BQ78Z100DRZR [TI]

适用于 1 至 2 节电池的 Impedance Track™ 电池电量监测计 | DRZ | 12 | -40 to 85;
BQ78Z100DRZR
型号: BQ78Z100DRZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 1 至 2 节电池的 Impedance Track™ 电池电量监测计 | DRZ | 12 | -40 to 85

电池
文件: 总37页 (文件大小:1321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
bq78z100 Impedance Track™ 用于 1 节和 2 节串联锂离子/锂聚合物电池  
组的电量监测计  
查询样片: bq78z100  
1 特性  
3 说明  
1
高精度库伦计数器,输入偏移误差 < 1µV(典型  
值)  
bq78z100 器件提供了一套基于电池组的全集成解决方  
案,其具有闪存可编程的定制精简指令集 CPU  
(RISC)、安全保护以及认证功能,适用于 1 节和 2 节  
锂离子和锂聚合物电池组。  
高侧场效应晶体管 (FET) 驱动器,允许在故障期间  
进行串行总线通信  
具有双路独立模数转换器 (ADC) 的模拟前端  
bq78z100 电量监测计通过 I2C 兼容接口或单线制  
HDQ 接口进行通信,并将超低功耗的高速德州仪器  
(TI) bqBMP 处理器、高精度模拟测量功能、集成闪  
存、大量的外设和通信端口、N 沟道 FET 驱动器以及  
SHA-1 认证转换响应器完美融合于一套完整的高性能  
电池管理解决方案。  
支持电流和电压的同步采样  
总线通信接口选项  
I2C  
HDQ  
SHA-1 哈希消息验证码 (HMAC) 响应器,用于提高  
电池组安全性  
存储在安全存储器中的分裂密钥 (Split Key) (2  
× 64)  
bq78z100 器件提供有大量的电池和系统安全功能,其  
中包括针对电池的放电过流、充电短路和放电短路功  
能,针对 N 沟道 FET FET 保护,内部 AFE 看门狗  
以及电池平衡功能。 该器件可通过固件添加更多保护  
特性,例如过压、欠压、过热等。  
可编程的保护功能:  
放电过流  
充电短路  
放电短路  
过电压  
器件信息(1)  
部件号  
bq78z100  
封装  
VSON (12)  
封装尺寸(标称值)  
欠电压  
4.00mm x 2.50mm  
过热  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
支持 1mΩ 3mΩ 电流感测电阻  
紧凑型 12 引脚小外形尺寸无引线 (SON) 封装  
(DRZ)  
4 简化电路原理图  
Pack  
+
10 M  
10 M  
Fuse  
2 应用  
13  
100  
1 µF  
5
1
2
3
VC1  
VSS  
SRN  
12  
11  
PWPD  
2 s  
0.1  
µF  
便携式和可佩戴式健康器件  
1 s  
VC2  
PBI  
0.1 µF  
5.1 k  
5.1 k  
便携式无线电  
工业数据收集  
SRP  
TS1  
10  
9
2.2 µF  
Battery  
cells  
4
5
CHG  
10k  
10  
100  
100  
100  
PACK  
8
SCL  
Comm  
Bus  
MM3Z5V6C  
100  
6
7
SDA/HDQ  
DSG  
MM3Z5V6C  
100  
100  
Pack  
1 to 3 mΩ  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSC23  
 
 
 
 
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
目录  
7.22 Data Flash............................................................... 9  
7.23 Current Protection Thresholds .............................. 10  
7.24 Current Protection Timing ..................................... 10  
7.25 N-CH FET Drive (CHG, DSG)............................... 11  
7.26 I2C and HDQ Interface I/O.................................... 11  
7.27 I2C Interface Timing .............................................. 12  
7.28 HDQ Interface Timing ........................................... 12  
7.29 Typical Characteristics ......................................... 14  
Detailed Description ............................................ 17  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 22  
Applications and Implementation ...................... 24  
9.1 Application Information............................................ 24  
9.2 Typical Applications ............................................... 24  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Supply Current .......................................................... 5  
7.6 Power Supply Control ............................................... 5  
7.7 Low-Voltage General Purpose I/O, TS1 ................... 6  
7.8 Power-On Reset (POR) ............................................ 6  
7.9 Internal 1.8-V LDO................................................... 6  
7.10 Current Wake Comparator...................................... 6  
7.11 Coulomb Counter.................................................... 7  
7.12 ADC Digital Filter .................................................... 7  
7.13 ADC Multiplexer ...................................................... 7  
7.14 Cell Balancing Support ........................................... 8  
7.15 Internal Temperature Sensor .................................. 8  
7.16 NTC Thermistor Measurement Support.................. 8  
7.17 High-Frequency Oscillator....................................... 8  
7.18 Low-Frequency Oscillator ....................................... 8  
7.19 Voltage Reference 1 ............................................... 9  
7.20 Voltage Reference 2 ............................................... 9  
7.21 Instruction Flash...................................................... 9  
8
9
10 Power Supply Requirements ............................. 27  
11 Layout................................................................... 28  
11.1 Layout Guidelines ................................................. 28  
11.2 Layout Example .................................................... 29  
12 器件和文档支持 ..................................................... 30  
12.1 文档支持................................................................ 30  
12.2 社区资源................................................................ 30  
12.3 ....................................................................... 30  
12.4 静电放电警告......................................................... 30  
12.5 Glossary................................................................ 30  
13 机械、封装和可订购信息....................................... 31  
5 修订历史记录  
日期  
修订版本  
注释  
2015 9 月  
*
最初发布版本  
2
Copyright © 2015, Texas Instruments Incorporated  
 
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
6 Pin Configuration and Functions  
1
12  
11  
10  
9
VSS  
VC1  
VC2  
2
SRN  
3
SRP  
PBI  
4
CHG  
PACK  
DSG  
TS1  
5
6
8
SCL  
13  
PWPD  
7
SDA/HDQ  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VSS  
DRZ  
1
P
Device ground  
Analog input pin connected to the internal coulomb counter peripheral for integrating a small  
voltage between SRP and SRN where SRP is the top of the sense resistor.  
SRN  
SRP  
2
3
IA  
Analog input pin connected to the internal coulomb counter peripheral for integrating a small  
voltage between SRP and SRN where SRP is the top of the sense resistor.  
IA  
TS1  
4
5
IA  
I/O  
I/O  
O
Input for ADC to the oversampled ADC channel  
Serial Clock for the I2C interface; requires an external pullup when used  
Serial Data for the I2C and HDQ interfaces; requires an external pullup  
N-Channel FET drive output pin  
SCL  
SDA/HDQ  
DSG  
6
7
PACK  
CHG  
PBI  
8
IA, P  
O
Pack sense input pin  
9
N-Channel FET drive output pin  
10  
P
Power supply backup input pin  
Sense voltage input pin for most positive cell, balance current input for most positive cell. Primary  
power supply input and battery stack measurement input (BAT)  
VC2  
11  
12  
IA, P  
VC1  
IA  
Sense voltage input pin for least positive cell, balance current input for least positive cell  
Exposed Pad, electrically connected to VSS (external trace)  
PWPD  
Copyright © 2015, Texas Instruments Incorporated  
3
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
30  
UNIT  
Supply voltage range, VCC  
VC2, PBI  
PACK  
V
V
V
V
30  
TS1  
VREG + 0.3  
0.3  
SRP, SRN  
Input voltage range, VIN  
VC1 + 8.5 or  
VSS + 30  
VC2  
VC1 – 0.3  
V
V
VSS + 8.5 or  
VSS + 30  
VC1  
VSS – 0.3  
–0.3  
Output voltage range, VO  
CHG, DSG  
32  
±50  
110  
±300  
150  
V
Maximum VSS current, ISS  
mA  
°C  
Functional Temperature, TFUNC  
Lead temperature (soldering, 10 s), TSOLDER  
Storage temperature range, TSTG  
–40  
–65  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 26 V (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
26  
UNIT  
VCC  
Supply voltage  
VC2, PBI  
V
V
V
VSHUTDOWN– Shutdown voltage  
VSHUTDOWN+ Start-up voltage  
VPACK < VSHUTDOWN–  
VPACK > VSHUTDOWN– + VHYS  
1.8  
2.0  
2.2  
2.05  
2.25  
2.45  
Shutdown voltage  
hysteresis  
VHYS  
VSHUTDOWN+ – VSHUTDOWN–  
250  
mV  
SDA/HDQ, SCL  
TS1  
5.5  
VREG  
0.2  
SRP, SRN  
VC2  
–0.2  
VVC1  
VVSS  
VIN  
Input voltage range  
V
VVC1 + 5  
VVSS + 5  
26  
VC1  
PACK  
VO  
Output voltage range CHG, DSG  
External PBI capacitor  
26  
V
CPBI  
2.2  
µF  
Operating  
temperature  
TOPR  
–40  
85  
°C  
4
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
7.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
bq78z100  
THERMAL METRIC(1)  
DRZ  
12 PINS  
186.4  
90.4  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
110.7  
96.7  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
90  
RθJC(bottom)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Supply Current  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
CHG = ON, DSG = ON, No Flash Write and CPU = ON  
400  
500  
INORMAL  
NORMAL mode  
µA  
CHG = ON, DSG = ON, No Flash Write and CPU =  
Halted  
250  
300  
CHG = OFF, DSG = ON, No Communication on Bus  
CHG = OFF, DSG = OFF, No Communication on Bus  
90  
38  
160  
µA  
ISLEEP  
SLEEP mode  
120  
ISHUTDOWN  
SHUTDOWN mode  
0.5  
2
µA  
7.6 Power Supply Control  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
VVC2 < VSWITCHOVER–  
VVC2 > VSWITCHOVER– + VHYS  
VSWITCHOVER+ – VSWITCHOVER–  
MIN  
TYP  
MAX UNIT  
VC2 to PACK  
VSWITCHOVER–  
VSWITCHOVER+  
VHYS  
2.0  
2.1  
2.2  
3.2  
V
V
switchover voltage  
PACK to VC2  
3.0  
3.1  
switchover voltage  
Switchover voltage  
hysteresis  
1000  
mV  
VC2 pin, VC2 = 0 V, PACK = 25 V  
PACK pin, VC2 = 25 V, PACK = 0 V  
1
1
Input Leakage  
current  
ILKG  
µA  
VC2 and PACK pins, VC2 = 0 V, PACK = 0 V, PBI =  
25 V  
1
Internal pulldown  
resistance  
RPACK(PD)  
PACK  
30  
40  
50  
kΩ  
Copyright © 2015, Texas Instruments Incorporated  
5
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
7.7 Low-Voltage General Purpose I/O, TS1  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VIH  
High-level input  
0.65 x VREG  
V
VIL  
Low-level input  
0.35 x VREG  
V
V
VOH  
VOL  
CIN  
ILKG  
Output voltage high  
Output voltage low  
Input capacitance  
Input leakage current  
IOH = – 1.0 mA  
IOL = 1.0 mA  
0.75 x VREG  
0.2 x VREG  
V
5
pF  
µA  
1
7.8 Power-On Reset (POR)  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Negative-going voltage  
input  
VREGIT–  
VREG  
1.51  
1.55  
1.59  
V
Power-on reset  
hysteresis  
VHYS  
tRST  
VREGIT+ – VREGIT–  
70  
100  
300  
130  
400  
mV  
µs  
Power-on reset time  
200  
7.9 Internal 1.8-V LDO  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VREG  
Regulator voltage  
1.6  
1.8  
2.0  
V
Regulator output over  
temperature  
ΔVO(TEMP)  
ΔVO(LINE)  
ΔVREG/ΔTA, IREG = 10 mA  
±0.25%  
Line regulation  
ΔVREG/ΔVBAT, VBAT = 10 mA  
–0 .6%  
–1.5%  
0.5%  
1.5%  
ΔVO(LOAD) Load regulation  
ΔVREG/ΔIREG, IREG = 0 mA to 10 mA  
Regulator output current  
limit  
IREG  
VREG = 0.9 x VREG(NOM), VIN > 2.2 V  
VREG = 0 x VREG(NOM)  
ΔVBAT/ΔVREG, IREG = 10 mA, VIN > 2.5 V, f = 10 Hz  
VREG  
20  
25  
mA  
mA  
dB  
V
Regulator short-circuit  
current limit  
ISC  
40  
40  
50  
Power supply rejection  
ratio  
PSRRREG  
VSLEW  
Slew rate enhancement  
voltage threshold  
1.58  
1.65  
7.10 Current Wake Comparator  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VWAKE = VSRP – VSRN WAKE_CONTROL[WK1,  
WK0] = 0,0  
±0.3  
±0.625  
±0.9  
±1.8  
±3.6  
±7.2  
mV  
mV  
mV  
mV  
VWAKE = VSRP – VSRN WAKE_CONTROL[WK1,  
WK0] = 0,1  
±0.6  
±1.2  
±2.4  
±1.25  
±2.5  
±5.0  
Wake voltage  
threshold  
VWAKE  
VWAKE = VSRP – VSRN WAKE_CONTROL[WK1,  
WK0] = 1,0  
VWAKE = VSRP – VSRN WAKE_CONTROL[WK1,  
WK0] = 1,1  
6
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Current Wake Comparator (continued)  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
Temperature drift of  
VWAKE accuracy  
VWAKE(DRIFT)  
tWAKE  
0.5%  
°C  
Time from application  
of current to wake  
0.25  
250  
0.5  
ms  
µs  
Wake up comparator [WKCHGEN] = 0 and [WKDSGEN] = 0 to  
startup time [WKCHGEN] = 1 and [WKDSGEN] = 1  
tWAKE(SU)  
640  
7.11 Coulomb Counter  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
Input voltage range  
TEST CONDITION  
MIN  
–100  
TYP  
MAX  
100  
UNIT  
mV  
Full scale range  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
–VREF1/10  
+VREF1/10  
±1  
mV  
16-bit, No missing codes  
LSB  
LSB  
LSB  
16-bit, Best fit over input voltage range  
16-bit, Post-calibration  
±5.2  
±1.3  
0.04  
±131  
4.3  
±22.3  
±2.6  
Offset error drift  
Gain error  
15-bit + sign, Post-calibration  
0.07 LSB/°C  
±492 LSB  
15-bit + sign, Over input voltage range  
15-bit + sign, Over input voltage range  
Gain error drift  
9.8 LSB/°C  
Effective input resistance  
2.5  
MΩ  
7.12 ADC Digital Filter  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
ADCTL[SPEED1, SPEED0] = 0, 0  
MIN  
TYP  
31.25  
15.63  
7.81  
1.95  
16  
MAX UNIT  
ADCTL[SPEED1, SPEED0] = 0, 1  
tCONV  
ms  
Bits  
Bits  
ADCTL[SPEED1, SPEED0] = 1, 0  
ADCTL[SPEED1, SPEED0] = 1, 1  
Resolution  
No missing codes, ADCTL[SPEED1, SPEED0] = 0, 0  
With sign, ADCTL[SPEED1, SPEED0] = 0, 0  
With sign, ADCTL[SPEED1, SPEED0] = 0, 1  
With sign, ADCTL[SPEED1, SPEED0] = 1, 0  
With sign, ADCTL[SPEED1, SPEED0] = 1, 1  
14  
13  
11  
9
15  
14  
Effective resolution  
12  
10  
7.13 ADC Multiplexer  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
VC1–VSS, VC2–VC1  
MIN  
0.1980  
0.0485  
0.490  
–0.2  
TYP  
0.2000  
0.050  
MAX  
0.2020  
UNIT  
K
Scaling factor  
VC2–VSS, PACK–VSS  
0.051  
VREF1/2  
0.500  
0.510  
VC2–VSS, PACK–VSS  
20  
VIN  
Input voltage range  
Input leakage current  
TS1  
TS1  
–0.2  
0.8 × VREF1  
0.8 × VREG  
V
–0.2  
VC1, VC2 cell balancing off, cell detach detection  
off, ADC multiplexer off  
ILKG  
1
µA  
Copyright © 2015, Texas Instruments Incorporated  
7
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
7.14 Cell Balancing Support  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Internal cell balance  
resistance  
RCB  
RDS(ON) for internal FET switch at 2 V < VDS < 4 V  
200  
Ω
7.15 Internal Temperature Sensor  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
–1.9  
TYP  
–2.0  
MAX UNIT  
VTEMPP  
–2.1  
mV/°C  
0.179  
Internal temperature  
sensor voltage drift  
VTEMP  
(1)  
VTEMPP – VTEMPN  
0.177  
0.178  
(1) Assured by design  
7.16 NTC Thermistor Measurement Support  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Internal pull-up  
resistance  
RNTC(PU)  
TS1  
TS1  
14.4  
18  
21.6  
kΩ  
Resistance drift over  
temperature  
RNTC(DRIFT)  
–360  
–280  
–200 PPM/°C  
7.17 High-Frequency Oscillator  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
16.78  
MAX  
UNIT  
fHFO  
Operating frequency  
MHz  
TA = –20°C to 70°C, includes frequency drift  
TA = –40°C to 85°C, includes frequency drift  
–2.5%  
–3.5%  
±0.25%  
±0.25%  
2.5%  
3.5%  
fHFO(ERR)  
Frequency error  
Start-up time  
TA = –20°C to 85°C, Oscillator frequency within +/–3%  
of nominal, CLKCTL[HFRAMP] = 1  
4
ms  
µs  
tHFO(SU)  
Oscillator frequency within +/–3% of nominal,  
CLKCTL[HFRAMP] = 0  
100  
7.18 Low-Frequency Oscillator  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
fLFO  
Operating frequency  
262.144  
kHz  
Operating frequency in  
low power mode  
fLFO(LP)  
247  
kHz  
TA = –20°C to 70°C, includes frequency drift  
TA = –40°C to 85°C, includes frequency drift  
–1.5%  
–2.5%  
±0.25%  
±0.25%  
1.5%  
2.5%  
fLFO(ERR)  
Frequency error  
Frequency error in low  
power mode  
fLFO(LPERR)  
–5%  
30  
5%  
Failure detection  
frequency  
fLFO(FAIL)  
80  
100  
kHz  
8
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
7.19 Voltage Reference 1  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF1  
TA = 25°C, after trim  
1.215  
1.220  
1.225  
V
TA = 0°C to 60°C, after trim  
TA = –40°C to 85°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF1(DRIFT)  
PPM/°C  
7.20 Voltage Reference 2  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF2  
TA = 25°C, after trim  
1.215  
1.220  
1.225  
V
TA = 0°C to 60°C, after trim  
TA = –40°C to 85°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF2(DRIFT)  
PPM/°C  
7.21 Instruction Flash  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
Data retention  
TEST CONDITION  
MIN  
10  
TYP  
MAX  
UNIT  
Years  
Cycles  
Flash programming write cycles  
1000  
Word programming  
time  
tPROGWORD  
TA = –40°C to 85°C  
40  
µs  
tMASSERASE Mass-erase time  
tPAGEERASE Page-erase time  
IFLASHREAD Flash-read current  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
40  
40  
2
ms  
ms  
mA  
IFLASHWRIT  
E
Flash-write current  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
5
mA  
mA  
IFLASHERAS  
E
Flash-erase current  
15  
7.22 Data Flash  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
Data retention  
TEST CONDITION  
MIN  
10  
TYP  
MAX  
UNIT  
Years  
Cycles  
Flash programming write cycles  
20000  
Word programming  
time  
tPROGWORD  
TA = –40°C to 85°C  
40  
µs  
tMASSERASE Mass-erase time  
tPAGEERASE Page-erase time  
IFLASHREAD Flash-read current  
IFLASHWRITE Flash-write current  
IFLASHERASE Flash-erase current  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
40  
40  
1
ms  
ms  
mA  
mA  
mA  
5
15  
Copyright © 2015, Texas Instruments Incorporated  
9
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
7.23 Current Protection Thresholds  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VOCD = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
–16.6  
–100  
OCD detection threshold  
voltage range  
VOCD  
mV  
VOCD = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
–8.3  
–50  
VOCD = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
–5.56  
–2.78  
OCD detection threshold  
voltage program step  
ΔVOCD  
ΔVSCC  
ΔVSCC  
VSCD1  
ΔVSCD1  
VSCD2  
ΔVSCD2  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
VOCD = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCC = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
44.4  
22.2  
200  
100  
SCC detection threshold  
voltage range  
VSCC = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCC = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
22.2  
11.1  
SCC detection threshold  
voltage program step  
VSCC = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCD1 = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
–44.4  
–22.2  
–200  
–100  
SCD1 detection  
threshold voltage range  
VSCD1 = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCD1 = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
–22.2  
–11.1  
SCD1 detection  
threshold voltage  
program step  
VSCD1 = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCD2 = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
–44.4  
–22.2  
–200  
–100  
SCD2 detection  
threshold voltage range  
VSCD2 = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCD2 = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
–22.2  
–11.1  
SCD2 detection  
threshold voltage  
program step  
VSCD2 = VSRP – VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
7.24 Current Protection Timing  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
OCD detection delay  
time  
tOCD  
1
31  
ms  
OCD detection delay  
time program step  
ΔtOCD  
tSCC  
2
ms  
µs  
µs  
SCC detection delay  
time  
0
915  
SCC detection delay  
time program step  
ΔtSCC  
61  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
0
0
915  
SCD1 detection delay  
time  
tSCD1  
ΔtSCD1  
tSCD2  
µs  
µs  
µs  
1850  
61  
SCD1 detection delay  
time program step  
121  
0
0
458  
915  
SCD2 detection delay  
time  
10  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Current Protection Timing (continued)  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
MIN  
TYP  
30.5  
61  
MAX  
UNIT  
SCD2 detection delay  
time program step  
ΔtSCD2  
µs  
VSRP – VSRN = VT – 3 mV for OCD, SCD1, and  
SC2, VSRP – VSRN = VT + 3 mV for SCC  
tDETECT  
tACC  
Current fault detect time  
160  
µs  
Current fault delay time  
accuracy  
Max delay setting  
–10%  
10%  
7.25 N-CH FET Drive (CHG, DSG)  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
RatioDSG = (VDSG – VVC2)/VVC2, 2.2 V < VVC2 < 4.07 V,  
10 MΩ between PACK and DSG  
2.133  
2.333  
2.467  
Output voltage ratio  
RatioCHG = (VCHG – VVC2)/VVC2, 2.2 V < VVC2 < 4.07 V,  
10 MΩ between BAT and CHG  
2.133  
8.75  
8.75  
–0.4  
–0.4  
2.333  
9.5  
2.467  
10.25  
10.25  
0.4  
VDSG(ON) = VDSG – VVC2, VVC2 4.07 V, 10 MΩ  
between PACK and DSG, VVC2 = 18 V  
Output voltage, CHG  
and DSG on  
V(FETON)  
V
V
VCHG(ON) = VCHG – VVC2, VVC2 4.07 V, 10 MΩ  
between VC2 and CHG, VVC2 = 18 V  
9.5  
VDSG(OFF) = VDSG – VPACK, 10 MΩ between PACK and  
DSG  
Output voltage, CHG  
and DSG off  
V(FETOFF)  
VCHG(OFF) = VCHG – VBAT, 10 MΩ between VC2 and  
CHG  
0.4  
VDSG from 0% to 35% VDSG(ON)(TYP), VBAT 2.2 V, CL  
4.7 nF between DSG and PACK, 5.1 kΩ between DSG  
and CL, 10 MΩ between PACK and DSG  
=
200  
200  
40  
500  
500  
300  
200  
tR  
Rise time  
Fall time  
µs  
µs  
VCHG from 0% to 35% VCHG(ON)(TYP), VVC2 2.2 V, CL  
4.7 nF between CHG and VC2, 5.1 kΩ between CHG  
and CL, 10 MΩ between VC2 and CHG  
=
VDSG from VDSG(ON)(TYP) to 1 V, VVC2 2.2 V, CL = 4.7  
nF between DSG and PACK, 5.1 kΩ between DSG and  
CL, 10 MΩ between PACK and DSG  
tF  
VCHG from VCHG(ON)(TYP) to 1 V, VVC2 2.2 V, CL = 4.7  
nF between CHG and VC2, 5.1 kΩ between CHG and  
CL, 10 MΩ between VC2 and CHG  
40  
7.26 I2C and HDQ Interface I/O  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SCL, SDA, VREG = 1.8 V (STANDARD and FAST  
modes)  
VIH  
VIL  
Input voltage high  
0.7 × VREG  
V
SCL, SDA, VREG = 1.8 V (STANDARD and FAST  
modes)  
Input voltage low  
–0.5  
0.3 × VREG  
0.2 × VREG  
0.4  
V
V
SCL, SDA, VREG = 1.8 V, IOL = 3 mA (FAST mode)  
VOL  
Output low voltage  
Input capacitance  
SCL, SDA, VREG > 2.0 V, IOL = 3 mA (STANDARD and  
FAST modes)  
V
CIN  
10  
pF  
µA  
kΩ  
Input leakage  
current  
ILKG  
RPD  
1
Pull-down resistance  
3.3  
Copyright © 2015, Texas Instruments Incorporated  
11  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
7.27 I2C Interface Timing  
Typical values stated where TA = 25ºC and VCC = 7.2 V, Min/Max values stated where TA = –40ºC to 85ºC and VCC = 2.2 V  
to 7.6 V (unless otherwise noted)  
MIN  
NOM  
MAX  
300  
UNIT  
ns  
tR  
Clock rise time  
Clock fall time  
10% to 90%  
90% to 10%  
tF  
300  
ns  
tHIGH  
tLOW  
Clock high period  
Clock low period  
600  
1.3  
ns  
µs  
Repeated start  
setup time  
tSU(START)  
td(START)  
600  
600  
ns  
ns  
Start for first falling  
edge to SCL  
tSU(DATA)  
tHD(DATA)  
tSU(STOP)  
Data setup time  
Data hold time  
Stop setup time  
100  
0
ns  
µs  
ns  
600  
Bus free time  
between stop and  
start  
tBUF  
1.3  
µs  
Clock operating  
frequency  
fSW  
SLAVE mode, SCL 50% duty cycle  
400  
kHz  
t
t
t
t
t
f
t
w(L)  
r
(BUF)  
SU(STA)  
w(H)  
SCL  
SDA  
t
t
t
d(STA)  
su(STOP)  
f
t
r
t
t
su(DAT)  
h(DAT)  
REPEATED  
START  
STOP  
START  
Figure 1. I2C Timing  
7.28 HDQ Interface Timing  
TA = –40 to +85°C, VBAT = 2.7 V to 5.5 V; Typical values stated, where TA = 25°C and VBAT = 3.6 V (unless otherwise noted).  
Capacitance on HDQ is 10 pF unless otherwise specified  
MIN  
190  
190  
0.5  
32  
NOM  
MAX  
500  
250  
50  
UNIT  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
s
t(CYCH)  
t(CYCD)  
t(HW1)  
t(DW1)  
t(HW0)  
t(DW0)  
t(RSPS)  
t(B)  
Cycle time, Host to Slave  
Cycle time, Slave to Host  
Host sends 1 to Slave  
Slave sends 1 to Host  
Host sends 0 to Slave  
Slave sends 0 to Host  
Response time, Slave to Host  
Break Time  
205  
50  
86  
145  
145  
950  
80  
190  
190  
40  
t(BR)  
Break Recovery Time  
HDQ Line Rise Time to Logic 1 (1.2 V)  
HDQ Reset  
t(R)  
950  
2.2  
t(RST)  
1.8  
12  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Figure 2. HDQ Timing  
Copyright © 2015, Texas Instruments Incorporated  
13  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
7.29 Typical Characteristics  
0.15  
0.10  
8.0  
6.0  
Max CC Offset Error  
Min CC Offset Error  
4.0  
0.05  
2.0  
0.00  
0.0  
œ2.0  
œ4.0  
œ6.0  
œ8.0  
œ0.05  
œ0.10  
œ0.15  
Max ADC Offset Error  
Min ADC Offset Error  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
0
20  
40  
60 80 100  
120  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C001  
C003  
Figure 3. CC Offset Error vs.Temperature  
Figure 4. ADC Offset Error vs.Temperature  
1.24  
1.23  
1.22  
1.21  
1.20  
264  
262  
260  
258  
256  
254  
252  
250  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C006  
C007  
Figure 5. Reference Voltage vs.Temperature  
Figure 6. Low-Frequency Oscillator vs.Temperature  
16.9  
16.8  
16.7  
16.6  
œ24.6  
œ24.8  
œ25.0  
œ25.2  
œ25.4  
œ25.6  
œ25.8  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C008  
C009  
Threshold setting is 25 mV.  
Figure 7. High-Frequency Oscillator vs.Temperature  
Figure 8. Overcurrent Discharge Protection Threshold  
vs.Temperature  
14  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Typical Characteristics (continued)  
87.4  
œ86.0  
œ86.2  
œ86.4  
œ86.6  
œ86.8  
œ87.0  
œ87.2  
87.2  
87.0  
86.8  
86.6  
86.4  
86.2  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C010  
C011  
Threshold setting is 25 mV.  
Threshold setting is –88.85 mV.  
Figure 9. Short Circuit Charge Protection Threshold  
vs.Temperature  
Figure 10. Short Circuit Discharge 1 Protection Threshold  
vs.Temperature  
11.00  
10.95  
10.90  
10.85  
10.80  
10.75  
10.70  
œ172.9  
œ173.0  
œ173.1  
œ173.2  
œ173.3  
œ173.4  
œ173.5  
œ173.6  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C012  
C013  
Threshold setting is –177.7 mV.  
Threshold setting is 11 ms.  
Figure 12. Overcurrent Delay Time vs.Temperature  
Figure 11. Short Circuit Discharge 2 Protection Threshold  
vs.Temperature  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
480  
460  
440  
420  
400  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C014  
C015  
Threshold setting is 465 µs.  
Threshold setting is 465 µs (including internal delay).  
Figure 13. Short Circuit Charge Current Delay Time  
vs.Temperature  
Figure 14. Short Circuit Discharge 1 Delay Time  
vs.Temperature  
Copyright © 2015, Texas Instruments Incorporated  
15  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
2.4984  
2.49835  
2.4983  
2.49825  
2.4982  
2.49815  
2.4981  
2.49805  
2.498  
3.49825  
3.4982  
3.49815  
3.4981  
3.49805  
3.498  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C016  
C017  
This is the VCELL average for single cell.  
Figure 15. VCELL Measurement at 2.5-V vs.Temperature  
Figure 16. VCELL Measurement at 3.5-V vs.Temperature  
4.24805  
99.25  
4.248  
4.24795  
4.2479  
99.20  
99.15  
99.10  
99.05  
99.00  
4.24785  
4.2478  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C018  
C019  
This is the VCELL average for single cell.  
Figure 17. VCELL Measurement at 4.25-V vs.Temperature  
ISET = 100 mA  
Figure 18. I Measured vs.Temperature  
16  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
8 Detailed Description  
8.1 Overview  
The bq78z100 gas gauge is a fully integrated battery manager that employs flash-based firmware and integrated  
hardware protection to provide a complete solution for battery-stack architectures composed of 1-series or 2-  
series cells. The bq78z100 device interfaces with a host system via I2C or HDQ protocols. High-performance,  
integrated analog peripherals enable support for a sense resistor down to 1 mΩ and simultaneous  
current/voltage data conversion for instant power calculations. The following sections detail all of the major  
component blocks included as part of the bq78z100 device.  
8.2 Functional Block Diagram  
The Functional Block Diagram shows the analog and digital peripheral content in the bq78z100 device.  
High Side  
N-CH FET  
Drive  
Cell, Stack,  
Pack  
Voltage  
Cell  
Balancing  
Cell Detach  
Detection  
Power Mode  
Control  
Zero Volt  
Charge  
Control  
Wake  
Comparator  
Power On  
Reset  
Short Circuit  
Comparator  
Over  
Current  
Comparator  
Voltage  
Reference2  
Watchdog  
Timer  
Interrupt  
NTC Bias  
Internal  
Temp  
Sensor  
(
AD0/RC0 TS1  
)
Internal  
Reset  
Voltage  
Reference1  
ADC MUX  
AFE Control  
Low  
Frequency  
Oscillator  
ADC/CC  
FRONTEND  
AFE COM  
Engine  
1.8-V LDO  
Regulator  
SRP  
SRN  
SDA/HDQ  
SCL  
High  
Frequency  
Oscillator  
Low Voltage  
I/O  
I/O &  
Interrupt  
Controller  
In-Circuit  
Emulator  
ADC/CC  
Digital Filter  
Timers&  
PWM  
AFE COM  
Engine  
COM  
Engine  
Data (8 bit)  
DMAddr (16 bit)  
bqBMP  
CPU  
PMInstr  
(8 bit)  
PMAddr  
(16 bit)  
Program  
Flash  
EEPROM  
Data Flash  
EEPROM  
Data  
SRAM  
Copyright © 2015, Texas Instruments Incorporated  
17  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Battery Parameter Measurements  
The bq78z100 device measures cell voltage and current simultaneously, and also measures temperature to  
calculate the information related to remaining capacity, full charge capacity, state-of-health, and other gauging  
parameters.  
8.3.1.1 bq78z100 Processor  
The bq78z100 device uses a custom TI-proprietary processor design that features a Harvard architecture and  
operates at frequencies up to 4.2 MHz. Using an adaptive, three-stage instruction pipeline, the bq78z100  
processor supports variable instruction length of 8, 16, or 24 bits.  
8.3.2 Coulomb Counter (CC)  
The first ADC is an integrating converter designed specifically for coulomb counting. The converter resolution is a  
function of its full-scale range and number of bits, yielding a 3.74-µV resolution.  
8.3.3 CC Digital Filter  
The CC digital filter generates a 16-bit conversion value from the delta-sigma CC front-end. Its FIR filter uses the  
LFO clock output, which allows it to stop the HFO clock during conversions. New conversions are available every  
250 ms while CCTL[CC_ON] = 1. Proper use of this peripheral requires turning on the CC modulator in the AFE.  
8.3.4 ADC Multiplexer  
The ADC multiplexer provides selectable connections to the VCx inputs, TS1 inputs, internal temperature sensor,  
internal reference voltages, internal 1.8-V regulator, PACK input, and VSS ground reference input. In addition,  
the multiplexer can independently enable the TS1 input connection to the internal thermistor biasing circuitry, and  
also enables the user to short the multiplexer inputs for test and calibration purposes.  
8.3.5 Analog-to-Digital Converter (ADC)  
The second ADC is a 16-bit delta-sigma converter designed for general-purpose measurements. The ADC  
automatically scales the input voltage range during sampling based on channel selection. The converter  
resolution is a function of its full-scale range and number of bits, yielding a 38-µV resolution. The default  
conversion time of the ADC is 31.25 ms, but is user-configurable down to 1.95 ms. Decreasing the conversion  
time presents a tradeoff between conversion speed and accuracy, as the resolution decreases for faster  
conversion times.  
8.3.6 ADC Digital Filter  
The ADC digital filter generates a 24-bit conversion result from the delta-sigma ADC front end. Its FIR filter uses  
the LFO clock, which allows it to stop the HFO clock during conversions. The ADC digital filter is capable of  
providing two 24-bit results: one result from the delta-sigma ADC front-end and a second synchronous result  
from the delta-sigma CC front-end.  
8.3.7 Internal Temperature Sensor  
An internal temperature sensor is available on the bq78z100 device to reduce the cost, power, and size of the  
external components necessary to measure temperature. It is available for connection to the ADC using the  
multiplexer, and is ideal for quickly determining pack temperature under a variety of operating conditions.  
8.3.8 External Temperature Sensor Support  
The TS1 input is enabled with an internal 18-kΩ (Typ.) linearization pull-up resistor to support the use of a 10-kΩ  
(25°C) NTC external thermistor, such as the Semitec 103AT-2. The NTC thermistor should be connected  
between VSS and the individual TS1 pin. The analog measurement is then taken via the ADC through its input  
multiplexer. If a different thermistor type is required, then changes to configurations may be required.  
18  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Feature Description (continued)  
VREG  
RNTC  
ADx  
NTC  
Figure 19. External Thermistor Biasing  
8.3.9 Power Supply Control  
The bq78z100 device manages its supply voltage dynamically according to operating conditions. When VVC2  
VSWITCHOVER– + VHYS, the AFE connects an internal switch to BAT and uses this pin to supply power to its internal  
1.8-V LDO, which subsequently powers all device logic and flash operations. Once VC2 decreases to VVC2  
>
<
VSWITCHOVER–, the AFE disconnects its internal switch from VC2 and connects another switch to PACK, allowing  
sourcing of power from a charger (if present). An external capacitor connected to PBI provides a momentary  
supply voltage to help guard against system brownouts due to transient short-circuit or overload events that pull  
VC2 below VSWITCHOVER–  
.
8.3.10 Power-On Reset  
In the event of a power-cycle, the bq78z100 AFE holds its internal RESET output pin high for tRST duration to  
allow its internal 1.8-V LDO and LFO to stabilize before running the AGG. The AFE enters power-on reset when  
the voltage at VREG falls below VREGIT– and exits reset when VREG rises above VREGIT– + VHYS for tRST time. After  
tRST, the bq78z100 AGG will write its trim values to the AFE.  
tRST  
normal operation  
(untrimmed)  
normal operation  
(trimmed)  
tOSU  
VIT+  
1.8-V Regulator  
LFO  
VIT–  
AFE RESET  
AGG writes trim values to  
AFE  
Figure 20. POR Timing Diagram  
8.3.11 Bus Communication Interface  
The bq78z100 device has an I2C bus communication interface by default, but can be configured to use the  
single-wire HDQ interface. Devices for end applications that operate in HDQ mode are intended to be kept in  
default I2C mode as they go through pack manufacturer production line so that they can be configured and tested  
at the PCB level before they are converted to HDQ mode.  
Copyright © 2015, Texas Instruments Incorporated  
19  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
CAUTION  
If the device is configured as a single-master architecture (an application processor)  
and an occasional NACK is detected in the operation, the master can resend the  
transaction. However, in a multi-master architecture, an incorrect ACK leading to  
accidental loss of bus arbitration can cause a master to wait incorrectly for another  
master to clear the bus. If this master does not get a bus-free signal, then it must have  
in place a method to look for the bus and assume it is free after some period of time.  
Also, if possible, set the clock speed to be 100 kHz or less to significantly reduce the  
issue described above for multi-mode operation.  
8.3.12 Cell Balancing Support  
The integrated cell balancing FETs included in the bq78z100 device enable the AFE to bypass cell current  
around a given cell or numerous cells to effectively balance the entire battery stack. External series resistors  
placed between the cell connections and the VCx input pins set the balancing current magnitude. The cell  
balancing circuitry can be enabled or disabled via the CELL_BAL_DET[CB2, CB1] control register. Series input  
resistors between 100 Ω and 1 kΩ are recommended for effective cell balancing.  
VC2  
VC1  
VSS  
Figure 21. Internal Cell Balancing  
8.3.13 N-Channel Protection FET Drive  
The bq78z100 device controls two external N-Channel MOSFETs in a back-to-back configuration for battery  
protection. The charge (CHG) and discharge (DSG) FETs are automatically disabled if a safety fault (AOLD,  
ASSC, ASCD, SOV) is detected, and can also be manually turned off using AFE_CONTROL[CHGEN, DSGEN]  
= 0, 0. When the gate drive is disabled, an internal circuit discharges CHG to VC2 and DSG to PACK.  
8.3.14 Low Frequency Oscillator  
The bq78z100 AFE includes a low frequency oscillator (LFO) running at 262.144 kHz. The AFE monitors the  
LFO frequency and indicates a failure via LATCH_STATUS[LFO] if the output frequency is much lower than  
normal.  
8.3.15 High Frequency Oscillator  
The bq78z100 AGG includes a high frequency oscillator (HFO) running at 16.78 MHz. It is synthesized from the  
LFO output and scaled down to 8.388 MHz with 50% duty cycle.  
8.3.16 1.8-V Low Dropout Regulator  
The bq78z100 AFE contains an integrated 1.8-V LDO that provides regulated supply voltage for the device CPU  
and internal digital logic.  
20  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Feature Description (continued)  
8.3.17 Internal Voltage References  
The bq78z100 AFE provides two internal voltage references with VREF1, used by the ADC and CC, while VREF2 is  
used by the LDO, LFO, current wake comparator, and OCD/SCC/SCD1/SCD2 current protection circuitry.  
8.3.18 Overcurrent in Discharge Protection  
The overcurrent in discharge (OCD) function detects abnormally high current in the discharge direction. The  
overload in discharge threshold and delay time are configurable via the OCD_CONTROL register. The thresholds  
and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider tolerance via  
the PROTECTION_CONTROL register. The detection circuit also incorporates a filtered delay before disabling  
the CHG and DSG FETs. When an OCD event occurs, the LATCH_STATUS[OCD] bit is set to 1 and is latched  
until it is cleared and the fault condition has been removed.  
8.3.19 Short-Circuit Current in Charge Protection  
The short-circuit current in charge (SCC) function detects catastrophic current conditions in the charge direction.  
The short-circuit in charge threshold and delay time are configurable via the SCC_CONTROL register. The  
thresholds and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider  
tolerance via the PROTECTION_CONTROL register. The detection circuit also incorporates a blanking delay  
before disabling the CHG and DSG FETs. When an SCC event occurs, the LATCH_STATUS[SCC] bit is set to  
1 and is latched until it is cleared and the fault condition has been removed.  
8.3.20 Short-Circuit Current in Discharge 1 and 2 Protection  
The short-circuit current in discharge (SCD) function detects catastrophic current conditions in the discharge  
direction. The short-circuit in discharge thresholds and delay times are configurable via the SCD1_CONTROL  
and SCD2_CONTROL registers. The thresholds and timing can be fine-tuned even further based on a sense  
resistor with lower resistance or wider tolerance via the PROTECTION_CONTROL register. The detection circuit  
also incorporates a blanking delay before disabling the CHG and DSG FETs. When an SCD event occurs, the  
LATCH_STATUS[SCD1] or LATCH_STATUS[SCD2] bit is set to 1 and is latched until it is cleared and the fault  
condition has been removed.  
8.3.21 Primary Protection Features  
The bq78z100 gas gauge supports the following battery and system level protection features, which can be  
configured using firmware:  
Cell Undervoltage Protection  
Cell Overvoltage Protection  
Overcurrent in CHARGE Mode Protection  
Overcurrent in DISCHARGE Mode Protection  
Overload in DISCHARGE Mode Protection  
Short Circuit in CHARGE Mode Protection  
Overtemperature in CHARGE Mode Protection  
Overtemperature in DISCHARGE Mode Protection  
Precharge Timeout Protection  
Fast Charge Timeout Protection  
8.3.22 Gas Gauging  
This device uses the Impedance Track technology to measure and determine the available charge in battery  
cells. The accuracy achieved using this method is better than 1% error over the lifetime of the battery. There is  
no full charge/discharge learning cycle required. See the Theory and Implementation of Impedance Track Battery  
Fuel-Gauging Algorithm Application Report (SLUA364B) for further details.  
Copyright © 2015, Texas Instruments Incorporated  
21  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.23 Charge Control Features  
This device supports charge control features, such as:  
Reports charging voltage and charging current based on the active temperature range—JEITA temperature  
ranges T1, T2, T3, T4, T5, and T6  
Provides more complex charging profiles, including sub-ranges within a standard temperature range  
Reports the appropriate charging current required for constant current charging and the appropriate charging  
voltage needed for constant voltage charging to a smart charger, using the bus communication interface  
Selects the chemical state-of-charge of each battery cell using the Impedance Track method, and reduces the  
voltage difference between cells when cell balancing multiple cells in a series  
Provides pre-charging/zero-volt charging  
Employs charge inhibit and charge suspend if battery pack temperature is out of programmed range  
Reports charging faults and indicates charge status via charge and discharge alarms  
8.3.24 Authentication  
This device supports security by:  
Authentication by the host using the SHA-1 method  
The gas gauge requires SHA-1 authentication before the device can be unsealed or allow full access.  
8.4 Device Functional Modes  
This device supports three modes, but the current consumption varies, based on firmware control of certain  
functions and modes of operation:  
NORMAL mode: In this mode, the device performs measurements, calculations, protections, and data  
updates every 250-ms intervals. Between these intervals, the device is operating in a reduced power stage to  
minimize total average current consumption.  
SLEEP mode: In this mode, the device performs measurements, calculations, protections, and data updates  
in adjustable time intervals. Between these intervals, the device is operating in a reduced power stage to  
minimize total average current consumption.  
SHUTDOWN mode: The device is completely disabled.  
8.4.1 Lifetime Logging Features  
The device supports data logging of several key parameters for warranty and analysis:  
Maximum and Minimum Cell Temperature  
Maximum Current in CHARGE or DISCHARGE Mode  
Maximum and Minimum Cell Voltages  
8.4.2 Configuration  
The device supports accurate data measurements and data logging of several key parameters.  
8.4.2.1 Coulomb Counting  
The device uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement. The ADC  
measures charge/discharge flow of the battery by measuring the voltage across a very small external sense  
resistor. The integrating ADC measures a bipolar signal from a range of –100 mV to 100 mV, with a positive  
value when V(SRP) – V(SRN), indicating charge current and a negative value indicating discharge current. The  
integration method uses a continuous timer and internal counter, which has a rate of 0.65 nVh.  
8.4.2.2 Cell Voltage Measurements  
The bq78z100 measures the individual cell voltages at 250-ms intervals using an ADC. This measured value is  
internally scaled for the ADC and is calibrated to reduce any errors due to offsets. This data is also used for  
calculating the impedance of the individual cell for Impedance Track gas gauging.  
22  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Device Functional Modes (continued)  
8.4.2.3 Current Measurements  
The current measurement is performed by measuring the voltage drop across the external sense resistor (1 mΩ  
to 3 mΩ) and the polarity of the differential voltage determines if the cell is in the CHARGE or DISCHARGE  
mode.  
8.4.2.4 Auto Calibration  
The auto-calibration feature helps to cancel any voltage offset across the SRP and SRN pins for accurate  
measurement of the cell voltage, charge/discharge current, and thermistor temperature. The auto-calibration is  
performed when there is no communication activity for a minimum of 5 s on the bus lines.  
8.4.2.5 Temperature Measurements  
This device has an internal sensor for on-die temperature measurements, and the ability to support external  
temperature measurements via the external NTC on the TS1 pin. These two measurements are individually  
enabled and configured.  
Copyright © 2015, Texas Instruments Incorporated  
23  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
9 Applications and Implementation  
9.1 Application Information  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
The bq78z100 gas gauge is a primary protection device that can be used with a 1-series or 2-series Li-Ion/Li  
Polymer battery pack. To implement and design a comprehensive set of parameters for a specific battery pack,  
the user needs Battery Management Studio (bqSTUDIO), which is a graphical user-interface tool installed on a  
PC during development. The firmware installed in the product has default values, which are summarized in the  
bq78z100 Technical Reference Manual (SLUUB63) for this product. Using the bqSTUDIO tool, these default  
values can be changed to cater to specific application requirements during development once the system  
parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation,  
configuration of cells, chemistry that best matches the cell used, and more are known. This data can be referred  
to as the "golden image."  
9.2 Typical Applications  
The following is the bq78z100 application schematic for the 2-series configuration.  
0.1  
0.1  
µF  
µF  
2N7002K  
10 M  
10 M  
10 k  
Fuse  
13  
100  
1
12  
VC1  
VSS  
0.1 µF  
0.1 µF  
PWPD  
2 s  
1 s  
0.1µF  
1 µF  
SRN  
VC2 11  
PBI 10  
2
3
4
5
6
5
0.1 µF  
0.1 µF  
0.1 µF  
5.1 k  
5.1 k  
SRP  
2.2 µF  
PACK+  
TS1  
CHG  
9
8
7
10 k  
100  
10  
100  
100  
SCL  
SCL  
PACK  
DSG  
MM3Z5V6C  
100  
SDA/HDQ  
SDA/HDQ  
MM3Z5V6C  
PACK  
100  
100  
1 to 3 mΩ  
Note:  
The input filter capacitors of 0.1 µF for the SRN and SRP pins must be located near the pins of  
the device.  
Figure 22. bq78z100 2-Series Cell Typical Implementation  
9.2.1 Design Requirements (Default)  
Design Parameter  
Cell Configuration  
Design Capacity  
Device Chemistry  
Example  
2s1p (2-series with 1 Parallel)  
4400 mAH  
100 (LiCoO2/graphitized carbon)  
24  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Typical Applications (continued)  
Design Parameter  
Cell Overvoltage at Standard Temperature  
Cell Undervoltage  
Example  
4300 mV  
2500 mV  
2300 mV  
6000 mA  
–6000 mA  
Shutdown Voltage  
Overcurrent in CHARGE Mode  
Overcurrent in DISCHARGE Mode  
Short Circuit in CHARGE Mode  
Short Circuit in DISCHARGE 1 Mode  
Safety Over Voltage  
0.1 V/Rsense across SRP, SRN  
0.1 V/Rsense across SRP, SRN  
4500 mV  
Disabled  
Enabled  
0°C  
Cell Balancing  
Internal and External Temperature Sensor  
Under Temperature Charging  
Under Temperature Discharging  
BROADCAST Mode  
0°C  
Enabled  
Enabled  
I2C Interface  
9.2.2 Detailed Design Procedure  
9.2.2.1 Setting Design Parameters  
For the firmware settings needed for the design requirements, refer to the bq78z100 Technical Reference  
Manual (SLUUB63).  
To set the 2s1p battery pack, go to data flash Configuration: DA Configuration register's bit 0 (CC0) = 1.  
To set design capacity, set the data flash value to 4400 in the Gas Gauging: Design: Design Capacity  
register.  
To set device chemistry, go to data flash SBS Configuration: Data: Device Chemistry. The bqStudio  
software automatically populates the correct chemistry identification. This selection is derived from using the  
bqCHEM feature in the tools and choosing the option that matches the device chemistry from the list.  
To protect against cell overvoltage, set the data flash value to 4300 in Protections: COV: Standard Temp.  
To protect against cell undervoltage, set the data flash value to 2500 in the Protections: CUV register.  
To set the shutdown voltage to prevent further pack depletion due to low pack voltage, program Power:  
Shutdown: Shutdown voltage = 2300.  
To protect against large charging currents when the AC adapter is attached, set the data flash value to 6000  
in the Protections: OCC: Threshold register.  
To protect against large discharging currents when heavy loads are attached, set the data flash value to  
–6000 in the Protections: OCD: Threshold register.  
Program a short circuit delay timer and threshold setting to enable the operating the system for large short  
transient current pulses. These two parameters are under Protections: ASCC: Threshold = 100 for charging  
current. The discharge current setting is Protections: ASCD:Threshold = –100 mV.  
To prevent the cells from overcharging and adding a second level of safety, there is a register setting that will  
shut down the device if any of the cells voltage measurement is greater than the Safety Over Voltage setting  
for greater than the delay time. Set this data flash value to 4500 in Permanent Fail: SOV: Threshold.  
To disable the cell balancing feature, set the data flash value to 0 in Settings: Configuration: Balancing  
Configuration: bit 0 (CB).  
To enable the internal temperature and the external temperature sensors: Set Settings:Configuration:  
Temperature Enable: Bit 0 (TSInt) = 1 for the internal sensor; set Bit 1 (TS1) = 1 for the external sensor.  
To prevent charging of the battery pack if the temperature falls below 0°C, set Protections: UTC:Threshold  
= 0.  
To prevent discharging of the battery pack if the temperature falls below 0°C, set Protections:  
UTD:Threshold = 0.  
Copyright © 2015, Texas Instruments Incorporated  
25  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
Each parameter listed for fault trigger thresholds has a delay timer setting associated for any noise filtering.  
These values, along with the trigger thresholds for fault detection, may be changed based upon the application  
requirements using the data flash settings in the appropriate register stated in the bq78z100 Technical Reference  
Manual (SLUUB63).  
9.2.3 Calibration Process  
The calibration of Current, Voltage, and Temperature readings is accessible by writing 0xF081 or 0xF082 to  
ManufacturerAccess(). A detailed procedure is included in the bq78z100 Technical Reference Manual  
(SLUUB63) in the Calibration section. The description allows for calibration of Cell Voltage Measurement Offset,  
Battery Voltage, Pack Voltage, Current Calibration, Coulomb Counter Offset, PCB Offset, CC Gain/Capacity  
Gain, and Temperature Measurement for both internal and external sensors.  
9.2.4 Gauging Data Updates  
When a battery pack enabled with the bq78z100 is first cycled, the value of FullChargeCapacity() updates  
several times. Figure 23 shows RemainingCapacity() and FullChargeCapacity(), and where those updates occur.  
As part of the Impedance Track algorithm, it is expected that FullChargeCapacity() may update at the end of  
charge, at the end of discharge, and at rest.  
9.2.4.1 Application Curve  
Figure 23. Gauging Data Updates  
26  
Copyright © 2015, Texas Instruments Incorporated  
 
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
10 Power Supply Requirements  
There are two inputs for this device, the PACK input and VC2. The PACK input can be an unregulated input from  
a typical AC adapter. This input should always be greater than the maximum voltage associated with the number  
of series cells configured. The input voltage for the VC2 pin will have a minimum of 2.2 V to a maximum of 26 V  
with the recommended external RC filter.  
Copyright © 2015, Texas Instruments Incorporated  
27  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The layout for the high-current path begins at the PACK+ pin of the battery pack. As charge current travels  
through the pack, it finds its way through protection FETs, a chemical fuse, the lithium-ion cells and cell  
connections, and the sense resistor, and then returns to the PACK– pin. In addition, some components are  
placed across the PACK+ and PACK– pins to reduce effects from electrostatic discharge.  
The N-channel charge and discharge FETs must be selected for a given application. Most portable battery  
applications are a good option for the CSD16412Q5A. These FETs are rated at 14-A, 25-V device with  
Rds(on) of 11 mΩ when the gate drive voltage is 10 V. The gates of all protection FETs are pulled to the  
source with a high-value resistor between the gate and source to ensure they are turned off if the gate drive  
is open. The capacitors (both 0.1 µF values) placed across the FETs are to help protect the FETs during an  
ESD event. The use of two devices ensures normal operation if one of them becomes shorted. For effective  
ESD protection, the copper trace inductance of the capacitor leads must be designed to be as short and wide  
as possible. Ensure that the voltage rating of both these capacitors are adequate to hold off the applied  
voltage if one of the capacitors becomes shorted.  
The quality of the Kelvin connections at the sense resistor is critical. The sense resistor must have a  
temperature coefficient no greater than 50 ppm in order to minimize current measurement drift with  
temperature. Choose the value of the sense resistor to correspond to the available overcurrent and short-  
circuit ranges of the bq78z100. Select the smallest value possible in order to minimize the negative voltage  
generated on the bq78z100 VSS node(s) during a short circuit. This pin has an absolute minimum of –0.3 V.  
Parallel resistors can be used as long as good Kelvin sensing is ensured. The device is designed to support a  
1-mΩ to 3-mΩ sense resistor.  
A pair of series 0.1-μF ceramic capacitors is placed across the PACK+ and PACK– pins to help in the  
mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the  
pack if one of the capacitors becomes shorted. Optionally, a transorb such as the SMBJ2A can be placed  
across the pins to further improve ESD immunity.  
In reference to the gas gauge circuit the following features require attention for component placement and  
layout; Differential Low-Pass Filter, I2C communication and PBI (Power Backup Input).  
The bq78z100 uses an integrating delta-sigma ADC for current measurements. Add a 100-Ω resistor from the  
sense resistor to the SRP and SRN inputs of the device. Place a 0.1-μF filter capacitor across the SRP and  
SRN inputs. Optional 0.1-μF filter capacitors can be added for additional noise filtering for each sense input  
pin to ground, if required for your circuit. Place all filter components as close as possible to the device. Route  
the traces from the sense resistor in parallel to the filter circuit. Adding a ground plane around the filter  
network can add additional noise immunity.  
0.1 µF  
0.1 µF  
0.1 µF  
100  
100  
0.001, 50 ppm  
Filter Circuit  
Sense  
Ground  
Shield  
resistor  
Figure 24. bq78z100 Differential Filter  
The bq78z100 has an internal LDO that is internally compensated and does not require an external  
decoupling capacitor. The PBI pin is used as a power supply backup input pin, providing power during brief  
transient power outages. A standard 2.2-μF ceramic capacitor is connected from the PBI pin to ground, as  
shown in application example.  
The I2C clock and data pins have integrated high-voltage ESD protection circuits; however, adding a Zener  
28  
Copyright © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
Layout Guidelines (continued)  
diode and series resistor provides more robust ESD performance. The I2C clock and data lines have an  
internal pull-down. When the gas gauge senses that both lines are low (such as during removal of the pack),  
the device performs auto-offset calibration and then goes into SLEEP mode to conserve power.  
11.2 Layout Example  
CSD16412Q5A  
CSD16412Q5A  
D
G
D
G
D
S
D
S
D
S
D
S
D
S
D
S
Power Trace Line  
PACK+  
PACK–  
Reverse Polarity  
Portection  
Fuse  
Input filters  
13  
1
12  
11  
10  
9
VC1  
VC2  
VSS  
SRN  
SRP  
TS1  
SCL  
PWPD  
2 s  
2
3
Differential Input well  
matched for accuracy  
1 s  
PBI  
Thermistor  
4
5
CHG  
PACK  
DSG  
8
7
SCL  
Bus  
Communication  
Power Ground Trace  
SDA/HDQ  
6
SDA/HDQ  
Exposed Thermal Pad  
Via connects to Power Ground  
Via connects between two layers  
Figure 25. bq78z100 Board Layout  
版权 © 2015, Texas Instruments Incorporated  
29  
bq78z100  
ZHCSE72 SEPTEMBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
更多信息,请参见bq78z100 技术参考手册》(文献编号:SLUUB63)。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
Impedance Track, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
30  
版权 © 2015, Texas Instruments Incorporated  
bq78z100  
www.ti.com.cn  
ZHCSE72 SEPTEMBER 2015  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 要获得这份数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ78Z100DRZR  
BQ78Z100DRZT  
ACTIVE  
SON  
SON  
DRZ  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ78  
Z100  
Samples  
Samples  
ACTIVE  
DRZ  
NIPDAU  
BQ78  
Z100  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRZ0012A  
PLASTIC QUAD FLATPACK- NO LEAD  
4.15  
3.85  
B
A
PIN 1 INDEX AREA  
2.65  
2.35  
1
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0
2.55  
2.35  
(0.2) TYP  
2X (0.2)  
6
7
SYMM  
13  
2.05  
1.85  
2X  
2
10X 0.4  
1
12  
SYMM  
0.3  
12X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.1  
C A B  
C
0.5  
0.3  
12X  
0.05  
4218895/B 03/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRZ0012A  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (2.25)  
2X (0.975)  
12X (0.6)  
12X (0.2)  
1
12  
(1.95)  
10X (0.4)  
13  
SYMM  
2X (2)  
(2.9)  
2X (0.725)  
(Ø0.2) VIA  
TYP  
6
7
(R0.05) TYP  
4X (0.2)  
SYMM  
(2.45)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218895/B 03/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRZ0012A  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (1.08)  
4X (1.2625)  
2X (0.64)  
12X (0.6)  
12X (0.2)  
1
7
10X (0.4)  
SYMM  
13  
2X (1.75)  
(0.05) TYP  
12  
6
SYMM  
4X (0.375)  
METAL TYP  
4X (0.2)  
2X (2.25)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
79% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4218895/B 03/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ78Z100DRZT

适用于 1 至 2 节电池的 Impedance Track™ 电池电量监测计 | DRZ | 12 | -40 to 85
TI

BQ79600-Q1

具备自动主机唤醒功能且符合功能安全标准的汽车类 SPI/UART 通信接口
TI

BQ79600PWRQ1

具备自动主机唤醒功能且符合功能安全标准的汽车类 SPI/UART 通信接口 | PW | 16 | -40 to 125
TI

BQ79606A-Q1

符合 ASIL-D 标准的汽车类 6 节串联精密电池监测器、平衡器和集成保护器
TI

BQ79606APHPRQ1

符合 ASIL-D 标准的汽车类 6 节串联精密电池监测器、平衡器和集成保护器 | PHP | 48 | -40 to 105
TI

BQ79606APHPTQ1

符合 ASIL-D 标准的汽车类 6 节串联精密电池监测器、平衡器和集成保护器 | PHP | 48 | -40 to 105
TI

BQ79612-Q1

符合 ASIL-D 标准的汽车类 12 节串联精密电池监控器、平衡器和集成保护器
TI

BQ79612PAPRQ1

符合 ASIL-D 标准的汽车类 12 节串联精密电池监控器、平衡器和集成保护器 | PAP | 64 | -40 to 125
TI

BQ79614-Q1

符合 ASIL-D 标准的汽车类 14 节串联精密电池监控器、平衡器和集成保护器
TI

BQ79614PAPRQ1

符合 ASIL-D 标准的汽车类 14 节串联精密电池监控器、平衡器和集成保护器 | PAP | 64 | -40 to 125
TI

BQ79616-Q1

符合 ASIL-D 标准的汽车类 16 节串联精密电池监控器、平衡器和集成保护器
TI

BQ79616PAPRQ1

符合 ASIL-D 标准的汽车类 16 节串联精密电池监控器、平衡器和集成保护器 | PAP | 64 | -40 to 125
TI