BQ25708RSNR [TI]

SMBus 多化合物电池降压/升压充电控制器 | RSN | 32 | -40 to 85;
BQ25708RSNR
型号: BQ25708RSNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SMBus 多化合物电池降压/升压充电控制器 | RSN | 32 | -40 to 85

电池 控制器
文件: 总77页 (文件大小:1268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq25708  
SLUSCU2 NOVEMBER 2017  
bq25708 SMBus Multi-Chemistry Battery Buck-Boost Charge Controller With System  
Power Monitor and Processor Hot Monitor  
1 Features  
Input Current Optimizer (ICO) to Extract Max Input  
Power  
1
Charge 1- to 4-Cell Battery From Wide Range of  
Input Sources  
Charge any Battery Chemistry: Li+, LiFePO4,  
NiCd, NiMH, Lead Acid  
3.5-V to 24-V Input Operating Voltage  
Package: 32-Pin 4 × 4 WQFN  
Supports USB2.0, USB 3.0, USB 3.1 (Type C),  
and USB_PD Input Current Settings  
2 Applications  
Seamless Transition Between Buck and Boost  
Operation  
Ultra-Books, Notebooks, Detachable, and Tablet  
PCs and Power Bank  
Input current and Voltage Regulation (IDPM  
and VDPM) Against Source Overload  
Industrial and Medical Equipment  
Portable Equipment With Rechargeable Batteries  
Power/Current Monitor for CPU Throttling  
Comprehensive PROCHOT Profile, IMVP8  
Compliant  
3 Description  
The bq25708 is a synchronous NVDC battery buck-  
boost charge controller, offering low component  
count, high efficiency solution for space-constraint,  
multi-chemistry battery charging applications.  
Input and Battery Current Monitor  
System Power Monitor, IMVP8 Compliant  
Narrow-VDC (NVDC) Power Path Management  
Instant-On With No Battery or Deeply  
Discharged Battery  
The NVDC-1 configuration allows the system to be  
regulated at battery voltage, but not drop below  
system minimum voltage. The system keeps  
operating even when the battery is completely  
discharged or removed. When load power exceeds  
input source rating, the battery goes into supplement  
mode and prevents the system from crashing.  
Battery Supplements System When Adapter is  
Fully-Loaded  
Ideal Diode Operation in Supplement Mode  
800-kHz or 1.2-MHz Programmable Switching  
Frequency for 1-µH to 3.3-µH Inductor  
The bq25708 charges battery from a wide range of  
input sources including USB adapter, high voltage  
USB PD sources and traditional adapters.  
Host Control Interface for Flexible System  
Configuration  
SMBus Port for Optimal System Performance  
and Status Reporting  
(1)  
Device Information  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
Hardware Pin to Set Input Current Limit  
Without EC Control  
bq25708  
WQFN (32)  
4.00 mm × 4.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Integrated ADC to Monitor Voltage, Current and  
Power  
High Accuracy Regulation and Monitor  
Application Diagram  
VSYS  
±0.5% Charge Voltage Regulation  
±2% Input/Charge Current Regulation  
±2% Input/Charge Current Monitor  
±5% Power Monitor  
Adapter  
3.5V œ 24V  
BATT  
(1S-4S)  
Q2  
Q3  
Q1  
Q4  
HIDRV1  
SW1BTST1BTST2SW2  
LODRV1  
HIDRV2  
LODRV2  
SYS  
Safety  
VBUS  
ACN  
ACP  
/BATDRV  
SRP  
bq25708  
Thermal Shutdown  
SRN  
Input, System, Battery Overvoltage Protection  
MOSFET Inductor Overcurrent Protection  
Low Battery Quiescent Current  
Host  
Copyright  
© 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes........................................ 26  
8.5 Programming .......................................................... 27  
8.6 Register Map........................................................... 29  
Application and Implementation ........................ 60  
9.1 Application Information .......................................... 60  
9.2 Typical Application ................................................. 60  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Description (Continued)........................................ 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings ............................................................ 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 8  
7.6 Timing Requirements.............................................. 16  
7.7 Typical Characteristics ........................................... 17  
Detailed Description ............................................ 19  
8.1 Overview ................................................................ 19  
8.2 Functional Block Diagram ...................................... 20  
8.3 Feature Description................................................. 21  
9
10 Power Supply Recommendations ..................... 66  
11 Layout................................................................... 67  
11.1 Layout Guidelines ................................................. 67  
11.2 Layout Example .................................................... 68  
12 Device and Documentation Support ................. 69  
12.1 Device Support .................................................... 69  
12.2 Documentation Support ....................................... 69  
12.3 Community Resources.......................................... 69  
12.4 Trademarks........................................................... 69  
12.5 Electrostatic Discharge Caution............................ 69  
12.6 Glossary................................................................ 69  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 69  
4 Revision History  
DATE  
REVISION  
NOTES  
November 2017  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
 
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
5 Description (Continued)  
During power up, the charger sets converter to buck, boost or buck-boost configuration based on input source  
and battery conditions. The charger automatically transits among buck, boost and buck-boost configuration  
without host control.  
The bq25708 monitors adapter current, battery current and system power. The flexibly programmed PROCHOT  
output goes directly to CPU for throttle back when needed.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
6 Pin Configuration and Functions  
RSN Package  
32-Pin WQFN  
Top View  
VBUS  
ACN  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
HIDRV2  
SW2  
ACP  
VSYS  
CHRG_OK  
NC  
BATDRV  
SRP  
ILIM_HIZ  
VDDA  
SRN  
CELL_BATPRESZ  
COMP2  
IADPT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Input current sense resistor negative input. The leakage on ACP and ACN are matched. The  
series resistors on the ACP and ACN pins are placed between sense resistor and filter cap.  
Refer to Application and Implementation for ACP/ACN filter design.  
ACN  
ACP  
2
3
PWR  
Input current sense resistor positive input. The leakage on ACP and ACN are matched. The  
series resistors on the ACP and ACN pins are placed between sense resistor and filter cap.  
Refer to Application and Implementation for ACP/ACN filter design.  
PWR  
O
P-channel battery FET (BATFET) gate driver output. It is shorted to VSYS to turn off the  
BATFET. It goes 10 V below VSYS to fully turn on BATFET. BATFET is in linear mode to  
regulate VSYS at minimum system voltage when battery is depleted. BATFET is fully on  
during fast charge and supplement mode.  
BATDRV  
21  
Buck mode high side power MOSFET driver power supply. Connect a 0.047-µF capacitor  
between SW1 and BTST1. The bootstrap diode between REGN and BTST1 is integrated.  
BTST1  
BTST2  
30  
25  
PWR  
PWR  
Boost mode high side power MOSFET driver power supply. Connect a 0.047-μF capacitor  
between SW2 and BTST2. The bootstrap diode between REGN and BTST2 is integrated.  
Battery cell selection pin for 1–4 cell battery setting. CELL_BATPRESZ pin is biased from  
VDDA. CELL_BATPRESZ pin also sets SYSOVP threshold to 5 V for 1-cell, 12 V for 2-cell ,  
and 19.5 for 3-cell/4-cell. CELL_BATPRESZ pin is pulled below VCELL_BATPRESZ_FALL to  
indicate battery removal. The device exits LEARN mode, and disables charge. REG0x15()  
goes back to default.  
CELL_BATPRESZ  
CHRG_OK  
18  
4
I
Open drain active high indicator to inform the system good power source is connected to the  
charger input. Connect to the pullup rail via 10-kΩ resistor. When VBUS rises above 3.5V or  
falls below 24.5V, CHRG_OK is HIGH after 50ms deglitch time. When VBUS is falls below  
3.2V or rises above 26V, CHRG_OK is LOW.  
O
4
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Input of independent comparator. The independent comparator compares the voltage sensed  
on CMPIN pin to internal reference, and its output is on CMPOUT pin. Internal reference,  
output polarity and deglitch time is selectable by SMBus. With polarity HIGH  
(REG0x30[6]=1), place a resistor between CMPIN and CMPOUT to program hysteresis. With  
polarity LOW (REG0x30[6]=0), the internal hysteresis is 100 mV. If the independent  
comparator is not in use, tie CMPIN to ground.  
CMPIN  
14  
I
Open-drain output of independent comparator. Place pullup resistor from CMPOUT to pullup  
supply rail. Internal reference, output polarity and deglitch time are selectable by SMBus.  
CMPOUT  
COMP2  
15  
17  
O
I
Buck boost converter compensation pin 2. Refer to bq25700 EVM schematic for COMP2 pin  
RC network.  
Buck boost converter compensation pin 1. Refer to bq25700 EVM schematic for COMP1 pin  
RC network.  
COMP1  
NC  
16  
5
I
Not Connected  
Buck mode high side power MOSFET (Q1) driver. Connect to high side n-channel MOSFET  
gate.  
HIDRV1  
31  
O
O
Boost mode high side power MOSFET(Q4) driver. Connect to high side n-channel MOSFET  
gate.  
HIDRV2  
IADPT  
24  
8
Buffered adapter current output. V(IADPT) = 20 or 40 × (V(ACP) – V(ACN)). With ratio selectable  
in REG0x12[4]. Place a resistor from the IADPT pin to ground corresponding to inductor in  
use. For 2.2 µH, the resistor is 100 kΩ. Place 100-pF or less ceramic decoupling capacitor  
from IADPT pin to ground. IADPT output voltage is clamped below 3.3 V.  
O
O
Buffered battery current selected by SMBus. V(IBAT) = 8 or 16 × (V(SRP) – V(SRN)) for charge  
current, or V(IBAT) = 8 or 16 × (V(SRN) – V(SRP)) for discharge current, with ratio selectable in  
REG0x12[3]. Place 100-pF or less ceramic decoupling capacitor from IBAT pin to ground.  
This pin can be floating if not in use. Its output voltage is clamped below 3.3 V.  
IBAT  
9
Input current limit input. Program ILIM_HIZ voltage by connecting a resistor divider from  
supply rail to ILIM_HIZ pin to ground. The pin voltage is calculated as: V(ILIM_HIZ) = 1 V + 40  
× IDPM × RAC, in which IDPM is the target input current. The input current limit used by the  
charger is the lower setting of ILIM_HIZ pin and REG0x3F(). When the pin voltage is below  
0.4 V, the device enters Hi-Z mode with low quiescent current. When the pin voltage is  
above 0.8 V, the device is out of Hi-Z mode.  
ILIM_HIZ  
LODRV1  
6
I
Buck mode low side power MOSFET (Q2) driver. Connect to low side n-channel MOSFET  
gate.  
29  
O
Boost mode low side power MOSFET (Q3) driver. Connect to low side n-channel MOSFET  
gate.  
LODRV2  
PGND  
26  
27  
O
GND  
Device power ground.  
Active low open drain output of processor hot indicator. It monitors adapter input current,  
battery discharge current, and system voltage. After any event in the PROCHOT profile is  
triggered, a pulse is asserted. The minimum pulse width is adjustable in REG0x33[5:2].  
PROCHOT  
11  
10  
28  
O
Current mode system power monitor. The output current is proportional to the total power  
from the adapter and battery. The gain is selectable through SMBus. Place a resistor from  
PSYS to ground to generate output voltage. This pin can be floating if not in use. Its output  
voltage is clamped below 3.3 V. Place a capacitor in parallel with the resistor for filtering.  
PSYS  
O
6-V linear regulator output supplied from VBUS or VSYS. The LDO is active when VBUS  
above UVLO. Connect a 2.2- or 3.3-μF ceramic capacitor from REGN to power ground.  
REGN pin output is for power stage gate drive.  
REGN  
PWR  
SMBus clock input. Connect to clock line from the host controller or smart battery. Connect a  
10-kΩ pullup resistor according to SMBus specifications.  
SCL  
SDA  
13  
12  
I
SMBus open-drain data I/O. Connect to data line from the host controller or smart battery.  
Connect a 10-kΩ pullup resistor according to SMBus specifications.  
I/O  
Charge current sense resistor negative input. SRN pin is for battery voltage sensing as well.  
Connect SRN pin with optional 0.1-μF ceramic capacitor to GND for common-mode filtering.  
Connect a 0.1-μF ceramic capacitor from SRP to SRN to provide differential mode filtering.  
The leakage current on SRP and SRN are matched. For reverse battery plug-in protection,  
10-Ω series resistors are placed on SRP and SRN.  
SRN  
19  
PWR  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Charge current sense resistor positive input. Connect 0.1-μF ceramic capacitor from SRP to  
SRN to provide differential mode filtering. The leakage current on SRP and SRN are  
matched. For reverse battery plug-in protection, 10-Ω series resistors are placed on SRP and  
SRN. Connect SRP pin with optional 0.1-uF ceramic capacitor to GND for common-mode  
filtering.  
SRP  
20  
PWR  
Buck mode high side power MOSFET driver source. Connect to the source of the high side  
n-channel MOSFET.  
SW1  
32  
23  
1
PWR  
PWR  
PWR  
PWR  
PWR  
Boost mode high side power MOSFET driver source. Connect to the source of the high side  
n-channel MOSFET.  
SW2  
Charger input voltage. An input low pass filter of 1 Ω and 0.47 µF (minimum) is  
recommended.  
VBUS  
VDDA  
VSYS  
Internal reference bias pin. Connect a 10-Ω resistor from REGN to VDDA and a 1-μF  
ceramic capacitor from VDDA to power ground.  
7
Charger system voltage sensing. The system voltage regulation limit is programmed in  
REG0x15() and REG0x3E().  
22  
Exposed pad beneath the IC. Analog ground and power ground star-connected near the IC's  
ground. Always solder thermal pad to the board, and have vias on the thermal pad plane  
connecting to power ground planes. It also serves as a thermal pad to dissipate the heat.  
Thermal pad  
6
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–2.0  
–0.3  
–4.0  
–4.0  
–4.0  
MAX  
30  
30  
36  
7
UNIT  
SRN, SRP, ACN, ACP, VBUS, VSYS, BATDRV  
SW1, SW2  
BTST1, BTST2, HIDRV1, HIDRV2  
LODRV1, LODRV2 (25 ns)  
HIDRV1, HIDRV2 (25 ns)  
36  
30  
Voltage  
V
SW1, SW2 (25 ns)  
SDA, SCL, REGN, CHRG_OK, CELL_BATPRESZ,  
ILIM_HIZ, LODRV1, LODRV2, VDDA, COMP1, COMP2,  
CMPIN, CMPOUT  
–0.3  
7
PROCHOT  
–0.3  
–0.3  
–0.3  
–0.5  
–40  
5.5  
3.6  
7
IADPT, IBAT, PSYS  
BTST1-SW1, BTST2-SW2, HIDRV1-SW1, HIDRV2-SW2  
Differential voltage  
V
SRP-SRN, ACP-ACN  
0.5  
155  
155  
Junction temperature range, TJ  
Storage temperature, Tstg  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult Packaging  
Section of the data book for thermal limitations and considerations of packages.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
24  
UNIT  
ACN, ACP, VBUS  
0
0
SRN, SRP, VSYS, BATDRV  
SW1, SW2  
19.2  
24  
–2  
0
BTST1, BTST2, HIDRV1, HIDRV2  
30  
Voltage  
V
SDA, SCL, REGN, CHRG_OK, CELL_BATPRESZ, ILIM_HIZ, LODRV1,  
LODRV2, VDDA, COMP1, COMP2, CMPIN, CMPOUT  
0
6.5  
PROCHOT  
0
0
5.3  
3.3  
IADPT, IBAT, PSYS  
BTST1-SW1, BTST2-SW2, HIDRV1-SW1, HIDRV2-SW2  
SRP-SRN, ACP-ACN  
0
6.5  
Differential  
voltage  
V
–0.35  
–40  
–40  
0.35  
125  
85  
Junction temperature, TJ  
°C  
°C  
Operating free-air temperature, TA  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
7.4 Thermal Information  
bq25708  
RSN (WQFN)  
32 PINS  
37.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
26.1  
7.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
7.8  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Input voltage operating range  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VINPUT_OP  
3.5  
26  
V
REGULATION ACCURACY  
MAX SYSTEM VOLTAGE REGULATION  
System voltage regulation,  
measured on VSYS  
VSYSMAX_RNG  
1.024  
19.2  
V
V
VSRN + 160 mV  
VSRN + 160 mV  
VSRN + 160 mV  
VSRN + 160 mV  
REG0x15() = 0x41A0H  
(16.800 V)  
–2%  
–2%  
–3%  
–3%  
2%  
2%  
3%  
3%  
V
V
V
REG0x15() = 0x3130H  
(12.592 V)  
System voltage regulation  
accuracy (charge disable)  
VSYSMAX_ACC  
REG0x15() = 0x20D0H  
(8.400 V)  
REG0x15() = 0x1060H  
(4.192 V)  
MINIMUM SYSTEM VOLTAGE REGULATION  
System voltage regulation,  
VSYSMIN_RNG  
1.024  
19.2  
V
V
measured on VSYS  
12.288  
9.216  
6.144  
3.584  
REG0x3E() = 0x3000H  
REG0x3E() = 0x2400H  
REG0x3E() = 0x1800H  
REG0x3E() = 0x0E00H  
–2%  
–2%  
2%  
2%  
V
V
V
Minimum system voltage  
regulation accuracy (charge  
enable, VBAT below  
VSYSMIN_REG_ACC  
REG0x3E() setting)  
–3%  
3%  
–3%  
4%  
CHARGE VOLTAGE REGULATION  
VBAT_RNG  
Battery voltage regulation  
1.024  
–0.5%  
–0.5%  
–0.6%  
–1.1%  
19.2  
0.5%  
0.5%  
0.6%  
1.2%  
V
V
16.8  
12.592  
8.4  
REG0x15() = 0x41A0H  
REG0x15() = 0x3130H  
REG0x15() = 0x20D0H  
REG0x15() = 0x1060H  
V
V
V
Battery voltage regulation  
accuracy (charge enable)  
(0°C to 85°C)  
VBAT_REG_ACC  
4.192  
8
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
 
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CHARGE CURRENT REGULATION IN FAST CHARGE  
Charge current regulation  
differential voltage range  
VIREG_CHG = VSRP –  
VSRN  
VIREG_CHG_RNG  
0
81.28  
mV  
mA  
4096  
2048  
1024  
512  
REG0x14() = 0x1000H  
–3%  
–4%  
2%  
3%  
mA  
mA  
mA  
Charge current regulation  
accuracy 10-mΩ current  
sensing resistor, VBAT above  
0x3E() setting (0°C to 85°C)  
REG0x14() = 0x0800H  
REG0x14() = 0x0400H  
REG0x14() = 0x0200H  
ICHRG_REG_ACC  
–5%  
5%  
–12%  
12%  
CHARGE CURRENT REGULATION IN LDO MODE  
CELL 2s-4s  
384  
384  
mA  
mA  
CELL 1 s, VSRN < 3 V  
ICLAMP  
Pre-charge current clamp  
CELL 1 s, 3 V < VSRN  
VSYS_MIN  
<
2
A
REG0x14() = 0x0180H  
384  
mA  
2S-4S  
–15%  
–25%  
15%  
25%  
1S  
REG0x14() = 0x0100H  
256  
192  
128  
mA  
mA  
Pre-charge current regulation  
accuracy with 10-mΩ  
SRP/SRN series resistor,  
VBAT below REG0x3E()  
setting (0°C to 85°C)  
2S-4S  
–20%  
–35%  
20%  
35%  
IPRECHRG_REG_ACC  
1S  
REG0x14() = 0x00C0H  
2S-4S  
–25%  
–50%  
25%  
50%  
1S  
REG0x14() = 0x0080H  
2S-4S  
mA  
µA  
–30%  
–12  
30%  
–10  
SRP, SRN leakage current  
mismatch (0°C to 85°C)  
ILEAK_SRP_SRN  
INPUT CURRENT REGULATION  
Input current regulation  
VIREG_DPM_RNG  
VIREG_DPM = VACP – VACN  
0.5  
64  
mV  
differential voltage range  
REG0x3F() = 0x4FFFH  
REG0x3F() = 0x3BFFH  
REG0x3F() = 0x1DFFH  
REG0x3F() = 0x09FFH  
3820  
2830  
1350  
340  
4000  
3000  
1500  
500  
mA  
mA  
mA  
mA  
Input current regulation  
accuracy with 10-mΩ  
ACP/ACN series resistor  
(–40°C to 105°C)  
IDPM_REG_ACC  
ACP, ACN leakage current  
mismatch  
ILEAK_ACP_ACN  
–16  
1
10  
4
µA  
V
Voltage Range for input  
current regulation  
VIREG_DPM_RNG_ILIM  
VILIM_HIZ = 2.6 V  
VILIM_HIZ = 2.2 V  
VILIM_HIZ = 1.6 V  
VILIM_HIZ = 1.2 V  
3800  
2800  
1300  
300  
4000  
3000  
1500  
500  
4200  
3200  
1700  
700  
1
mA  
mA  
mA  
mA  
µA  
Input Current Regulation  
Accuracy on ILIM_HIZ pin  
VILIM_HIZ = 1 V + 40 × IDPM ×  
RAC, with 10-mΩ ACP/ACN  
series resistor  
IDPM_REG_ACC_ILIM  
ILEAK_ILIM  
ILIM_HIZ pin leakage  
–1  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
3.2  
TYP  
MAX UNIT  
INPUT VOLTAGE REGULATION  
VIREG_DPM_RNG  
Input voltage regulation range Voltage on VBUS  
19.52  
2%  
V
REG0x3D()=0x3C80H  
REG0x3D()=0x1E00H  
REG0x3D()=0x0500H  
18688  
10880  
4480  
mV  
–2%  
mV  
mV  
Input voltage regulation  
accuracy  
VDPM_REG_ACC  
–2.5%  
–3%  
2.5%  
5%  
REFERENCE AND BUFFER  
REGN REGULATOR  
REGN regulator voltage (0  
mA–60 mA)  
VREGN_REG  
VDROPOUT  
IREGN_LIM_Charging  
CREGN  
VVBUS = 10 V  
5.7  
3.8  
50  
2.2  
1
6
4.3  
65  
6.3  
4.6  
V
V
REGN voltage in drop out  
mode  
VVBUS = 5 V, ILOAD = 20 mA  
REGN current limit when  
converter is enabled  
VVBUS = 10 V, force VREGN  
4 V  
=
mA  
µF  
µF  
REGN output capacitor  
required for stability  
ILOAD = 100 µA to 50 mA  
ILOAD = 100 µA to 50 mA  
REGN output capacitor  
required for stability  
CVDDA  
QUIESCENT CURRENT  
VBAT = 18 V, REG0x12[15]  
= 1, in low power mode  
22  
45  
µA  
µA  
VBAT = 18 V, REG0x12[15]  
= 1, in low power mode,  
REG0x30[14:13] = 01,  
REGN off  
105  
175  
System powered by battery.  
VBAT=18 V, REG0x12[15] =  
1, in low power mode,  
REG0x30[14:13]= 10,  
REGN off  
BATFET on. ISRN + ISRP  
+
IBAT_BATFET_ON  
60  
90  
µA  
µA  
ISW2+ IBTST2 + ISW1 + IBTST1  
ACP + IACN + IVBUS + IVSYS  
+
VBAT = 18 V, REG0x12[15]  
= 0, REG0x30[12] = 0,  
REGN on, EN_PSYS  
860  
960  
1150  
1250  
VBAT = 18 V, REG0x12[15]  
= 0, REG0x30[12] = 1,  
REGN on  
Input current during PFM in  
buck mode, no load, IVBUS  
+
VIN = 20 V, VBAT = 12.6 V,  
3 s, REG0x12[10] = 0;  
MOSFET Qg = 4 nC  
IAC_SW_LIGHT_buck  
IACP + IACN + IVSYS + ISRP  
ISRN + ISW1 + IBTST + ISW2  
IBTST2  
+
+
2.2  
2.7  
mA  
mA  
mA  
Input current during PFM in  
boost mode, no load, IVBUS  
+
VIN = 5 V, VBAT = 8.4 V, 2  
s, REG0x12[10] = 0;  
MOSFET Qg = 4 nC  
IAC_SW_LIGHT_boost  
IACP + IACN + IVSYS + ISRP  
ISRN + ISW1 + IBTST2 + ISW2  
IBTST2  
+
+
Input current during PFM in  
buck boost mode, no load,  
VIN = 12 V, VBAT = 12 V,  
REG0x12[10] = 0; MOSFET  
Qg = 4 nC  
IAC_SW_LIGHT_buckboost IVBUS + IACP + IACN + IVSYS  
ISRP + ISRN + ISW1 + IBTST1  
+
+
2.4  
3.2  
ISW2 + IBTST2  
VACP/N_OP  
VIADPT_CLAMP  
IIADPT  
Input common mode range  
IADPT output clamp voltage  
IADPT output current  
Voltage on ACP/ACN  
3.8  
3.1  
26  
3.3  
1
V
V
mA  
10  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(IADPT) / V(ACP-ACN)  
REG0x12[4] = 0  
,
20  
V/V  
AIADPT  
Input current sensing gain  
V(IADPT) / V(ACP-ACN)  
REG0x12[4] = 1  
,
40  
V/V  
V(ACP-ACN) = 40.96 mV  
V(ACP-ACN) = 20.48 mV  
V(ACP-ACN) =10.24 mV  
V(ACP-ACN) = 5.12 mV  
–2%  
–3%  
2%  
3%  
Input current monitor  
accuracy  
VIADPT_ACC  
–6%  
6%  
–10%  
10%  
Maximum output load  
capacitance  
CIADPT_MAX  
100  
pF  
VSRP/N_OP  
VIBAT_CLAMP  
IIBAT  
Battery common mode range Voltage on SRP/SRN  
IBAT output clamp voltage  
2.5  
3.1  
18  
3.3  
1
V
V
3.2  
IBAT output current  
mA  
V(IBAT) / V(SRN-SRP)  
REG0x12[3] = 0,  
,
,
8
V/V  
V/V  
Charge and discharge current  
sensing gain on IBAT pin  
AIBAT  
V(IBAT) / V(SRN-SRP)  
REG0x12[3] = 1,  
16  
V(SRN-SRP) = 40.96 mV  
V(SRN-SRP) = 20.48 mV  
V(SRN-SRP) =10.24 mV  
V(SRN-SRP) = 5.12 mV  
–2%  
–3%  
2%  
4%  
Charge and discharge current  
monitor accuracy on IBAT pin  
IIBAT_CHG_ACC  
–6%  
6%  
–12%  
12%  
Maximum output load  
capacitance  
CIBAT_MAX  
100  
pF  
SYSTEM POWER SENSE AMPLIFIER  
VPSYS PSYS output voltage range  
IPSYS  
0
0
3.3  
V
PSYS output current  
PSYS system gain  
160  
µA  
V(PSYS) / (P(IN)+ P(BAT))  
REG0x30[9] = 1  
,
APSYS  
1
µA/W  
Adapter only with system  
power = 19.5 V / 45 W  
–5%  
5%  
PSYS gain accuracy  
(REG0x3B[9] = 1), TA = 25°C  
VPSYS_ACC  
Battery only with system  
power 11 V / 44 W (25°C)  
–5%  
3
5%  
3.3  
VPSYS_CLAMP  
PSYS clamp voltage  
V
COMPARATOR  
VBUS UNDER VOLTAGE LOCKOUT COMPARATOR  
VBUS undervoltage rising  
VVBUS_UVLOZ  
threshold  
VBUS rising  
VBUS falling  
2.34  
2.2  
2.55  
2.4  
2.77  
2.6  
V
V
VBUS undervoltage falling  
VVBUS_UVLO  
threshold  
VBUS undervoltage  
VVBUS_UVLO_HYST  
150  
3.5  
mV  
V
hysteresis  
VBUS converter enable rising  
VVBUS_CONVEN  
threshold  
VBUS rising  
VBUS falling  
3.2  
2.9  
3.9  
3.5  
VBUS converter enable falling  
VVBUS_CONVENZ  
threshold  
3.2  
V
VBUS converter enable  
VVBUS_CONVEN_HYST  
400  
mV  
hysteresis  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BATTERY UNDER VOLTAGE LOCKOUT COMPARATOR  
VBAT undervoltage rising  
VVBAT_UVLOZ  
VSRN rising  
2.35  
2.2  
2.55  
2.4  
2.75  
2.6  
V
V
threshold  
VBAT undervoltage falling  
threshold  
VVBAT_UVLO  
VSRN falling  
VBAT undervoltage  
hysteresis  
VVBAT_UVLO_HYST  
150  
mV  
BATTERY LOWV COMPARATOR (Pre-charge to Fast Charge Thresold for 1S)  
VBATLV_FALL  
VBATLV_RISE  
VBATLV_RHYST  
BATLOWV falling threshold  
BATLOWV rising threshold  
BATLOWV hysteresis  
1 s  
2.80  
3.00  
200  
V
V
mV  
INPUT OVER-VOLTAGE COMPARATOR (ACOVP)  
VBUS overvoltage rising  
VACOV_RISE  
threshold  
VBUS rising  
VBUS falling  
25  
24  
26  
27  
25  
V
VBUS overvoltage falling  
VACOV_FALL  
threshold  
24.5  
1.5  
V
V
VACOV_HYST  
VBUS overvoltage hysteresis  
VBUS overvoltage rising  
deglitch  
VBUS rising to stop  
converter  
tACOV_RISE_DEG  
100  
µs  
VBUS overvoltage falling  
deglitch  
VBUS falling to start  
converter  
tACOV_FALL_DEG  
1
ms  
INPUT OVER CURRENT COMPARATOR (ACOC)  
ACP to ACN rising threshold, Voltage across input sense  
VACOC  
w.r.t. ILIM2 in  
REG0x33[15:11]  
resistor rising, Reg0x31[2] =  
1
195%  
210%  
225%  
Measure between ACP and  
ACN  
VACOC_FLOOR  
VACOC_CEILING  
tACOC_DEG_RISE  
tACOC_RELAX  
Set IDPM to minimum  
Set IDPM to maximum  
44  
50  
180  
250  
250  
56  
mV  
mV  
µs  
Measure between ACP and  
ACN  
172  
188  
Deglitch time to trigger  
ACOC  
Rising deglitch time  
Relax time  
Relax time before converter  
starts again  
ms  
SYSTEM OVER-VOLTAGE COMPARATOR (SYSOVP)  
1 s  
2 s  
3s  
4.85  
11.7  
18  
5
12  
5.1  
12.2  
19  
V
V
V
V
V
V
System overvoltage rising  
VSYSOVP_RISE  
threshold to turn off converter  
18.5  
4.8  
1 s  
2 s  
3s  
System overvoltage falling  
VSYSOVP_FALL  
threshold  
11.5  
18  
Discharge current when  
ISYSOVP  
SYSOVP stop switching was on SYS  
triggered  
20  
mA  
BAT OVER-VOLTAGE COMPARATOR (BATOVP)  
Overvoltage rising threshold  
as percentage of VBAT_REG in  
REG0x15()  
1 s, 4.2 V  
2 s - 4 s  
102.5%  
102.5%  
100%  
104%  
104%  
102%  
102%  
2%  
105.7%  
105%  
104%  
103%  
VBATOVP_RISE  
VBATOVP_FALL  
VBATOVP_HYST  
Overvoltage falling threshold 1 s  
as percentage of VBAT_REG  
in REG0x15()  
2 s - 4 s  
100%  
Overvoltage hysteresis as  
percentage of VBAT_REG in  
REG0x15()  
1 s  
2 s - 4 s  
2%  
12  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Discharge current during  
BATOVP  
IBATOVP  
on SRP and SRN  
20  
mA  
Overvoltage rising deglitch to  
turn off BATDRV to disable  
charge  
tBATOVP_RISE  
20  
ms  
CONVERTER OVER-CURRENT COMPARATOR (Q2)  
Reg0x31[5]=1  
Reg0x31[5]=0  
Reg0x31[5]=1  
Reg0x31[5]=0  
150  
210  
45  
VOCP_limit_Q2  
Converter Over-Current Limit  
System Short or SRN<2.5 V  
mV  
mV  
VOCP_limit_SYSSH  
ORT_Q2  
60  
CONVERTER OVER-CURRENT COMPARATOR (ACX)  
Reg0x31[4]=1  
Reg0x31[4]=0  
Reg0x31[4]=1  
Reg0x31[4]=0  
150  
280  
90  
VOCP_limit_ACX  
Converter Over-Current Limit  
System Short or SRN<2.5 V  
mV  
mV  
VOCP_limit_SYSSH  
ORT_ ACX  
150  
THERMAL SHUTDOWN COMPARATOR  
Thermal shutdown rising  
temperature  
TSHUT_RISE  
Temperature increasing  
Temperature reducing  
155  
°C  
Thermal shutdown falling  
temperature  
TSHUTF_FALL  
TSHUT_HYS  
tSHUT_RDEG  
135  
20  
°C  
°C  
µs  
Thermal shutdown hysteresis  
Thermal shutdown rising  
deglitch  
100  
Thermal shutdown falling  
deglitch  
tSHUT_FHYS  
12  
ms  
VSYS PROCHOT COMPARATOR  
Reg0x36[7:6] = 00, 1 s  
Reg0x36[7:6] = 00, 2–4 s  
Reg0x36[7:6] = 01, 1 s  
Reg0x36[7:6] = 01, 2–4 s  
Reg0x36[7:6] = 10, 1 s  
Reg0x36[7:6] = 10, 2–4 s  
Reg0x36[7:6] = 11, 1 s  
Reg0x36[7:6] = 11, 2–4 s  
2.85  
5.75  
3.1  
V
V
2.95  
5.8  
3.25  
6.1  
V
V
V
V
V
V
5.95  
3.3  
VSYS threshold falling  
threshold  
VSYS_PROCHOT  
6.25  
3.5  
6.5  
VSYS rising deglitch for  
throttling  
tSYS_PRO_RISE_DEG  
8
µs  
ICRIT PROCHOT COMPARATOR  
Input current rising threshold Reg0x36[15:11] = 00000  
for throttling as percentage  
Reg0x36[15:11] = 01001  
above ILIM2  
105%  
142%  
410%  
110%  
150%  
430%  
116%  
155%  
455%  
VICRIT_PRO  
Reg0x36[15:11] = 11110  
(REG0x33[15:11])  
INOM PROCHOT COMPARATOR  
INOM rising threshold as  
VINOM_PRO  
percentage of IIN  
(REG0x3F())  
105%  
95%  
110%  
6144  
116%  
102%  
IDCHG PROCHOT COMPARATOR  
mA  
IDCHG threshold for throttling  
for IDSCHG of 6 A  
VIDCHG_PRO  
Reg0x38 [15:10]=001100  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INDEPENDENT COMPARATOR  
Reg0x30[7] = 1, CMPIN  
falling  
1.17  
2.27  
1.2  
2.3  
1.23  
2.33  
V
V
Independent comparator  
threshold  
VINDEP_CMP  
Reg0x30[7] = 0, CMPIN  
falling  
Independent comparator  
hysteresis  
Reg0x06[6] = 0, CMPIN  
falling  
VINDEP_CMP_HYS  
100  
mV  
POWER MOSFET DRIVER  
PWM OSCILLATOR AND RAMP  
Reg0x00[9] = 0  
Reg0x00[9] = 1  
1020  
680  
1200  
800  
1380  
920  
kHz  
kHz  
FSW  
PWM switching frequency  
BATFET GATE DRIVER (BATDRV)  
Gate drive voltage on  
BATFET  
VBATDRV_ON  
8.5  
10  
30  
11.5  
V
Drain-source voltage on  
BATFET during ideal diode  
operation  
VBATDRV_DIODE  
mV  
Measured by sourcing 10-µA  
current to BATDRV  
RBATDRV_ON  
RBATDRV_OFF  
3
4
6
kΏ  
kΏ  
Measured by sinking 10-µA  
current from BATDRV  
1.2  
2.1  
PWM HIGH SIDE DRIVER (HIDRV Q1)  
High side driver (HSD) turnon  
RDS_HI_ON_Q1  
VBTST1 – VSW1 = 5 V  
VBTST1 – VSW1 = 5 V  
6
Ω
Ω
resistance  
High side driver turnoff  
resistance  
RDS_HI_OFF_Q1  
1.3  
2.2  
4.6  
VBTST1 – VSW1 when low  
side refresh pulse is  
requested  
Bootstrap refresh comparator  
falling threshold voltage  
VBTST1_REFRESH  
3.2  
3.7  
V
PWM HIGH SIDE DRIVER (HIDRV Q4)  
High side driver (HSD) turnon  
RDS_HI_ON_Q4  
VBTST2 – VSW2 = 5 V  
VBTST2 – VSW2 = 5 V  
6
Ω
Ω
resistance  
High side driver turnoff  
resistance  
RDS_HI_OFF_Q4  
1.5  
2.4  
4.6  
VBTST2 – VSW2 when low  
side refresh pulse is  
requested  
Bootstrap refresh comparator  
falling threshold voltage  
VBTST2_REFRESH  
3.3  
3.7  
V
PWM LOW SIDE DRIVER (LODRV Q2)  
Low side driver (LSD) turnon  
RDS_LO_ON_Q2  
VBTST1 – VSW1 = 5.5 V  
VBTST1 – VSW1 = 5.5 V  
6
Ω
Ω
resistance  
Low side driver turnoff  
resistance  
RDS_LO_OFF_Q2  
1.7  
2.6  
4.6  
PWM LOW SIDE DRIVER (LODRV Q3)  
Low side driver (LSD) turnon  
RDS_LO_ON_Q3  
VBTST2 – VSW2 = 5.5 V  
VBTST2 – VSW2 = 5.5 V  
7.6  
2.9  
Ω
Ω
resistance  
Low side driver turnoff  
resistance  
RDS_LO_OFF_Q3  
INTERNAL SOFT START During Charge Enable  
SSSTEP_DAC  
SSSTEP_DAC  
Soft Start Step Size  
Soft Start Step Time  
64  
8
mA  
µs  
14  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INTEGRATED BTST DIODE (D1)  
VF_D1  
VR_D1  
Forward bias voltage  
Reverse breakdown voltage  
IF = 20 mA at 25°C  
IR = 2 µA at 25°C  
0.8  
V
20  
20  
V
INTEGRATED BTST DIODE (D2)  
VF_D2  
Forward bias voltage  
Reverse breakdown voltage  
IF = 20 mA at 25°C  
IR = 2 µA at 25°C  
0.8  
V
V
VR_D2  
PWM DRIVERS TIMING  
INTERFACE  
LOGIC INPUT (SDA, SCL)  
VIN_ LO Input low threshold  
VIN_ HI Input high threshold  
SMBus  
0.8  
V
V
SMBus (bq25708)  
2.1  
–1  
–1  
–1  
–1  
LOGIC OUTPUT OPEN DRAIN (SDA, CHRG_OK, CMPOUT)  
VOUT_ LO  
Output saturation voltage  
Leakage current  
5-mA drain current  
V = 7 V  
0.4  
1
V
VOUT_ LEAK  
mA  
LOGIC OUTPUT OPEN DRAIN SDA  
VOUT_ LO_SDA  
Output Saturation Voltage  
Leakage Current  
5 mA drain current  
V = 7V  
0.4  
1
V
VOUT_ LEAK_SDA  
mA  
LOGIC OUTPUT OPEN DRAIN CHRG_OK  
VOUT_ LO_CHRG_OK Output Saturation Voltage  
5 mA drain current  
V = 7V  
0.4  
1
V
VOUT_ LEAK _CHRG_OK Leakage Current  
mA  
LOGIC OUTPUT OPEN DRAIN CMPOUT  
VOUT_ LO_CMPOUT  
Output Saturation Voltage  
Leakage Current  
5 mA drain current  
V = 7V  
0.4  
1
V
VOUT_ LEAK _CMPOUT  
mA  
LOGIC OUTPUT OPEN DRAIN (PROCHOT)  
50-Ω pullup to 1.05 V / 5-mA  
load  
VOUT_ LO_PROCHOT Output saturation voltage  
300  
1
mV  
mA  
VOUT_ LEAK_PROCHOT Leakage current  
V = 5.5 V  
–1  
ANALOG INPUT (ILIM_HIZ)  
Voltage to get out of HIZ  
mode  
VHIZ_ LO  
ILIM_HIZ pin rising  
ILIM_HIZ pin falling  
0.8  
V
V
VHIZ_ HIGH  
Voltage to enable HIZ mode  
0.4  
ANALOG INPUT (CELL_BATPRESZ)  
REGN = 6 V, as percentage  
of REGN  
VCELL_4S  
VCELL_3S  
VCELL_2S  
VCELL_1S  
4S  
3s  
68.4%  
51.7%  
35%  
75%  
55%  
40%  
25%  
REGN = 6 V, as percentage  
of REGN  
65%  
49.1%  
31.6%  
REGN = 6 V, as percentage  
of REGN  
2S  
1S  
REGN = 6 V, as percentage  
of REGN  
18.4%  
18%  
VCELL_BATPRESZ_RISE Battery is present  
VCELL_BATPRESZ_FALL Battery is removed  
ANALOG INPUT (COMP1, COMP2)  
CELL_BATPRESZ falling  
15%  
ILEAK_COMP1  
ILEAK_COMP2  
COMP1 Leakage  
COMP2 Leakage  
–120  
–120  
120  
120  
nA  
nA  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
7.6 Timing Requirements  
MIN TYP MAX UNIT  
SMBus TIMING CHARACTERISTICS  
tr  
SCLK/SDATA rise time  
1
300  
50  
µs  
ns  
tf  
SCLK/SDATA fall time  
tW(H)  
SCLK pulse width high  
4
4.7  
4.7  
4
µs  
tW(L)  
SCLK Pulse Width Low  
µs  
tSU(STA)  
tH(STA)  
tSU(DAT)  
tH(DTA)  
tSU(STOP)  
t(BUF)  
FS(CL)  
Setup time for START condition  
START condition hold time after which first clock pulse is generated  
Data setup time  
µs  
µs  
250  
300  
4
µs  
Data hold time  
µs  
Setup time for STOP condition  
Bus free time between START and STOP condition  
Clock Frequency  
µs  
4.7  
10  
µs  
100  
35  
KHz  
HOST COMMUNICATION FAILURE  
ttimeout  
tBOOT  
SMBus bus release timeout(1)  
25  
10  
ms  
ms  
s
Deglitch for watchdog reset signal  
Watchdog timeout period, ChargeOption() bit [14:13] = 01(2)  
Watchdog timeout period, ChargeOption() bit [14:13] = 10(2)  
Watchdog timeout period, ChargeOption() bit [14:13] = 11(2) (default)  
35  
44  
88  
53  
105  
210  
tWDI  
70  
s
140  
175  
s
(1) Devices participating in a transfer will timeout when any clock low exceeds the 25ms minimum timeout period. Devices that have  
detected a timeout condition must reset the communication no later than the 35 ms maximum timeout period. Both a master and a slave  
must adhere to the maximum value specified as it incorporates the cumulative stretch limit for both a master (10 ms) and a slave (25  
ms).  
(2) User can adjust threshold via SMBus ChargeOption() REG0x12.  
16  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
7.7 Typical Characteristics  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
VOUT = 6.1 V  
VOUT = 8.4 V  
VOUT = 9.2 V  
VOUT = 12.5 V  
VOUT = 6.1 V  
VOUT = 8.4 V  
VOUT = 9.2 V  
VOUT = 12.5 V  
0
0
0
0.01  
0.02  
0.03  
0.04  
0.05  
0
0
0
0.01  
0.02  
0.03  
0.04  
0.05  
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 5 V  
VIN = 12 V  
Figure 1. Light Load Efficiency  
Figure 2. Light Load Efficiency  
90  
85  
80  
75  
70  
65  
60  
96  
94  
92  
90  
88  
86  
84  
82  
80  
VOUT = 6.1 V  
VOUT = 3.7 V  
VOUT = 7.4 V  
VOUT = 11.1 V  
VOUT = 14.8 V  
VOUT = 8.4 V  
VOUT = 9.2 V  
VOUT = 12.5 V  
0.01  
0.02  
0.03  
0.04  
0.05  
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 20 V  
VIN = 5 V  
Figure 3. Light Load Efficiency  
Figure 4. System Efficiency  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
VOUT = 3.7 V  
VOUT = 3.7 V  
VOUT = 7.4 V  
VOUT = 11.1 V  
VOUT = 14.8 V  
VOUT = 7.4 V  
VOUT = 11.1 V  
VOUT = 14.8 V  
1
2
3
4
5
6
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 9 V  
VIN = 12 V  
Figure 5. System Efficiency  
Figure 6. System Efficiency  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Typical Characteristics (continued)  
98  
96  
94  
92  
90  
88  
86  
84  
82  
VOUT = 3.7 V  
VOUT = 7.4 V  
VOUT = 11.1 V  
VOUT = 14.8 V  
80  
0
1
2
3
4
5
6
Output Current (A)  
D001  
VIN = 20 V  
Figure 7. System Efficiency  
18  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8 Detailed Description  
8.1 Overview  
The bq25708 is a buck boost NVDC (narrow voltage DC) charge controller for multi-chemistry portable  
applications such as notebook, detachable, ultrabook, tablet and other mobile devices with rechargeable  
batteries. It provides seamless transition between converter operation modes (buck, boost, or buck boost), fast  
transient response, and high light load efficiency.  
The bq25708 supports wide range of power sources, including USB PD ports, legacy USB ports, traditional  
ACDC adapters, etc. It takes input voltage from 3.5 V to 24 V, and charges battery of 1-4 series.  
The bq25708 features Dynamic Power Management (DPM) to limit the input power and avoid AC adapter  
overloading. During battery charging, as the system power increases, the charging current will reduce to maintain  
total input current below adapter rating. If system power demand temporarily exceeds adapter rating, the  
bq25708 supports NVDC architecture to allow battery discharge energy to supplement system power. For details,  
refer to System Voltage Regulation section.  
In order to be compliant with an Intel IMVP8 compliant system, the bq25708 includes PSYS function to monitor  
the total platform power from adapter and battery. Besides PSYS, it provides both an independent input current  
buffer (IADPT) and a battery current buffer (IBAT) with highly accurate current sense amplifiers. If the platform  
power exceeds the available power from adapter and battery, a PROCHOT signal is asserted to CPU so that the  
CPU optimizes its performance to the power available to the system.  
The bq25708 controls input current, charge current and charge voltage registers with high resolution, high  
accuracy regulation limits. It also sets the PROCHOT timing and threshold profile to meet system requirements.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.2 Functional Block Diagram  
4
CHRG_OK  
CHRG_OK_DRV  
50ms Rising  
Deglitch  
bq25708 Block Diagram  
** programmable in register  
3.9V  
26V  
EN_REGN  
ACOVP  
1
VBUS  
VREF_CMP**  
14  
CMP_DEG**  
CMPIN  
15  
CMPOUT  
VREF_VDPM  
VSNS_VDPM  
COMP1  
16  
17 COMP2  
EN_HIZ  
VREF_ILIM  
6
Decoder  
ILIM_HIZ  
VSYS  
VREF_IDPM  
2
3
LDO Mode  
Gate Control  
ACP  
ACN  
VSNS_IDPM  
21  
BATDRV  
20X**  
VSYS-10V  
8
9
IADPT  
IBAT  
VSNS_ICHG  
30  
BTST1  
VSNS_IDCHG  
31  
HIDRV1  
Loop Selector  
and  
Error Amplifier  
32  
SW1  
16X  
PWM  
VREF_ICHG  
VSNS_ICHG  
VDDA  
7
EN_REGN  
20  
19  
REGN  
LDO  
SRP  
SRN  
REGN  
28  
20X**  
EN_HIZ  
EN_LEARN  
EN_LDO  
VREF_VBAT  
VSNS_VBAT  
EN_CHRG  
PWM  
Driver  
Logic  
29  
27  
25  
24  
23  
LODRV1  
PGND  
BTST2  
HIDRV2  
SW2  
22  
VREF_VSYS  
VSNS_VSYS  
VSYS  
PSYS  
VSNS_VSYS  
ACN  
Over  
Current  
Over  
Voltage  
Detect  
VSNS_VBAT  
VSNS_ICHG  
VSNS_IDCHG  
VSNS_IDPM  
VSNS_VDPM  
(ACP-ACN)  
SRN  
10  
(SRN-SRP)  
26  
18  
LODRV2  
EN_HIZ  
SMBUS  
Interface  
EN_LEARN  
EN_LDO  
BATPRESZ  
CELL_CONFIG  
12  
13  
SDA  
SCL  
Decoder  
EN_CHRG  
CELL_BATPRESZ  
ChargeOption0()  
ChargeOption1()  
ChargeOption2()  
ChargeCurrent()  
ChargeVoltage()  
InputCurrent()  
VREF_VSYS  
VREF_VBAT  
VREF_ICHG  
VREF_IDPM  
VREF_VDPM  
VREF_IOTG  
VREF_VOTG  
Loop  
IADPT  
IBAT  
Regulation  
Reference  
Processor  
Hot  
InputVoltage()  
MinSysVoltage()  
11  
PROCHOT  
VSYS  
CHRG_OK  
Copyright © 2017, Texas Instruments Incorporated  
20  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.3 Feature Description  
8.3.1 Power-Up from Battery Without DC Source  
If only battery is present and the voltage is above VVBAT_UVLOZ, the BATFET turns on and connects battery to  
system. By default, the charger is in low power mode (REG0x12[15] = 1) with lowest quiescent current. The LDO  
stays off. When device moves to performance mode (REG0x12[15] = 0), The host enables IBAT buffer through  
SMBus to monitor discharge current. For PSYS, PROCHOT or independent comparator, REGN LDO is enabled  
for an accurate reference.  
8.3.2 Power-Up From DC Source  
When an input source plugs in, the charger checks the input source voltage to turn on LDO and all the bias  
circuits. It sets the input current limit before the converter starts.  
The power-up sequence from DC source is as follows:  
1. 50 ms after VBUS above VVBUS_CONVEN, enable 6V LDO and CHRG_OK goes HIGH  
2. Input voltage and current limit setup  
3. Battery CELL configuration  
4. 150 ms after VBUS above VVBUS_CONVEN, converter powers up.  
8.3.2.1 CHRG_OK Indicator  
CHRG_OK is an active HIGH open drain indicator. It indicates the charger is in normal operation when the  
following conditions are valid:  
VBUS is above VVBUS_CONVEN  
VBUS is below VACOV  
No MOSFET/inductor fault  
8.3.2.2 Input Voltage and Current Limit Setup  
When CHRG_OK goes LOW, the charger sets default input current limit in REG0x3F() to 3.30A. The actual input  
current limit is the lower setting of REG0x3F() and ILIM_HIZ pin.  
Charger initiates a VBUS voltage measurement without any load (VBUS at no load condition). The default  
VINDPM threshold is VBUS@noLoad-1.28 V.  
After input current and voltage limits are set, the charger device is ready to power up. The host can always  
update input current and voltage limit based on input source type.  
8.3.2.3 Battery Cell Configuration  
CELL_BATPRESZ pin is biased with resistors from REGN to CELL_BATPRESZ to GND. After VDDA LDO is  
activated, the device detects the battery configuration through CELL_BATPRESZ pin bias voltage. Refer to  
Electrical Characteristics for CELL setting thresholds.  
Table 1. Battery Cell Configuration  
CELL COUNT  
PIN VOLTAGE w.r.t. VDDA  
BATTERY VOLTAGE (REG0x15)  
SYSOVP  
19.5V  
19.5V  
12V  
4S  
3S  
2S  
1S  
75%  
55%  
40%  
25%  
16.800V  
12.592V  
8.400V  
4.192V  
5V  
8.3.2.4 Device Hi-Z State  
The charger enters Hi-Z mode when ILIM_HIZ pin voltage is below 0.4 V or REG0x32[15] is set to 1. During Hi-Z  
mode, the input source is present, and the charger is in the low quiescent current mode with REGN LDO  
enabled.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: bq25708  
 
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.3.3 Converter Operation  
The charger employs a synchronous buck-boost converter that allows charging from a standard 5-V or a high-  
voltage power source. The charger operates in buck, buck-boost and boost mode. The buck-boost can operate  
uninterruptedly and continuously across the three operation modes.  
Table 2. MOSFET Operation  
MODE  
Q1  
BUCK  
Switching  
Switching  
OFF  
BUCK-BOOST  
Switching  
BOOST  
ON  
Q2  
Switching  
OFF  
Q3  
Switching  
Switching  
Switching  
Q4  
ON  
Switching  
8.3.3.1 Inductor Setting through IADPT Pin  
The charger reads the inductor value through the IADPT pin.  
Table 3. Inductor Setting on IADPT Pin  
INDUCTOR IN USE  
1 µH  
RESISTOR ON IADPT PIN  
93 kΩ  
137 kΩ  
169 kΩ  
2.2 µH  
3.3 µH  
8.3.3.2 Continuous Conduction Mode (CCM)  
With sufficient charge current, the inductor current does not cross 0 A, which is defined as CCM. The controller  
starts a new cycle with ramp coming up from 200 mV. As long as error amplifier output voltage is above the ramp  
voltage, the high-side MOSFET (HSFET) stays on. When the ramp voltage exceeds error amplifier output  
voltage, HSFET turns off and low-side MOSFET (LSFET) turns on. At the end of the cycle, ramp gets reset and  
LSFET turns off, ready for the next cycle. There is always break-before-make logic during transition to prevent  
cross-conduction and shoot-through. During the dead time when both MOSFETs are off, the body-diode of the  
low-side power MOSFET conducts the inductor current.  
During CCM, the inductor current always flows and creates a fixed two-pole system. Having the LSFET turn-on  
when the HSFET is off, keeps the power dissipation low and allows safe charging at high currents.  
8.3.3.3 Pulse Frequency Modulation (PFM)  
In order to improve converter light-load efficiency, the bq25708 switches to PFM control at light load condition.  
The effective switching frequency will decrease accordingly when system load decreases. The minimum  
frequency can be limit to 25kHz (ChargeOption0() bit[10]=1).  
8.3.4 Current and Power Monitor  
8.3.4.1 High-Accuracy Current Sense Amplifier (IADPT and IBAT)  
As an industry standard, a high-accuracy current sense amplifier (CSA) is used to monitor the input current  
during forward charging, and the charge/discharge current (IBAT). IADPT voltage is 20× or 40× the differential  
voltage across ACP and ACN. IBAT voltage is 8x/16× (during charging), or 8×/16× (during discharging) of the  
differential across SRP and SRN. After input voltage or battery voltage is above UVLO, IADPT output becomes  
valid. To lower the voltage on current monitoring, a resistor divider from CSA output to GND can be used and  
accuracy over temperature can still be achieved.  
V(IADPT) = 20 or 40 × (V(ACP) – V(ACN)) during forward mode.  
V(IBAT) = 8 or 16 × (V(SRP) – V(SRN)) during forward charging mode.  
V(IBAT) = 8 or 16 × (V(SRN) – V(SRP)) during forward supplement mode.  
A maximum 100-pF capacitor is recommended to connect on the output for decoupling high-frequency noise. An  
additional RC filter is optional, if additional filtering is desired. Note that adding filtering also adds additional  
response delay. The CSA output voltage is clamped at 3.3 V.  
22  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.3.4.2 High-Accuracy Power Sense Amplifier (PSYS)  
The charger monitors total system power. During forward mode, the input adapter powers system. The ratio of  
PSYS current and total power KPSYS can be programmed in REG0x30[9] with default 1 μA/W. The input and  
charge sense resistors (RAC and RSR) are programmed in REG0x30[11:10]. PSYS voltage can be calculated  
with Equation 1 where IIN>0 when adapter is in forward charging, and IBAT>0 when the battery is in discharge  
when the battery is in discharge.  
VPSYS = RPSYS ìKPSYS(VACP ìIIN + VBAT ìIBAT  
)
(1)  
For proper PSYS functionality, RAC and RSR values are limited to 10mΩ and 20mΩ.  
8.3.5 Input Source Dynamic Power Manage  
Refer to Input Current and Input Voltage Registers for Dynamic Power Management.  
8.3.6 Two-Level Adapter Current Limit (Peak Power Mode)  
Usually adapter can supply current higher than DC rating for a few milliseconds to tens of milliseconds. The  
charger employs two-level input current limit, or peak power mode, to fully utilize the overloading capability and  
minimize battery discharge during CPU turbo mode. Peak power mode is enabled in REG0x31[13]  
(EN_PKPWR_IDPM) or REG0x31[12] (EN_PKPWR_VSYS). The DC current limit, or ILIM1, is the same as  
adapter DC current, set in REG0x3F(). The overloading current, or ILIM2, is set in REG0x33[15:11], as a  
percentage of ILIM1.  
When the charger detects input current surge and battery discharge due to load transient, it applies ILIM2 for  
TOVLD in REG0x31[15:14], first, and then ILIM1 for up to TMAX – TOVLD time. TMAX is programmed in REG0x31[9:8].  
After TMAX, if the load is still high, another peak power cycle starts. Charging is disabled during TMAX,; once TMAX,  
expires, charging continues. If TOVLD is programmed higher than TMAX, then peak power mode is always on.  
ICRIT  
ILIM2  
ILIM1  
TOVLD  
TOVLD  
TMAX  
IVBUS  
ISYS  
IBAT  
Battery Discharge  
PROCHOT  
Figure 8. Two-Level Adapter Current Limit Timing Diagram  
8.3.7 Processor Hot Indication  
When CPU is running turbo mode, the system peak power may exceed available power from adapter and battery  
together. The adapter current and battery discharge peak current, or system voltage drop is an indication that  
system power is too high. The charger processor hot function monitors these events, and PROCHOT pulse is  
asserted. Once CPU receives PROCHOT pulse from charger, it slows down to reduce the system power. The  
processor hot function monitors these events, and PROCHOT pulse is asserted.  
The PROCHOT triggering events include:  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: bq25708  
 
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
ICRIT: adapter peak current, as 110% of ILIM2  
INOM: adapter average current (110% of input current limit)  
IDCHG: battery discharge current  
VSYS: system voltage on VSYS  
Adapter Removal: upon adapter removal (CHRG_OK pin HIGH to LOW)  
Battery Removal: upon battery removal (CELL_BATPRESZ pin goes LOW)  
CMPOUT: Independent comparator output (CMPOUT pin HIGH to LOW)  
The threshold of ICRIT, IDCHG or VSYS, and the deglitch time of ICRIT, INOM, IDCHG or CMPOUT are  
programmable through SMBus. Each triggering event can be individually enabled in REG0x34[6:0]. When any  
event in PROCHOT profile is triggered, PROCHOT is asserted low for minimum 10 ms programmable in  
0x33[4:3]. At the end of the 10 ms, if the PROCHOT event is still active, the pulse gets extended.  
ICRIT  
IADP  
Adjustable  
Deglitch  
1.05V  
INOM  
IDCHG  
50 Ω  
PROCHOT  
Ref_DCHG  
10 ms  
Debounce  
Ref  
<0.3V  
10 ms  
VSRP  
20 µs  
Deglitch  
CELL_BATPRESZ  
(one shot on pin falling edge)  
CHRG_OK  
(one shot on pin falling edge)  
CMPOUT  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9. PROCHOT Profile  
8.3.7.1 PROCHOT During Low Power Mode  
During low power mode (REG0x12[15]=1), the charger offers a low quiescent current (~150 uA) Low power  
PROCHOT function uses the independent comparator to monitor battery discharge current and system voltage,  
and assert PROCHOT to CPU.  
Below lists the register setting to enable PROCHOT during low power mode.  
REG0x12[15]=1  
REG0x34[5:0]=000000  
REG0x30[6:4]=100  
Independent comparator threshold is always 1.2V  
When REG0x30[14]=1, charger monitors discharge current. Connect CMPIN to voltage proportional to IBAT  
pin. PROCHOT triggers from HIGH to LOW when CMPIN voltage falls below 1.2V.  
When REG0x30[13]=1, charger monitors system voltage. Connect CMPIN to voltage proportional to system.  
PROCHOT triggers from HIGH to LOW when CMPIN voltage rises above 1.2V.  
24  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
 
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
PROCHOT  
1.2 V  
Independent  
Comparator  
Voltage î  
VSYS  
CMPIN  
Voltage î (VSRN œ VSRP  
)
bq25708  
Copyright © 2017, Texas Instruments Incorporated  
Figure 10. PROCHOT Low Power Mode Implementation  
8.3.7.2 PROCHOT Status  
REG0x21[6:0] reports which event in the profile triggers PROCHOT by setting the corresponding bit to 1. The  
status bit can be reset back to 0 after it is read by host, and current PROCHOT event is no longer active.  
Assume there are two PROCHOT events, event A and event B. Event A triggers PROCHOT first, but event B is  
also active. Both status bits will be HIGH. At the end of the 10ms PROCHOT pulse, if PROCHOT is still active  
(either by A or B), the PROCHOT pulse is extended.  
8.3.8 Device Protection  
8.3.8.1 Watchdog Timer  
The charger includes watchdog timer to terminate charging if the charger does not receive a write  
MaxChargeVoltage() or write ChargeCurrent() command within 175 s (adjustable via REG0x12[14:13]). When  
watchdog timeout occurs, all register values are kept unchanged except ChargeCurrent() resets to zero. Battery  
charging is suspended. Write MaxChargeVoltage() or write ChargeCurrent() commands must be re-sent to reset  
watchdog timer and resume charging. Writing REG0x12[14:13] = 00 to disable watchdog timer also resumes  
charging.  
8.3.8.2 Input Overvoltage Protection (ACOV)  
The charger has fixed ACOV voltage. When VBUS pin voltage is higher than ACOV, it is considered as adapter  
over voltage. CHRG_OK will be pulled low, and converter will be disabled. As system falls below battery voltage,  
BATFET will be turned on. When VBUS pin voltage falls below ACOV, it is considered as adapter voltage returns  
back to normal voltage. CHRG_OK will be pulled high by external pull up resistor. The converter will resume if  
enable conditions are valid.  
8.3.8.3 Input Overcurrent Protection (ACOC)  
If the input current exceeds the 1.25× or 2× (REG0x31[2]) of ILIM2_VTH (REG0x33[15:11]) set point, converter  
stops switching. After 300 ms, converter will start switching again.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.3.8.4 System Overvoltage Protection (SYSOVP)  
When the converter starts up, the bq25708 reads CELL pin configuration and sets MaxChargeVoltage() and  
SYSOVP threshold (1s – 5 V, 2s – 12 V, 3s/4s – 19.5 V). Before REGx15() is written by host, the battery  
configuration will change with CELL pin voltage. When SYSOVP happens, the device latches off the converter.  
REG20[4] is set as 1. The user can clear the latch-off by either writing 0 to SYSOVP bit or removing and  
plugging in adapter again. After the latch-off is cleared, converter starts again.  
8.3.8.5 Battery Overvoltage Protection (BATOVP)  
Battery over-voltage may happen when battery is removed during charging or the user plugs in a wrong battery.  
The BATOVP threshold is 104% (1 s) or 102% (2 s to 4 s) of regulation voltage set in REG0x15().  
8.3.8.6 Battery Short  
If BAT voltage falls below SYSMIN during charging, the maximum current is limited to 384 mA.  
8.3.8.7 Thermal Shutdown (TSHUT)  
The WQFN package has low thermal impedance, which provides good thermal conduction from the silicon to the  
ambient, to keep junction temperatures low. As added level of protection, the charger converter turns off for self-  
protection whenever the junction temperature exceeds the 155°C. The charger stays off until the junction  
temperature falls below 135°C. During thermal shut down, the LDO current limit is reduced to 16 mA and REGN  
LDO stays off. When the temperature falls below 135°C, charge can be resumed with soft start.  
8.4 Device Functional Modes  
8.4.1 Forward Mode  
When input source is connected to VBUS, bq25708 is in forward mode to regulate system and charge battery.  
8.4.1.1 System Voltage Regulation with Narrow VDC Architecture  
The bq25708 employs Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by MinSystemVoltage(). Even with a deeply depleted battery, the system is  
regulated above the minimum system voltage.  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode).  
As the battery voltage rises above the minimum system voltage, BATFET is fully on when charging or in  
supplement mode and the voltage difference between the system and battery is the VDS of BATFET. System  
voltage is regulated 160 mV above battery voltage when BATFET is off (no charging or no supplement current).  
See System Voltage Regulation for details on system voltage regulation and register programming.  
8.4.1.2 Battery Charging  
The bq25708 charges 1-4 cell battery in constant current (CC), and constant voltage (CV) mode. Based on  
CELL_BATPREZ pin setting, the charger sets default battery voltage 4.2V/cell to ChargeVoltage(), or  
REG0x15(). According to battery capacity, the host programs appropriate charge current to ChargeCurrent(), or  
REG0x14(). When battery is full or battery is not in good condition to charge, host terminates charge by setting  
REG0x12[0] to 1, or setting ChargeCurrent() to zero.  
See Feature Description for details on register programming.  
26  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.5 Programming  
The charger supports battery-charger commands that use either Write-Word or Read-Word protocols, as  
summarized in SMBus Write-Word and Read-Word Protocols. The SMBUS address is 12h (0001001_X), where  
X is the read/write bit. The ManufacturerID and DeviceID registers are assigned identify the charger device. The  
ManufacturerID register command always returns 40h.  
8.5.1 SMBus Interface  
The bq25700 device operates as a slave, receiving control inputs from the embedded controller host through the  
SMBus interface. The bq25700 device uses a simplified subset of the commands documented in System  
Management Bus Specification V1.1, which can be downloaded from www.smbus.org. The bq25700 device uses  
the SMBus read-word and write-word protocols (shown in Table 4 and Table 5) to communicate with the smart  
battery. The bq25700 device performs only as a SMBus slave device with address 0b00010010 (0x12H) and  
does not initiate communication on the bus. In addition, the bq25700 device has two identification registers, a 16-  
bit device ID register (0xFFH) and a 16-bit manufacturer ID register (0xFEH).  
SMBus communication starts when VCC is above V(UVLO)  
.
The data (SDA) and clock (SCL) pins have Schmitt-trigger inputs that can accommodate slow edges. Choose  
pullup resistors (10 kΩ) for SDA and SCL to achieve rise times according to the SMBus specifications.  
Communication starts when the master signals a start condition, which is a high-to-low transition on SDA, while  
SCL is high. When the master has finished communicating, the master issues a stop condition, which is a low-to-  
high transition on SDA, while SCL is high. The bus is then free for another transmission. Figure 11 and Figure 12  
show the timing diagram for signals on the SMBus interface. The address byte, command byte, and data bytes  
are transmitted between the start and stop conditions. The SDA state changes only while SCL is low, except for  
the start and stop conditions. Data is transmitted in 8-bit bytes and is sampled on the rising edge of SCL. Nine  
clock cycles are required to transfer each byte in or out of the bq25708 device because either the master or the  
slave acknowledges the receipt of the correct byte during the ninth clock cycle. The bq25708 supports the  
charger commands listed in Table 4.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Programming (continued)  
8.5.1.1 SMBus Write-Word and Read-Word Protocols  
Table 4. Write-Word Format  
S
SLAVE  
W
ACK  
COMMAND  
BYTE(1)  
ACK  
LOW DATA  
BYTE(1)  
ACK  
HIGH DATA  
BYTE(1)  
ACK  
P
(1)(2)  
(1)(3)  
(4)(5)  
(4)(5)  
(4)(5)  
(4)(5)  
(1)(6)  
ADDRESS(1)  
7 bits  
1b  
0
1b  
0
8 bits  
1b  
0
8 bits  
1b  
0
8 bits  
1b  
0
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
(1) Master to slave  
(2) S = Start condition or repeated start condition  
(3) W = Write bit (logic-low)  
(4) Slave to master (shaded gray)  
(5) ACK = Acknowledge (logic-low)  
(6) P = Stop condition  
Table 5. Read-Word Format  
S(1)  
SLAVE  
W
ACK COMMAND ACK S(1)  
SLAVE  
R(1) ACK LOW DATA ACK HIGH DATA NACK  
P
(2)  
(1)(3)  
(4)(5)  
(4)(5)  
(2)  
(6)  
(4)(5)  
(1)(5)  
(1)(7)  
(1)(8)  
ADDRESS(1)  
BYTE(1)  
8 bits  
ADDRESS(1)  
BYTE(4)  
8 bits  
BYTE(4)  
8 bits  
7 bits  
1b  
0
1b  
0
1b  
0
7 bits  
1b  
1
1b  
0
1b  
0
1b  
1
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
(1) Master to slave  
(2) S = Start condition or repeated start condition  
(3) W = Write bit (logic-low)  
(4) Slave to master (shaded gray)  
(5) ACK = Acknowledge (logic-low)  
(6) R = Read bit (logic-high)  
(7) NACK = Not acknowledge (logic-high)  
(8) P = Stop condition  
8.5.1.2 Timing Diagrams  
A
B
C
D
E
F
G
H
I
J
K
L
M
tLOW tHIGH  
SMBCLK  
SMBDATA  
tSU:STA tHD:STA  
A = Start condition  
tSU:DAT tHD:DAT  
tHD:DAT  
tSU:STO tBUF  
H = LSB of data clocked into slave  
I = Slave pulls SMBDATA line low  
B = MSB of address clocked into slave  
C = LSB of address clocked into slave  
D = R/W bit clocked into slave  
J = Acknowledge clocked into master  
K = Acknowledge clock pulse  
E = Slave pulls SMBDATA line low  
F = ACKNOWLEDGE bit clocked into master  
G = MSB of data clocked into slave  
L = Stop condition, data executed by slave  
M = New start condition  
Figure 11. SMBus Write Timing  
28  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
A
B
C
D
E
F
G
H
I
J
K
tLOW tHIGH  
SMBCLK  
SMBDATA  
tSU:STA tHD:STA  
tSU:DAT  
tHD:DAT  
tSU:DAT  
tSU:STO tBUF  
A = START CONDITION  
E = SLAVE PULLS SMBDATA LINE LOW  
I = ACKNOWLEDGE CLOCK PULSE  
A = Start condition  
G = MSB of data clocked into master  
B = MSB of address clocked into slave  
C = LSB of address clocked into slave  
D = R/W bit clocked into slave  
H = LSB of data clocked into master  
I = Acknowledge clock pulse  
J = Stop condition  
E = Slave pulls SMBDATA line low  
F = ACKNOWLEDGE bit clocked into master  
K = New start condition  
Figure 12. SMBus Read Timing  
8.6 Register Map  
Table 6. Charger Command Summary  
SMBus  
ADDR  
REGISTER NAME  
TYPE  
DESCRIPTION  
LINKS  
12h  
14h  
ChargeOption0()  
ChargeCurrent()  
R/W  
Charge Option 0  
Go  
Go  
R/W  
R/W  
7-bit charge current setting  
LSB 64 mA, Range 8128 mA  
15h  
MaxChargeVoltage()  
11-bit charge voltage setting  
Go  
LSB 16 mV, Default: 1S-4192mV, 2S-8400mV,  
3S-12592mV, 4S-16800mV  
30h  
31h  
32h  
33h  
34h  
35h  
20h  
21h  
22h  
ChargeOption1()  
ChargeOption2()  
ChargeOption3()  
ProchotOption0()  
ProchotOption1()  
ADCOption()  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Charge Option 1  
Charge Option 2  
Charge Option 3  
PROCHOT Option 0  
PROCHOT Option 1  
ADC Option  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
ChargerStatus()  
ProchotStatus()  
IIN_DPM()  
Charger Status  
Prochot Status  
R
R
7-bit input current limit in use  
LSB: 50mA, Range: 50mA-6400mA  
23h  
ADCVBUS/PSYS()  
R
R
8-bit digital output of input voltage,  
8-bit digital output of system power  
PSYS: Full range: 3.06V, LSB: 12mV  
VBUS: Full range: 3.2V-19.52V, LSB 64mV  
Go  
24h  
ADCIBAT()  
8-bit digital output of battery charge current,  
8-bit digital output of battery discharge current  
ICHG: Full range 8.128A, LSB 64mA  
Go  
IDCHG: Full range: 32.512A, LSB: 256mA  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Register Map (continued)  
Table 6. Charger Command Summary (continued)  
SMBus  
ADDR  
REGISTER NAME  
TYPE  
DESCRIPTION  
LINKS  
25h  
ADCIINCMPIN()  
R
R
8-bit digital output of input current,  
Go  
Go  
8-bit digital output of CMPIN voltage  
POR State - IIN: Full range: 12.75A, LSB 50mA  
CMPIN: Full range 3.06V, LSB: 12mV  
26h  
ADCVSYSVBAT()  
8-bit digital output of system voltage,  
8-bit digital output of battery voltage  
VSYS: Full range: 2.88V-19.2V, LSB: 64mV  
VBAT: Full range : 2.88V-19.2V, LSB 64mV  
3Bh  
3Ch  
3Dh  
Reserved  
R/W  
R/W  
R/W  
Reserved  
InputVoltage()  
8-bit input voltage setting  
LSB 64mV, Range: 3200 mV – 19520 mV  
Go  
Go  
3Eh  
MinSystemVoltage()  
R/W  
6-Bit minimum system voltage setting  
LSB: 256mV, Range: 1024mV-16182mV  
Default: 1S-3.584V, 2S-6.144V, 3S-9.216V, 4S-  
12.288V  
3Fh  
IIN_HOST()  
R/W  
6-bit Input current limit set by host  
LSB: 50mA, Range: 50mA-6400mA  
Go  
FEh  
FFh  
ManufacturerID()  
DeviceID()  
R
R
Manufacturer ID - 0x0040H  
Device ID  
Go  
Go  
30  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.1 Setting Charge and PROCHOT Options  
8.6.1.1 ChargeOption0 Register (SMBus address = 12h) [reset = E20Eh]  
Figure 13. ChargeOption0 Register (SMBus address = 12h) [reset = E20Eh]  
15  
14  
13  
12  
11  
10  
9
8
EN_LWPWR  
WDTMR_ADJ  
R/W  
IDPM_AUTO_  
DISABLE  
Reserved  
EN_OOA  
PWM_FREQ  
Reserved  
R/W  
7
R/W  
R/W  
R/W  
R/W  
R/W  
6
5
4
3
2
1
0
Reserved  
R/W  
EN_LEARN  
R/W  
IADPT_GAIN  
R/W  
IBAT_GAIN  
R/W  
EN_LDO  
R/W  
EN_IDPM  
R/W  
CHRG_INHIBIT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. ChargeOption0 Register (SMBus address = 12h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
EN_LWPWR  
R/W  
1b  
Low Power Mode Enable  
0b: Disable Low Power Mode. Device in performance mode with battery only.  
The PROCHOT, current/power monitor buffer and comparator follow register  
setting.  
1b: Enable Low Power Mode. Device in low power mode with battery only for  
lowest quiescent current. /PROCHOT, discharge current monitor buffer, power  
monitor buffer and independent comparator are disabled. Independent  
comparator can be enabled by setting either REG0X30()[14] or [13] to 1.  
<default at POR>  
14-13  
WDTMR_ADJ  
R/W  
11b  
WATCHDOG Timer Adjust  
Set maximum delay between consecutive SMBus write of charge voltage or  
charge current command.  
If device does not receive a write on the REG0x15() or the REG0x14() within  
the watchdog time period, the charger will be suspended by setting the  
REG0x14() to 0 mA.  
After expiration, the timer will resume upon the write of REG0x14(),  
REG0x15() or REG0x12[14:13]. The charger will resume if the values are  
valid.  
00b: Disable Watchdog Timer  
01b: Enabled, 5 sec  
10b: Enabled, 88 sec  
11b: Enable Watchdog Timer, 175 sec <default at POR>  
12  
IDPM_AUTO_  
DISABLE  
R/W  
0b  
IDPM Auto Disable  
When CELL_BATPRESZ pin is LOW, the charger automatically disables the  
IDPM function by setting EN_IDPM (REG0x12[1]) to 0. The host can enable  
IDPM function later by writing EN_IDPM bit (REG0x12[1]) to 1.  
0b: Disable this function. IDPM is not disabled when CELL_BATPRESZ goes  
LOW. <default at POR>  
1b: Enable this function. IDPM is disabled when CELL_BATPRESZ goes  
LOW.  
11  
10  
Reserved  
EN_OOA  
R/W  
R/W  
Reserved  
0b  
Out-of-Audio Enable  
0b: No limit of PFM burst frequency <default at POR>  
1b: Set minimum PFM burst frequency to above 25 kHz to avoid audio noise  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Table 7. ChargeOption0 Register (SMBus address = 12h) Field Descriptions (continued)  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
9
PWM_FREQ  
R/W  
1b  
Switching Frequency  
Two converter switching frequencies. One for small inductor and the other for  
big inductor.  
Currently, customer uses 800 kHz with 2.2 µH or 3.3 µH, and 1.2 MHz with 1  
µH or 1.5 µH.  
0b: 1.2 MHz  
1b: 800 kHz <default at POR>  
Reserved  
8
Reserved  
R/W  
0b  
Table 8. ChargeOption0 Register (SMBus address = 12h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-6  
5
Reserved  
R/W  
R/W  
00b  
0b  
Reserved  
EN_LEARN  
LEARN function allows the battery to discharge while the adapter is present. It  
calibrates the battery gas gauge over a complete discharge/charge cycle.  
When the battery voltage is below battery depletion threshold, the system  
switches back to adapter input by the host. When CELL_BATPRESZ pin is  
LOW, the device exits LEARN mode and this bit is set back to 0.  
0b: Disable LEARN Mode <default at POR>  
1b: Enable LEARN Mode  
4
3
2
IADPT_GAIN  
IBAT_GAIN  
EN_LDO  
R/W  
R/W  
R/W  
0b  
1b  
1b  
IADPT Amplifier Ratio  
The ratio of voltage on IADPT and voltage across ACP and ACN.  
0b: 20× <default at POR>  
1b: 40×  
IBAT Amplifier Ratio  
The ratio of voltage on IBAT and voltage across SRP and SRN  
0b: 8×  
1b: 16× <default at POR>  
LDO Mode Enable  
When battery voltage is below minimum system voltage (REG0x3E()), the  
charger is in pre-charge with LDO mode enabled.  
0b: Disable LDO mode, BATFET fully ON. Precharge current is set by battery  
pack internal resistor. The system is regulated by the MaxChargeVoltage  
register.  
1b: Enable LDO mode, Precharge current is set by the ChargeCurrent register  
and clamped below 384 mA (2 cell – 4 cell) or 2A (1 cell). The system is  
regulated by the MinSystemVoltage register. <default at POR>  
1
0
EN_IDPM  
R/W  
R/W  
1b  
0b  
IDPM Enable  
Host writes this bit to enable IDPM regulation loop. When the IDPM is disabled  
by the charger (refer to IDPM_AUTO_DISABLE), this bit goes LOW.  
0b: IDPM disabled  
1b: IDPM enabled <default at POR>  
CHRG_INHIBIT  
Charge Inhibit  
When this bit is 0, battery charging will start with valid values in the  
MaxChargeVoltage register and the ChargeCurrent register.  
0b: Enable Charge <default at POR>  
1b: Inhibit Charge  
32  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.1.2 ChargeOption1 Register (SMBus address = 30h) [reset = 211h]  
Figure 14. ChargeOption1 Register (SMBus address = 30h) [reset = 211h]  
15  
14  
13  
12  
EN_PSYS  
R/W  
11  
RSNS_RAC  
R/W  
10  
RSNS_RSR  
R/W  
9
8
EN_IBAT  
R/W  
EN_PROCHOT_LPWR  
R/W  
PSYS_RATIO  
R/W  
Reserved  
R/W  
7
6
5
4
3
2
1
0
CMP_REF  
CMP_POL  
CMP_DEG  
R/W  
FORCE_  
LATCHOFF  
Reserved  
EN_SHIP_  
DCHG  
AUTO_  
WAKEUP_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. ChargeOption1 Register (SMBus address = 30h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET DESCRIPTION  
15  
EN_IBAT  
R/W  
0b  
IBAT Enable  
Enable the IBAT output buffer. In low power mode (REG0x12[15] = 1), IBAT  
buffer is always disabled regardless of this bit value.  
0b Turn off IBAT buffer to minimize Iq <default at POR>  
1b: Turn on IBAT buffer  
14-13 EN_PROCHOT  
_LPWR  
R/W  
00b  
Enable PROCHOT during battery only low power mode  
With battery only, enable IDCHG or VSYS in PROCHOT with low power  
consumption. Do not enable this function with adapter present. Refer to  
PROCHOT During Low Power Mode for more details.  
00b: Disable low power PROCHOT <default at POR>  
01b: Enable IDCHG low power PROCHOT  
10b: Enable VSYS low power PROCHOT  
11b: Reserved  
12  
EN_PSYS  
R/W  
0b  
PSYS Enable  
Enable PSYS sensing circuit and output buffer (whole PSYS circuit). In low  
power mode (REG0x12[15] = 1), PSYS sensing and buffer are always disabled  
regardless of this bit value.  
0b: Turn off PSYS buffer to minimize Iq <default at POR>  
1b: Turn on PSYS buffer  
11  
10  
9
RSNS_RAC  
RSNS_RSR  
PSYS_RATIO  
R/W  
R/W  
R/W  
0b  
0b  
1b  
Input sense resistor RAC  
0b: 10 mΩ <default at POR>  
1b: 20 mΩ  
Charge sense resistor RSR  
0b: 10 mΩ <default at POR>  
1b: 20 mΩ  
PSYS Gain  
Ratio of PSYS output current vs total input and battery power with 10-mΩ sense  
resistor.  
0b: 0.25 µA/W  
1b: 1 µA/W <default at POR>  
8
Reserved  
R/W  
0b  
Reserved  
Table 10. ChargeOption1 Register (SMBus address = 30h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET DESCRIPTION  
7
CMP_REF  
R/W  
0b  
Independent Comparator Internal Reference  
0b: 2.3 V <default at POR>  
1b: 1.2 V  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Table 10. ChargeOption1 Register (SMBus address = 30h) Field Descriptions (continued)  
SMBus  
BIT  
FIELD  
TYPE  
RESET DESCRIPTION  
6
CMP_POL  
R/W  
0b  
Independent Comparator Output Polarity  
0b: When CMPIN is above internal threshold, CMPOUT is LOW (internal  
hysteresis) <default at POR>  
1b: When CMPIN is below internal threshold, CMPOUT is LOW (external  
hysteresis)  
5-4  
CMP_DEG  
R/W  
01b  
Independent Comparator Deglitch Time, only applied to the falling edge of  
CMPOUT (HIGH LOW).  
00b: Independent comparator is disabled  
01b: Independent comparator is enabled with output deglitch time 1 µs <default  
at POR>  
10b: Independent comparator is enabled with output deglitch time of 2 ms  
11b: Independent comparator is enabled with output deglitch time of 5 sec  
3
FORCE_LATCHOFF  
R/W  
0b  
Force Power Path Off  
When the independent comparator triggers, charger turns off Q1 and Q4 (same  
as disable converter) so that the system is disconnected from the input source.  
At the same time, CHRG_OK signal goes to LOW to notify the system.  
0b: Disable this function <default at POR>  
1b: Enable this function  
2
1
Reserved  
R/W  
R/W  
0b  
0b  
Reserved  
EN_SHIP_DCHG  
Discharge SRN for Shipping Mode  
When this bit is 1, discharge SRN pin down below 3.8 V in 140 ms. When 140  
ms is over, this bit is reset to 0.  
0b: Disable shipping mode <default at POR>  
1b: Enable shipping mode  
0
AUTO_WAKEUP_EN  
R/W  
1b  
Auto Wakeup Enable  
When this bit is HIGH, if the battery is below minimum system voltage  
(REG0x3E()), the device will automatically enable 128 mA charging current for  
30 mins. When the battery is charged up above minimum system voltage, charge  
will terminate and the bit is reset to LOW.  
0b: Disable  
1b: Enable <default at POR>  
34  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.1.3 ChargeOption2 Register (SMBus address = 31h) [reset = 2B7]  
Figure 15. ChargeOption2 Register (SMBus address = 31h) [reset = 2B7]  
15  
14  
13  
12  
11  
10  
9
8
PKPWR_TOVLD_DEG  
EN_PKPWR  
_IDPM  
EN_PKPWR  
_VSYS  
PKPWR_  
OVLD_STAT  
PKPWR_  
RELAX_STAT  
PKPWR_TMAX[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
EN_EXTILIM  
EN_ICHG  
_IDCHG  
Q2_OCP  
ACX_OCP  
EN_ACOC  
ACOC_VTH  
EN_BATOC  
BATOC_VTH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. ChargeOption2 Register (SMBus address = 31h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
PKPWR_  
TOVLD_DEG  
R/W  
00b  
Input Overload time in Peak Power Mode  
00b: 1 ms <default at POR>  
01b: 2 ms  
10b: 10 ms  
11b: 20 ms  
13  
EN_PKPWR_IDPM  
EN_PKPWR_VSYS  
R/W  
R/W  
0b  
0b  
Enable Peak Power Mode triggered by input current overshoot  
If REG0x31[13:12] are 00b, peak power mode is disabled. Upon  
adapter removal, the bits are reset to 00b.  
0b: Disable peak power mode triggered by input current overshoot  
<default at POR>  
1b: Enable peak power mode triggered by input current overshoot.  
12  
Enable Peak Power Mode triggered by system voltage under-shoot  
If REG0x31[13:12] are 00b, peak power mode is disabled. Upon  
adapter removal, the bits are reset to 00b.  
0b: Disable peak power mode triggered by system voltage under-shoot  
<default at POR>  
1b: Enable peak power mode triggered by system voltage under-shoot.  
11  
10  
PKPWR_  
OVLD_STAT  
R/W  
R/W  
R/W  
0b  
Indicator that the device is in overloading cycle. Write 0 to get out of  
overloading cycle.  
0b: Not in peak power mode. <default at POR>  
1b: In peak power mode.  
PKPWR_  
RELAX_STAT  
0b  
Indicator that the device is in relaxation cycle. Write 0 to get out of  
relaxation cycle.  
0b: Not in relaxation cycle. <default at POR>  
1b: In relaxation mode.  
9-8  
PKPWR_  
TMAX[1:0]  
10b  
Peak power mode overload and relax cycle time.  
When REG0x31[15:14] is programmed longer than REG0x31[9:8],  
there is no relax time.  
00b: 5 ms  
01b: 10 ms  
10b: 20 ms <default at POR>  
11b: 40 ms  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Table 12. ChargeOption2 Register (SMBus address = 31h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
EN_EXTILIM  
R/W  
1b  
Enable ILIM_HIZ pin to set input current limit  
0b: Input current limit is set by REG0x3F.  
1b: Input current limit is set by the lower value of ILIM_HIZ pin and  
REG0x3F. <default at POR>  
6
5
EN_ICHG  
_IDCHG  
R/W  
R/W  
0b  
1b  
0b: IBAT pin as discharge current. <default at POR>  
1b: IBAT pin as charge current.  
Q2_OCP  
Q2 OCP threshold by sensing Q2 VDS  
0b: 300 mV  
1b: 500 mV <default at POR>  
4
3
ACX_OCP  
EN_ACOC  
R/W  
R/W  
1b  
0b  
Input current OCP threshold by sensing ACP-ACN.  
0b: 150 mV  
1b: 280 mV <default at POR>  
ACOC Enable  
Input overcurrent (ACOC) protection by sensing the voltage across  
ACP and ACN. Upon ACOC (after 100-µs blank-out time), converter is  
disabled.  
0b: Disable ACOC <default at POR>  
1b: ACOC threshold 125% or 200% ICRIT  
2
1
ACOC_VTH  
EN_BATOC  
R/W  
R/W  
1b  
1b  
ACOC Limit  
Set MOSFET OCP threshold as percentage of IDPM with current  
sensed from RAC.  
0b: 125% of ICRIT  
1b: 200% of ICRIT <default at POR>  
BATOC Enable  
Battery discharge overcurrent (BATOC) protection by sensing the  
voltage across SRN and SRP. Upon BATOC, converter is disabled.  
0b: Disable BATOC  
1b: BATOC threshold 125% or 200% PROCHOT IDCHG <default at  
POR>  
0
BATOC_VTH  
R/W  
1b  
Set battery discharge overcurrent threshold as percentage of  
PROCHOT battery discharge current limit.  
0b: 125% of PROCHOT IDCHG  
1b: 200% of PROCHOT IDCHG <default at POR>  
36  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.1.4 ChargeOption3 Register (SMBus address = 32h) [reset = 0h]  
Figure 16. ChargeOption3 Register (SMBus address = 32h) [reset = 0h]  
15  
14  
13  
12  
11  
10  
9
8
EN_HIZ  
RESET_REG  
RESET_  
VINDPM  
Reserved  
EN_ICO_MOD  
E
Reserved  
R/W  
7
R/W  
6
R/W  
5
R/W  
4
R/W  
3
R/W  
1
2
0
Reserved  
BATFETOFF_  
HIZ  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W  
R/W  
Table 13. ChargeOption3 Register (SMBus address = 32h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
14  
13  
EN_HIZ  
R/W  
0b  
Device Hi-Z Mode Enable  
When the charger is in Hi-Z mode, the device draws minimal quiescent  
current. With VBUS above UVLO. REGN LDO stays on, and system  
powers from battery.  
0b: Device not in Hi-Z mode <default at POR>  
1b: Device in Hi-Z mode  
RESET_REG  
R/W  
R/W  
0b  
0b  
Reset Registers  
All the registers go back to the default setting except the VINDPM  
register.  
0b: Idle <default at POR>  
1b: Reset all the registers to default values. After reset, this bit goes back  
to 0.  
RESET_VINDPM  
Reset VINDPM Threshold  
0b: Idle  
1b: Converter is disabled to measure VINDPM threshold. After VINDPM  
measurement is done, this bit goes back to 0 and converter starts.  
12  
11  
Reserved  
R/W  
R/W  
Reserved  
EN_ICO_MODE  
0b  
Enable ICO Algorithm  
0b: Disable ICO algorithm. <default at POR>  
1b: Enable ICO algorithm.  
10-8  
Reserved  
R/W  
000b  
Reserved  
Table 14. ChargeOption3 Register (SMBus address = 32h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-2  
1
Reserved  
R/W  
R/W  
000000b  
0b  
Reserved  
BATFETOFF_  
HIZ  
Control BATFET during HIZ mode.  
0b: BATFET on during Hi-Z <default at POR>  
1b: BATFET off during Hi-Z  
0
Reserved  
R/W  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.1.5 ProchotOption0 Register (SMBus address = 33h) [reset = 04A54h]  
Figure 17. ProchotOption0 Register (SMBus address = 33h) [reset = 04A54h]  
15-11  
ILIM2_VTH  
R/W  
10-9  
ICRIT_DEG  
R/W  
8
Reserved  
R/W  
7-6  
5
4-3  
2
1
0
VSYS_VTH  
EN_PROCHOT  
_EXT  
PROCHOT_WIDTH  
PROCHOT_  
CLEAR  
INOM_DEG  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. ProchotOption0 Register (SMBus address = 33h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11 ILIM2_VTH  
R/W  
01001b  
ILIM2 Threshold  
5 bits, percentage of IDPM in 0x3FH. Measure current between ACP and ACN.  
Trigger when the current is above this threshold:  
00001b - 11001b: 110% - 230%, step 5%  
11010b - 11110b: 250% - 450%, step 50%  
11111b: Out of Range (Ignored)  
Default 150%, or 01001  
10-9  
ICRIT_DEG  
R/W  
01b  
ICRIT Deglitch time  
ICRIT threshold is set to be 110% of  
.
ILIM2  
Typical ICRIT deglitch time to trigger PROCHOT.  
00b: 15 µs  
01b: 100 µs <default at POR>  
10b: 400 µs (max 500 us)  
11b: 800 µs (max 1 ms)  
8
Reserved  
R/W  
0b  
Reserved  
Table 16. ProchotOption0 Register (SMBus address = 33h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-6  
VSYS_VTH  
R/W  
01b  
VSYS Threshold  
Measure on VSYS with fixed 20-µs deglitch time. Trigger when SYS pin voltage is  
below the threshold.  
00b: 5.75 V (2-4 s) or 2.85 V (1 s)  
01b: 6 V (2-4 s) or 3.1 V (1 s) <default at POR>  
10b: 6.25 V (2-4 s) or 3.35 V (1 s)  
11b: 6.5 V (2-4 s) or 3.6 V (1 s)  
5
EN_PROCHOT  
_EXT  
R/W  
R/W  
0b  
PROCHOT Pulse Extension Enable  
When pulse extension is enabled, keep the PROCHOT pin voltage LOW until host  
writes 0x33[2] = 0.  
0b: Disable pulse extension <default at POR>  
1b: Enable pulse extension  
4-3  
PROCHOT  
_WIDTH  
10b  
PROCHOT Pulse Width  
Minimum PROCHOT pulse width when REG0x33[5] = 0  
00b: 100 µs  
01b: 1 ms  
10b: 10 ms <default at POR>  
11b: 5 ms  
38  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Table 16. ProchotOption0 Register (SMBus address = 33h) Field Descriptions (continued)  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
2
PROCHOT  
_CLEAR  
R/W  
1b  
PROCHOT Pulse Clear  
Clear PROCHOT pulse when 0x3C[5] = 1.  
0b: Clear PROCHOT pulse and drive PROCHOT pin HIGH.  
1b: Idle <default at POR>  
1
INOM_DEG  
R/W  
R/W  
0b  
0b  
INOM Deglitch Time  
INOM is always 10% above IDPM in 0x3FH. Measure current between ACP and  
ACN.  
Trigger when the current is above this threshold.  
0b: 1 ms (must be max) <default at POR>  
1b: 50 ms (max 60 ms)  
0
Reserved  
Reserved  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.1.6 ProchotOption1 Register (SMBus address = 34h) [reset = 8120h]  
Figure 18. ProchotOption1 Register (SMBus address = 34h) [reset = 8120h]  
15-10  
9-8  
IDCHG_VTH  
R/W  
IDCHG_DEG  
R/W  
7
6
5
4
3
2
1
0
Reserved  
PROCHOT_PR  
OFILE_IC  
PP_ICRIT  
PP_INOM  
PP_IDCHG  
PP_VSYS  
PP_BATPRES  
PP_ACOK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. ProchotOption1 Register (SMBus address = 34h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-10  
IDCHG_VTH  
R/W  
000000b  
IDCHG Threshold  
6 bit, range, range 0 A to 32256 mA, step 512 mA. There is a 128 mA offset  
measured current between SRN and SRP.  
Trigger when the discharge current is above the threshold.  
If the value is programmed to 000000b, PROCHOT is always triggered.  
Default: 16384 mA or 100000  
9-8  
IDCHG_DEG  
R/W  
01b  
IDCHG Deglitch Time  
00b: 1.6 ms  
01b: 100 µs <default at POR>  
10b: 6 ms  
11b: 12 ms  
Table 18. ProchotOption1 Register (SMBus address = 34h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
Reserved  
R/W  
R/W  
0b  
0b  
Reserved  
PROCHOT  
_PROFILE_COMP  
PROCHOT Profile  
When all the REG0x34[6:0] bits are 0, PROCHOT function is disabled.  
Bit6 Independent comparator  
0b: disable <default at POR>  
1b: enable  
5
4
3
2
1
PROCHOT  
_PROFILE_ICRIT  
R/W  
R/W  
R/W  
R/W  
R/W  
1b  
0b  
0b  
0b  
0b  
0b: disable  
1b: enable <default at POR>  
PROCHOT  
_PROFILE_INOM  
0b: disable <default at POR>  
1b: enable  
PROCHOT  
_PROFILE_IDCHG  
0b: disable <default at POR>  
1b: enable  
PROCHOT  
_PROFILE_VSYS  
0b: disable <default at POR>  
1b: enable  
PROCHOT  
_PROFILE_BATPRES  
0b: disable <default at POR>  
1b: enable (one-shot falling edge triggered)  
If BATPRES is enabled in PROCHOT after the battery is removed, it will  
immediately send out one-shot PROCHOT pulse.  
40  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Table 18. ProchotOption1 Register (SMBus address = 34h) Field Descriptions (continued)  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
0
PROCHOT  
_PROFILE_ACOK  
R/W  
0b  
0b: disable <default at POR>  
1b: enable (one-shot falling edge triggered)  
ChargeOption0[15] = 0 to pull PROCHOT low after adapter removal.  
If BATPRES is enabled in PROCHOT after the battery is removed, it will  
immediately send out one-shot PROCHOT pulse.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.1.7 ADCOption Register (SMBus address = 35h) [reset = 2000h]  
Figure 19. ADCOption Register (SMBus address = 35h) [reset = 2000h]  
15  
14  
13  
12-8  
ADC_CONV  
ADC_START  
ADC_  
Reserved  
FULLSCALE  
R/W  
7
R/W  
6
R/W  
5
R/W  
2
4
3
1
0
EN_ADC_  
CMPIN  
EN_ADC_  
VBUS  
EN_ADC_  
PSYS  
EN_ADC_  
IIN  
EN_ADC_  
IDCHG  
EN_ADC_  
ICHG  
EN_ADC_  
VSYS  
EN_ADC_  
VBAT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. ADCOption Register (SMBus address = 35h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
ADC_CONV  
R/W  
0b  
Typical ADC conversion time is 10 ms.  
0b: One-shot update. Do one set of conversion updates to registers  
REG0x23(), REG0x24(), REG0x25(), and REG0x26() after ADC_START =  
1.  
1b: Continuous update. Do a set of conversion updates to registers  
REG0x23(), REG0x24(), REG0x25(), and REG0x26() every 1 sec.  
14  
13  
ADC_START  
R/W  
R/W  
0b  
1b  
0b: No ADC conversion  
1b: Start ADC conversion. After the one-shot update is complete, this bit  
automatically resets to zero  
ADC_  
FULLSCALE  
ADC input voltage range. When input voltage is below 5V, or battery is 1S,  
full scale 2.04V is recommended.  
0b: 2.04 V  
1b: 3.06 V <default at POR>  
Reserved  
12-8  
Reserved  
R/W  
00000b  
Table 20. ADCOption Register (SMBus address = 35h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
5
4
3
2
1
0
EN_ADC_CMPIN  
R/W  
0b  
0b: Disable <default at POR>  
1b: Enable  
EN_ADC_VBUS  
EN_ADC_PSYS  
EN_ADC_IIN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
EN_ADC_IDCHG  
EN_ADC_ICHG  
EN_ADC_VSYS  
EN_ADC_VBAT  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
42  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.2 Charge and PROCHOT Status  
8.6.2.1 ChargerStatus Register (SMBus address = 20h) [reset = 0000h]  
Figure 20. ChargerStatus Register (SMBus address = 20h) [reset = 0000h]  
15  
AC_STAT  
R
14  
ICO_DONE  
R
13  
Reserved  
R
12  
IN_VINDPM  
R
11  
IN_IINDPM  
R
10  
IN_FCHRG  
R
9
IN_PCHRG  
R
8
Reserved  
R
7
6
5
4
3
2
1
0
Fault ACOV  
Fault BATOC  
Fault ACOC  
SYSOVP_  
STAT  
Reserved  
Fault Latchoff  
Reserved  
Reserved  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. ChargerStatus Register (SMBus address = 20h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
AC_STAT  
R
0b  
Input source status, same as CHRG_OK pin  
0b: Input not present  
1b: Input is present  
14  
ICO_DONE  
R
0b  
After the ICO routine is successfully executed, the bit goes 1.  
0b: ICO is not complete  
1b: ICO is complete  
13  
12  
Reserved  
R
R
0b  
0b  
Reserved  
IN_VINDPM  
0b: Charger is not in VINDPM during forward mode  
1b: Charger is in VINDPM during forward mode  
11  
10  
9
IN_IINDPM  
IN_FCHRG  
IN_PCHRG  
Reserved  
R
R
R
R
0b  
0b  
0b  
0b: Charger is not in IINDPM  
1b: Charger is in IINDPM  
0b: Charger is not in fast charge  
1b: Charger is in fast charger  
0b: Charger is not in pre-charge  
1b: Charger is in pre-charge  
Reserved  
8
Table 22. ChargerStatus Register (SMBus address = 20h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
5
Fault ACOV  
R
0b  
The faults are latched until a read from host.  
0b: No fault  
1b: ACOV  
Fault BATOC  
Fault ACOC  
R
R
0b  
0b  
The faults are latched until a read from host.  
0b: No fault  
1b: BATOC  
The faults are latched until a read from host.  
0b: No fault  
1b: ACOC  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
Table 22. ChargerStatus Register (SMBus address = 20h) Field Descriptions (continued)  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
4
SYSOVP_STAT  
R
0b  
SYSOVP Status and Clear  
When the SYSOVP occurs, this bit is HIGH. During the SYSOVP,  
the converter is disabled.  
After the SYSOVP is removed, the user must write a 0 to this bit or  
unplug the adapter to clear the SYSOVP condition to enable the  
converter again.  
0b: Not in SYSOVP <default at POR>  
1b: In SYSOVP. When SYSOVP is removed, write 0 to clear the  
SYSOVP latch.  
3
2
Reserved  
R
R
0b  
0b  
Reserved  
Fault Latchoff  
The faults are latched until a read from host.  
0b: No fault  
1b: Latch off (REG0x30[3])  
Reserved  
1
0
Reserved  
Reserved  
R
R
Reserved  
44  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.2.2 ProchotStatus Register (SMBus address = 21h) [reset = 0h]  
Figure 21. ProchotStatus Register (SMBus address = 21h) [reset = 0h]  
15-8  
Reserved  
R
7
6
5
4
3
2
1
0
Reserved  
STAT_COMP  
STAT_ICRIT  
STAT_INOM  
STAT_IDCHG  
STAT_VSYS  
STAT_Battery_ STAT_Adapter  
Removal  
_Removal  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. ProchotStatus Register (SMBus address = 21h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-8  
Reserved  
R
0000000  
0b  
Reserved  
Table 24. ProchotStatus Register (SMBus address = 21h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
Reserved  
R
R
0b  
0b  
Reserved  
STAT_COMP  
0b: Not triggered  
1b: Triggered  
5
4
3
2
1
0
STAT_ICRIT  
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b: Not triggered  
1b: Triggered  
STAT_INOM  
0b: Not triggered  
1b: Triggered  
STAT_IDCHG  
0b: Not triggered  
1b: Triggered  
STAT_VSYS  
0b: Not triggered  
1b: Triggered  
STAT_Battery_Removal  
STAT_Adapter_Removal  
0b: Not triggered  
1b: Triggered  
0b: Not triggered  
1b: Triggered  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.3 ChargeCurrent Register (SMBus address = 14h) [reset = 0h]  
To set the charge current, write a 16-bit ChargeCurrent() command (REG0x14()) using the data format listed in  
Figure 22  
With 10-mΩ sense resistor, the charger provides charge current range of 64 mA to 8.128 A, with a 64-mA step  
resolution. Upon POR, ChargeCurrent() is 0 A when auto wakeup is not active. Any conditions for CHRG_OK low  
except ACOV will reset ChargeCurrent() to zero. CELL_BATPRESZ going LOW (battery removal) will reset the  
ChargeCurrent() register to 0 A.  
Charge current is not reset in ACOC, TSHUT, power path latch off (REG0x30[1]), and SYSOVP.  
A 0.1-µF capacitor between SRP and SRN for differential mode filtering is recommended; an optional 0.1-µF  
capacitor between SRN and ground, and an optional 0.1-µF capacitor between SRP and ground for common  
mode filtering. Meanwhile, the capacitance on SRP should not be higher than 0.1 µF in order to properly sense  
the voltage across SRP and SRN for cycle-by-cycle current detection.  
The SRP and SRN pins are used to sense voltage drop across RSR with default value of 10 mΩ. However,  
resistors of other values can also be used. For a larger sense resistor, a larger sense voltage is given, and a  
higher regulation accuracy; but, at the expense of higher conduction loss. A current sensing resistor value no  
more than 20 mΩ is suggested.  
Figure 22. ChargeCurrent Register With 10-mΩ Sense Resistor (SMBus address = 14h) [reset = 0h]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Charge  
Charge  
Charge  
Charge  
Charge  
Current, bit 6  
Current, bit 5  
Current, bit 4  
Current, bit 3  
Current, bit 2  
R/W  
6
R/W  
4
R/W  
3
R/W  
R/W  
1
R/W  
0
7
5
2
Charge  
Charge  
Reserved  
Reserved  
Current, bit 1  
Current, bit 0  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. Charge Current Register (14h) With 10-mΩ Sense Resistor (SMBus address = 14h) Field  
Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-13  
12  
Reserved  
R/W  
R/W  
000b  
0b  
Not used. 1 = invalid write.  
Charge Current, bit 6  
0 = Adds 0 mA of charger current.  
1 = Adds 4096 mA of charger current.  
11  
10  
9
Charge Current, bit 5  
Charge Current, bit 4  
Charge Current, bit 3  
Charge Current, bit 2  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0 = Adds 0 mA of charger current.  
1 = Adds 2048 mA of charger current.  
0 = Adds 0 mA of charger current.  
1 = Adds 1024 mA of charger current.  
0 = Adds 0 mA of charger current.  
1 = Adds 512 mA of charger current.  
8
0 = Adds 0 mA of charger current.  
1 = Adds 256 mA of charger current.  
46  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
 
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Table 26. Charge Current Register (14h) With 10-mΩ Sense Resistor (SMBus address = 14h) Field  
Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
Charge Current, bit 1  
R/W  
0b  
0 = Adds 0 mA of charger current.  
1 = Adds 128 mA of charger current.  
6
Charge Current, bit 0  
Reserved  
R/W  
R/W  
0b  
0 = Adds 0 mA of charger current.  
1 = Adds 64 mA of charger current.  
5-0  
000000b  
Not used. Value Ignored.  
8.6.3.1 Battery Pre-Charge Current Clamp  
During pre-charge, BATFET works in linear mode or LDO mode (default REG0x12[2] = 1). For 2-4 cell battery,  
the system is regulated at minimum system voltage in REG0x3E() and the pre-charge current is clamped at 384  
mA. For 1 cell battery, the pre-charge to fast charge threshold is 3V, and the pre-charge current is clamped at  
384mA. However, the BATFET stays in LDO mode operation till battery voltage is above minimum system  
voltage (~3.6V). During battery voltage from 3V to 3.6V, the fast charge current is clamped at 2A.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.4 MaxChargeVoltage Register (SMBus address = 15h) [reset value based on CELL_BATPRESZ pin  
setting]  
To set the output charge voltage, write a 16-bit ChargeVoltage register command (REG0x15()) using the data  
format listed in Figure 23. The charger provides charge voltage range from 1.024 V to 19.200 V, with 16-mV step  
resolution. Any write below 1.024 V or above 19.200 V is ignored.  
Upon POR, REG0x15() is by default set as 4192 mV for 1 s, 8400 mV for 2 s, 12592 mV for 3 s or 16800 mV for  
4 s. After CHRG_OK, if host writes REG0x14() before REG0x15(), the charge will start after the write to  
REG0x14().If the battery is different from 4.2 V/cell, the host has to write to REG0x15() before REG0x14() for  
correct battery voltage setting. Writing REG0x15() to 0 will set REG0x15() to default value on CELL_BATPRESZ  
pin, and force REG0x14() to zero to disable charge.  
The SRN pin is used to sense the battery voltage for voltage regulation and should be connected as close to the  
battery as possible, and directly place a decoupling capacitor (0.1-µF recommended) as close to the device as  
possible to decouple high frequency noise.  
Figure 23. MaxChargeVoltage Register (SMBus address = 15h) [reset value based on CELL_BATPRESZ  
pin setting]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Max Charge  
Voltage, bit 10  
Max Charge  
Voltage, bit 9  
Max Charge  
Voltage, bit 8  
Max Charge  
Voltage, bit 7  
Max Charge  
Voltage, bit 6  
Max Charge  
Voltage, bit 5  
Max Charge  
Voltage, bit 4  
R/W  
7
R/W  
6
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
Max Charge  
Voltage, bit 3  
Max Charge  
Voltage, bit 2  
Max Charge  
Voltage, bit 1  
Max Charge  
Voltage, bit 0  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. MaxChargeVoltage Register (SMBus address = 15h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
14  
Reserved  
R/W  
R/W  
0b  
0b  
Not used. 1 = invalid write.  
Max Charge Voltage, bit 10  
0 = Adds 0 mV of charger voltage.  
1 = Adds 16384 mV of charger voltage.  
13  
12  
11  
10  
9
Max Charge Voltage, bit 9  
Max Charge Voltage, bit 8  
Max Charge Voltage, bit 7  
Max Charge Voltage, bit 6  
Max Charge Voltage, bit 5  
Max Charge Voltage, bit 4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 8192 mV of charger voltage  
0 = Adds 0 mV of charger voltage.  
1 = Adds 4096 mV of charger voltage.  
0 = Adds 0 mV of charger voltage.  
1 = Adds 2048 mV of charger voltage.  
0 = Adds 0 mV of charger voltage.  
1 = Adds 1024 mV of charger voltage.  
0 = Adds 0 mV of charger voltage.  
1 = Adds 512 mV of charger voltage.  
8
0 = Adds 0 mV of charger voltage.  
1 = Adds 256 mV of charger voltage.  
48  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
 
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Table 28. MaxChargeVoltage Register (SMBus address = 15h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
Max Charge Voltage, bit 3  
R/W  
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 128 mV of charger voltage.  
6
Max Charge Voltage, bit 2  
Max Charge Voltage, bit 1  
Max Charge Voltage, bit 0  
Reserved  
R/W  
R/W  
R/W  
R/W  
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 64 mV of charger voltage.  
5
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 32 mV of charger voltage.  
4
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 16 mV of charger voltage.  
3-0  
0000b  
Not used. Value Ignored.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.5 MinSystemVoltage Register (SMBus address = 3Eh) [reset value based on CELL_BATPRESZ pin  
setting]  
To set the minimum system voltage, write a 16-bit MinSystemVoltage register command (REG0x3E()) using the  
data format listed in Figure 25. The charger provides minimum system voltage range from 1.024 V to 16.128 V,  
with 256-mV step resolution. Any write below 1.024 V or above 16.128 V is ignored. Upon POR, the  
MinSystemVoltage register is 3.584 V for 1 S, 6.144 V for 2 S and 9.216 V for 3 S, and 12.288 V for 4 S.  
Figure 24. MinSystemVoltage Register (SMBus address = 3Eh) [reset value based on CELL_BATPRESZ  
pin setting]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
R/W  
Min System  
Voltage, bit 5  
Min System  
Voltage, bit 4  
Min System  
Voltage, bit 3  
Min System  
Voltage, bit 2  
Min System  
Voltage, bit 1  
Min System  
Voltage, bit 0  
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
7
6
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. MinSystemVoltage Register (SMBus address = 3Eh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
13  
Reserved  
R/W  
R/W  
00b  
0b  
Not used. 1 = invalid write.  
Min System Voltage, bit 5  
0 = Adds 0 mV of system voltage.  
1 = Adds 8192 mV of system voltage.  
12  
11  
10  
9
Min System Voltage, bit 4  
Min System Voltage, bit 3  
Min System Voltage, bit 2  
Min System Voltage, bit 1  
Min System Voltage, bit 0  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mV of system voltage.  
1 = Adds 4096mV of system voltage.  
0 = Adds 0 mV of system voltage.  
1 = Adds 2048 mV of system voltage.  
0 = Adds 0 mV of system voltage.  
1 = Adds 1024 mV of system voltage.  
0 = Adds 0 mV of system voltage.  
1 = Adds 512 mV of system voltage.  
8
0 = Adds 0 mV of system voltage.  
1 = Adds 256 mV of system voltage.  
Table 30. MinSystemVoltage Register (SMBus address = 3Eh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
Reserved  
R/W  
0000000  
0b  
Not used. Value Ignored.  
50  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.5.1 System Voltage Regulation  
The device employs Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by REG0x3E(). Even with a deeply depleted battery, the system is regulated  
above the minimum system voltage with BATFET.  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is regulated above the minimum system voltage setting. As the battery voltage rises above the  
minimum system voltage, BATFET is fully on when charging or in supplement mode and the voltage difference  
between the system and battery is the VDS of BATFET. System voltage is regulated 160mV above battery  
voltage when BATFET is off (no charging or no supplement current).  
When BATFET is removed, the system node VSYS is shorted to SRP. Before the converter starts operation,  
LDO mode needs to be disabled. The following sequence is required to configure charger without BATFET.  
1. Before adapter plugs in, put the charger into HIZ mode. (either pull pin 6 ILIM_HIZ to ground, or set  
REG0x32[15] to 1)  
2. Set 0x12[2] to 0 to disable LDO mode.  
3. Set 0x30[0] to 0 to disable auto-wakeup mode.  
4. Check if battery voltage is properly programmed (REG0x15)  
5. Set pre-charge/charge current (REG0x14)  
6. Put the device out of HIZ mode. (Release ILIM_HIZ from ground and set REG0x32[15]=0).  
In order to prevent any accidental SW mistakes, the host sets low input current limit (a few hundred milliamps)  
when device is out of HIZ.  
8.6.6 Input Current and Input Voltage Registers for Dynamic Power Management  
The charger supports Dynamic Power Management (DPM). Normally, the input power source provides power for  
the system load or to charge the battery. When the input current exceeds the input current setting, or the input  
voltage falls below the input voltage setting, the charger decreases the charge current to provide priority to the  
system load. As the system current rises, the available charge current drops accordingly towards zero. If the  
system load keeps increasing after the charge current drops down to zero, the system voltage starts to drop. As  
the system voltage drops below the battery voltage, the battery will discharge to supply the heavy system load.  
8.6.6.1 Input Current Registers  
To set the maximum input current limit, write a 16-bit IIN_HOST register command (REG0x3F()) using the data  
format listed in Figure 25. When using a 10-mΩ sense resistor, the charger provides an input-current limit range  
of 50 mA to 6400 mA, with 50-mA resolution. The default current limit is 3.3 A. Due to the USB current setting  
requirement, the register setting specifies the maximum current instead of the typical current. Upon adapter  
removal, the input current limit is reset to the default value of 3.3 A. The register setting is clamped at 50mA.  
With code 00h and 01h, the input current limit settings are both 50mA.  
The ACP and ACN pins are used to sense RAC with the default value of 10 mΩ. For a 20 mΩ sense resistor, a  
larger sense voltage is given and a higher regulation accuracy, but at the expense of higher conduction loss.  
Instead of using the internal DPM loop, the user can build up an external input current regulation loop and have  
the feedback signal on the ILIM_HIZ pin.  
V
= 1V + 40´ V  
(
- VACN = 1+ 40´IDPM ´RAC  
)
ILIM_HIZ  
ACP  
(2)  
In order to disable ILIM_HIZ pin, the host can write to 0x31[7] to disable ILIM_HIZ pin, or pull ILIM_HIZ pin above  
4 V.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.6.1.1 IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) [reset = 4000h]  
Figure 25. IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) [reset = 4100h]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Input Current  
Input Current  
Input Current  
Input Current  
Input Current  
Input Current  
Input Current  
set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit  
6
5
4
3
2
1
0
R/W  
7
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
14  
Reserved  
R
R
0b  
1b  
Not used. 1 = invalid write.  
Input Current set by host, bit 6  
0 = Adds 0 mA of input current.  
1 = Adds 3200 mA of input current.  
13  
12  
11  
10  
9
Input Current set by host, bit 5  
Input Current set by host, bit 4  
Input Current set by host, bit 3  
Input Current set by host, bit 2  
Input Current set by host, bit 1  
Input Current set by host, bit 0  
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mA of input current.  
1 = Adds 1600 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 800 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 400 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 200 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 100 mA of input current.  
8
0 = Adds 0 mA of input current.  
1 = Adds 50 mA of input current.  
Table 32. IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
Reserved  
R
0000000  
0b  
Not used. Value Ignored.  
52  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.6.1.2 IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) [reset = 0h]  
IIN_DPM register reflects the actual input current limit programmed in the register, either from host or from ICO.  
After ICO, the current limit used by DPM regulation may differ from the IIN_HOST register settings. The actual  
DPM limit is reported in REG0x22().  
Figure 26. IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) [reset = 0h]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Input Current in Input Current in Input Current in Input Current in Input Current in Input Current in Input Current in  
DPM, bit 6  
R
DPM, bit 5  
R
DPM, bit 4  
R
DPM, bit 3  
R
DPM, bit 2  
R
DPM, bit 1  
R
DPM, bit 0  
R
R
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
Reserved  
R
R
0b  
0b  
Not used. 1 = invalid write.  
14  
13  
12  
11  
10  
9
Input Current in DPM, bit 6  
0 = Adds 0 mA of input current.  
1 = Adds 3200 mA of input current.  
Input Current in DPM, bit 5  
Input Current in DPM, bit 4  
Input Current in DPM, bit 3  
Input Current in DPM, bit 2  
Input Current in DPM, bit 1  
Input Current in DPM, bit 0  
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mA of input current.  
1 = Adds 1600 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 800mA of input current  
0 = Adds 0 mA of input current.  
1 = Adds 400 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 200 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 100 mA of input current.  
8
0 = Adds 0 mA of input current.  
1 = Adds 50 mA of input current.  
Table 34. IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
Reserved  
R
00000000b  
Not used. Value Ignored.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.6.1.3 InputVoltage Register (SMBus address = 3Dh) [reset = VBUS-1.28V]  
To set the input voltage limit, write a 16-bit InputVoltage register command (REG0x3D()) using the data format  
listed in Figure 27.  
If the input voltage drops more than the InputVoltage register allows, the device enters DPM and reduces the  
charge current. The default offset voltage is 1.28 V below the no-load VBUS voltage. The DC offset is 3.2 V  
(0000000).  
Figure 27. InputVoltage Register (SMBus address = 3Dh) [reset = VBUS-1.28V]  
15  
7
14  
13  
12  
11  
10  
9
8
Reserved  
R/W  
Input Voltage,  
bit 7  
Input Voltage,  
bit 6  
Input Voltage,  
bit 5  
Input Voltage,  
bit 4  
Input Voltage,  
bit 3  
Input Voltage,  
bit 2  
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
6
Input Voltage,  
bit 1  
Input Voltage,  
bit 0  
Reserved  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. InputVoltage Register (SMBus address = 3Dh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
13  
Reserved  
R/W  
R/W  
00b  
0b  
Not used. 1 = invalid write.  
Input Voltage, bit 7  
0 = Adds 0 mV of input voltage.  
1 = Adds 8192 mV of input voltage.  
12  
11  
10  
9
Input Voltage, bit 6  
Input Voltage, bit 5  
Input Voltage, bit 4  
Input Voltage, bit 3  
Input Voltage, bit 2  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mV of input voltage.  
1 = Adds 4096mV of input voltage.  
0 = Adds 0 mV of input voltage.  
1 = Adds 2048 mV of input voltage.  
0 = Adds 0 mV of input voltage.  
1 = Adds 1024 mV of input voltage.  
0 = Adds 0 mV of input voltage.  
1 = Adds 512 mV of input voltage.  
8
0 = Adds 0 mV of input voltage.  
1 = Adds 256 mV of input voltage.  
Table 36. InputVoltage Register (SMBus address = 3Dh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
Input Voltage, bit 1  
R/W  
0b  
0 = Adds 0 mV of input voltage.  
1 = Adds 128 mV of input voltage.  
6
Input Voltage, bit 0  
Reserved  
R/W  
R/W  
0b  
0 = Adds 0 mV of input voltage.  
1 = Adds 64 mV of input voltage  
5-0  
000000b  
Not used. Value Ignored.  
54  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
 
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.7 ADCVBUS/PSYS Register (SMBus address = 23h)  
PSYS: Full range: 3.06 V, LSB: 12 mV  
VBUS: Full range: 3200 mV to 19520 mV, LSB: 64 mV  
Figure 28. ADCVBUS/PSYS Register (SMBus address = 23h)  
15  
R
7
14  
R
6
13  
R
5
12  
R
4
11  
R
3
10  
R
2
9
R
1
8
R
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. ADCVBUS/PSYS Register Field Descriptions  
BIT  
15-8  
7-0  
FIELD  
TYPE  
RESET  
DESCRIPTION  
R
R
8-bit Digital Output of Input Voltage  
8-bit Digital Output of System Power  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.8 ADCIBAT Register (SMBus address = 24h)  
ICHG: Full range: 8.128 A, LSB 64: mA  
IDCHG: Full range: 32.512 A, LSB: 256 mA  
Figure 29. ADCIBAT Register (SMBus address = 24h)  
15  
Reserved  
7
14  
R
6
13  
R
5
12  
R
4
11  
R
3
10  
R
2
9
R
1
8
R
0
Reserved  
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. ADCIBAT Register Field Descriptions  
BIT  
15  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Reserved  
R
R
R
R
Not used. Value ignored.  
14-8  
7
7-bit Digital Output of Battery Charge Current  
Not used. Value ignored.  
Reserved  
6-0  
7-bit Digital Output of Battery Discharge Current  
56  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.9 ADCIINCMPIN Register (SMBus address = 25h)  
IIN: Full range: 12.75 A, LSB: 50 mA  
CMPIN: Full range: 3.06 V, LSB: 12 mV  
Figure 30. ADCIINCMPIN Register (SMBus address = 25h)  
15  
R
7
14  
R
6
13  
R
5
12  
R
4
11  
R
3
10  
R
2
9
R
1
8
R
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 39. ADCIINCMPIN Register Field Descriptions  
BIT  
15-8  
7-0  
FIELD  
TYPE  
RESET  
DESCRIPTION  
R
R
8-bit Digital Output of Input Current  
8-bit Digital Output of CMPIN voltage  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
8.6.10 ADCVSYSVBAT Register (SMBus address = 26h) (reset = )  
VSYS: Full range: 2.88 V to 19.2 V, LSB: 64 mV  
VBAT: Full range: 2.88 V to 19.2 V, LSB: 64 mV  
Figure 31. ADCVSYSVBAT Register (SMBus address = 26h) (reset = )  
15  
R
7
14  
R
6
13  
R
5
12  
R
4
11  
R
3
10  
R
2
9
R
1
8
R
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 40. ADCVSYSVBAT Register Field Descriptions  
BIT  
15-8  
7-0  
FIELD  
TYPE  
RESET  
DESCRIPTION  
R
R
8-bit Digital Output of System Voltage  
8-bit Digital Output of Battery Voltage  
58  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
8.6.11 ID Registers  
8.6.11.1 ManufactureID Register (SMBus address = FEh) [reset = 0040h]  
Figure 32. ManufactureID Register (SMBus address = FEh) [reset = 0040h]  
15-0  
MANUFACTURE_ID  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 41. ManufactureID Register Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION (READ ONLY)  
15-0  
MANUFACTURE_ID  
R
40h  
8.6.11.2 Device ID (DeviceAddress) Register (SMBus address = FFh) [reset = 0h]  
Figure 33. Device ID (DeviceAddress) Register (SMBus address = FFh) [reset = 0h]  
15-8  
Reserved  
R
7-0  
DEVICE_ID  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 42. Device ID (DeviceAddress) Register Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION (READ ONLY)  
15-8  
Reserved  
R
R
0b  
0b  
Reserved  
7-0  
DEVICE_ID  
SMBus: 7Ch  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq2570xEVM-732 evaluation module (EVM) is a complete charger module for evaluating the bq25708. The  
application curves were taken using the bq2570xEVM-732. Refer to the EVM user's guide (SLUUBG6) for EVM  
information.  
9.2 Typical Application  
VSYS  
6x10mF  
2.2uH  
RAC=10mW  
RSR=10mW  
ADAPTER  
2.2W  
Q2  
6x10mF  
BATT  
10nF  
Q3  
Q1  
Q4  
47nF  
47nF  
1mF  
10W  
10W  
1W  
Optional  
snubber  
15nF  
15nF  
HIDRV1  
VBUS  
SW1BTST1 BTST2 SW2  
HIDRV2  
LODRV2  
LODRV1  
SYS  
470nF  
/BATDRV  
SRP  
ACN  
ACP  
10W  
SRN  
REGN  
VDDA  
REGN  
ILIM_HIZ  
1uF  
2.2œ3.3uF  
VDDA  
GND  
bq25708  
350kW  
CELL_BATPRESZ  
250kW  
COMP1  
COMP2  
IADPT  
IBAT  
PSYS  
100pF  
100pF  
100kW  
30kW  
CHRG_OK  
CMPOUT  
CMPIN  
50W  
/PROCHOT  
1.05V  
SDA SCL  
10kW  
To CPU  
10kW  
10kW  
10kW  
3.3V or 1.8V  
Host  
(SMBus)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 34. Application Diagram  
9.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input Voltage(1)  
3.5V < Adapter Voltage < 24V  
3.2A for 65W adapter  
(1)  
Input Current Limit  
Battery Charge Voltage(2)  
Battery Charge Current(2)  
8400mV for 2s battery  
3072mA for 2s battery  
(1) Refer to adapter specification for settings for Input Voltage and Input Current Limit.  
(2) Refer to battery specification for settings.  
60  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
Typical Application (continued)  
DESIGN PARAMETER  
Minimum System Voltage(2)  
EXAMPLE VALUE  
6144mV for 2s battery  
9.2.2 Detailed Design Procedure  
The parameters are configurable using the evaluation software. The simplified application circuit (see Figure 39,  
as the application diagram) shows the minimum component requirements. Inductor, capacitor, and MOSFET  
selection are explained in the rest of this section. Refer to the EVM user's guide (SLUUBG6) for the complete  
application schematic.  
9.2.2.1 ACP-ACN Input Filter  
The bq25708 has average current mode control. The input current sensing through ACP/ACN is critical to  
recover inductor current ripple. Parasitic inductance on board will generate high frequency ringing on ACP-ACN  
which overwhelms converter sensed inductor current information, so it is difficult to manage parasitic inductance  
created based on different PCB layout. Bigger parasitic inductance will generate bigger sense current ringing  
which will cause the average current control loop to go into oscillation.  
For real system board condition, we suggest to use below circuit design to get best result and filter noise induced  
from different PCB parasitic factor. With time constant of filter from 47nsec to 200nsec, the filtering on ringing is  
effective and in the meantime, the delay of on the sensed signal is small and therefore poses no concern for  
average current mode control.  
RAC  
Q1  
4~6x10uF  
(0805)  
1nF+10nF  
(0402)  
RACN  
RACP  
10 W  
10 W  
CDIFF  
Open  
CACN  
CACP  
15nF  
15nF  
ACP  
ACN  
HIDRV1  
bq25708  
Copyright © 2017, Texas Instruments Incorporated  
Figure 35. ACN-ACP Input Filter  
9.2.2.2 Inductor Selection  
The bq25708 has two selectable fixed switching frequency. Higher switching frequency allows the use of smaller  
inductor and capacitor values. Inductor saturation current should be higher than the charging current (ICHG) plus  
half the ripple current (IRIPPLE):  
ISAT ³ ICHG + (1/2) IRIPPLE  
(3)  
The inductor ripple current in buck operation depends on input voltage (VIN), duty cycle (DBUCK = VOUT/VIN),  
switching frequency (fS) and inductance (L):  
V
´ D ´ (1 - D)  
IN  
IRIPPLE_BUCK  
=
fS ´ L  
(4)  
61  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
During boost operation, the duty cycle is:  
DBOOST = 1 – (VBAT/VIN)  
and the ripple current is:  
IRIPPLE_BOOST = DBOOST x fS x VBAT/LBOOST  
The maximum inductor ripple current happens with D = 0.5 or close to 0.5. For example, the battery charging  
voltage range is from 9 V to 12.6 V for 3-cell battery pack. For 20 V adapter voltage, 10 V battery voltage gives  
the maximum inductor ripple current. Another example is 4-cell battery, the battery voltage range is from 12 V to  
16.8 V, and 12 V battery voltage gives the maximum inductor ripple current.  
Usually inductor ripple is designed in the range of (20-40%) maximum charging current as a trade-off between  
inductor size and efficiency for a practical design.  
9.2.2.3 Input Capacitor  
Bulk input capacitors should be locate in front of input current sensing resistor. Do not recommend to put bulk  
input capacitors between input sensing resistor and switching MOSFET. Input capacitor should have enough  
ripple current rating to absorb input switching ripple current. The worst case RMS ripple current is half of the  
charging current when duty cycle is 0.5 in buck mode. If the converter does not operate at 50% duty cycle, then  
the worst case capacitor RMS current occurs where the duty cycle is closest to 50% and can be estimated by  
Equation 5:  
ICIN = ICHG  
´
D × (1 - D)  
(5)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high side MOSFET and source of the low side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. 25 V rating or higher capacitor is preferred  
for 19-20 V input voltage. Minimum 10uF effective capacitance (7 pcs of 10uF 0805 size capacitor) is suggested  
for 45 W-65 W adapter.  
Ceramic capacitors show a dc-bias effect. This effect reduces the effective capacitance when a dc-bias voltage is  
applied across a ceramic capacitor, as on the input capacitor of a charger. The effect may lead to a significant  
capacitance drop, especially for high input voltages and small capacitor packages. See the manufacturer's  
datasheet about the performance with a dc bias voltage applied. It may be necessary to choose a higher voltage  
rating or nominal capacitance value in order to get the required value at the operating point.  
9.2.2.4 Output Capacitor  
Output capacitor also should have enough ripple current rating to absorb output switching ripple current. In buck  
mode the output capacitor RMS current is given:  
To get good loop stability, the resonant frequency of the output inductor and output capacitor should be designed  
between 10 kHz and 20 kHz. The preferred ceramic capacitor is 25V X7R or X5R for output capacitor. Minimum  
10uF effective capacitance (7 pcs of 10uF 0805 size capacitor) is suggested to be placed after the Q4 drain, and  
50uF effective distributed capacitance on Vsys output. Place minimum 10uF after the charge current sense  
resistor for best stability.  
Ceramic capacitors show a dc-bias effect. This effect reduces the effective capacitance when a dc-bias voltage is  
applied across a ceramic capacitor, as on the output capacitor of a charger. The effect may lead to a significant  
capacitance drop, especially for high output voltages and small capacitor packages. See the manufacturer's data  
sheet about the performance with a dc bias voltage applied. It may be necessary to choose a higher voltage  
rating or nominal capacitance value in order to get the required value at the operating point.  
9.2.2.5 Power MOSFETs Selection  
Four external N-channel MOSFETs are used for a synchronous switching battery charger. The gate drivers are  
internally integrated into the IC with 6V of gate drive voltage. 30 V or higher voltage rating MOSFETs are  
preferred for 19-20 V input voltage.  
Figure-of-merit (FOM) is usually used for selecting proper MOSFET based on a tradeoff between the conduction  
loss and switching loss. For the top side MOSFET, FOM is defined as the product of a MOSFET's on-resistance,  
RDS(ON), and the gate-to-drain charge, QGD. For the bottom side MOSFET, FOM is defined as the product of the  
MOSFET's on-resistance, RDS(ON), and the total gate charge, QG.  
FOMtop = RDS(on) x QGD; FOMbottom = RDS(on) x QG  
(6)  
62  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
 
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
The lower the FOM value, the lower the total power loss. Usually lower RDS(ON) has higher cost with the same  
package size.  
The top-side MOSFET loss includes conduction loss and switching loss. It is a function of duty cycle  
(D=VOUT/VIN), charging current (ICHG), MOSFET's on-resistance (RDS(ON)), input voltage (VIN), switching frequency  
(fS), turn on time (ton) and turn off time (toff):  
1
2
= D ´ ICHG ´ RDS(on)  
P
+
´ V ´ ICHG ´ (ton + toff ) ´ fs  
IN  
top  
2
(7)  
The first item represents the conduction loss. Usually MOSFET RDS(ON) increases by 50% with 100°C junction  
temperature rise. The second term represents the switching loss. The MOSFET turn-on and turn-off times are  
given by:  
QSW  
QSW  
ton  
=
, toff =  
Ion  
Ioff  
(8)  
where Qsw is the switching charge, Ion is the turn-on gate driving current and Ioff is the turn-off gate driving  
current. If the switching charge is not given in MOSFET datasheet, it can be estimated by gate-to-drain charge  
(QGD) and gate-to-source charge (QGS):  
1
QSW = QGD  
+
´ QGS  
2
(9)  
Gate driving current can be estimated by REGN voltage (VREGN), MOSFET plateau voltage (Vplt), total turn-on  
gate resistance (Ron) and turn-off gate resistance (Roff) of the gate driver:  
VREGN - Vplt  
Vplt  
Ion  
=
, Ioff =  
Ron  
Roff  
(10)  
The conduction loss of the bottom-side MOSFET is calculated with the following equation when it operates in  
synchronous continuous conduction mode:  
Pbottom = (1 - D) x ICHG 2 x RDS(on)  
(11)  
When charger operates in non-synchronous mode, the bottom-side MOSFET is off. As a result all the  
freewheeling current goes through the body-diode of the bottom-side MOSFET. The body diode power loss  
depends on its forward voltage drop (VF), non-synchronous mode charging current (INONSYNC), and duty cycle (D).  
PD = VF x INONSYNC x (1 - D)  
(12)  
The maximum charging current in non-synchronous mode can be up to 0.25 A for a 10 mΩ charging current  
sensing resistor or 0.5 A if battery voltage is below 2.5 V. The minimum duty cycle happens at lowest battery  
voltage. Choose the bottom-side MOSFET with either an internal Schottky or body diode capable of carrying the  
maximum non-synchronous mode charging current.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
9.2.3 Application Curves  
CH1: VBUS  
CH2: VDDA  
CH1: VBUS  
CH2: VDDA  
CH3: CHRG_OK  
CH3: CHRG_OK  
CH4: VSYS  
CH4: VSYS  
2-cell without battery  
2-cell without battery  
Figure 36. Power Up from 20 V  
Figure 37. Power Up from 5 V  
CH1: VBUS  
CH1: VBUS  
CH2: SW1  
CH2: SW1  
CH3: SW2  
CH3: SW2  
CH4: VSYS with 9Vos  
CH4: IL  
3-cell VBAT = 10 V  
VBUS 5 V to 20 V  
Figure 38. Power Off from 12 V  
Figure 39. System Regulation  
CH2: SW1  
CH1: HIDRV1  
CH2: SW1  
CH3: LODRV1  
CH3: SW2  
CH4: IL  
CH1: IL  
VBUS = 20 V, VSYS = 10 V, ISYS = 200 mA  
Figure 40. PFM Operation  
Figure 41. PWM Operation  
64  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
CH2: SW2  
CH2: SW1  
CH3: SW2  
CH1: HIDRV2  
CH3: LODRV2  
CH4: IL  
CH4: IL  
VBUS = 5 V, VBAT = 10 V  
VBUS = 12 V, VBAT = 12 V  
Figure 42. Switching During Boost Mode  
Figure 43. Switching During Buck Boost Mode  
CH1: VSYS  
CH2: IIN  
CH1: VSYS  
CH2: IIN  
CH3: ISYS  
CH3: ISYS  
VBUS = 12 V/3.3 A, 3-cell, VSYS = 9 V, Without battery  
VBUS = 9 V/3.3 A, 3-cell, VSYS = 9 V, Without battery  
Figure 44. System Regulation in Buck Mode  
Figure 45. System Regulation in Buck Boost Mode  
CH1: VSYS  
CH2: IIN  
CH2: IIN  
CH3: ISYS  
CH4: IBAT  
CH3: ISYS  
VBUS = 5 V/3.3 A, 3-cell, VSYS = 9 V, Without battery  
VBUS = 20 V/3.3 V, VBAT = 7.5 V  
Figure 46. System Regulation in Boost Mode  
Figure 47. Input Current Regulation in Buck Mode  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
CH2:IIN  
CH3:ISYS  
CH4:IBAT  
VBUS = 5 V/3.3 V, VBAT = 7.5 V  
Figure 48. Input Current in Boost Mode  
10 Power Supply Recommendations  
The valid adapter range is from 3.5V (VBUS_UVLOZ) to 24V (ACOV) with at least 500mA current rating. When  
CHRG_OK goes HIGH, the system is powered from adapter through the charger. When adapter is removed, the  
system is connected to battery through BATFET. Typically the battery depletion threshold should be greater than  
the minimum system voltage so that the battery capacity can be fully utilized for maximum battery life.  
66  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see Layout Example section) is important to prevent  
electrical and magnetic field radiation and high frequency resonant problems. Here is a PCB layout priority list for  
proper layout. Layout PCB according to this specific order is essential.  
1. Place the input capacitor as close as possible to the supply of the switching MOSFET and ground  
connections. Use a short copper trace connection. These parts must be placed on the same layer of PCB  
using vias to make this connection.  
2. The device must be placed close to the gate pins of the switching MOSFET. Keep the gate drive signal  
traces short for a clean MOSFET drive. The device can be placed on the other side of the PCB of switching  
MOSFETs.  
3. Place an inductor input pin as close as possible to the output pin of the switching MOSFET. Minimize the  
copper area of this trace to lower electrical and magnetic field radiation but make the trace wide enough to  
carry the charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic  
capacitance from this area to any other trace or plane.  
4. The charging current sensing resistor should be placed right next to the inductor output. Route the sense  
leads connected across the sensing resistor back to the device in same layer, close to each other (minimize  
loop area) and do not route the sense leads through a high-current path (see Figure 50 for Kelvin connection  
for best current accuracy). Place a decoupling capacitor on these traces next to the device.  
5. Place an output capacitor next to the sensing resistor output and ground.  
6. Output capacitor ground connections must be tied to the same copper that connects to the input capacitor  
ground before connecting to system ground.  
7. Use a single ground connection to tie the charger power ground to the charger analog ground. Just beneath  
the device, use analog ground copper pour but avoid power pins to reduce inductive and capacitive noise  
coupling.  
8. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using power pad as the single ground  
connection point. Or using a 0-Ω resistor to tie analog ground to power ground (power pad should tie to  
analog ground in this case if possible).  
9. Decoupling capacitors must be placed next to the device pins. Make trace connection as short as possible.  
10. It is critical that the exposed power pad on the backside of the device package be soldered to the PCB  
ground.  
11. The via size and number should be enough for a given current path. See the EVM design (SLUUBG6) for  
the recommended component placement with trace and via locations. For the WQFN information, see  
SLUA271.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: bq25708  
bq25708  
SLUSCU2 NOVEMBER 2017  
www.ti.com  
11.2 Layout Example  
11.2.1 Layout Consideration of Current Path  
R1  
L1  
VBAT  
PHASE  
High  
Frequency  
Current  
Path  
VIN  
BAT  
GND  
C2  
C1  
Figure 49. High Frequency Current Path  
11.2.2 Layout Consideration of Short Circuit Protection  
Charge Current Direction  
RSNS  
To Inductor  
To Capacitor and battery  
Current Sensing Direction  
To SRP and SRN pin  
Figure 50. Sensing Resistor PCB Layout  
68  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: bq25708  
bq25708  
www.ti.com  
SLUSCU2 NOVEMBER 2017  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Semiconductor and IC Package Thermal Metrics Application Report (SPRA953)  
bq25700 Evaluation Module User's Guide (SLUUBG6)  
QFN/SON PCB Attachment Application Report (SLUA271)  
12.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: bq25708  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25708RSNR  
BQ25708RSNT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RSN  
RSN  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25708  
BQ25708  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25708RSNR  
BQ25708RSNT  
QFN  
QFN  
RSN  
RSN  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25708RSNR  
BQ25708RSNT  
QFN  
QFN  
RSN  
RSN  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

BQ25708RSNT

SMBus 多化合物电池降压/升压充电控制器 | RSN | 32 | -40 to 85
TI

BQ25710

具有系统功率监测器和处理器热量监测器的 SMBus 1 至 4 节降压/升压电池充电控制器
TI

BQ25710RSNR

具有系统功率监测器和处理器热量监测器的 SMBus 1 至 4 节降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25710RSNT

具有系统功率监测器和处理器热量监测器的 SMBus 1 至 4 节降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25713

具有 USB type C PD 支持的 I2C 1 至 4 节 NVDC 降压/升压电池充电控制器
TI

BQ25713B

具有 USB type C PD 支持的 I2C 端口(地址 2)1 至 4 节 NVDC 降压/升压电池充电控制器
TI

BQ25713BRSNR

具有 USB type C PD 支持的 I2C 端口(地址 2)1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25713BRSNT

具有 USB type C PD 支持的 I2C 端口(地址 2)1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25713RSNR

具有 USB type C PD 支持的 I2C 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25713RSNT

具有 USB type C PD 支持的 I2C 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25720

具有电源路径和 USB-C® PD OTG 的 SMBus 1-4 节电池 NVDC 降压/升压电池充电控制器
TI

BQ25720RSNR

具有电源路径和 USB-C® PD OTG 的 SMBus 1-4 节电池 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 125
TI