BQ25910YFFR [TI]

用于并联充电应用的 I2C 单节 6A 三级降压电池充电器 | YFF | 36 | -40 to 85;
BQ25910YFFR
型号: BQ25910YFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于并联充电应用的 I2C 单节 6A 三级降压电池充电器 | YFF | 36 | -40 to 85

电池
文件: 总62页 (文件大小:2309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
支持对单节电池进行快速充电的 BQ25910 I2C 控制型 6A 三级开关模式  
并联电池充电器  
1 特性  
2 应用  
1
并联充电器可在双充电器配置下提供快速充电  
智能手机  
高效的 750kHz 开关模式三级降压并联充电器  
平板电脑  
无线充电  
降低了纹波以支持低厚度电感器  
便携式电子产品  
电子销售点 (ePOS)  
1.5A 电流(5V 输入)下具有 95.4% 的充电  
效率  
3A 电流(9V 输入)下具有 93.3% 的充电效  
3 说明  
与传统小尺寸降压转换器相比,效率更加出色  
BQ25910 是一款适用于单节锂离子和锂聚合物电池的  
集成式三级开关模式并联电池充电管理器件。利用三级  
转换器,可在保持最高开关模式工作效率的同时降低解  
决方案尺寸,并提高功率密度。 该器件支持通过高输  
入电压为各种便携设备快速充电。该解决方案集成了反  
单个输入,支持 USB 输入和可调高电压适配器  
支持 3.9V 14V 输入电压范围,绝对最大输  
入电压额定值为 20V  
输入电流限制(500mA 3.6A,分辨率为  
100mA),支持 USB2.0USB3.0 标准和高电  
压适配器  
向阻断 FET (QBLK) 和四个开关 FETQHSAQHSB  
Q
LSBQLSA)。具有充电和系统设置的 I2C 串行接口  
使得此器件成为一个真正的灵活解决方案。  
通过高达 14V 的输入电压限制 (VINDPM) 进行  
最大功率跟踪  
灵活的 I2C 模式,可实现最优系统性能  
器件信息(1)  
高集成度包括所有 MOSFET、电流感应和环路补偿  
器件型号  
BQ25910  
封装  
封装尺寸(标称值)  
DSBGA (36)  
2.41mm x 2.44mm  
无损充电电流感应,无需感应电阻器  
待机模式下具有小于 10µA 的低电池泄漏电流  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
高精度  
简化原理图  
±0.4% 充电电压调节  
±10% 充电电流调节  
±7.5% 输入电流调节  
远程差分电池电量感应  
USB  
VBUS  
SW  
BTST  
SYS  
I2C Bus  
安全  
Host  
BAT  
Control  
热调节和热关断  
Master  
输入 UVLO 和过压保护  
电池过压保护  
输入动态电源管理 (DPM)  
充电安全计时器  
CFLY+  
VBUS  
ICHG  
飞跨电容短路保护  
输出电压短路保护  
SW  
I2C Bus  
CFLYœ  
采用 36 焊球 WCSP 封装  
Host  
Host  
BATP  
+
Control  
BATN  
BQ25910  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDU0  
 
 
 
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
7.5 Programming .......................................................... 24  
7.6 Register Maps......................................................... 28  
Application and Implementation ........................ 43  
8.1 Application Information............................................ 43  
8.2 Typical Application ................................................. 43  
Power Supply Recommendations...................... 50  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Timing Requirements.............................................. 10  
6.7 Typical Characteristics............................................ 11  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 21  
8
9
10 Layout................................................................... 51  
10.1 Layout Guidelines ................................................. 51  
10.2 Layout Example .................................................... 52  
11 器件和文档支持 ..................................................... 53  
11.1 器件支持................................................................ 53  
11.2 接收文档更新通知 ................................................. 53  
11.3 社区资源................................................................ 53  
11.4 ....................................................................... 53  
11.5 静电放电警告......................................................... 53  
11.6 Glossary................................................................ 53  
12 机械、封装和可订购信息....................................... 53  
7
4 修订历史记录  
Changes from Revision A (February 2018) to Revision B  
Page  
已更改 tBAT_LOWV_DGL from 20 ms to 170 ms in Timing Requirements section...................................................................... 11  
Changed DEV_REV default value from 0b001 to 0b010 in REG0D register Part Information Register (Address = Dh)  
[reset = 0Ah] ........................................................................................................................................................................ 42  
Changes from Original (September 2017) to Revision A  
Page  
已更改 将预告信息更改为生产数据.................................................................................................................................... 1  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
5 Pin Configuration and Functions  
BQ25910-YFF (I2C controlled)  
36-Pin DSBGA  
Top View  
6
1
2
3
4
5
GND  
VBUS  
PMID  
CFLY+  
SW  
CFLYœ  
A
B
C
D
E
F
GND  
GND  
GND  
GND  
VBUS  
VBUS  
CDRV+  
CDRVœ  
SCL  
PMID  
PMID  
PMID  
SDA  
CFLY+  
CFLY+  
CFLY+  
INT  
SW  
SW  
CFLYœ  
CFLYœ  
CFLYœ  
CFLYœ  
BATP  
SW  
SW  
IND_  
SNS  
CAUX  
REGN  
BATN  
(1) Top View = Xray through a soldered down part with A1 starting in upper left hand corner.  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Negative Battery Sense Terminal – Kelvin connect via 100-Ω resistor as close as possible  
to negative battery terminal  
BATN  
F4  
AI  
Positive Battery Sense Terminal – Kelvin connect via 100-Ω resistor as close as possible  
to positive battery terminal  
BATP  
CAUX  
F5  
F2  
AI  
P
Auxiliary Capacitor – Bypass CAUX to GND with at least a 4.7-μF, 10-V ceramic capacitor  
Gate Drive Supply Positive Terminal – CDRV is used to generate multilevel gate drive  
CDRV+  
CDRV–  
D1  
E1  
P
P
rails.  
Connect a 220-nF, 6.3-V ceramic capacitor across CDRV+ and CDRV-.  
Gate Drive Supply Negative Terminal – CDRV is used to generate multilevel gate drive  
rails.  
Connect a 220-nF, 6.3-V ceramic capacitor across DRV+ and DRV-.  
A3  
B3  
C3  
D3  
A5  
B5  
C5  
D5  
E5  
A6  
B6  
C6  
D6  
E6  
Flying Capacitor Positive Terminal – Connect 20-μF, 16-V ceramic capacitor across  
CFLY+ and CFLY–. Refer to Application and Implementation section for more information on  
selecting CFLY.  
CFLY+  
CFLY–  
P
P
Flying Capacitor Negative Terminal – Connect 20-μF, 16-V ceramic capacitor across  
CFLY+ and CFLY–. Refer to Application and Implementation section for more information on  
selecting CFLY.  
GND  
-
Ground Return  
Output Inductor Sense Input – Kelvin connect as close as possible to the output of the  
switched inductor.  
IND_SNS  
INT  
F6  
E3  
AI  
Open-Drain Interrupt Output – Connect INT to the logic rail via a 10-kΩ resistor. The INT  
pin sends active low, 256-μs pulse to the host to report charger device status and fault.  
DO  
A2  
B2  
C2  
D2  
Reverse Blocking MOSFET and QHSA MOSFET Connection – Given the total input  
capacitance, place 1 μF on VBUS, and the rest on PMID, as close to the device as possible.  
Typical value: 10-μF, 25-V ceramic capacitor  
PMID  
P
Gate Drive Supply – Bias supply for internal MOSFETs driver and device. Bypass REGN to  
GND with a 4.7-μF, 10-V ceramic capacitor.  
I2C Interface Open-Drain Clock Line – Connect SCL to the logic rail through a 10-kΩ  
REGN  
SCL  
F3  
F1  
E2  
P
DI  
resistor.  
I2C Interface Open-Drain Data Line – Connect SDA to the logic rail through a 10-kΩ  
resistor.  
SDA  
DIO  
A4  
B4  
C4  
D4  
E4  
A1  
B1  
C1  
Inductor Connection – Connect to the switched side of the external inductor  
(Recommended: 330 nH for up to 9-V applications or 470 nH for up to 12-V applications).  
Refer to Application and Implementation section for more information on selecting inductor.  
SW  
P
P
Input Supply – VBUS is connected to the external DC supply. Bypass VBUS to GND with at  
least 1-μF, 25-V ceramic capacitor, placed as close to the device as possible.  
VBUS  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–2  
MAX  
20  
UNIT  
VBUS (converter not switching)  
PMID (converter not switching)  
CDRV+, CDRV-  
V
V
V
V
V
–0.3  
–0.3  
–0.3  
–0.3  
20  
20  
16(2)  
CFLY+  
Voltage range (with  
respect to GND)  
CFLY+ to SW, SW to  
CFLY–, CFLY– to GND,  
CAUX to GND  
DC  
7
Pulse < 30ns  
–0.3  
11  
V
BATP, BATN, IND_SNS  
REGN  
–0.3  
–0.3  
6
6
V
V
Voltage range (with  
respect to GND)  
SDA, SCL, /INT  
/INT  
–0.3  
6
V
Output sink current  
6
150  
150  
mA  
°C  
Junction Temperature, TJ  
Storage temperature, Tstg  
–40  
–40  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) This condition is contingent on the fact that 0V < VCFLY < 8V  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC  
specification JESD22-C101(2)  
±250  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
14(1)  
3.3  
UNIT  
V
VVBUS  
IVBUS  
ISW  
Input voltage  
3.9  
Average input current (VBUS)  
Average output current (SW)  
Battery voltage (BATP - BATN)  
Operating free-air temperature  
A
6
A
VBAT  
TA  
4.775  
85  
V
–40  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either CFLY+, SW, or CFLY- pins. A  
tight layout minimizes switching noise.  
6.4 Thermal Information  
BQ25910  
THERMAL METRIC(1)  
YFF (DSBGA)  
36-PINS  
52.8  
UNIT  
RΘJA  
RΘJC(top)  
RΘJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.3  
11.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
ΨJB  
11.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
6.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = –40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Battery discharge current (BATP,  
BATN, SW)  
VBAT = 4.5V, VBUS = 0 - 5V, SCL, SDA =  
0V or 1.8V, TJ < 85°C, EN_CHG = 0  
IBAT  
6.5  
10 μA  
30 μA  
50 μA  
VBUS = 5V, High-Z Mode, no battery  
IVBUS_HIZ  
Input supply current (VBUS) in HIZ  
VBUS < VVBUS_OV, High-Z Mode, no  
battery  
VBUS > VSLEEPZ, VBAT = 3.8V, ICHG = 0A,  
converter not switching  
20 μA  
IVBUS  
Input supply current (VBUS)  
VBUS > VSLEEPZ, VBAT = 3.8V, converter  
switching, IOUT = 0A  
13  
mA  
VBUS / VBAT POWER UP  
VVBUS_OP  
VBUS operating range  
VBUS rising for active I2C, no battery VBUS rising  
3.9  
3.6  
14  
V
V
VVBUS_UVLOZ  
VBUS falling, VBUS - VBAT,  
VBAT = 4V, TJ = 0°C - 85°C  
VSLEEP  
Enter sleep mode threshold  
Exit sleep mode threshold  
15  
60  
110 mV  
275 mV  
VBUS rising, VBUS - VBAT,  
VBAT = 4V, TJ = 0°C - 85°C  
VSLEEPZ  
115  
220  
VBUS over-voltage rising threshold  
VBUS over-voltage falling threshold  
Battery for active I2C, no VBUS  
Bad adapter detection threshold  
Bad adapter detection current source  
VBUS rising  
VBUS falling  
14  
13.3  
2.3  
14.3  
14.7  
14  
V
V
VVBUS_OV  
13.65  
VBAT_UVLOZ  
VPOORSRC  
V
3.7  
20  
V
IPOORSRC  
mA  
POWER-PATH  
Top reverse blocking MOSFET on-  
RON_QBLK (QBLK) resistance between VBUS and PMID TJ = –40°C - 125°C  
(QBLK)  
14  
22  
12  
8
22 mΩ  
40 mΩ  
20 mΩ  
13 mΩ  
13 mΩ  
Outer, high-side switching MOSFET  
RON_QHSA (Q1)  
RON_QHSB (Q3)  
RON_QLSB (Q4)  
RON_QLSA (Q2)  
on-resistance between PMID and  
CFLY+ (Q1)  
TJ = –40°C - 125°C  
TJ = –40°C - 125°C  
TJ = –40°C - 125°C  
TJ = –40°C - 125°C  
Inner, high-side switching MOSFET  
on-resistance between CFLY+ and  
SW (Q3)  
Inner, low-side switching MOSFET  
on-resistance between SW and  
CFLY- (Q4)  
Outer, low-side switching MOSFET  
on-resistance between CFLY- and  
GND (Q2)  
8
BATTERY CHARGER  
Typical charge voltage regulation  
range  
VREG_RANGE  
VREG_STEP  
VREG_ACC  
ICHG_RANGE  
ICHG_STEP  
ICHG_ACC  
3.5  
4.775  
V
mV  
%
Typical charge voltage regulation  
step  
5
VREG = 4.2V or 4.35V or 4.4V,  
TJ = –40°C - 85°C  
Charge voltage regulation accuracy  
-0.4  
0.4  
Typical charge current regulation  
range  
1000  
6000 mA  
mA  
Typical charge current regulation  
step  
50  
ICHG = 2A, 3A, 4A, 5A, 6A,  
TJ = –40°C - 85°C  
Charge current regulation accuracy  
-10  
10  
%
Copyright © 2017–2019, Texas Instruments Incorporated  
7
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = –40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBUS = 9V, ICHG = 4A, ITERM = 1.0A,  
TJ = 0°C - 85°C  
Termination current regulation  
accuracy  
ITERM_ACC  
0.9  
1
1.1  
2.15  
3.3  
A
V
V
VBAT_SHORT  
Short battery voltage falling threshold VBAT falling  
VBAT LOWV Rising threshold to  
1.85  
3.1  
2.00  
3.2  
VBAT rising, VBATLOW = 3.2V  
start fast-charging  
VBAT_LOWV  
VBAT LOWV Falling threshold to  
stop fast-charging  
VBAT falling, VBATLOW = 3.2V  
VBAT rising, VBATLOW = 3.5V  
VBAT falling, VBATLOW = 3.5V  
2.9  
3.4  
3.2  
3
3.5  
3.3  
3.1  
3.6  
3.4  
V
V
V
VBAT LOWV Rising threshold to  
start fast-charging  
VBAT_LOWV  
VBAT LOWV Falling threshold to  
stop fast-charging  
RBATP  
RBATN  
BATP Input resistance  
BATN Input resistance  
VBAT = 4V, VBUS = 5V, EN_CHG = 0  
VBAT = 4V, VBUS = 5V, EN_CHG = 0  
0.6  
0.6  
MΩ  
MΩ  
INPUT VOLTAGE / CURRENT REGULATION  
VINDPM_RANGE  
VINDPM_STEP  
Input voltage regulation range  
Input voltage regulation step  
3.9  
14  
V
mV  
V
100  
4.3  
7.8  
VINDPM = 4.3V  
VINDPM = 7.8V  
VINDPM = 10.8V  
4.121  
7.566  
10.476  
500  
4.447  
8.034  
VINDPM_ACC  
Input voltage regulation accuracy  
V
10.8 11.124  
V
IINDPM_RANGE  
IINDPM_STEP  
Input current regulation range  
Input current regulation step  
3600 mA  
mA  
100  
IINDPM = 500mA, TJ = –40°C - 85°C  
IINDPM = 1500mA, TJ = –40°C - 85°C  
IINDPM = 2500mA, TJ = –40°C - 85°C  
IINDPM = 3000mA, TJ = –40°C - 85°C  
410  
1275  
2125  
2540  
500 mA  
1500 mA  
2500 mA  
3000 mA  
IINDPM_ACC  
Input current regulation accuracy  
BATTERY OVER-VOLTAGE PROTECTION  
Battery over-voltage rising threshold VBAT rising, as percentage of VREG  
Battery over-voltage falling threshold VBAT falling, as percentage of VREG  
102  
100  
104  
102  
106  
103  
%
%
VBAT_OVP  
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG = 80°C  
80  
120  
150  
120  
°C  
°C  
°C  
°C  
Junction temperature regulation  
accuracy  
TREG  
TREG = 120°C  
Thermal Shutdown Rising threshold  
TSHUT  
Temperature Increasing  
Thermal Shutdown Falling threshold Temperature Decreasing  
BUCK MODE OPERATION  
FSW  
PWM switching frequency  
Maximum PWM Duty Cycle  
Switching-node frequency  
1.35  
1.5  
97  
1.65 MHz  
%
DMAX  
REGN LDO  
VVBUS = 12V, IREGN = 40mA  
VVBUS = 5V, IREGN = 20mA  
VVBUS = 5V, VREGN = 3.8V  
4.85  
4.7  
50  
5
V
V
VREGN  
IREGN  
REGN LDO output voltage  
REGN LDO current limit  
4.8  
mA  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = –40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
I2C INTERFACE (SCL, SDA)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input high threshold level, SDA and  
SCL  
VIH  
Pull-up rail 1.8V  
1.3  
V
Input low threshold level, SDA and  
SCL  
VIL  
Pull-up rail 1.8V  
Sink current = 5mA  
Pull-up rail 1.8V  
0.4  
0.4  
1
V
V
VOL  
IBIAS  
Output low threshold level, SDA  
High level leakage current, SDA and  
SCL  
μA  
LOGIC OUTPUT PIN (/INT)  
VOL  
Output low threshold level  
High level leakage current  
Sink current = 5mA  
Pull-up rail 1.8V  
0.4  
1
V
IOUT_BIAS  
μA  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
MAX UNIT  
6.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VBUS/BAT POWER UP  
VBUS rising above VBUS_OV threshold to  
converter turn off  
tVBUS_OV  
VBUS OVP reaction time  
200  
30  
ns  
tPOORSRC  
Bad adapter detection duration  
ms  
BATTERY CHARGER  
Deglitchg time for BAT_LOWV  
VBAT crossing VBAT_LOWV threshold  
(rising and falling)  
tBAT_LOWV_DGL  
170  
250  
1
ms  
ms  
comparator  
tTERM_DGL  
Deglitch time for charge termination  
Charge current falling below ITERM  
Deglitch time for battery over-voltage  
to disable charge  
tBATOVP_DGL  
µs  
tSAFETY  
Charge Safety Timer Accuracy  
CHG_TIMER[1:0] = 12 hours  
10.8  
12  
13.2 hr  
I2C INTERFACE  
fSCL  
SCL clock frequency  
1000 kHz  
DIGITAL CLOCK AND WATCHDOG TIMER  
fDIG  
Digital clock  
REGN LDO enabled  
1.35  
136  
1.5  
1.65 MHz  
sec  
WATCHDOG[1:0] = 160s, REGN LDO  
enabled  
tWDT  
Watchdog Reset time  
160  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
6.7 Typical Characteristics  
96  
95  
94  
93  
92  
91  
90  
89  
88  
3
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 5 V  
VBUS = 9 V  
87  
86  
0.3  
0
0
1
2
3
Change Current (A)  
4
5
6
0
1
2
3
Charge Current (A)  
4
5
6
D001  
D002  
VBAT = 3.8 V, Inductor = DFE252012F-R47 (470 nH, 23 mΩ max)  
VBAT = 3.8 V, Inductor = HMLQ25201B-R33 (330 nH, 17 mΩ  
max)  
2. Charge Efficiency vs Charge Current  
1. Charge Efficiency vs Charge Current  
15  
15  
VBUS = 5 V, ICHG = 2.5 A  
VBUS = 9 V, ICHG = 2.5 A  
VBUS = 12 V, ICHG = 2.5 A  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
10  
10  
5
0
5
0
-5  
-5  
-10  
-15  
-10  
-15  
2.9  
3.1  
3.3  
3.5  
3.7  
VBAT (V)  
3.9  
4.1  
4.3  
4.5  
1
2
3
ICHG Setting (A)  
4
5
6
D010  
D003  
VBAT = 3.8 V  
3. Charge Current Accuracy vs Battery Voltage  
4. Charge Current Accuracy vs I2C ICHG Setting  
15  
10  
5
0.5  
ICHG = 1.5 A  
ICHG = 2.5 A  
ICHG = 3.5 A  
0.4  
0.3  
0.2  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
-10  
-15  
-40  
-20  
0
20  
40  
60  
80  
100  
3.5  
3.7  
3.9  
4.1  
VREG Setting (V)  
4.3  
4.5  
4.7  
Temperature (èC)  
D011  
D004  
VBUS = 5 V, VBAT = 3.8 V  
5. Charge Current Accuracy vs Temperature  
6. Battery Voltage Regulation Accuracy vs I2C VREG  
Setting  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
1300  
1200  
1100  
1000  
900  
0.5  
VBAT = 4.1 V  
0.4  
0.3  
0.2  
0.1  
0
VBAT = 4.2 V  
VBAT = 4.35 V  
VBAT = 4.4 V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
800  
700  
-40  
-20  
0
20  
40  
60  
80 90  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature (èC)  
Temperature (èC)  
D012  
D005  
VBUS = 9 V  
VREG = 4.35 V  
7. Battery Voltage Regulation Accuracy vs Temperature  
8. Termination Current vs Temperature  
0
-1  
10  
5
IINDPM = 500 mA  
IINDPM = 900 mA  
IINDPM = 1.5 A  
IINDPM = 2.0 A  
IINDPM = 3.0 A  
-2  
-3  
-4  
-5  
0
-6  
-7  
-5  
-8  
-9  
-10  
-11  
-10  
-15  
-20  
-12  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
-13  
-14  
-15  
0
0.5  
1
1.5  
IINDPM Setting (A)  
2
2.5  
3
3.5  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D007  
D013  
VBAT = 3.8 V  
VBUS = 5 V, VBAT = 3.8 V  
9. Input Current Limit Accuracy vs I2C IINDPM Setting  
10. Input Current Limit Accuracy vs Temperature  
3
2
1.8  
TREG = 60èC  
TREG = 80èC  
TREG = 100èC  
TREG = 120èC  
2
1
1.6  
1.4  
1.2  
1
0
0.8  
0.6  
0.4  
0.2  
0
-1  
-2  
-3  
-0.2  
3
4
5
6
7
8
9
VINDPM Setting (V)  
10  
11  
12  
13  
40  
60  
80  
100  
120  
140  
160  
180  
Temperature (èC)  
D008  
D009  
ICHG = 1.9 A  
12. Charge Current vs Temperature  
11. Input Voltage Limit Accuracy vs I2C VINDPM Setting  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7 Detailed Description  
7.1 Overview  
The BQ25910 is an integrated three-level switch-mode parallel battery charge management device for single cell  
Li-ion and Li-polymer batteries. Utilization of the three-level converter maintains highest switch-mode operation  
efficiency while reducing solution footprint and increasing power density. The device supports fast charging with  
high input voltage for a wide range of portable devices. The solution integrates reverse-blocking FET (QBLK), and  
four switching FETs (QHSA, QHSB, QLSB, QLSA). The I2C serial interface with charging and system settings makes  
the device a truly flexible solution.  
The device supports a wide range of input sources, including standard USB host port, USB charging port, and  
USB compliant adjustable high voltage adapter. The device is compliant with USB 2.0 and USB 3.0 power  
specifications with input current and voltage regulation.  
After initiating a charging cycle with host control, the device completes a charging cycle without software control.  
It automatically detects battery voltage and charges the battery in two-phases: constant current and constant  
voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below  
a preset limit (termination current) in the constant voltage phase.  
The device provides various safety features for battery charging, including charging safety timer, battery over-  
voltage, and over-current protections. Thermal regulation reduces charge current when the device junction  
temperature exceeds 120°C (programmable via I2C). The INT output immediately notifies the host when the  
charger changes state or a fault occurs.  
The BQ25910 is available in space-saving 36-bump 2.41 x 2.44 mm2 WCSP.  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
The device is a highly integrated 6-A three-level switch-mode parallel battery charger for single-cell Li-ion and Li-  
polymer batteries. It integrates a reverse-blocking FET (QBLK), four switching FETs for three-level operation  
(QHSA – QLSA), and bootstrap cap control to drive HS gates.  
VBUS  
PMID  
QBLK  
VVBUS_UVLO  
1 F  
+
+
+
UVLO  
BLKFET  
CONTROL  
10 F  
QHSA  
VSLEEP  
REGN  
BATLOWV  
EN_CHG  
SLEEP  
REGN  
REGN  
REGN  
LDO  
4.7 F  
CFLY+  
VBUS_ OVP  
VVBUS_OV  
VO,REF  
QHSB  
D0  
2x 10 F  
SR0  
VVBUS  
VBAT  
+
VBAT_OVP  
D180  
SR180  
VSW  
BAT_OVP  
VINDPM  
GATE DRIVERS,  
CURRENT SENSE,  
CFLY PRE-CHARGE  
AND MONITOR  
+
IIN  
QLSB  
+
VBAT  
DC-DC  
CONTROL  
330nH/  
470nH  
+
+
IINDPM  
VBAT_REG  
OCP  
IC_TJ  
TREG  
+
ICHG  
ICHG  
CFLYœ  
ICHG_REG  
QLSA  
EN_CHARGE  
GND  
GND  
CFLY_FAULT  
REF  
DAC  
VPOORSRC  
VVBUS  
IND_SNS  
+
POORSRC  
CONVERTER  
CONTROL  
STATE  
IC_TJ  
TSHUTDOWN  
+
MACHINE  
TSHUT  
BATP  
20 F  
VBAT  
BATSNS  
BATN  
ICHG  
ITERM  
TERMINATION  
BATLOWV  
+
CAUX  
FETS &  
CONTROL  
CAUX  
CHARGE  
CONTROL  
STATE  
VBAT_LOWV  
VBAT  
+
MACHINE  
4.7 F  
INT  
VBAT_SHORT  
VBAT  
BATSHORT  
+
I2C  
INTERFACE  
BOOTSTRAP  
CAP CONTROL  
CDRV+  
BQ25910  
220 nF  
SCL  
SDA  
CDRVœ  
13. BQ25910 I2C Controlled Functional Block Diagram  
7.3 Feature Description  
7.3.1 Device Power-On-Reset (POR)  
The internal bias circuits are powered from the higher voltage of VBUS and VBAT. When VVBUS rises above  
VVBUS_UVLOZ, or VBAT rises above VBAT_UVLOZ, the sleep comparator and battery depletion comparator are active.  
I2C interface is ready for communication and all the registers are reset to default value. The host can access all  
the registers after POR.  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
Feature Description (接下页)  
7.3.2 Device Power Up from Battery without Input Source  
If only battery is present, the device consumes up to IBAT quiescent current. The REGN LDO stays off to  
minimize the current draw. I2C interface is ready for communication as long as VBAT is above VBAT_UVLOZ  
.
7.3.3 Device Power Up from Input Source  
When an input source is plugged in, and the EN_CHG bit is set to 1, the device checks the input source voltage  
and battery voltage to turn on REGN LDO, all the bias circuits and begin charging. The startup sequence from  
input source is as listed:  
1. Power up REGN LDO  
2. Poor source qualification  
3. CFLY and CAUX pre-charging routine  
4. Converter Power-up  
7.3.4 Power Up REGN LDO  
The REGN LDO supplies internal bias circuits and power FET gate drivers. The pull-up rail of INT can be  
connected to REGN as well. The REGN LDO is enabled when all the following conditions are met:  
1. VBUS above VBUS_UVLOZ  
2. VBUS above VBAT + VSLEEPZ  
3. VBUS below VVBUS_OV  
4. VBAT above VBAT_LOWV  
5. EN_CHG bit = 1  
6. ICHG 0 A  
If one of the above conditions is not met, the device is in high impedance mode (HIZ) with REGN LDO off. The  
device draws less than IVBUS_HIZ from VBUS in this state.  
7.3.5 Poor Source Qualification  
After REGN LDO powers up, the device checks the current capability of the input source. The input source has  
to meet the following requirements in order to operate the buck converter:  
1. VBUS voltage below VVBUS_OV  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC (typical 20 mA)  
Once the conditions are met, the status register bit PG_STAT is set high and the INT pin is pulsed to signal the  
host. If VBUS_OV is detected (condition 1 above), the device automatically retries detection once the over-  
voltage fault goes away. If a poor source is detected (condition 2 above), the device repeats poor source  
qualification routine every 2 seconds. After 7 consecutive failures, the device sets POORSRC_STAT, sends an  
INT pulse to notify the host, goes to HIZ mode and resets EN_CHG bit. Adapter re-plugin and/or EN_CHG toggle  
is required to restart device operation.  
7.3.6 Converter Power-Up  
Prior to converter switching, the flying and auxiliary capacitors, CFLY, and CAUX are charged to VBUS/2. After  
the capacitors have been pre-charged, the converter is enabled and the switching FETs QHSA – QLSB start  
switching. As a battery charger, the device deploys a highly-efficient 750-kHz three-level step-down switching  
regulator. The fixed frequency oscillator keeps tight control of the switching frequency under all conditions of  
input voltage, battery voltage, charge current and temperature, simplifying output filter design.  
The charge current is soft-started into the desired value by starting from 300 mA and increasing the current up to  
ICHG programmed value over time. This "soft-start" also applies when increasing the ICHG register value while  
charging.  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.7 Three-Level Buck Converter Theory of Operation  
The three-level converter is a combination of a switched capacitor and a switched inductor circuit. Assuming the  
flying capacitor, CFLY, remains balanced at VIN/2, the VSW node can be presented with three different voltages:  
VIN, VIN/2, and GND. The gate driving scheme is similar to a two-phase buck converter. The outer FETs (QHSA  
and QLSA) are driven with a complimentary signal with duty cycle D = VOUT/VIN. The inner FETs (QHSB and  
QLSB) are driven with a second complimentary signal of equal duty cycle, but phase shifted by 180°. By  
employing this driving scheme, there is a smooth transition around 50% duty ratio, where the VSW node moves  
from presenting GND and VIN/2 to presenting VIN and VIN/2.  
The three-level can achieve higher efficiency which cannot be easily obtained using traditional buck converter.  
The high efficiency is due to reduced inductor ripple (volt-seconds), reduced switching loss, and use of a  
compact inductor with lower DCR. The device integrates low RDSON FETs to optimize conduction loss. It also  
integrates control circuit to monitor CFLY stability and pre-conditioning.  
D < 0.50  
L
VSW  
VIN  
VSW  
VIN/2  
QHSA  
QHSB  
QLSB  
VO  
+
VO  
œ
œ
+
t
+
VIN  
œ
CO  
CFLY  
D > 0.50  
VO  
VSW  
VIN  
QLSA  
VIN/2  
t
14. (a) Three-Level Buck Converter Circuit, (b) Time-Domain VSW and VO Waveforms, and (c) Inductor  
Current Ripple Comparison Across Duty Ratio  
D < 0.50  
L
L
L
VSW  
VSW  
VSW  
QHSA  
QHSB  
QHSA  
QHSB  
QHSA  
QHSB  
QLSB  
QLSB  
QLSB  
QLSA  
+
+
+
VO  
œ
œ
œ
œ
+
+
+
+
+
+
VIN  
VO VIN  
VO VIN  
œ
œ
œ
CO  
CO  
CO  
CFLY  
CFLY  
CFLY  
œ
œ
QLSA  
QLSA  
15. Three-Level Buck Converter States for Duty Ratios < 0.50  
D > 0.50  
L
L
L
VSW  
VSW  
VSW  
QHSA  
QHSB  
QHSA  
QHSB  
QLSB  
QHSA  
QHSB  
QLSB  
QLSB  
+
VO  
œ
+
+
VO  
œ
œ
œ
œ
+
+
+
+
+
+
VIN  
VIN  
VO VIN  
œ
œ
œ
CO  
CO  
CO  
CFLY  
CFLY  
CFLY  
œ
QLSA  
QLSA  
QLSA  
16. Three-Level Buck Converter States for Duty Ratios > 0.50  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
Feature Description (接下页)  
7.3.8 Host Mode and Default Mode  
7.3.8.1 Host Mode and Default Mode in BQ25910  
The BQ25910 is a host controlled charger, and will automatically shut off when the I2C watchdog timer is not  
reset within the timer period. In default (HIZ) mode, the device automatically disables charging until the host  
writes the EN_CHG bit high again and resets the watchdog timer via the WD_RST bit. When the charger is in  
default mode, WD_STAT bit is HIGH. When the charger is in host mode, WD_STAT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired. All the registers are in the  
default settings. In default mode, the device remains in HIZ mode and will not charge the battery.  
Writing a 1 to the WD_RST bit forces the charger out of default mode and into host mode. All the device  
parameters can be programmed by the host. To keep the device in host mode, the host has to reset the  
watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set), or disable  
watchdog timer by setting WATCHDOG bits = 00.  
When the watchdog timer is expired (WD_STAT bit = 1), the device returns to default mode and registers are  
reset to default values except as detailed in the I2C register section. As long as the watchdog timer is expired  
(WD_STAT bit = 1), the device remains in Default Mode without charging the battery, regardless of the EN_CHG  
bit state. In order to enable charge after watchdog expired, write WD_RST = 1, and EN_CHG = 1.  
POR  
Watchdog timer expired  
Reset registers  
I2C interface enabled  
Default Mode  
Watchdog timer expired  
Reset selective registers  
Y
N
Watchdog Timer  
Expired?  
WD_RST bit = 1?  
N
Y
Host Mode  
Start Watchdog timer  
Host programs registers  
WD_RST bit = 1?  
N
Y
17. Watchdog Timer Flow Chart  
The REG_RST bit can be used to reset all of the registers (except STATUS registers) to their default value at  
any time.  
7.3.9 Battery Charging Management  
The device charges single-cell Li-Ion battery with up to 6-A charge current for high-capacity battery.  
7.3.9.1 Autonomous Charging Cycle  
When battery charging is enabled (EN_CHG bit = 1) and the battery is above VBAT_LOWV, the device  
autonomously completes a charging cycle. The device default charging parameters are listed in 1. The host  
can always control the charging operations and optimize the charging parameters by writing to the corresponding  
registers through I2C.  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
1. Charging Parameter Default Settings  
PARAMETER  
VBAT to start fast charge (VBATLOWV)  
Charging voltage (VREG)  
VALUE  
3.5 V  
4.350 V  
3.500 A  
1.000 A  
12 hours  
Charging current (ICHG)  
Termination current (ITERM)  
Safety timer (CHG_TIMER)  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled by EN_CHG bit, and ICHG register is not 0 mA  
Battery voltage above VBAT_LOWV  
No safety timer fault  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, and device not in DPM mode or thermal regulation. Once termination is detected, an INT is asserted  
to the host and the EN_CHG bit gets reset to zero. After the charge is done, EN_CHG bit can initiate a new  
charging cycle.  
Once a charging cycle is complete, an INT pulse is asserted to notify the host. In addition the status register  
(CHRG_STAT) indicates the different charging phases (any change in CHRG_STAT will generate an INT to  
notify the host):  
000: Charging disable  
001: Reserved  
010: Reserved  
011: Fast charge (constant current mode)  
100: Taper charge (constant voltage mode)  
101: Reserved  
110: Reserved  
111: Reserved  
7.3.10 Master Charger and Parallel Charger Interactions  
A master charger is required in the system to manage pre-charging and full termination of the battery. The  
BQ25910 monitors the battery voltage and compares it to VBAT_LOWV to ensure battery can safely take fast-  
charge current. Once the BQ25910 turns on and begins fast-charging, the host has two options: disable (HIZ) the  
master charger, or continue running the master charger along with the parallel charger.  
For the first option, once battery voltage reaches VBAT_LOWV, the master charger maintains the BATFET on to  
supply system from battery (EN_HIZ = 1 on master charger), and the BQ25910 provides both the charge current  
and system current if required. It is recommended to select VBAT_LOWV equal to minimum system voltage in order  
to maintain system operation during transition. The BQ25910 will then fast-charge the battery up to VREG and  
continue to regulate voltage while battery current tapers down. After the BQ25910 detects termination, the host  
can re-enable the master charger to regulate battery voltage in CV mode down to lower termination currents.  
The second mode of operation requires both chargers to stay on. In order to maximize efficiency, it is  
recommended to run the master charger at lower charge current than the BQ25910. For example, the master  
charger might be set at 1 A and the BQ25910 at 3.5 A to achieve total charge current of 4.5 A. In this mode of  
operation, the master charger provides mostly system current, while the BQ25910 provides mostly charge  
current. In this mode of operation, the BQ25910 can select VBAT_LOWV as low as the battery dictates for fast-  
charge, since the master charger can maintain system voltage regulation and ensure system continues to  
operate through the transition. After the BQ25910 detects termination, the master charger automatically  
continues to regulate battery voltage in CV mode down to lower termination current.  
18 shows both options with charge current for each device as well as battery voltage.  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
Voltage  
4.35V  
BATP - BATN  
SYS_MIN  
3.5V  
BATP - BATN  
Current  
Time  
4.5A  
BQ2591x  
ICHG  
Master Charger  
ICHG  
2A  
Time  
Master Charger:  
HIZ or  
ICHG ≤ 1A  
Master Charger:  
Master Charger:  
Master Charger:  
Pre-charges BAT  
HIZ or  
ICHG ≤ 1A  
ITERM << 0.5A  
BQ25910:  
Off  
BQ25910:  
Off  
BQ25910:  
ICHG = 4.5A  
BQ25910:  
ITERM = 1A  
18. Master Charger and BQ25910 Handoff  
7.3.11 Battery Charging Profile  
The device charges the battery in two phases: constant current, and constant voltage. At the beginning of a  
charging cycle, the device checks the battery voltage and regulates current / voltage as needed. If the battery  
voltage is below VBAT_LOWV, it is the master charger responsibility to increase VBAT up to VBAT_LOWV so the  
parallel charger can initiate fast charging. As BAT increases to VBAT_LOWV, the master charger can stay in HIZ  
and the BQ25910 can start fast-charging the battery with up-to 6-A ICHG. Alternatively, the master charger can  
remain on to maintain the system load from adapter, while the BQ25910 charges the battery. The default  
charging settings can be found in 2.  
2. Battery Charger Setting  
VBAT  
< 2 V  
CHARGING CURRENT  
Master controlled (IBATSHORT )  
Master controlled (IPRECHG )  
ICHG  
REG DEFAULT SETTING  
BQ25910 off  
BQ25910 off  
3.500 A  
CHRG_STAT  
000  
000  
011  
100  
2 V – VBAT_LOWV  
> VBAT_LOWV  
VREG  
TAPER down to ITERM  
4.350 V  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
If the charger device is in DPM regulation or thermal regulation during charging, the charging current can be less  
than the programmed value. In this case, termination is temporarily disabled and the charging safety timer is  
counted at half the clock rate.  
BQ25910 Charge Cycle  
Fast Charge  
ICHG  
BQ25910 on  
VREG  
Battery Current  
Battery Voltage  
VBATLOWV  
ITERM  
3.0V  
0A  
Pre-Charge  
Master  
Charger  
CC  
Master  
Charger  
CV  
Master  
Charger  
CC  
BQ25910  
CV  
BQ25910  
CHRG_STAT[2:0]  
000  
011  
100  
000  
19. Battery Charging Profile Highlighting Parallel Charger Region of Operation  
After the device signals charge termination done (CHRG_TERM_FLAG = 1), the master charger may choose to  
continue charging in CV mode or finish the charging cycle completely. The BQ25910 will not start a re-charge  
cycle automatically, and a toggle on EN_CHG bit is required to restart a charge cycle.  
7.3.11.1 Charging Termination  
The device terminates a charge cycle when the battery voltage is at VREG, and the current is below termination  
current (ITERM). After the charging cycle is completed, the converter turns off and enters HIZ mode. At this  
point, the master charger can continue charging the battery down to a lower termination current, or just provide  
the system load from the adapter through its buck converter.  
When termination occurs, the status register CHRG_STAT is set to 000, the CHRG_TERM_FLAG is set to 1,  
and an INT pulse is asserted to the host. The CHRG_TERM_FLAG should be used to determine if termination  
was detected. Termination is temporarily disabled when the charger device is in input current, input voltage or  
thermal regulation.  
Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination. In this case, the device will  
continue regulating the battery voltage to VREG value until the safety timer runs out or until the EN_CHG bit is  
cleared.  
7.3.11.2 Differential Battery Voltage Remote Sensing  
For high current charging systems, resistance between the charger output and battery cell terminal such as  
board routing, connector, MOSFETs and sense resistor can force the charging process to move from constant  
current to constant voltage too early, thereby increasing charge time. To speed up the charging cycle, the device  
provides differential remote sensing terminals for battery positive and negative terminals, which can extend the  
constant current charge time to deliver maximum power to the battery.  
The device regulates BATP – BATN = VBAT to the programmed VREG voltage. By connecting the sense  
terminals as close the battery as possible, the charger can deliver maximum charging power to battery. The  
kelvin connections to the battery can be made via a 100-Ω resistor.  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7.3.11.3 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
user can program fast charge safety timer through I2C (CHG_TIMER bits). When safety timer expires, the  
TMR_FLAG bit is set to 1, and an INT pulse is asserted to the host. The safety timer feature can be disabled via  
I2C using EN_TIMER bit.  
During input voltage, current or thermal regulation, the safety timer counts at half clock rate as the actual charge  
current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IINDPM_STAT = 1) throughout the whole charging cycle, and the safety timer is set to 5 hours, then the timer  
will expire in 10 hours. This half clock rate feature can be disabled by setting TMR2X_EN = 0. Changing the  
TMR2X_EN bit while the device is running has no effect on the safety timer count, other than forcing the timer to  
count at half the rate under the conditions dictated above.  
7.4 Device Functional Modes  
7.4.1 Lossless Current Sensing  
In high current charging systems, extra resistance between the charger output and the battery contribute to  
power loss and temperature rise. The BQ25910 regulates the output current without the need of a sense resistor,  
thereby reducing system power loss and operating temperature. Switching FET current information is used in  
conjunction to inductor DCR sensing to regulate output current accurately. For optimal operation, the voltage  
drop across the DCR should be below 180 mV. For example, to achieve 6-A charging, the DCR should be below  
30 mΩ. In addition to lossless current regulation, the switching FET current is monitored on a cycle-by-cycle  
basis to ensure safe operation.  
7.4.2 Dynamic Power Management  
To meet maximum current limit in USB spec and avoid over-loading the adapter, the device features Dynamic  
Power Management (DPM), which continuously monitors the input current and input voltage. When input source  
is over-loaded, either the current exceeds the input current limit (IINDPM) or the voltage falls below the input  
voltage limit (VINDPM). The device then reduces the charge current until the input current falls below the input  
current limit and the input voltage rises above the input voltage limit.  
During DPM mode, the status register bits VINDPM_STAT (VINDPM) and/or IINDPM_STAT (IINDPM) is/are set  
to 1. 20 shows the IINDPM response with 9-V/1.33-A (12-W) adapter, 4.0-V battery, 3.5-A charge current, and  
BQ25910 in CV mode.  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
SYSTEM  
LOAD  
ISYS  
VBUS  
SYS  
VBUS  
BQ25898  
(Hi-Z Mode)  
BAT  
IOUT,910  
IBUS  
SW2  
VBUS  
IBAT  
+
VBAT  
-
GND  
BQ25910  
VBUS  
9.0V  
8.5V  
4A  
3A  
2A  
IOUT  
IBAT  
IBUS  
1A  
0A  
ISYS  
-1A  
CV  
IINDPM  
CV  
20. DPM Response  
7.4.3 Interrupt to Host (INT)  
In some applications, the host does not always monitor the charger operation. The INT pin notifies the system  
host on the device operation. By default, the following events will generate an active-low, 256-μs INT pulse.  
1. Good input source detected (three conditions below met)  
VVBUS > VBAT (not in sleep)  
VVBUS < VVBUS_OV  
VVBUS > VVPOORSRC (typ 3.7 V) when IPOORSRC (typ 20 mA) current is applied (not a poor source)  
2. Good input source removed  
3. POORSRC routine failed 7 consecutive times (connected adaptor was found to be a poor source)  
4. Capacitor pre-charge routine failed (CFLY / CAUX failed to pre-charge)  
5. Entering IINDPM regulation  
6. Entering VINDPM regulation  
7. Entering device Junction Temperature Regulation  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
Device Functional Modes (接下页)  
8. I2C Watchdog timer expired  
At initial power-up, this INT gets asserted to signal I2C is ready for communication  
9. Charger changes state (CHRG_STAT value change)  
10. VBUS over-voltage detected  
11. Junction temperature shutdown (TSHUT)  
12. Battery over-voltage detected (BATOVP)  
13. CFLY fault detected  
14. Charge Safety Timer Expired  
Each one of these INT sources can be masked off to prevent INT pulses from being sent out when they occur.  
Three bits exist for each one of these events:  
The STAT bit holds the current status of each INT source  
The FLAG bit holds information on which source produced an INT, regardless of current status.  
The MASK bit is used to prevent the device from sending out INT for each particular event.  
When one of the above conditions occurs, the device sends out an INT pulse and keeps track of which source  
generated the INT via the FLAG registers. The FLAG register bits are automatically reset to zero after the host  
reads them, and a new edge on STAT bit is required to re-assert the FLAG.  
IINDPM_STAT  
IINDPM_FLAG  
TREG_STAT  
TREG_FLAG  
INT  
I2C Flag Read  
21. INT Generation Behavior Example  
7.4.4 Protections  
7.4.4.1 Voltage and Current Monitoring  
The device closely monitors the input and output voltage, as well as switching FET currents for safe buck mode  
operation.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.4.1.1 Input Over-Voltage (VVBUS_OV  
)
The valid input voltage range for buck mode operation is VVBUS_OP. If VBUS voltage exceeds VVBUS_OV, the  
device stops switching immediately to protect the power FETs. During input over-voltage, an INT pulse is  
asserted to signal the host, and the VBUS_OVP_STAT and VBUS_OVP_FLAG fault register bits get set. The  
device automatically starts switching again when the over-voltage condition goes away.  
7.4.4.1.2 Input Under-Voltage (VPOORSRC  
)
The valid input voltage range for buck mode operation is VVBUS_OP. If VBUS voltage falls below VPOORSRC, the  
device stops switching. During input under-voltage, an INT pulse is asserted to signal the host, and the  
PG_STAT bit gets cleared. The PG_FLAG bit will get set to signal this event. The device automatically attempts  
to restart switching when the under-voltage condition goes away.  
7.4.4.1.3 Flying Capacitor Over- or Under-Voltage Protection (VCFLY_OVP and VCFLY_UVP  
)
Under normal operating conditions the flying capacitor is balanced by the converter. However, during line  
transients or other failures, capacitor mis-balance is possible. The device constantly monitors the flying capacitor  
voltage. If VCFLY exceeds the protection limits, the device stops switching immediately. When this fault is  
detected, an INT pulse is asserted to notify the host, and the CFLY_STAT and CFLY_FLAG fault register bits get  
set. The device automatically attempts to re-balance the cap and resumes charging if successful. If the device  
fails to re-balance CFLY, the CAP_COND_STAT and CAP_COND_FLAG fault register bits get set, and an  
EN_CHG toggle is required to re-attempt charging.  
7.4.4.1.4 Over Current Protection  
The device monitors the outer switching FET current on a cycle-by-cycle basis . If an over-current is detected,  
the device responds by forcing the switching FETs to immediately discharge the inductor current and attempt  
current ramp-up once again.  
7.4.4.2 Thermal Regulation and Thermal Shutdown  
The device monitors internal junction temperature TJ to avoid overheating the chip and limits the device surface  
temperature in buck mode. When the internal junction temperature exceeds the preset thermal regulation limit  
(TREG bits), the device reduces charge current. A wide thermal regulation range from 60°C to 120°C allows the  
user to optimize the system thermal performance.  
During thermal regulation, the actual charging current is usually below the programmed value in ICHG registers.  
Therefore, termination is disabled, the safety timer runs at half the clock rate, the status register TREG_STAT bit  
goes high, and an INT is asserted to the host.  
Additionally, the device has thermal shutdown to turn off the converter when device surface temperature exceeds  
TSHUT. The fault register TSHUT_STAT is set and an INT pulse is asserted to the host. The converter turns back  
on when device temperature is below TSHUT_HYS  
.
7.4.4.3 Battery Protection  
7.4.4.3.1 Battery Over-Voltage Protection (BATOVP)  
The battery over-voltage limit is clamped at 4% above the battery regulation voltage. When battery over-voltage  
occurs, the charger device immediately disables charge. The fault register BATOVP_STAT bit goes high and an  
INT pulse is asserted to signal the host.  
7.5 Programming  
7.5.1 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA), and a serial clock line (SCL). Devices can be considered as masters or slaves when performing  
data transfers. A master is a device which initiates a data transfer on the bus and generates the clock signals to  
permit that transfer. At that time, any device addressed is considered a slave.  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
Programming (接下页)  
The device operates as a slave device with address 4BH, receiving control inputs from the master device like  
micro-controller or digital signal processor through REG00-REG0D. Register read beyond REG0D (0x0D) returns  
0xFF. The I2C interface supports both standard mode (up to 100 kbits/s), and fast mode (up to 400 kbits/s).  
When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be connected to the  
positive supply voltage via a current source or pull-up resistor.  
7.5.2 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on SCL line is LOW. One clock pulse is generated for each data  
bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of  
data allowed  
22. Bit Transfers on the I2C Bus  
7.5.3 START and STOP Conditions  
All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the master. The  
bus is considered busy after the START condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
START (S)  
23. START and STOP Conditions on the I2C Bus  
7.5.4 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the Most  
Significant Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has  
performed some other function, it can hold the SCL line low to force the master into a wait state (clock  
stretching). Data transfer then continues when the slave is ready for another byte of data and releases the SCL  
line.  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Programming (接下页)  
Acknowledgement  
signal from receiver  
Acknowledgement  
signal from slave  
MSB  
SDA  
SCL  
S or Sr  
1
2
8
9
1
2
8
9
P or Sr  
7
ACK  
ACK  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
24. Data Transfer on the I2C Bus  
7.5.5 Acknowledge (ACK) and Not Acknowledge (NACK)  
The ACK signaling takes place after byte. The ACK bit allows the receiver to signal the transmitter that the byte  
was successfully received and another byte may be sent. All clock pulses, including the acknowledge 9th clock  
pulse, are generated by the master. The transmitter releases the SDA line during the acknowledge clock pulse  
so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH period of this 9th clock  
pulse. A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The master can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
7.5.6 Slave Address and Data Direction Bit  
After the START signal, a slave address is sent. This address is 7 bits long, followed by the 8 bit as a data  
direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
The device 7-bit address is defined as 1001 011’ (0x4BH) by default. The address bit arrangement for 4BH is  
shown in 25.  
Slave Address  
1
0
0
1
0
1
1
R / W  
25. 14: 7-Bit Addressing (4BH)  
SDA  
SCL  
S
1-7  
8
9
1-7  
8
9
1-7  
8
9
P
START  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
26. Complete Data Transfer on I2C Bus  
7.5.7 Single Read and Write  
27. Single Write  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
Programming (接下页)  
28. Single Read  
If the register address is not defined, the charger device sends back NACK and returns to the idle state.  
7.5.8 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write of all registers.  
29. Multi-Write  
30. Multi-Read  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 I2C Registers  
Table 3 lists the memory-mapped registers for the I2C. All register offset addresses not listed in Table 3 should  
be considered as reserved locations and the register contents should not be modified.  
Table 3. I2C Register Summary Table  
Address  
0h  
Access Type  
Acronym  
REG00  
REG01  
REG02  
REG03  
REG04  
REG05  
REG06  
REG07  
REG08  
REG09  
REG0A  
REG0h  
REG0C  
REG0D  
Register Name  
Battery Voltage Limit  
Charge Current Limit  
Input Voltage Limit  
Input Current Limit  
RESERVED  
Section  
Go  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
1h  
Go  
2h  
Go  
3h  
Go  
4h  
Go  
5h  
Charger Control 1  
Charger Control 2  
INT Status  
Go  
6h  
Go  
7h  
Go  
8h  
R
FAULT Status  
INT Flag  
Go  
9h  
R
Go  
Ah  
Bh  
Ch  
Dh  
R
FAULT Flag  
Go  
R/W  
R/W  
R/W  
INT Mask  
Go  
FAULT Mask  
Go  
Part Information  
Go  
Complex bit access types are encoded to fit into small table cells. Table 4 shows the codes that are used for  
access types in this section.  
Table 4. I2C Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset Value  
-n  
Value after reset  
Undefined value  
-X  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7.6.1.1 Battery Voltage Regulation Limit Register (Address = 0h) [reset = AAh]  
REG00 is shown in Figure 31 and described in Table 5.  
Return to Summary Table.  
Figure 31. REG00 Register  
7
6
5
4
3
2
1
0
VREG[7:0]  
R/W-AAh  
Table 5. REG00 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VREG[7]  
VREG[6]  
VREG[5]  
VREG[4]  
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
640 mV  
320 mV  
160 mV  
80 mV  
40 mV  
20 mV  
10 mV  
5 mV  
Charge voltage limit:  
Offset: 3.5 V  
Range: 3.5 V to 4.775 V  
Default 4.35 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
 
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6.1.2 Charger Current Limit Register (Address = 1h) [reset = 46h]  
REG01 is shown in Figure 32 and described in Table 6.  
Return to Summary Table.  
Figure 32. REG01 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
ICHG[6:0]  
R/W-46h  
Table 6. REG01 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
RESERVED  
R/W  
Yes  
Yes  
Reserved bit always reads 0h  
6
5
4
3
2
1
0
ICHG[6]  
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
3200 mA  
Fast charge current limit  
Offset: 0 mA  
Range: 0 mA to 6000 mA  
Default: 3500 mA  
NOTE: ICHG > 6 A (78h) clamped to 6 A  
ICHG < 300 mA (06h) clamped to 0 A  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
50 mA  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7.6.1.3 Input Voltage Limit Register (Address = 2h) [reset = 04h]  
REG02 is shown in Figure 33 and described in Table 7.  
Return to Summary Table.  
Figure 33. REG02 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
VINDPM[6:0]  
R/W-04h  
Table 7. REG02 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
RESERVED  
R/W  
Yes  
No  
Reserved bit always reads 0h  
6400 mV  
6
5
4
3
2
1
0
VINDPM[6]  
VINDPM[5]  
VINDPM[4]  
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
Absolute input-voltage limit  
3200 mV  
1600 mV  
800 mV  
400 mV  
200 mV  
100 mV  
Offset: 3.9 V  
Range: 3.9 V to 14 V  
Default: 4.3 V  
NOTE: VINDPM > 14 V (65h) clamped to 14 V  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
 
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6.1.4 Input Current Limit Register (Address = 3h) [reset = 13h]  
REG03 is shown in Figure 34 and described in Table 8.  
Return to Summary Table.  
Figure 34. REG03 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
INDPM[5:0]  
R/W-13h  
Table 8. REG03 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7-6  
RESERVED  
R/W  
Yes  
No  
Reserved bit always reads 0h  
5
4
3
2
1
0
INDPM[5]  
INDPM[4]  
INDPM[3]  
INDPM[2]  
INDPM[1]  
INDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
3200 mA  
Input current limit  
Offset: 500 mA  
Range: 500 mA to 3600 mA  
Default: 2400 mA  
NOTE: INDPM > 3600 mA (1Fh) clamped to 3600mA  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7.6.1.5 Reserved Register (Address = 4h) [reset = 03h]  
REG04 is shown in Figure 35 and described in Table 9.  
Return to Summary Table.  
Figure 35. REG04 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
R/W-3h  
Table 9. REG04 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
RESERVED  
Type  
Description  
7-0  
R/W  
Yes  
Yes  
Reserved bit always reads 03h  
Copyright © 2017–2019, Texas Instruments Incorporated  
33  
 
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6.1.6 Charger Control 1 Register (Address = 5h) [reset = 9Dh]  
REG05 is shown in Figure 36 and described in Table 10.  
Return to Summary Table.  
When the WATCHDOG[1:0] bits change (writing the same value does not change these bits), the internal  
counter is reset. The same applies for the CHG_TIMER bits (changing the value in the register will reset the  
CHG_TIMER).  
Figure 36. REG05 Register  
7
6
5
4
3
2
1
0
EN_TERM  
R/W-1h  
WD_RST  
R/W-0h  
WATCHDOG[1:0]  
R/W-1h  
EN_TIMER  
R/W-1h  
CHG_TIMER[1:0]  
R/W-2h  
TMR2X_EN  
R/W-1h  
Table 10. REG05 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_TERM  
R/W  
Yes  
Yes  
Termination control  
0h = Disable termination  
1h = Enable termination  
6
WD_RST  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
I2C watchdog-timer reset  
0h = Normal  
1h = Reset (bit returns to 0 after time reset)  
5-4  
WATCHDOG[1:0]  
I2C watchdog-timer settings  
0h = Disable watchdog timer  
1h = 40 s  
2h = 80 s  
3h = 160 s  
3
EN_TIMER  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Charging safety-timer enable  
0h = Disable  
1h = Enable  
2-1  
CHG_TIMER[1:0]  
Fast-charge safety timer setting  
0h = 5 hours  
1h = 8 hours  
2h = 12 hours  
3h = 20 hours  
0
TMR2X_EN  
R/W  
Yes  
Yes  
Safety timer behavior during DPM or TREG  
0h = Safety timer always counts normally  
1h = Safety timer count slowed by 2x during input DPM or  
TREG  
34  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7.6.1.7 Charger Control 2 Register (Address = 6h) [reset = 33h]  
REG06 is shown in Figure 37 and described in Table 11.  
Return to Summary Table.  
When the watchdog timer expires (WD_STAT = 1h), the EN_CHG bit is held in reset. To enable the charger after  
the watchdog expires, write a value of 1h to the WD_RST bit and a value of 1h to the EN_CHG bit.  
Figure 37. REG06 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
TREG[1:0]  
R/W-3h  
EN_CHG  
R/W-0h  
RESERVED  
R/W-0h  
VBATLOWV[1:0]  
R/W-3h  
Table 11. REG06 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Description  
RESERVED  
TREG[1:0]  
Yes  
Yes  
Yes  
Yes  
Reserved bit always reads 0h  
Thermal regulation threshold  
0h = 60°C  
1h = 80°C  
2h = 100°C  
3h = 120°C  
3
EN_CHG  
R/W  
Yes  
Yes  
Charger enable configuration  
0h = Charger disabled  
1h = Charger enabled  
2
RESERVED  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
Reserved bit always reads 0h  
1-0  
VBATLOWV[1:0]  
VBAT_LOWV threshold to start charging at ICHG programmed  
setting:  
0h = 2.6 V  
1h = 2.9 V  
2h = 3.2 V  
3h = 3.5 V  
Copyright © 2017–2019, Texas Instruments Incorporated  
35  
 
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6.1.8 INT Status Register (Address = 7h) [reset = X]  
REG07 is shown in Figure 38 and described in Table 12.  
Return to Summary Table.  
Figure 38. REG07 Register  
7
6
5
4
3
2
1
CHRG_STAT[2:0]  
R-X  
0
PG_STAT  
R-X  
INDPM_STAT  
R-X  
VINDPM_STAT  
R-X  
TREG_STAT  
R-X  
WD_STAT  
R-X  
Table 12. REG07 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_STAT  
R
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Power-good status  
0h = Not power good  
1h = Power good  
6
INDPM_STAT  
VINDPM_STAT  
TREG_STAT  
WD_STAT  
R
R
R
R
R
INDPM status  
0h = Normal  
1h = In INDPM regulation  
5
VINDPM status  
0h = Normal  
1h = In VINDPM regulation  
4
Device thermal-regulation status  
0h = Normal  
1h = In thermal regulation  
3
I2C watchdog-timer status  
0h = Normal  
1h = Watchdog timer expired  
2-0  
CHRG_STAT[2:0]  
Yes  
Charge status  
0h = Not charging  
1h = Reserved  
2h = Reserved  
3h = Fast charging (CC mode)  
4h = Taper charging (CV mode)  
5h = Reserved  
6h = Reserved  
7h = Reserved  
36  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7.6.1.9 FAULT Status Register (Address = 8h) [reset = X]  
REG08 is shown in Figure 39 and described in Table 13.  
Return to Summary Table.  
When the watchdog timer expires (WD_STAT = 1h), the VBUS_OVP_STAT, TSHUT_STAT, BATOVP_STAT,  
and CFLY_STAT bits are held in reset until the watchdog fault is cleared (WD_RST bit = 1h, or changing the  
WATCHDOG[1:0] bits).  
Figure 39. REG08 Register  
7
6
5
4
3
2
1
0
VBUS_OVP_STA  
T
TSHUT_STAT  
BATOVP_STAT  
CFLY_STAT  
RESERVED  
CAP_COND_STA POORSRC_STA  
RESERVED  
T
T
R-X  
R-X  
R-X  
R-X  
R-0h  
R-X  
R-X  
R-0h  
Table 13. REG08 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_STAT  
TSHUT_STAT  
BATOVP_STAT  
CFLY_STAT  
R
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Input-overvoltage status  
0h = Normal  
1h = Device in overvoltage protection  
6
5
4
R
R
R
Device temperature-shutdown status  
0h = Normal  
1h = Device in thermal-shutdown protection  
Battery overvoltage status  
0h = Normal  
1h = BATOVP (VBAT > VBATOVP)  
Flying capacitor status  
0h = Normal  
1h = Flying capacitor fault (VCFLY_UVP or OVP)  
Reserved bit always reads 0  
3
2
Reserved  
R
R
Yes  
Yes  
Yes  
Yes  
CAP_COND_STAT  
Capacitor precondition status  
0h = Normal  
1h = CFLY or CAUX precondition failed  
1
0
POORSRC_STAT  
RESERVED  
R
R
Yes  
Yes  
Yes  
Yes  
Poor-source-detection status  
0h = Normal  
1h = POORSRC routine failed 7 consecutive times  
Reserved bit always reads 0  
Copyright © 2017–2019, Texas Instruments Incorporated  
37  
 
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6.1.10 INT Flag Status Register (Address = 9h) [reset = 00h]  
REG09 is shown in Figure 40 and described in Table 14.  
Return to Summary Table.  
All bits in REG09 are automatically cleared after a read.  
Figure 40. REG09 Register  
7
6
5
4
3
2
1
0
PG_FLAG  
INDPM_FLAG  
VINDPM_FLAG  
TREG_FLAG  
WD_FLAG  
CHRG_TERM_FL  
AG  
RESERVED  
CHRG_FLAG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 14. REG09 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
PG_FLAG  
R
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Power-good INT flag  
0h = Normal  
1h = PG-signal toggle detected  
INDPM_FLAG  
VINDPM_FLAG  
TREG_FLAG  
R
R
R
R
R
INDPM-regulation INT flag  
0h = Normal  
1h = INDPM-signal rising edge detected  
VINDPM-regulation INT flag  
0h = Normal  
1h = VINDPM-signal rising edge detected  
Device temperature-regulation INT flag  
0h = Normal  
1h = TREG-signal rising edge detected  
WD_FLAG  
I2C-watchdog INT flag  
0h = Normal  
1h = WD_STAT-signal rising edge detected  
CHRG_TERM_FLAG  
Charger-termination INT flag  
0h = Normal  
1h = Charger-termination signal rising edge detected  
1
0
RESERVED  
R
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0  
CHRG_FLAG  
Charger status INT flag  
0h = Normal  
1h = CHRG_STAT[2:0] bits changed (transition to any state)  
38  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7.6.1.11 FAULT Flag Register (Address = Ah) [reset = 00h]  
REG0A is shown in Figure 41 and described in Table 15.  
Return to Summary Table.  
All bits in REG0A are automatically cleared after a read.  
Figure 41. REG0A Register  
7
6
5
4
3
2
1
0
VBUS_OVP_FLA  
G
TSHUT_FLAG  
BATOVP_FLAG  
CFLY_FLAG  
TMR_FLAG  
CAP_COND_FLA POORSRC_FLA  
RESERVED  
G
G
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 15. REG0A Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_FLAG  
TSHUT_FLAG  
BATOVP_FLAG  
CFLY_FLAG  
R
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Input-overvoltage INT flag  
0h = Normal  
1h = VBUS_OVP signal rising edge detected  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
Thermal-shutdown INT flag  
0h = Normal  
1h = TSHUT signal rising edge detected  
Battery-overvoltage INT flag  
0h = Normal  
1h = BATOVP signal rising edge detected  
Flying capacitor fault INT flag  
0h = Normal  
1h = Flying capacitor fault signal rising edge detected  
TMR_FLAG  
Charger safety-timer fault INT flag  
0h = Normal  
1h = Charger safety-timer expired rising edge  
CAP_COND_FLAG  
POORSRC_FLAG  
RESERVED  
Capacitor precondition fault INT flag  
0h = Normal  
1h = CAP_COND_STAT signal rising edge detected  
Poor-source-fault INT flag  
0h = Normal  
1h = POORSRC_STAT signal rising edge detected  
Reserved bit always reads 0  
Copyright © 2017–2019, Texas Instruments Incorporated  
39  
 
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6.1.12 INT Mask Register (Address = Bh) [reset = 00h]  
REG0h is shown in Figure 42 and described in Table 16.  
Return to Summary Table.  
Figure 42. REG0h Register  
7
6
5
4
3
2
1
0
PG_MASK  
INDPM_MASK  
VINDPM_MASK  
TREG_MASK  
WD_MASK  
CHRG_TERM_M  
ASK  
RESERVED  
CHRG_MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 16. REG0h Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
PG_MASK  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Power-good INT mask  
0h = PG toggle produces INT pulse  
1h = PG toggle does not produce INT pulse  
INDPM_MASK  
VINDPM_MASK  
TREG_MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
INDPM-regulation INT mask  
0h = INDPM entry produces INT pulse  
1h = INDPM entry does not produce INT pulse  
VINDPM-regulation INT mask  
0h = VINDPM entry produces INT pulse  
1h = VINDPM entry does not produce INT pulse  
Device temperature-regulation INT mask  
0h = TREG entry produces INT pulse  
1h = TREG entry does not produce INT pulse  
WD_MASK  
I2C watchdog-timer INT mask  
0h = WD_STAT rising edge produces INT pulse  
1h = WD_STAT rising edge does not produce INT pulse  
CHRG_TERM_MASK  
Charger-termination INT mask  
0h = CHRG-termination detection produces INT pulse  
1h = CHRG-termination detection does not produce INT pulse  
1
0
RESERVED  
R/W  
R/W  
Yes  
Yes  
No  
No  
Reserved bit always reads 0  
CHRG_MASK  
Charger-status INT mask  
0h = CHRG_STAT[2:0] bit change produces INT pulse  
1h = CHRG_STAT[2:0] bit change does not produce INT pulse  
40  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
7.6.1.13 FAULT Mask Register (Address = Ch) [reset = 00h]  
REG0C is shown in Figure 43 and described in Table 17.  
Return to Summary Table.  
Figure 43. REG0C Register  
7
6
5
4
3
2
1
0
VBUS_OVP_MAS  
K
TSHUT_MASK  
BATOVP_MASK  
CFLY_MASK  
TMR_MASK  
CAP_COND_MA POORSRC_MAS  
RESERVED  
SK  
K
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 17. REG0C Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_MASK  
TSHUT_MASK  
BATOVP_MASK  
CFLY_MASK  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Input overvoltage INT mask  
0h = VBUS_OVP rising edge produces INT pulse  
1h = VBUS_OVP rising edge does not produce INT pulse  
6
5
4
3
2
R/W  
R/W  
R/W  
R/W  
R/W  
Thermal-shutdown INT mask  
0h = TSHUT rising edge produces INT pulse  
1h = TSHUT rising edge does not produce INT pulse  
Battery-overvoltage INT mask  
0h = BATOVP rising edge produces INT pulse  
1h = BATOVP rising edge does not produce INT pulse  
Flying capacitor fault INT mask  
0h = CFLY-fault rising edge produces INT pulse  
1h = CFLY-fault rising edge does not produce INT pulse  
TMR_MASK  
Charger safety-timer fault INT mask  
0h = Timer expired rising edge produces INT pulse  
1h = Timer expired rising edge does not produce INT pulse  
CAP_COND_MASK  
Capacitor precondition-fault INT mask  
0h = CAP_COND_FLAG rising edge produces INT pulse  
1h = CAP_COND_FLAG rising edge does not produce INT  
pulse  
1
0
POORSRC_MASK  
RESERVED  
R/W  
R/W  
Yes  
Yes  
No  
No  
Poor-source-fault INT mask  
0h = POORSRC_FLAG rising edge produces INT pulse  
1h = POORSRC_FLAG rising edge does not produce INT pulse  
Reserved bit always reads 0  
Copyright © 2017–2019, Texas Instruments Incorporated  
41  
 
 
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6.1.14 Part Information Register (Address = Dh) [reset = 0Ah]  
REG0D is shown in Figure 44 and described in Table 18.  
Return to Summary Table.  
Figure 44. REG0D Register  
7
6
5
4
3
2
1
0
REG_RST  
R/W-0h  
PN[3:0]  
R-1h  
DEV_REV[2:0]  
R-2h  
Table 18. REG0D Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
REG_RST  
R/W  
No  
No  
Register preset  
0h = Keep the current register settings  
1h = Reset to default register values and reset the safety timer  
NOTE: This bit resets to 0 after the register reset is complete.  
6-3  
2-0  
PN[3:0]  
R
R
No  
No  
No  
No  
Part number  
1h = BQ25910  
DEV_REV[2:0]  
Device revision: 2h  
42  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
A typical application consists of the device configured as an I2C controlled single cell, parallel battery charger for  
Li-Ion and Li-polymer batteries used in a wide range of smartphones and other portable devices. It integrates an  
input reverse-block FET (QBLK), four switching FETs for three-level operation (QHSA – QLSA), and a bootstrap  
cap control to drive HS gates.  
8.2 Typical Application  
VBUS  
SYSTEM  
LOAD  
SW  
1 mF  
20 mF  
GND  
SYS  
PMID1  
10 mF  
BQ25600 /  
BQ25898 /  
PMIC  
I2C Bus  
BAT  
10 mF  
VBUS  
CFLY +  
1 mF  
10 mF 10 mF  
ICHG1  
PMID2  
SW2  
470nH /  
330nH  
10 mF  
20 mF  
CDRV+  
CDRV-  
CFLY -  
220 nF  
IND_  
SNS  
100  
100ꢀ  
VDD  
+
BATP  
BATN  
VBAT  
-
GND  
SDA  
SCL  
INT  
Host  
REGN  
CAUX  
4.7 mF  
BQ25910  
4.7 mF  
45. BQ25910 Application Test Configuration  
版权 © 2017–2019, Texas Instruments Incorporated  
43  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this design example, use the parameters shown in 19.  
19. Design Parameters  
PARAMETER  
Input Voltage Range  
Input Current Limit  
VALUE  
3.9 V to 14 V  
2.4 A  
Fast Charge Current  
Battery Regulation Voltage  
3.5 A  
4.35 V  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Passive Recommendation  
The following part numbers are recommended for correct operation of BQ25910.  
20. Recommended External Components  
PASSIVE  
UP TO 9VBUS ±10%  
HMLQ25201B-R33  
MPIM252010E-R33  
UP TO 12VBUS ±10%  
DFE252012F-R47  
DFE252010F-R47  
Inductor  
CFLY (10 μF, X5R, 16 V)  
CAUX (4.7 μF, X5R, 16 V)  
2x GRM188R61C106MAALD  
1x GRM155R61A475MEAAD  
8.2.2.2 Inductor Selection  
The BQ25910 is a three-level converter with a fixed switching frequency of 750 kHz, allowing the use of small  
inductor and capacitor values. The inductor saturation current should be higher than the output current (ICHG  
)
plus half the ripple current (IRIPPLE):  
IRIPPLE  
ISAT í ICHG  
+
2
(1)  
The inductor ripple current depends on input voltage (VBUS), duty cycle (D = VBAT/VBUS), switching frequency (fsw)  
and inductance (L):  
2
VBUS 0.5ì D - 0.5 - D - 0.5  
(
)
)
(
IRIPPLE  
=
Lfsw  
(2)  
The maximum inductor ripple current happens with D = 1/3 or D = 2/3. The recommended value of inductance is  
330 nH for 9-V applications or 470 nH for 12-V applications (750 kHz).  
44  
版权 © 2017–2019, Texas Instruments Incorporated  
 
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
46. Inductor Current Ripple as function of VBUS with Fixed VBAT  
21. Recommended Inductor values  
VBUS  
INDUCTOR VALUE  
330 nH  
3.9 V < VBUS < 10 V  
3.9 V < VBUS < 14 V  
470 nH  
8.2.2.3 Input Capacitor  
Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case  
RMS current occurs when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then the worst  
case capacitor RMS current ICIN occurs where the duty cycle is closest to 50% and can be estimated by the  
following equation:  
ICIN = ICHG D 1-D  
(
)
(3)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed as close as possible to PMID and GND pins. Voltage rating of the capacitor must be higher than normal  
input voltage level. 25-V rating or higher capacitor is preferred for 12-V input voltage. 10-μF capacitance is  
suggested for up-to 6-A charging current.  
8.2.2.4 Flying Capacitor  
Flying capacitor selection must meet criteria related to current ripple and voltage ripple. Just as the input  
capacitor, the flying capacitor should also have enough ripple current rating to absorb the RMS current through it:  
I2  
2 0.5 - D - 0.5 I2  
+
RIPPLE  
ICFLY  
=
÷
÷
(
)
CHG  
12  
«
(4)  
This function becomes maximum when D = 0.5, because at that point the capacitor is in series with the inductor  
for a complete switching cycle, and their RMS currents are the same. The flying capacitor should be sized to  
handle the full charge current in the scenario where D = 0.5.  
版权 © 2017–2019, Texas Instruments Incorporated  
45  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
47. Flying Capacitor RMS Current vs. VBUS with Fixed VBAT and ICHG  
Additionally, the flying capacitor voltage ripple should be kept under 10% of VBUS/2 to ensure loop stability. This  
quantity is given by the following equation:  
ICHG 0.5 - D - 0.5  
(
)
DVCFLY  
=
CFLYfSW  
(5)  
It is recommended to use at least two 16-V, 10-μF, low ESR ceramic capacitors in parallel to achieve both RMS  
current rating and maintain voltage ripple <10% in the flying capacitor for up-to 6-A charge current application.  
The following curve shows what the ripple voltage of CFLY might look like for such a configuration by taking into  
account voltage derating of the capacitor and plugging the effective capacitance value into equation above at  
different charge currents and VBUS voltages.  
48. Flying Capacitor Ripple Voltage vs. VBUS with Fixed VBAT  
22. Recommended CFLY Values  
CHARGE CURRENT  
ICHG < 3.5 A  
CFLY CONFIGURATION  
1 x 0603 (10 μF, X5R, 16 V)  
2 x 0603 (10 μF, X5R, 16 V)  
ICHG > 3.5 A  
46  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
8.2.2.5 Output Capacitor  
Output capacitor also should have enough ripple current rating to absorb output switching ripple current. The  
output capacitor RMS current ICOUT is given:  
IRIPPLE  
ICOUT  
=
ö 0.29ìIRIPPLE  
2 3  
(6)  
The output capacitor voltage ripple can be calculated as follows:  
IRIPPLE  
DVSYS  
=
16COfSW  
(7)  
At certain input/output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC. The preferred ceramic capacitor is 20 μF, 6.3 V or higher rating, X7R or X5R.  
8.2.3 Application Curves  
CBUS = 1 µF, CPMID = 10 µF, CBAT = 20 µF, CFLY = 20 µF, L = DFE252012F-R47 (470 nH) (unless otherwise noted)  
VBUS = 5 V, VBAT = 3.8 V  
49. Adapter Power Up with Charge Enabled  
VBUS = 12 V, VBAT = 3.8 V  
50. HV Adapter Power Up with Charge Enabled  
VBUS = 5 V, VBAT = 3.5 V, ICHG = 3 A  
51. Charge Disable  
VBUS = 12 V, VBAT = 3.5 V, ICHG = 4 A  
52. HV Adapter Charge Disable  
版权 © 2017–2019, Texas Instruments Incorporated  
47  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
CBUS = 1 µF, CPMID = 10 µF, CBAT = 20 µF, CFLY = 20 µF, L = DFE252012F-R47 (470 nH) (unless otherwise noted)  
VBUS = 5 V -> 12 V -> 5 V, VBAT = 4 V, ICHG = 1 A  
VBUS = 12 V, VBAT = 4.35 V, ICHG = 4 A, IBAT = 1 A -> 4 A ->  
1 A  
CH 1 = VBUS, CH2 = ILOAD, CH3 = CFLY differential, CH4 =  
VBAT  
CH 1 = VBUS, CH2 = SW, CH3 = CFLY differential, CH4 =  
VBAT  
54. Load Transient Response in CV Mode  
53. Line Transient Response in CC Mode  
VBUS = 5 V, VBAT = 3.8 V, ICHG = 2 A, (D > 50%)  
VBAT = 4.1 V, VINDPM = 4.3 V  
56. PWM Switching Waveform  
55. VINDPM Response  
VBUS = 8 V, VBAT = 3.8 V, ICHG = 2 A, (D approx. 50%)  
VBUS = 12 V, VBAT = 3.8 V, ICHG = 2 A (D < 50%)  
57. PWM Switching Waveform  
58. PWM Switching Waveform  
48  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
CBUS = 1 µF, CPMID = 10 µF, CBAT = 20 µF, CFLY = 20 µF, L = DFE252012F-R47 (470 nH) (unless otherwise noted)  
VBUS = 12 V, VBAT = 3.8 V  
60. Adapter Removal  
VBUS = 5 V, VBAT = 3.8 V  
59. Adapter Removal  
版权 © 2017–2019, Texas Instruments Incorporated  
49  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
In order to charge single-cell Li-Ion battery, the device requires a power supply between 3.9 V and 14 V with at  
least 500-mA current rating connected to VBUS. Additionally, a single-cell Li-Ion battery with voltage > VBAT_LOWV  
should be connected between at the output of the switched inductor, between BATP and BATN terminals.  
50  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
10 Layout  
10.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loops is important to prevent electrical and magnetic field  
radiation and high-frequency resonant problems. Here is a PCB layout priority list for proper layout. Layout PCB  
according to this specific order is essential.  
1. Utilize at least four-layer board for optimal layout, and assign one layer as solid ground plane near the IC to  
minimize high-frequency current path  
2. Place flying capacitor as close to CLFY+ and CLFY– bumps as possible. Minimize the copper area of this  
trace to lower electrical and magnetic field radiation but make the trace wide enough to carry the charging  
current. Do not use multiple layers in parallel for this connection.  
3. Place input capacitor as close as possible to PMID bumps and PGND bumps and use solid GND plane  
underneath the IC. Use plenty of vias close to PMID capacitor GND terminal and IC PGND bumps to ensure  
low parasitic connection to GND plane.  
4. Place inductor input terminal as close to SW bumps as possible. Minimize the copper area of this trace to  
lower electrical and magnetic field radiation but make the trace wide enough to carry the charging current.  
5. Put output capacitor near to the inductor and the device. Ground connections need to be tied to the device  
ground with a short copper trace connection or GND plane.  
6. Decoupling capacitors should be placed next to the device and make trace connection as short as possible.  
7. Ensure that there are sufficient thermal vias directly under bumps of the power FETs, connecting to copper  
on other layers.  
8. The via size and number should be enough for a given current path.  
9. Route BATP and BATN away from switching nodes such as SW and CFLY+, CFLY–.  
Refer to the EVM design and 61 for the recommended component placement with trace and via locations.  
版权 © 2017–2019, Texas Instruments Incorporated  
51  
BQ25910  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
10.2 Layout Example  
GND  
0603  
SW  
1008  
0603  
PMID  
C+  
C-  
VBUS  
VBUS  
PMID  
PMID  
PMID  
PMID  
SDA  
C+  
SW  
SW  
C-  
GND  
GND  
GND  
GND  
GND  
BAT  
GND  
VBUS  
VBUS  
CDRV+  
CDRV-  
SCL  
C+  
C+  
C-  
C-  
C-  
C-  
0603  
SW  
CDRV+  
CDRV-  
C+  
SW  
0603  
INT  
SW  
GND  
IND_  
SNS  
CAUX  
REGN  
BATN  
BATP  
REGN  
CAUX  
GND  
0402  
0402  
GND  
SCL  
SDA  
/INT  
BATN  
BATP  
61. BQ25910 PCB Layout Example  
52  
版权 © 2017–2019, Texas Instruments Incorporated  
BQ25910  
www.ti.com.cn  
ZHCSHR0B SEPTEMBER 2017REVISED SEPTEMBER 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
11.1.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
53  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25910YFFR  
BQ25910YFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
36  
36  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25910  
BQ25910  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Nov-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25910YFFR  
BQ25910YFFR  
BQ25910YFFT  
BQ25910YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
36  
36  
36  
36  
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.54  
2.54  
2.54  
2.54  
2.54  
2.54  
2.54  
2.54  
0.76  
0.76  
0.76  
0.76  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Nov-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25910YFFR  
BQ25910YFFR  
BQ25910YFFT  
BQ25910YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
36  
36  
36  
36  
3000  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0036  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
2 TYP  
SYMM  
F
E
D: Max = 2.472 mm, Min =2.412 mm  
E: Max = 2.444 mm, Min =2.384 mm  
D
C
SYMM  
2
TYP  
B
A
0.3  
0.2  
36X  
0.015  
C A  
B
0.4 TYP  
1
2
4
5
6
3
0.4 TYP  
4222008/A 03/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0036  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
36X ( 0.23)  
(0.4) TYP  
1
2
4
5
6
A
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222008/A 03/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0036  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
36X ( 0.25)  
(R0.05) TYP  
1
3
4
5
2
6
A
B
(0.4)  
TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222008/A 03/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ25910YFFT

用于并联充电应用的 I2C 单节 6A 三级降压电池充电器 | YFF | 36 | -40 to 85
TI

BQ25960

具有旁路模式和双输入选择器的 I2C 控制型单节 8A 开关电容并联电池充电器
TI

BQ25960YBGR

具有旁路模式和双输入选择器的 I2C 控制型单节 8A 开关电容并联电池充电器 | YBG | 36 | -40 to 85
TI

BQ25968

I2C 控制的单节电池高效率 ADC、6A 开关电容快速充电器
TI

BQ25968YFFR

I2C 控制的单节电池高效率 ADC、6A 开关电容快速充电器 | YFF | 56 | -40 to 85
TI

BQ25970

用于并联充电应用并支持外部过压保护的 I2C 单节 8A 开关电容器电池充电器
TI

BQ25970YFFR

用于并联充电应用并支持外部过压保护的 I2C 单节 8A 开关电容器电池充电器 | YFF | 56 | -40 to 85
TI

BQ25970YFFT

用于并联充电应用并支持外部过压保护的 I2C 单节 8A 开关电容器电池充电器 | YFF | 56 | -40 to 85
TI

BQ25971

用于并联充电应用的 I2C 单节 8A 开关电容器电池充电器
TI

BQ25971YFFR

用于并联充电应用的 I2C 单节 8A 开关电容器电池充电器 | YFF | 56 | -40 to 85
TI

BQ25971YFFT

用于并联充电应用的 I2C 单节 8A 开关电容器电池充电器 | YFF | 56 | -40 to 85
TI

BQ25980

具有集成保护功能的 I2C 控制型 8A 开关电容式 2 节并联电池充电器
TI