BQ25887 [TI]

适用于 USB 输入、集成式电池均衡的 I2C 2 节 2A 升压电池充电器;
BQ25887
型号: BQ25887
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 USB 输入、集成式电池均衡的 I2C 2 节 2A 升压电池充电器

电池
文件: 总86页 (文件大小:4014K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
具有电池平衡功能且适用于 USB 输入的 BQ25887 I2C 控制型 2 节电池、  
2A 升压模式电池充电器  
1 特性  
高精度  
±0.5% 充电电压调节  
1
高效的 2A1.5MHz 开关模式升压充电器  
±5% 充电电流调节  
±7.5% 输入电流调节  
5V 适配器、7.6V 电池、充电电流为 1A 下  
的充电效率为 93.4%  
针对 USB 输入和 2 节锂离子电池进行了优化  
用于轻负载运行的可选低功耗 PFM 模式  
安全  
在充电下的电池温度检测  
热调节和热关断  
单个输入,支持 USB 输入适配器  
支持 3.9V 6.2V 的输入电压范围,绝对最大  
输入电压额定值为 20V  
2 应用  
输入电流限制(500mA 3.3A,精度为 100-  
mA),支持 USB2.0USB3.0 标准适配器  
电动玩具和机器人玩具  
虚拟现实耳麦  
通过高达 5.5V 的输入电压限制进行最大功率跟  
IP 网络摄像头  
无人机有效载荷控制  
电池平衡和 I2C 控制功能  
3 说明  
集成式 FET,可支持高达 400mA 的平衡电流  
采用默认寄存器设置的自动电池平衡功能  
BQ25887 是一款高度集成的 2A 升压开关模式电池充  
电管理器件,适用于 2 (2s) 锂离子和锂聚合物电  
池。BQ25887 具有 I2C 控制和电池平衡功能,适用于  
USB 输入。  
输入电流优化器 (ICO),无需过载适配器即可最大  
限度地提高输入功率  
集成式 16 ADC,用于系统监控(总线电压和电  
流、电池电压、充电电流、以及 NTC 和裸片温  
度)  
器件信息(1)  
器件型号  
BQ25887  
封装  
封装尺寸(标称值)  
高集成度包括所有 MOSFET、电流检测和环路补偿  
VQFN (24)  
4.00mm x 4.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
5V @ 3A  
VREF  
VBUS  
PMID  
STAT  
ILIM  
SNS  
SW  
ICHG=2A  
BTST  
BAT  
REGN  
VREF  
MID  
SDA  
CBSET  
REGN  
SCL  
/INT  
Host  
TS  
/PG  
CD  
`
BQ25887  
PSEL  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSD89  
 
 
 
 
 
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 30  
8.5 Register Maps ........................................................ 31  
Application and Implementation ........................ 69  
9.1 Application Information............................................ 69  
9.2 Typical Application .................................................. 69  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements.............................................. 11  
7.7 Typical Characteristics............................................ 13  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
9
10 Power Supply Recommendations ..................... 74  
11 Layout................................................................... 74  
11.1 Layout Guidelines ................................................. 74  
11.2 Layout Example .................................................... 75  
12 器件和文档支持 ..................................................... 76  
12.1 器件支持 ............................................................... 76  
12.2 文档支持................................................................ 76  
12.3 接收文档更新通知 ................................................. 76  
12.4 支持资源................................................................ 76  
12.5 ....................................................................... 76  
12.6 静电放电警告......................................................... 76  
12.7 Glossary................................................................ 76  
13 机械、封装和可订购信息....................................... 77  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (May 2019) to Revision B  
Page  
已更改 更改了应用部分 ....................................................................................................................................................... 1  
已删除 删除了无 OTG 和无电源路径,目标位置: 说明 ....................................................................................................... 1  
已添加 note to Absolute Maximum Ratings ........................................................................................................................... 7  
已添加 79 ........................................................................................................................................................................ 72  
已添加 80 ......................................................................................................................................................................... 72  
Changes from Original (February 2019) to Revision A  
Page  
已更改 将预告信息更改为生产数据.................................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
5 Device Comparison Table  
PART NUMBER  
VBUS Operating Range  
USB Detection  
Power path  
BQ25882  
3.9 to 6.2 V  
D+/D-  
Yes  
BQ25883  
3.9 to 6.2 V  
D+/D-  
BQ25886  
4.3 to 6.2 V  
D+/D-  
BQ25887  
3.9 to 6.2 V  
PSEL  
Yes  
Yes  
No  
Cell Balancing  
OTG  
No  
No  
No  
Yes  
Up to 2 A  
Yes  
Up to 2 A  
Yes  
Up to 2 A  
No  
No OTG  
Yes  
16 bit ADC  
Control Interface  
Status Pin  
I2C  
I2C  
Standalone  
STAT, /PG  
4x4 QFN-24  
I2C  
/PG  
STAT, /PG  
4x4 QFN-24  
STAT, /PG  
4x4 QFN-24  
Package  
2.1x2.1 WCSP-25  
Copyright © 2019, Texas Instruments Incorporated  
3
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN  
Top View  
24  
23  
22  
21  
20  
19  
1
18  
17  
16  
15  
14  
13  
SW  
PG  
2
SW  
STAT  
3
CD  
SNS  
SNS  
BQ25887  
RGE, 4x4  
4
SDA  
5
SCL  
BAT  
BAT  
6
INT  
7
8
9
10  
11  
12  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Open drain active low power good indicator – Connect to the pull up rail via 10-kresistor. LOW  
indicates a good input source if the input voltage is within VVBUS_OP, and can provide more than  
IPOORSRC (30mA).  
PG  
1
DO  
DO  
DI  
Open drain charge status indicator – Connect to the pull-up rail via 10-kresistor. LOW indicates  
charge in progress. HIGH indicates charge complete or charge disabled. When any fault occurs, the  
STAT pin blinks at 1Hz. The STAT function can be disabled when the STAT_DIS bit is set.  
STAT  
CD  
2
3
Active High Chip Disable Pin – Pull CD high to disable charge and place the device in HIZ mode.  
ADC operation and I2C is still allowed when CD is high. Converter is enabled when CD pin is LOW  
and EN_CHG bit is 1. CD pin is internally pulled low with 900-kΩ resistor.  
SDA  
SCL  
4
5
DIO  
DI  
I2C Interface Data – Connect SDA to the pull up rail through a 10-kresistor.  
I2C Interface Clock – Connect SCL to the pull up rail through a 10-kresistor.  
Open drain active Interrupt Output – Connect INT to the pull up rail via a 10-kresistor. The INT  
pin sends active low, 256-µs pulse to the host to report charger device status and fault.  
INT  
6
DO  
Temperature Qualification Voltage – Connect a negative temperature coefficient thermistor.  
Program temperature window with a resistor divider from REGN to TS to GND. Charge suspends  
when TS pin is out of range. Recommend 103AT-2 thermistor.  
TS  
7
AI  
Input Current Limit (IINDPM) – ILIM pin sets the maximum input current and can be used to  
monitor input current. IINDPM loop regulates ILIM pin voltage at 0.8V. When ILIM pin is less than  
0.8V, the input current can be calculated by IIN = KILIM x VILIM / (RILIM x 0.8V). A resistor  
connected from ILIM pin to ground sets the input current limit as maximum (IINMAX = KILIM /  
RILIM). When ILIM pin is short to GND, the input current limit is set to maximum by ILIM. The actual  
input current limit is the lower limit set by ILIM pin (when EN_ILIM bit is HIGH) or IINDPM register  
bits. Input current limit less than 500mA is not supported on ILIM pin. The ILIM pin function can be  
disabled when EN_ILIM bit is 0. If ILIM pin is not used, pull this pin to GND.Do not float this pin.  
ILIM  
MID  
8
9
AI  
AI  
Voltage Input for Mid Point Between Cells in 2S1P Configuration – Connect MID to the negative  
terminal of the top cell and the positive terminal of the bottom cell. This pin measures the voltage of  
the bottom cell for cell balancing and VMID ADC measurement. For protection of bottom cell reverse  
plug in, connect a 300 ohm resistor in series between MID pin and mid connection point of the two  
battery cell.  
4
Copyright © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Power pin for Cell Balancing – Connect CBSET to the mid point between the two batteries in 2S  
configuration with a current limit resistor. The resistor value determines the cell balancing current as  
calculated in Cell Balancing Section. The resistor chosen should not exceed 400 mA for cell  
balancing.  
CBSET  
10  
P
Gate Drive Supply – Bias supply for internal MOSFETs driver and IC. Bypass REGN to GND with a  
4.7-µF ceramic capacitor. REGN current limit is 50 mA.  
REGN  
BTST  
BAT  
11  
P
P
PWM High-side Driver Supply – Internally, BTST is connected to the cathode of the boot-strap  
diode. Connect a 47nF bootstrap capacitor from SW to BTST.  
12  
Battery Power Connection – Connect minimum recommended 10-µF capacitance after derating  
closely to the BAT pin and GND.  
13, 14  
15, 16  
P
Sense Output – Charge current sense pin. Place a 44-µF ceramic capacitor on this pin for stability  
of this output.  
SNS  
AO  
SW  
17, 18  
19, 20  
P
Inductor Connection – Connect to the switched side of the external inductor.  
GND  
Ground Return  
Blocking MOSFET Connection – The minimum recommended total input low-ESR capacitance on  
VBUS and PMID, after applied derating, is 10 uF. At least 1-uF is recommended at VBUS with the  
remainder at PMID. Typical value for PMID is 10 uF.  
PMID  
21, 22  
P
Input Supply – VBUS is connected to the external DC supply. Bypass VBUS to GND with at least 1-  
µF ceramic capacitor, placed as close to the IC as possible.  
VBUS  
PSEL  
23  
24  
P
Power Source Selection – HIGH indicates USB host source (500mA) and LOW indicates adapter  
source (3.0A).  
DI  
Copyright © 2019, Texas Instruments Incorporated  
5
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-0.3  
-0.3  
MAX  
20  
8.5  
12  
13  
19  
6
UNIT  
V
VBUS (converter not switching)  
PMID (converter not switching)  
V
BAT, SNS, MID, CBSET (converter not switching)  
-0.3  
V
(2)  
SW  
-0.3  
V
Voltage Range (with respect to GND unless otherwise  
specified)  
BTST  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
V
REGN, STAT, /PG, TS  
ILIM  
V
5
V
BTST to SW  
6
V
SDA, SCL, /INT, CD, PSEL,  
6
V
Voltage Range (with respect to GND unless otherwise  
specified)  
BAT to CBSET  
/INT, STAT, /PG  
0
12  
V
Output Sink Current  
6
150  
150  
mA  
°C  
Junction Temperature, TJ  
Storage temperature, Tstg  
–40  
–40  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
(2) -2V for 50ns  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6.2  
3.3  
2.2  
5
UNIT  
VVBUS  
IVBUS  
Input Voltage  
3.9  
V
A
A
A
Average input current (VBUS)  
Average charge current (IBAT)  
RMS discharging current with internal MOSFET  
IBAT  
IBAT_RMS  
9 (up to  
1us)  
IBAT_PK  
Peak discharging current with internal MOSFET  
A
VBAT  
TA  
Battery Voltage  
9.2(1)  
V
Operating free-air temperature range  
-40  
85  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on SW pin. A tight layout minimizes  
switching noise.  
6
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
7.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
bq25887  
THERMAL METRIC(1)  
RGE (VQFN)  
24-PIN  
32.4  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance (JEDEC (1)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
26.7  
10.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ΨJB  
10.6  
RΘ JC(bot)  
3.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT = 9 V, No VBUS, SCL, SDA = 0 V  
or 1.8 V, TJ=25C, ADC Disabled  
12  
12  
30  
30  
1.5  
3
14 µA  
20 µA  
38 µA  
48 µA  
IBAT  
Battery discharge current (BAT)  
Input supply current (VBUS) in HIZ  
Input supply current (VBUS)  
VBAT = 9 V, No VBUS, SCL, SDA = 0 V  
or 1.8 V, TJ < 85C, ADC Disabled  
VBUS = 5 V, High-Z Mode, no battery,  
ADC Disabled, 25  
IVBUS_HIZ  
VBUS = 5 V, High-Z Mode, no battery,  
ADC Disabled, <85℃  
VBUS = 5 V, VBAT = 7.6 V, converter not  
switching  
3
mA  
mA  
IVBUS  
VBUS = 5 V, VBAT = 7.6 V, converter  
switching  
VBUS/VBAT POWER UP  
VVBUS_OP VBUS operating range  
VVBUS_UVLO_RISING VBUS rising for active I2C, no battery VBUS rising  
3.9  
6.2  
3.68  
6.6  
V
V
3.3  
VBUS over-voltage rising threshold  
VBUS over-voltage falling threshold  
Battery for active I2C  
VBUS rising  
6.2  
5.9  
3.7  
V
VVBUS_OV  
VBUS falling  
6.4  
V
VBAT_UVLO_RISING  
VBAT rising  
4
3.7  
15  
4.42  
V
VPOORSRC_FALLING Bad adapter detection threshold  
IPOORSRC Bad adapter detection current source  
BATTERY CHARGER  
VBUS falling below VPOORSRC_FALLING  
V
mA  
Typical charge voltage regulation  
range  
VCELLREG_RANGE  
3.4  
4.6  
V
VCELLREG_STEP  
VCELLREG_ACC  
VCELLREG_ACC  
ICHG_RANGE  
Typical charge voltage step  
Charge voltage  
5
4.2  
mV  
V
VREG = 4.20 V, TJ = 0°C to 85°C,  
VREG = 4.35 V, TJ = 0°C to 85°C  
4.179  
4.328  
100  
4.221  
4.372  
Charge voltage  
4.35  
V
Charge current regulation range  
Charge current regulation step  
2200 mA  
mA  
ICHG_STEP  
50  
Fast Charge current regulation  
accuracy  
ICHG = 1000 mA, VBAT = 6.2 V or 7.6 V,  
TJ = 0°C to 85°C  
ICHG_ACC  
ICHG_ACC  
-7.5  
-15  
7.5  
15  
25  
%
%
%
Fast Charge current regulation  
accuracy  
ICHG = 500mA, VBAT = 6.2 V or 7.6 V, TJ  
= 0°C to 85°C  
Fast Charge current regulation  
accuracy  
ICHG = 250 mA, VBAT = 6.2 V or 7.6 V,  
TJ = 0°C to 85°C  
ICHG_ACC  
-25  
50  
IPRECHG_RANGE  
Precharge current range  
800 mA  
Copyright © 2019, Texas Instruments Incorporated  
7
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IPRECHG_STEP  
Typical precharge current step  
50  
mA  
VBAT = 5.2 V, IPRECHG = 200 mA, TJ =  
25°C  
170  
237 mA  
245 mA  
IPRECHG_ACC  
Precharge current accuracy  
VBAT = 5.2 V, IPRECHG = 200 mA, TJ =  
0°C to 85°C  
150  
50  
ITERM_RANGE  
ITERM_STEP  
Termination current range  
800 mA  
mA  
Typical termination current step  
50  
ICHG = 1.5A, ITERM = 150 mA, TJ = 25°C  
143  
120  
45  
157 mA  
ICHG = 1.5A, ITERM = 150 mA, TJ = 0°C  
to 85°C  
180 mA  
60 mA  
75 mA  
ITERM_ACC  
Termination current accuracy  
ICHG = 1.5A, ITERM = 50 mA, TJ = 25°C  
ICHG = 1.5A, ITERM = 50 mA, TJ = 0°C to  
85°C  
22  
Short Battery Voltage rising threshold  
to start pre-charging  
VCELL_SHORT_RISING  
VCELL rising  
VCELL falling  
2.05  
1.85  
2.2  
2
2.35  
2.15  
V
V
Short Battery Voltage falling  
threshold to stop pre-charging  
VCELL_SHORT_FALLIN  
G
VTOPCELL<2.2V, VBOTCELL<VREG-  
VRCHG; Or VBOTCELL<2.2V,  
VTOPCELL<VREG-VRCHG  
Low Battery Voltage trickle charging  
current  
IBAT_SHORT  
100  
mA  
VCELL rising, VBATLOW = 2.8 V  
VCELL rising, VBATLOWV = 3.0 V  
VCELL falling, VBATLOW = 2.8 V  
VCELL falling, VBATLOWV = 3.0 V  
2.65  
2.85  
2.45  
2.65  
2.8  
3
2.95  
3.15  
2.75  
2.95  
V
V
VCELL LOWV Rising threshold to  
start fast-charging  
VCELL_LOWV_RISING  
2.6  
2.8  
100  
32  
V
VCELL_LOWV_FALLIN VCELL LOWV falling threshold to  
start fast-charging  
G
V
VCELL_RECHG  
RON_QHS (Q2)  
Recharge threshold below VCELLREG VCELL falling, VCELL_RECHG[1:0] = 01  
mV  
High-side switching MOSFET on-  
resistance between SW and  
SNS (Q2)  
TJ = 25°C  
35 mΩ  
47 mΩ  
46 mΩ  
63 mΩ  
16 mA  
TJ = – 40°C to 125°C  
TJ = 25°C  
32  
42  
Low-side switching MOSFET on-  
resistance between SW and GND  
(Q3)  
RON_QLS (Q3)  
IBAT_DISCHG  
TJ = – 40°C to 125°C  
VBAT = 8V, EN_BAT_DISCHG = 1  
42  
BAT Discharge current source  
8
11.5  
INPUT VOLTAGE / CURRENT REGULATION  
VINDPM_RANGE  
VINDPM_STEP  
Input voltage regulation range  
Input voltage regulation step  
3.9  
5.5  
V
mV  
V
100  
3.9  
4.4  
VINDPM = 3.9 V  
VINDPM = 4.4 V  
3.783  
4.268  
500  
4.017  
4.532  
VINDPM  
Input voltage limit  
V
IINDPM_RANGE  
IINDPM_STEP  
Input current regulation range  
Input current regulation step  
3300 mA  
mA  
100  
469  
IINDPM = 500 mA  
IINDPM = 900 mA  
IINDPM = 2500 mA  
IINDPM = 3000 mA  
438  
765  
500 mA  
900 mA  
2500 mA  
3000 mA  
832  
IINDPM_ACC  
Input current regulation limit  
IINMAX = KILIM/RILIM  
2125  
2550  
2312  
2775  
A x  
Ω
KILIM  
Input Current regulation by ILIM pin  
1110  
Input Current regulation by ILIM pin = 0.5A  
Input Current regulation by ILIM pin = 0.9A  
Input Current regulation by ILIM pin = 1.5A  
TJ = 25°C  
457  
839  
505  
909  
1518  
33  
553 mA  
980 mA  
1624 mA  
37 mΩ  
Input current regulation limit, IINMAX  
KILIM/RILIM  
=
IINDPM  
1413  
Blocking MOSFET on-resistance  
between VBUS and PMID (QBLK)  
RON_QBLK (Q1)  
TJ = – 40°C to 125°C  
33  
51 mΩ  
8
Copyright © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THERMAL REGULATION AND THERMAL SHUTDOWN  
Junction temperature regulation  
accuracy  
TREG  
TREG = 120°C  
Temperature Increasing  
120  
°C  
Thermal Shutdown Rising threshold  
TSHUT_RISING  
150  
120  
°C  
°C  
Thermal Shutdown Falling threshold Temperature Decreasing  
JEITA THERMISTOR COMPARATOR (BOOST MODE)  
TS pin voltage rising. T1 (0°C)  
VT1  
threshold, Charge suspended below As Percentage to REGN  
this temperature.  
72.75  
67.75  
44.25  
73.25  
1.3  
73.75  
68.75  
45.25  
%
%
%
%
%
%
%
%
TS pin voltage falling. Charge re-  
enabled to ICHG/2 and VREG above As Percentage to REGN  
this temperature  
VT1_HYS  
TS pin voltage rising. T2 (10°C)  
threshold, charge set to ICHG/2 and As Percentage to REGN  
VREG below this temperature  
VT2  
68.25  
1.2  
TS pin voltage falling. Charge set to  
VT2_HYS  
ICHG and VREG above this  
temperature  
As Percentage to REGN  
As Percentage to REGN  
As Percentage to REGN  
TS pin voltage falling. T3 (45°C)  
threshold, charge set to ICHG and  
8.1 V above this temperature.  
VT3  
44.75  
1
TS pin voltage rising. Charge set to  
ICHG and VREG below this  
temperature  
VT3_HYS  
TS pin voltage falling. T5 (60°C)  
threshold, charge suspended above As Percentage to REGN  
this temperature.  
VT5  
33.875 34.375 34.875  
1.35  
TS pin voltage rising. Charge set to  
VT5_HYS  
ICHG and 8.1 V below this  
temperature  
As Percentage to REGN  
Oscillator frequency  
BOOST MODE CONVERTER  
FSW  
PWM switching frequency  
1.35  
1.5  
1.65 MHz  
400 mA  
CELL BALANCING  
Maximum recommended cell  
balancing current  
VCELL = 4.2V, RCBSET = 9.5,  
RDSON_QCBX = 1Ω  
ICB_MAX  
Cell balance enabled (REG0x2A[0] = 1);  
MOSFET on resistance between  
BAT and MID  
VCELL_HS > 3.7 V, VCELL_HS >  
VCELL_LS, VBAT - VMID - VMID > 80 mV,  
ICB 400 mA  
RDSON_QCBH  
1
1
1.2  
Cell balance enabled (REG0x2A[0] = 1);  
MOSFET on resistance between MID VCELL_LS > 3.7 V, VCELL_LS > VCELL_HS  
and GND  
,
RDSON_QCBL  
1.2  
VMID - (VBAT - VMID) > 80 mV, ICB ≤  
400 mA  
Cell balance function qualification  
threshold  
VCBEN_RISING  
VCBEN_HYS  
Cell balance enabled rising threshold  
3.65  
40  
3.7  
3.75  
V
Cell balance function qualification  
hysteresis  
Cell balance enabled falling hysteresis  
200  
mV  
Cell balance enabled (REG0X2A[0]=1);  
VCELL_LS or VCELL_HS>3.7V, increase  
the voltage delta between the two cells  
Cell balance pre-qualification mode  
to qualification mode threshold range  
VQUAL_TH_RANGE  
VQUAL_TH_STEP  
VQUAL_TH  
180 mV  
mV  
Cell balance pre-qualification mode  
to qualification mode threshold step  
size  
Cell balance enabled (REG0X2A[0]=1);  
VCELL_LS or VCELL_HS>3.7V, increase  
the voltage delta between the two cells  
10  
80  
Cell balance enabled (REG0X2A[0]=1);  
VCELL_LS or VCELL_HS>3.7V, increase  
the voltage delta between the two cells  
Cell balance pre-qualification mode  
to qualification mode threshold.  
mV  
Copyright © 2019, Texas Instruments Incorporated  
9
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Cell balance enabled (REG0x2A[0] =  
1); Difference between the two cells to turn  
on cell balancing MOSFET  
Balance discharge start cell voltage  
difference threshold range  
VDIFF_START_RANGE  
40  
190 mV  
Cell balance enabled (REG0x2A[0] =  
1); Difference between the two cells to turn  
on cell balancing MOSFET  
Balance discharge start cell voltage  
difference threshold step size  
VDIFF_START_STEP  
10  
mV  
mV  
Cell balance enabled (REG0x2A[0] =  
1); Difference between the two cells to turn  
on cell balancing MOSFET set to 120mV  
(REG0x29[3:0] = 1000)  
Balance discharge start cell voltage  
difference threshold  
VDIFF_START  
120  
Cell balance enabled (REG0x2A[0] =  
1); Difference between the two cells to turn  
on cell balancing MOSFET set to 80mV  
(REG0x29[3:0] = 0100)  
Balance discharge start cell voltage  
difference threshold  
VDIFF_START  
80  
mV  
Cell balance enabled (REG0x2A[0] =  
1); Difference between the two cells to turn  
off cell balancing MOSFET  
Balance discharge stop cell voltage  
difference threshold range  
VDIFF_END_RANGE  
30  
100 mV  
mV  
Cell balance enabled (REG0x2A[0] =  
1); Difference between the two cells to turn  
off cell balancing MOSFET  
Balance discharge stop cell voltage  
difference threshold step size  
VDIFF_END_STEP  
10  
70  
Cell balance enabled (REG0x2A[0] =  
1); Difference between the two cells to turn  
off cell balancing MOSFET set to  
(REG0x29[3:0] = 1000,  
Balance discharge stop cell voltage  
difference threshold  
VDIFF_END  
mV  
mV  
REG0x28[7:5]=010)  
Cell balance enabled (REG0x28[7] =  
1); Difference between the two cells to turn  
off cell balancing MOSFET set to 45mV  
(REG0x29[3:0] = 0100,  
Balance discharge stop cell voltage  
difference threshold  
VDIFF_END  
40  
REG0x28[7:5]=001)  
VCELL rising, as percentage of  
VCELLREG  
VCELL_OVP_RISING  
Cell over voltage rising threshold  
102.5  
100.8  
400  
104  
102  
500  
105  
%
%
VCELL rising, as percentage of  
VCELLREG  
VCELL_OVP_FALLING Cell over voltage falling threshold  
103.3  
Cell Balance MOSFET over-current  
protection  
IQCBX_OC  
ICB > 500mA  
600 mA  
15 µA  
Voltage difference between the two battery  
cells 400mV  
IMID_BIAS  
MID pin bias current  
REGN LDO  
VREGN  
REGN LDO output voltage  
REGN LDO current limit  
VVBUS = 5 V, IREGN = 20 mA  
VVBUS = 5 V, VREGN = 3.8 V  
4.7  
50  
4.8  
5.15  
V
IREGN  
mA  
Analog-to-Digital Converter (ADC)  
ADC_SAMPLE[1:0] = 11  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 00  
ADC_SAMPLE[1:0] = 11  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 00  
24  
12  
6
ms  
ms  
ms  
ms  
bits  
bits  
bits  
bits  
tADC_CONV  
Conversion time, each measurement  
3
14  
13  
12  
10  
15  
14  
13  
12  
ADCRES  
Effective resolution  
ADC MEASUREMENT RANGES AND LSB  
IBUS_ADC_RANGE  
IBUS_ADC_LSB  
ADC BUS current range  
ADC BUS current LSB  
ADC BAT current range  
0
0
4
4
A
mA  
A
1
IBAT_ADC_RANGE  
10  
Copyright © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IBAT_ADC_LSB  
ADC BAT current LSB  
ADC BUS voltage range  
ADC BUS voltage LSB  
ADC BAT voltage range  
ADC BAT voltage LSB  
1
mA  
VBUS_ADC_RANGE  
VBUS_ADC_LSB  
VBAT_ADC_RANGE  
VBAT_ADC_LSB  
0
6.5  
10  
V
mV  
V
1
1
0
mV  
VCELLTOP_ADC_RAN  
GE  
ADC MID voltage range  
0
0
5
V
mV  
V
VCELLTOP_ADC_LSB ADC MID voltage LSB  
1
VCELLBOT_ADC_RAN  
GE  
ADC MID voltage range  
5
VCELLBOT_ADC_LSB ADC MID voltage LSB  
1
0.098  
0.5  
mV  
%
VTS_ADC_RANGE  
VTS_ADC_LSB  
VTDIE_ADC_RANGE  
VTDIE_ADC_LSB  
ADC TS voltage range  
ADC TS voltage LSB  
20  
0
80  
%
ADC Die temperature range  
ADC Die temperature LSB  
150 °C  
°C  
I2C INTERFACE (SCL, SDA)  
Input high threshold level, SDA and  
SCL  
VIH  
Pull-up rail 1.8 V  
1.3  
V
VIL  
Input low threshold level  
Output low threshold level  
High level leakage current  
Pull-up rail 1.8 V  
Sink current = 5 mA  
Pull-up rail 1.8 V  
0.4  
0.4  
1
V
V
VOL  
IBIAS  
uA  
LOGIC I/O PIN (CD, PSEL)  
VIH_CD  
Input high threshold level, CD  
1.3  
1.3  
V
V
VIL_CD  
Input low threshold level, CD  
High level leakage current, CD  
Input high threshold level, PSEL  
Input low threshold level, PSEL  
High level leakage current, PSEL  
0.4  
IIN_BIAS_CD  
VIH_PSEL  
VIL_PSEL  
IIN_BIAS_PSEL  
Pull-up rail 1.8 V  
Pull-up rail 1.8 V  
2.5 uA  
V
0.4  
1
V
uA  
LOGIC O PIN (/INT, /PG, STAT)  
VOL  
Output low threshold level  
High level leakage current  
Sink current = 5 mA  
Pull-up rail 1.8 V  
0.4  
1
V
IOUT_BIAS  
µA  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
VBUS/BAT POWER UP  
VBUS rising above VBUS_OV threshold to  
converter turn off  
tVBUS_OV  
VBUS OVP reaction time  
Bad adapter detection duration  
200  
30  
ns  
tPOORSRC  
BATTERY CHARGER  
ms  
tTERM_DGL  
Deglitch time for charge termination  
Charge current falling below ITERM  
250  
250  
ms  
ms  
BAT voltage falling below VRECHG = 100  
mV  
tRECGH_DGL  
Deglitch time for recharge threshold  
Deglitch time for battery over-voltage  
to disable charge  
tBAT_OVP_DGL  
1
µs  
tTOP_OFF  
tSAFETY  
Typical Top-Off Timer Accuracy  
Charge Safety Timer Accuracy  
TOP_OFF_TIMER = 30 min  
CHG_TIMER = 12 hours  
24  
30  
12  
36 min  
10.8  
13.2 hr  
I2C INTERFACE  
fSCL  
SCL clock frequency  
1000 kHZ  
Copyright © 2019, Texas Instruments Incorporated  
11  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Timing Requirements (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
0
NOM  
MAX UNIT  
ns  
tSU_STA  
tHD_DAT  
trDA  
Data set-up time  
Data hold time  
70 ns  
80 ns  
80 ns  
Rise time of SDA signal  
Fall time of SDA signal  
10  
10  
tfDA  
DIGITAL CLOCK AND WATCHDOG TIMER  
fLPDIG  
fDIG  
Digital low power clock  
Digital clock  
REGN LDO disabled  
18  
30  
45 kHZ  
REGN LDO enabled  
1.35  
1.5  
1.65 MHz  
WATCHDOG[1:0] = 160 s, REGN LDO  
disabled  
tWDT  
tWDT  
Watchdog Reset time  
Watchdog Reset time  
100  
136  
160  
160  
sec  
sec  
WATCHDOG[1:0] = 160 s, REGN LDO  
enabled  
12  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
7.7 Typical Characteristics  
CVBUS = 1µF, CPMID= 10µF, CSNS= 44µF, CBAT = 10µF, L = 1µH (DFE252012F-1R0) (unless otherwise specified)  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
VBAT = 7.6 V  
VBAT = 8.0 V  
VBAT = 7.6 V  
VBAT = 8.0 V  
0
0.2 0.4 0.6 0.8  
1
Charge Current (A)  
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
Charge Current (A)  
1.2 1.4 1.6 1.8  
2
D001  
D001  
VBUS = 5V  
1. Charge Efficiency vs. Charge Current  
VBUS = 5V  
L = 1µH (IHLP2525CZER1R0k01)  
2. Charge Efficiency vs. Charge Current  
10  
7.5  
5
10  
7.5  
5
VBAT = 6.6 V  
VBAT = 7.6 V  
VBAT = 6.6 V  
VBAT = 7.6 V  
2.5  
0
2.5  
0
-2.5  
-5  
-2.5  
-5  
-7.5  
-10  
-7.5  
-10  
0
0.2 0.4 0.6 0.8  
1
ICHG Setting (A)  
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
ICHG Setting (A)  
1.2 1.4 1.6 1.8  
2
D004  
D004  
VBUS = 5V  
VBUS = 5V  
L = 1µH (IHLP2525CZER1R0k01)  
3. Charge Current Accuracy vs. ICHG Setting  
4. Charge Current Accuracy vs. ICHG Setting  
0
-1  
3.0  
2.5  
-40°C  
-20°C  
25°C  
85°C  
VBAT = 6.6 V  
VBAT = 7.6 V  
-2  
2.0  
-3  
1.5  
-4  
-5  
1.0  
-6  
0.5  
-7  
0.0  
-8  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
IINDPM Setting (A)  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
VINDPM Setting (V)  
5.0  
5.2  
5.4  
5.6  
D012  
D013  
VBUS = 5.0V  
VBAT = 7.6V  
VBAT = 7.6V  
6. Input Voltage Limit Accuracy vs. VINDPM Setting  
5. Input Current Limit Accuracy vs. IINDPM Setting  
版权 © 2019, Texas Instruments Incorporated  
13  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
CVBUS = 1µF, CPMID= 10µF, CSNS= 44µF, CBAT = 10µF, L = 1µH (DFE252012F-1R0) (unless otherwise specified)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.15  
ICHG = 0.5A  
ICHG = 1.0A  
ICHG = 1.4A  
TREG = 60°C  
TREG = 80°C  
TREG = 100°C  
TREG = 120°C  
0.1  
0.05  
0
-0.05  
50  
60  
70  
80  
90 100 110 120 130 140 150  
Die Temperature (°C)  
90  
95  
100  
105  
110  
Die Temperature (°C)  
115  
120  
125  
130  
D014  
D015  
VBUS = 5V  
VBAT = 7.6V  
7. TREG Profiles  
ICHG = 100mA  
VBUS =  
5V  
VBAT = ICHG = 0.5A, 1.0A, 1.4A  
7.6V  
8. Max Current Temperature Profile  
14  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8 Detailed Description  
8.1 Overview  
The BQ25887 device is a highly integrated 2-A switch-mode battery charger for 2s Li-Ion and Li-Polymer battery.  
It integrates the input blocking FET (Q1, QBLK), high-side switching FET (Q2, QHS), and low-side switching FET  
(Q3, QLS). The device also integrates the boot-strap diode for high-side gate drive.  
8.2 Functional Block Diagram  
VBUS  
PMID  
VVBUS_UVLO_RISING  
QBLK  
(Q1)  
+
UVLO  
QBLK  
CONTROL  
REGN  
BTST  
REGN  
REGN  
LDO  
EN_HIZ  
+
VBUS_OVP  
VVBUS_OV  
VO,REF  
SNS  
QHS  
(Q2)  
VVBUS  
VINDPM  
SNS  
6.2V  
+
+
+
+
BAT_OVP  
SW  
BAT  
+
IIN  
BAT  
+
VBAT_OVP  
QLS  
(Q3)  
REGN  
DC-DC  
CONTROL  
VBAT_REG  
IINDPM  
IC_TJ  
TREG  
ICHG  
+
GND  
ICHG_REG  
EN_CHARGE  
EN_HIZ  
IQ3  
+
+
Q3_OCP  
GND  
ILSOCP  
VBTST œ VSW  
REFRESH  
VBTST_REFRESH  
VPOORSRC  
CONVERTER  
CONTROL  
STATE  
+
+
POORSRC  
VVBUS  
SNS  
REF  
DAC  
IC_TJ  
TSHUT  
MACHINE  
TSHUT  
IBUS  
ILIM  
RSNS  
ICHG  
VBUS  
VBAT  
PSEL  
PG  
USB  
DETECTION  
VCELLTOP  
ADC  
VCELLBOT  
TDIE  
BAT  
VTS  
BQ25887  
QCBH  
VREG - VRECHG  
BAT  
RECHRG  
+
+
MID  
STAT  
ICHG  
ITERM  
TERMINATION  
BATLOWV  
CBSET  
CHARGE  
CONTROL  
STATE  
QCBL  
VBAT_LOWV  
BAT  
+
+
MACHINE  
INT  
VBAT_UVLO_RISING  
BAT  
BATUVLO  
BATTERY  
SENSING  
THERMISTOR  
VTS  
I2C  
INTERFACE  
TS_SUSPEND  
TS  
SCL  
SDA  
CD  
版权 © 2019, Texas Instruments Incorporated  
15  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Device Power-On-Reset  
The internal bias circuits are powered from either VBAT or VBUS when it rises above VVBUS_UVLO_RISING or  
VBAT_UVLO_RISING. I2C interface is ready for communication and all the registers are reset to default value. The  
host can access all the registers after POR.  
8.3.2 Device Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the  
bias circuits. It detects and sets the input current limit before the boost converter is started. The power up  
sequence from input source is as listed:  
1. Poor Source Qualification  
2. Input Source Type Detection based on PSEL to set default Input Current Limit (IINDPM) register and input  
source type  
3. Power Up REGN LDO  
4. Converter Power-up  
8.3.2.1 Poor Source Qualification  
After REGN LDO powers up, the device checks the current capability of the input source. The input source has  
to meet the following requirements in order to start the boost converter.  
1. VBUS voltage below VVBUS_OVP  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC (typical 15mA)  
If VBUS_OVP is detected (condition 1 above), the device automatically retries detection once the over-voltage fault  
goes away. If a poor source is detected (condition 2 above), the device repeats poor source qualification routine  
every 2 seconds. After 7 consecutive failures, the device sets VBUS_STAT[2:0] = '0b100', EN_HIZ = 1, and goes  
to HIZ mode. On BQ25887 adapter re-plugin and/or EN_HIZ bit toggle is required to restart device operation.  
The EN_HIZ bit is cleared automatically when the adapter is plugged in. If the fault is not removed, the part will  
enter HIZ mode again after the 7 consecutive failures.  
8.3.2.2 Input Source Type Detection  
After the PG_STAT bit is set and input source is qualified, the charger device runs input source type detection  
when AUTO_INDET_EN bit is set.  
The BQ25887 sets input current limit through PSEL pin. After input source type detection, the following registers  
and pins are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. Input Voltage Limit (VINDPM) register is changed to set default limit (if EN_VINDPM_RST = 1, otherwise  
VINDPM value remains unchanged)  
3. VBUS_STAT bits change to reflect the detected source  
4. INT pin pulses to notify the host  
5. PG pin is pulled LOW, and PG_STAT bit is set to '1'  
After detection is completed, the host can over-write IINDPM or VINDPM registers to change the input current, or  
input voltage limit if needed. The charger input current is always limited by the lower of IINDPM register , ILIM  
pin, or Input Current Optimizer (ICO) setting when ICO is enabled.  
When AUTO_INDET_EN is disabled, the Input Source Type Detection is bypassed, and the Input Current Limit  
(IINDPM) register remains unchanged from previous value. When EN_VINDPM_RST is disabled, the Input  
Voltage Limit (VINDPM) register remains unchanged from previous value.  
8.3.2.2.1 PSEL Sets Input Current Limit  
The BQ25887 has PSEL pin for input current limit setting to interface with USB PHY. It directly takes the USB  
PHY device output to decide whether the input is USB host or charging port. PSEL HIGH sets the input current  
limit to 500 mA and PSEL LOW sets the input current limit to 3 A. Automatic start ICO is disabled when PSEL is  
HIGH. When no input source is connected, input current limit will not be updated by PSEL change.  
16  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
Feature Description (接下页)  
During default mode, after input source type detection is completed with an input source already plugged in, the  
PSEL pin is monitored. When the pin status changes, the input current limit is changed based on the pin status.  
During host mode, after input source type detection is completed with an input source already plugged in, the  
PSEL pin is NOT monitored. The host needs to set the FORCE_INDET bit to 1 in order to read the PSEL value.  
After the detection is completed, the input current limit (IINDPM), and the VBUS_STAT bits can be changed due  
to the detection result.  
8.3.2.2.2 Force Input Current Limit Detection  
In host mode, the host can force the device to run Input Current Limit Detection by setting FORCE_INDET bit.  
After the detection is completed, FORCE_INDET bit returns to 0 by itself and input result is updated.  
8.3.2.3 Power Up REGN Regulator (LDO)  
The REGN LDO supplies internal bias circuits as well as the QHS and QLS gate drive. The LDO also provides  
bias rail to TS external resistors. The pull-up rail of STAT and PG can be connected to REGN as well. The  
REGN is enabled when all the below conditions are valid.  
1. VBUS above VVBUS_UVLO_RISING in boost mode or VBUS below VVBUS_UVLO_RISING in buck mode  
2. Poor Source Qualification detects a valid input source  
3. Input Source Type Detection completes and sets appropriate input current limit  
4. After 220-ms delay is complete  
If one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off. The  
device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when the device  
is in HIZ.  
8.3.2.4 Converter Power Up  
After the input current limit is set, the PG pin is pulled LOW, the PG_STAT and VBUS_STAT bits are changed,  
and the converter is enabled, allowing the QHS and QLS to start switching. Before charging begins, the battery  
discharge source (IBAT_DISCHG) is enabled automatically to detect the presence of battery. The host can  
enable IBAT_DISCHG via the EN_BAT_DISCHG bit at any point during operation, including in Battery Only or  
HIZ modes. The device provides soft-start when converter output voltage is ramped up.  
As a battery charger, the device deploys a highly efficient 1.5-MHz boost switching regulator. The fixed frequency  
oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery voltage,  
charge current and temperature, simplifying output filter design.  
In order to improve light-load efficiency, the device switches to PFM (Pulse Frequency Modulation) control at light  
load when battery is below 6.4V or charging is disabled. During the PFM operation, the switching duty cycle is  
set by the ratio of SNS and VBUS.  
8.3.3 Input Current Optimizer (ICO)  
The device provides innovative Input Current Optimizer (ICO) to identify maximum power point without  
overloading the input source. The algorithm automatically identifies maximum input current limit of a power  
source without staying in VINDPM to avoid input source overload.  
On BQ25887, this feature is enabled by default (EN_ICO = 1) and can be disabled by setting EN_ICO bit to 0.  
After DCP type input source is detected based on the procedures describe above (Input Source Type Detection).  
The algorithm runs automatically when EN_ICO bit is set. The algorithm can also be forced to execute by setting  
FORCE_ICO bit regardless of input source type detected .  
版权 © 2019, Texas Instruments Incorporated  
17  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
1. Input Current Optimizer Automatic Operation  
INPUT CURRENT LIMIT  
(IINDPM)  
AUTOMATIC START ICO  
DEVICE  
INPUT SOURCE  
ALGORITHM  
PSEL = HI  
500 mA  
3.0 A  
Disable  
BQ25887  
PSEL = LOW  
Enable  
The actual input current limit used by the Dynamic Power Management is reported in ICO_ILIM register while  
Input Current Optimizer is enabled (EN_ICO = 1) or set by IINDPM register when the algorithm is disabled  
(EN_ICO = 0). In addition, the current limit is clamped by ILIM pin unless EN_ILIM bit is 0 to disable ILIM pin  
function.  
When the algorithm is enabled, it runs continuously to adjust input current limit of Dynamic Power Management  
(IINDPM) using ICO_ILIM register until ICO_STAT[1:0] and ICO_FLAG bits are set (the ICO_FLAG bit indicates  
any change in ICO_STAT[1:0] bits). The algorithm operates depending on battery voltage:  
1. When voltage at BAT pin is below 6.2 V, the algorithm starts ICO_ILIM register with IINDPM which is the  
maximum input current limit allowed by system  
2. When voltage at BAT is above 6.2 V, the algorithm starts ICO_ILIM register with 500mA which is the  
minimum input current limit to minimize adapter overload  
When optimal input current is identified, the ICO_STAT[1:0] and ICO_FLAG bits are set to indicate input current  
limit in ICO_ILIM register would not be changed until the algorithm is forced to run by the following event (these  
events also reset the ICO_STAT[1:0] bits to '01'):  
1. A new input source is plugged-in, or EN_HIZ bit is toggled  
2. IINDPM register is changed  
3. VINDPM register is changed  
4. FORCE_ICO bit is set to 1  
5. VBUS_OVP event  
8.3.4 Battery Charging Management  
The BQ25887 charges 2-cell Li-Ion battery with up to 2.2-A charge current for high capacity battery.  
8.3.4.1 Autonomous Charging Cycle  
When battery charging is enabled (EN_CHG = 1 and CD pin is LOW;), the device autonomously completes a  
charging cycle without host involvement. The device default charging parameters are listed in 2 below. On  
BQ25887, the host can always control the charging operation and optimize the charging parameters by writing to  
the corresponding registers through I2C.  
2. Charging Parameter Default Settings  
DEFAULT MODE  
Charging Voltage  
Charging Current  
Pre-Charge Current  
Termination Current  
Temperature Profile  
Safety Timer  
BQ25887  
4.2V/Cell  
1.50 A  
150 mA  
150 mA  
JEITA  
12 hours  
Disabled  
Topoff Timer  
A new charge cycle starts when the following conditions are valid:  
1. Converter starts  
2. Battery charging is enabled by I2C register bit (EN_CHG = 1 and CD pin is LOW and ICHG register is not 0  
mA)  
3. No thermistor fault on TS  
4. No safety timer fault  
18  
版权 © 2019, Texas Instruments Incorporated  
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
The charger automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and device is not in DPM mode or thermal regulation.  
When  
a
full battery voltage is discharged below recharge threshold (threshold selectable via  
VCELL_RECHG[1:0] bits on BQ25887), the device automatically starts a new charging cycle. After the charge is  
done, toggle CD pin or EN_CHG bit can initiate a new charging cycle.  
The STAT output indicates the charging status of: charging (LOW), charging complete or charge disable (HIGH)  
or charging fault (Blinking). If no battery is connected, the STAT pin blinks as capacitance connected at BAT  
charges, discharges, then recharges. The STAT output can be disabled by setting STAT_DIS bit. In addition, the  
status register (CHRG_STAT) indicates the different charging phases as:  
000 – Not Charging  
001 – Trickle Charge (VBAT < VBAT_SHORT  
010 – Pre-charge (VBAT_SHORT < VBAT < VBAT_LOWV  
011 – Fast-charge (CC mode)  
100 – Taper Charge (CV mode)  
101 – Top-off Timer Charging  
110 – Charge Termination Done  
)
)
When the charger transitions to any of these states, including when charge cycle is completed, an INT is  
asserted to notify the host.  
8.3.4.2 Battery Charging Profile  
The device charges the battery in five phases: trickle charge, pre-charge, constant current, constant voltage, and  
top-off timer charging (optional). At the beginning of a charging cycle, the device checks the battery voltage and  
regulates current/voltage accordingly.  
3. Default Charging Current Setting  
VBAT  
< VCELL_SHORT  
CHARGING CURRENT  
IBAT_SHORT  
IPRECHG  
REGISTER DEFAULT SETTING  
CHRG_STAT  
100 mA  
150 mA  
1500 mA  
001  
010  
011  
VCELL_SHORT – VCELL_LOWV  
> VCELL_LOWV  
ICHG  
版权 © 2019, Texas Instruments Incorporated  
19  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will  
be less than the programmed value. In this case, termination is temporarily disabled and the charging safety  
timer is counted at half the clock rate, as explained in the Charging Safety Timer section.  
Regulation Voltage  
VCELLREG[7:0]  
Battery Voltage  
Charge Current  
ICHG[5:0]  
Charge Current  
VBATLOWV  
VBAT_SHORT  
IPRECHG[3:0]  
ITERM[3:0]  
IBAT_SHORT  
Trickle Charge  
001  
Pre-charge  
010  
Fast-Charge  
CC  
Taper-Charge  
CV  
Top-off Timer  
(optional)  
CHRG_STAT[2:0]  
011  
101  
110  
100  
Precharge Timer  
(2hrs)  
Safety Timer  
CHG_TIMER[1:0]  
9. Battery Charging Profile  
8.3.4.3 Cell Balancing During Charging  
Some applications require cell balancing when the user can replace one or both of the cells in the 2S1P  
configuration. When charging two batteries with different voltages, cell balancing is required, as the cell with the  
higher voltage is at risk of being overcharged. For extremely unbalanced cells, charging the lower voltage cell as  
well as fast cell balancing is desired.  
The BQ25887 implements a passive cell balancing scheme with a recommended maximum discharge current of  
400 mA. Balancing current is limited by external resistors placed between the CBSET pin and the mid-point of  
the two cells. Low side cell voltage is sensed at MID pin. Cell balancing can be enabled in the I2C registers.  
The Cell Balancing current limit resistor, RCBSET, can be calculated as below.  
ICB_LIM = VCELLREG / (RCBSET+RDSON_QCBX  
)
For example, the maximum recommended cell balancing current is 400 mA. For 4.2-V battery cell, RCBSET can be  
calculated as 9.5 Ω (typical).  
Cell balancing status register, CB_STAT, HS_CV_STAT and LS_CV_STAT is active in both automatic cell  
balancing mode and manual cell balancing mode.  
The default setting of the cell balancing parameters are below.  
4. Cell Balancing Default Setting  
PARAMETER  
REGISTER  
DEFAULT VALUE  
Enable Auto Cell Balancing Mode  
(CB_AUT0_EN)  
REG0x2A [6]  
1 = Enable  
20  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
4. Cell Balancing Default Setting (接下页)  
PARAMETER  
REGISTER  
DEFAULT VALUE  
Disable Charge for Accurate Cell Balancing  
Measurement (CB_CHG_DIS)  
1 = Charge Disable for Cell Balancing  
Voltage Measurement  
REG0x2A [7]  
Voltage Threshold Enter Cell Balancing  
Qualification Mode from Pre-Qualification  
Mode (VQUAL_TH)  
REG0x29h [7:4]  
1111 = Disable Pre-Qualification Mode  
Voltage Threshold Enter Cell Balancing  
Active Mode from Qualification Mode  
(VDIFF_START)  
REG0x29h [3:0]  
REG0x28 [ 7:5]  
REG0x0x28 [4]  
0100 = 80 mV  
001 = 40 mV  
0 = 2 min  
Voltage Threshold Exit Cell Balancing Offset  
from VDIFF_START (VDIFF_END_OFFSET)  
Time Interval between Taking Measurements  
in Pre-Qualification  
Mode(TCB_QUAL_INTERVAL)  
Time Interval between Taking Measurements  
in Cell Balancing Active Mode  
(TCB_ACTIVE)  
REG0x28 [3:2]  
REG0x28 [1]  
10 = 2 min  
10 = 1 sec  
Time Delay between Charge Disable and  
Cell Voltage Measurement (TSETTLE)  
Qualifica-  
tion  
Cell Balancing Active  
VDIFF_END  
Exit Cell Balancing  
Tickle Charge  
VCELL_REG  
Pre-Charge  
Pre-Qual  
Normal  
Charge  
VDIFF_START  
VQUAL_TH  
VCBEN  
3.7  
V
VCELL_LOWV  
3V  
VCELL_SHORT  
2.2V  
ICHG  
ITERM  
IPRECHG  
IBAT_UVLOZ  
0A  
TCB_Active  
TCB_QUAL_INTERVAL  
TSETTLE+measur  
ement time  
10. Cell Balancing Timing Diagram  
8.3.4.4 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current.  
When termination occurs, the STAT pin goes HIGH (charge current will continue to taper if top-off timer is  
enabled), status register CHRG_STAT is set to 110, and an INT pulse is asserted to the host. Termination is  
temporarily disabled when the charger device is in input current, voltage or thermal regulation. Termination can  
be permanently disabled by writing 0 to EN_TERM bit prior to charge termination.  
At low termination currents (50 mA - 100 mA), due to the comparator offset, the actual termination current may  
be up to 20% higher than the termination target. In order to compensate for comparator offset, a programmable  
top-off timer (default disabled) can be applied after termination is detected.The top-off timer will follow safety  
timer constraints, such that if safety timer is suspended, so will the top-off timer. Similarly, if safety timer is  
doubled, so will the top-off timer. CHRG_STAT reports whether the top off timer is active via the 101 code. Once  
the Top-Off timer expires, the CHRG_STAT register is set to 110 and an INT pulse is asserted to the host.  
Top-off timer gets reset (set to 0 and counting resumes when appropriate) for any of the following conditions:  
1. Charge disable to enable  
版权 © 2019, Texas Instruments Incorporated  
21  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
2. Termination status low to high  
3. REG_RST register bit is set (disables top-off timer)  
The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer  
value after termination will have no effect unless a recharge cycle is initiated. An INT is asserted to the host  
when entering top-off timer segment as well as when top-off timer expires. All charge cycle related INT pulses  
(including top-off timer INT pulses) can be masked by CHRG_MASK bit.  
8.3.4.5 Thermistor Qualification  
The charger device provides a single thermistor input for battery temperature monitor.  
8.3.4.5.1 JEITA Guideline Compliance in Charge Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges.  
To initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds  
the T1-T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5  
range. At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to half of the charge  
current or lower. At warm temperature (T3-T5), JEITA recommends charge voltage less than 4.1 V / cell.  
On BQ25887, the charger provides flexible voltage/current settings beyond JEITA requirement. The Voltage  
setting at warm temperature (T3-T5) can be VCELLREG, 4.0 V, 4.15 V, or charge suspended (configured by  
JEITA_VSET [1:0]). The fast charge current setting at warm temperature (T3-T5) can be 100%, or 40% of fast  
charge current, ICHG (configured by JEITA_ISETH). The fast charge current setting at cool temperature (T1-T2)  
can be 100%, 40%, or 20% of fast charge current, ICHG, or charge suspend (configured by JEITA_ISETC[1:0]).  
Whenever the charger detects "warm" or "cool" temperature, termination is automatically disabled regardless of  
JEITA_VSET, JEITA_ISETH and JEITA_ISETC register bit settings.  
REGN  
TS  
BQ2588x  
11. TS Resistor Network  
ISETC=11  
VSET =11  
ISETH=1  
100%  
VREG  
80%  
60%  
40%  
20%  
VSET =10  
VSET = 01  
4.15V  
4.0V  
ISETC=10  
ISETC=01  
ISETC=00  
ISETH=0  
VSET = 00  
T1  
0°C  
T2  
10°C  
T3  
45°C  
T5  
60°C  
T1  
0°C  
T2  
10°C  
T3  
45°C  
T5  
60°C  
TS Temperature  
TS Temperature  
12. TS Charging Values  
22  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
Assuming a 103AT NTC (Negative Temperature Coefficient) thermistor on the battery pack as shown above, the  
value of RT1 and RT2 can be determined by:  
«
÷
1
1
RNTC,T1 ì RNTC,T 5  
ì
-
VT 5 VT1  
RT2 =  
RT1=  
«
÷
1
1
RNTC,T1  
ì
-1 - R  
ì
-1  
÷
«
NTC,T 5  
VT1  
VT 5  
(1)  
(2)  
1
-1  
VT1  
1
1
+
RT 2 RNTC,T1  
Select 0°C to 60°C range for Li-ion or Li-polymer battery:  
RNTC,T1 = 27.28 kΩ  
RNTC,T5 = 3.02 kΩ  
RT1 = 5.24 kΩ  
RT2 = 30.31 kΩ  
8.3.4.6 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
user can program fast charge safety timer through I2C (CHG_TIMER bits). When safety timer expires, the fault  
register TMR_STAT bit is set to 1, and an INT pulse is asserted to the host. The safety timer feature can be  
disabled by clearing EN_TIMER bit.  
During input voltage, current or thermal regulation or cell balancing active mode (cell balancing discharging), the  
safety timer counts at half clock rate as the actual charge current is likely to be below the register setting. For  
example, if the charger is in input current regulation (IINDPM_STAT=1) throughout the whole charging cycle, and  
the safety timer is set to 12 hours, then the timer will expire in 24 hours. This half clock rate feature can be  
disabled by setting TMR2X_EN = 0. Changing the TMR2X_EN bit while the device is running has no effect on  
the safety timer count, other than forcing the timer to count at half the rate under the conditions dictated above.  
During faults which disable charging, or supplement mode, timer is suspended. Since the timer is not counting in  
this state, the TMR2X_EN bit has no effect. Once the fault goes away, safety timer resumes. If the charging  
cycle is stopped and started again, the timer gets reset.  
The safety timer is reset for the following events:  
1. Charging cycle stop and restart (toggle CD pin, EN_CHG bit, or charged battery falls below recharge  
threshold).  
2. BAT voltage changes from pre-charge to fast-charge or vice versa (in host-mode or default mode).  
The precharge safety timer (fixed 2hr counter that runs when VBAT < VBAT_LOWV), follows the same rules as the  
fast-charge safety timer in terms of getting suspended, reset, and counting at half-rate when TMR2X_EN is set.  
8.3.5 Integrated 16-Bit ADC for Monitoring  
The device includes a 16-bit ADC to monitor critical system information based on the device’s modes of  
operation. The control of the ADC is done through the ADC Control Register (Address = 15h) [reset = 30h]. The  
ADC_EN bit provides the ability to enable and disable the ADC to conserve power. The ADC_RATE bit allows  
continuous conversion or one-shot behavior. After a one-shot conversion finishes, the ADC_EN bit is cleared,  
and must be re-asserted to start a new conversion.  
To enable the ADC, the ADC_EN bit must be set to ‘1’. The ADC is allowed to operate if either the  
VVBUS>VVBUS_UVLO_RISING or VBAT>VBAT_UVLO_RISING is valid. If no adapter is present, and the VBAT is less than  
VBAT_UVLO_RISING, the device will not perform an ADC measurement, nor update the ADC read-back values in  
REG17 through REG24. Additionally, the device will immediately reset ADC_EN bit without sending any interrupt.  
The same will happen if the ADC is enabled when all ADC channels are disabled. It is recommended to read  
版权 © 2019, Texas Instruments Incorporated  
23  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
back ADC_EN after setting it to '1' to ensure ADC is running a conversion. If the charger changes mode (for  
example, if adapter is connected, EN_HIZ goes to '1', or CD goes high,) while an ADC conversion is running, the  
conversion is interrupted. Once the mode change is complete, the ADC resumes conversion, starting with the  
channel where it was interrupted. When device is in HIZ mode, ADC conversion can still be enabled through I2C.  
In HIZ mode, device power up internally to start ADC convertion and turn back down when ADC conversion is  
completed.  
When TS_ADC conversion performs in battery only mode, the REGN is powered and extra battery current would  
be drawn. Battery current can be kept low by disabling the TS_ADC conversion in battery only mode.  
The integrated ADC has two rate conversion options: a one-shot mode and a continuous conversion mode set by  
the ADC_RATE bit. By default, all ADC parameters will be converted in one-shot or continuous conversion mode  
unless disabled in the ADC Function Disable Register (Address = 16h) [reset = 00h]. If an ADC parameter is  
disabled by setting the corresponding bit in REG16, then the read-back value in the corresponding register will  
be from the last valid ADC conversion or the default POR value (all zeros if no conversions have taken place). If  
an ADC parameter is disabled in the middle of an ADC measurement cycle, the device will finish the conversion  
of that parameter, but will not convert the parameter starting the next conversion cycle. Even though no  
conversion takes place when all ADC measurement parameters are disabled, the ADC circuitry is active and  
ready to begin conversion as soon as one of the bits in the ADC Function Disable register is set to ‘0’. If all  
channels are disabled in one-shot conversion mode, the ADC_EN bit is cleared.  
The ADC_DONE_STAT and ADC_DONE_FLAG bits signal when a conversion is completed in one-shot mode  
only. This event produces an INT pulse, which can be masked with ADC_DONE_MASK. During continuous  
conversion mode, the ADC_DONE_STAT bit has no meaning and will be '0'. The ADC_DONE_FLAG bit will  
remain unchanged in continuous conversion mode.  
ADC conversion operates independently of the faults present in the device. ADC conversion will continue even  
after a fault has occurred (such as one that causes the power stage to be disabled), and the host must set  
ADC_EN = ‘0’ to disable the ADC. ADC conversion is interrupted upon adapter plug-in, and will only resume until  
after Input Source Type Detection is complete. ADC readings are only valid for DC states and not for transients.  
When host writes ADC_EN = 0, the ADC stops immediately, and ADC measurement values correspond to last  
valid ADC reading.  
A recommended method to exit ADC conversion is described below:  
1. Write ADC_RATE to one-shot, and the ADC will stop at the end of a complete cycle of conversions, or  
2. Disable all ADC conversion channels, and the ADC will stop at the end of the current measurement.  
8.3.6 Status Outputs  
8.3.6.1 Power Good Indicator (PG)  
The PG_STAT bit goes HIGH and open drain PG pin goes low to indicate a good input source when:  
1. VBUS above VVBUS_UVLO_RISING  
2. VBUS below VVBUS_OV threshold  
3. VBUS above VPOORSRC (typ. 3.7 V) when IPOORSRC (typ. 30 mA) current is applied (not a poor source)  
4. Input Source Type Detection is completed  
5. CD pin is LOW  
8.3.6.2 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED. The STAT pin  
function can be disabled via the STAT_DIS bit.When CD is high, the device is in HIZ mode and STAT will not  
reflect charging state.  
5. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
Charging in progress (including trickle charge, pre-charge, fast-  
charge, recharge)  
LOW  
Charging complete (including top-off)  
Sleep mode, charge disable  
HIGH  
HIGH  
24  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
5. STAT Pin State (接下页)  
CHARGING STATE  
STAT INDICATOR  
Charge suspend (Input over-voltage, TS fault, timer fault or battery  
over-voltage)  
Blinking at 1Hz  
8.3.6.3 Interrupt to Host  
In some applications, the host does not always monitor the charger operation. The INT pin notifies the system  
host on the device operation. By default, the following events will generate an active-low, 256-µs INT pulse.  
1. Good input source detected  
VVBUS < VVBUS_OV threshold  
VVBUS > VPOORSRC (typ. 3.7 V) when IPOORSRC (typ. 30 mA) current is applied (not a poor source)  
2. VBUS_STAT changes state (VBUS_STAT any bit change)  
3. Good input source removed  
4. Entering IINDPM regulation  
5. Entering VINDPM regulation  
6. Entering IC junction temperature regulation (TREG)  
7. I2C Watchdog timer expired  
At initial power up, this INT gets asserted to signal I2C is ready for communication  
8. Charger status changes state (CHRG_STAT value change), including Charge Complete  
9. TS_STAT changes state (TS_STAT any bit change)  
10. VBUS over-voltage detected (VBUS_OVP)  
11. Junction temperature shutdown (TSHUT)  
12. Cell over-voltage detected (CELLOVP)  
13. Cell over-voltage detected (HS_OV or LS_OV)  
14. Charge safety timer expired  
15. A rising edge on any of the *_STAT bits  
Each one of these INT sources can be masked off to prevent INT pulses from being sent out when they occur.  
Three bits exist for each one of these events:  
The STAT bit holds the current status of each INT source  
The FLAG bit holds information on which source produced an INT, regardless of the current status  
The MASK bit is used to prevent the device from sending out INT for each particular event  
When one of the above conditions occurs (a rising edge on any of the *_STAT bits), the device sends out an INT  
pulse and keeps track of which source generated the INT via the FLAG registers. The FLAG register bits are  
automatically reset to zero after the host reads them, and a new edge on STAT bit is required to re-assert the  
FLAG.  
版权 © 2019, Texas Instruments Incorporated  
25  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
IINDPM_STAT  
IINDPM_FLAG  
TREG_STAT  
TREG_FLAG  
INT  
I2C Flag Read  
13. INT Generation Behavior Example  
8.3.7 Input Current Limit on ILIM Pin  
For safe operation, the BQ2588x has an additional hardware pin on ILIM to limit maximum input current. The  
maximum input current is set by a resistor from ILIM pin to ground as:  
KILIM  
=
I
INMAX  
RILIM  
(3)  
The actual input current limit is the lower value between ILIM pin setting and register setting (IINDPM). For  
example, if the register setting is 3.3 A (0x1C), and ILIM has a 820-resistor (KILIM = 1276 max) to ground for  
1.55 A, the input current limit is 1.55 A. ILIM pin can be used to set the input current limit rather than the register  
settings when EN_ILIM bit is set. The device regulates ILIM pin at 0.8 V. If ILIM voltage exceeds 0.8 V, the  
device enters input current regulation (refer to section). Entering IINDPM through ILIM pin sets the  
IINDPM_STAT and FLAG bits, and produces and interrupt to host. The interrupt can be masked via the  
IINDPM_MASK bit.  
The ILIM pin can also be used to monitor input current when EN_ILIM is set. The voltage on ILIM pin is  
proportional to the input current. ILIM can be used to monitor input current with the following relationship:  
K
ìV  
ì0.8V  
ILIM  
ILIM  
I
=
IN  
R
ILIM  
(4)  
For example, if ILIM pin is set with 820-Ω resistor, and the ILIM voltage 0.5V, the actual input current is 0.795 A  
to 0.973 A. If ILIM pin is open, the input current is limited to zero since ILIM voltage floats above 0.8 V. If ILIM pin  
is shorted, the input current limit is set by the register.  
The ILIM pin function can be disabled by setting the EN_ILIM bit to 0. When the pin is disabled, both input  
current limit function and monitoring function are not available.  
26  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.3.8 Voltage and Current Monitoring  
The device closely monitors the input voltage, as well as internal FET currents for safe boost and buck mode  
operation.  
8.3.8.1 Voltage and Current Monitoring in Boost Mode  
8.3.8.1.1 Input Over-Voltage Protection  
The valid input voltage range for boost mode operation is VVBUS_OP. If VBUS voltage exceeds VVBUS_OV, the  
device stops switching immediately to protect the power FETs. During input over-voltage, an INT pulse is  
asserted to signal the host, and the VBUS_OVP_STAT and VBUS_OVP_FLAG fault registers get set. The  
device automatically starts switching again when the over-voltage condition goes away.  
8.3.8.1.2 Input Under-Voltage Protection  
The valid input voltage range for boost mode operation is VVBUS_OP. If VBUS voltage falls below VPOORSRC during  
operation, the device stops switching. During input under-voltage, an INT pulse is asserted to signal the host,  
and the PG_STAT bit gets cleared. The PG_FLAG bit will get set to signal this event. The device automatically  
attempts to restart switching when the under-voltage condition goes away.  
8.3.9 Thermal Regulation and Thermal Shutdown  
8.3.9.1 Thermal Protection in Boost Mode  
The device monitors internal junction temperature, TJ, to avoid overheating and limits the IC surface temperature  
in boost mode. When the internal junction temperature exceeds the preset thermal regulation limit (TREG bits),  
the device reduces charge current. A wide thermal regulation range from 60°C to 120°C allows optimization for  
the system thermal performance.  
During thermal regulation, the actual charging current is usually below the programmed value in ICHG registers.  
Therefore, termination is disabled, the safety timer runs at half the clock rate, the status register TREG_STAT bit  
goes high, and an INT is asserted to the host.  
Additionally, the device has thermal shutdown to turn off the converter when IC surface temperature exceeds  
TSHUT. The fault register bits TSHUT_STAT and TSHUT_FLAG are set and an INT pulse is asserted to the host.  
The converter turns back on when IC temperature is below TSHUT_HYS  
.
8.3.10 Battery Protection  
8.3.11 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA), and a serial clock line (SCL). Devices can be considered as masters or slaves when performing  
data transfers. A master is a device which initiates a data transfer on the bus and generates the clock signals to  
permit that transfer. At that time, any device addressed is considered a slave.  
The device operates as a slave device with address 0x6A, receiving control inputs from the master device like  
micro-controller or digital signal processor through REG00 – REG2C. Register read beyond REG2C (0x2C),  
returns 0xFF. The I2C interface supports both standard mode (up to 100kbits/s), and fast mode (up to 400  
kbits/s). When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be  
connected to the positive supply voltage via a current source or pull-up resistor.  
8.3.11.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on SCL line is LOW. One clock pulse is generated for each data  
bit transferred.  
版权 © 2019, Texas Instruments Incorporated  
27  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
SDA  
SCL  
Data line stable;  
Data valid  
Change of  
data allowed  
14. Bit Transfers on the I2C bus  
8.3.11.2 START and STOP Conditions  
All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the master. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
15. START and STOP conditions on the I2C bus  
START (S)  
8.3.11.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the Most  
Significant Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has  
performed some other function, it can hold the SCL line low to force the master into a wait state (clock  
stretching). Data transfer then continues when the slave is ready for another byte of data and releases the SCL  
line.  
28  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
Acknowledgeme  
nt signal from  
receiver  
Acknowledgement  
signal from slave  
MSB  
1
SDA  
2
7
8
9
1
2
8
9
SCL S or Sr  
P or Sr  
ACK  
ACK  
START or  
Repeated  
START  
STOP or  
Repeate  
d START  
16. Data Transfer on the I2C Bus  
8.3.11.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The ACK signaling takes place after byte. The ACK bit allows the receiver to signal the transmitter that the byte  
was successfully received and another byte may be sent. All clock pulses, including the acknowledge 9th clock  
pulse, are generated by the master.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
LOW and it remains stable LOW during the HIGH period of this 9th clock pulse.  
A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The master can then generate  
either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.3.11.5 Slave Address and Data Direction Bit  
After the START signal, a slave address is sent. This address is 7 bits long, followed by the 8 bit as a data  
direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
The device 7-bit address is defined as 1101 011' (0x6B) by default. The address bit arrangement is shown  
below.  
Slave Address  
1
1
0
1
0
1
1
R/W  
17. 7-Bit Addressing (0x6B)  
SDA  
SCL  
S
8
9
8
9
8
9
P
1-7  
1-7  
1-7  
DATA  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
ACK  
STOP  
18. Complete Data Transfer on the I2C Bus  
8.3.11.6 Single Write and Read  
19. Single Write  
版权 © 2019, Texas Instruments Incorporated  
29  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
20. Single Read  
If the register address is not defined, the charger IC sends back NACK and returns to the idle state.  
8.3.11.7 Multi-Write and Multi-Read  
The charger device supports multi-read and multi-write of all registers.  
21. Multi-Write  
22. Multi-Read  
8.4 Device Functional Modes  
8.4.1 Host Mode and Default Mode  
The BQ2588x is a host controlled charger, but it can operate in default mode without host management. In  
default mode, the device can be used as an autonomous charger with no host or while host is in sleep mode.  
When the charger is in default mode, WD_STAT bit is HIGH. When the charger is in host mode, WD_STAT bit is  
LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings. During default mode, any change on PSEL pin will make real time internal  
reference change.  
In default mode, the device keeps charging the battery with default 12-hour fast charging safety timer.  
A I2C write to the registers transitions the charger from default mode to host mode and watchdog timer is reset.  
All the device parameters can be programmed by the host. To keep the device in host mode, the host has to  
reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set), or  
disable watchdog timer by setting WATCHDOG bits = 00.  
30  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
Device Functional Modes (接下页)  
When the watchdog timer (WD_STAT bit = 1) is expired, the device returns to default mode and all registers are  
reset to default values except as detailed in the Register Maps section. The Watchdog timer will be reset on any  
write if the watchdog timer has expired.  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Start watchdog timer  
Host programs registers  
Y
I2C Write?  
N
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
N
WD_RST bit = 1?  
N
N
Y
Y
I2C Write?  
Watchdog Timer  
Expired?  
23. Watchdog Timer Flow Chart  
8.5 Register Maps  
Default I2C Slave Address: 0x6B (1101 011B + R/W)  
6. I2C Registers  
Address  
00h  
Access Type  
Acronym  
REG00  
REG01  
REG02  
REG03  
REG04  
REG05  
REG06  
REG07  
REG08  
REG09  
REG0A  
REG0B  
REG0C  
REG0D  
REG0E  
Register Name  
Section  
Go  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Cell Voltage Limit  
Charge Current Limit  
Input Voltage Limit  
Input Current Limit  
Precharge and Termination Control  
Charger Control 1  
Charger Control 2  
Charger Control 3  
Charger Control 4  
Reserved  
01h  
Go  
02h  
Go  
03h  
Go  
04h  
Go  
05h  
Go  
06h  
Go  
07h  
Go  
08h  
Go  
09h  
Go  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
ICO Current Limit  
Charger Status 1  
Charger Status 2  
NTC Status  
Go  
R
Go  
R
Go  
R
Go  
R
FAULT Status  
Go  
版权 © 2019, Texas Instruments Incorporated  
31  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
6. I2C Registers (接下页)  
Address  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
Access Type  
Acronym  
REG0F  
REG10  
REG11  
REG12  
REG13  
REG14  
REG15  
REG16  
REG17  
REG18  
REG19  
REG1A  
REG1B  
REG1C  
REG1D  
REG1E  
REG1F  
REG20  
REG21  
REG22  
REG23  
REG24  
REG25  
REG26  
REG27  
REG28  
REG29  
REG2A  
REG2B  
REG2C  
Register Name  
Charger Flag 1  
Charger Flag 2  
Fault Flag  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
Charger Mask 1  
Charger Mask 2  
Fault Mask  
ADC Control  
ADC Function Disable  
IBUS ADC1  
R
IBUS ADC0  
R
ICHG ADC1  
R
ICHG ADC0  
R
VBUS ADC1  
R
VBUS ADC0  
R
VBAT ADC1  
R
VBAT ADC0  
R
VCELLTOP ADC1  
VCELLTOP ADC0  
TS ADC1  
R
R
R
TS ADC0  
R
TDIE ADC1  
R
TDIE ADC0  
R/W  
R
Part Information  
VCELLBOT ADC1  
VCELLBOT ADC0  
Cell Balancing Control 1  
Cell Balancing Control 2  
Cell Balancing Status and Control  
Cell Balancing Flag  
Cell Balancing Mask  
R
R/W  
R/W  
R/W  
R
R/W  
Complex bit access types are encoded to fit into small table cells. 7 shows the codes that are used for access  
types in this section.  
7. I2C Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset Value  
-n  
Value after reset  
Undefined value  
-X  
32  
版权 © 2019, Texas Instruments Incorporated  
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.1 Cell Voltage Regulation Limit Register (Address = 00h) [reset = A0h]  
REG00 is shown in 24 and described in .  
Return to Summary Table.  
24. REG00 Register  
Bit  
7
6
5
4
3
2
1
0
Field  
VCELLREG[7:0]  
8. REG00 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VCELLREG[7]  
VCELLREG[6]  
VCELLREG[5]  
VCELLREG[4]  
VCELLREG[3]  
VCELLREG[2]  
VCELLREG[1]  
VCELLREG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
640 mV  
320 mV  
160 mV  
80 mV  
40 mV  
20 mV  
10 mV  
5 mV  
Cell Charge voltage limit  
Offset: 3.40 V  
Range: 3.40 V to 4.60 V  
Default 4.20 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
版权 © 2019, Texas Instruments Incorporated  
33  
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.2 Charger Current Limit Register (Address = 01h) [reset = 5Eh]  
REG01 is shown in 25 and described in 9.  
Return to Summary Table.  
25. REG01 Register  
Bit  
7
6
5
4
3
2
1
0
Field  
EN_HIZ  
EN_ILIM  
ICHG[5:0]  
9. REG01 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_HIZ  
R/W  
Yes  
Yes  
Enable HIZ Mode:  
0 – Disable (default)  
1 – Enable  
6
EN_ILIM  
R/W  
Yes  
Yes  
Enable ILIM Pin Function:  
0 – Disable  
1 – Enable (default)  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
50 mA  
Fast Charge Current Limit  
Offset: 0 mA  
Range: 100 mA – 2200 mA  
Default 1500 mA  
Note: ICHG > 2.2 A (2Ch) clamped to 2.2 A. ICHG < 100 mA (01h)  
clamped at 100 mA  
34  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.3 Input Voltage Limit Register (Address = 02h) [reset = 84h]  
REG02 is shown in 26 and described in 10.  
Return to Summary Table.  
26. REG02 Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
1h  
0h  
0h  
04h  
EN_VINDPM_R EN_BAT_DISC PFM_OOA_DIS  
ST HG  
VINDPM[4:0]  
10. REG02 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_VINDPM_RST  
R/W  
Yes  
Yes  
Enable VINDPM automatic reset upon adapter plugin:  
0 – Disable VINDPM reset when adapter is plugged in  
1 – Enable VINDPM reset when adapter is plugged in (VINDPM resets to default  
value after Input Source Type Detection) (Default)  
6
5
EN_BAT_DISCHG  
PFM_OOA_DIS  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
Enable BAT pin discharge load (IBAT_DISCHG):  
0 – Disable load (Default)  
1 – Enable BAT discharge load  
PFM Out-of-Audio (OOA) Mode Disable:  
0 – Out-of-audio mode enabled while converter is in PFM (Default)  
1 – Out-of-audio mode disabled while converter is in PFM  
4
3
2
1
0
VINDPM[4]  
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
1600 mV  
800 mV  
400 mV  
200 mV  
100 mV  
Absolute Input Voltage Limit:  
Offset: 3.9 V  
Range: 3.9 V – 5.5 V  
Default: 4.3 V  
Note: VINDPM > 5.5 V (10h) clamped to 5.5 V. VINDPM register is  
reset upon adapter plug-in if EN_VINDPM_RST = 1.  
版权 © 2019, Texas Instruments Incorporated  
35  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.4 Input Current Limit Register (Address = 03h) [reset = 39h ]  
REG03 is shown in 27 and described in 11.  
Return to Summary Table.  
27. REG03 Register  
Bit  
7
6
5
4
3
2
1
0
Field  
FORCE_ICO  
FORCE_INDET  
EN_ICO  
IINDPM[4:0]  
11. REG03 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
FORCE_ICO  
R/W  
Yes  
Yes  
Force Start Input Current Optimizer (ICO):  
0 – Do not force ICO (default)  
1 – Force ICO start  
Note: This bit can only be set and always returns 0 after ICO starts. This bit only  
valid when EN_ICO = 1.  
6
5
FORCE_INDET  
EN_ICO  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
Force PSEL Detection:  
0 – Not in PSEL detection (default)  
1 – Force PSEL detection  
Input Current Optimization (ICO) Algorithm Control:  
0 – Disable ICO  
1 – Enable ICO (default)  
4
3
2
1
0
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
IINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
Input Current Limit:  
Offset: 500 mA  
Range: 500 mA – 3300 mA  
Default: 3000 mA  
Note: IINDPM > 3300 mA (1Ch) clamped to 3300 mA. Actual input  
current limit is lower of I2C, ICO_ILIM,ILIM pin or PSEL.  
36  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.5 Precharge and Termination Current Limit Register (Address = 04h) [reset = 22h]  
REG04 is shown in 28 and described in 12.  
Return to Summary Table.  
28. REG04 Register  
Bit  
7
6
5
4
3
2
1
0
Field  
IPRECHG[3:0]  
ITERM[3:0]  
12. REG04 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IPRECHG[3]  
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
400 mA  
200 mA  
100 mA  
50 mA  
Precharge Current Limit:  
Offset: 50 mA  
Range: 50 mA – 800 mA  
Default: 150 mA  
Yes  
Yes  
Yes  
Yes  
400 mA  
200 mA  
100 mA  
50 mA  
Termination Current Limit:  
Offset: 50 mA  
Range: 50 mA – 800 mA  
Default: 150 mA  
ITERM[2]  
Yes  
ITERM[1]  
Yes  
ITERM[0]  
Yes  
版权 © 2019, Texas Instruments Incorporated  
37  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.6 Charger Control 1 Register (Address = 05h) [reset = 9Dh]  
REG05 is shown in 29 and described in 13.  
Return to Summary Table.  
29. REG05 Register  
Bit  
7
6
5
4
3
2
1
0
Field  
EN_TERM  
STAT_DIS  
WATCHDOG[1:0]  
EN_TIMER  
CHG_TIMER[1:0]  
TMR2X_EN  
13. REG05 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_TERM  
R/W  
Yes  
Yes  
Termination Control:  
0 – Disable termination  
1 – Enable termination (default)  
6
STAT_DIS  
R/W  
Yes  
Yes  
STAT Pin Disable:  
0 – Enable STAT pin function (default)  
1 – Disable STAT pin function  
5
4
WATCHDOG[1]  
WATCHDOG[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
I2C Watchdog Timer Settings:  
00 – Disable WD Timer  
01 – 40 s (default)  
10 – 80 s  
11 – 160 s  
3
EN_TIMER  
R/W  
Yes  
Yes  
Charging Safety Timer Enable  
0 – Disable  
1 – Enable (Default)  
2
1
CHG_TIMER[1]  
CHG_TIMER[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Fast Charge Timer Setting  
00 – 5 hrs  
01 – 8 hrs  
10 – 12 hrs (Default)  
11 – 20 hrs  
0
TMR2X_EN  
R/W  
Yes  
Yes  
Safety Timer during DPM or TREG  
0 – Safety timer always count normally  
1 – Safety timer slowed by 2X during input DPM or TREG (Default)  
38  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.7 Charger Control 2 Register (Address = 06h) [reset = 7Dh]  
REG06 is shown in 30 and described in 14.  
Return to Summary Table.  
30. REG06 Register  
Bit  
7
6
5
4
3
2
1
0
Field  
Reserved  
AUTO_INDET_  
EN  
TREG[1:0]  
EN_CHG  
CELLLOWV  
VRECHG[1:0]  
14. REG06 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
Reserved  
R/W  
R/W  
Yes  
Yes  
Yes  
Reserved bit always reads 0.  
AUTO_INDET_EN  
Yes  
Automatic PSEL Detection Enable:  
0 – Disable PSELL detection when VBUS plugs in  
1 – Enable PSEL detection when VBUS plugs in (default)  
5
4
TREG[1]  
TREG[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Thermal Regulation Threshold  
00 – 60°C  
01 – 80°C  
10 – 100°C  
11 – 120°C (Default)  
3
2
EN_CHG  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Charger Enable Configuration  
0 – Charge Disable  
1 – Charge Enable (default)  
Note: If EN_OTG and EN_CHG are set simultaneously, EN_CHG takes priority  
CELLLOWV  
Battery precharge to fast-charge threshold:  
0 – 2.8 V  
1 – 3.0 V (default)  
1
0
VCELL_RECHG[1]  
VCELL_RECHG[0]  
R/W  
R/W  
Yes  
Yes  
No  
No  
100 mV  
50 mV  
Cell Recharge Threshold Offset (below VCELLREG)  
Offset: 50 mV  
Range: 50 mV – 200 mV  
Default: 100 mV  
版权 © 2019, Texas Instruments Incorporated  
39  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.8 Charger Control 3 Register (Address = 07h) [reset = 00h]  
REG07 is shown in 31 and described in 15.  
Return to Summary Table.  
31. REG07 Register  
Bit  
Reset  
Field  
7
0h  
6
0h  
5
4
3
2
1
0
0h  
TOPOFF_TIMER[1:0]  
0h  
PFM_DIS  
WD_RST  
Reserved  
15. REG07 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PFM_DIS  
R/W  
Yes  
No  
PFM Mode Disable control:  
0 – Enable PFM operation (default)  
1 – Disable PFM operation  
6
WD_RST  
R/W  
Yes  
Yes  
I2C Watchdog Timer Reset:  
0 – Normal  
1 – Reset (Bit goes back to 0 after timer reset)  
5
4
TOPOFF_TIMER[1]  
TOPOFF_TIMER[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Top-off Timer Control :  
00 – Disabled (default)  
01 – 15 mins  
10 – 30 mins  
11 – 45 mins  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
This bit reads back 1.  
Reserved bit always reads 0  
40  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.9 Charger Control 4 Register (Address = 08h) [reset = 0Dh]  
REG08 is shown in 32 and described in 16.  
Return to Summary Table.  
32. REG08 Register  
Bit  
7
6
0h  
5
4
3
2
1h  
1
0
Reset  
Field  
1h  
JEITA_VSET[1:0]  
1h  
JEITA_ISETC[1:0]  
Reserved[2:0]  
JEITA_ISETH  
16. REG08 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
RESERVED  
RESERVED  
RESERVED  
R
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
R
No  
No  
R
No  
No  
JEITA_VSET[1]  
JEITA_VSET[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
JEITA High Temp. (45C – 60C) Voltage Setting:  
00 – Charge Suspend  
01 – Set VREG to 8.0V (default)  
10 – Set VREG to 8.3V  
11 – VREG unchanged  
2
JEITA_ISETH  
R/W  
Yes  
Yes  
JEITA High Temp. (45C – 60C) Current Setting (percentage with respect to  
ICHG REG01[5:0]):  
0 – 40% of ICHG  
1 – 100% of ICHG (default)  
1
0
JEITA_ISETC[1]  
JEITA_ISETC[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
JEITA Low Temp. (0C – 10C) Current Setting (percentage with respect to ICHG  
REG01[5:0]):  
00 – Charge Suspend  
01 – 20% of ICHG (default)  
10 – 40% of ICHG  
11 – 100% of ICHG  
版权 © 2019, Texas Instruments Incorporated  
41  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.10 Reserved Register (Address = 09h) [reset = 00h]  
REG09 is shown in 33 and described in 17.  
Return to Summary Table.  
33. REG09 Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
0h  
Reserved[7:0]  
17. REG09 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
7:0  
Field  
Type  
Description  
RESERVED  
R
No  
No  
Reserved bit always reads 0h  
42  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.11 ICO Current Limit in Use Register (Address = 0Ah) [reset = XXh]  
REG0A is shown in 34 and described in 18.  
Return to Summary Table.  
34. REG0A Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
0
0
0
X
X
X
X
X
RESERVED  
RESERVED  
RESERVED  
ICO_ILIM[4:0]  
18. REG0A Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
ICO_ILIM[4]  
ICO_ILIM[3]  
ICO_ILIM[2]  
ICO_ILIM[1]  
ICO_ILIM[0]  
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
No  
No  
No  
No  
No  
No  
No  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
Input Current Limit in use when ICO is enabled:  
Offset: 500 mA  
Range: 500 mA – 3300 mA  
版权 © 2019, Texas Instruments Incorporated  
43  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.12 Charger Status 1 Register (Address = 0Bh) [reset = XXh]  
REG0B is shown in 35 and described in 19.  
Return to Summary Table.  
35. REG0B Register  
Bit  
7
X
6
5
4
3
X
2
1
0
Reset  
Field  
X
X
X
X
X
X
Reserved  
IINDPM_STAT VINDPM_STAT  
TREG_STAT  
WD_STAT  
CHRG_STAT[2:0]  
19. REG0B Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
Reserved  
R
R
No  
No  
No  
No  
Reserved bit always reads 0  
IINDPM_STAT  
VINDPM_STAT  
TREG_STAT  
WD_STAT  
IINDPM Status:  
0 – Normal  
1 – In IINDPM Regulation (ILIM pin or IINDPM register)  
5
4
3
R
R
R
No  
No  
No  
No  
No  
No  
VINDPM Status:  
0 – Normal  
1 – In VINDPM Regulation  
IC Thermal regulation Status:  
0 – Normal  
1 – In Thermal Regulation  
I2C Watchdog Timer Status bit:  
0 – Normal  
1 – WD Timer expired  
2
1
0
CHRG_STAT[2]  
CHRG_STAT[1]  
CHRG_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
Charge Status bits:  
000 – Not Charging  
001 – Trickle Charge (VBAT < VBAT_SHORT)  
010 – Pre-charge (VBAT_UVLO_RISING < VBAT < VBAT_LOWV)  
011 – Fast-charge (CC mode)  
100 – Taper Charge (CV mode)  
101 – Top-off Timer Charging  
110 – Charge Termination Done  
111 – Reserved  
44  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.13 Charger Status 2 Register (Address = 0Ch) [reset = XXh]  
REG0C is shown in 36 and described in 20.  
Return to Summary Table.  
36. REG0C Register  
Bit  
7
X
6
5
4
3
2
1
0
X
Reset  
Field  
X
X
X
0
X
X
PG_STAT  
VBUS_STAT[2:0]  
RESERVED  
ICO_STAT[1]  
ICO_STAT[0]  
Reserved  
20. REG0C Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_STAT  
R
No  
No  
Power Good Status:  
0 – Not Power Good  
1 – Power Good  
6
5
4
VBUS_STAT[2]  
VBUS_STAT[1]  
VBUS_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
VBUS Detection Status  
000 – No Input  
001 – USB Host SDP ---> PSEL High  
010 - USB CDP (1.5 A)  
011 – Adapter (3.0 A) ---> PSEL low  
100 – POORSRC detected 7 consecutive times  
101 - Unknown Adapter (500 mA)  
110 - Non-standard Adapter (1 A/2 A/2.1 A/2.4 A)  
3
2
1
RESERVED  
ICO_STAT[1]  
ICO_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0h  
Input Current Optimizer (ICO) Status:  
00 – ICO Disabled  
01 – ICO Optimization is in progress  
10 – Maximum input current detected  
11 – Reserved  
0
Reserved  
R
No  
No  
Reserved bit always reads 0h  
版权 © 2019, Texas Instruments Incorporated  
45  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.14 NTC Status Register (Address = 0Dh) [reset = 0Xh]  
REG0D is shown in 37 and described in 21.  
Return to Summary Table.  
37. REG0D Register  
Bit  
7
0
6
0
5
4
3
2
1
0
Reset  
Field  
0
0
0
X
X
X
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TS_STAT[2:0]  
21. REG0D Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TS_STAT[2]  
TS_STAT[1]  
TS_STAT[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Yes  
Yes  
Yes  
Yes  
No  
NTC (TS) Status:  
000 – Normal  
010 – TS Warm  
011 – TS Cool  
101 – TS Cold  
110 – TS Hot  
No  
No  
46  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.15 FAULT Status Register (Address = 0Eh) [reset = XXh]  
REG0E is shown in 38 and described in 22.  
Return to Summary Table.  
38. REG0E Register  
Bit  
7
6
5
0
4
X
3
2
1
0
X
Reset  
Field  
X
X
0
0
0
VBUS_OVP_ST TSHUT_STAT  
AT  
Reserved  
TMR_STAT  
RESERVED  
RESERVED  
RESERVED  
Reserved  
22. REG0E Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_STAT  
R
No  
No  
Input over-voltage Status:  
0 – Normal  
1 – Device in over-voltage protection  
6
TSHUT_STAT  
R
No  
No  
IC Temperature shutdown Status:  
0 – Normal  
1 – Device in thermal shutdown protection  
5
4
RESERVED  
TMR_STAT  
R
R
No  
No  
No  
No  
Reserved bit always reads 0h  
Charge Safety timer Status:  
0 – Normal  
1 – Charge Safety timer expired  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
版权 © 2019, Texas Instruments Incorporated  
47  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.16 Charger Flag 1 Register (Address = 0Fh) [reset = 00h]  
REG0F is shown in 39 and described in 23.  
Return to Summary Table.  
39. REG0F Register  
Bit  
7
0
6
0
5
0
4
3
0
2
1
0
Reset  
Field  
0
0
0
0
Reserved  
IINDPM_FLAG VINDPM_FLAG  
TREG_FLAG  
WD_FLAG  
RESERVED  
RESERVED  
CHRG_FLAG  
23. REG0F Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
Reserved  
R
R
Yes  
No  
No  
Reserved bit always reads 0  
IINDPM_FLAG  
VINDPM_FLAG  
TREG_FLAG  
WD_FLAG  
Yes  
IINDPM Regulation INT Flag:  
0 – Normal  
1 – IINDPM signal rising edge detected  
5
4
3
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
VINDPM regulation INT Flag:  
0 – Normal  
1 – VINDPM signal rising edge detected  
IC Temperature Regulation INT Flag:  
0 – Normal  
1 – TREG signal rising edge detected  
I2C Watchdog INT Flag:  
0 – Normal  
1 – WD_STAT signal rising edge detected  
2
1
0
RESERVED  
RESERVED  
CHRG_FLAG  
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Charge Status INT Flag:  
0 – Normal  
1 – CHRG_STAT[2:0] bits changed (transition to any state)  
48  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.17 Charger Flag 2 Register (Address = 10h) [reset = 00h]  
REG10 is shown in 40 and described in 24.  
Return to Summary Table.  
40. REG10 Register  
Bit  
7
0
6
5
4
3
2
0
1
0
0
Reset  
Field  
0
0
0
0
0
PG_FLAG  
RESERVED  
RESERVED  
VBUS_FLAG  
RESERVED  
TS_FLAG  
ICO_FLAG  
Reserved  
24. REG10 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_FLAG  
R
Yes  
No  
Power Good INT Flag:  
0 – Normal  
1 – PG signal toggle detected  
6
5
4
RESERVED  
RESERVED  
VBUS_FLAG  
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
VBUS Status INT Flag:  
0 – Normal  
1 – VBUS_STAT[2:0] bits changed (transition to any state)  
3
2
RESERVED  
TS_FLAG  
R
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0h  
TS Status INT Flag:  
0 – Normal  
1 – TS_STAT[2:0] bits changed (transition to any state)  
1
0
ICO_FLAG  
R
R
Yes  
Yes  
No  
No  
Input Current Optimizer (ICO) INT Flag:  
0 – Normal  
1 – ICO_STAT[1:0] changed (transition to any state)  
RESERVED  
Reserved bit always reads 0h  
版权 © 2019, Texas Instruments Incorporated  
49  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.18 FAULT Flag Register (Address = 11h) [reset = 00h]  
REG11 is shown in 41 and described in 25.  
Return to Summary Table.  
41. REG11 Register  
Bit  
7
0
6
0
5
0
4
3
2
1
0
0
Reset  
Field  
0
0
0
0
VBUS_OVP_FL TSHUT_FLAG  
AG  
Reserved  
TMR_FLAG  
RESERVED  
RESERVED  
RESERVED  
Reserved  
25. REG11 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_FLAG  
R
Yes  
No  
Input over-voltage INT Flag:  
0 – Normal  
1 – Entered VBUS_OVP Fault  
6
TSHUT_FLAG  
R
Yes  
No  
IC Temperature shutdown INT Flag:  
0 – Normal  
1 – Entered TSHUT Fault  
5
4
RESERVED  
TMR_FLAG  
R
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0h  
Charge Safety timer Fault INT Flag:  
0 – Normal  
1 – Charge Safety timer expired rising edge detected  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
50  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.19 Charger Mask 1 Register (Address = 12h) [reset = 00h]  
REG12 is shown in 42 and described in 26.  
Return to Summary Table.  
42. REG12 Register  
Bit  
7
0
6
1
5
1
4
1
3
2
1
0
Reset  
Field  
0
0
0
0
ADC_DONE_M IINDPM_MASK VINDPM_MASK TREG_MASK  
ASK  
WD_MASK  
RESERVED  
RESERVED  
CHRG_MASK  
26. REG12 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
ADC_DONE_MASK  
R/W  
Yes  
No  
No  
No  
No  
No  
ADC Conversion INT Mask Flag (only one-shot mode)  
0 – ADC_DONE does produce INT pulse  
1 – ADC_DONE does produce not INT pulseReserved bit always reads 0  
IINDPM_MASK  
VINDPM_MASK  
TREG_MASK  
WD_MASK  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
IINDPM Regulation INT Mask  
0 – IINDPM entry produces INT pulse  
1 – IINDPM entry does not produce INT pulse  
VINDPM Regulation INT Mask  
0 – VINDPM entry produces INT pulse  
1 – VINDPM entry not produce INT pulse  
IC Temperature Regulation INT Mask  
0 – TREG entry produces INT pulse  
1 – TREG entry produce INT pulse  
I2C Watchdog Timer INT Mask  
0 – WD_STAT rising edge produces INT pulse  
1 – WD_STAT rising edge does not produce INT  
2
1
0
RESERVED  
RESERVED  
CHRG_MASK  
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
R
R/W  
Charge Status INT Mask  
0 – CHRG_STAT[2:0] bit change produces INT  
1 – CHRG_STAT[2:0] bit change does not produce INT pulse  
版权 © 2019, Texas Instruments Incorporated  
51  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.20 Charger Mask 2 Register (Address = 13h) [reset = 00h]  
REG13 is shown in 43 and described in 27.  
Return to Summary Table.  
43. REG13 Register  
Bit  
7
0
6
5
4
3
2
0
1
0
0
Reset  
Field  
0
0
0
0
0
PG_MASK  
RESERVED  
RESERVED  
VBUS_MASK  
RESERVED  
TS_MASK  
ICO_MASK  
Reserved  
27. REG13 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_MASK  
R/W  
Yes  
No  
Power Good INT Mask:  
0 – PG toggle produces INT pulse  
1 – PG toggle does not produce INT pulse  
6
5
4
RESERVED  
RESERVED  
VBUS_MASK  
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
R
R/W  
VBUS Status INT Mask:  
0 – VBUS_STAT[2:0] bit change produces INT  
1 – VBUS_STAT[2:0] bit change does not produces INT  
3
2
RESERVED  
TS_MASK  
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0h  
R/W  
TS Status INT Mask:  
0 – TS_STAT[2:0] bit change produces INT  
1 – TS_STAT[2:0] bit change does not produces INT pulse  
1
0
ICO_MASK  
RESERVED  
R/W  
R
Yes  
Yes  
No  
No  
Input Current Optimizer (ICO) INT Mask:  
0 – ICO_STAT rising edge produces INT  
1 – ICO_STAT rising edge does not produce INT  
Reserved bit always reads 0h  
52  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.21 FAULT Mask Register (Address = 14h) [reset = 00h]  
REG14 is shown in 44 and described in 28.  
Return to Summary Table.  
44. REG14 Register  
Bit  
7
0
6
0
5
0
4
3
0
2
1
0
0
Reset  
Field  
0
0
0
VBUS_OVP_M TSHUT_MASK  
ASK  
Reserved  
TMR_MASK  
SNS_SHORT_  
MASK  
RESERVED  
RESERVED  
Reserved  
28. REG14 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_MASK  
R/W  
Yes  
No  
Input over-voltage INT Mask:  
0 – VBUS_OVP rising edge produces INT pulse  
1 – VBUS_OVP rising edge does not produce INT pulse  
6
TSHUT_MASK  
R/W  
Yes  
No  
Thermal Shutdown INT Mask:  
0 – TSHUT rising edge produces INT pulse  
1 – TSHUT rising edge does not produce INT pulse  
5
4
RESERVED  
TMR_MASK  
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0h  
R/W  
Charge Safety Timer Fault INT Mask:  
0 – Timer expired rising edge produces INT pulse  
1 – Timer expired rising edge does not produce INT pulse  
3
SNS_SHORT_MASK  
R/W  
Yes  
No  
SNS Short Fault INT Mask:  
0 – SNS short rising edge produces INT pulse  
1 – SNS short rising edge does not produce INT pulse  
2
1
0
RESERVED  
RESERVED  
RESERVED  
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
版权 © 2019, Texas Instruments Incorporated  
53  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.22 ADC Control Register (Address = 15h) [reset = 30h]  
REG15 is shown in 45 and described in 29.  
Return to Summary Table.  
45. REG15 Register  
Bit  
7
0
6
5
1
4
1
3
2
1
0
Reset  
Field  
0
0
0
0
0
ADC_EN  
ADC_RATE  
ADC_SAMPLE[1:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
29. REG15 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
ADC_EN  
R/W  
Yes  
Yes  
ADC Control:  
0 – Disable ADC  
1 – Enable ADC  
6
ADC_RATE  
R/W  
Yes  
No  
0 – Continuous conversion  
1 – One-shot conversion  
5
4
ADC_SAMPLE[1]  
ADC_SAMPLE[0]  
R/W  
R/W  
Yes  
Yes  
No  
No  
Sample Speed of ADC:  
00 – 15 bit effective resolution  
01 – 14 bit effective resolution  
10 – 13 bit effective resolution  
11 – 12 bit effective resolution  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
54  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.23 ADC Function Disable Register (Address = 16h) [reset = 00h]  
REG16 is shown in 46 and described in 30.  
Return to Summary Table.  
46. REG16 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
0
Reset  
Field  
0
IBUS_ADC_DIS ICHG_ADC_DI VBUS_ADC_DI VBAT_ADC_DI  
Reserved  
TS_ADC_DIS  
VCELL_ADC_D TDIE_ADC_DIS  
IS  
S
S
S
30. REG16 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
IBUS_ADC_DIS  
R/W  
Yes  
No  
No  
No  
No  
0 – Enable conversion  
1 – Disable conversion  
ICHG_ADC_DIS  
VBUS_ADC_DIS  
VBAT_ADC_DIS  
R/W  
R/W  
R
Yes  
Yes  
Yes  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
3
2
RESERVED  
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0h  
TS_ADC_DIS  
R/W  
0 – Enable conversion  
1 – Disable conversion  
1
0
VCELL_ADC_DIS  
TDIE_ADC_DIS  
R/W  
R/W  
Yes  
Yes  
No  
No  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
版权 © 2019, Texas Instruments Incorporated  
55  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.24 IBUS ADC 1 Register (Address = 17h) [reset = 00h]  
REG17 is shown in 47 and described in 31.  
Return to Summary Table.  
47. REG17 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
IBUS_ADC[15:8]  
31. REG17 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IBUS_ADC[15]  
IBUS_ADC[14]  
IBUS_ADC[13]  
IBUS_ADC[12]  
IBUS_ADC[11]  
IBUS_ADC[10]  
IBUS_ADC[9]  
IBUS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
Yes  
16384 mA  
8192 mA  
4096 mA  
Yes  
Yes  
Yes  
2048 mA  
1024 mA  
512 mA  
256 mA  
VBUS Current Reading (positive current flows into VBUS pin,  
negative current flows out ot VBUS pin):  
Range: 0 A – 4 A  
Yes  
Yes  
Yes  
8.5.25 IBUS ADC 0 Register (Address = 18h) [reset = 00h]  
REG18 is shown in 48 and described in 32.  
Return to Summary Table.  
48. REG18 Register  
Bit  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
IBUS_ADC[7:0]  
32. REG18 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IBUS_ADC[7]  
IBUS_ADC[6]  
IBUS_ADC[5]  
IBUS_ADC[4]  
IBUS_ADC[3]  
IBUS_ADC[2]  
IBUS_ADC[1]  
IBUS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mA  
64 mA  
32 mA  
16 mA  
8 mA  
VBUS Current Reading (positive current flows into VBUS pin,  
negative current flows out ot VBUS pin):  
Range: 0 A – 4 A  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mA  
Yes  
2 mA  
Yes  
1 mA  
56  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.26 ICHG ADC 1 Register (Address = 19h) [reset = 00h]  
REG19 is shown in 49 and described in 33.  
Return to Summary Table.  
49. REG19 Register  
Bit  
7
6
0
5
0
4
0
3
2
0
1
0
0
0
Reset  
Field  
0
0
RESERVED  
ICHG_ADC[14:8]  
33. REG19 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
Reserved  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved register always reads 0h.  
ICHG_ADC[14]  
ICHG_ADC[13]  
ICHG_ADC[12]  
ICHG_ADC[11]  
ICHG_ADC[10]  
ICHG_ADC[9]  
ICHG_ADC[8]  
Yes  
16384 mA  
8192 mA  
4096 mA  
Yes  
Yes  
Yes  
2048 mA  
1024 mA  
512 mA  
256 mA  
Charge Current Reading:  
Range: 0 A – 4 A  
Yes  
Yes  
Yes  
8.5.27 ICHG ADC 0 Register (Address = 1Ah) [reset = 00h]  
REG1A is shown in 50 and described in 34.  
Return to Summary Table.  
50. REG1A Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
ICHG_ADC[7:0]  
34. REG1A Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
ICHG_ADC[7]  
ICHG_ADC[6]  
ICHG_ADC[5]  
ICHG_ADC[4]  
ICHG_ADC[3]  
ICHG_ADC[2]  
ICHG_ADC[1]  
ICHG_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mA  
64 mA  
32 mA  
16 mA  
8 mA  
Charge Current Reading:  
Range: 0 A – 4 A  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mA  
Yes  
2 mA  
Yes  
1 mA  
版权 © 2019, Texas Instruments Incorporated  
57  
 
 
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.28 VBUS ADC 1 Register (Address = 1Bh) [reset = 00h]  
REG1B is shown in 51 and described in 35.  
Return to Summary Table.  
51. REG1B Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBUS_ADC[15:8]  
35. REG1B Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBUS_ADC[15]  
VBUS_ADC[14]  
VBUS_ADC[13]  
VBUS_ADC[12]  
VBUS_ADC[11]  
VBUS_ADC[10]  
VBUS_ADC[9]  
VBUS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV  
Yes  
Yes  
8192 mV  
4096 mV  
2048 mV  
1024 mV  
512 mV  
VBUS Voltage reading  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
256 mV  
8.5.29 VBUS ADC 0 Register (Address = 1Ch) [reset = 00h]  
REG1C is shown in 52 and described in 36.  
Return to Summary Table.  
52. REG1C Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBUS_ADC[7:0]  
36. REG1C Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBUS_ADC[7]  
VBUS_ADC[6]  
VBUS_ADC[5]  
VBUS_ADC[4]  
VBUS_ADC[3]  
VBUS_ADC[2]  
VBUS_ADC[1]  
VBUS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VBUS Voltage Reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
58  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.30 VBAT ADC 1 Register (Address = 1Dh) [reset = 00h]  
REG1D is shown in 53 and described in 37.  
Return to Summary Table.  
53. REG1D Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBAT_ADC[15:8]  
37. REG1D Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBAT_ADC[15]  
VBAT_ADC[14]  
VBAT_ADC[13]  
VBAT_ADC[12]  
VBAT_ADC[11]  
VBAT_ADC[10]  
VBAT_ADC[9]  
VBAT_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV  
Yes  
Yes  
8192 mV  
4096 mV  
2048 mV  
1024 mV  
512 mV  
VBAT Voltage reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
256 mV  
8.5.31 VBAT ADC 0 Register (Address = 1Eh) [reset = 00h]  
REG1E is shown in 54 and described in 38.  
Return to Summary Table.  
54. REG1E Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBAT_ADC[7:0]  
38. REG1E Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBAT_ADC[7]  
VBAT_ADC[6]  
VBAT_ADC[5]  
VBAT_ADC[4]  
VBAT_ADC[3]  
VBAT_ADC[2]  
VBAT_ADC[1]  
VBAT_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VBAT Voltage reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
版权 © 2019, Texas Instruments Incorporated  
59  
 
 
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.32 VCELLTOP ADC 1 Register (Address = 1Fh) [reset = 00h]  
REG1F is shown in 55 and described in 39.  
Return to Summary Table.  
55. REG1F Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VCELLTOP_ADC[15:8]  
39. REG1F Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VCELLTOP_ADC[15]  
VCELLTOP_ADC[14]  
VCELLTOP_ADC[13]  
VCELLTOP_ADC[12]  
VCELLTOP_ADC[11]  
VCELLTOP_ADC[10]  
VCELLTOP_ADC[9]  
VCELLTOP_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV VCELLTOP Voltage reading:  
Yes  
Range: 0 V – 5 V  
Yes  
8192 mV  
Note: cell balancing voltage measurement is measured through  
internal comparator. ADC reading may not reflect the actual cell  
balancing voltage measurement.  
Yes  
4096 mV  
2048 mV  
1024 mV  
512 mV  
256 mV  
Yes  
Yes  
Yes  
Yes  
8.5.33 VCELLTOP ADC 0 Register (Address = 20h) [reset = 00h]  
REG20 is shown in 56 and described in 40.  
Return to Summary Table.  
56. REG20 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VCELLTOP_ADC[7:0]  
40. REG20 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VCELLTOP_ADC[7]  
VCELLTOP_ADC[6]  
VCELLTOP_ADC[5]  
VCELLTOP_ADC[4]  
VCELLTOP_ADC[3]  
VCELLTOP_ADC[2]  
VCELLTOP_ADC[1]  
VCELLTOP_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VCELLTOP Voltage reading:  
Range: 0 V – 5 V  
Note: cell balancing voltage measurement is measured through  
internal comparator. ADC reading may not reflect the actual cell  
balancing voltage measurement.  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
60  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.34 TS ADC 1 Register (Address = 21h) [reset = 00h]  
REG21 is shown in 57 and described in 41.  
Return to Summary Table.  
57. REG21 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
TS_ADC[15:8]  
41. REG21 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
Sign bit: overall results reported in two's complement.  
7
6
5
4
3
2
1
0
TS_ADC[15]  
TS_ADC[14]  
TS_ADC[13]  
TS_ADC[12]  
TS_ADC[11]  
TS_ADC[10]  
TS_ADC[9]  
TS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
50.0 %  
25.0 %  
TS as percentage of REGN reading:  
Range: 0% – 94.9%  
Yes  
8.5.35 TS ADC 0 Register (Address = 22h) [reset = 00h]  
REG22 is shown in 58 and described in 42.  
Return to Summary Table.  
58. REG22 Register  
Bit  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
TS_ADC[7:0]  
42. REG22 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
TS_ADC[7]  
TS_ADC[6]  
TS_ADC[5]  
TS_ADC[4]  
TS_ADC[3]  
TS_ADC[2]  
TS_ADC[1]  
TS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
12.50 %  
6.25 %  
TS as percentage of REGN reading:  
Range: 0% – 94.9%  
Yes  
Yes  
3.125 %  
1.563 %  
0.781 %  
0.391 %  
0.195 %  
0.098 %  
Yes  
Yes  
Yes  
Yes  
Yes  
版权 © 2019, Texas Instruments Incorporated  
61  
 
 
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.36 TDIE ADC 1 Register (Address = 23h) [reset = 00h]  
REG23 is shown in 59 and described in 43.  
Return to Summary Table.  
59. REG23 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
TDIE_ADC[15:8]  
43. REG23 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
Sign bit: overall results reported in two's complement.  
7
6
5
4
3
2
1
0
TDIE_ADC[15]  
TDIE_ADC[14]  
TDIE_ADC[13]  
TDIE_ADC[12]  
TDIE_ADC[11]  
TDIE_ADC[10]  
TDIE_ADC[9]  
TDIE_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
128 °C  
TDIE (IC Temperature) reading:  
Range: 0°C – 128°C  
8.5.37 TDIE ADC 0 Register (Address = 24h) [reset = 00h]  
REG24 is shown in 60 and described in 44.  
Return to Summary Table.  
60. REG24 Register  
Bit  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
TDIE_ADC[7:0]  
44. REG24 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
TDIE_ADC[7]  
TDIE_ADC[6]  
TDIE_ADC[5]  
TDIE_ADC[4]  
TDIE_ADC[3]  
TDIE_ADC[2]  
TDIE_ADC[1]  
TDIE_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
64 °C  
32 °C  
16 °C  
8 °C  
TDIE (IC Temperature) reading:  
Range: 0°C – 128°C  
Yes  
Yes  
Yes  
Yes  
4°C  
Yes  
2 °C  
Yes  
1 °C  
Yes  
0.5 °C  
62  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.38 Part Information Register (Address = 25h) [reset = 28h]  
REG25 is shown in 61 and described in 45.  
Return to Summary Table.  
61. REG25 Register  
Bit  
7
0
6
0
5
1
4
0
3
1
2
0
1
0
0
Reset  
Field  
0
REG_RST  
PN[3:0]  
DEV_REV[2:0]  
45. REG25 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
REG_RST  
R/W  
Yes  
No  
Register Reset:  
0 – Keep current register settings  
1 – Reset to default register value and reset safety timer (bit resets to 0 after  
register reset is complete)  
6
5
4
3
2
1
0
PN[3]  
R
R
R
R
R
R
R
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
0101: BQ25887  
PN[2]  
PN[1]  
PN[0]  
DEV_REV[2]  
DEV_REV[1]  
DEV_REV[0]  
Device revision: 001  
版权 © 2019, Texas Instruments Incorporated  
63  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.39 VCELLBOT ADC 1 Register (Address = 26h) [reset = 00h]  
REG26 is shown in 62 and described in 46.  
Return to Summary Table.  
62. REG26 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VCELLBOT_ADC[15:8]  
46. REG26 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VCELLBOT_ADC[15]  
VCELLBOT_ADC[14]  
VCELLBOT_ADC[13]  
VCELLBOT_ADC[12]  
VCELLBOT_ADC[11]  
VCELLBOT_ADC[10]  
VCELLBOT_ADC[9]  
VCELLBOT_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV  
Yes  
Yes  
8192 mV  
4096 mV  
2048 mV  
1024 mV  
512 mV  
Bottom Cell Voltage from MID to GND Voltage reading:  
Range: 0 V – 5 V  
Yes  
Yes  
Yes  
Yes  
Yes  
256 mV  
8.5.40 VCELLBOT ADC 0 Register (Address = 27h) [reset = 00h]  
REG27 is shown in 63 and described in 47.  
Return to Summary Table.  
63. REG27 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VCELLBOT_ADC[7:0]  
47. REG27 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VCELLBOT_ADC[7]  
VCELLBOT_ADC[6]  
VCELLBOT_ADC[5]  
VCELLBOT_ADC[4]  
VCELLBOT_ADC[3]  
VCELLBOT_ADC[2]  
VCELLBOT_ADC[1]  
VCELLBOT_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
Bottom Cell Voltage from MID to GND Voltage reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
64  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.41 Cell Balancing Control 1 Register (Address = 28h) [reset = 2Ah]  
REG28 is shown in 64 and described in 48.  
Return to Summary Table.  
64. REG28 Register  
Bit  
7
0
6
5
1
4
0
3
1
2
0
1
1
0
0
Reset  
Field  
0
VDIFF_END_OFFSET[2:0]  
TCB_QUAL_IN  
TERVAL  
TCB_ACTIVE[1:0]  
TSETTLE[1:0]  
48. REG28 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VDIFF_END_OFFSET[ R/W  
2]  
Yes  
No  
No  
No  
Cell balancing exit threshold is programmed as an offset from the  
VDIFF_START. Range is 30 mV to 100 mV with 10-mV resolution. Note that  
VDIFF_END_OFFSET should be less than the selected VDIFF_START.  
VDIFF_END = VDIFF_START – VDIFF_END_OFFSET. If VDIFF_END is less  
than 10 mV, then the charger should clamp VDIFF_END to 10 mV.  
000 – 30 mV  
001 – 40 mV (Default)  
010 – 50 mV  
6
5
VDIFF_END_OFFSET[ R/W  
1]  
Yes  
Yes  
VDIFF_END_OFFSET[ R/W  
0]  
011 – 60 mV  
100 – 70 mV  
101 – 80 mV  
110 – 90 mV  
111 – 100 mV  
4
TCB_QUAL_INTERVAL R/W  
Yes  
No  
Options for the interval between taking measurements to enter cell balancing  
mode:  
0 – 2 min (default)  
1 – 4 min  
3
2
TCB_ACTIVE[1]  
TCB_ACTIVE[0]  
R/W  
R/W  
Yes  
Yes  
No  
No  
Register to select time interval to stop charging and cell balancing discharging for  
cell voltage measurements  
00 – 4 s  
01 – 32 s  
10 – 2 min (default)  
11 – 4 min  
1
0
TSETTLE[1]  
TSETTLE[0]  
R/W  
R/W  
Yes  
Yes  
No  
No  
Register to set delay between charge disable and voltage measurement.  
00 – 10 ms  
01 – 100 ms  
10 – 1 s (default)  
11 – 2 s  
版权 © 2019, Texas Instruments Incorporated  
65  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.42 Cell Balancing Control 2 Register (Address = 29h) [reset = F4h]  
REG29 is shown in 65 and described in 49.  
Return to Summary Table.  
65. REG29 Register  
Bit  
7
1
6
1
5
1
4
1
3
0
2
1
1
0
0
0
Reset  
Field  
VQUAL_TH  
VDIFF_START  
49. REG29 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
Bit  
Field  
Type  
Description  
WATCHDOG  
7
6
5
4
VQUAL_TH [3]  
VQUAL_TH [2]  
VQUAL_TH [1]  
VQUAL_TH [0]  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
80 mV  
40 mV  
20 mV  
10 mV  
The threshold from cell balancing pre-qualification mode to cell  
balancing qualification mode. This is the differential threshold between  
the two cells when charging is enabled. Offset is 40mV. Range from  
40mV to 180mV with 10mV step.  
0000 – 40 mV  
0001 – 50 mV  
0010 – 60 mV  
0011 – 70 mV  
0100 – 80 mV  
0101 – 90 mV  
0110 – 100 mV  
0111 – 110 mV  
1000 – 120 mV  
1001 – 130 mV  
1010 – 140 mV  
1011 – 150 mV  
1100: 160 mV  
1101 – 170 mV  
1110 – 180 mV  
1111 – Disable pre-qualification (Default)  
3
2
1
0
VDIFF_START [3]  
VDIFF_START [2]  
VDIFF_START [0]  
VDIFF_START [1]  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
80 mV  
40 mV  
20 mV  
10 mV  
The threshold from cell balancing qualification mode to cell balancing  
active mode. This is the differential threshold between the two cells  
when charging is enabled. Offset is 40mV. Range from 40 mV to 190  
mV with 10-mV step. Default VDIFF_START is 0100 (80 mV)  
0000 – 40 mV  
0001 – 50 mV  
0010 – 60 mV  
0011 – 70 mV  
0100 – 80 mV (Default)  
0101 – 90 mV  
0110 – 100 mV  
0111 – 110 mV  
1000 – 120 mV  
1001 – 130 mV  
1010 – 140 mV  
1011 – 150 mV  
1100 – 160 mV  
1101 – 170 mV  
1110 – 180 mV  
1111 – 190 mV  
66  
版权 © 2019, Texas Instruments Incorporated  
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
8.5.43 Cell Balancing Status and Control Register (Address = 2Ah) [reset = 81h]  
REG29 is shown in 66 and described in 50.  
Return to Summary Table.  
66. REG2A Register  
Bit  
7
1
6
1
5
0
4
3
2
1
0
Reset  
Field  
0
0
0
0
0
CB_CHG_DIS CB__AUTO_EN  
CB_STAT  
HS_CV_STAT  
LS_CV_STAT  
HS_OV_STAT  
LS_OV_STAT  
CB_OC_STAT  
50. REG2A Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
CB_CHG_DIS  
R/W  
Yes  
Yes  
Yes  
No  
No  
No  
Bit to disable charge for accurate cell balancing measurement. CB discharge will  
still be disabled for measurement.  
0 – Charge is continuous during cell balancing cell voltage measurement  
1 – Charge is disabled during cell balancing cell voltage measurement. (Default)  
CB_AUTO_EN  
CB_STAT  
R/W  
R
Bit to enable automatic cell balancing mode. This bit must be low to allow the  
manual cell discharge function.  
0 – Disable auto cell balancing  
1 – Enable auto cell balancing (Default)  
Anytime cell balance is active, the is bit is set to high. Once cell balance is exit,  
this bit returns to low.  
0 – Cell balance not active or cell balance is exit.  
1 – Cell balance active mode.  
4
3
2
1
0
HS_CV_STAT  
LS_CV_STAT  
HS_OV_STAT  
LS_OV_STAT  
CB_OC_STAT  
R
R
R
R
R
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
If this bit is set, the high side cell is in CV mode  
If this bit is set, the low side cell is in CV mode  
If this bit is set, the high side cell is in over-voltage  
If this bit is set, the low side cell is in over-voltage  
If this bit is set, the Cell Balance Over-Current Protection is active  
版权 © 2019, Texas Instruments Incorporated  
67  
 
 
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.5.44 Cell Balancing Flag Register (Address = 2Bh) [reset = 00h]  
REG2A is shown in 67 and described in 51.  
Return to Summary Table.  
67. REG2B Register  
Bit  
7
0
6
0
5
0
4
3
2
1
0
Reset  
Field  
0
0
0
0
0
QCBH_EN  
QCBL_EN  
CB_FLAG  
HS_CV_FLAG  
LS_CV_FLAG  
HS_OV_FLAG  
LS_OV_FLAG  
CB_OC_FLAG  
51. REG2B Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
QCBH_EN  
QCBL_EN  
CB_FLAG  
R/W  
R/W  
R
Yes  
Yes  
Yes  
No  
No  
No  
Bit to turn on QCBH to discharge the top cell.  
0 – Turn off QCBH (Default)  
1 – Turn on QCBH  
Bit to turn on QCBL to discharge the bottom cell.  
0 – Turn off QCBL (Default)  
1 – Turn on QCBL  
Cell balancing status INT Flag  
0 – Normal  
1 – Entered or exited cell balancing  
4
3
2
1
0
HS_CV_FLAG  
LS_CV_FLAG  
HS_OV_FLAG  
LS_OV_FLAG  
CB_OC_FLAG  
R
R
R
R
R
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
If this bit is set, the high side cell balancing FET is in CV mode, or has been in  
CV mode. This bit is cleared upon read.  
If this bit is set, the low side cell balancing FET is in CV mode, or has been in CV  
mode. This bit is cleared upon read.  
If this bit is set, the high side cell is in over-voltage, or has been in over-voltage.  
This bit is cleared upon read.  
If this bit is set, the low side cell is in over-voltage, or has been in over-voltage.  
This bit is cleared upon read.  
If this bit is set, the Cell Balance Over-Current Protection is active, or has been  
active. This bit is cleared upon read.  
8.5.45 Cell Balancing Mask Register (Address = 2Ch) [reset = 00h]  
REG2B is shown in 68 and described in 52.  
Return to Summary Table.  
68. REG2C Register  
Bit  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
Reserved  
Reserved  
CB_MASK  
HS_CV_MASK  
LS_CV_MASK  
HS_OV_MASK LS_OV_MASK CB_OC_MASK  
52. REG2C Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
Reserved  
Reserved  
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
R
CB_MASK  
R/W  
When set, the device will not send an interrupt on the INT pin when the device  
enters or exits cell balance mode.  
4
3
2
1
0
HS_CV_MASK  
LS_CV_MASK  
HS_OV_MASK  
LS_OV_MASK  
CB_OC_MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
When set, the device will not send an interrupt on the INT pin when the high side  
cell balancing FET is in CV mode.  
When set, the device will not send an interrupt on the INT pin when the low side  
cell balancing FET is in CV mode.  
When set, the device will not send an interrupt on the INT pin when the high side  
cell is in over-voltage.  
When set, the device will not send an interrupt on the INT pin when the low side  
cell is in over-voltage.  
When set, the device will not send an interrupt on the INT pin when the Cell  
Balance Over-Current Protections is active.  
68  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A typical application consists of the BQ25887 configured as an I2C controlled device and a 2s battery charger  
with cell balancing for Li-Ion and Li-polymer batteries used in a wide range of E-cig and other portable devices. It  
integrates an input blocking FET (QBLK, Q1), high-side switching FET (QHS, Q2), and low-side switching FET  
(QLS, Q3). The device also integrates a bootstrap diode for the high-side gate drive.  
9.2 Typical Application  
5V @ 3A  
VREF  
VBUS  
2.2K  
STAT  
1 F  
383  
Q1  
ILIM  
PMID  
SNS  
10 F  
Q2  
44 F  
ICHG=2A  
BAT  
RSNS  
1H  
SW  
47nF  
10 F  
BTST  
Q3  
4.7F  
REGN  
VREF  
MID  
300 *  
QCBH  
CBSET  
SDA  
RCBSET  
VREGN  
SCL  
/INT  
/PG  
CD  
QCBL  
Host  
TS  
BQ25887  
`
PSEL  
GND  
*Note: 300Q Œꢀ•]•š}Œ }v aL5 ‰]v ]• µ•ꢀꢁ š} o]u]š šZꢀ ꢂµŒŒꢀvš ]v šZꢀ ꢂꢃ•ꢀ ÁZꢀŒꢀ šZꢀ ꢄ}šš}u ꢂꢀoo ]• ‰oµPPꢀꢁ ]v ŒꢀÀꢀŒ•oÇ  
69. BQ25887 (Cell Balancing and I2C) Typical Application Diagram  
版权 © 2019, Texas Instruments Incorporated  
69  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in 53 below.  
53. Design Parameters  
PARAMETER  
VBUS voltage range  
VALUE  
3.9 V to 6.2 V  
2.4 A  
Input current limit (IINDPM[4:0])  
Fast charge current limit (ICHG[5:0])  
Battery Regulation Voltage (VCELLREG[7:0])  
1.5 A  
4.2 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The device has 1.5-MHz switching frequency to allow the use of small inductor and capacitor values. The  
inductor saturation current should be higher than the input current (IIN) plus half the ripple current (IRIPPLE):  
I
RIPPLE  
ISAT í IIN +  
2
(5)  
The inductor ripple current (IRIPPLE) depends on input voltage (VVBUS), duty cycle (D = VBAT/VBUS), switching  
frequency (fSW) and inductance (L):  
V
BUS ì(VSYS-VBUS  
)
IRIPPLE  
=
VSYS ì fSW ì L  
(6)  
The maximum inductor ripple current happens in the vicinity of D = 0.5. Usually inductor ripple is designed in the  
range of (20 – 40%) maximum charging current as a trade-off between inductor size and efficiency for a practical  
design.  
9.2.2.2 Input (VBUS / PMID) Capacitor  
The input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst  
case RMS ripple current occurs when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then  
the worst case capacitor RMS current IPMID occurs where the duty cycle is closest to 50% and can be estimated  
by  
I
RIPPLE  
IPMID  
=
ö 0.29ì IRIPPLE  
2ì 3  
(7)  
A low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed close to the PMID and GND pins of the IC. Voltage rating of the capacitor must be higher than normal  
input voltage level. 25-V rating or higher capacitor is preferred for up to 5-V input voltage. A minimum 10-μF  
capacitor is suggested for up to 3.3-A input current. Keep in mind, long impedance cable would cause significant  
voltage drop with higher inrush current. For optimal performance, 44-uF cap on PMID is recommended. In  
addition, a minimum 1-μF capacitor is suggested at VBUS pin.  
9.2.2.3 Output (VSNS) Capacitor  
The SYS capacitor is the boost converter output capacitor and should also have enough ripple current rating to  
absorb output switching ripple current. The output capacitor RMS current ICOUT is given:  
D
ICSYS, rms = IOUT ì  
1- D  
(8)  
The output capacitor voltage ripple is a function of the boost output current (IOUT), and can be calculated as  
follows:  
70  
版权 © 2019, Texas Instruments Incorporated  
 
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
I
OUT ì D  
DVSYS  
=
f
SW ìCSYS  
(9)  
A low ESR ceramic capacitor such as X7R or X5R is preferred for SNS decoupling capacitor and should be  
placed close to the SNS and GND pins of the IC. Voltage rating of the capacitor must be higher than normal  
output voltage level. 16-V rating or higher capacitor is preferred. Minimum 44-μF capacitor is suggested for up to  
2.2-A boost converter output current.  
版权 © 2019, Texas Instruments Incorporated  
71  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
9.2.3 Application Curves  
CVBUS = 1 µF, CPMID= 10 µF, CBAT = 10 µF, CSNS = 44 µF, L = DFE252012F-1R0 (1 µH) (unless otherwise specified)  
VBUS = 5 V  
VBAT = 6.0 V  
ICHG = 1 A  
VBUS = 5 V  
VBAT = 7.4 V  
ICHG = 1 A  
70. Adapter Power Up with Charge Enabled  
71. Charge Enable  
VBUS = 5 V  
VBAT = Open  
Charge disabled  
VBUS = 5 V  
VBAT = 7.4 V  
ICHG = 1 A  
73. Adapter Plug-in with No Battery Charge Disabled  
72. Charge Disabled  
VBUS = 5 V  
VBAT = 7.6 V  
ICHG = 1 A  
VBUS = 5 V  
VBAT = 8.4 V  
Charge disabled  
74. Boost Mode PWM Switching  
75. Boost Mode PFM Switching  
72  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
CVBUS = 1 µF, CPMID= 10 µF, CBAT = 10 µF, CSNS = 44 µF, L = DFE252012F-1R0 (1 µH) (unless otherwise specified)  
DCP Adapter  
VBAT = 8.0 V  
Charge enabled  
VBUS = 5 V  
VBAT = 8.4 V  
Charge disabled  
77. VINDPM Transient Response  
76. System Load Transient Response  
DCP Adapter  
VBAT = 8.0 V  
Charge enabled  
78. IINDPM Transient Response  
79. Charge Cycle with the Bottom Cell Voltage Higher  
Than the Top Cell Voltage  
80. Charge Cycle with the Top Cell Voltage Higher Than the Bottom Cell Voltage  
版权 © 2019, Texas Instruments Incorporated  
73  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
In order to provide an output voltage, the device requires a power supply between 3.9-V and 6.2-V input with at  
least 500-mA current rating connected to VBUS or a 2-cell Li-Ion battery with voltage > VBAT_UVLO connected  
to BAT..  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loops is important to prevent electrical and magnetic field  
radiation and high frequency resonant problems. Here is a PCB layout priority list for proper layout. Layout PCB  
according to this specific order is essential.  
1. Put SNS output capacitor as close to SNS and GND pins as possible. Ground connections need to be tied to  
the IC ground with a short copper trace connection or GND plane.  
2. Place PMID input capacitor as close as possible to PMID pins and PGND pins and use shortest copper trace  
connection or GND plane.  
3. Place inductor input terminal to SW pins as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the input current. Minimize  
parasitic capacitance from this area to any other trace or plane.  
4. Decoupling capacitors should be placed on the same side of and next to the IC and make trace connection  
as short as possible.  
5. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using thermal pad as the single ground  
connection point. Or using a 0-Ω resistor to tie analog ground to power ground.  
6. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB  
ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on  
the other layers.  
7. Via size and number should be enough for a given current path.  
8. Route MID as sensing trace away from switching nodes such as SW.  
Refer to the EVM design and the Layout Example below for the recommended component placement with trace  
and via locations.  
74  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
11.2 Layout Example  
81. PCB Layout Example  
版权 © 2019, Texas Instruments Incorporated  
75  
BQ25887  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
BQ2588x 升压电池充电器评估模块用户指南》  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
76  
版权 © 2019, Texas Instruments Incorporated  
BQ25887  
www.ti.com.cn  
ZHCSJR3B FEBRUARY 2019REVISED NOVEMBER 2019  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
77  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25887RGER  
BQ25887RGET  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25887  
BQ25887  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Nov-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25887RGER  
BQ25887RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Nov-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25887RGER  
BQ25887RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ25887RGER

适用于 USB 输入、集成式电池均衡的 I2C 2 节 2A 升压电池充电器 | RGE | 24 | -40 to 85
TI

BQ25887RGET

适用于 USB 输入、集成式电池均衡的 I2C 2 节 2A 升压电池充电器 | RGE | 24 | -40 to 85
TI

BQ25890

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器
TI

BQ25890H

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器
TI

BQ25890HRTWR

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890HRTWT

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890RTWR

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890RTWT

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890_15

bq25890/2 I2C Controlled Single Cell 5-A Fast Charger with MaxChargeTM Technology for High Input Voltage and Adjustable Voltage USB On-the-Go Boost Mode
TI

BQ25892

具有 NVDC 电源路径和 PSEL 的 I2C 单节 5A 降压电池充电器
TI

BQ25892RTWR

具有 NVDC 电源路径和 PSEL 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25892RTWT

具有 NVDC 电源路径和 PSEL 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI