default turns off to minimize the quiescent current. Setting EN_IBAT = 1 is necessary to enable the CSA  
so that the ADC can read back the battery current information.  
If the host wants to exit the ADC more gracefully, it is possible to do either of the following:  
1. Write ADC_RATE to one-shot in order to force the ADC to stop at the end of a complete cycle of conversions  
2. Disable all ADC conversion channels so that the ADC stops at the end of the current measurement.  
8.3.11 Status Outputs ( STAT, and INT)  
8.3.11.1 Charging Status Indicator (STAT Pin)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED. The STAT pin  
function can be disabled via the DIS_STAT bit.  
Table 8-7. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
Charging in progress (including recharge and charging in top-off  
timer)  
LOW  
Charging complete  
HIZ mode, charge disable  
HIGH  
HIGH  
Battery only mode and OTG mode  
HIGH  
Charge suspend (A fault condition which disable charging)  
Blinking at 1 Hz  
8.3.11.2 Interrupt to Host ( INT)  
In some applications, the host does not always monitor charger operation. The INT pin notifies the system host  
on the device operation. By default, the following events generate an active-low, 256µs INT pulse.  
1. Good input source detected  
VVBUS < VVBUS_OVP threshold  
VVBUS > VPOORSRC (typical 3.4 V) when IPOORSRC (typical 30 mA) current is applied (not a poor source)  
2. VBUS_STAT changes state (VBUS_STAT any bit change)  
3. Good input source removed  
4. Entering IINDPM regulation  
5. Entering VINDPM regulation  
6. Entering IC junction temperature regulation (TREG)  
7. I2C Watchdog timer expired  
At initial power up, this INT gets asserted to signal I2C is ready for communication  
8. Charger status changes state (CHRG_STAT value change), including Charge Complete  
9. TS_STAT changes state (TS_STAT any bit change)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
10. VBUS over-voltage detected (VBUS_OVP)  
11. VAC over-voltage detected (VAC_OVP for VAC1 or VAC2)  
12. Junction temperature shutdown (TSHUT)  
13. Battery over-voltage detected (BATOVP)  
14. System over-voltage detected (VSYS_OVP)  
15. IBUS over-current detected (IBUS_OCP)  
16. IBAT over-current detected (IBAT_OCP)  
17. Charge safety timer expired, including trickle charge and pre-charge and fast charge safety timer expired  
18. A rising edge on any of the other *_STAT bits  
Each one of these INT sources can be masked off to prevent INT pulses from being sent out when they occur.  
Three bits exist for each one of these events:  
The STAT bit holds the current status of each INT source  
The FLAG bit holds information on which source produced an INT, regardless of the current status  
The MASK bit is used to prevent the device from sending out INT for each particular event  
When one of the above conditions occurs (a rising edge on any of the *_STAT bits), the device sends out an  
INT pulse and keeps track of which source generated the INT via the FLAG registers. The FLAG register bits are  
automatically reset to zero after the host reads them, and a new edge on STAT bit is required to re-assert the  
FLAG.  
IINDPM_STAT  
IINDPM_FLAG  
TREG_STAT  
TREG_FLAG  
INT  
I2C Flag Read  
Figure 8-14. INT Generation Behavior Example  
8.3.12 Ship FET Control  
The charger provides an N-FET driving pin (SDRV) to control an external ship FET. When this ship FET is off,  
it removes leakage current from the battery to the system. The ship FET is controlled by the SDRV_CTRL[1:0]  
register bits, to support the shutdown mode, ship mode and the system power reset.  
IDLE Mode when SDRV_CTRL[1:0] = 00, POR default. The external ship FET is fully on, I2C is enabled. The  
internal BATFET status is determined by the charging status. This mode is valid with adapter present, during  
forward charging, in OTG mode or in the battery only condition.  
Shutdown Mode when SDRV_CTRL[1:0] = 01. The ship FET off. The I2C is disabled. The charger is totally  
shutdown and can only be woken up by an adapter plug-in. This mode can only be entered when no adapter  
is present. If SDRV_CTRL[1:0] is written to 01 with an adapter present, the write is ignored.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Ship Mode when SDRV_CTRL[1:0] = 10. The ship FET The ship FET off. The I2C is still enabled. The  
charger can be woken up by setting SDRV_CTRL[1:0] back to 00, or pulling the QON pin low, or an adapter  
plug-in. This mode can only be entered when no adapter is present. If SDRV_CTRL[1:0] is written to 01 with  
an adapter present, the write is ignored.  
System Power Reset when SDRV_CTRL[1:0] = 11. The ship FET is turned off for typical 350ms to reset  
the system power (converter goes to HIZ mode if VBUS is high), then the ship FET is fully turned on  
again. The BATFET keeps the status unchanged during the system power reset. After the reset is done,  
SDRV_CTRL[1:0] goes back to 00.  
When the host changes SDRV_CTRL[1:0] from 00 to the other values, the charger turns off the ship FET  
immediately or delays by tSM_DLY as configured by SDRV_DLY bit. The application diagram when the battery is  
connected to the charger through an external ship FET is illustrated in the figure below.  
8.3.12.1 Shutdown Mode  
To further reduce battery leakage current, the host can shut down the charger by setting the register bits  
SDRV_CTRL[1:0] to 01. In this mode, the I2C is disabled and the charger is totally shut down. The device can  
only be woken up by plugging in an adapter.  
After the SDRV_CTRL[1:0] is set to 01, the external ship FET turns off either immediately or after waiting for 10s  
as configured by SDRV_DLY register bit. When VBUS is high because of an adapter being present or the OTG  
mode being enable, SDRV_CTRL[1:0] will be reset to 00 if the host writes it to 01.  
When the device exits shutdown mode, the SDRV_CTRL bits are reset to the POR default values (00).  
8.3.12.2 Ship Mode  
To extend battery life and minimize the system power loss when system is powered off during idle, shipping or  
storage, the device can turn off BATFET and external ship FET to minimize the battery leakage current. The ship  
mode is enabled when the host sets SDRV_CTRL[1:0] to 10. The I2C is still enabled, but the charger system  
clock slows down to minimize the device quiescent current.  
After the SDRV_CTRL[1:0] is set to 10, the external ship FET is turned off either immediately or after waiting 10  
seconds as configured by SDRV_DLY register bit. When VBUS is high because of an adapter being present or  
OTG mode being enabled, SDRV_CTRL[1:0] automatically resets to 00 if the host writes it to 10.  
The following events will cause an exit from ship mode:  
Plug in an adapter  
Set SDRV_CTRL[1:0] = 00  
Set REG_RST = 1, to reset all the registers including SDRV_CTRL bits back to default (00)  
A logic low of tSM_EXIT (typical 1s or 15ms programmed by WKUP_DLY bit) duration on QON pin  
The charger exits ship mode by turning on the ship FET and internal BATFET to reconnect the battery to the  
system and resetting SDRV_CTRL bits to their POR default value (00).  
8.3.12.3 System Power Reset  
The host can reset the system power by:  
Set the register bits SDRV_CTRL[1:0] to 11  
A logic low of tRST (typical 10s) duration on QON pin  
When the system power reset is enabled, the device turns off the ship FET for tRST_SFET (typical 350ms) and  
also sets the charger in HIZ mode if VBUS is high. After the tRST_SFET completes, the device then turns on the  
ship FET and disables the charger HIZ mode. While the SFET is off, the charger applies a 30mA (typical ) sink  
current on SYS to discharge system voltage.  
Regardless of whether the charger is at battery only condition or in the forward charging mode with adapter  
present, the charger resets the system power when the SDRV_CTRL[1:0] bits are set to 11 or the QON pin is  
pulled low for tRST duration.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.3.13 Protections  
8.3.13.1 Voltage and Current Monitoring  
The device closely monitors the input, system and battery voltage and current, as well as internal FET currents  
for safe converter operation. It provides the following protection faults :  
VAC Over-voltage Protection (VAC_OVP)  
VBUS Over-voltage Protection (VBUS_OVP)  
VBUS Under-voltage Protection (POORSRC)  
System Over-voltage Protection (VSYS_OVP)  
System Short Protection (VSYS_SHORT)  
Battery Over-voltage Protection (VBAT_OVP)  
Battery Over-current Protection (IBAT_OCP)  
Input Over-current Protection (IBUS_OCP)  
OTG Over-voltage Protection (OTG_OVP)  
OTG Under-voltage Protection (OTG_UVP)  
8.3.13.1.1 VAC Over-voltage Protection (VAC_OVP)  
The charger has a programmable VVAC_OVP threshold. When the VAC1 or VAC2 voltage is higher than VVAC_OVP  
threshold per I2C register field, the corresponding ACDRV pin turns off the ACFET-RBFET. An /INT pulse is  
asserted to alert the host, if the related MASK is low, and the related VACx_OVP_STAT and VAC_OVP_FLAG  
report the fault. The charger automatically changes to the valid VAC input if available The ACDRV pin  
automatically turns the ACFET-RBFET on again when the over-voltage condition goes away.  
8.3.13.1.2 VBUS Over-voltage Protection (VBUS_OVP)  
When the VBUS voltage is higher than VVBUS_OVP (typical 26 V), the converter stops switching immediately to  
protect the internal power MOSFETs. As the SYS voltage falls below the battery voltage, the BATFET is turned  
on to supplement the system load. During VBUS over-voltage, an INT pulse is asserted to alert the host, if the  
VBUS_OVP_MASK is low, the VBUS_OVP_STAT and VBUS_OV_FLAG registers report the fault. The device  
automatically starts switching again when the VBUS voltage drops below the threshold.  
8.3.13.1.3 VBUS Under-voltage Protection (POORSRC)  
At power up, the charger pulls IPOORSRC from the input source. If the VBUS voltage falls below VPOORSRC  
,
the charger considers the input voltage as being under-voltage and stops switching. The charger issues an  
INT pulse is asserted to alert the host if the PG_MASK is low and the POORSRC_FLAG, PG_FLAG and PG  
STATUS registers report the fault. The charger repeatedly tests for poor source again after 7 minutes typical until  
a valid source is attached.  
8.3.13.1.4 System Over-voltage Protection (VSYS_OVP)  
If the system voltage rises higher than VSYS_OVP threshold, the converter stops switching to protect the power  
MOSFETs. A /INT pulse is asserted to alert the host if VSYS_OVP_MASK is low and the VSYS_OVP_STAT and  
VSYS_OVP_FLAG registers report the fault. Normal switching resumes when the system voltage returns to its  
regulation point.  
8.3.13.1.5 System Short Protection (VSYS_SHORT)  
When VSYS drops below VSYS_SHORT (2.2V typical), the charger limits the converter output current  
to less than 1 A. An /INT pulse is asserted to alert the host if VSYS_SHORT_MASK is low and the  
VSYS_SHORT_STAT and VSYS_SHORT_FLAG registers report the fault.  
8.3.13.1.6 Battery Over-voltage Protection (VBAT_OVP)  
When the battery voltage is detected to be higher than 104% typical of the battery charging regulation voltage,  
the charger turns off the converter to prevent the battery voltage from further increasing. When the battery  
voltage drops below 102% typical of the battery charging regulation voltage, the converter automatically restarts.  
The system load is supplied by battery through battery FET when the converter is disabled. A /INT pulse is  
asserted to alert the host if the VBAT_OVP_MASK is low and the VBAT_OVP_STAT and VBAT_OVP_FLAG  
register bits report the fault.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.3.13.1.7 Battery Over-current Protection (IBAT_OCP)  
Battery over-current protection is available when external ship FET (SFET) is assembled, SFET_PRESENT bit  
is set to 1, and EN_BATOC bit is set to 1. When discharge current exceeds IBAT_OCP, the SFET turns off  
to stop the discharge current. Regardless of the EN_BATOC bit setting, when the battery discharging current  
becomes higher than IBATOC, an /INT pulse is asserted to alert the host if IBAT_OCP_MASK is low and the  
IBAT_OCP_STAT and IBAT_OCP_FLAG register bits report the fault.  
8.3.13.1.8 Input Over-current Protection (IBUS_OCP)  
When EN_IBUS_OCP=1, the charger monitors the input current in forward charging mode in order to provide  
IBUS over current protection. If the input current exceeds the IBUS over current threshold IBUS_OCP  
(typical 8A), the charger disables the converter by setting the EN_HIZ bit to 1. In addition, the charger sets  
DIS_ACDRV=1 in order to disable both ACDRV1 and ACDRV2. The battery FET turns on to supplement the  
system load as needed. The host must set EN_HIZ and DIS_ACDRV bits to 0 in order to restart the converter.  
Alternatively, removing and replacing the adapter resets the EN_HIZ bit and the DIS_ACDRV bit to 0. When  
EN_IBUS_OCP=0, IBUS over current protection is disabled. Regardless of the EN_ IBUS_OCP bit setting,  
when the IBUS input current becomes higher than IBUS_OCP, an /INT pulse is asserted to alert the host if  
IBUS_OCP_MASK is low, the IBUS_OCP_STAT and IBUS_OCP_FLAG register bits report the fault.  
8.3.13.1.9 OTG Over-voltage Protection (OTG_OVP)  
When the VBUS voltage rises above VOTG_OVP rising threshold, the converter stops switching in the next  
switching cycle in order to protect the power MOSFETs. The converter resumes switching when the VBUS  
voltage falls below the VOTG_OVP falling threshold. When OTG_OVP is detected, a /INT pulse is asserted  
to alert the host if OTG_OVP_MASK is low and the VOTG_OVP_STAT and VOTG_OVP_FLAG fault registers  
report the fault.  
8.3.13.1.10 OTG Under-voltage Protection (OTG_UVP)  
After the converter turns on if the VBUS voltage is lower than VOTG_UVP threshold, the charger shuts down  
for 500ms and retry to turn on. An /INT pulse is asserted to alert the host if OTG_UVP_MASK is low and the  
OTG_UVP_FLAG register reports the fault.  
8.3.13.2 Thermal Regulation and Thermal Shutdown  
The device monitors its internal junction temperature (TJ) to avoid overheating and to limit the IC surface  
temperature. When the internal junction temperature exceeds the preset thermal regulation limit (TREG bits), the  
device reduces the charge current or OTG output current to maintain the junction temperature at the thermal  
regulation limit. A wide thermal regulation range from 60°C to 120°C allows optimization of the system thermal  
performance. During thermal regulation, the actual charging current is usually below the programmed value in  
the ICHG registers. Therefore, termination is disabled, the fast charging safety timer runs at half the clock rate,  
the status register TREG_STAT bit goes high, TREG_FLAG bit is set to 1, and an INT is asserted to alert host  
unless TREG_MASK is set to 1.  
Additionally, the device has thermal shutdown to turn off the converter when the IC junction temperature exceeds  
the TSHUT threshold. The fault register bits TSHUT_STAT and TSHUT_FLAG are set and an INT pulse is  
asserted to the host, unless TSHUT_MASK is set to 1. The BATFET and the converter resumes normal  
operation when the IC die temperature decreases lower than TSHUT threshold by TSHUT_HYS  
.
8.3.14 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA), and a serial clock line (SCL). Devices can be considered as masters or slaves when performing  
data transfers. A master is a device which initiates a data transfer on the bus and generates the clock signals to  
permit that transfer. At that time, any device addressed is considered a slave.  
The device operates as a slave device with address 0x6B, receiving control inputs from the master device  
like micro-controller or digital signal processor through REG00 – REG25. Register read beyond REG25 (0x25),  
returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits/s), and fast mode (up to 400  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
kbits/s). When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be  
connected to the positive supply voltage via a current source or pull-up resistor.  
8.3.14.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on SCL line is LOW. One clock pulse is generated for each data  
bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of  
data allowed  
Figure 8-15. Bit Transfers on the I2C Bus  
8.3.14.2 START and STOP Conditions  
All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the master. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
Figure 8-16. START and STOP Conditions on the I2C Bus  
START (S)  
8.3.14.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the  
Most Significant Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it  
has performed some other function, it can hold the SCL line low to force the master into a wait state (clock  
stretching). Data transfer then continues when the slave is ready for another byte of data and releases the SCL  
line.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Acknowledgeme  
nt signal from  
receiver  
Acknowledgement  
signal from slave  
MSB  
1
SDA  
2
7
8
9
1
2
8
9
SCL S or Sr  
P or Sr  
ACK  
ACK  
START or  
Repeated  
START  
STOP or  
Repeate  
d START  
Figure 8-17. Data Transfer on the I2C Bus  
8.3.14.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The ACK signaling takes place after byte. The ACK bit allows the receiver to signal the transmitter that the byte  
was successfully received and another byte may be sent. All clock pulses, including the acknowledge 9th clock  
pulse, are generated by the master.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
LOW and it remains stable LOW during the HIGH period of this 9th clock pulse.  
A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The master can then generate  
either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.3.14.5 Slave Address and Data Direction Bit  
After the START signal, a slave address is sent. This address is 7 bits long, followed by the 8 bit as a data  
direction bit (bit R/ W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
The device 7-bit address is defined as 1101 011' (0x6B) by default. The address bit arrangement is shown below.  
Slave Address  
1
1
0
1
0
1
1
R/W  
Figure 8-18. 7-Bit Addressing (0x6B)  
SDA  
SCL  
S
8
9
8
9
8
9
P
1-7  
1-7  
1-7  
DATA  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
ACK  
STOP  
Figure 8-19. Complete Data Transfer on the I2C Bus  
8.3.14.6 Single Write and Read  
Figure 8-20. Single Write  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Figure 8-21. Single Read  
If the register address is not defined, the charger IC sends back NACK and returns to the idle state.  
8.3.14.7 Multi-Write and Multi-Read  
The charger device supports multi-read and multi-write of all registers.  
Figure 8-22. Multi-Write  
Figure 8-23. Multi-Read  
8.4 Device Functional Modes  
8.4.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used as an autonomous charger with no host or while host is in sleep mode. When the  
charger is in default mode, WD_STAT bit becomes HIGH, WD_FLAG is set to 1, and an INT is asserted low to  
alert the host (unless masked by WD_MASK). The WD_FLAG bit would read as 1 upon the first read and then 0  
upon subsequent reads. When the charger is in host mode, WD_STAT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings.  
In default mode, the device keeps charging the battery with default 1-hour trickle charging safety timer, 2-hour  
pre-charging safety timer and the 12-hour fast charging safety timer. At the end of the 1-hour or 2-hour or  
12-hour timer expired, the charging is stopped and the buck converter continues to operate to supply system  
load.  
A write to any I2C register transitions the charger from default mode to host mode, and initiates the watchdog  
timer. All the device parameters can be programmed by the host. To keep the device in host mode, the host has  
to reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set),  
or disable watchdog timer by setting WATCHDOG bits = 00.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
When the watchdog timer is expired, the device returns to default mode and all registers are reset to default  
values except the ones described as detailed in the Register Map section. The Watchdog timer will be reset on  
any write if the watchdog timer has expired. When watchdog timer expires, WD_STAT and WD_FLAG is set to 1,  
and an INT is asserted low to alert the host (unless masked by WD_MASK).  
Reset  
Selective  
Registers  
Default Mode  
WD_STAT=1  
POR  
I2C Write  
Reset  
Watchdog  
Timer  
Yes  
Host Mode  
WD_STAT=0  
I2C Write to  
WD_RST  
No  
Watchdog Timer Expired?  
Yes  
No  
Figure 8-24. Watchdog Timer Flow Chart  
8.4.2 Register Bit Reset  
Beside the register reset by the watchdog timer in the default mode, the register and the timer could be reset  
to the default value by writing the REG_RST bit to 1. The register bits, which can be reset by the REG_RST  
bit, are noted in the Register Map section. After the register reset, the REG_RST bit will go back from 1 to 0  
automatically.  
The register reset by the REG_RST bit will not initiate the ACFET-RBFET detection, which is only done at the  
charger first time POR. It will not repeat the open-circuit adapter measurements for the default VINDPM setting,  
which in only done when an adapter is plugged in. In addition, if the charger is in the process of forced ICO  
or the forced open-circuit adapter measurements, set the REG_RST to 1 will terminate all of these processes,  
because reset the register to default values will set FORCE_ICO and FORCE_VINDPM_DET bits to 0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5 Register Map  
8.5.1 I2C Registers  
Table 8-8 lists the I2C registers. All register offset addresses not listed in Table 8-8 should be considered as  
reserved locations and the register contents should not be modified.  
Table 8-8. I2C Registers  
Offset  
0h  
Acronym  
Register Name  
Section  
REG00_Minimal_System_Voltage Minimal System Voltage  
Section 8.5.1.1  
Section 8.5.1.2  
Section 8.5.1.3  
Section 8.5.1.4  
Section 8.5.1.5  
Section 8.5.1.6  
Section 8.5.1.7  
Section 8.5.1.8  
Section 8.5.1.9  
Section 8.5.1.10  
Section 8.5.1.11  
Section 8.5.1.12  
Section 8.5.1.13  
Section 8.5.1.14  
Section 8.5.1.15  
Section 8.5.1.16  
Section 8.5.1.17  
Section 8.5.1.18  
Section 8.5.1.19  
Section 8.5.1.20  
Section 8.5.1.21  
Section 8.5.1.22  
Section 8.5.1.23  
Section 8.5.1.24  
Section 8.5.1.25  
Section 8.5.1.26  
Section 8.5.1.27  
Section 8.5.1.28  
Section 8.5.1.29  
Section 8.5.1.30  
Section 8.5.1.31  
Section 8.5.1.32  
Section 8.5.1.33  
Section 8.5.1.34  
Section 8.5.1.35  
Section 8.5.1.36  
Section 8.5.1.37  
Section 8.5.1.38  
Section 8.5.1.39  
Section 8.5.1.40  
Section 8.5.1.41  
1h  
REG01_Charge_Voltage_Limit  
REG03_Charge_Current_Limit  
REG05_Input_Voltage_Limit  
REG06_Input_Current_Limit  
REG08_Precharge_Control  
REG09_Termination_Control  
REG0A_Re-charge_Control  
REG0B_VOTG_regulation  
REG0D_IOTG_regulation  
REG0E_Timer_Control  
Charge Voltage Limit  
Charge Current Limit  
Input Voltage Limit  
Input Current Limit  
Precharge Control  
Termination Control  
Re-charge Control  
VOTG regulation  
IOTG regulation  
Timer Control  
3h  
5h  
6h  
8h  
9h  
Ah  
Bh  
Dh  
Eh  
Fh  
REG0F_Charger_Control_0  
REG10_Charger_Control_1  
REG11_Charger_Control_2  
REG12_Charger_Control_3  
REG13_Charger_Control_4  
REG14_Charger_Control_5  
REG15_MPPT_Control  
Charger Control 0  
Charger Control 1  
Charger Control 2  
Charger Control 3  
Charger Control 4  
Charger Control 5  
MPPT Control  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
REG16_Temperature_Control  
REG17_NTC_Control_0  
REG18_NTC_Control_1  
REG19_ICO_Current_Limit  
REG1B_Charger_Status_0  
REG1C_Charger_Status_1  
REG1D_Charger_Status_2  
REG1E_Charger_Status_3  
REG1F_Charger_Status_4  
REG20_FAULT_Status_0  
REG21_FAULT_Status_1  
REG22_Charger_Flag_0  
REG23_Charger_Flag_1  
REG24_Charger_Flag_2  
REG25_Charger_Flag_3  
REG26_FAULT_Flag_0  
Temperature Control  
NTC Control 0  
NTC Control 1  
ICO Current Limit  
Charger Status 0  
Charger Status 1  
Charger Status 2  
Charger Status 3  
Charger Status 4  
FAULT Status 0  
FAULT Status 1  
Charger Flag 0  
Charger Flag 1  
Charger Flag 2  
Charger Flag 3  
FAULT Flag 0  
REG27_FAULT_Flag_1  
FAULT Flag 1  
REG28_Charger_Mask_0  
REG29_Charger_Mask_1  
REG2A_Charger_Mask_2  
REG2B_Charger_Mask_3  
REG2C_FAULT_Mask_0  
REG2D_FAULT_Mask_1  
Charger Mask 0  
Charger Mask 1  
Charger Mask 2  
Charger Mask 3  
FAULT Mask 0  
FAULT Mask 1  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-8. I2C Registers (continued)  
Offset  
2Eh  
2Fh  
30h  
31h  
33h  
35h  
37h  
39h  
3Bh  
3Dh  
3Fh  
41h  
43h  
45h  
47h  
48h  
Acronym  
Register Name  
Section  
REG2E_ADC_Control  
ADC Control  
Section 8.5.1.42  
Section 8.5.1.43  
Section 8.5.1.44  
Section 8.5.1.45  
Section 8.5.1.46  
Section 8.5.1.47  
Section 8.5.1.48  
Section 8.5.1.49  
Section 8.5.1.50  
Section 8.5.1.51  
Section 8.5.1.52  
Section 8.5.1.53  
Section 8.5.1.54  
Section 8.5.1.55  
Section 8.5.1.56  
Section 8.5.1.57  
REG2F_ADC_Function_Disable_0 ADC Function Disable 0  
REG30_ADC_Function_Disable_1 ADC Function Disable 1  
REG31_IBUS_ADC  
REG33_IBAT_ADC  
REG35_VBUS_ADC  
REG37_VAC1_ADC  
REG39_VAC2_ADC  
REG3B_VBAT_ADC  
REG3D_VSYS_ADC  
REG3F_TS_ADC  
IBUS ADC  
IBAT ADC  
VBUS ADC  
VAC1 ADC  
VAC2 ADC  
VBAT ADC  
VSYS ADC  
TS ADC  
REG41_TDIE_ADC  
REG43_D+_ADC  
TDIE_ADC  
D+ ADC  
REG45_D-_ADC  
D- ADC  
REG47_DPDM_Driver  
REG48_Part_Information  
DPDM Driver  
Part Information  
Complex bit access types are encoded to fit into small table cells. The following table shows the codes that are  
used for access types in this section.  
Table 8-9. I2C Access Type Codes  
Access Type  
Read Type  
R
Code  
R
Description  
Read  
Write Type  
W
W
Write  
Others  
Range  
The register bits are only valid in this defined range.  
Clamped Low  
Any write on the register lower than the minimal value of the valid range, will be  
ignored by the charger  
Clamped High  
Any write on the register higher than the maximum value of the valid range, will be  
ignored by the charger  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.1 REG00_Minimal_System_Voltage Register (Offset = 0h) [reset = X]  
REG00_Minimal_System_Voltage is shown in Figure 8-25 and described in Table 8-10.  
Return to the Table 8-8.  
Minimal System Voltage  
Figure 8-25. REG00_Minimal_System_Voltage Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
VSYSMIN_5:0  
R/W-X  
Table 8-10. REG00_Minimal_System_Voltage Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
R/W  
Reset  
Notes  
Description  
RESERVED  
VSYSMIN_5:0  
0h  
RESERVED  
X
Reset by:  
Minimal System Voltage:  
REG_RST  
During POR, the device reads the resistance tie to  
PROG pin, to identify the default battery cell count and  
determine the default power on VSYSMIN list below:  
1s: 3.5V  
2s: 7V  
3s: 9V  
4s: 12V  
Type : RW  
Range : 2500mV-16000mV  
Fixed Offset : 2500mV  
Bit Step Size : 250mV  
Clamped High  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.2 REG01_Charge_Voltage_Limit Register (Offset = 1h) [reset = X]  
REG01_Charge_Voltage_Limit is shown in Figure 8-26 and described in Table 8-11.  
Return to the Table 8-8.  
Charge Voltage Limit  
Figure 8-26. REG01_Charge_Voltage_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-0h  
VREG_10:0  
R/W-X  
5
4
3
2
1
VREG_10:0  
R/W-X  
Table 8-11. REG01_Charge_Voltage_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15-11  
10-0  
RESERVED  
VREG_10:0  
R
0h  
RESERVED  
R/W  
X
Reset by:  
Battery Voltage Limit:  
REG_RST  
During POR, the device reads the resistance tie to  
PROG pin, to identify the default battery cell count  
and determine the default power-on battery voltage  
regulation limit:  
1s: 4.2V  
2s: 8.4V  
3s: 12.6V  
4s: 16.8V  
Type : RW  
Range : 3000mV-18800mV  
Fixed Offset : 0mV  
Bit Step Size : 10mV  
Clamped Low  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.3 REG03_Charge_Current_Limit Register (Offset = 3h) [reset = X]  
REG03_Charge_Current_Limit is shown in Figure 8-27 and described in Table 8-12.  
Return to the Table 8-8.  
Charge Current Limit  
Figure 8-27. REG03_Charge_Current_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
R-0h  
ICHG_8:0  
R/W-X  
5
4
3
2
0
ICHG_8:0  
R/W-X  
Table 8-12. REG03_Charge_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15-9  
8-0  
RESERVED  
ICHG_8:0  
R
0h  
RESERVED  
R/W  
X
Reset by:  
Charge Current Limit  
WATCHDOG  
REG_RST  
During POR, the device reads the resistance tie to  
PROG pin, to identify the default battery cell count  
and determine the default power-on battery charging  
current:  
1s and 2s: 2A  
3s and 4s: 1A  
Type : RW  
Range : 50mA-3000mA  
Fixed Offset : 0mA  
Bit Step Size : 10mA  
Clamped Low  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.4 REG05_Input_Voltage_Limit Register (Offset = 5h) [reset = 24h]  
REG05_Input_Voltage_Limit is shown in Figure 8-28 and described in Table 8-13.  
Return to the Table 8-8.  
Input Voltage Limit  
Figure 8-28. REG05_Input_Voltage_Limit Register  
7
6
5
4
3
2
1
0
VINDPM_7:0  
R/W- 24h  
Table 8-13. REG05_Input_Voltage_Limit Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
VINDPM_7:0  
R/W  
24h  
Absolute VINDPM Threshold  
VINDPM register is reset to 3600mV upon adapter unplugged and  
it is set to the value based on the VBUS measurement when  
the adapter plugs in. It is not reset by the REG_RST and the  
WATCHDOG  
Type : RW  
POR: 3600mV (24h)  
Range : 3600mV-22000mV  
Fixed Offset : 0mV  
Bit Step Size : 100mV  
Clamped Low  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.5 REG06_Input_Current_Limit Register (Offset = 6h) [reset = 12Ch]  
REG06_Input_Current_Limit is shown in Figure 8-29 and described in Table 8-14.  
Return to the Table 8-8.  
Input Current Limit  
Figure 8-29. REG06_Input_Current_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
R-0h  
IINDPM_8:0  
R/W-12Ch  
0
5
4
3
2
IINDPM_8:0  
R/W-12Ch  
Table 8-14. REG06_Input_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15-9  
8-0  
RESERVED  
IINDPM_8:0  
R
0h  
RESERVED  
R/W  
12Ch  
Reset by:  
REG_RST  
Based on D+/D- detection results:  
USB SDP = 500mA  
USB CDP = 1.5A  
USB DCP = 3.25A  
Adjustable High Voltage DCP = 1.5A  
Unknown Adapter = 3A  
Non-Standard Adapter = 1A/2A/2.1A/2.4A  
Type : RW  
POR: 3000mA (12Ch)  
Range : 100mA-3300mA  
Fixed Offset : 0mA  
Bit Step Size : 10mA  
Clamped Low  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.6 REG08_Precharge_Control Register (Offset = 8h) [reset = C3h]  
REG08_Precharge_Control is shown in Figure 8-30 and described in Table 8-15.  
Return to the Table 8-8.  
Precharge Control  
Figure 8-30. REG08_Precharge_Control Register  
7
6
5
4
3
2
1
0
VBAT_LOWV_1:0  
R/W-3h  
IPRECHG_5:0  
R/W-3h  
Table 8-15. REG08_Precharge_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
VBAT_LOWV_1:0  
R/W  
3h  
Reset by:  
REG_RST  
Battery voltage thresholds for the transition from  
precharge to fast charge, which is defined as a ratio  
of battery regulation limit (VREG)  
Type : RW  
POR: 11b  
0h = 15%*VREG  
1h = 62.2%*VREG  
2h = 66.7%*VREG  
3h = 71.4%*VREG  
5-0  
IPRECHG_5:0  
R/W  
3h  
Reset by:  
WATCHDOG  
REG_RST  
Precharge current limit  
Type : RW  
POR: 120mA (3h)  
Range : 40mA-2000mA  
Fixed Offset : 0mA  
Bit Step Size : 40mA  
Clamped Low  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.7 REG09_Termination_Control Register (Offset = 9h) [reset = 5h]  
REG09_Termination_Control is shown in Figure 8-31 and described in Table 8-16.  
Return to the Table 8-8.  
Termination Control  
Figure 8-31. REG09_Termination_Control Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
REG_RST  
R/W-0h  
RESERVED  
R/W-0h  
ITERM_4:0  
R/W-5h  
Table 8-16. REG09_Termination_Control Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
REG_RST  
R
0h  
RESERVED  
6
R/W  
0h  
Reset registers to default values and reset timer  
Type : RW  
POR: 0b  
0h = Not reset  
1h = Reset  
5
RESERVED  
ITERM_4:0  
R/W  
R/W  
0h  
5h  
RESERVED  
4-0  
Reset by:  
WATCHDOG  
REG_RST  
Termination current  
Type : RW  
POR: 200mA (5h)  
Range : 40mA-1000mA  
Fixed Offset : 0mA  
Bit Step Size : 40mA  
Clamped Low  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.8 REG0A_Re-charge_Control Register (Offset = Ah) [reset = X]  
REG0A_Re-charge_Control is shown in Figure 8-32 and described in Table 8-17.  
Return to the Table 8-8.  
Re-charge Control  
Figure 8-32. REG0A_Re-charge_Control Register  
7
6
5
4
3
2
1
0
CELL_1:0  
R/W-X  
TRECHG_1:0  
R/W-2h  
VRECHG_3:0  
R/W-3h  
Table 8-17. REG0A_Re-charge_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
CELL_1:0  
R/W  
X
At POR, the charger reads the PROG pin resistance to  
determine the battery cell count and update this CELL  
bits accordingly.  
Type : RW  
0h = 1s  
1h = 2s  
2h = 3s  
3h = 4s  
5-4  
TRECHG_1:0  
R/W  
2h  
Reset by:  
WATCHDOG  
REG_RST  
Battery recharge deglich time  
Type : RW  
POR: 10b  
0h = 64ms  
1h = 256ms  
2h = 1024ms (default)  
3h = 2048ms  
3-0  
VRECHG_3:0  
R/W  
3h  
Reset by:  
WATCHDOG  
REG_RST  
Battery Recharge Threshold Offset (Below VREG)  
Type : RW  
POR: 200mV (3h)  
Range : 50mV-800mV  
Fixed Offset : 50mV  
Bit Step Size : 50mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.9 REG0B_VOTG_regulation Register (Offset = Bh) [reset = DCh]  
REG0B_VOTG_regulation is shown in Figure 8-33 and described in Table 8-18.  
Return to the Table 8-8.  
VOTG regulation  
Figure 8-33. REG0B_VOTG_regulation Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-0h  
VOTG_10:0  
R/W-DCh  
5
4
3
2
1
VOTG_10:0  
R/W-DCh  
Table 8-18. REG0B_VOTG_regulation Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15-11  
10-0  
RESERVED  
VOTG_10:0  
R
0h  
RESERVED  
R/W  
DCh  
Reset by:  
WATCHDOG  
REG_RST  
OTG mode regulation voltage  
Type : RW  
POR: 5000mV (DCh)  
Range : 5000mV-12000mV  
Fixed Offset : 2800mV  
Bit Step Size : 10mV  
Clamped High  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.10 REG0D_IOTG_regulation Register (Offset = Dh) [reset = 4Bh]  
REG0D_IOTG_regulation is shown in Figure 8-34 and described in Table 8-19.  
Return to the Table 8-8.  
IOTG regulation  
Figure 8-34. REG0D_IOTG_regulation Register  
7
6
5
4
3
2
1
0
PRECHG_TMR  
R/W-0h  
IOTG_6:0  
R/W-4Bh  
Table 8-19. REG0D_IOTG_regulation Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
PRECHG_TMR  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Pre-charge safety timer setting  
Type : RW  
POR: 0b  
0h = 2 hrs (default)  
1h = 0.5 hrs  
6-0  
IOTG_6:0  
R/W  
4Bh  
Reset by:  
WATCHDOG  
REG_RST  
OTG current limit  
Type : RW  
POR: 3040mA (4Bh)  
Range : 160mA-3360mA  
Fixed Offset : 0mA  
Bit Step Size : 40mA  
Clamped Low  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.11 REG0E_Timer_Control Register (Offset = Eh) [reset = 3Dh]  
REG0E_Timer_Control is shown in Figure 8-35 and described in Table 8-20.  
Return to the Table 8-8.  
Timer Control  
Figure 8-35. REG0E_Timer_Control Register  
7
6
5
4
3
2
1
0
TOPOFF_TMR_1:0  
EN_TRICHG_T EN_PRECHG_ EN_CHG_TMR  
CHG_TMR_1:0  
R/W-2h  
TMR2X_EN  
MR  
TMR  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 8-20. REG0E_Timer_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
TOPOFF_TMR_1:0 R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Top-off timer control  
Type : RW  
POR: 00b  
0h = Disabled (default)  
1h = 15 mins  
2h = 30 mins  
3h = 45 mins  
5
4
EN_TRICHG_TMR R/W  
EN_PRECHG_TMR R/W  
1h  
1h  
1h  
2h  
Reset by:  
WATCHDOG  
REG_RST  
Enable trickle charge timer (fixed as 1hr)  
Type : RW  
POR: 1b  
0h = Disabled  
1h = Enabled (default)  
Reset by:  
WATCHDOG  
REG_RST  
Enable pre-charge timer  
Type : RW  
POR: 1b  
0h = Disabled  
1h = Enabled (default)  
3
EN_CHG_TMR  
CHG_TMR_1:0  
R/W  
R/W  
Reset by:  
WATCHDOG  
REG_RST  
Enable fast charge timer  
Type : RW  
POR: 1b  
0h = Disabled  
1h = Enabled (default)  
2-1  
Reset by:  
WATCHDOG  
REG_RST  
Fast charge timer setting  
Type : RW  
POR: 10b  
0h = 5 hrs  
1h = 8 hrs  
2h = 12 hrs (default)  
3h = 24 hrs  
0
TMR2X_EN  
R/W  
1h  
Reset by:  
WATCHDOG  
REG_RST  
TMR2X_EN  
Type : RW  
POR: 1b  
0h = Trickle charge, pre-charge and fast charge timer  
NOT slowed by 2X during input DPM or thermal  
regulation.  
1h = Trickle charge, pre-charge and fast charge timer  
slowed by 2X during input DPM or thermal regulation  
(default)  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.12 REG0F_Charger_Control_0 Register (Offset = Fh) [reset = A2h]  
REG0F_Charger_Control_0 is shown in Figure 8-36 and described in Table 8-21.  
Return to the Table 8-8.  
Charger Control 0  
Figure 8-36. REG0F_Charger_Control_0 Register  
7
6
5
4
3
2
1
0
EN_AUTO_IBA FORCE_IBATDI  
EN_CHG  
EN_ICO  
FORCE_ICO  
EN_HIZ  
EN_TERM  
RESERVED  
TDIS  
S
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R-0h  
Table 8-21. REG0F_Charger_Control_0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
EN_AUTO_IBATDIS R/W  
1h  
Reset by:  
Enable the auto battery discharging during the battery  
REG_RST  
OVP fault  
Type : RW  
POR: 1b  
0h = The charger will NOT apply a discharging current  
on BAT during battery OVP  
1h = The charger will apply a discharging current on  
BAT during battery OVP  
6
FORCE_IBATDIS  
R/W  
0h  
Reset by:  
REG_RST  
Force a battery discharging current  
Type : RW  
POR: 0b  
0h = IDLE (default)  
1h = Force the charger to apply a discharging current  
on BAT regardless the battery OVP status  
5
4
3
EN_CHG  
EN_ICO  
R/W  
R/W  
R/W  
1h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Charger Enable Configuration  
Type : RW  
POR: 1b  
0h = Charge Disable  
1h = Charge Enable (default)  
Reset by:  
REG_RST  
Input Current Optimizer (ICO) Enable  
Type : RW  
POR: 0b  
0h = Disable ICO (default)  
1h = Enable ICO  
FORCE_ICO  
Reset by:  
WATCHDOG  
REG_RST  
Force start input current optimizer (ICO)  
Note: This bit can only be set and returns 0 after ICO  
starts. This bit only valid when EN_ICO = 1  
Type : RW  
POR: 0b  
0h = Do NOT force ICO (Default)  
1h = Force ICO start  
2
1
EN_HIZ  
R/W  
R/W  
0h  
1h  
Reset by:  
REG_RST  
Enable HIZ mode.  
This bit will be also reset to 0, when the adapter is  
plugged in at VBUS.  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
EN_TERM  
Reset by:  
WATCHDOG  
REG_RST  
Enable termination  
Type : RW  
POR: 1b  
0h = Disable  
1h = Enable (default)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-21. REG0F_Charger_Control_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
0
RESERVED  
R
0h  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.13 REG10_Charger_Control_1 Register (Offset = 10h) [reset = 85h]  
REG10_Charger_Control_1 is shown in Figure 8-37 and described in Table 8-22.  
Return to the Table 8-8.  
Charger Control 1  
Figure 8-37. REG10_Charger_Control_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
VAC_OVP_1:0  
R/W-3h  
WD_RST  
R/W-0h  
WATCHDOG_2:0  
R/W-5h  
Table 8-22. REG10_Charger_Control_1 Register Field Descriptions  
Bit  
7-6  
3
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
WD_RST  
R
0h  
Reserved  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
I2C watch dog timer reset  
Type : RW  
POR: 0b  
0h = Normal (default)  
1h = Reset (this bit goes back to 0 after timer resets)  
2-0  
WATCHDOG_2:0  
R/W  
5h  
Reset by:  
REG_RST  
Watchdog timer settings  
Type : RW  
POR: 101b  
0h = Disable  
1h = 0.5s  
2h = 1s  
3h = 2s  
4h = 20s  
5h = 40s (default)  
6h = 80s  
7h = 160s  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.14 REG11_Charger_Control_2 Register (Offset = 11h) [reset = 40h]  
REG11_Charger_Control_2 is shown in Figure 8-38 and described in Table 8-23.  
Return to the Table 8-8.  
Charger Control 2  
Figure 8-38. REG11_Charger_Control_2 Register  
7
6
5
4
3
2
1
0
FORCE_INDET AUTO_INDET_  
EN  
EN_12V  
EN_9V  
HVDCP_EN  
SDRV_CTRL_1:0  
R/W-0h  
SDRV_DLY  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-23. REG11_Charger_Control_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
FORCE_INDET  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Force D+/D- detection  
Type : RW  
POR: 0b  
0h = Do NOT force D+/D- detection (default)  
1h = Force D+/D- algorithm, when D+/D- detection is  
done, this bit will be reset to 0  
AUTO_INDET_EN  
R/W  
1h  
Reset by:  
Automatic D+/D- Detection Enable  
WATCHDOG  
REG_RST  
Type : RW  
POR: 1b  
0h = Disable D+/D- detection when VBUS is plugged-  
in  
1h = Enable D+/D- detection when VBUS is plugged-in  
(default)  
5
4
EN_12V  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
EN_12V HVDC  
Type : RW  
POR: 0b  
0h = Disable 12V mode in HVDCP (default)  
1h = Enable 12V mode in HVDCP  
EN_9V  
Reset by:  
REG_RST  
EN_9V HVDC  
Type : RW  
POR: 0b  
0h = Disable 9V mode in HVDCP (default)  
1h = Enable 9V mode in HVDCP  
3
HVDCP_EN  
SDRV_CTRL_1:0  
Reset by:  
REG_RST  
High voltage DCP enable.  
Type : RW  
POR: 0b  
0h = Disable HVDCP handshake (default)  
1h = Enable HVDCP handshake  
2-1  
Reset by:  
SFET control  
REG_RST  
The external ship FET control logic to force the device  
enter different modes.  
Type : RW  
POR: 00b  
0h = IDLE (default)  
1h = Shutdown Mode  
2h = Ship Mode  
3h = System Power Reset  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-23. REG11_Charger_Control_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
0
SDRV_DLY  
R/W  
0h  
Reset by:  
Delay time added to the taking action in bit [2:1] of the  
REG_RST  
SFET control  
Type : RW  
POR: 0b  
0h = Add 10s delay time (default)  
1h = Do NOT add 10s delay time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.15 REG12_Charger_Control_3 Register (Offset = 12h) [reset = 0h]  
REG12_Charger_Control_3 is shown in Figure 8-39 and described in Table 8-24.  
Return to the Table 8-8.  
Charger Control 3  
Figure 8-39. REG12_Charger_Control_3 Register  
7
6
5
4
3
2
1
0
DIS_ACDRV  
EN_OTG  
PFM_OTG_DIS PFM_FWD_DIS WKUP_DLY  
DIS_LDO  
DIS_OTG_OOA DIS_FWD_OO  
A
R/W-0h  
R/W-0h  
R/W-0h R/W-0h R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-24. REG12_Charger_Control_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
DIS_ACDRV  
R/W  
0h  
When this bit is set, the charger will force both  
EN_ACDRV1=0 and EN_ACDRV2=0  
Type : RW  
POR: 0b  
6
5
4
3
EN_OTG  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
OTG mode control  
Type : RW  
POR: 0b  
0h = OTG Disable (default)  
1h = OTG Enable  
PFM_OTG_DIS  
PFM_FWD_DIS  
WKUP_DLY  
Reset by:  
WATCHDOG  
REG_RST  
Disable PFM in OTG mode  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
Disable PFM in forward mode  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
When wake up the device from ship mode, how much  
REG_RST  
time (tSM_EXIT) is required to pull low the QON pin.  
Type : RW  
POR: 0b  
0h = 1s (Default)  
1h = 15ms  
2
1
0
DIS_LDO  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Disable BATFET LDO mode in pre-charge stage.  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
DIS_OTG_OOA  
DIS_FWD_OOA  
Reset by:  
WATCHDOG  
REG_RST  
Disable OOA in OTG mode  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
Disable OOA in forward mode  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.16 REG13_Charger_Control_4 Register (Offset = 13h) [reset = X]  
REG13_Charger_Control_4 is shown in Figure 8-40 and described in Table 8-25.  
Return to the Table 8-8.  
Charger Control 4  
Figure 8-40. REG13_Charger_Control_4 Register  
7
6
5
4
3
2
1
0
EN_ACDRV2  
EN_ACDRV1  
PWM_FREQ  
DIS_STAT  
DIS_VSYS_SH DIS_VOTG_UV FORCE_VINDP EN_IBUS_OCP  
ORT  
P
M_DET  
R/W-0h  
R/W-0h  
R/W-X  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 8-25. REG13_Charger_Control_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
EN_ACDRV2  
R/W  
0h  
External ACFET2-RBFET2 gate driver control  
At POR, if the charger detects that there is no  
ACFET2-RBFET2 populated, this bit will be locked at 0  
Type : RW  
POR: 0b  
0h = turn off (default)  
1h = turn on  
6
EN_ACDRV1  
R/W  
0h  
External ACFET1-RBFET1 gate driver control  
At POR, if the charger detects that there is no  
ACFET1-RBFET1 populated, this bit will be locked at 0  
Type : RW  
POR: 0b  
0h = turn off (default)  
1h = turn on  
5
4
3
2
1
PWM_FREQ  
DIS_STAT  
R/W  
R/W  
X
Switching frequency selection, this bit POR default  
value is based on the PROG pin strapping.  
Type : RW  
0h = 1.5 MHz  
1h = 750 kHz  
0h  
0h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Disable the STAT pin output  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
DIS_VSYS_SHORT R/W  
Reset by:  
REG_RST  
Disable forward mode VSYS short hiccup protection.  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
DIS_VOTG_UVP  
R/W  
Reset by:  
REG_RST  
Disable OTG mode VOTG UVP hiccup protection.  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
FORCE_VINDPM_D R/W  
ET  
Reset by:  
REG_RST  
Force VINDPM detection  
Note: only when VBAT>VSYSMIN, this bit can be set  
to 1. Once the VINDPM auto detection is done, this  
bits returns to 0.  
Type : RW  
POR: 0b  
0h = Do NOT force VINDPM detection (default)  
1h = Force the converter stop switching, and ADC  
measures the VBUS voltage without input current, then  
the charger updates the VINDPM register accordingly.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-25. REG13_Charger_Control_4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
0
EN_IBUS_OCP  
R/W  
1h  
Reset by:  
Enable IBUS_OCP in forward mode  
REG_RST  
Type : RW  
POR: 1b  
0h = Disable  
1h = Enable (default)  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.17 REG14_Charger_Control_5 Register (Offset = 14h) [reset = 16h]  
REG14_Charger_Control_5 is shown in Figure 8-41 and described in Table 8-26.  
Return to the Table 8-8.  
Charger Control 5  
Figure 8-41. REG14_Charger_Control_5 Register  
7
6
5
4
3
2
1
0
SFET_PRESEN RESERVED  
T
EN_IBAT  
IBAT_REG_1:0  
R/W-2h  
EN_IINDPM  
EN_EXTILIM  
EN_BATOC  
R/W-0h  
R-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 8-26. REG14_Charger_Control_5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
SFET_PRESENT  
R/W  
0h  
The user has to set this bit based on whether a ship  
FET is populated or not. The POR default value is  
0, which means the charger does not support all the  
features associated with the ship FET. The register bits  
list below all are locked at 0.  
EN_BATOC=0  
FORCE_SFET_OFF=0  
SDRV_CTRL=00  
When this bit is set to 1, the register bits list above  
become programmable, and the charger can support  
the features associated with the ship FET  
Type : RW  
POR: 0b  
0h = No ship FET populated  
1h = Ship FET populated  
6
RESERVED  
R
0h  
2h  
Reserved  
4-3  
IBAT_REG_1:0  
R/W  
Reset by:  
Battery discharging current regulation in OTG mode  
WATCHDOG  
REG_RST  
Type : RW  
POR: 10b  
0h = 3A  
1h = 4A  
2h = 5A (default)  
3h = Disable  
2
1
0
EN_IINDPM  
EN_EXTILIM  
EN_BATOC  
R/W  
R/W  
R/W  
1h  
1h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Enable the internal IINDPM register input current  
regulation  
Type : RW  
POR: 1b  
0h = Disable  
1h = Enable (default)  
Reset by:  
REG_RST  
Enable the external ILIM_HIZ pin input current  
regulation  
Type : RW  
POR: 1b  
0h = Disable  
1h = Enable (default)  
Reset by:  
Enable the battery discharging current OCP  
WATCHDOG  
REG_RST  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.18 REG15_MPPT_Control Register (Offset = 15h) [reset = AAh]  
REG15_MPPT_Control is shown in Figure 8-42 and described in Table 8-27.  
Return to the Table 8-8.  
MPPT Control  
Figure 8-42. REG15_MPPT_Control Register  
7
6
5
4
3
2
1
0
VOC_PCT_2:0  
R/W-5h  
VOC_DLY_1:0  
R/W-1h  
VOC_RATE_1:0  
R/W-1h  
EN_MPPT  
R/W-0h  
Table 8-27. REG15_MPPT_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-5  
VOC_PCT_2:0  
R/W  
5h  
Reset by:  
To set the VINDPM as a percentage of the VBUS open  
REG_RST  
circuit voltage when the VOC measurement is done.  
Type : RW  
POR: 101b  
0h = 0.5625  
1h = 0.625  
2h = 0.6875  
3h = 0.75  
4h = 0.8125  
5h = 0.875 (default)  
6h = 0.9375  
7h = 1  
4-3  
2-1  
0
VOC_DLY_1:0  
VOC_RATE_1:0  
EN_MPPT  
R/W  
R/W  
R/W  
1h  
1h  
0h  
Reset by:  
REG_RST  
After the converter stops switching, the time delay  
before the VOC is measured.  
Type : RW  
POR: 01b  
0h = 50ms  
1h = 300ms (default)  
2h = 2s  
3h = 5s  
Reset by:  
REG_RST  
The time interval two VBUS open circuit voltage  
measurements.  
Type : RW  
POR: 01b  
0h = 30s  
1h = 2mins (default)  
2h = 10mins  
3h = 30mins  
Reset by:  
Enable the MPPT to measure the VBUS open circuit  
REG_RST  
voltage.  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.19 REG16_Temperature_Control Register (Offset = 16h) [reset = C0h]  
REG16_Temperature_Control is shown in Figure 8-43 and described in Table 8-28.  
Return to the Table 8-8.  
Temperature Control  
Figure 8-43. REG16_Temperature_Control Register  
7
6
5
4
3
2
1
0
TREG_1:0  
R/W-3h  
TSHUT_1:0  
R/W-0h  
VBUS_PD_EN VAC1_PD_EN VAC2_PD_EN  
R/W-0h R/W-0h R/W-0h  
RESERVED  
R-0h  
Table 8-28. REG16_Temperature_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
TREG_1:0  
R/W  
3h  
Reset by:  
WATCHDOG  
REG_RST  
Thermal regulation thresholds.  
Type : RW  
POR: 11b  
0h = 60°C  
1h = 80°C  
2h = 100°C  
3h = 120°C (default)  
5-4  
TSHUT_1:0  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Thermal shutdown thresholds.  
Type : RW  
POR: 00b  
0h = 150°C (default)  
1h = 130°C  
2h = 120°C  
3h = 85°C  
3
2
1
0
VBUS_PD_EN  
VAC1_PD_EN  
VAC2_PD_EN  
RESERVED  
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
Enable VBUS pull down resistor (6k Ohm)  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Reset by:  
REG_RST  
Enable VAC1 pull down resistor  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Reset by:  
REG_RST  
Enable VAC2 pull down resistor  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.20 REG17_NTC_Control_0 Register (Offset = 17h) [reset = 7Ah]  
REG17_NTC_Control_0 is shown in Figure 8-44 and described in Table 8-29.  
Return to the Table 8-8.  
NTC Control 0  
Figure 8-44. REG17_NTC_Control_0 Register  
7
6
5
4
3
2
1
0
JEITA_VSET_2:0  
R/W-3h  
JEITA_ISETH_1:0  
R/W-3h  
JEITA_ISETC_1:0  
R/W-1h  
RESERVED  
R-0h  
Table 8-29. REG17_NTC_Control_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-5  
JEITA_VSET_2:0  
R/W  
3h  
Reset by:  
JEITA high temperature range (TWARN – THOT)  
WATCHDOG  
REG_RST  
charge voltage setting  
Type : RW  
POR: 011b  
0h = Charge Suspend  
1h = Set VREG to VREG-800mV  
2h = Set VREG to VREG-600mV  
3h = Set VREG to VREG-400mV (default)  
4h = Set VREG to VREG-300mV  
5h = Set VREG to VREG-200mV  
6h = Set VREG to VREG-100mV  
7h = VREG unchanged  
4-3  
2-1  
0
JEITA_ISETH_1:0  
JEITA_ISETC_1:0  
RESERVED  
R/W  
R/W  
R
3h  
1h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
JEITA high temperature range (TWARN – THOT)  
charge current setting  
Type : RW  
POR: 11b  
0h = Charge Suspend  
1h = Set ICHG to 20%* ICHG  
2h = Set ICHG to 40%* ICHG  
3h = ICHG unchanged (default)  
Reset by:  
WATCHDOG  
REG_RST  
JEITA low temperature range (TCOLD – TCOOL)  
charge current setting  
Type : RW  
POR: 01b  
0h = Charge Suspend  
1h = Set ICHG to 20%* ICHG (default)  
2h = Set ICHG to 40%* ICHG  
3h = ICHG unchanged  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.21 REG18_NTC_Control_1 Register (Offset = 18h) [reset = 54h]  
REG18_NTC_Control_1 is shown in Figure 8-45 and described in Table 8-30.  
Return to the Table 8-8.  
NTC Control 1  
Figure 8-45. REG18_NTC_Control_1 Register  
7
6
5
4
3
2
1
0
TS_COOL_1:0  
R/W-1h  
TS_WARM_1:0  
R/W-1h  
BHOT_1:0  
R/W-1h  
BCOLD  
R/W-0h  
TS_IGNORE  
R/W-0h  
Table 8-30. REG18_NTC_Control_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
TS_COOL_1:0  
TS_WARM_1:0  
BHOT_1:0  
R/W  
1h  
Reset by:  
WATCHDOG  
REG_RST  
JEITA VT2 comparator voltage rising thresholds as a  
percentage of REGN. The corresponding temperature  
in the brackets is achieved when a 103AT NTC  
thermistor is used, RT1=5.24kΩ and RT2=30.31kΩ.  
Type : RW  
POR: 01b  
0h = 71.1% (5°C)  
1h = 68.4% (default) (10°C)  
2h = 65.5% (15°C)  
3h = 62.4% (20°C)  
5-4  
R/W  
1h  
Reset by:  
WATCHDOG  
REG_RST  
JEITA VT3 comparator voltage falling thresholds as a  
percentage of REGN. The corresponding temperature  
in the brackets is achieved when a 103AT NTC  
thermistor is used, RT1=5.24kΩ and RT2=30.31kΩ.  
Type : RW  
POR: 01b  
0h = 48.4% (40°C)  
1h = 44.8% (default) (45°C)  
2h = 41.2% (50°C)  
3h = 37.7% (55°C)  
3-2  
R/W  
1h  
Reset by:  
OTG mode TS HOT temperature threshold  
WATCHDOG  
REG_RST  
Type : RW  
POR: 01b  
0h = 55°C  
1h = 60°C (default)  
2h = 65°C  
3h = Disable  
1
0
BCOLD  
R/W  
R/W  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
OTG mode TS COLD temperature threshold  
Type : RW  
POR: 0b  
0h = -10°C (default)  
1h = -20°C  
TS_IGNORE  
Reset by:  
WATCHDOG  
REG_RST  
Ignore the TS feedback, the charger considers the TS  
is always good to allow the charging and OTG modes,  
all the four TS status bits always stay at 0000 to report  
the normal condition.  
Type : RW  
POR: 0b  
0h = NOT ignore (Default)  
1h = Ignore  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.22 REG19_ICO_Current_Limit Register (Offset = 19h) [reset = 0h]  
REG19_ICO_Current_Limit is shown in Figure 8-46 and described in Table 8-31.  
Return to the Table 8-8.  
ICO Current Limit  
Figure 8-46. REG19_ICO_Current_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
R-0h  
ICO_ILIM_8:0  
R-0h  
5
4
3
2
0
ICO_ILIM_8:0  
R-0h  
Table 8-31. REG19_ICO_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
8-0  
RESERVED  
R
0h  
RESERVED  
ICO_ILIM_8:0  
R
0h  
Input Current Limit obtained from ICO or ILIM_HIZ pin setting  
Type : R  
POR: 0mA (0h)  
Range : 100mA-3300mA  
Fixed Offset : 0mA  
Bit Step Size : 10mA  
Clamped Low  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.23 REG1B_Charger_Status_0 Register (Offset = 1Bh) [reset = 0h]  
REG1B_Charger_Status_0 is shown in Figure 8-47 and described in Table 8-32.  
Return to the Table 8-8.  
Charger Status 0  
Figure 8-47. REG1B_Charger_Status_0 Register  
7
6
5
4
3
2
1
0
IINDPM_STAT VINDPM_STAT  
WD_STAT  
POORSRC_ST  
AT  
PG_STAT  
AC2_PRESENT AC1_PRESENT VBUS_PRESE  
_STAT  
_STAT  
NT_STAT  
R-0h R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-32. REG1B_Charger_Status_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
IINDPM_STAT  
R
0h  
IINDPM status (forward mode) or IOTG status (OTG mode)  
Type : R  
POR: 0b  
0h = Normal  
1h = In IINDPM regulation or IOTG regulation  
VINDPM_STAT  
R
R
0h  
0h  
VINDPM status (forward mode) or VOTG status (OTG mode)  
Type : R  
POR: 0b  
0h = Normal  
1h = In VINDPM regulation or VOTG regualtion  
WD_STAT  
I2C watch dog timer status  
Type : R  
POR: 0b  
0h = Normal  
1h = WD timer expired  
4
3
RESERVED  
PG_STAT  
R
R
0h  
0h  
RESERVED  
Power Good Status  
Type : R  
POR: 0b  
0h = NOT in power good status  
1h = Power good  
2
1
AC2_PRESENT_STAT  
AC1_PRESENT_STAT  
R
R
0h  
0h  
VAC2 insert status  
Type : R  
POR: 0b  
0h = VAC2 NOT present  
1h = VAC2 present (above present threshold)  
VAC1 insert status  
Type : R  
POR: 0b  
0h = VAC1 NOT present  
1h = VAC1 present (above present threshold)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-32. REG1B_Charger_Status_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
VBUS_PRESENT_STAT  
R
0h  
VBUS present status  
Type : R  
POR: 0b  
0h = VBUS NOT present  
1h = VBUS present (above present threshold)  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.24 REG1C_Charger_Status_1 Register (Offset = 1Ch) [reset = 0h]  
REG1C_Charger_Status_1 is shown in Figure 8-48 and described in Table 8-33.  
Return to the Table 8-8.  
Charger Status 1  
Figure 8-48. REG1C_Charger_Status_1 Register  
7
6
5
4
3
2
1
0
CHG_STAT_2:0  
VBUS_STAT_3:0  
R-0h  
BC1.2_DONE_  
STAT  
R-0h  
R-0h  
Table 8-33. REG1C_Charger_Status_1 Register Field Descriptions  
Bit  
7-5  
Field  
Type  
Reset  
Description  
CHG_STAT_2:0  
R
0h  
Charge Status bits  
Type : R  
POR: 000b  
0h = Not Charging  
1h = Trickle Charge  
2h = Pre-charge  
3h = Fast charge (CC mode)  
4h = Taper Charge (CV mode)  
5h = Reserved  
6h = Top-off Timer Active Charging  
7h = Charge Termination Done  
4-1  
VBUS_STAT_3:0  
R
0h  
VBUS status bits  
0h: No Input or BHOT or BCOLD in OTG mode  
1h: USB SDP (500mA)  
2h: USB CDP (1.5A)  
3h: USB DCP (3.25A)  
4h: Adjustable High Voltage DCP (HVDCP) (1.5A)  
5h: Unknown adaptor (3A)  
6h: Non-Standard Adapter (1A/2A/2.1A/2.4A)  
7h: In OTG mode  
8h: Not qualified adaptor  
9h: Reserved  
Ah: Reserved  
Bh: Device directly powered from VBUS  
Ch: Reserved  
Dh: Reserved  
Eh: Reserved  
Fh: Reserved  
Type : R  
POR: 0h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-33. REG1C_Charger_Status_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
BC1.2_DONE_STAT  
R
0h  
BC1.2 status bit  
Type : R  
POR: 0b  
0h = BC1.2 or non-standard detection NOT complete  
1h = BC1.2 or non-standard detection complete  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.25 REG1D_Charger_Status_2 Register (Offset = 1Dh) [reset = 0h]  
REG1D_Charger_Status_2 is shown in Figure 8-49 and described in Table 8-34.  
Return to the Table 8-8.  
Charger Status 2  
Figure 8-49. REG1D_Charger_Status_2 Register  
7
6
5
4
3
2
1
0
ICO_STAT_1:0  
R-0h  
RESERVED  
TREG_STAT  
DPDM_STAT VBAT_PRESEN  
T_STAT  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-34. REG1D_Charger_Status_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ICO_STAT_1:0  
R
0h  
Input Current Optimizer (ICO) status  
Type : R  
POR: 00b  
0h = ICO disabled  
1h = ICO optimization in progress  
2h = Maximum input current detected  
3h = Reserved  
5-3  
2
RESERVED  
TREG_STAT  
R
R
0h  
0h  
RESERVED  
IC thermal regulation status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in thermal regulation  
1
0
DPDM_STAT  
R
R
0h  
0h  
D+/D- detection status bits  
Type : R  
POR: 0b  
0h = The D+/D- detection is NOT started yet, or the detection is done  
1h = The D+/D- detection is ongoing  
VBAT_PRESENT_STAT  
Battery present status (VBAT > VBAT_UVLOZ  
)
Type : R  
POR: 0b  
0h = VBAT NOT present  
1h = VBAT present  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.26 REG1E_Charger_Status_3 Register (Offset = 1Eh) [reset = 0h]  
REG1E_Charger_Status_3 is shown in Figure 8-50 and described in Table 8-35.  
Return to the Table 8-8.  
Charger Status 3  
Figure 8-50. REG1E_Charger_Status_3 Register  
7
6
5
4
3
2
1
0
ACRB2_STAT ACRB1_STAT ADC_DONE_S  
TAT  
VSYS_STAT  
CHG_TMR_ST TRICHG_TMR_ PRECHG_TMR  
RESERVED  
AT  
STAT  
_STAT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-35. REG1E_Charger_Status_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
ACRB2_STAT  
R
0h  
The ACFET2-RBFET2 status  
Type : R  
POR: 0b  
0h = ACFET2-RBFET2 is NOT placed  
1h = ACFET2-RBFET2 is placed  
ACRB1_STAT  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
The ACFET1-RBFET1 status  
Type : R  
POR: 0b  
0h = ACFET1-RBFET1 is NOT placed  
1h = ACFET1-RBFET1 is placed  
ADC_DONE_STAT  
ADC Conversion Status (in one-shot mode only)  
Type : R  
POR: 0b  
0h = Conversion NOT complete  
1h = Conversion complete  
VSYS_STAT  
VSYS Regulation Status (forward mode)  
Type : R  
POR: 0b  
0h = Not in VSYSMIN regulation (VBAT > VSYSMIN  
)
1h = In VSYSMIN regulation (VBAT < VSYSMIN  
)
CHG_TMR_STAT  
Fast charge timer status  
Type : R  
POR: 0b  
0h = Normal  
1h = Safety timer expired  
TRICHG_TMR_STAT  
Trickle charge timer status  
Type : R  
POR: 0b  
0h = Normal  
1h = Safety timer expired  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-35. REG1E_Charger_Status_3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
PRECHG_TMR_STAT  
R
0h  
Pre-charge timer status  
Type : R  
POR: 0b  
0h = Normal  
1h = Safety timer expired  
0
RESERVED  
R
0h  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.27 REG1F_Charger_Status_4 Register (Offset = 1Fh) [reset = 0h]  
REG1F_Charger_Status_4 is shown in Figure 8-51 and described in Table 8-36.  
Return to the Table 8-8.  
Charger Status 4  
Figure 8-51. REG1F_Charger_Status_4 Register  
7
6
5
4
3
2
1
0
RESERVED  
VBATOTG_LO TS_COLD_STA TS_COOL_STA TS_WARM_ST TS_HOT_STAT  
W_STAT  
T
T
AT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-36. REG1F_Charger_Status_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
R
0h  
RESERVED  
VBATOTG_LOW_STAT  
TS_COLD_STAT  
TS_COOL_STAT  
TS_WARM_STAT  
TS_HOT_STAT  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
The battery voltage is too low to enable OTG mode.  
Type : R  
POR: 0b  
0h = The battery voltage is high enough to enable the OTG operation  
1h = The battery volage is too low to enable the OTG operation  
3
2
1
0
The TS temperature is in the cold range, lower than T1.  
Type : R  
POR: 0b  
0h = TS status is NOT in cold range  
1h = TS status is in cold range  
The TS temperature is in the cool range, between T1 and T2.  
Type : R  
POR: 0b  
0h = TS status is NOT in cool range  
1h = TS status is in cool range  
The TS temperature is in the warm range, between T3 and T5.  
Type : R  
POR: 0b  
0h = TS status is NOT in warm range  
1h = TS status is in warm range  
The TS temperature is in the hot range, higher than T5.  
Type : R  
POR: 0b  
0h = TS status is NOT in hot range  
1h = TS status is in hot range  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.28 REG20_FAULT_Status_0 Register (Offset = 20h) [reset = 0h]  
REG20_FAULT_Status_0 is shown in Figure 8-52 and described in Table 8-37.  
Return to the Table 8-8.  
FAULT Status 0  
Figure 8-52. REG20_FAULT_Status_0 Register  
7
6
5
4
3
2
1
0
IBAT_REG_ST VBUS_OVP_ST VBAT_OVP_ST IBUS_OCP_ST IBAT_OCP_ST CONV_OCP_S VAC2_OVP_ST VAC1_OVP_ST  
AT  
AT  
AT  
AT  
AT  
TAT  
AT  
AT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-37. REG20_FAULT_Status_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
IBAT_REG_STAT  
R
0h  
IBAT regulation status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in battery discharging current regulation  
VBUS_OVP_STAT  
VBAT_OVP_STAT  
IBUS_OCP_STAT  
IBAT_OCP_STAT  
CONV_OCP_STAT  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
VBUS over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over voltage protection  
VBAT over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over voltage protection  
IBUS over-current status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over current protection  
IBAT over-current status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over current protection  
Converter over current status  
Type : R  
POR: 0b  
0h = Normal  
1h = Converter in over current protection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-37. REG20_FAULT_Status_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
VAC2_OVP_STAT  
R
0h  
VAC2 over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over voltage protection  
0
VAC1_OVP_STAT  
R
0h  
VAC1 over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over voltage protection  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.29 REG21_FAULT_Status_1 Register (Offset = 21h) [reset = 0h]  
REG21_FAULT_Status_1 is shown in Figure 8-53 and described in Table 8-38.  
Return to the Table 8-8.  
FAULT Status 1  
Figure 8-53. REG21_FAULT_Status_1 Register  
7
6
5
4
3
2
1
0
VSYS_SHORT VSYS_OVP_ST OTG_OVP_ST OTG_UVP_STA RESERVED  
TSHUT_STAT  
RESERVED  
R-0h  
_STAT  
AT  
AT  
T
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-38. REG21_FAULT_Status_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VSYS_SHORT_STAT  
R
0h  
VSYS short circuit status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in SYS short circuit protection  
6
5
4
VSYS_OVP_STAT  
OTG_OVP_STAT  
OTG_UVP_STAT  
R
R
R
0h  
0h  
0h  
VSYS over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in SYS over-voltage protection  
OTG over voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in OTG over-voltage  
OTG under voltage status.  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in OTG under voltage  
3
2
RESERVED  
R
R
0h  
0h  
RESERVED  
TSHUT_STAT  
IC temperature shutdown status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in thermal shutdown protection  
1-0  
RESERVED  
R
0h  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.30 REG22_Charger_Flag_0 Register (Offset = 22h) [reset = 0h]  
REG22_Charger_Flag_0 is shown in Figure 8-54 and described in Table 8-39.  
Return to the Table 8-8.  
Charger Flag 0  
Figure 8-54. REG22_Charger_Flag_0 Register  
7
6
5
4
3
2
1
0
IINDPM_FLAG VINDPM_FLAG  
WD_FLAG  
POORSRC_FL  
AG  
PG_FLAG  
AC2_PRESENT AC1_PRESENT VBUS_PRESE  
_FLAG  
_FLAG  
NT_FLAG  
R-0h R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-39. REG22_Charger_Flag_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
IINDPM_FLAG  
R
0h  
IINDPM / IOTG flag  
Type : R  
POR: 0b  
0h = Normal  
1h = IINDPM / IOTG signal rising edge detected  
VINDPM_FLAG  
R
R
R
R
0h  
0h  
0h  
0h  
VINDPM / VOTG Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VINDPM / VOTG regulation signal rising edge detected  
WD_FLAG  
I2C watchdog timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = WD timer signal rising edge detected  
POORSRC_FLAG  
Poor source detection flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Poor source status rising edge detected  
PG_FLAG  
Power good flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Any change in PG_STAT even (adapter good qualification or  
adapter good going away)  
2
AC2_PRESENT_FLAG  
R
0h  
VAC2 present flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VAC2 present status changed  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-39. REG22_Charger_Flag_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
AC1_PRESENT_FLAG  
R
0h  
VAC1 present flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VAC1 present status changed  
0
VBUS_PRESENT_FLAG  
R
0h  
VBUS present flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBUS present status changed  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.31 REG23_Charger_Flag_1 Register (Offset = 23h) [reset = 0h]  
REG23_Charger_Flag_1 is shown in Figure 8-55 and described in Table 8-40.  
Return to the Table 8-8.  
Charger Flag 1  
Figure 8-55. REG23_Charger_Flag_1 Register  
7
6
5
4
3
2
1
0
CHG_FLAG  
ICO_FLAG  
RESERVED  
VBUS_FLAG  
RESERVED  
TREG_FLAG VBAT_PRESEN BC1.2_DONE_  
T_FLAG  
FLAG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-40. REG23_Charger_Flag_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CHG_FLAG  
R
0h  
Charge status flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Charge status changed  
6
ICO_FLAG  
R
0h  
ICO status flag  
Type : R  
POR: 0b  
0h = Normal  
1h = ICO status changed  
5
4
RESERVED  
VBUS_FLAG  
R
R
0h  
0h  
RESERVED  
VBUS status flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBUS status changed  
3
2
RESERVED  
TREG_FLAG  
R
R
0h  
0h  
RESERVED  
IC thermal regulation flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TREG signal rising threshold detected  
1
VBAT_PRESENT_FLAG  
R
0h  
VBAT present flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBAT present status changed  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-40. REG23_Charger_Flag_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
BC1.2_DONE_FLAG  
R
0h  
BC1.2 status Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BC1.2 detection status changed  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.32 REG24_Charger_Flag_2 Register (Offset = 24h) [reset = 0h]  
REG24_Charger_Flag_2 is shown in Figure 8-56 and described in Table 8-41.  
Return to the Table 8-8.  
Charger Flag 2  
Figure 8-56. REG24_Charger_Flag_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
DPDM_DONE_ ADC_DONE_F  
VSYS_FLAG  
CHG_TMR_FL TRICHG_TMR_ PRECHG_TMR TOPOFF_TMR  
FLAG  
LAG  
AG  
FLAG  
_FLAG  
_FLAG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-41. REG24_Charger_Flag_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0h  
RESERVED  
6
5
4
3
2
1
DPDM_DONE_FLAG  
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
D+/D- detection is done flag.  
Type : R  
POR: 0b  
0h = D+/D- detection is NOT started or still ongoing  
1h = D+/D- detection is completed  
ADC_DONE_FLAG  
ADC conversion flag (only in one-shot mode)  
Type : R  
POR: 0b  
0h = Conversion NOT completed  
1h = Conversion completed  
VSYS_FLAG  
VSYSMIN regulation flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Entered or existed VSYSMIN regulation  
CHG_TMR_FLAG  
TRICHG_TMR_FLAG  
PRECHG_TMR_FLAG  
Fast charge timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Fast charge timer expired rising edge detected  
Trickle charge timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Trickle charger timer expired rising edge detected  
Pre-charge timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Pre-charge timer expired rising edge detected  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-41. REG24_Charger_Flag_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
TOPOFF_TMR_FLAG  
R
0h  
Top off timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Top off timer expired rising edge detected  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.33 REG25_Charger_Flag_3 Register (Offset = 25h) [reset = 0h]  
REG25_Charger_Flag_3 is shown in Figure 8-57 and described in Table 8-42.  
Return to the Table 8-8.  
Charger Flag 3  
Figure 8-57. REG25_Charger_Flag_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
VBATOTG_LO TS_COLD_FLA TS_COOL_FLA TS_WARM_FL TS_HOT_FLAG  
W_FLAG  
G
G
AG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-42. REG25_Charger_Flag_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
R
0h  
RESERVED  
VBATOTG_LOW_FLAG  
TS_COLD_FLAG  
TS_COOL_FLAG  
TS_WARM_FLAG  
TS_HOT_FLAG  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
VBAT too low to enable OTG flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBAT falls below the threshold to enable the OTG mode  
3
2
1
0
TS cold temperature flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS across cold temperature (T1) is detected  
TS cool temperature flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS across cool temperature (T2) is detected  
TS warm temperature flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS across warm temperature (T3) is detected  
TS hot temperature flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS across hot temperature (T5) is detected  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.34 REG26_FAULT_Flag_0 Register (Offset = 26h) [reset = 0h]  
REG26_FAULT_Flag_0 is shown in Figure 8-58 and described in Table 8-43.  
Return to the Table 8-8.  
FAULT Flag 0  
Figure 8-58. REG26_FAULT_Flag_0 Register  
7
6
5
4
3
2
1
0
IBAT_REG_FL VBUS_OVP_FL VBAT_OVP_FL IBUS_OCP_FL IBAT_OCP_FL CONV_OCP_F VAC2_OVP_FL VAC1_OVP_FL  
AG  
AG  
AG  
AG  
AG  
LAG  
AG  
AG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-43. REG26_FAULT_Flag_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
IBAT_REG_FLAG  
VBUS_OVP_FLAG  
VBAT_OVP_FLAG  
IBUS_OCP_FLAG  
IBAT_OCP_FLAG  
CONV_OCP_FLAG  
R
0h  
IBAT regulation flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter or exit IBAT regulation  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
VBUS over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter VBUS OVP  
VBAT over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter VBAT OVP  
IBUS over-current flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter IBUS OCP  
IBAT over-current flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter discharged OCP  
Converter over-current flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter converter OCP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-43. REG26_FAULT_Flag_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
VAC2_OVP_FLAG  
R
0h  
VAC2 over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter VAC2 OVP  
0
VAC1_OVP_FLAG  
R
0h  
VAC1 over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter VAC1 OVP  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.35 REG27_FAULT_Flag_1 Register (Offset = 27h) [reset = 0h]  
REG27_FAULT_Flag_1 is shown in Figure 8-59 and described in Table 8-44.  
Return to the Table 8-8.  
FAULT Flag 1  
Figure 8-59. REG27_FAULT_Flag_1 Register  
7
6
5
4
3
2
1
0
VSYS_SHORT VSYS_OVP_FL OTG_OVP_FLA OTG_UVP_FLA RESERVED  
TSHUT_FLAG  
RESERVED  
R-0h  
_FLAG  
AG  
G
G
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 8-44. REG27_FAULT_Flag_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VSYS_SHORT_FLAG  
VSYS_OVP_FLAG  
OTG_OVP_FLAG  
OTG_UVP_FLAG  
R
0h  
VSYS short circuit flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Stop switching due to system short  
6
5
4
R
R
R
0h  
0h  
0h  
VSYS over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Stop switching due to system over-voltage  
OTG over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Stop OTG due to VBUS over voltage  
OTG under-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Stop OTG due to VBUS under-voltage  
3
2
RESERVED  
R
R
0h  
0h  
RESERVED  
TSHUT_FLAG  
IC thermal shutdown flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS shutdown signal rising threshold detected  
1-0  
RESERVED  
R
0h  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.36 REG28_Charger_Mask_0 Register (Offset = 28h) [reset = 0h]  
REG28_Charger_Mask_0 is shown in Figure 8-60 and described in Table 8-45.  
Return to the Table 8-8.  
Charger Mask 0  
Figure 8-60. REG28_Charger_Mask_0 Register  
7
6
5
4
3
2
1
0
IINDPM_MASK VINDPM_MAS  
K
WD_MASK  
POORSRC_MA  
SK  
PG_MASK  
AC2_PRESENT AC1_PRESENT VBUS_PRESE  
_MASK  
_MASK  
NT_MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-45. REG28_Charger_Mask_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
5
IINDPM_MASK  
VINDPM_MASK  
WD_MASK  
R/W  
0h  
Reset by:  
REG_RST  
IINDPM / IOTG mask flag  
Type : RW  
POR: 0b  
0h = Enter IINDPM / IOTG does produce INT pulse  
1h = Enter IINDPM / IOTG does NOT produce INT  
pulse  
R/W  
R/W  
0h  
0h  
Reset by:  
REG_RST  
VINDPM / VOTG mask flag  
Type : RW  
POR: 0b  
0h = Enter VINDPM / VOTG does produce INT pulse  
1h = Enter VINDPM / VOTG does NOT produce INT  
pulse  
Reset by:  
REG_RST  
I2C watch dog timer mask flag  
Type : RW  
POR: 0b  
0h = I2C watch dog timer expired does produce INT  
pulse  
1h = I2C watch dog timer expired does NOT produce  
INT pulse  
4
3
2
POORSRC_MASK  
PG_MASK  
R/W  
R/W  
0h  
0h  
0h  
Reset by:  
REG_RST  
Poor source detection mask flag  
Type : RW  
POR: 0b  
0h = Poor source detected does produce INT  
1h = Poor source detected does NOT produce INT  
Reset by:  
REG_RST  
Power Good mask flag  
Type : RW  
POR: 0b  
0h = PG toggle does produce INT  
1h = PG toggle does NOT produce INT  
AC2_PRESENT_MA R/W  
SK  
Reset by:  
REG_RST  
VAC2 present mask flag  
Type : RW  
POR: 0b  
0h = VAC2 present status change does produce INT  
1h = VAC2 present status change does NOT produce  
INT  
1
AC1_PRESENT_MA R/W  
SK  
0h  
Reset by:  
REG_RST  
VAC1 present mask flag  
Type : RW  
POR: 0b  
0h = VAC1 present status change does produce INT  
1h = VAC1 present status change does NOT produce  
INT  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
Table 8-45. REG28_Charger_Mask_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
0
VBUS_PRESENT_M R/W  
ASK  
0h  
Reset by:  
REG_RST  
VBUS present mask flag  
Type : RW  
POR: 0b  
0h = VBUS present status change does produce INT  
1h = VBUS present status change does NOT produce  
INT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.37 REG29_Charger_Mask_1 Register (Offset = 29h) [reset = 0h]  
REG29_Charger_Mask_1 is shown in Figure 8-61 and described in Table 8-46.  
Return to the Table 8-8.  
Charger Mask 1  
Figure 8-61. REG29_Charger_Mask_1 Register  
7
6
5
4
3
2
1
0
CHG_MASK  
ICO_MASK  
RESERVED  
VBUS_MASK  
RESERVED  
TREG_MASK VBAT_PRESEN BC1.2_DONE_  
T_MASK  
MASK  
R/W-0h  
R/W-0h  
R-0h  
R/W-0h  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-46. REG29_Charger_Mask_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
CHG_MASK  
ICO_MASK  
R/W  
0h  
Reset by:  
REG_RST  
Charge status mask flag  
Type : RW  
POR: 0b  
0h = Charging status change does produce INT  
1h = Charging status change does NOT produce INT  
6
R/W  
0h  
Reset by:  
REG_RST  
ICO status mask flag  
Type : RW  
POR: 0b  
0h = ICO status change does produce INT  
1h = ICO status change does NOT produce INT  
5
4
RESERVED  
R
0h  
0h  
RESERVED  
VBUS_MASK  
R/W  
Reset by:  
VBUS status mask flag  
REG_RST  
Type : RW  
POR: 0b  
0h = VBUS status change does produce INT  
1h = VBUS status change does NOT produce INT  
3
2
RESERVED  
R
0h  
0h  
RESERVED  
TREG_MASK  
R/W  
Reset by:  
REG_RST  
IC thermal regulation mask flag  
Type : RW  
POR: 0b  
0h = entering TREG does produce INT  
1h = entering TREG does NOT produce INT  
1
0
VBAT_PRESENT_M R/W  
ASK  
0h  
0h  
Reset by:  
REG_RST  
VBAT present mask flag  
Type : RW  
POR: 0b  
0h = VBAT present status change does produce INT  
1h = VBAT present status change does NOT produce  
INT  
BC1.2_DONE_MAS R/W  
K
Reset by:  
REG_RST  
BC1.2 status mask flag  
Type : RW  
POR: 0b  
0h = BC1.2 status change does produce INT  
1h = BC1.2 status change does NOT produce INT  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.38 REG2A_Charger_Mask_2 Register (Offset = 2Ah) [reset = 0h]  
REG2A_Charger_Mask_2 is shown in Figure 8-62 and described in Table 8-47.  
Return to the Table 8-8.  
Charger Mask 2  
Figure 8-62. REG2A_Charger_Mask_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
DPDM_DONE_ ADC_DONE_M VSYS_MASK CHG_TMR_MA TRICHG_TMR_ PRECHG_TMR TOPOFF_TMR  
MASK  
ASK  
SK  
MASK  
_MASK  
_MASK  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-47. REG2A_Charger_Mask_2 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Notes  
Description  
R
0h  
RESERVED  
6
DPDM_DONE_MAS R/W  
K
0h  
Reset by:  
REG_RST  
D+/D- detection is done mask flag  
Type : RW  
POR: 0b  
0h = D+/D- detection done does produce INT pulse  
1h = D+/D- detection done does NOT produce INT  
pulse  
5
4
ADC_DONE_MASK R/W  
0h  
0h  
Reset by:  
REG_RST  
ADC conversion mask flag (only in one-shot mode)  
Type : RW  
POR: 0b  
0h = ADC conversion done does produce INT pulse  
1h = ADC conversion done does NOT produce INT  
pulse  
VSYS_MASK  
R/W  
Reset by:  
VSYS min regulation mask flag  
REG_RST  
Type : RW  
POR: 0b  
0h = enter or exit VSYSMIN regulation does produce  
INT pulse  
1h = enter or exit VSYSMIN regulation does NOT  
produce INT pulse  
3
2
CHG_TMR_MASK  
R/W  
0h  
0h  
Reset by:  
REG_RST  
Fast charge timer mask flag  
Type : RW  
POR: 0b  
0h = Fast charge timer expire does produce INT  
1h = Fast charge timer expire does NOT produce INT  
TRICHG_TMR_MAS R/W  
K
Reset by:  
REG_RST  
Trickle charge timer mask flag  
Type : RW  
POR: 0b  
0h = Trickle charge timer expire does produce INT  
1h = Trickle charge timer expire does NOT produce  
INT  
1
0
PRECHG_TMR_MA R/W  
SK  
0h  
0h  
Reset by:  
REG_RST  
Pre-charge timer mask flag  
Type : RW  
POR: 0b  
0h = Pre-charge timer expire does produce INT  
1h = Pre-charge timer expire does NOT produce INT  
TOPOFF_TMR_MA R/W  
SK  
Reset by:  
REG_RST  
Top off timer mask flag  
Type : RW  
POR: 0b  
0h = Top off timer expire does produce INT  
1h = Top off timer expire does NOT produce INT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.39 REG2B_Charger_Mask_3 Register (Offset = 2Bh) [reset = 0h]  
REG2B_Charger_Mask_3 is shown in Figure 8-63 and described in Table 8-48.  
Return to the Table 8-8.  
Charger Mask 3  
Figure 8-63. REG2B_Charger_Mask_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
VBATOTG_LO TS_COLD_MA TS_COOL_MA TS_WARM_MA TS_HOT_MAS  
W_MASK  
SK  
SK  
SK  
K
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-48. REG2B_Charger_Mask_3 Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
R
0h  
RESERVED  
VBATOTG_LOW_M R/W  
ASK  
0h  
Reset by:  
WATCHDOG  
REG_RST  
VBAT too low to enable OTG mask  
Type : RW  
POR: 0b  
0h = VBAT falling below the threshold to enable the  
OTG mode, does produce INT  
1h = VBAT falling below the threshold to enable the  
OTG mode, does NOT produce INT  
3
2
1
0
TS_COLD_MASK  
TS_COOL_MASK  
TS_WARM_MASK  
TS_HOT_MASK  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
TS cold temperature interrupt mask  
Type : RW  
POR: 0b  
0h = TS across cold temperature (T1) does produce  
INT  
1h = TS across cold temperature (T1) does NOT  
produce INT  
Reset by:  
WATCHDOG  
REG_RST  
TS cool temperature interrupt mask  
Type : RW  
POR: 0b  
0h = TS across cool temperature (T2) does produce  
INT  
1h = TS across cool temperature (T2) does NOT  
produce INT  
Reset by:  
WATCHDOG  
REG_RST  
TS warm temperature interrupt mask  
Type : RW  
POR: 0b  
0h = TS across warm temperature (T3) does produce  
INT  
1h = TS across warm temperature (T3) does NOT  
produce INT  
Reset by:  
TS hot temperature interrupt mask  
WATCHDOG  
REG_RST  
Type : RW  
POR: 0b  
0h = TS across hot temperature (T5) does produce  
INT  
1h = TS across hot temperature (T5) does NOT  
produce INT  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.40 REG2C_FAULT_Mask_0 Register (Offset = 2Ch) [reset = 0h]  
REG2C_FAULT_Mask_0 is shown in Figure 8-64 and described in Table 8-49.  
Return to the Table 8-8.  
FAULT Mask 0  
Figure 8-64. REG2C_FAULT_Mask_0 Register  
7
6
5
4
3
2
1
0
IBAT_REG_MA VBUS_OVP_M VBAT_OVP_M IBUS_OCP_MA IBAT_OCP_MA CONV_OCP_M VAC2_OVP_M VAC1_OVP_M  
SK  
ASK  
ASK  
SK  
SK  
ASK  
ASK  
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-49. REG2C_FAULT_Mask_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
IBAT_REG_MASK  
R/W  
0h  
Reset by:  
REG_RST  
IBAT regulation mask flag  
Type : RW  
POR: 0b  
0h = enter or exit IBAT regulation does produce INT  
1h = enter or exit IBAT regulation does NOT produce  
INT  
6
5
4
3
2
1
0
VBUS_OVP_MASK R/W  
VBAT_OVP_MASK R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
VBUS over-voltage mask flag  
Type : RW  
POR: 0b  
0h = entering VBUS OVP does produce INT  
1h = entering VBUS OVP does NOT produce INT  
Reset by:  
REG_RST  
VBAT over-voltage mask flag  
Type : RW  
POR: 0b  
0h = entering VBAT OVP does produce INT  
1h = entering VBAT OVP does NOT produce INT  
IBUS_OCP_MASK  
IBAT_OCP_MASK  
R/W  
R/W  
Reset by:  
REG_RST  
IBUS over-current mask flag  
Type : RW  
POR: 0b  
0h = IBUS OCP fault does produce INT  
1h = IBUS OCP fault does NOT produce INT  
Reset by:  
REG_RST  
IBAT over-current mask flag  
Type : RW  
POR: 0b  
0h = IBAT OCP fault does produce INT  
1h = IBAT OCP fault does NOT produce INT  
CONV_OCP_MASK R/W  
VAC2_OVP_MASK R/W  
VAC1_OVP_MASK R/W  
Reset by:  
REG_RST  
Converter over-current mask flag  
Type : RW  
POR: 0b  
0h = Converter OCP fault does produce INT  
1h = Converter OCP fault does NOT produce INT  
Reset by:  
REG_RST  
VAC2 over-voltage mask flag  
Type : RW  
POR: 0b  
0h = entering VAC2 OVP does produce INT  
1h = entering VAC2 OVP does NOT produce INT  
Reset by:  
REG_RST  
VAC1 over-voltage mask flag  
Type : RW  
POR: 0b  
0h = entering VAC1 OVP does produce INT  
1h = entering VAC1 OVP does NOT produce INT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.41 REG2D_FAULT_Mask_1 Register (Offset = 2Dh) [reset = 0h]  
REG2D_FAULT_Mask_1 is shown in Figure 8-65 and described in Table 8-50.  
Return to the Table 8-8.  
FAULT Mask 1  
Figure 8-65. REG2D_FAULT_Mask_1 Register  
7
6
5
4
3
2
1
0
VSYS_SHORT VSYS_OVP_M OTG_OVP_MA OTG_UVP_MA  
RESERVED  
TSHUT_MASK  
RESERVED  
R-0h  
_MASK  
ASK  
SK  
SK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-50. REG2D_FAULT_Mask_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
5
VSYS_SHORT_MA R/W  
SK  
0h  
Reset by:  
REG_RST  
VSYS short circuit mask flag  
Type : RW  
POR: 0b  
0h = System short fault does produce INT  
1h = System short fault does NOT produce INT  
VSYS_OVP_MASK R/W  
0h  
0h  
Reset by:  
REG_RST  
VSYS over-voltage mask flag  
Type : RW  
POR: 0b  
0h = System over-voltage fault does produce INT  
1h = System over-voltage fault does NOT produce INT  
OTG_OVP_MASK  
OTG_UVP_MASK  
R/W  
R/W  
Reset by:  
REG_RST  
OTG over-voltage mask flag  
Type : RW  
POR: 0b  
0h = OTG VBUS over-voltage fault does produce INT  
1h = OTG VBUS over-voltage fault does NOT produce  
INT  
4
0h  
Reset by:  
REG_RST  
OTG under-voltage mask flag  
Type : RW  
POR: 0b  
0h = OTG VBUS under voltage fault does produce INT  
1h = OTG VBUS under voltage fault does NOT  
produce INT  
3
2
RESERVED  
R/W  
R/W  
0h  
0h  
RESERVED  
TSHUT_MASK  
Reset by:  
REG_RST  
IC thermal shutdown mask flag  
Type : RW  
POR: 0b  
0h = TSHUT does produce INT  
1h = TSHUT does NOT produce INT  
1-0  
RESERVED  
R
0h  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.42 REG2E_ADC_Control Register (Offset = 2Eh) [reset = 30h]  
REG2E_ADC_Control is shown in Figure 8-66 and described in Table 8-51.  
Return to the Table 8-8.  
ADC Control  
Figure 8-66. REG2E_ADC_Control Register  
7
6
5
4
3
2
1
0
ADC_EN  
R/W-0h  
ADC_RATE  
R/W-0h  
ADC_SAMPLE_1:0  
R/W-3h  
ADC_AVG  
R/W-0h  
ADC_AVG_INIT  
R/W-0h  
RESERVED  
R/W-0h  
Table 8-51. REG2E_ADC_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
ADC_EN  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
ADC Control  
Type : RW  
POR: 0b  
0h = Disable  
1h = Enable  
6
ADC_RATE  
R/W  
0h  
3h  
Reset by:  
REG_RST  
ADC conversion rate control  
Type : RW  
POR: 0b  
0h = Continuous conversion  
1h = One shot conversion  
5-4  
ADC_SAMPLE_1:0 R/W  
Reset by:  
REG_RST  
ADC sample speed  
Type : RW  
POR: 11b  
0h = 15 bit effective resolution  
1h = 14 bit effective resolution  
2h = 13 bit effective resolution  
3h = 12 bit effective resolution  
3
2
ADC_AVG  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Reset by:  
REG_RST  
ADC average control  
Type : RW  
POR: 0b  
0h = Single value  
1h = Running average  
ADC_AVG_INIT  
RESERVED  
Reset by:  
REG_RST  
ADC average initial value control  
Type : RW  
POR: 0b  
0h = Start average using the existing register value  
1h = Start average using a new ADC conversion  
1-0  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.43 REG2F_ADC_Function_Disable_0 Register (Offset = 2Fh) [reset = 0h]  
REG2F_ADC_Function_Disable_0 is shown in Figure 8-67 and described in Table 8-52.  
Return to the Table 8-8.  
ADC Function Disable 0  
Figure 8-67. REG2F_ADC_Function_Disable_0 Register  
7
6
5
4
3
2
1
0
IBUS_ADC_DIS IBAT_ADC_DIS VBUS_ADC_DI VBAT_ADC_DI VSYS_ADC_DI TS_ADC_DIS TDIE_ADC_DIS RESERVED  
S
S
S
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R-0h  
Table 8-52. REG2F_ADC_Function_Disable_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
5
4
3
2
1
0
IBUS_ADC_DIS  
IBAT_ADC_DIS  
VBUS_ADC_DIS  
VBAT_ADC_DIS  
VSYS_ADC_DIS  
TS_ADC_DIS  
R/W  
0h  
Reset by:  
REG_RST  
IBUS ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
IBAT ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
VBUS ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
VBAT ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
VSYS ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
TS ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
TDIE_ADC_DIS  
RESERVED  
Reset by:  
REG_RST  
TDIE ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.44 REG30_ADC_Function_Disable_1 Register (Offset = 30h) [reset = 0h]  
REG30_ADC_Function_Disable_1 is shown in Figure 8-68 and described in Table 8-53.  
Return to the Table 8-8.  
ADC Function Disable 1  
Figure 8-68. REG30_ADC_Function_Disable_1 Register  
7
6
5
4
3
2
1
0
DP_ADC_DIS DM_ADC_DIS VAC2_ADC_DI VAC1_ADC_DI  
RESERVED  
R-0h  
S
S
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-53. REG30_ADC_Function_Disable_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
DP_ADC_DIS  
DM_ADC_DIS  
VAC2_ADC_DIS  
VAC1_ADC_DIS  
RESERVED  
R/W  
0h  
Reset by:  
REG_RST  
D+ ADC Control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
D- ADC Control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
5
Reset by:  
REG_RST  
VAC2 ADC Control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
4
Reset by:  
REG_RST  
VAC1 ADC Control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
3-0  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.45 REG31_IBUS_ADC Register (Offset = 31h) [reset = 0h]  
REG31_IBUS_ADC is shown in Figure 8-69 and described in Table 8-54.  
Return to the Table 8-8.  
IBUS ADC  
Figure 8-69. REG31_IBUS_ADC Register  
15  
7
14  
6
13  
12  
IBUS_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
IBUS_ADC_15:0  
R-0h  
Table 8-54. REG31_IBUS_ADC Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
IBUS_ADC_15:0  
R
0h  
IBUS ADC reading  
Reported in 2 's Complement.  
When the current is flowing from VBUS to PMID, IBUS ADC reports  
positive value, and when the current is flowing from PMID to VBUS,  
IBUS ADC reports negative value.  
Type : R  
POR: 0mA (0h)  
Range : 0mA-5000mA  
Fixed Offset : 0mA  
Bit Step Size : 1mA  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.46 REG33_IBAT_ADC Register (Offset = 33h) [reset = 0h]  
REG33_IBAT_ADC is shown in Figure 8-70 and described in Table 8-55.  
Return to the Table 8-8.  
IBAT ADC  
Figure 8-70. REG33_IBAT_ADC Register  
15  
7
14  
6
13  
12  
IBAT_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
IBAT_ADC_15:0  
R-0h  
Table 8-55. REG33_IBAT_ADC Register Field Descriptions  
Bit  
15-0  
Field  
IBAT_ADC_15:0  
Type  
Reset  
Description  
R
0h  
IBAT ADC reading  
Reported in 2 's Complement.  
The IBAT ADC reports positive value for the battery charging current,  
and negative value for the battery discharging current.  
Type : R  
POR: 0mA (0h)  
Range : 0mA-8000mA  
Fixed Offset : 0mA  
Bit Step Size : 1mA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.47 REG35_VBUS_ADC Register (Offset = 35h) [reset = 0h]  
REG35_VBUS_ADC is shown in Figure 8-71 and described in Table 8-56.  
Return to the Table 8-8.  
VBUS ADC  
Figure 8-71. REG35_VBUS_ADC Register  
15  
7
14  
6
13  
12  
VBUS_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VBUS_ADC_15:0  
R-0h  
Table 8-56. REG35_VBUS_ADC Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
VBUS_ADC_15:0  
R
0h  
VBUS ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-30000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.48 REG37_VAC1_ADC Register (Offset = 37h) [reset = 0h]  
REG37_VAC1_ADC is shown in Figure 8-72 and described in Table 8-57.  
Return to the Table 8-8.  
VAC1 ADC  
Figure 8-72. REG37_VAC1_ADC Register  
15  
7
14  
6
13  
12  
VAC1_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VAC1_ADC_15:0  
R-0h  
Table 8-57. REG37_VAC1_ADC Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
VAC1_ADC_15:0  
R
0h  
VAC1 ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-30000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.49 REG39_VAC2_ADC Register (Offset = 39h) [reset = 0h]  
REG39_VAC2_ADC is shown in Figure 8-73 and described in Table 8-58.  
Return to the Table 8-8.  
VAC2 ADC  
Figure 8-73. REG39_VAC2_ADC Register  
15  
7
14  
6
13  
12  
VAC2_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VAC2_ADC_15:0  
R-0h  
Table 8-58. REG39_VAC2_ADC Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
VAC2_ADC_15:0  
R
0h  
VAC2 ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-30000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.50 REG3B_VBAT_ADC Register (Offset = 3Bh) [reset = 0h]  
REG3B_VBAT_ADC is shown in Figure 8-74 and described in Table 8-59.  
Return to the Table 8-8.  
VBAT ADC  
Figure 8-74. REG3B_VBAT_ADC Register  
15  
7
14  
6
13  
12  
VBAT_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VBAT_ADC_15:0  
R-0h  
Table 8-59. REG3B_VBAT_ADC Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
VBAT_ADC_15:0  
R
0h  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-20000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.51 REG3D_VSYS_ADC Register (Offset = 3Dh) [reset = 0h]  
REG3D_VSYS_ADC is shown in Figure 8-75 and described in Table 8-60.  
Return to the Table 8-8.  
VSYS ADC  
Figure 8-75. REG3D_VSYS_ADC Register  
15  
7
14  
6
13  
12  
VSYS_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VSYS_ADC_15:0  
R-0h  
Table 8-60. REG3D_VSYS_ADC Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
VSYS_ADC_15:0  
R
0h  
VSYS ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-24000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.52 REG3F_TS_ADC Register (Offset = 3Fh) [reset = 0h]  
REG3F_TS_ADC is shown in Figure 8-76 and described in Table 8-61.  
Return to the Table 8-8.  
TS ADC  
Figure 8-76. REG3F_TS_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
TS_ADC_15:0  
R-0h  
5
4
3
2
TS_ADC_15:0  
R-0h  
Table 8-61. REG3F_TS_ADC Register Field Descriptions  
Bit  
15-0  
Field  
TS_ADC_15:0  
Type  
Reset  
Description  
R
0h  
TS ADC reading  
Type : R  
POR: 0% (0h)  
Range : 0%-99.9023%  
Fixed Offset : 0%  
Bit Step Size : 0.0976563%  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.53 REG41_TDIE_ADC Register (Offset = 41h) [reset = 0h]  
REG41_TDIE_ADC is shown in Figure 8-77 and described in Table 8-62.  
Return to the Table 8-8.  
TDIE_ADC  
Figure 8-77. REG41_TDIE_ADC Register  
15  
7
14  
6
13  
12  
TDIE_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
TDIE_ADC_15:0  
R-0h  
Table 8-62. REG41_TDIE_ADC Register Field Descriptions  
Bit  
15-0  
Field  
TDIE_ADC_15:0  
Type  
Reset  
Description  
R
0h  
TDIE ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0°C (0h)  
Range : -40°C-150°C  
Fixed Offset : 0°C  
Bit Step Size : 0.5°C  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.54 REG43_D+_ADC Register (Offset = 43h) [reset = 0h]  
REG43_D+_ADC is shown in Figure 8-78 and described in Table 8-63.  
Return to the Table 8-8.  
D+ ADC  
Figure 8-78. REG43_D+_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
D+_ADC_15:0  
R-0h  
5
4
3
2
D+_ADC_15:0  
R-0h  
Table 8-63. REG43_D+_ADC Register Field Descriptions  
Bit  
15-0  
Field  
D+_ADC_15:0  
Type  
Reset  
Description  
R
0h  
D+ ADC reading  
Type : R  
POR: 0mV (0h)  
Range : 0mV-3600mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.55 REG45_D-_ADC Register (Offset = 45h) [reset = 0h]  
REG45_D-_ADC is shown in Figure 8-79 and described in Table 8-64.  
Return to the Table 8-8.  
D- ADC  
Figure 8-79. REG45_D-_ADC Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
D-_ADC_15:0  
R-0h  
4
3
D-_ADC_15:0  
R-0h  
Table 8-64. REG45_D-_ADC Register Field Descriptions  
Bit  
15-0  
Field  
D-_ADC_15:0  
Type  
Reset  
Description  
R
0h  
D- ADC reading  
Type : R  
POR: 0mV (0h)  
Range : 0mV-3600mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.56 REG47_DPDM_Driver Register (Offset = 47h) [reset = 0h]  
REG47_DPDM_Driver is shown in Figure 8-80 and described in Table 8-65.  
Return to the Table 8-8.  
DPDM Driver  
Figure 8-80. REG47_DPDM_Driver Register  
7
6
5
4
3
2
1
0
DPLUS_DAC_2:0  
R/W-0h  
DMINUS_DAC_2:0  
R/W-0h  
RESERVED  
R/W-0h  
Table 8-65. REG47_DPDM_Driver Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-2  
1-0  
DPLUS_DAC_2:0  
R/W  
0h  
D+ Output Driver  
Type : RW  
POR: 000b  
0h = HIZ  
1h = 0  
2h = 0.6V  
3h = 1.2V  
4h = 2.0V  
5h = 2.7V  
6h = 3.3V  
7h = D+/D- Short  
DMINUS_DAC_2:0  
R/W  
0h  
D- Output Driver  
Type : RW  
POR: 000b  
0h = HIZ  
1h = 0  
2h = 0.6V  
3h = 1.2V  
4h = 2.0V  
5h = 2.7V  
6h = 3.3V  
7h = reserved  
RESERVED  
R/W  
0h  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
8.5.1.57 REG48_Part_Information Register (Offset = 48h) [reset = 0h]  
REG48_Part_Information is shown in Figure 8-81 and described in Table 8-66.  
Return to the Table 8-8.  
Part Information  
Figure 8-81. REG48_Part_Information Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
PN_2:0  
R-0h  
DEV_REV_2:0  
R-0h  
Table 8-66. REG48_Part_Information Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
2-0  
RESERVED  
DEV_REV_2:0  
PN_2:0  
R
0h  
RESERVED  
R
R
0h  
0h  
Device revision 100 = BQ25672 All the other options are reserved.  
Device part number  
001 = BQ25672  
All other options are reserved.  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and  
a multi-cell battery charger for Li-Ion and Li-polymer batteries. It integrates the four switching MOSFETs for the  
converter, and the battery FET (BATFET) between system and battery. The device also integrates the input  
current sensing and charging current sensing circuitries, the bootstrap diode for the high-side gate driving and  
the dual-input power mux for the power sources selection.  
The charger's MPPT algorithm allows a simple but efficient interface between the charger and a small  
photovoltaic panel. The power mux may optionally be used to add a secondary charging port such as a barrel  
jack or USB input.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: BQ25672  
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
9.2 Typical Application  
294  
1 × 0.1 µF  
and  
Optional  
VIN2  
0.1 µF  
2 × 10 µF  
ACDRV2  
VAC2  
PMID  
VBUS  
c
VIN1  
0.1 µF  
1 × 0.1 µF and 3 × 10 µF  
294 ꢀ  
ACDRV1  
VAC1  
REGN  
6.04 kꢀ  
PROG  
127 k  
ILIM_HIZ  
GND  
100 kꢀ  
BTST1  
47 nF  
Q1  
SW1  
REGN  
1.0 µH  
Q2  
4.7 µF  
SYSTEM  
LOAD  
Q4  
SYS  
2.5V to 19.4V  
SW2  
47 nF  
1 × 0.1 µF and 3 × 10 µF  
2 × 10 µF  
Q3  
BTST2  
STAT  
BATFET  
REGN  
BAT  
2.2 kꢀ  
SDRV  
CE  
100ꢀ  
BQ25672  
Optional  
SDA  
SCL  
INT  
BATP  
TS  
REGN  
Host  
5.24 kꢀ  
10 kꢀ  
QON  
30.31 kꢀ  
Figure 9-1. BQ25672 Application Diagram with Two Input Sources and Ship FET  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
1 × 0.1 µF  
and  
2 × 10 µF  
ACDRV2  
VAC2  
PMID  
VBUS  
VIN  
1 × 0.1 µF and 3 × 10 µF  
0.1 µF  
ACDRV1  
VAC1  
REGN  
6.04 k  
PROG  
127 kꢀ  
ILIM_HIZ  
100 kꢀ  
BTST1  
GND  
47 nF  
Q1  
SW1  
REGN  
1.0 µH  
4.7 µF  
Q2  
SYSTEM  
Q4  
SYS  
LOAD  
2.5V to 19.4V  
SW2  
47 nF  
1 × 0.1 µF and 3 × 10 µF  
Q3  
BTST2  
STAT  
BATFET  
REGN  
BAT  
SDRV  
2.2 kꢀ  
1 nF  
CE  
100ꢀ  
2 × 10 µF  
SDA  
SCL  
INT  
BATP  
TS  
BQ25672  
REGN  
Host  
5.24 kꢀ  
10 kꢀ  
QON  
30.31 kꢀ  
Figure 9-2. BQ25672 Application Diagram with Single Input Source and No Ship FET  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
9.2.1 Design Requirements  
For this design example, use the parameters shown in the table below.  
Table 9-1. Design Parameters  
PARAMETER  
VALUE  
9 V to 20 V  
VOC = 10 VMPP = 8 V  
9 V to 20 V  
3.0 A  
VBUS voltage range  
PV panel voltage  
Secondary adapter voltage range  
Input current limit (IINDPM[8:0])  
Fast charge current limit (ICHG[8:0])  
Battery regulation voltage (VREG[10:0])  
Enable MPPT (EN_MPPT[0])  
3.0 A  
8.4 V  
1
VOC measure internval (VOC_RATE[1:0])  
VOC measure delay (VOC_DLY[1:0])  
VOC percent for MPP (VOC_PCT[2:0])  
2 min  
300 ms  
0.8125  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The device has 1.5 MHz switching frequency to allow the use of small inductor (1µH) and capacitor values.  
It also provide the 750kHz switching frequency to achieve higher efficiency for the applications which have  
enough design space to accommodate the larger inductor (2.2 µH) and capacitors. Please note that the 1.5 MHz  
switching frequency only works with the 1µH inductor and the 750 kHz switching frequency only works with the  
2.2µH inductor.  
Because the converter might be either operated in the buck mode or the boost mode, so the inductor current is  
equal to either the charging current or the input current. The inductor saturation current should be higher than  
the larger value of the input current (IIN) or the charging current (ICHG) plus half the ripple current (IRIPPLE):  
(4)  
The inductor ripple current (IRIPPLE) depends on the input voltage (VBUS), the output voltage (VSYS), the switching  
frequency (FSW) and the inductance (L). The inductor current ripples for buck mode and boost mode are  
calculated with equations (4) and (5), respectively:  
(5)  
(6)  
The inductor current ripple in the buck mode is usually larger than that in the boost mode, since the voltage-  
second applied on the inductor is larger. The maximum inductor current ripple in the buck mode happens in the  
vicinity of D = VSYS / VBUS = 0.5. The SYS voltage is approximately 8V for the 2s battery configuration, so the  
worst case for the inductor ripples is with the 15V or 20V input voltage.  
9.2.2.2 Input (VBUS / PMID) Capacitor  
In the buck mode operation, the input current is discontinuous, which dominates the input RMS ripple current  
and input voltage ripple. The input capacitors should have enough ripple current rating to absorb the input  
AC current and have large enough capacitance to maintain the small input voltage ripple. For the buck mode  
operation, the input RMS ripple current is calculated by the equation (6) and the input voltage ripple is calculated  
by the equation (7), where D = VSYS / VBUS  
.
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
(7)  
(8)  
The worst case input RMS ripple current and input voltage ripple both occur at 0.5 duty cycle condition. The  
SYS voltage is approximately 8V for the 2s battery configuration, so the worst case is when 15V to 20V VBUS  
condition. Low ESR ceramic capacitor such as X7R or X5R is preferred for the input decoupling capacitor and  
should be placed close to the PMID and GND pins of the IC. The voltage rating of the capacitor must be higher  
than the normal input voltage level. The capacitor with 25V or higher voltage rating is preferred for up to 20V  
input voltage. 1*0.1 μF + 3*10 μF ceramic capacitors are suggested for up to 3.3-A input current limit to support  
the converter in forward mode.  
9.2.2.3 Output (VSYS) Capacitor  
In the boost mode operation, the output current is discontinuous, which dominates the output RMS ripple current  
and output voltage ripple. The output capacitors should have enough ripple current rating to absorb the output  
AC current and have large enough capacitance to maintain the small output voltage ripple. For the boost mode  
operation, the output RMS ripple current is calculated by the equation (8) and the output voltage ripple is  
calculated by the equation (9), where D = (1 - VBUS / VSYS).  
(9)  
(10)  
The worst case output RMS ripple current and output voltage ripple both occur at the lowest VBUS input voltage.  
The SYS voltage is approximately 8V for the 2s battery configuration, so the worst case is 5V VBUS condition.  
Low ESR ceramic capacitor such as X7R or X5R is preferred for the output decoupling capacitor and should  
be placed close to the SYS and GND pins of the IC. The voltage rating of the capacitor must be higher than  
the normal input voltage level. The capacitor with 16V or higher voltage rating is preferred for the 2s battery  
configuration. 1*0.1 μF + 3*10 μF capacitors are suggested for up to 3A charging current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
9.2.3 Application Curves  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120), Fsw =  
1.5MHz.  
VBUS = 15V  
VBAT = 8V  
ICHG = 0A  
VBUS = 15V  
VBAT = 8V  
ICHG = 0A  
Figure 9-3. Buck Mode PFM with OOA  
Figure 9-4. Buck Mode PFM without OOA  
VBAT = 8V  
VOTG = 5V  
IBUS = 500mA  
VBAT = 8V  
VOTG = 5V  
IBUS = 0A  
Figure 9-6. OTG Startup at 500-mA Load  
Figure 9-5. OTG Startup at No Load  
VBAT = 8V  
VOTG = 5V  
VBUS = 15V  
VBAT = 8V  
Charge disabled  
Figure 9-8. VOTG Load Transient Response  
Figure 9-7. VSYS Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
VOC = 10V  
VMPP = 8.1V  
VBAT = 8V  
VOC = 10V  
VMPP = 8.1V  
VBAT = 8V  
Figure 9-10. MPPT Operation Zoom  
Figure 9-9. MPPT Operation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: BQ25672  
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.6 V and 24 V input  
with recommended >500mA current rating connected to VBUS or a 1s to 4s Li-Ion battery with voltage higher  
than VBAT_UVLO connected to BAT. The source current rating needs to be at least 3A for the converter of the  
charger to provide maximum output power to SYS.  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: BQ25672  
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
11 Layout  
11.1 Layout Guidelines  
The switching nodes rising and falling times should be minimized for minimum switching loss. Proper layout of  
the components to minimize the high frequency current path loops (shown in the figure below) is important to  
prevent the electrical and magnetic field radiation and the high frequency resonant problems. Here is a PCB  
layout priority list for proper layout. Layout PCB according to this specific order is essential.  
1. Place the SYS output capacitors as close to SYS and GND as possible. Place a 0.1 µF small size (such as  
0402 or 0201) capacitor closer than the other 10 µF capacitors. Ground connections need to be tied to the  
IC ground with a short copper trace connection or GND plane.  
2. Place the PMID input capacitors as close to PMID and GND as possible. Place a 0.1 µF small size (such as  
0402 or 0201) capacitor closer than the other 10 µF capacitors. Ground connections need to be tied to the  
IC ground with a short copper trace connection or GND plane.  
3. Place the VBUS input capacitors as close to VBUS and GND as possible. Place a 0.1 µF small size (such as  
0402 or 0201) capacitor closer than the other 10 µF capacitors. Ground connections need to be tied to the  
IC ground with a short copper trace connection or GND plane.  
4. The connection from SYS/PMID/VBUS to the 0.1 µF has to be routed on the top layer of the PCB, the  
returning back to GND also has to be in the top layer. Keep the whole routing loop as small as possible.  
5. Place the inductor input terminal to SW1 and the inductor output terminal to SW2 as close as possible.  
Minimize the copper area of this trace to lower electrical and magnetic field radiation but make the trace  
wide enough to carry the inductor current. Minimize parasitic capacitance from this area to any other trace or  
plane.  
6. Place the BAT capacitors close to BAT and GND, place the VBUS capacitors close to VBUS and GND.  
7. The REGN decoupling capacitor and the bootstrap capacitors should be placed next to the IC and make  
trace connection as short as possible.  
8. Ensure that there are sufficient thermal vias directly under the power MOSFETs, connecting to copper on  
other layers.  
9. Via size and number should be enough for a given current path.  
10. Route BATP away from switching nodes such as SW1 and SW2.  
Refer to the EVM design and more information in the BQ25672EVM (BMS027) Evaluation Module User's  
Guide for the recommended component placement with trace and via locations.  
+
+
œ
Figure 11-1. Buck-Boost Converter High Frequency Current Path  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: BQ25672  
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
11.2 Layout Example  
Legend  
Top Layer  
L5  
L5  
Mid Layer  
Bottom Layer  
SW1  
SW2  
C1  
C1  
C1  
C1  
C2  
C2  
C3  
C2  
C2  
C3  
PGND  
C2  
C1  
C2  
C1  
C7  
C7  
PMID  
VBUS  
SYS  
BAT  
C6 C6  
C6 C6  
C3  
C3  
PGND  
C7  
C7  
PGND  
Figure 11-2. PCB Layout Example (Top Layer Copper Pours Removed on Left, Shown on Right)  
Figure 11-2 shows the recommended placement and routing of external components. The components are  
labelled with "R," "C" or "L" to indicate resistor, capacitor or inductor and a number that corresponds to the  
numbered list in Section 11.1. Since the layout guidelines are listed in priority order, this number also provides a  
priority for component placement.  
The placement of C1 and C2 0.1 µF PMID and SYS capacitors is critical for noise filtering. They should be  
placed on the same layer as the BQ25672, as close to the IC as possible. This will generally require that the  
traces to connect SW1 and SW2 to the inductor are routed on a different layer.  
The SW1 and SW2 pins are routed to vias placed under the IC and then back out on an inner PCB layer. This  
supports the tightest placement of C1 and C2 capctiors as described above. These vias are also used to route to  
the C7 BTST1 and BTST2 capactiors on the bottom layer as shown.  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: BQ25672  
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
BQ25672EVM (BMS027) Evaluation Module User's Guide  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: BQ25672  
 
 
 
 
 
 
 
 
BQ25672  
www.ti.com  
SLUSEB9A – DECEMBER 2020 – REVISED MAY 2021  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: BQ25672  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25672RQMR  
ACTIVE  
VQFN-HR  
RQM  
29  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
BQ25672  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25672RQMR  
VQFN-  
HR  
RQM  
29  
3000  
330.0  
12.4  
4.25  
4.25  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN-HR RQM 29  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
BQ25672RQMR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQM0029A  
4.1  
3.9  
A
B
PIN 1 IDENTIFICATION  
4.1  
3.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.575  
0.375  
0.55  
2X (0.5) TYP  
0.35  
2.8  
2
0.8  
0.6  
2X  
0.6  
0.4  
(0.1) TYP  
0.5  
0.3  
4X (0.3) TYP  
23X 0.4  
17X  
10  
15  
16  
9
0.6  
0.4  
4X  
PKG  
2X  
2X  
3.2 2.4  
0.25  
0.15  
33X  
0.1  
C A B  
0.05  
C
24  
1
0.9  
29  
25  
4X  
0.7  
0.85  
0.65  
PKG  
2.7  
6X 0.45  
2X (0.55) TYP  
0.85  
2X  
0.65  
4225253/A 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQM0029A  
17X (0.6)  
(0.95)  
(1.85)  
2X (0.95)  
29  
25  
(1.725)  
(1.7)  
2X (1.6)  
4X  
(1)  
24  
1
2X (1.2)  
2X (0.8)  
2X (0.4)  
PKG  
(R0.05) TYP  
4X (0.7)  
33X (0.2)  
16  
9
(1.85)  
(1.9)  
(0.65)  
(0.68)  
(0.7)  
15  
10  
2X (0.9)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225253/A 11/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQM0029A  
17X (0.6)  
(0.95)  
(1.85)  
2X (0.95)  
29  
25  
(1.725)  
(1.7)  
2X (1.6)  
4X  
(1)  
24  
1
2X (1.2)  
2X (0.8)  
2X (0.4)  
PKG  
(R0.05) TYP  
4X (0.7)  
33X (0.2)  
16  
9
(1.85)  
(1.9)  
(0.65)  
(0.68)  
(0.7)  
15  
10  
2X (0.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
SCALE: 18X  
4225253/A 11/2019  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

BQ25700A

具有系统功率监控器和处理器的 SMBus 1 至 4 节 NVDC 降压/升压电池充电控制器
TI

BQ25700ARSNR

具有系统功率监控器和处理器的 SMBus 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25700ARSNT

具有系统功率监控器和处理器的 SMBus 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25703A

具有系统功率监控器和处理器的 I2C 1 至 4 节 NVDC 降压/升压电池充电控制器
TI

BQ25703ARSNR

具有系统功率监控器和处理器的 I2C 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25703ARSNT

具有系统功率监控器和处理器的 I2C 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25708

SMBus 多化合物电池降压/升压充电控制器
TI

BQ25708RSNR

SMBus 多化合物电池降压/升压充电控制器 | RSN | 32 | -40 to 85
TI

BQ25708RSNT

SMBus 多化合物电池降压/升压充电控制器 | RSN | 32 | -40 to 85
TI

BQ25710

具有系统功率监测器和处理器热量监测器的 SMBus 1 至 4 节降压/升压电池充电控制器
TI

BQ25710RSNR

具有系统功率监测器和处理器热量监测器的 SMBus 1 至 4 节降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25710RSNT

具有系统功率监测器和处理器热量监测器的 SMBus 1 至 4 节降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI