BQ79600PWRQ1 [TI]

具备自动主机唤醒功能且符合功能安全标准的汽车类 SPI/UART 通信接口 | PW | 16 | -40 to 125;
BQ79600PWRQ1
型号: BQ79600PWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具备自动主机唤醒功能且符合功能安全标准的汽车类 SPI/UART 通信接口 | PW | 16 | -40 to 125

通信
文件: 总71页 (文件大小:3519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
BQ79600-Q1 具备自动主机唤醒功能且符合功能安全标准的汽车SPI/UART 通  
信接口  
1 特性  
2 应用  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
电池管理系(BMS)  
HEV/EV  
• 燃料电池  
– 器件温度等140°C +125°C 环境工作  
温度范围  
• 能源存储  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
符合功能安全标准  
3 说明  
BQ79600-Q1 是一款通信网桥IC旨在连接微控  
制器 (MCU) TI 电池监测 IC例如 BQ7961X-Q1。  
器件将来自 MCU 的信息转换为信号TI 的电池管  
理菊花链协议用于识别这种信号并将其传输出来。来  
自菊花链的信号被解码为位流然后发送MCU。  
– 专为功能安全应用开发  
– 有助于进ISO 26262 系统设计的文档  
安全手册  
功能安全分析报告  
– 系统可满ASIL D 级要求  
– 硬件可满ASIL-D 要求  
• 在环形架构中检测到故障时自动唤BMS/BMU  
系统  
使用环形架构时如果检测到了任何未屏蔽的故障则  
BQ79600-Q1 可以将处于关断/睡眠模式的 MCU 和  
PMIC 唤醒。  
器件信息  
• 支持的电源电压范围4.75V 40V  
UART/SPI 主机接口  
• 兼3.3V/5V 逻辑  
• 隔离式差分菊花链  
器件型号(1)  
BQ79600-Q1  
封装尺寸标称值)  
封装  
6.6mm × 5.1mm  
TSSOP16 引脚)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 支持包含一台设备的环形架构  
– 支持变压器/电容器隔离  
• 经过专门设计旨在实BCI/EMI/EMC 稳健性  
• 支BQ7961X-Q1 系列、BQ7965XBQ7963X 和  
未来产品。  
12V Battery  
Battery  
Battery  
Battery  
Battery  
EN  
SBC  
(PMIC)  
Balance and Filter  
Components  
Balance and Filter  
Components  
Balance and Filter  
Components  
Balance and Filter  
Components  
BAT  
VIO  
uC  
NFAULT  
UART  
/SPIBQ79600-Q1  
BQ796XX-Q1  
BQ796XX-Q1  
BQ796XX-Q1  
BQ796XX-Q1  
INH  
COML  
COMH  
COML  
COMH  
COML  
COMH  
COML  
COMH  
COML  
COMH  
CAP  
CAP  
CAP or  
Transfomer  
CAP or  
Transfomer  
CAP or  
Transfomer  
CAP or  
Transfomer  
Transformer  
Transformer  
BMU  
CMU  
CMU  
BMU  
isolation  
Low Voltage  
Boundary  
Optional: Ring Enables Fault  
and Reverse Wakeup Feature  
简化版系统图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDS1  
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
Table of Contents  
7.5 Register Maps...........................................................37  
8 Application and Implementation..................................55  
8.1 Application Information............................................. 55  
8.2 Typical Applications.................................................. 55  
9 Power Supply Recommendations................................59  
10 Layout...........................................................................60  
10.1 Layout Guidelines................................................... 60  
10.2 Layout Example...................................................... 60  
11 Device and Documentation Support..........................63  
11.1 Device Support........................................................63  
11.2 第三方产品免责声明................................................63  
11.3 接收文档更新通知................................................... 63  
11.4 支持资源..................................................................63  
11.5 Trademarks............................................................. 63  
11.6 静电放电警告...........................................................63  
11.7 术语表..................................................................... 63  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 规格................................................................................... 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Timing Requirements .................................................6  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................36  
Information.................................................................... 64  
4 Revision History  
Changes from Revision * (November 2019) to Revision A (June 2020)  
Page  
• 将“预告信息”更改为“量产数据”.................................................................................................................. 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
INH  
16  
15  
14  
13  
12  
11  
DVDD  
1
2
3
4
5
6
7
8
BAT  
NFAULT  
CVDD  
COMHP  
COMHN  
VIO  
MOSI/RX  
16-TSSOP  
5.1x6.6x1.2(mm)  
No thermal pad  
MISO/TX  
COMLN  
COMLP  
GND  
SCLK  
nCS  
10  
9
nUART/SPI (SPI_RDY)  
5-1. PW Package 16-Pin TSSOP Top View  
Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
VIO  
3
P
Power supply input for UART/SPI input/output pins. Decouple with a 0.1μF capacitor to GND.  
VIO should be powered before SCLK, nCS, RX/MOSI, TX/MISO, NFAULT, nUART/SPI  
(SPI_RDY) is driven.  
SCLK  
6
7
4
5
DI  
DI  
SPI clock input. If SPI interface is used, this pin is connected to SPI master controller. Connect  
to GND with a 10-100kohm pull-down resistor. If not used, connect to GND.  
nCS  
Active low chip select pin for SPI interface. Connect to VIO with 10-100kohm pull-up resistor in  
SPI mode. Cannot hardwire to GND in SPI mode. Connect to GND in UART mode.  
RX/MOSI  
TX/MISO  
DI  
UART receiver input or SPI master out slave in. Connect to VIO with a 10-100kohm pull-up  
resistor. Don't leave it unconnected.  
DO  
UART transmitter output or SPI master in slave out. Pull up to VIO with a 10-100kohm pull-up  
resistor at MCU side. MISO pin drives high in SPI idle mode, cannot directly support SPI  
multidrop, if multidrop is needed, add a tri-state buffer between BQ79600-Q1 and MCU.  
NFAULT  
2
8
DO  
Fault indication output. Open drain active low. Pull up to VIO with 100kohm resistor. Connect  
NFAULT to host MCU GPIO. If not used, connect to GND.  
nUART/SPI  
(SPI_RDY)  
DI/O  
If used as UART mode, connect this pin to GND. If used as SPI mode, connect to VIO through  
10-100kohm pull up resistor and connect this pin to MCU GPIO. This pin is used as an input pin  
to select SPI or UART interface before device finishes wakeup/reset initialization (SPI  
communication is ready). If SPI mode is selected, SPI_RDY has to be used by host to decide if  
read/write can be initiated or needing further wait. Refer to 7.3.2.1.2.2.1 details.  
DVDD  
1
P
1.8V regulated output. DVDD supplies the internal digital circuits. Bypass DVDD with a 0.22μF  
(recommended) or a 0.47μF capacitor to GND.  
GND  
9
P
P
Ground.  
CVDD  
14  
Dedicated 5V supply used for the daisy chain communications. Decouple with a 0.22μF  
(recommended) or a 0.47μF to GND.  
COMHN  
COMHP  
12  
13  
AC-I/O This is an AC coupled bi-directional I/O pin for daisy chain (VIF) communication. Do not apply  
external DC voltage to this pin. Shall connect to COMLN/P of adjacent device through proper  
AC-I/O  
isolation, see 7.3.2.1.1. Leave unconnected if (Ring Architecture) not used.  
COMLN  
COMLP  
11  
10  
AC-I/O This is an AC coupled bi-directional I/O pin for daisy chain (VIF) communication. Do not apply  
external DC voltage to this pin. Shall connect to COMHN/P of adjacent device through proper  
AC-I/O  
isolation, see 7.3.2.1.1. Leave unconnected if (Ring Architecture) not used.  
INH  
16  
HV-O  
HV-P  
Inhibit pin (PMOS open drain) to control system voltage regulators, connect 100kohm resistor  
to GND. If reverse wake up feature is not used, connect this pin to BAT pin. Dont leave this  
pin floating.  
BAT  
15  
Battery supply Input. Supply internal LDOs and wakeup circuit. Connect to external supply  
through 10ohm resistor. Bypass to GND with 0.1μF.  
(1) DI = digital input, DO = digital output, HV = high voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ79600-Q1  
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
6 规格  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
40  
UNIT  
BAT to GND  
V
V
V
V
INH to GND (INH is lower than BAT)  
VIO, CVDD to GND  
40  
5.5  
DVDD to GND  
Input Voltage  
1.98  
MISO/TX, MOSI/RX, nCS, SCLK, NFAULT, nUART/SPI(SPI_RDY) to  
GND  
VIO+0.3  
V
0.3  
COMHP, COMHN, COMLP, COMLN to GND  
COMHP to COMHN, COMLP to COMLN  
INH current  
10  
6.5  
4
V
V
10  
6.5  
mA  
mA  
°C  
°C  
°C  
I/O current  
MISO/TX current (100pF load, VIO=5V, 10ns transition-time)  
Ambient temperature  
8
TA  
125  
150  
150  
40  
40  
65  
TJ  
Junction temperature  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may caµse permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±750  
±500  
V(ESD) Electrostatic discharge  
Corner pins (1, 8, 9 and 16)  
Other pins  
V
Charged device model (CDM), per  
AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
VBAT, INH  
BAT, INH (INH is equal to or lower than BAT) (Powered by 12V Battery)  
5.5  
24  
V
VIO input (applies to nCS, MOSI/RX, MISO/TX, SLCK, nUART/SPI  
(SPI_RDY), NFAULT)  
VVIO_RANGE  
3.135  
5.25  
V
IMISO/TX  
IINH  
MISO/TX current  
3
2
mA  
mA  
°C  
INH output current  
Operation temperature  
TA  
125  
40  
6.4 Thermal Information  
BQ79600-Q1  
THERMAL METRIC(1)  
PW(TSSOP)  
UNIT  
16 PINS  
102  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
28.9  
49  
14  
ΨJT  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
 
 
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
BQ79600-Q1  
THERMAL METRIC(1)  
PW(TSSOP)  
16 PINS  
48.2  
UNIT  
Junction-to-board characterization parameter  
°C/W  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
VIO = 3.3V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATION VOLTAGE  
When reverse wakeup feature is used,  
BAT pin is powered by "12V battery"  
VBAT  
5.5  
24  
V
V
When reverse wakeup feature is not  
used, BAT/CVDD are powered by  
regulated 5V  
VBAT  
4.75  
5.25  
THERMAL SHUTDOWN  
TSHUT_R Thermal shutdown (rising direction)  
TSHUT_F Thermal shutdown (falling direction)  
SUPPLY CURRENTS  
DieTemp sensor  
DieTemp sensor  
126  
116  
138  
150  
141  
°C  
°C  
Supply current in SHUTDOWN mode  
ISHDN_1  
VBAT shorted to CVDD, both equal to 5V,  
measured through GND pin  
7
µA  
device powered by regulated 5V supply  
Supply current in SHUTDOWN mode  
ISHDN_2  
VBAT= 17V, CVDD self  
powered, measured through GND pin  
9
168  
110  
µA  
µA  
µA  
powered by "12V" battery directly  
IVALIDATE Supply current in VALIDATE mode  
ISLP(IDLE) Baseline supply current in SLEEP mode  
ISLP_RX_O Additional supply current to SLEEP mode  
Current on BAT pin  
Current on BAT pin, no fault, COMH and  
COML RX disabled, no HB TX  
When COML OR COMH RX is on  
35  
µA  
µA  
base line  
N
ISLP_TX_O Additional supply current to SLEEP mode When COML or COMH tone transmiter is  
8
4
base line  
on (HB tone)  
N
Current on BAT pin, no fault, no  
communication, Tone RX/TX is off  
IACT(IDLE) Baseline supply current in ACTIVE mode  
3
mA  
Average current into VBAT when  
BQ79600 transmits 14 bytes of data  
(brdcast write 8 bytes of 0x00 into  
address 0X1B)  
Additional average current for one of  
ICOMT  
10  
mA  
BQ79600 daisy chain transmitters is on  
Supplies (AVAO_REF, always on internal supply)  
VAVAORE  
AVAOREG voltage  
VBAT > min VBAT  
2.45  
V
V
G
VAVDDREF  
AVDDREF OV threshold  
VBAT > min VBAT, hys = 130mV  
2.8  
3.1  
_OV  
Supplies (CVDD)  
No external load, CSUPPLIES = 0.22µF,  
ACTIVE mode  
VCVDD  
CVDD output voltage  
4.9  
5.3  
5
5.5  
4.5  
4.6  
5.1  
5.65  
4.65  
4.75  
V
V
V
V
VCVDD_O  
CVDD OV rising threshold  
CVDD UV falling threshold  
CVDD UV rising threshold  
Hys = 140mV  
V
VCVDD_U  
4.35  
4.45  
V_F  
VCVDD_U  
V_R  
VCVDD_ILI  
CVDD current limit  
53  
81  
mA  
µF  
MIT  
CCVDD  
Capacitance range on CVDD pin  
Not capacitor value  
0.1  
0.8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
VIO = 3.3V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supplies (DVDD)  
No external load, CSUPPLIES = 0.22µF,  
ACTIVE mode  
VDVDD  
DVDD output voltage  
1.75  
1.9  
1.8  
1.85  
2.1  
V
V
V
V
VDVDD_O  
DVDD OV rising threshold  
DVDD UV falling threshold  
DVDD UV rising threshold  
Hys = 65mV  
V
VDVDD_U  
1.63  
1.68  
1.69  
1.75  
V_F  
VDVDD_U  
V_R  
VDVDD_ILI  
DVDD current limit  
20  
57  
mA  
µF  
MIT  
DDVDD  
Load capacitance on DVDD pin  
Not capacitor value  
0.1  
0.8  
SNIFF DETECTOR  
VVAL_THR Sniffer detector threshold, rising swing on Sniffer is enabled, and device is in  
3.2  
3.6  
1
V
COMHP has to be larger than value  
SHUTDOWN mode  
_P  
INH Driver  
VDROP_IN When INH is pulled up, voltage drop from  
IINH = -0.5mA  
0.5  
V
V
BAT to INH  
H
VINH_DET Threshold to set [INH_STAT] to '1'  
Reference Voltages  
2.2  
2.5  
Digital I/Os (TX, RX, NFAULT)  
VVIO_UV_  
VIO UV rising  
Hys = 200mV  
3.1  
0.1  
V
V
V
V
R
VVIO–  
VOH  
VOL  
VIH  
VIL  
Output as logic level high (TX)  
Output as logic level low (TX)  
FET pull up, Iout=1mA, VIO = 3.3V or 5V  
0.1  
FET pull down, Iout=1mA, VIO = 3.3V or  
5V  
Input as logic level high (RX), requirement  
for user  
0.75 x  
VVIO  
VIO = 3.3V or 5V  
Input as logic level low (RX), requirement  
for user  
0.25 x  
VVIO  
VIO = 3.3V or 5V  
V
RNFAULT NFAULT pull down impedance  
Use 100kohm external pull up  
1000  
Ω
Daisy-chain Communication Bus  
Common mode voltage (COML and  
VDCCM_1  
COMH)  
ACTIVE mode  
2.2  
1
V
V
V
V
Common mode voltage (COML and  
VDCCM_2  
COMH)  
SLEEP or VALIDATE mode  
VCOMM_D COMM port data receiver threshold range  
1.04  
1.13  
1.75  
1.94  
(VCOMP-VCOMN  
VCOMM_T COMM port HB/FAULT tone receiver  
threshold range (VCOMP-VCOMN  
)
ATA  
)
ONE  
6.6 Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER STATE TIMING  
From VBAT (rising) > VPOR to device ready  
to receive WAKE ping, ramp up VBAT  
and VIO in 10µs  
tPOR2COM  
1
ms  
M
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
From receiving WAKE ping (RX ping  
going low-to-high) to device in ACTIVE  
mode (ready to do µART /SPI  
communication) (CVDD= 0.22µF  
capacitor DVDD = 0.22µF capacitor)  
tSU(WAKE_ Startup from SHUTDOWN/VALIDATE to  
2
3.5  
ms  
ACTIVE mode  
SHUT)  
From receiving SLP2ACT ping (RX ping  
going low-to-high) to device in ACTIVE  
mode (ready to do UART /  
tSU(SLP2A Startup from SLEEP to ACTIVE mode  
260  
600  
µs  
µs  
(with Sleep2active ping)  
CT)  
SPIcommunication)  
From receiving WAKE ping (RX ping  
going low-to-high) to device in ACTIVE  
mode (ready to do UART /  
tSU(WAKE_ Startup from SLEEP to ACTIVE mode  
(with WAKE ping)  
SLP)  
SPIcommunication)  
From receiving WAKE ping (RX ping  
going low-to-high) or  
CONTROL1[SOFT_RESET]=1 to device  
in ACTIVE mode (ready to do UART /SPI  
communication)  
Reset time from ACTIVE mode to  
ACTIVE mode  
tRST  
600  
µs  
From receiving SLEEP entry condition to  
enter in SLEEP mode  
tSLP  
From ACTIVE to SLEEP mode  
100  
5
µs  
From receiving SHUTDOWN entry  
condition to enter in SHUTDOWN mode  
(CVDD<1.2V)  
From ACTIVE/SLEEP/VALIDATE to  
SHUTDOWN mode  
tSHTDN  
ms  
tVALID_EN  
From fault tone toggling on COM port to  
DVDD hit above 1.75V  
From SHUTDOWN to VALIDATE  
10  
ms  
ms  
TRY  
tVALID_TIM time to validate fault tone before transition  
Start from DVDD out of reset  
150  
720  
to SHUTDOWN state  
EOUT  
INH Driver TIMING  
After device enters VALIDATE, from first  
tINH_DLY  
µs  
couplet of fault tone to INH pulled high  
PING SIGNAL TIMING  
tHLD_WAK From user perspective, WAKE ping low  
VBAT > VPOR, RX pin (low-pulse width)  
VIO = 3.3 or 5V  
2.5  
12.5  
250  
3
ms  
ms  
µs  
time on MOSI/RX pin  
E
From user perspective, SHUTDOWN ping VBAT > VPOR, RX pin (low-pulse  
low time on MOSI/RX pin  
tHLD_SD  
tStA  
width) VIO = 3.3 or 5V  
From user perspective, SLEEPtoACTIVE  
ping low time on MOSI/RX pin  
VBAT > VPOR  
300  
Daisy-chain Communication Bus TIMING  
COMM data Pulse width of data (half bit  
time) for communiction  
tPW_DC  
230  
10.67  
0.97  
250  
11  
1
270  
11.33  
1.03  
ns  
µs  
µs  
Time between pulses within a comm tone Transmit. From the beginning of a pulse  
(HFO based).  
tCOMTONE  
until the beginning of the next pulse.  
tCOMTONE  
Comm tone pulse width(HFO based)  
Transmit  
_PLS  
Only transmit HB tone, not FAULT  
tone. From the beginning of a pulse until  
the beginning of the next pulse.  
Time between pulses within a fault tone  
(LFO based).  
tFLTTONE  
10.3  
11.5  
12.7  
µs  
tFLTTONE_ Fault tone or HB tone pulse width (analog  
1
16  
64  
µs  
delay based)  
PLS  
HEARTBEAT: Number of pulses to detect  
nHBDET  
Detect  
Detect  
pulses  
pulses  
as a valid tone (dig counter)  
nFTONEDE FAULT TONE: Number of pulses to detect  
as a valid tone (dig counter)  
T
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
HEARTBEAT: Period between  
tHB_PERIO HEARTBEAT Burst (from the beginning of  
360  
400  
440  
1.1  
ms  
a HEARTBEAT to the beginning of the  
D
next HEARTBEAT)  
tHB_TIMEO HEARTBEAT: Timeout to considered as  
0.9  
1
s
not receving HEARTBEAT  
UT  
HEARTBEAT: If HEARTBEAT is received  
tHB_FAST within this time, it is considered receving  
HEARTBEAT too fast  
200  
ms  
tFTONE_PE Defined by BQ7961X, FAULT TONE:  
From the beginning of a FAULT TONE to  
the beginning of the next FAULT TONE  
50  
24  
ms  
µs  
Period between FAULT TONE Burst  
RIOD  
tFT_LATEN  
From the time device receives the tone to  
the time asserts NFAULT  
Fault Tone latency in Base Device  
CY  
I/O TIMING (TX, RX, NFAULT)  
tRISE_TX Rise Time  
tFALL_TX Fall Time  
CLOAD = 100pF, VIO=3.3V or 5V  
CLOAD = 100pF, VIO=3.3V or 5V  
15  
15  
ns  
ns  
tFALL/  
RX pin rise/fall time  
100  
1.5  
ns  
RISE_RX  
UART TIMING  
UARTER UART TX/RX baud rate (either 250K or  
R_BAUD 1Mbps) error  
%
1.5  
15  
tUART(CLR  
UART Comm Clear low time  
20 bit period  
bit period  
)
tUART(RX_ UART high time after Comm Clear, before  
1
sending Clear or Reset  
HIGH)  
SPI TIMING  
SCLK  
SPI clock freq  
2
6
MHz  
bit  
nSPI(CLR) SPI Comm Clear low time  
8
tSPI_R  
tSPI_F  
SPI clock rising edge  
SPI clock falling edge  
25% to 75%  
25% to 75%  
10  
10  
ns  
ns  
tSPI_CLKH SPI clock high time  
tSPI_CLKL SPI clock low time  
70  
70  
ns  
ns  
Max SPI_RDY service interval. This time  
doesn't apply if total response bytes  
(payload + overhead) is less than 256  
bytes  
Read SCLK = 6MHz, with 30% SPI BUS  
idle time  
t8  
1
ms  
t9  
From nCS (25%) to SCLK rising (75%)  
From SCLK falling (25%) to nCS (75%)  
500  
500  
ns  
ns  
t10  
From nCS rising(75%) to nCS  
falling(25%)  
t11  
Don't drop nCS while SPI_RDY is low  
1
µs  
ns  
Timing is defined at device pins, exclude  
propergation delay of PCB traces (from  
device perspective)  
From nCS falling (25%) to stable  
MISO(L:20% H:80%)  
t12  
42  
42  
42  
Timing is defined at device pins, exclude  
propergation delay of PCB traces (from  
device perspective)  
From SCLK falling (25%) to stable  
MISO(L:20% H:80%)  
t13  
ns  
ns  
Timing is defined at device pins, exclude  
propergation delay of PCB traces (from  
device perspective)  
From nCS rising (75%) to MISO drive to  
'1' (80%)  
t14  
tSU  
tH  
Setup time, refer to 75% of SCLK rising  
Hold time, refer to 75% of SCLK rising  
20  
20  
ns  
ns  
SNIFF DETECTOR  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Number of pulses needed (digital counter) Sniffer is enabled, and device is in  
nVALIDATE  
64  
pulses  
to transition to validate mode  
SHUTDOWN mode  
Timer length. Once timer expired, it resets Sniffer is enabled, and device is in  
tSNIFFIDLE  
20  
52  
µs  
the 64 counter  
OSCILLATOR  
SHUTDOWN mode  
fHFO  
HFO frequency  
31.52  
32  
32.48  
35  
MHz  
µs  
Reset digital if HFO is stuck or period is >  
than the watchdog timer  
tHFOWDG HFO watchdog time  
fLFO  
LFO frequency  
235.8  
262  
288.2  
35  
kHz  
µs  
Reset digital if LFO is stuck or period is >  
than the watchdog timer  
tLFOWDG LFO watchdog time  
6.7 Typical Characteristics  
6-1. Typical COMHN and COMHP characteristic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The BQ79600-Q1 is a bridge IC designed to interface between microcontroller (MCU) and TI battery monitoring  
ICs (BQ7961X-Q1 family). It translates between daisy chain interface and SPI/UART interface. It is fully  
compatible with BQ7961X-Q1 family. When working with BQ7961X-Q1 family, BQ79600-Q1 supports automatic  
host wakeup through INH pin when unmask fault is detected in high voltage battery pack. Details can be found in  
7.3.5 and 7.3.4. For convenience of traceability, each device is marked by DIE IDs and PARTID which  
could be found in 7.5 Register Summary Table.  
7.2 Functional Block Diagram  
BAT  
VIO  
AVAOREF  
REFSYS/  
Ping  
Detect  
AVDDREF  
Powermode  
Control  
INH  
CVDD  
VIO  
DVDD  
CVDD  
OSC  
MOSI/RX  
MISO/TX  
32MHz  
262KHz  
DVDD  
DVDD  
nCS  
SCLK  
RX  
COMHP  
COMHN  
COMLP  
COMLN  
nUART/SPI (SPI_RDY)  
TX  
Digital  
Core  
Daisy Chain  
NFAULT  
TX  
RX  
GND  
7-1. Functional Block Diagram  
7.3 Feature Description  
7.3.1 Functional Modes and Power Supply  
7.3.1.1 Power Mode  
The device has four power modes plus an Complete Off state. The functions supported under each power  
modes are summarized in 7-1 and the power state diagram is shown in 7-2.  
COMPLETE OFF: The voltage at the BAT pin is less than VBAT min, and all circuits are powered off.  
SHUTDOWN: The lowest power mode. Without VIO, device can only transition to VALIDATE. (If Sniffer used)  
SLEEP: A low power mode. Transition to ACTIVE is much faster compared to SHUTDOWN.  
ACTIVE: Full power mode. Device can communicate between MCU and daisy chain.  
VALIDATE: This state is to validate if there is real fault tone from stack devices. If fault tone is validated, drive  
INH pin towards VBAT (INH pin is latched until cleared by user). Device goes back to SHUTDOWN if  
tVALID_TIMEOUT or sleep timer expires. (tVALID_TIMEOUT timer is reset if fault tone is detected, detecting  
Heartbeat tone doesnt reset timer.) This state is bypassed if 7.3.5 is disabled (by default). Once entered  
this state, a status bit [VALIDATE_DET] is set in next ACTIVE such that host knows what happened. Without  
VIO, device can only transition to SHUTDOWN. NFAULT pin is low in this mode.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
 
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7-1. Functions Summary  
SHUTDOWN  
FUNCTIONAL BLOCK(1)  
VALIDATE(3)  
SLEEP  
ACTIVE  
Data Communication RX/TX  
Time out  
If VIO_UV_R = 1  
Comm Timeout  
Sleep Timeout  
Sleep Timeout  
Tone RX (HB/Fault)  
Depends on [DIR_SEL] and [TONE_RX_EN]  
Tone TX (WAKE/ SLP2ACT/  
SHUTDOWN/ HWRST) (5)  
Tone TX (HB)  
Depends on [DIR_SEL]  
and [HB_TX_EN]  
COM embedded fault  
Sniff detector on COM*  
[FCOMM_EN] =1  
If host enables this  
feature (2)  
Wake/Shutdown Ping  
SLP2ACT Ping  
NFAULT Driver  
LFO  
If VIO_UV_R = 1  
If VIO_UV_R = 1  
If VIO_UV_R = 1  
If VIO_UV_R = 1  
HFO  
INH Driver  
INH_DIS[1:0] != 2’  
Holds State  
INH_DIS[1:0] != 2b11  
b11(4)  
CVDD/DVDD  
Thermal Shutdown  
(1) Once device in SLEEP/ACTIVE, losing VIO doesnt directly cause change of state, it causes loss of data communication to MCU.  
(2) If host writes [SNIFDET_EN] =1 & [SNIFDET_DIS] = 0 in ACTIVE mode, even device shuts down, enable signal is still valid. Sniff  
detector is enabled or disabled by a latch powered by always on power supply.  
(3) This mode is bypassed if sniff detector is not enabled, see register DEV_CONF1.  
(4) INH can only be triggered by [INH_SET_GO] bit in ACTIVE.  
(5) Device does not recognize WAKE/ SLP2ACT/ SHUTDOWN/ HWRST tone sent by stack devices.  
VBAT < Min VBAT  
COMPLETE OFF  
1. Set CONTROL1[GOTO_SLEEP] = 1, OR  
2. Long comm timeout occurs w/  
COMM_TIMEOUT[CTL_ACT] = 0  
VBAT < Min VBAT  
VBAT > Min VBAT  
SLEEP MODE  
1. SleeptoActive Ping, OR  
2. Receive WAKE Ping  
1. Thermal shutdown, OR  
2. SHUTDOWN Ping, OR  
3. Sleep timer expires  
Wake Ping  
VALIDATE MODE  
(bypassed by default)  
ACTIVE MODE  
1. Receive WAKE Ping, OR  
2. Set CONTROL1[SOFT_RESET] = 1  
1. Thermal shutdown, OR  
2. SHUTDOWN Ping, OR  
SNIFF Det = 1  
if enabled  
3. tVALID_TIMEOUT  
4. Sleep timer expires  
Device reset  
expires, OR  
1. Thermal shutdown, OR  
Wake Ping  
2. Long comm timeout occurs w/  
COMM_TIMEOUT[CTL_ACT] = 1, OR  
3. Receive SHUTDOWN Ping, OR  
SHUTDOWN MODE  
4. Set CONTROL1[GOTO_SHTUTDOWN] = 1  
7-2. Power State Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ79600-Q1  
 
 
 
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.1.2 Pings  
A pingis a specific signal pattern to change power mode of BQ79600-Q1. There are total of 3 different  
pings:  
timing follows SPI physical  
layer requirement  
Hardwired to GND  
nCS  
nCS  
RX  
MOSI  
WAKE Ping high-low-high  
tHLD_WAKE  
tHLD_WAKE  
RX  
RX  
MOSI  
MOSI  
SHUTDOWN Ping high-low-high  
tHLD_SD  
tHLD_SD  
1us: 1Mbps(default)  
4us: 250Kbps  
SLEEPtoACTIVE Ping high-low  
tStA  
SPI mode (see notes below for SCLK control)  
tStA  
UART mode  
7-3. Communication Pings  
In SPI mode, ping can be sent without SCLK toggling or host can treat sending a ping like sending a series of  
logic 0(drive nCS and SCLK properly, refer to SPI physical layer requirement, 7.3.2.1.2.2).  
Device does not transmit any tones to stack devices due to the receiving of pings.  
After sending in SHUTDOWN ping, host has to wait tSHTDN before sending another ping.  
If nCS = 1, all of the pings above are ignored by the device.  
备注  
If device is shut down through SHUTDOWN ping (COMH RX and COML RX are disabled at next  
wake up), host needs to send 1st WAKE ping, wait tSU(WAKE_SHUT), and then send 2nd WAKE ping.  
7-2. Device Behavior when SLP2ACT Ping is Sent  
UART  
SPI WITH SCLK TOGGLING  
SPI WITHOUT SCLK TOGGLING  
ACTIVE  
SLEEP  
[COMMCLR_DET]=1, [STOP_DET] =1  
[COMCLR_ERR]=1,  
[COMMCLR_DET]=0  
[FMT_ERR]=1, [COMCLR_ERR]=0,  
[COMMCLR_DET]=0  
[COMMCLR_DET]=1, [STOP_DET] =0,  
transitions to active mode  
[COMCLR_ERR]=0,  
[COMMCLR_DET]=0, transitions to  
active mode  
[FMT_ERR]=0, [COMCLR_ERR]=0,  
[COMMCLR_DET]=0, transitions to active  
mode  
7.3.1.3 SPI/UART 选择  
通过硬件选择 SPI UART 接口通过电阻器将 nUART/SPI 引脚连接到 VIOSPI 接口),或连接到 GND  
UART 接口。每次从关断模式切换到活动模式时器件都会确定 UART SPI 模式。在切换到活动模式之  
所选模式被锁定。VIO 必须高于 VVIO_UV_R。活动模式下nUART/SPI 引脚用作 SPI_RDY 的输出指示。更  
多信息请查7.3.2.1.2.2.1。  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.1.4 Digital Reset  
Digital reset is when digital core of the device in reset mode. It is not a power mode. Once device comes out of  
digital reset, [DRST] bit is set to '1', registers that are not included in NVM are set to RESET VALUE, registers  
included in NVM would be NVM program value. There are several conditions in which the device will go through  
a digital reset:  
A WAKE ping is received.  
The CONTROL1 [SOFT_RESET] = 1 command is sent in ACTIVE mode.  
Power supply faults. DVDD UV or CVDD UV is detected.  
A HFO or LFO watchdog fault will reset the digital.  
7.3.1.5 Power Mode in BMS System  
It is recommended to follow the power state combinations below to save system level power.  
7-3. Power Mode Combination Summary  
STACK MONITORING IC  
ACTIVE  
BQ79600-Q1  
ACTIVE  
COMMENT  
Recommended  
Recommended  
Recommended  
Recommended  
SLEEP  
SLEEP  
SLEEP  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
Other combinations  
Not recommended  
7.3.1.6 Power Supply  
This section provides an overview of each supplies for both user cases: without using Reverse Wakeup and with  
using Reverse Wakeup. See the 7.3.6 for diagnostic control and fault detection on the power supplies block.  
7-4. Power Supply Summary  
NAME  
W/O REVERSE WAKEUP USER CASE  
W/ REVERSE WAKEUP USER CASE  
VIO  
BAT  
This supply is powered by regulated 3.3V or 5V from SBC (PMIC), it powers UART/SPI interface pins.  
This supply is powered by regulated 5V from SBC (PMIC). This supply is powered by unregulated 12V battery.  
AVAOREF  
AVDDREF  
DVDD  
This supply is generated from VBAT. It is always on if VBAT exists. It powers REFSYS and Power mode control  
block.  
This supply is derived from AVAOREF. AVDDREF and AVAOREF are connected by a switch, the switch is open in  
SHUTDOWN mode.  
This supply is generated by the internal DVDD LDO. It is the supply for the digital circuits. It takes the input voltage  
from CVDD and generates a nominal 1.8V. It will not be used to power any external circuit.  
CVDD  
This supply is powered by regulated 5V from SBC(PMIC). It This supply is generated by the internal CVDD LDO.  
is the supply for daisy chain interface.  
It is the supply for the daisy chain interface (or vertical  
interface, VIF). It takes the input voltage from VBAT  
and generates a nominal 5V. It will not be used to  
power any external circuit.  
7.3.1.7 Shutdown  
Power Mode Transition Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
ACTIVE  
Sleep  
Transition Transition  
ACTIVE  
SHUTDOWN  
Complete Off  
Transition  
Transition  
Min VBAT  
BAT  
AVAOREF  
VIO_UVZ  
VIO ramp time is system dependent and not specified  
VIO  
tPOR2COMM  
AVDDREF  
CVDD  
DVDD  
tSU(WAKE_SHUT)  
Communication  
Ready  
tSU(SLP2ACT)/  
tSU(WAKE_SLP)  
tSLP  
e
e
d
o
g
d
n
o
time  
i
p
m
m
e
E
p
K
v
i
t
e
e
A
l
c
S
W
A
o
o
d
t
t
n
e
n
v
i
o
i
e
c
o
i
t
i
t
i
s
n
s
Re  
n
a
a
r
r
T
T
7-4. Shutdown -> Active -> Sleep -> Active  
Transition to Active then to Validate  
as a status bit indicates device wakes  
up due to SNIF_DET  
VALIDATE  
SHUTDOWN  
ACTIVE  
Complete Off  
Transition  
Transition  
Transition  
Min VBAT  
BAT  
AVAOREF  
VIO  
tDepend on system  
INH enables PMIC  
which enables VIO  
tPOR2COMM  
AVDDREF  
CVDD  
DVDD  
tFTONE_PERIOD  
tFTONE_PERIOD  
Fault tones from  
stack device  
on COMM* pins  
tVALID_ENTRY  
tINH_DLY  
SNIF_DET  
(internal signal)  
INH  
time  
7-5. Shutdown -> Validate -> Active  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.2 Communication  
This device is used as a bridge (base) device in daisy chain configuration, as showed in figure below. It  
communicates with MCU through UART or SPI and communicates with stack devices through daisy chain  
(proprietary interface). MCU always initiates communication with a Command frame. In the system, BQ devices  
would never send data back to MCU before MCU requests. And MCU needs to wait all expected response  
frames before sending next command frame. Thus, communication scenarios can be put into 2 categories:  
MCU sends Write Command frames to BQ devices. Write Command frames don't incur Response frame.  
MCU sends one Read Command frame to BQ devices and waits till all Response frames are received.  
Half-duplex  
Half-duplex  
Half-duplex  
SPI or UART  
(Asynchronous  
proprietary protocol )  
(Asynchronous  
proprietary protocol )  
SPI_RDY  
SCLK  
zCS  
BQ79600  
(Base Device)  
MCU  
BQ796XX monitoring IC  
(Stack N)  
BQ796XX monitoring IC  
(Stack 1)  
Command Frame  
Response Frame  
Command Frame  
Response Frame  
Command Frame  
Response Frame  
MOSI/RX  
MISO/TX  
COM  
COM  
COM  
COM  
Address N  
Address 1  
Address 0  
Both Command and Response Frames shall  
follow the Transaction Frame Structure  
7-6. System Communication Diagram  
Rest of the section talks about how data and tone are communicated among host, bridge, and stack devices: 节  
7.3.2.1 (7.3.2.1.1 and 7.3.2.1.2 protocol), 7.3.2.2. It also talks about 7.3.2.3 and 7.3.2.4.  
7.3.2.1 Data Communication Protocol  
7.3.2.1.1 Frame Layer  
The communication frame is defined in figure below. It is made up of 5 types of information: initialization  
character (INIT), device address characters, register address character, data character(s) and CRC characters.  
Each character is transmitted at UART/ SPI/ Daisy Chain physical level, whose format is defined in following 节  
7.3.2.1.2 section. There are 3 types of transaction frames: Read Command Frames, Write Command Frames  
and Response Frames. They follow the structure in the figure below.  
INIT [7:0]  
DEV ADR [7:0]  
REG ADR [15:0]  
DATA byte(s)  
CRC [15:0]  
Frames  
Single Device Read  
INIT  
Always 0x80  
DEV ADR REG ADR  
Y
DATA  
# of byte requested (max value  
127, meaning 128)  
CRC  
Y
Read  
Command  
Frame  
Y
Stack Read  
Always 0xA0  
Always 0xC0  
Y
N
N
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
Broadcast Read  
Single Device Write  
Stack Write  
Y
Y
Write  
Command  
Frame  
Actual payload (1-8 bytes)  
Y
Y
Broadcast Write  
Broadcast Write  
Reverse (5)  
Y
Y(5)  
Y
Y(5)  
Y(5)  
Response Frame  
Y
Y
Y
Actual payload (1-128 bytes)  
Y
7-7. Command/Response Frame Structure  
Notes:  
When BQ79600-Q1 is used as bridge device, to read BQ devices information, host SHALL NOT use  
Broadcast Read command but only Single Device Read or Stack Read. The reason is BQ79600-Q1 register  
address does not overlap with stack devices, it would only return 0x00 to Broadcast Read command.  
For Stack Read command, the response is broken into individual response frames from each device  
addressed. Each device (address N) in the stack waits until the device above it (address N+1) responds  
before device N sends its own data back.  
After a read command frame is transmitted, the host must wait for all expected responses to return (or  
timeout: tWAIT_READ_MAX ) before initiating a new command frame.  
A response frame is not mandatary. A response frame is only received after a read command frame.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ79600-Q1  
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
Broadcast Write Reverse command frame should only be used to config [DIR_SEL] bit, not for any other  
purposes. INIT byte is 0xE0, Reg address byte is 0x309 (BQ7961X-Q1), data byte is 0x80.  
Bytes received on COMH/COML are NOT propagated up to the stack; while bytes received on the SPI/UART  
are propagated to COMH or COML depending on [DIR_SEL].  
Even if there is a byte error, data is still forwarded from VIF to SPI (buffer)/UART; if there is a byte error, data  
doesnt forward from SPI/UART to VIF.  
Command Frame  
Description  
Response Frame  
Description  
Command/Response Frame  
Description  
Bit  
Bit Name  
Bit Name  
Bit  
7
Bit Name  
RSVD  
RSVD  
7
FRAME_TYPE  
1 = Command Frame  
FRAME_TYPE  
0 = Response  
Frame  
Should always write —0“  
6
Should always write —0“  
Set the device address range from  
0x00 to 0x3F  
6
5
REQ_TYPE  
000 = Single Device Read  
001 = Single Device Write  
010 = Stack Read  
RESPONSE_BYTE  
Number of the data  
bytes  
5:0 Device Address  
011 = Stack Write  
0x00 = 1 byte  
0x01 = 2 bytes  
:
Command/Response Frame  
Description  
100 = Broadcast Read  
101 = Broadcast Write  
110 = Broadcast Write Reverse  
111 = RSVD (1)  
4
Bit  
7:0 Register  
Address (MSB)  
7:0 Register  
Address (LSB)  
Bit Name  
0x7F = 128 bytes  
Target or beginning of the register  
address  
3
2
1
0
RSVD  
RSVD. This bit is ignored  
Target or beginning of the register  
address  
DATA_SIZE  
Number of data bytes, excluding  
device address, register  
address or CRC  
Bit  
7:0 Data Byte[0]  
……  
7:0 Data Byte [n]  
Bit Name  
Description  
Data Byte[0]  
……  
000 = 1 byte  
001 = 2 bytes  
:
Data Byte[n]  
111 = 8 bytes  
Command/Response Frame  
Bit  
Bit Name  
Description  
7:0 CRC (MSB)  
CRC-16-IBM polynomial (x16  
+ x15 + x2 + 1 or  
11000000000000101)  
with 0xFFFF initialization  
CRC-16-IBM polynomial (x16  
+ x15 + x2 + 1 or  
7:0 CRC (LSB)  
11000000000000101)  
with 0xFFFF initialization  
7-8. Frame Byte Definition  
Notes:  
INIT character: (1) No function to this selection, but this selection sets the [RC_IERR] error flag.  
Device Address character: Bit 6 and 7 are reserved; 0x4F to 0xFF is decoded as 0x3F by device.  
Register Address characters: Register addresses are two bytes in length. They indicate the targeted register  
address on a single byte read/write, or the beginning of the register address on a multi-byte read/write. If an  
invalid register address is set on a write command, the command will be ignored. If an invalid register  
address is set on a read command, a 0x00 will be returned as response.  
Data characters can be:  
Single data byte, it represents number of registers requested in Read Command Frame. The BQ79600-  
Q1 supports up to 128 byte reads. The valid data byte for read command frame is 0b0000000 -  
0b1111111. The MSB of the data byte is ignored for read command frames. For example, 0b10011001 is  
read as 0b00011001 and returns data from 26 registers.  
Actual payload in Write Command Frame (max 8 byte) or Response Frame (max 128 byte).  
CRC characters:  
The CRC value is checked as the first step (assume no physical layer error, no [RC_IERR], no [RC_SOF],  
no [RC_BYTE_ERR]) after receiving the communication frame. If the CRC is incorrect, the entire frame is  
discarded and not processed. Any additional frame errors are not checked.  
The frame with CRC error is still transferred up/down the stack. Every device processing this frame will  
also detect a CRC error. Hence, it is possible to have multiple devices indicating CRC fault on the same  
communication frame. If a CRC error occurs in the response frame from address N+1, device N does  
NOT append its own message and an invalid CRC fault is generated. For example, if device 15 finds  
response frame from device 16 has invalid CRC, device 15 doesnt send its own response frame.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
The device uses a CRC (cyclic redundancy check) to protect data integrity during transmission. The  
device uses the CRC-16-IBM polynomial (x16 + x15 + x2 + 1 ) with 0xFFFF initialization.  
7.3.2.1.1.1 Calculating Frame CRC Value  
The CRC calculation by the transmitter is in bit-stream order across the entire transmission frame (except for the  
CRC). When determining bit-stream order for implementing the CRC algorithm, it is important to note that  
protocol bytes transmit serially, least-significant bit first. 7-9 illustrates the bit-stream order concept.  
7-9. Bit-Stream Order Explanation  
The CRC (0x0000) is appended to the end of the bit-stream. This bit-stream is then initialized by XOR'ing with  
0xFFFF to catch any leading 0 errors. This new bit-stream is then divided by the polynomial (0xC002) until only  
the 2-byte CRC remains. During this process, the most significant 17 bits of the bit stream are XORd with the  
polynomial. The leading zeroes of the result are removed and that result is XORd with the polynomial once  
again. The process is repeated until only the 2-byte CRC remains. For example:  
Example 1: CRC Calculation Using Polynomial Division  
Command Frame = 0x80 00 02 0F 0B (0b1000 0000 0000 0000 0000 0010 0000 1111 0000 1011)  
Command Frame in bit stream order  
1101 0000)  
= 0x01 00 40 F0 D0 (0b0000 0001 0000 0000 0100 0000 1111 0000  
After Initialization (XOR with 0xFFFF) = 0b1111 1110 1111 1111 0100 0000 1111 0000 1101 0000  
1111 1110 1111 1111 0100 0000 1111 0000 1101 0000 0000 0000 0000 0000 #append 0x0000 for CRC  
1100 0000 0000 0010 1 #XOR with polynomial  
0011 1110 1111 1101 1100 0000 1111 0000 1101 0000 0000 0000 0000 0000  
11 1110 1111 1101 1100 0000 1111 0000 1101 0000 0000 0000 0000 0000 #delete leading zeros from  
previous result  
11 0000 0000 0000 101 #XOR with polynomial  
00 1110 1111 1101 0110 0000 1111 0000 1101 0000  
……  
……  
……  
1100 0110 0000 0001 0000 0000  
1100 0000 0000 0010 1 #XOR with polynomial  
0000 0110 0000 0011 1000 0000  
110 0000 0011 1000 0000  
110 0000 0000 0001 01 #XOR with polynomial  
000 0000 0011 1001 0100  
0000 0011 1001 0100 #CRC result in bit stream order  
1100 0000 0010 1001 #final CRC result in normal order  
CRC final 0xC029  
7.3.2.1.1.2 Verifying Frame CRC  
There are several methods for checking the CRC of a frame. One method is to simply calculate the CRC for the  
transmitted command except the last two bytes (CRC bytes) using the method described in the previous section,  
and then compare that result with the transmitted CRC bytes. A more simple option is to run the entire  
transmission through the CRC algorithm. If the CRC is correct, the result is 0000. In this case, the initial zero  
padding of the bit-stream with 16 zeroes is not necessary. Using the previous result and running through the  
algorithm produces the following results:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
Example 1: CRC Verification Using Polynomial Division:  
Command Frame = 0x80 00 02 0F 0B (0b1000 0000 0000 0000 0000 0010 0000 1111 0000 1011)  
CRC to Check = 0xC029  
Command Frame w/ CRC in bit stream order = 0x80 00 02 0F 0B C0 29 (0b1000 0000 0000 0000 0000 0010  
0000 1111 0000 1011 0000 0011 1001 0100)  
After Initialization (XOR with 0xFFFF) = 0b0 1111 1110 1111 1111 0100 0000 1111 0000 1101 0000 0000  
0011 1001 0100  
1111 1110 1111 1111 0100 0000 1111 0000 1101 0000 0000 0011 1001 010 #delete leading zeros from  
previous result  
1100 0000 0000 0010 1 #XOR with polynomial  
0011 1110 1111 1101 1100 0000 1111 0000 1101 0000 0000 0011 1001 0100  
11 1110 1111 1101 1100 0000 1111 0000 1101 0000 0000 0011 1001 0100 #delete leading zeros from  
previous result  
11 0000 0000 0000 101 #XOR with polynomial  
00 1110 1111 1101 0110 0000 1111 0000 1101 0000 0000 0011 1001 0100  
……  
……  
……  
1100 0110 0000 0010 1001 0100  
1100 0000 0000 0010 1 #XOR with polynomial  
0000 0110 0000 0000 0001 0100  
1 1000 0000 0000 0101 00  
1 1000 0000 0000 0101 #XOR with polynomial  
0 0000 0000 0000 0000 00  
0x0000 #verfiy that CRC checks out valid  
备注  
The result of 0b0000 0000 0000 0000for the CRC indicates a successful check.  
7.3.2.1.2 Physical Layer  
7.3.2.1.2.1 UART  
Communication between host and BQ79600-Q1 can be configured to UART mode, refer to 7.3.1.3. The  
UART interface baud rate is default to 1Mbps at power up or digital reset. The UART interface follows the  
standard serial protocol of 8-N-1 (see 7-10), where it sends information as a START bit, followed by eight data  
bits, and then one STOP bit. The STOP bit indicates the end of the byte. The protocol also supports two STOP  
bits. When the device is configured as 2 stop bits ([TWO_STOP_EN] = 1, stack devices should also be set as  
two stop bits), the UART response frame from the device to MCU will always return with 2 stop bits.  
The UART sends data on the TX pin and receives data on the RX pin. When idle, the TX and RX are high. TX is  
always pulled to VIO internally while in ACTIVE or SLEEP mode, whether enabled or disabled.  
The UART interface is strictly a half-duplex interface. While transmitting, any attempted communication on RX is  
ignored. The only exception is 7.3.2.1.2.1.2.  
1 or 2 bit  
period  
LSB  
bit period = 1/ baud rate  
MSB  
. . .  
. . .  
START  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
STOP  
Start is  
ꢀoÁꢀÇ• Z0[  
Stop is  
ꢀoÁꢀÇ• Z1[  
7-10. UART Character Definition  
Note: User can change baud rate using register bit [UART_VIF_BAUD] for debug purpose.  
7.3.2.1.2.1.1 TX HOLD OFF  
UART transmitter is configurable to wait a specified number of bit periods after the last bit reception of Single  
Device read command frame from host before starting transmitting Response Frame using the TX_HOLD_OFF  
register, as showed in 7-11. This provides time for the host to switch the bus direction at the end of its  
transmission.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
备注  
Host does not need to configure register TX_HOLD_OFF in BQ79600-Q1 if Stack Read command is  
used. Host shall not use Broadcast Read Command.  
Single Device Read  
Command frame  
TX_HOLD_OFF  
Response frame  
Last bit of the command  
received at RX pin  
1st bit of the response  
frame sent on TX pin  
Time  
7-11. TX HOLD OFF Timing Diagram  
7.3.2.1.2.1.2 UART COMM CLEAR  
备注  
Comm Clear concept only applies to bridge device not stack device.  
Comm Clear command is used to clear the receiver and instruct it to look for a new start of frame. (Resync up  
with host) The next byte following the Comm Clear is considered a "start of frame" byte. The digital receiver  
continuously monitors the RX line for Comm Clear condition which is RX pin is held low for tUART (CLR) bit  
periods, showed in 7-12.  
When Comm Clear is detected, FAULT_COMM1 [COMMCLR_DET] and FAULT_COMM1 [STOP_DET] are set.  
[STOP_DET] flag is set because the Comm Clear timing violates the typical byte timing and the STOP bit is seen  
as '0'. The only exception to this is when a COMM CLEAR is sent while BQ79600-Q1 is in sleep. If this is the  
case, there is no STOP error flag.  
1 bit period  
RX pin  
Command frame  
tUART(CLR)  
tUART(RX_HIGH)  
7-12. Comm Clear Timing  
7.3.2.1.2.2 SPI  
备注  
为支持菊花链异步协议SPI同步协议之间的通信BQ79600-Q1 需要使7.3.2.1.2.2.1。  
主机与 BQ79600-Q1 之间的通信可配置为 SPI 模式。请参阅 7.3.1.3。主机始终是 SPI 主设备BQ79600-  
Q1 始终是从设备。在物理层SPI 是一个五引脚接口4 个通用引脚nCSSCLKMOSI MISO以及  
SPI_RDY。在 SPI 接口上每个位在时钟从低电平到高电平转换时被捕捉在时钟从高电平到低电平转换时被传  
一个字节包括 8 7-13 所示。请注意MISO 在空闲模式下被驱动为高电平。如果 MCU 与多个从器  
件通信BQ79600 MISO MCU 之间添加一个三态缓冲器。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ79600-Q1  
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
t9  
t10  
t11  
nCS  
tSPI_CLK  
tSPI_CLKL  
SCLK  
tSPI_CLKH  
tSU  
tH  
tH  
Hi or Low  
Hi or Low  
LSB_n  
MSB_n  
MSB_n  
MOSI  
MISO  
t14  
t12  
t13  
LSB_n  
MSB_n+1  
t>0  
SPI_RDY  
SPI_RDY high indicates host  
can read/write predefined  
number of bytes  
SPI_RDY may go low (and it is ok)  
before finish read/write this batch  
One Byte  
Bit 0  
Bit 7  
MSB  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LSB  
Bit 7  
bit period = tSPI_CLK  
7-13. SPI 时序和字节定义  
备注  
SPI 接口在物理层是全双工的但在帧层它实际上是半双工因为菊花链仅支持半双工。这意味  
着在给定的时间MCU 和器件之间只传输一个命令帧或响应帧。  
• 当命令MCU 发送到器件时BQ79600 TX FIFO2 个缓冲器应为空0xFF 发送MCU  
FIFO 诊断模式下除外。  
• 当响应从器件发送MCU MCU 0xFF 中计时  
• 主机应2MHz 6MHz 范围内提SPI 时钟。此范围FIFO 的预定义大小确定。即使SPI 能够6MHz  
频率运行它也不会增加整个系统的吞吐量因为菊花链速度仍会限制吞吐量。  
• 为避免菊花链接口上的冲突MCU 必须等到接收到所有预期的响应帧或等待计时器到期后再BQ79600  
发送另一个命令帧。请参阅7-16 中的流程图。  
• 当不向器件发送命令帧时主器件应始终MOSI 驱动1’。  
主机读取模式从主机角度来看读取模式介于有效读取命令的第一个字节和接收到的最后一个预期字节之  
间。  
器件读取模式从有效读取命令的第一个字节开始TX FIFO 超时FIFO 为空时器件为读取模式。器件  
读取模式是主机读取模式的子集。用于理解通信故障寄存0x2301 0x2302 的概念)  
Comm Clear 器件在退出器件读取模式之前拒绝来MOSI 的任何数据。  
TX FIFO 超时后SPI 模块拒绝来自菊花链堆栈器件或自身的任何数List item.referenceTitle直到再次  
进入器件读取模式。  
• 对于命令帧器件使nCS 的下降沿指示帧开始上升沿指示帧结束。MCU 需要在整个帧14 个字  
内切换并保nCS 处于低电平在该帧结束时nCS 切换回高电平。nCS 为低电平时SCLK  
是合法的。不支持命令帧中间nCS 脉冲。  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
• 对于响应帧nCS 无需始终保持低电平尽管它可以像发送命令帧一样。主机可以nCS 切换为高电平在  
帧中间字节边界处SPI 读取。  
nCS  
IDLE  
frame A  
IDLE  
frame B  
IDLE  
frame C  
IDLE  
Data  
Supported in command frame and response frame  
nCS  
IDLE  
1st half of frame A  
IDLE  
2nd half of frame A  
IDLE  
Data  
Only Supported in response frame  
7-14. 发送帧时nCS 行为  
7.3.2.1.2.2.1 SPI_RDY SPI FIFO  
SPI_RDY 是一个输出信号指示主机数据已准备好进行通信。SPI FIFO 7-15 是器件中用于临时存储传入/传出  
数据的缓冲器。需要它们的原因如下:  
• 菊花链波特率默认约1Mbps一旦主机请求大量数据400 字节器件的菊花链接收器会尝试将其发  
送回主机但由于器件不具SCLK无法控制何时读取数据。因此当主机未读取数据时器件需要将传入  
的数据存储TX FIFO 中。即使主机正在读取数据仍需FIFO 来处SPI 和菊花链之间的波特率差异。  
• 由TX FIFO 的深度有限因此需SPI_RDY。如果主机请求的数据超256 字节而主机未及时为器件提  
供服务读出数据),则会发生数据溢出。SPI_RDY 指示主机已准备好读取或写入一定数量的数据例如,  
如果主机请129 字节SPI_RDY 第一次会标128 字节就绪第二次标1 个字节就绪。有关详细信息,  
请参7-5。  
COMH/COML Pins  
Aprox. 1Mbps  
Asynchronous  
Daisy Chain Transceiver  
Aprox. 1Mbps  
Asynchronous  
Aprox. 1Mbps  
Asynchronous  
Ping Buffer  
128 bytes  
Pong Buffer  
128 bytes  
32 bytes  
RX FIFO  
TX FIFO  
BQ79600-Q1  
For simplicity, the drawing only shows  
dataflow from/to stack devices, it  
ꢀ}ꢁ•v[š •Z}Á šZꢁ ꢀꢂšꢂ(o}Á }( Œꢁꢂꢀ (Œ}u/  
write to BQ79600 itself.  
SCLK: 2MHz -  
6MHz  
MOSI  
MISO  
7-15. SPI FIFO 简化图  
TX FIFO 包含两128 字节缓冲器一起用作乒乓缓冲器。  
1. Ping 缓冲器填满时Pong 缓冲器应为空以便存储传入的数据。  
2. Pong 缓冲器时正在读Ping 缓冲器。一旦被读取缓冲器中的每个字节被复位0xFFPong 缓  
冲器填满之前Ping 缓冲器应为空读出。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
3. Pong 缓冲器填满后Ping 缓冲器会接替上来。  
4. 器件执行此循环1 3),直到接收到所有响应数据。  
5. 主机必须以足够快的速度读TX FIFO以便Pong (Ping) 缓冲器写满之前读Ping (Pong) 缓冲器并准备  
好存储来自菊花链的数据。  
7-5. SPI_RDY 行为总结  
案例编  
-> 低  
a
-> 高  
b
主机写  
1
2
RX FIFO >= 16 字节时2μs 内。  
在器件接收到读取命令帧的1 个字节5μs 内。  
RX FIFO < 8 个字节时a1 事件2μs 内。  
Ping (pong) 缓冲器填满1us 内。  
TX FIFO 超时  
正在读取TX 缓冲器变为空在向外传输缓冲器中最后一个字节  
主机读  
注意SPI_RDY 为高电平时主机正在读TX  
FIFO ),可能会发TX FIFO 超时。在这种情况  
在事a3 之后SPI_RDY 会保持低电平大约  
2μs然后恢复为高电平。  
的最后一位之前)  
注意一旦变为低电平SPI_RDY 无论如何都会保持低电平  
2μs。  
3
:  
SPI_RDY 仅设置标志不控制数据流入或流出设备。  
• 一旦进入设备读取模式设备将拒绝来自主机COMM CLEAR 以外的任何数据a1 b1 不再适用。  
TX FIFO 超时SPI 模块从菊花链BQ79600-Q1 本地接收到一个字节的数据后计时器启动30μs  
内没有收到数据则该计时器超时。  
7.3.2.1.2.2.2 Flow to Read/Write BQ79600-Q1  
User shall follow flow chart 7-16 to do read from device and 7-17 to do write to device activities.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
Device  
Initialization  
Start  
NO  
SPI_RDY = Z1[?  
delay  
YES  
Drop nCS, Send one Single Device Read or Stack Read  
Command frame, raise nCS @2-6Mbps;  
M = expected total Response bytes,  
i = int(M/128), K = M- i*128;  
NO  
YES  
NO  
NO  
Wait  
t<= t8  
Total wait time >  
tWAIT_READ_MAX  
Comm Clear,  
Reread  
SPI_RDY = Z1[?  
?
YES  
Drop nCS, Read K  
bytes, raise nCS  
i > 0?  
YES  
Host reads  
expected # of  
valid data  
YES  
Finish  
Reading  
Drop nCS, Read 128 bytes then  
stop (stop SCLK, raise nCS high),  
i = i -1;  
NO  
Comm Clear  
7-16. Flow Chart to Read from Device  
备注  
MCU shall check SPI_RDY pin at least every t8 (max service interval). t8 = 1ms at SCLK = 6MHz /  
890μs at SCLK = 4MHz /550μs at SCLK = 2MHz assuming host starts to read TX FIFO right after  
detecting SPI_RDY = '1 and SPI bus has 30% idle time in the process of reading 128 bytes.  
For response frame, nCS has to be toggled high after reading the last byte of data in the current buffer.  
tWAIT_READ_MAX  
stack read/single device read from stack devices, with n stack devices, request m bytes in total (payload +  
overheads, from all stack devices), wait time: (n-1)*3μs*2 + m*10μs + 100μs.  
single device read from BQ79600-Q1, request m bytes , wait time: 100μs + m*10μs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
Start  
NO  
NO  
YES  
NO  
Total wait time >  
250us?  
SPI_RDY = Z1[?  
Wait t  
SPI_RDY = Z1[?  
Comm Clear  
YES  
YES  
Toggle nCS low, Send 1 Write  
Command frame (up to 14  
bytes) @SCLK 2Mhz-6MHz,  
toggle nCS high  
NO  
YES  
More Write cmd  
to send?  
End  
7-17. Flow Chart to Send Write Command Frame to Device  
Notes:  
Since write command frame doesnt incur response frames, host shall discard data from MISO pin.  
If host sends partial data, the device would keep waiting the rest of command data till communication time out  
happens. Refer to 7.3.2.4 for details.  
7.3.2.1.2.2.3 SPI COMM CLEAR  
备注  
SPI Comm Clear 命令仅适用于桥接器件用于清FIFO 并复SPI 模块。  
它使 BQ79600-Q1 停止发送响应它无法停止堆栈器件向 BQ79600-Q1 发送响应数据。如果主机仍然无法与器  
件通信主机最终可以使用 SHUTDOWN ping然后使用 WAKE ping 重启器件。器件在 ACTIVE 状态下仅响应  
Comm Clear 命令。在以下情况下使SPI Comm Clear 命令:  
SPI_RDY 为低电平超过预期时间READ 模式中tSPI_RD_WAIT_MAX (7-16)而在将写命令帧发送到器  
件时220μs。请勿在此等待时间结束前发Comm Clear 命令。  
• 主机读回的数据CRC 错误。  
• 主机无法与器件通信。  
nCS  
t9  
t10  
8 clk cycles  
SCLK  
tSU  
tH  
MOSI pin  
Hi or Low  
Hi or Low  
COMM CLEAR  
7-18. SPI Comm Clear  
SPI Comm Clear 被严格定义为 nCS 切换至低电平8 位 ‘0nCS 切换至高电平如7-18 所示。nCS 在发  
Comm Clear 时必须保持低电平。如果在 nCS 变为高电平之前在 MOSI 引脚上检测到其他数据则设置  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
[COMCLR_ERR] 件将忽略格式错误的 Comm Clear 格式正确的 Comm Clear 触发  
[COMMCLR_DET]。如果使用 Comm Clear可以触发 DEBUG_SPI_FRAME [TR_SOF]发送本地数据时、  
[RC_SOF]接收部分数据[TS_WAIT]发送菊花链数据时。  
7.3.2.1.2.3 Daisy Chain  
Daisy chain is the interface (COMH/COML) communicating to stack devices. It is bi-directional and half duplex,  
and, therefore, has a transmitter (TX) and receiver (RX) on both COMH and COML interfaces, 7-1. Signal  
going in and out of daisy chain port is taken care by the device. To use the device, host does not need to know  
daisy chain physical layer protocol (bit definition, byte definition and byte transferring). Host just needs to control  
SPI or UART port properly. Still, for user's information, daisy chain physical layer protocol is described below.  
Daisy chain bit is transmitted between COM*P and COM*N in fully differential fashion, see 7-19.  
Daisy chain byte uses an asynchronous 13-bit byte-transfer protocol. The definition of each bit in the byte is  
defined in 7-6. Byte to byte transmission is captured in 7-20.  
Z1[  
Z0[  
COM*P  
COM*N  
2 x tPW_DC  
tPW_DC  
COM*P t COMP*N  
tPW_DC  
tPW_DC  
7-19. Daisy Chain Bit Definition  
SYNC [1:0]  
DATA[7:0]  
+1  
COM*P t COMP*N  
-1  
D7  
D4  
D6  
D1  
D3  
D5  
D0  
D2  
SYNC = 2'b00  
1.375us of bus idle  
0.5us of bus short  
6.5us nominal  
Daisy Chain Byte Definition  
Up to 8.375us for a byte  
Up to 8.375us for a byte  
Byte  
Byte  
10.875us at 1Mbps, 40.6us at 250Kbps  
Daisy Chain Byte Transfer  
7-20. Daisy Chain Byte/ Byte Transfer Definition  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7-6. Daisy Chain Byte Definition  
BIT NAME  
DESCRIPTION  
Preamble (half-bit)  
Indicates a start of byte transaction, signaling the receiver to start sampling. This half-bit and the following 2  
SYNC bits are used for extra timing information.  
SYNC[1:0]  
Always 0b00. The SYNC bits are used for the digital to assess the timing and noise level on the byte, improving  
the detection of a '1' and '0' in a noisy environment.  
Start-Of-Frame (1-bit)  
The Start-Of-Frame (SOF) bit defines the byte as the INIT byte (initialization byte) in the frame, refer to 7-8.  
Stack device needs this information in order to process the communication.  
Data[7:0]  
The actual 8-bit payload.  
Byte Error BERR (1-bit)  
For BQ79600-Q1, BERR is always 0in command frames sent to stack device. While in received response  
frames, if it is 1, it indicates last device DEBUG_COM*_PHY[PERR] = 1.  
Postamble (half-bit)  
Indicates the end of byte transaction.  
7.3.2.2 Tone Communication Protocol  
Other than data, certain information is transmitted using tone: signals to change power state of stack device  
(SLP2ACT tone, WAKE tone, SHUTDOWN tone, HWRST tone), signals related to faults (FAULT tone and  
HEARTBEAT tone). The definition of each tone is defined in 7-22 and 7-21.  
Device can transmit and receive tones in summary below:  
7-7. Available Tones to BQ79600-Q1  
DIRECTION  
NAME  
Receive  
Transmit  
FAULT tone and HEARTBEAT tone  
SLP2ACT tone, WAKE tone, SHUTDOWN tone, HWRST tone, HEARTBEAT tone  
Note:  
Device does not transmit Fault Tone as it uses 7.3.3.2.1 to signal fault if enabled.  
SLP2ACT/WAKE/SHUTDOWN/HWRST tone transmitting is on demand when corresponding bit in register  
CONTROL1 and CONTROL2 is set.  
When bridge device in SHUTDOWN, wakeup bridge device doesnt change power mode of stack devices.  
Receiving threshold value is defined as nHBDET, nFTONEDET in section 6.6.  
Transmitting number is predefined by device in 7-8.  
7-8. Transmitting Tones Summary Table  
SLP2ACT  
WAKE  
SHUTDOWN  
HWRST  
HEARTBEAT (SLEEP only)  
N of Couplets Transmitted in  
Single Burst  
30  
90  
270  
NA  
810  
30  
Burst Period  
NA  
NA  
NA  
400ms  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
COM*P  
COM*N  
VDCCM  
tFLTTONE_PLS  
tFLTTONE  
COM*P t COMP*N  
tFLTTONE_PLS  
A pulse  
One Burst  
(N of couplets)  
One Burst  
(N of couplets)  
tHB_PERIOD or tFTONE_PERIOD  
7-21. FAULT Tone and HEARTBEAT Tone Definition  
COM*P  
COM*N  
COM*P  
COM*N  
VDCCM  
VDCCM  
tCOMTONE_PLS  
tCOMTONE_PLS  
tCOMTONE  
tCOMTONE  
COM*P t COMP*N  
tCOMTONE_PLS  
COM*P t COMP*N  
tCOMTONE_PLS  
(N of couplets)  
SHUTDOWN, HEARTBEAT, HWRST Tone  
(N of couplets)  
WAKE, SLP2ACT Tone  
7-22. SHUTDOWN, HEARTBEAT, HWRST, SLP2ACT Tone Definition  
7.3.2.3 Device Auto Addressing / Ring Communication  
备注  
The host starts communication at least 100µs after changing the [DIR_SEL] setting to ensure the  
device finishes the COMH/COML reconfiguration.  
7.3.2.3.1 Auto-Addressing  
To properly communicate to every device in daisy chain, host has to assign a unique device address to every  
device. This process is called Auto-addressing. This step is required every time devices come out of  
SHUTDOWN or digital reset. 7-9 describes a procedure to bring up a system of 1 bridge device and 3 stack  
devices from SHUTDOWN to a state ready to do read/write communication.  
All device addresses must be sequential  
7-9. Auto-Addressing with Figure 7-22(a), assume all devices are in SHUTDOWN  
STEP  
WORK WITH BQ7961X-Q1  
1
2
3
4
send WAKE ping on RX (wakeup BQ79600-Q1)  
single device write to BQ79600-Q1 CONTROL1 [SEND_WAKE] = 1 (wake up stack devices)  
dummy stack write data 0x00 to register 0x343 to 0x34A (sync up internal DLL). These are 8 separate write commands.  
brdcast write 0x01 to address 0x309 (enable auto addressing)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ79600-Q1  
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7-9. Auto-Addressing with Figure 7-22(a), assume all devices are in SHUTDOWN (continued)  
STEP  
WORK WITH BQ7961X-Q1  
5
6
7
brdcast write consecutively to 0x306 = 0,1,2,3 (address 1-3 assigned to BQ7961X-Q1, 0 assigned to BQ79600-Q1)  
brdcast write 0x02 to address 0x308 (set BQ7961X-Q1 as stack device )  
single device write to device 3: data 0x03 to address 0x308 (set 3rd BQ7961X-Q1 as top of stack, BQ79600-Q1 is default to  
base)  
8
9
dummy stack read registers 0x343 to 0x34A (sync up internal DLL). These are 8 separate read commands.  
stack read address 0x306 (read back to verify address are correct for stack devices)  
single device read to BQ79600-Q1, verify 0x2001 = 0x14  
10  
11  
finish initialization  
7.3.2.3.2 Ring Communication (optional)  
A ring communication (optional) allows the system to establish communication from either direction. This allows  
the system to continue communicating to all stack devices even if one piece of daisy chain cable is broken.  
7-10 describes a procedure auto address 7-23(b): to bring up a system of 1 bridge device and 3 stack  
devices from SHUTDOWN to a state ready to do read/write communication in reverse direction.  
To change communication direction from 7-23(a) to 7-23(b), follow the steps 2, 4-14. (Assuming all devices  
in (a) are already in ACTIVE and auto addressed as described in 7-9)  
COMH  
COMH  
bq Monitoring IC  
bq Monitoring IC  
(Top Of Stack)  
(S1)  
COML  
COML  
COMH  
COMH  
bq Monitoring IC  
bq Monitoring IC  
(S2)  
(S2)  
COML  
COML  
COMH  
COMH  
bq Monitoring IC  
(Top of Stack)  
bq Monitoring IC  
(S1)  
COML  
COML  
COMH  
COMH  
bq79600  
(Base, B0)  
bq79600  
(Base, B0)  
MCU  
MCU  
COML  
COML  
a). [DIR_SEL] = 0: Command from  
COMH -> COML)  
b). [DIR_SEL] = 1: Command from  
COML -> COMH)  
7-23. Example to Change Communication Direction in Daisy Chain  
7-10. Auto-Addressing Figure 7-22(b), assume all devices are in SHUTDOWN  
WORK WITH BQ7961X-Q1  
STEP  
1
2
3
4
5
6
7
8
send WAKE ping on RX (wakeup BQ79600-Q1)  
single device write to BQ79600-Q1 control 1 [DIR_SEL] = 1 (change BQ79600-Q1 direction)  
single device write to BQ79600-Q1 CONTROL1 [SEND_WAKE] = 1 (wake up stack devices)  
dummy stack write data 0x00 to registers 0x343 to 0x34A (sync up internal DLL). These are 8 separate write commands.  
brdcast write reverse 0x80 to address 0x309 (change stack devices direction DIR_SEL =1)  
brdcast Write 0x02 to address 0x308(1)  
brdcast Write 0x81 to address 0x309 (enable BQ7961X-Q1 auto addressing)  
brdcast Write consecutively to address 0x307 = 0,1,2,3 (address 1-3 assigned to BQ7961X-Q1, 0 assigned to BQ79600-Q1)  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7-10. Auto-Addressing Figure 7-22(b), assume all devices are in SHUTDOWN (continued)  
WORK WITH BQ7961X-Q1  
STEP  
9
brdcast write 0x02 to address 0x308 (set BQ7961X-Q1 as stack device )  
10  
single device write to device 3: data 0x03 to address 0x308 (set 3rd BQ7961X-Q1 as top of stack, BQ79600-Q1 is default to  
base)  
11  
12  
13  
14  
dummy stack read registers 0x343 to 0x34A (sync up internal DLL). These are 8 separate read commands.  
stack read address 0x307 (read back to verify address are correct for stack device)  
single device read to BQ79600-Q1, verify 0x2001 = 0x14  
finish initialization  
(1) Clear the previous TOP_STACK flag after communication direction is changed because top of stack device cannot be reached if one  
cable is broken  
7.3.2.4 Communication Timeout  
In ACTIVE, there are two programmable communication timeout timers, comm timeout short (once expires,  
flag fault) and comm timeout long (once expired, transition to SLEEP or SHUTDOWN). They monitor the  
absence of a valid frame from either UART/SPI or daisy chain communications. A valid frame is defined as any  
frame (response or command) that does NOT contain any errors that prevent the frame from being processed.  
In SHUTDOWN, the timers are disabled and reset. In SLEEP, the last timer values are held frozen. The timer is  
reset every time a valid response or command frame is received.  
How to set the timer, timer expiration action are described in COMM_TIMEOUT. In order to avoid entering  
SHUTDOWN mode before a communications timeout fault, ensure the COMM_TIMEOUT [CTS_TIME] is shorter  
than the COMM_TIMEOUT [CTL_TIME].  
7.3.2.5 Communication Debug Mode  
The device provides a communication debug mode to ease the initial development phase. Enter/exit debug is  
controlled by setting of register DEBUG_CTRL_UNLOCK. Once device is in debug mode, user is able to control  
the UART/daisy chain baud rate and on/off of COMH/COML RX/TX. Please refer to register  
DEBUG_COMM_CTRL. User can always read DEBUG_COMM_STAT register for comm status disregard the  
setting/mode of device.  
In addition to that, device provides communication low level faults (physical and frame layer)to facilitate debug.  
Refer to registers from address 0x2301 0x2307.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.3 Fault Handling  
7.3.3.1 Fault Status Hierarchy/Reset/Mask  
7.3.3.1.1 Fault Status Hierarchy  
BQ79600-Q1 reports faults in hierarchy, as shown in 7-24:  
Level 1 is FAULT_SUMMARY register in which each bit represents an OR function of all the bits in its own  
hierarchy captured in level 2.  
Level 2 bit is the OR function of level 3 bits in its own hierarchy.  
Level 3 contains debug register bits meant to inform host frame and physical layer fault. Level 3 fault is useful  
in firmware development.  
Any bit triggered in lower level would trigger higher level bit in its hierarchy, e.g. if [TXFIFO_OV] is set,  
[SPI_PHY], [FAULT_COMM] would also be set.  
备注  
Host system can periodically poll the FAULT_SUMMARY to check the fault status and only read the  
lower level fault registers if needed.  
7.3.3.1.2 Fault Reset and Mask  
Once fault is detected, the fault status bit is latched until cleared using the reset bit.  
When a specific fault reset bit is set, the same color coded bits in level 1 to level 3 are cleared if the fault  
condition is gone. If the fault condition persists and the reset bit is written, the fault status bit is not reset. For  
example, if [TXFIFO_OV], [DVDD_OV] bits are set, [SPI_PHY], [FAULT_COMM] and [FAULT_PWR] are set, if  
fault conditions are eliminated and write '1' to [RST_UART_SPI] and [RST_PWR], 5 faults bits would be '0'.  
When a specific fault mask bit is set, the same color coded bits would be masked, meaning the fault bits will still  
be set, but the faults will not be reflected in level 1, FAULT_SUMMARY register. For example, if  
[MSK_UART_SPI] = 1, any bits being set marked green in level 2 and 3 won't set [FAULT_COMM] bit.  
When fault is masked, it will also prevent the device from asserting the NFAULT pin when the masked faults  
occur. See 7.3.3.2 for details.  
MASK/RST  
MSK_REG  
RST_REG  
MSK_SYS  
RST_SYS  
MSK_PWR  
RST_PWR  
Mask  
Reset  
Bit  
Bit  
MSK_COML_H MSK_UART_SPI MSK_FCOMM_DET MSK_FTONE_DET MSK_HB  
RST_COML_H RST_UART_SPI RST_FCOMM_DET RST_FTONE_DET RST_HB  
Fault Status  
Level 1  
Bit  
FAULT_COMM  
FAULT_REG  
FAULT_SYS  
FAULT_PWR  
Fault Summary  
Level 2  
Detailed Fault Register  
FAULT_COMM1  
FCOMM_DET  
FTONE_DET  
HB_FAIL  
FAULT_COMM2  
SPI_FRAME  
FAULT_REG  
CONF_MON_ERR  
FACTLDERR  
FAULT_SYS  
FAULT_PWR  
CVDD_UV_DRST  
CVDD_OV  
VALIDATE_DET  
Bit  
SPI_PHY  
LFO  
COML_FRAME  
COML_PHY  
FACT_CRC  
SHUTDOWN_REC  
DVDD_OV  
HB_FAST  
DRST  
CTL  
AVDDREF_OV  
AVAO_SW_FAIL  
UART_FRAME  
COMMCLR_DET  
STOP_DET  
COMH_FRAME  
COMH_PHY  
CTS  
TSHUT  
INH  
Level 3  
Debug Info  
Register  
Bit  
DEBUG_UART_FRAME  
TR_SOF  
DEBUG_SPI_FRAME DEBUG_SPI_PHY DEBUG_COML_FRAME DEBUG_COML_PHY DEBUG_COMH_FRAME DEBUG_COMH_PHY  
TR_SOF  
FMT_ERR  
RR_IERR  
PERR  
RR_IERR  
PERR  
TR_WAIT  
TR_WAIT  
RC_IERR  
RC_SOF  
COMCLR_ERR  
TXDATA_UNEXP  
RXDATA_UNEXP  
TXFIFO_OF  
RR_SOF  
BERR_TAG  
SYNC2  
SYNC1  
BIT  
RR_SOF  
BERR_TAG  
SYNC2  
SYNC1  
BIT  
RC_IERR  
RR_BYTE_ERR  
RR_UNEXP  
RR_CRC  
RR_BYTE_ERR  
RR_UNEXP  
RR_CRC  
RC_SOF  
RC_BYTE_ERR  
RC_CRC  
RC_BYTE_ERR  
RC_CRC  
TXFIFO_UF  
RXFIFO_OF  
7-24. Fault Status Hierarchy, Mask and Reset  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.3.2 Fault Interface  
Host can acquire the fault status with the following two methods:  
Host ignores NFAULT pin, constantly polls the FAULT_SUMMARY register of each device. If  
FAULT_SUMMARY is non-zero, read the low level fault status registers to obtain more information.  
Host monitors NFAULT pin status. Enable fault status to pass down the daisy chain to bridge device. Enable  
bridge devices NFAULT pin to be asserted when the FAULT_SUMMARY is non-zero. When NFAULT is  
triggered, host polls fault information to diagnose further.  
7.3.3.2.1 NFAULT  
Device integrates an NMOS open-drain output (NFAULT) to signal the MCU that a fault has occurred in the  
system (either fault from BQ79600-Q1 or from monitoring IC). The NFAULT driver is enabled when  
[NFAULT_EN] = 1. When BQ79600-Q1 detects an unmasked fault, NFAULT asserts low. When NFAULT is  
disabled, the device will set the corresponding flag in FAULT_SUMMARY register but will not assert NFAULT.  
If the fault information of stack devices are not transmitted to bridge device through 7.3.3.2.2, NFAULT output  
only indicates faults in BQ79600-Q1.  
7.3.3.2.2 Daisy Chain (COMH and COML)  
When using BQ79600-Q1 NFAULT pin to signal the host under a fault detection, the stack devices have to  
transfer their fault status information to the base device. The information is transmitted through COMH/L  
interface through the same communication cables:  
In ACTIVE, BQ79600-Q1 detects embedded fault info in response frame from stack device.  
In SLEEP, stack device sends Heartbeat and Fault tone to BQ79600-Q1.  
In SHUTDOWN, use Sniff Detector of BQ79600-Q1 monitors stack device Fault tone.  
7.3.3.2.2.1 Fault Transmitting when BQ79600-Q1 in ACTIVE  
In ACTIVE mode, stack devices can embed their fault status in their response frames (refer to 7-7) that are  
sent to BQ79600-Q1. The BQ79600-Q1 can detect their embedded fault info and sets [FTONE_DET] bit once  
criteria in 7-25 is met. Please refer to BQ7961X-Q1 on how to use embeded fault feature.  
To pass on the fault status of the stack devices, the host sends a stack read which will result with response  
frame pass through every device in the daisy chain, giving each device an opportunity to embed their fault status  
to response frame.  
CRC[7:0]  
DATA MSB[7:0]  
REG ADR[7:0]  
INIT[7:0]  
Dev ADR[7:0]  
REG ADR[15:8]  
SYNC [1:0]  
SYNC [1:0]  
SYNC [1:0]  
SYNC [1:0]  
+1  
+1  
+1  
+1  
SYNC = 2'b00  
SYNC = 2'b00  
SYNC = 2'b00  
SYNC = 2'b00  
SOF = 1  
SOF bit of DEV ADR SOF bit of REG ADR[15:8] SOF bit of REG ADR[7:0] Fault Status  
1
1
x
0
0
x
x
1
x
1
0
x
0
x
x
1
1
x
0
0
x
[FCOMM_DET] = '1'  
[FCOMM_EN] = '1'  
[FCOMM_EN] = '0'  
[FCOMM_DET] = '0'  
[FCOMM_DET] = '0'  
7-25. Embed Fault Detection in Response Frame  
7.3.3.2.2.2 Fault Transmitting when BQ79600-Q1 in SLEEP  
Because data communication is not available in SLEEP mode, the device provides following options to  
transmitting fault information:  
Transmit the Heartbeat tone (enabled by [HB_TX_EN], used to check integrity of cable between bridge and  
first stack device). Device does not transmitted fault tone as it has NFAULT.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ79600-Q1  
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
Detect Heartbeat and Fault tone, enabled, by [TONE_RX_EN].  
These tones are transmitted in the same direction as a communication command frame, which is based on the  
CONTROL1[DIR_SEL] setting. For the tone signal to return back to BQ79600-Q1 (so NFAULT can be triggered  
if needed), a Ring architecture must be used to support transmitting fault status in SLEEP mode.  
Scenario1: No Fault  
Scenario3: Fault Detected  
Scenario2: HB Stop  
2) S2 ꢀ}ꢁ•v[š Œꢁꢂꢁ]ÀꢁŒ I. š}vꢁ ꢃ•  
expected, set fault, send Fault tone  
to B0  
Non-bq79606  
(Top of Stack)  
S2  
Non-bq79606  
(Top of Stack)  
S2  
Non-bq79606  
(Top of Stack)  
S2  
2) Receive S1 Fault tone , S2 sends  
Fault tone to B0.  
3) S1 has no fault, send HB tone to B0  
2) S1 has no fault, send HB tone to S2  
Sleep  
Sleep  
Sleep  
1) S1 receives HB tone from B0 as  
expected, S1 has no fault, send HB  
tone to S2  
1) S1 receives HB tone from B0 as  
expected, S1 has fault, send Fault tone  
to S2  
Non-bq79606  
S1  
Sleep  
Non-bq79606  
S1  
Sleep  
Non-bq79606  
Fault  
S1  
Detected  
Sleep  
Shutdown  
MCU  
Sleep  
B0  
(base device)  
Shutdown  
MCU  
Sleep  
B0  
(base device)  
Shutdown  
MCU  
Sleep  
1)B0 detects HB tone from S2, B0  
itself has no fault, send HB tone to S1  
(optional)  
3)B0 receivers fault tone from S2, set  
[FTONE_DET], drive INH pin high,  
NFAULT pin low  
3)B0 receivers fault tone from S2, set  
[FTONE_DET], drive INH pin high,  
NFAULT pin low  
B0  
(base device)  
IHN  
IHN  
IHN  
7-26. Heartbeat and Fault Tone Examples  
Both the Heartbeat and Fault Tone are a type of tone similar to the communication. One main difference is a  
communication tone only transmits with a single burst of couplets, while Heartbeat and Fault Tones are sent with  
a burst of couplets periodically. See 7-21 for details.  
7.3.3.2.2.3 Fault Transmitting (Automatic Host Wakeup/Reverse Wakeup) when BQ79600-Q1 in SHUTDOWN  
备注  
This feature (Auto Host Wakeup/Reverse Wakeup) is only available if 7.3.5 is enabled.  
The purpose of this user case is to keep BQ79600-Q1 in lowest power mode while still being able to detect fault  
information from stack devices. In this case, fault information transmittion is similar to that of SLEEP: top of stack  
device sends HB or Fault tone to BQ79600-Q1. The difference lies in the detection of those tones in BQ79600-  
Q1. In SHUTDOWN, TONE RX is off, only low power 7.3.5 is available. Once sniffer detects FAULT tone, it  
puts device into VALIDATE mode in which full power TONE RX is available, device would validate if true Fault  
tone exists or not. If yes, it triggers INH. See 7-27 for different case.  
Scenario3: Fault Detected  
Scenario1: No Fault  
Scenario2: HB Stop  
2) Receive S1 HB tone as expected,  
S2 has no fault, ꢀ}v[š •ꢁvꢀ Cꢃµoš š}vꢁ  
to B0.  
Non-bq79606  
(Top of Stack)  
S2  
Non-bq79606  
(Top of Stack)  
S2  
Non-bq79606  
(Top of Stack)  
S2  
2) 5}ꢁ•v[š Œꢁꢂꢁ]Àꢁ {1 HB tone as  
expected, S2 sends Fault tone to B0.  
2) Receive S1 Fault tone , S2 sends  
Fault tone to B0.  
Sleep  
Sleep  
Sleep  
1) Mask HB Tone RX fault from B0. S1  
has no fault, send HB tone to S2.  
Non-bq79606  
S1  
1) Mask HB Tone RX fault from B0. S1  
has no fault, send HB tone to S2.  
1) Mask HB Tone RX fault from B0. S1  
has no fault, send HB tone to S2.  
Non-bq79606  
S1  
Non-bq79606  
Fault  
S1  
Sleep  
Sleep  
Detected  
Sleep  
Shutdown  
MCU  
Shutdown  
MCU  
Shutdown  
MCU  
Shutdown  
B0  
(base device)  
Shutdown  
B0  
(base device)  
Shutdown  
3)B0 receives Fault tone from S2,  
transition to Fault Validate, validate  
Fault tone from S2, drive INH pin high  
3)B0 receives Fault tone from S2,  
transition to Fault Validate, validate  
Fault tone from S2, drive INH pin high  
3)B0 ꢀ}ꢁ•v[š Œꢁꢂꢁ]Àꢁ Cꢃµoš š}vꢁ (Œ}u  
S2, No Action  
B0  
(base device)  
Shutdown  
Shutdown  
Shutdown  
PMIC  
PMIC  
PMIC  
INH  
INH  
INH  
7-27. Reverse Wakeup User Case  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.4 INH/ Reverse Wakeup  
备注  
INH pin is used if Reverse Wakeup feature is used. If this feature is not used, connect this pin to BAT  
pin, refer to schematic in 8-1.  
Reverse wakeup feature is a mechanism where BQ79600-Q1 can wakeup the host, through INH pin, on faulty  
status from either BQ79600-Q1 or stack devices like BQ7961X-Q1. MCU and its supply (PMIC/SBC) are in  
SHUTDOWN for power saving on low voltage battery side.  
The INH pin is a high voltage output pin that provides voltage from the BAT minus VDROP_INH to enable an  
external high voltage regulators (SBC, PMIC). These regulators are usually used to support the microprocessor  
and VIO pin. When INH PMOS pullup is not activated, INH pin goes to a high Z state, it relies on external circuit  
to define the pin voltage (in application circuit, 100kohm resistor to GND is used.)  
INH PMOS pullup can be triggered:  
In SLEEP mode or VALIDATE mode if following faults are detected regardless of setting of register  
FAULT_MSK: [FTONE_DET], [HB_FAIL], [HB_FAST], [AVAO_SW_FAIL], [FACT_CRC], [CONF_MON_ERR].  
In ACTIVE, INH can only be triggered by setting [INH_SET_GO] =1.  
Once INH triggered, it remains latched in all modes as long as VBAT is not removed.  
INH function described above can be disabled by configuring INH_DIS[1:0] = 2b11.  
Every time INH PMOS is activated, fault bit [INH] is set. To clear the fault, set INH_DIS[1:0] = 2b11 (disarm  
INH driver), then write [RST_SYS] = 1. After this, to use INH feature, set INH_DIS[1:0] = 2b00.  
As part of safety diagnostic (SM202 in Safety Manual), host can trigger INH in ACTIVE and check if pin voltage  
is set properly: If INH pin voltage is higher than VINH_DET, [INH_STAT] = 1.  
备注  
INH pin should be considered a "high voltage logic" terminal, thus should be used to drive the EN  
terminal of the systems power management device. It should be not used as a switch for power  
management supply itself. This terminal is not reverse battery protected and thus should not be  
connected outside of the system module.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.5 Sniff Detector  
备注  
Sniff detector is only used if reverse wakeup feature is used.  
Sniff detector, powered by AVAOREF, is used to detect fault tone from stack device on COMH* or COML*. This  
detector would trigger if it detects/counts no less than nVALIDATE of continuous couplets (either -or +)  
with amplitude larger than VVAL_THR. If any couplet timing interval is larger than tSNIFFIDLE, detector/counter is  
reset.  
This sniff detector rejects HB tone since nVALIDATE is more than 30, both HB/Fault tone are -tone;  
detector doesnt expect +tone.  
备注  
The usage assumption of this detector is when system is in idle mode, BQ79600-Q1 in SHUTDOWN.  
Sniff detector is only effective in SHUTDOWN. Once detector is triggered, device transitions from SHUTDOWN  
to VALIDATE. The sniff detector is by default disabled when first transition from COMPLETE OFF to  
SHUTDOWN. To enable the feature, host has to keep [SNIFDET_EN] = 1& [SNIFDET_DIS] = 0before  
transitioning to SHUTDOWN. After enabling the detector, if device doesnt transition to COMPLETE OFF, the  
only way to disable the detector is to keep [SNIFDET_DIS] = 1. (Disable bit has higher priority so dont  
care about the setting of [SNIFDET_EN]) before transitioning to SHUTDOWN.)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.6 Device Diagnostic  
The product is developed as a safety element out of context (SEooC), with a target safety goal of ASIL-D for  
communication. The following sub-sections describe the diagnostic control and fault status that can be used as  
part of the safety mechanisms.  
The Safety Manual and FMEDA for BQ79600-Q1 are available separately from Texas Instruments. Contact TI  
Sales Associate or Applications Engineer for further information.  
7.3.6.1 Power Supplies Check  
7.3.6.1.1 Power Supply Diagnostic Check  
The internal power supply circuits have overvoltage, undervoltage, and/or current limit checks. The table below  
summarizes the diagnostics that apply for each power supply and the corresponding action when failure is  
detected.  
7-11. Power Supply Diagnostic Summary  
SUPPLY  
OV CHECK  
UV CHECK  
CURRENT LIMIT  
DVDD  
If fails, set [DVDD_OV]  
If fails, digital reset  
Limit current to EC table current  
limit specification  
CVDD  
AVAOREF  
AVDDREF  
VIO  
If fails, set [CVDD_OV]  
If fails, digital reset, set  
[CVDD_UV_DRST]  
Limit current to EC table current  
limit specification  
If fails, set [AVDDREF_OV]  
(AVAOREF supplies AVDDREF)  
If fails, device shuts down  
If fails, set [AVDDREF_OV]  
If fails, set [AVAO_SW_FAIL] or  
digital reset  
If fails, device losses data  
communication and Ping function  
7.3.6.1.2 Power Supply BIST  
The device implemented a power supply BIST (Built-In Self-Test) function to test CVDD, DVDD, AVDDREF OV  
detection comparator integrity. It is a command base function initiated by host. Steps below explains how it  
works, and further details can be found in Safety Manual (SM017).  
1. Host shall read the register FAULT_PWR to verify [CVDD_OV], [DVDD_OV], [AVDDREF_OV] are low.  
2. Host shall write [PWR_DIAG_GO] = 1.  
3. After 1.7ms, host shall read if [PWR_DIAG_RDY] = 1, else shall, keep waiting, reread.  
4. If yes, host shall read FAULT_PWR register, [CVDD_OV], [DVDD_OV], [AVDDREF_OV] to verify the bits are  
asserted.  
5. Host shall reset faults above.  
7.3.6.2 Thermal Shutdown  
Thermal shutdown (TSHUT) event occurs when the Thermal Shutdown sensor value exceeds the thermal  
shutdown temperature threshold. The sensor operates without interaction and is separated from the ADC  
measured die sensor. The thermal shutdown function has a register-status indicator flag (FAULT_SYS[TSHUT])  
that is saved during the shutdown event and can be read after the device is waken back up. When a TSHUT  
fault occurs, the device immediately enters the SHUTDOWN mode. Any pending transactions on UART or daisy  
chain are discarded. There is no fault signaling when a thermal shutdown event occurs, as the device  
immediately shuts down.  
To awaken the device, host shall ensure the ambient temperature is below TSD_FALL and sends a WAKE ping to  
the base device. Host shall not attempt to wake the device if the ambient temperature is still above TSD_FALL  
.
Upon waking up, the FAULT_SYS[TSHUT] bit is set. The FAULT_SYS[SHUTDOWN_REC] = 1 indicating the  
prior shutdown was caused by abnormal event. See 7.5.17 for more details. If the system faults are  
unmasked, FAULT_MSK1[MSK_SYS] = 0, the thermal shutdown will be reflected as FAULT and will be indicated  
in the FAULT_SUMMARY register and the assertion of the NFAULT pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.6.3 Oscillators Watchdog  
The oscillators are monitored by watchdog circuits. There are two oscillators in the device, the HFO and the  
LFO. If these oscillators are not functioning, the device does not operate. If the HFO or LFO does not transition  
within the expected time, the watchdog circuits trigger Digital Reset.  
When such unexpected reset occurs, it is recommended for the host to send a SHUTDOWN ping/tone to the  
problem device and follow up a WAKE ping to reset the daisy chain. If the oscillators are truly damaged, the  
device will not restart and must be replaced.  
In addition to the watchdog, the LFO frequency is monitored to ensure it stays within acceptable limits. If the LFO  
frequency falls outside of the expected range, the FAULT_SYS_FAULT[LFO] bit is set.  
7.3.6.4 Register Bit Flip Monitor  
This bit flip checker monitors 2 configuration registers: DEV_CONF1, FAULT_MSK. It is always running when  
device is out of SHUTDOWN. Whenever user changes those 2 register settings or any of the register bit flips,  
fault bit [CONF_MON_ERR] is set.  
Once user changes the setting, user shall write [CONF_MON_GO]=1 (resample 2 register values), write  
[RST_REG] =1 to clear the [CONF_MON_ERR] fault, after this point, if any bit flips among those 2 registers,  
[CONF_MON_ERR] is set. After device resets (receive WAKE ping or [SOFT_RESET] = 1), [CONF_MON_ERR]  
= 0.  
This device does not have customer register CRC check and the register bit flip monitor provides the protection  
for the above mentioned customer registers.  
7.3.6.5 SPI FIFO 诊断  
FIFO 诊断模式为主机提供了使RX/TX FIFO 的方法。详细的 FIFO 诊断安全机制实(SM132)请参阅安全手  
册。  
7.4 Device Functional Modes  
See 7.3.1  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5 Register Maps  
Addr R/W Type Reset Value  
Data  
Hex  
Bit7  
"0000 0000" RSVD  
"0000 0000" RSVD  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
DIR0_ADDR  
306 R/W  
RSVD  
ADDRESS[5]  
ADDRESS[5]  
SEND_SHUTDOWN SEND_WAKE  
ADDRESS[4]  
ADDRESS[4]  
SEND_SLPTOACT  
RSVD  
ADDRESS[3]  
ADDRESS[3]  
GOTO_SHUTDOWN  
RSVD  
ADDRESS[2]  
ADDRESS[2]  
GOTO_SLEEP  
RSVD  
ADDRESS[1]  
ADDRESS[0]  
ADDRESS[0]  
ADDR_WR  
RSVD  
DIR1_ADDR  
CONTROL1  
CONTROL2  
DIAG_CTRL  
DEV_CONF1  
DEV_CONF2  
TX_HOLD_OFF  
SLP_TIMEOUT  
COMM_TIMEOUT  
SPI_FIFO_UNLOCK  
FAULT_MSK  
FAULT_RST  
FAULT_SUMMARY  
FAULT_REG  
FAULT_SYS  
FAULT_PWR  
FAULT_COMM1  
FAULT_COMM2  
DEV_DIAG_STAT  
PARTID  
307 R/W  
RSVD  
ADDRESS[1]  
309 R/W-AC  
30A R/W-AC  
2000 R/W-AC  
2001 R/W  
"0000 0000" DIR_SEL  
"0000 0000" RSVD  
SOFT_RESET  
SEND_HW_RESET  
FLIP_TR_CRC  
RESERVED  
RSVD  
RSVD  
"0000 0000" RSVD  
RSVD  
CONF_MON_GO  
TONE_RX_EN  
RSVD  
PWR_DIAG_GO  
FCOMM_EN  
RSVD  
SPI_FIFO_DIAG_GO  
TWO_STOP_EN  
RSVD  
FLIP_FACT_CRC  
NFAULT_EN  
RSVD  
INH_SET_GO  
HB_TX_EN  
"0001 0100" SNIFDET_EN  
"0000 0000" RSVD  
SNIFDET_DIS  
RSVD  
2002 R/W  
INH_DIS[1]  
DLY[1]  
INH_DIS[0]  
DLY[0]  
2003 R/W  
"0000 0000" DLY[7]  
"0000 0011" RSVD  
DLY[6]  
DLY[5]  
DLY[4]  
DLY[3]  
DLY[2]  
2004 R/W  
RSVD  
RSVD  
RSVD  
RSVD  
SLP_TIME[2]  
CTL_TIME[2]  
CODE[2]  
SLP_TIME[1]  
CTL_TIME[1]  
CODE[1]  
SLP_TIME[0]  
CTL_TIME[0]  
CODE[0]  
MSK_PWR  
RST_PWR  
FAULT_PWR  
FACT_CRC  
INH  
2005 R/W  
"0011 0100" RSVD  
CTS_TIME[2]  
RSVD  
CTS_TIME[1]  
RSVD  
CTS_TIME[0]  
RSVD  
CTL_ACT  
CODE[3]  
MSK_HB  
RST_HB  
FAULT_COMM  
RSVD  
2010 R/W  
"0000 0000" RSVD  
2020 R/W  
"0000 0000" MSK_COML_H  
"0000 0000" RST_COML_H  
"0000 0000" RSVD  
MSK_UART_SPI  
RST_UART_SPI  
RSVD  
MSK_FCOMM_DET MSK_FTONE_DET  
RST_FCOMM_DET RST_FTONE_DET  
MSK_REG  
RST_REG  
FAULT_REG  
CONF_MON_ERR  
CTS  
MSK_SYS  
2030 R/W-AC  
RST_SYS  
2100  
2101  
2102  
2103  
2104  
2105  
2110  
R
R
R
R
R
R
R
RSVD  
RSVD  
RSVD  
RSVD  
FAULT_SYS  
FACTLDERR  
TSHUT  
"0000 0000" RSVD  
RSVD  
"0000 0000" VALIDATE_DET LFO  
RSVD  
SHUTDOWN_REC DRST  
CTL  
"0000 0000" RSVD  
"0000 0000" RSVD  
"0000 0000" RSVD  
"0000 0000" RSVD  
"0000 0000" REV[7]  
"0000 0000" ID[7]  
"0000 0000" ID[7]  
"0000 0000" ID[7]  
"0000 0000" ID[7]  
"0000 0000" ID[7]  
"0000 0000" ID[7]  
"0000 0000" ID[7]  
"0000 0000" ID[7]  
"0000 0000" ID[7]  
"0000 0000" CODE[7]  
"0111 1000" RSVD  
"0001 0011" RSVD  
"0000 0000" RSVD  
"0000 0000" RSVD  
"0000 0000" RSVD  
"0000 0000" RSVD  
"0000 0000" RSVD  
"0000 0000" RSVD  
"0000 0000" RSVD  
RSVD  
CVDD_UV_DRST  
CVDD_OV  
HB_FAST  
COML_FRAME  
RSVD  
DVDD_OV  
UART_FRAME  
COML_PHY  
RSVD  
AVDDREF_OV  
COMMCLR_DET  
COMH_FRAME  
AVAO_SW_FAIL  
STOP_DET  
COMH_PHY  
INH_STAT  
REV[0]  
FCOMM_DET  
RSVD  
RSVD  
REV[6]  
ID[6]  
FTONE_DET  
SPI_FRAME  
RSVD  
HB_FAIL  
SPI_PHY  
RSVD  
PWR_DIAG_RDY  
REV[1]  
2120 R  
2121 R  
2122 R  
2123 R  
2124 R  
2125 R  
2126 R  
2127 R  
2128 R  
2129 R  
REV[5]  
ID[5]  
REV[4]  
REV[3]  
REV[2]  
DIE_ID1  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DIE_ID2  
ID[6]  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DIE_ID3  
ID[6]  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DIE_ID4  
ID[6]  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DIE_ID5  
ID[6]  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DIE_ID6  
ID[6]  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DIE_ID7  
ID[6]  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DIE_ID8  
ID[6]  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DIE_ID9  
ID[6]  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
DEBUG_CTRL_UNLOCK2200 R/W  
DEBUG_COMM_CTRL 2201 R/W  
CODE[6]  
COML_TX_EN  
RSVD  
FMT_ERR  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
CODE[5]  
COML_RX_EN  
RSVD  
CODE[4]  
COMH_TX_EN  
HW_DAISY_DRV  
TXDATA_UNEXP  
TR_WAIT  
TR_WAIT  
PERR  
CODE[3]  
COMH_RX_EN  
COML_TX_ON  
RXDATA_UNEXP  
RC_IERR  
RC_IERR  
BERR_TAG  
RR_SOF  
BERR_TAG  
RR_SOF  
CODE[2]  
CODE[1]  
USER_UART_EN  
COMH_TX_ON  
TXFIFO_UF  
RC_BYTE_ERR  
RC_BYTE_ERR  
SYNC1  
CODE[0]  
USER_DAISY_EN  
COMH_RX_ON  
RXFIFO_OF  
RC_CRC  
RC_CRC  
BIT  
UART_VIF_BAUD  
COML_RX_ON  
TXFIFO_OF  
RC_SOF  
RC_SOF  
SYNC2  
DEBUG_COMM_STAT 2300  
R
R
R
R
R
R
R
R
DEBUG_SPI_PHY  
2301  
2302  
COMCLR_ERR  
TR_SOF  
TR_SOF  
RSVD  
DEBUG_SPI_FRAME  
DEBUG_UART_FRAME 2303  
DEBUG_COMH_PHY 2304  
DEBUG_COMH_FRAME 2305  
DEBUG_COML_PHY 2306  
DEBUG_COML_FRAME 2307  
RSVD  
RR_IERR  
PERR  
RR_BYTE_ERR  
SYNC2  
RR_UNEXP  
SYNC1  
RR_CRC  
BIT  
RSVD  
RSVD  
RR_IERR  
RR_BYTE_ERR  
RR_UNEXP  
RR_CRC  
7-28. Register Summary  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ79600-Q1  
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.1 Register Summary Table  
NVM  
VALUES  
ADDRESS  
REGISTER  
DIR0_ADDR  
DESCRIPTION  
R/W MODE RESET VALUE  
INCLUDED IN NVM?  
0x306  
0x307  
Device Address North Direction  
Device Address South Direction  
Control1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x14  
0x00  
0x00  
0x03  
0x34  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x78  
0x13  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
n/a  
no  
DIR1_ADDR  
n/a  
no  
0x309  
CONTROL1  
n/a  
no  
0x30A  
CONTROL2  
Control2  
n/a  
no  
0x2000  
0x2001  
0x2002  
0x2003  
0x2004  
0x2005  
0x2010  
0x2020  
0x2030  
0x2100  
0x2101  
0x2102  
0x2103  
0x2104  
0x2105  
0x2110  
0x2120  
0x2121  
0x2122  
0x2123  
0x2124  
0x2125  
0x2126  
0x2127  
0x2128  
0x2129  
0x2200  
0x2201  
0x2300  
0x2301  
0x2302  
0x2303  
0x2304  
0x2305  
0x2306  
0x2307  
DIAG_CTRL  
Diagnostic Control  
Device Configure1  
Device Configure2  
Transmitter Hold off Control  
Sleep Timer  
n/a  
no  
DEV_CONF1  
n/a  
no  
DEV_CONF2  
n/a  
no  
TX_HOLD_OFF  
SLP_TIMEOUT  
COMM_TIMEOUT  
SPI_FIFO_UNLOCK  
FAULT_MSK  
n/a  
no  
n/a  
no  
Communication Timeout Control  
FIFO Diagnostic Unlock  
Fault Mask  
n/a  
no  
n/a  
no  
n/a  
no  
FAULT_RST  
Fault Reset  
n/a  
no  
FAULT_SUMMARY  
FAULT_REG  
Fault Summary  
n/a  
no  
Register Fault  
R
n/a  
no  
FAULT_SYS  
System Fault  
R
n/a  
no  
FAULT_PWR  
Power Fault  
R
n/a  
no  
FAULT_COMM1  
FAULT_COMM2  
DEV_DIAG_STAT  
PARTID  
Communication Fault1  
Communication Fault2  
Diagnostic Status  
Part ID  
R
n/a  
no  
R
n/a  
no  
R
n/a  
no  
R
various  
various  
various  
various  
various  
various  
various  
various  
various  
various  
n/a  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
no  
DIE_ID1  
Die ID1  
R
DIE_ID2  
Die ID2  
R
DIE_ID3  
Die ID3  
R
DIE_ID4  
Die ID4  
R
DIE_ID5  
Die ID5  
R
DIE_ID6  
Die ID6  
R
DIE_ID7  
Die ID7  
R
DIE_ID8  
Die ID8  
R
DIE_ID9  
Die ID9  
R
DEBUG_CTRL_UNLOCK  
DEBUG_COMM_CTRL  
DEBUG_COMM_STAT  
DEBUG_SPI_PHY  
DEBUG_SPI_FRAME  
DEBUG_UART_FRAME  
DEBUG_COMH_PHY  
DEBUG_COMH_FRAME  
DEBUG_COML_PHY  
DEBUG_COML_FRAME  
Debug Control Unlock  
Debug Communication Control  
Debug Communication Status  
SPI Physical Layer Error  
SPI Frame Layer Error  
UART Frame Layer Error  
COMH Physical Layer Error  
COMH Frame Layer Error  
COML Physical Layer Error  
COML Frame Layer Error  
R/W  
R/W  
R
n/a  
no  
n/a  
no  
R
n/a  
no  
R
n/a  
no  
R
n/a  
no  
R
n/a  
no  
R
n/a  
no  
R
n/a  
no  
R
n/a  
no  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.2 Register: DIR0_ADDR  
Address: 0x306  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
ADDRESS[5:0]  
0
RW  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ADDRESS [5:0]  
Follow steps in section Device Addressingto config this register. Always shows the current Device Address used by the device when  
[DIR_SEL] = 0.  
Default to 0x00 when digital core out of digital reset. MCU can re-address the device by writing a different device address to this register,  
and the device will take on the new address immediately.  
7.5.3 Register: DIR1_ADDR  
Address: 0x307  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
ADDRESS[5:0]  
0
RW  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ADDRESS [5:0]  
Follow steps in section Device Addressingto config this register. Always shows the current Device Address used by the device when  
[DIR_SEL] = 1.  
Default to 0x00 when digital core out of digital reset. MCU can re-address the device by writing a different device address to this register,  
and the device will take on the new address immediately.  
7.5.4 Register: CONTROL1  
Address: 0x0309  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DIR_SEL  
SEND_SHUTDO  
WN  
SEND_WAKE  
SEND_SLPTOAC GOTO_SHUTDO  
GOTO_SLEEP  
SOFT_RESET  
ADDR_WR  
T
0
WN  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DIR_SEL  
Select daisy chain comm direction. Not self-clear bit.  
0: In a device, command frame travels from MCU to COMH  
1: In a device, command frame travels from MCU to COML  
SEND_SHUTDO Sends SHUTDOWN tone to next device up the stack. The device receiving this bit is unaffected. Self-clear bit.  
WN  
0: Ready  
1: Send SHUTDWON tone up the stack  
SEND_WAKE  
Send WAKE tone up the stack. Self-clear bit.  
0: Ready  
1: Send WAKE tone up the stack, then reset its own  
SEND_SLPTOAC Send SLEEPtoWAKE tone up the stack. Self-clear bit.  
T
0: Ready  
1: Send SLEEPtoWAKE tone up the stack  
GOTO_SHUTDO Transition device to SHUTDOWN mode. Self-clear bit.  
WN  
0: Ready  
1: Enter SHUTDOWN mode  
GOTO_SLEEP  
Transition device to SLEEP mode. Self-clear bit.  
0: Ready  
1: Enter SLEEP mode  
SOFT_RESET  
ADDR_WR  
Reset the digital to OTP default. Self-clear bit.  
0: Ready  
1: Reset device  
Enable device to start auto-addressing. See auto-addressing chapter for detail. Self cleared.  
0: Not performing auto-address. Device forwards communication transaction as normal  
1: Device is being auto-addressed; the 1st communication transaction it received will not be forwarded.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.5 Register: CONTROL2  
Address: 0x30A  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
SEND_HW_RESE  
T
SPARE  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SEND_HW_RESE Send HW_RESET tone up the stack. Self-clear bit.  
T
0: Ready  
1: Send HW_RESET tone to next stack device up  
7.5.6 Register: DIAG_CTRL  
Address: 0x2000  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
CONF_MON_GO PWR_DIAG_GO SPI_FIFO_DIAG_ FLIP_FACT_CRC  
GO  
FLIP_TR_CRC  
INH_SET_GO  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CONF_MON_GO Resample the 2 registers (DEV_CONF1, FAULT_MSK) setting that bit flip monitor checks against. self-clear bit. For usage, refer to  
paragraph: Register Bit Flip Monitor  
0: No action  
1: Resample 2 registers setting  
PWR_DIAG_GO Indicates a power supply BIST diagnostic is initiated, self-clear bit.  
0: No action  
1: Initiate power BIST diagnostic  
SPI_FIFO_DIAG_ Write the unlock code 0x0A to SPI_FIFO_UNLOCK and followed by writing [SPI_FIFO_DIAG_GO] = 1 to do FIFO diagnostic. For detailed  
GO  
steps of FIFO diagnostic, refer to safety manual. This bit is self-cleared.  
0: No action  
1: Initiate SPI FIFO diagnostic  
FLIP_FACT_CRC An enable bit to flip the factory CRC expected value. This is for factory CRC diagnostic.  
0: No action  
1: flip the CRC expected value. This will cause a factory CRC fault, FAULT_REG[FACT_CRC]  
FLIP_TR_CRC  
INH_SET_GO  
Sends a purposely incorrect communication (during transmitting response) CRC by inverting all of the calculated CRC bits  
0: Send CRC as calculated  
1: Send inverted CRC  
This bits intentionally activates INH PMOS pull up, sets [INH] and [INH_STAT] to 1. (self-cleared)  
0: mission mode  
1: Trigger INH PMOS pull up  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.7 Register: DEV_CONF1  
Address: 0x2001  
B7  
SNIFDET_EN  
0
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SNIFDET_DIS  
TONE_RX_EN  
FCOMM_EN  
TWO_STOP_EN  
NFAULT_EN  
RESERVED  
HB_TX_EN  
0
0
1
0
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SNIFDET_EN  
Enable the Sniff detector on COM* port, this bit is latched into AVAOREF domain, once latched in, this bit is still effective in SHUTDOWN  
0: no effect  
1: SNIF DET is enabled in SHUTDOWN  
SNIFDET_DIS  
TONE_RX_EN  
Enable the Sniff detector on COM* port, this bit is latched into AVAOREF domain, once latched in, this bit is still effective in SHUTDOWN  
0: no effect  
1: SNIF DET is disabled in SHUTDOWN, if both SNIFDET_EN and SNIFDET_DIS are 1, SNIFDET_DIS takes priority.  
Enable the Tone receiver, depends on [DIR_SEL], one of the COML/COMH tone recover is enabled. COMH/COML tone receivers are  
enabled in VALIDATE disregarding setting of this bit.  
0: Disable  
1: Enable  
FCOMM_EN  
Enable the fault state detection through communication in ACTIVE mode  
0: Disable  
1: Enable  
TWO_STOP_EN Enables two stop bits for the UART in case of severe oscillator error in both the host and device  
0: One STOP bit  
1: Two STOP bit  
NFAULT_EN  
Enables the NFAULT function  
0: NFAULT driver is disabled  
1: NFAULT pulls low to indicate an unmasked fault is detected  
RESERVED  
HB_TX_EN  
Reserved. Default value is 0. Please don't alter.  
Enable HEARTBEAT transmitter when device is in SLEEP mode  
0: Disable  
1: Enable  
7.5.8 Register: DEV_CONF2  
Address: 0x2002  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
INH_DIS[1:0]  
0
RW  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
INH_DIS[1:0]  
Disable INH driver (PMOS pull up). In all modes, this bit overwrites [INH_SET_GO] and fault tone detection event  
00: INH function is enabled  
01: INH function is enabled  
10: INH function is enabled  
11: INH function is DISABLED  
7.5.9 Register: TX_HOLD_OFF  
Address: 0x2003  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DLY[7:0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DLY[7:0]  
Set the number of bit period delay from 0 to 255, after receiving the STOP bit of a command frame and before transmitting the 1st bit of  
response frame  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.10 Register: SLP_TIMEOUT  
Address: 0x2004  
B7  
B6  
B5  
RSVD  
0
B4  
B3  
B2  
B1  
B0  
SLP_TME[2:0]  
0
RW  
0
0
0
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SLP_TME[2:0]  
This timer starts counting when device enters SLEEP or VALIDATE. When the timer expires, the device enters SHUTDOWN. The timer  
reset if device wakes up to ACTIVE.  
000: no timeout. Device remains in SLEEP  
001: 5s  
010: 10s  
011: 1min  
100: 10mins  
101: 30mins  
110: 1hour  
111: 2hours  
7.5.11 Register: COMM_TIMEOUT  
Address: 0x2005  
B7  
B6  
B5  
B4  
B3  
CTL_ACT  
0
B2  
B1  
B0  
RSVD  
CTS_TIME[2:0]  
CTL_TIME[2:0]  
0
RW  
0
1
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CTS_TIME[2:0]  
Set the short communication timeout. When this timer expires, the device set the FAULT_SYS [CTS] bit. This can be used as an alert to the  
system to prevent a long communication timeout.  
000: disable short communication timeout  
001: 100ms  
010: 2s  
011: 10s (default)  
100: 1min  
101: 10mins  
110: 30min  
111: 1hour  
CTL_ACT  
Configure the device action when long communication timeout timer expires  
0: set FAULT_SYS[CTL] and send device to SLEEP mode (default at reset)  
1: Send the device to SHUTDOWN. FAULT_SYS[CTL] bit will not be set  
CTL_TIME[2:0]  
Set the long communication timeout. When this timer expires, the device takes the action configured by the [CTL_ACT] bit.  
000: disable long communication timeout  
001: 100ms  
010: 2s  
011: 10s  
100: 1min (default)  
101: 10mins  
110: 30min  
111: 1hour  
7.5.12 Register: SPI_FIFO_UNLOCK  
Address: 0x2010  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
CODE[3:0]  
0
RW  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CODE[3:0]  
In UART mode - write has no impact and read always returns 0 In SPI mode - Write the unlock code 0x0A to SPI_FIFO_UNLOCK (MSB 4  
bits are dont care, e.g. 0x2A would also unlock) and followed by writing [SPI_FIFO_DIAG_GO] = 1 to do FIFO diagnostic. For detailed  
steps of FIFO diagnostic, refer to safety manual. After these bits are written, read cmd doesnt affect them while any write cmd clears  
them.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.13 Register: FAULT_MSK  
Address: 0x2020  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MSK_COML_H  
MSK_UART_SPI MSK_FCOMM_D MSK_FTONE_DE  
MSK_HB  
MSK_REG  
MSK_SYS  
MSK_PWR  
ET  
0
T
0
0
RW  
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MSK_COML_H  
If this bit is set, [FAULT_COMM] bit in FAULT_SUMMARY register is not set (NFAULT wont toggle) due to bits: [COML_FRAME],  
[COMH_FRAME], [COML_PHY], [COMH_PHY] and registers: DEBUG_COMH_PHY, DEBUG_COMH_FRAME, DEBUG_COML_PHY,  
DEBUG_COML_FRAME  
0: Assert NFAULT and set [FAULT_COMM] if fault above is detected  
1: No NFAULT action, [FAULT_COMM] not set due to faults above  
MSK_UART_SPI  
If this bit is set, [FAULT_COMM] bit in FAULT_SUMMARY register is not set (NFAULT wont toggle) due to [STOP_DET],  
[COMMCLR_DET], [UART_FRAME], [SPI_FRAME], [SPI_PHY] bits and DEBUG_UART_FRAME, DEBUG_SPI_PHY,  
DEBUG_SPI_FRAME registers  
0: Assert NFAULT and set [FAULT_COMM] if fault above is detected  
1: No NFAULT action, [FAULT_COMM] not set due to faults above  
MSK_FCOMM_D  
ET  
If this bit is set, [FAULT_COMM] bit in FAULT_SUMMARY register is not set (NFAULT wont toggle) due to [FCOMM_DET]  
0: Assert NFAULT and set [FAULT_COMM] if fault above is detected  
1: No NFAULT action, [FAULT_COMM] not set due to faults above  
MSK_FTONE_DE  
T
If this bit is set, [FAULT_COMM] bit in FAULT_SUMMARY register is not set (NFAULT wont toggle) due to [FTONE_DET]  
0: Assert NFAULT and set [FAULT_COMM] if fault above is detected  
1: No NFAULT action, [FAULT_COMM] not set due to faults above  
MSK_HB  
If this bit is set, [FAULT_COMM] bit in FAULT_SUMMARY register is not set (NFAULT wont toggle) due to [HB_FAIL] and [HB_FAST]  
0: Assert NFAULT and set [FAULT_COMM] if fault above is detected  
1: No NFAULT action, [FAULT_COMM] not set due to faults above  
MSK_REG  
If this bit is set, [FAULT_REG] bit in FAULT_SUMMARY register is not set and NFAULT wont toggle due to OTP fault. It doesnt affect  
FAULT_REG register.  
0: Mask disabled  
1: Mask enabled to prevent fault signaling  
MSK_SYS  
MSK_PWR  
If this bit is set, [FAULT_SYS] bit in FAULT_SUMMARY register is not set and NFAULT wont toggle due to SYS fault. It doesnt affect  
FAULT_SYS register.  
0: Assert NFAULT if any bit from FAULT_SYS is set to 1’  
1: No NFAULT action regardless of FAULT_SYS status  
If this bit is set, [FAULT_PWR] bit in FAULT_SUMMARY register is not set and NFAULT wont toggle due to PWR fault. It doesnt affect  
FAULT_PWR register.  
0: Mask disabled  
1: Mask enabled to prevent fault signaling  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.14 Register: FAULT_RST  
Address: 0x2030  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RST_COML_H  
RST_UART_SPI RST_FCOMM_DE RST_FTONE_DE  
RST_HB  
RST_REG  
RST_SYS  
RST_PWR  
T
0
T
0
0
RW  
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RST_COML_H  
Reset bits: COML_FRAME, COMH_FRAME, COML_PHY, COMH_PHY and registers: DEBUG_COMH_PHY, DEBUG_COMH_FRAME,  
DEBUG_COML_PHY, DEBUG_COML_FRAME. self-cleared bit.  
0: Do not reset  
1: Reset to 0x00  
RST_UART_SPI Reset STOP_DET, COMMCLR_DET, UART_FRAME, SPI_FRAME, SPI_PHY bits and DEBUG_UART_FRAME, DEBUG_SPI_PHY,  
DEBUG_SPI_FRAME registers. self-cleared bit.  
0: Do not reset  
1: Reset to 0x00  
RST_FCOMM_DE Reset FCOMM_DET bit, self-cleared bit.  
T
0: Do not reset  
1: Reset to '0'  
RST_FTONE_DE Reset FTONE_DET bit, self-cleared bit.  
T
0: Do not reset  
1: Reset to '0'  
RST_HB  
Reset HB_FAIL and HB_FAST bit, self-cleared bit.  
0: Do not reset  
1: Reset to '0'  
RST_REG  
RST_SYS  
RST_PWR  
Resets FAULT_SUMMARY [FAULT_REG] to '0', self-cleared bit.  
0: Do not reset  
1: Reset to '0'  
This bit is self-clear to 0 after writing to 1.  
0: Do not reset  
1: Reset register FAULT_SYS and [FAULT_SYS] to 0x00 and 0’  
Resets FAULT_SUMMARY [FAULT_PWR] to '0' and register FAULT_PWR, self-cleared bit.  
0: Do not reset  
1: Reset  
7.5.15 Register: FAULT_SUMMARY  
Address: 0x2100  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
FAULT_COMM  
FAULT_REG  
FAULT_SYS  
FAULT_PWR  
0
R
0
0
0
0
0
0
0
R
R
R
R
R
R
R
FAULT_COMM  
Indicate communication related fault is detected (any bits in register FAULT_COMM1, FAULT_COMM2 is set)  
0: No fault  
1: Fault  
FAULT_REG  
FAULT_SYS  
FAULT_PWR  
Indicate registers related fault is detected  
0: No fault  
1: Fault  
Indicates system fault is detected (any bits in register FAULT_SYS).  
0: No fault  
1: Fault  
Indicates a power supply fault is detected (any bits in register FAULT_PWR)  
0: No fault  
1: Fault  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.16 Register: FAULT_REG  
Address: 0x2101  
B7  
B6  
B5  
RSVD  
0
B4  
B3  
B2  
B1  
B0  
CONF_MON_ERR  
FACTLDERR  
FACT_CRC  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
CONF_MON_ER Indicates monitored 2 registers (DEV_CONF1, FAULT_MSK) have at least one bit flip. For usage, refer to paragraph: Register Bit Flip  
R
Monitor.  
0: No fault  
1: Fault  
FACTLDERR  
FACT_CRC  
Indicates the factory NVM registers could not be loaded from OTP.  
0: No fault  
1: Fault  
Indicates a CRC error has occurred in the factory register space.  
0: No fault  
1: Fault  
7.5.17 Register: FAULT_SYS  
Address: 0x2102  
B7  
B6  
LFO  
0
B5  
B4  
DRST  
0
B3  
CTL  
0
B2  
CTS  
0
B1  
B0  
INH  
0
VALIDATE_DET  
SHUTDOWN_REC  
TSHUT  
0
R
0
0
R
R
R
R
R
R
R
VALIDATE_DET  
Indicates device transitioned to VALIDATE mode  
0: no transitioned to VALIDATE MODE  
1: transitioned to VALIDATE MODE  
LFO  
Indicated LFO frequency is off by +/-25%  
0: no fault  
1: fault  
SHUTDOWN_RE Indicates the device was shut down using SHUTDOWN ping. If this bit is set, the COML and COMH RX are both disabled at wake up as a  
C
way to isolate itself from the stack. Send another wake ping or [SOFT_RESET] to re-enable COMH/L RX.  
0: The previous SHUTDOWN was normal  
1: The previous SHUTDOWN was caused by ping, which is not a usual SHUTDOWN method, indicating potential communication issue with  
the device  
DRST  
CTL  
Indicates a digital reset has occurred.  
0: no digital reset  
1: digital reset has occurred  
Indicates a long communication timeout occurred. Device action is configured by [CTL_ACT]. This bit is not observable if the action is set to  
device shutdown.  
0: No fault  
1: long communication timeout occurs. Observable if long timeout action is set to SLEEP  
CTS  
Indicates a short communication timeout occurred. No action from the device. This can be served as an alert to system before reaching  
long communication timeout.  
0: No fault  
1: short communication timeout occurs  
TSHUT  
INH  
Indicates the previous shutdown was due to thermal shutdown  
0: die temp is < thermal shutdown threshold  
1: the previous shutdown was to due thermal shutdown  
Indicates INH PMOS is enabled  
0: INH driver is off  
1: INH driver enabled, pulls pin up to BAT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.18 Register: FAULT_PWR  
Address: 0x2103  
B7  
B6  
RSVD  
0
B5  
B4  
B3  
B2  
B1  
B0  
CVDD_UV_DRST  
CVDD_OV  
DVDD_OV  
AVDDREF_OV  
AVAO_SW_FAIL  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
CVDD_UV_DRST Indicates CVDDUV fault caused DRST. Shutdown/power up event shall not trigger this fault.  
0: no fault  
1: fault  
CVDD_OV  
Indicates an over voltage fault on the CVDD pin  
0: no fault  
1: fault  
DVDD_OV  
Indicates an over voltage fault on the DVDD pin  
0: no fault  
1: fault  
AVDDREF_OV  
Indicates an over voltage fault on the AVDD_REF internal supply  
0: no fault  
1: fault  
AVAO_SW_FAIL Indicates a fault is detected on the AVAO_REF switch.  
0: no fault  
1: fault  
7.5.19 Register: FAULT_COMM1  
Address: 0x2104  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
FCOMM_DET  
FTONE_DET  
HB_FAIL  
HB_FAST  
UART_FRAME  
COMMCLR_DET  
STOP_DET  
0
R
0
0
0
0
0
0
0
R
R
R
R
R
R
R
FCOMM_DET  
Indicates the fault status bit in comm frame is set by stack devices. At least a fault in stack devices happened. Only apply to non-bq79606  
family  
0: no fault  
1: fault  
FTONE_DET  
HB_FAIL  
Indicates the fault tone is detected, COM Port in sleep mode if work with non-bq79606 (Detection is monitoring the COML side if [DIR_SEL]  
= 0 and vice versa.)  
0: no fault  
1: fault  
Indicates HB tone is NOT detected within tHB_PERIOD, not supported with BQ79606A-Q1 ( Detection is monitoring the COML side if  
[DIR_SEL] = 0 and vice versa.)  
0: no fault, HB tone detected as expected  
1: fault  
HB_FAST  
Indicates HB tone is detected within tHB_FAST (too frequent), not supported with BQ79606A-Q1 ( Detection is monitoring the COML side if  
[DIR_SEL] = 0 and vice versa.) This bit could also be set when [FTONE_DET]=1 depends on how soon the Fault Tone is detected from  
previous Heartbeat tone.  
0: no fault  
1: fault  
UART_FRAME  
Indicates a UART FAULT detected when receiving command or transmitting response frames Further detail of the fault information is  
available in the DEBUG_UART_FRAME register  
0: no fault  
1: fault  
COMMCLR_DET A UART/SPI communication clear signal is detected. This bit is set when Sleep2active ping is sent in UART mode. While in SPI mode, it is  
not set when sleep2active ping is sent.  
0: no UART/SPI Comm Clear  
1: UART/SPI Comm Clear detected  
STOP_DET  
Indicates and unexpected STOP condition is received. Apply to UART mode. This bit is set when Sleep2active ping is sent in ACTIVE.  
0: no fault  
1: fault  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.20 Register: FAULT_COMM2  
Address: 0x2105  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
SPI_FRAME  
SPI_PHY  
COML_FRAME  
COML_PHY  
COMH_FRAME  
COMH_PHY  
0
R
0
0
0
0
0
0
0
R
R
R
R
R
R
R
SPI_FRAME  
Indicates a SPI frame level FAULT detected when receiving command or transmitting response frames. Further detail of the fault  
information is available in the DEBUG_SPI_FRAME register  
0: no fault  
1: fault  
SPI_PHY  
Indicates a SPI bit level FAULT detected when receiving command or transmitting response frames. Further detail of the fault information is  
available in the DEBUG_SPI_PHY register  
0: no fault  
1: fault  
COML_FRAME  
COML_PHY  
COMH_FRAME  
COMH_PHY  
Indicate a COML byte level fault detected when receiving response frames. Further details of the fault information is available in  
DEBUG_COML_FRAME  
0: no fault  
1: fault  
Indicate a COML bit level fault detected, which would cause at least a byte level (RC_RR) fault. Further details of the fault information are  
available in DEBUG_COML_PHY register.  
0: no fault  
1: fault  
Indicate a COMH byte level fault detected when receiving response frames. Further details of the fault information is available in  
DEBUG_COMH_FRAME  
0: no fault  
1: fault  
Indicate a COMH bit level fault detected, which would cause at least a byte level (RC_RR) fault. Further details of the fault information are  
available in DEBUG_COMH_PHY register.  
0: no fault  
1: fault  
7.5.21 Register: DEV_DIAG_STAT  
Address: 0x2110  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
PWR_DIAG_RDY  
INH_STAT  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
PWR_DIAG_RDY Indicates a power supply BIST test is done. It is cleared when [PWR_DIAG_GO] bit is set.  
0: BIST is not done  
1: BIST is done  
INH_STAT  
Indicates INH Pin see VINH_DET, this bit reflects real time value of pin INH  
0: Voltage not detected  
1: Voltage detected  
7.5.22 Register: PARTID  
Address: 0x2120  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REV[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
REV[7:0]  
Device revision 0x00 = A0, 0x01 = A1, 0x02 = A2, etc.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.23 Register: DIE_ID1  
Address: 0x2121  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
7.5.24 Register: DIE_ID2  
Address: 0x2122  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
7.5.25 Register: DIE_ID3  
Address: 0x2123  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
7.5.26 Register: DIE_ID4  
Address: 0x2124  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
7.5.27 Register: DIE_ID5  
Address: 0x2125  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
7.5.28 Register: DIE_ID6  
Address: 0x2126  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.29 Register: DIE_ID7  
Address: 0x2127  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
7.5.30 Register: DIE_ID8  
Address: 0x2128  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
7.5.31 Register: DIE_ID9  
Address: 0x2129  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ID[7:0]  
Digital reset value 0x00, after factory NVM loaded successfully, it is value in the NVM.  
7.5.32 Register: DEBUG_CTRL_UNLOCK  
Address: 0x2200  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
CODE[7:0]  
0
RW  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CODE[7:0]  
Write the unlock code (0xA5) to this register to activate the setting in the DEBUG_COMM_CTRL register. Any other value than the unlock  
code will deactivate any effect in the DEBUG_COMM_CTRL setting and return to the devices normal setting. This register doesn't affect  
DEBUG_COMM_STAT register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.33 Register: DEBUG_COMM_CTRL  
Address: 0x2201  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
COML_TX_EN  
COML_RX_EN  
COMH_TX_EN  
COMH_RX_EN UART_VIF_BAUD USER_UART_E  
N
USER_DAISY_EN  
0
RW  
1
1
1
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
COML_TX_EN  
Enable COML transmitter  
0: disable  
1: enable  
COML_RX_EN  
COMH_TX_EN  
COMH_RX_EN  
Enable COML receiver  
0: disable  
1: enable  
Enable COMH transmitter  
0: disable  
1: enable  
Enable COMH receiver  
0: disable  
1: enable  
UART_VIF_BAUD This bit changes the baud rate of UART and Daisy Chain (Also called VIF) to 250kb/s. Useful on Daisy Chain debug. When system set all  
the daisy chain devices to the 250kb/s baud rate, it slows down the response byte through the Daisy Chain to increase the robustness of  
the Daisy Chain for debug purpose.  
0: 1Mbps  
1: 250kbps  
USER_UART_EN This bit enables [UART_VIF_BAUD] setting  
0: disable  
1: enable  
USER_DAISY_E This bit enables the setting of bits [6:3] in this register  
N
0: the setting of bits [6:3 ] of current register has no effect  
1: the device will configure the COML and COMH per current register setting  
7.5.34 Register: DEBUG_COMM_STAT  
Address: 0x2300  
B7  
B6  
RSVD  
0
B5  
B4  
B3  
B2  
B1  
B0  
HW_DAISY_DRV  
COML_TX_ON  
COML_RX_ON  
COMH_TX_ON  
COMH_RX_ON  
0
0
1
0
0
1
1
R
R
R
R
R
R
R
R
HW_DAISY_DRV Indicates the COML and COMH are controlled by the device itself or by MCU control  
0: the DEBUG_COMM_CTRL [USER_DAISY_EN] = 1. COML and COMH are under manual control through DEBUG_COMM_CTRL  
register  
1: COML and COMH are controlled by the device  
COML_TX_ON  
COML_RX_ON  
COMH_TX_ON  
COMH_RX_ON  
Show the current COML transmitter status  
0: Disabled  
1: Enabled  
Show the current COML receiver status  
0: Disables  
1: Enables  
Show the current COMH transmitter status  
0: Disabled  
1: Enabled  
Show the current COMH receiver status  
0: Disabled  
1: Enabled  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.35 Register: DEBUG_SPI_PHY  
Address: 0x2301  
B7  
RSVD  
0
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FMT_ERR  
COMCLR_ERR  
TXDATA_UNEXP RXDATA_UNEXP  
TXFIFO_OF  
TXFIFO_UF  
RXFIFO_OF  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
FMT_ERR  
When not in Host Read mode (after sending a write cmd frame), indicates malformed cmd is received: 1. first byte of data after nCS falling  
edge is 0xFF 2. devices receives not multiple of 8bit . 3. In ACTIVE, nCS pulses low without SCLK toggling (send SLP2ACT ping) Comm  
clear doesnt trigger this fault. This fault doesnt lock down SPI interface.  
0: No fault  
1: Fault  
COMCLR_ERR  
More than 8 SCLK pulses are received during a comm clear. Once this fault is detected, device ignores the malformed comm clear. This  
fault doesnt affect SPI_RDY nor data storing into RX/TX FIFO.  
0: No fault  
1: Fault  
TXDATA_UNEXP This fault occurs when: 1. device receives unexpected data from itself or daisy chain after a Comm clr OR 2. device receives unexpected  
data from daisy chain(or from bq79600) after a TX FIFO timeout. Once this fault is detected, device doesnt store any new data into  
RX/TX FIFO. Device sends out 0xFF on MISO after current byte finished transmission(FIFO data mask happens at byte boundary).  
SPI_RDY held low till Comm Clear detected. Comm Clear needed for recovery.  
0: No fault  
1: Fault  
RXDATA_UNEXP Host sends data other than 0xFF during Device Read mode OR initiates SPI communication when SPI_RDY = 0 (e.g. While FIFO2 is being  
filled up, host continues reading FIFO2 right after FIFO1 is read out. SPI_DRY is low at this point) Once this fault is detected, device  
doesnt store any new data into RX/TX FIFO. Device would sends out 0xFF on MISO after current byte finished transmission(FIFO data  
mask happens at byte boundary). SPI_RDY held low till Comm Clear detected. Comm Clear needed for recovery.  
0: No fault  
1: Fault  
TXFIFO_OF  
TXFIFO_UF  
If SPI module receives data (from itself or daisy chain) when current FIFO is full and 2nd FIFO is not empty (host hasn't complete reading  
the 2nd FIFO). Once this fault is detected, device doesnt store any new data into RX/TX FIFO. Device sends out 0xFF on MISO after  
current byte finished transmission(FIFO data mask happens at byte boundary). SPI_RDY held low till Comm Clear detected. Comm Clear  
needed for recovery.  
0: No fault  
1: Fault  
In Host Read mode, when both FIFOs are empty and the host continues to send clocks for more read data (send 0xFF through MOSI). SPI  
Slave sets this fault flag and continues to send 0xFF on MISO when host requests data. Once this fault is detected, device doesnt store  
any new data into RX/TX FIFO. Device sends out 0xFF on MISO after current byte finished transmission(FIFO data mask happens at byte  
boundary). SPI_RDY held low till Comm Clear detected. Comm Clear needed for recovery. (FIFO 1 is read out, FIFO2 is still buffering, if  
reading happens, it is RXDATA_UNEXP fault) Once FIFO is empty, device rejects any 0xFF until nCS going high.  
0: No fault  
1: Fault  
RXFIFO_OF  
While device is receiving command frame, more data is sent than device can accommodate in RX FIFO. Once this fault is detected, device  
doesnt store any new data into RX/TX FIFO. Device sends out 0xFF on MISO after current byte finished transmission(FIFO data mask  
happens at byte boundary). SPI_RDY held low till Comm Clear detected. Comm Clear needed for recovery. Follow Flow to send write  
cmd frame into bq79600to avoid this fault.  
0: No fault  
1: Fault  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.36 Register: DEBUG_SPI_FRAME  
Address: 0x2302  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
TR_SOF  
TR_WAIT  
RC_IERR  
RC_SOF  
RC_BYTE_ERR  
RC_CRC  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
TR_SOF  
Indicates that a SPI COMM CLEAR is received while there is data in output FIFO (SPI_RDY is 0 or SPI_RDY = 1 and receiving new data  
from VIF.) If SPI_RDY = 1 and not receiving new data from VIF while receiving COMM CLEAR, it doesnt assert this bit.  
0: No fault  
1: Fault  
TR_WAIT  
RC_IERR  
Indicates that a SPI COMM CLEAR is received while there is no data in output FIFO regardless of SPI_RDY.  
0: No fault  
1: Fault  
Detects initialization byte error in the received command frame. Example: reserved command bits in the INIT byteis set, expected  
to a cmd INIT byte, but it is configured as response frame instead extra data is sent other than one cmd frame during one nCS low  
All bytes that follow are discarded until a Comm Clear is received or a SOF due to a properly formed new command is received (nCS  
falling, etc).  
0: No fault  
1: Fault  
RC_SOF  
Detects a start-of-frame (SOF) error. Mostly, this is SPI COMM CLEAR is received on the SPI before the current frame is finished, e.g.  
partial cmd frame is sent  
0: No fault  
1: Fault  
RC_BYTE_ERR  
Device receives data from the VIF that needs to go out on SPI, while host send data into device through SPI. (TXDATA_UNEXP should  
also be set) CRC is not calculated and doesnt forward communication in daisy chain. All bytes that follow are ignored until a  
communication CLEAR is received.  
0: No fault  
1: Fault  
RC_CRC  
Detects CRC error in the received command frame from SPI. The frame will be considered as discarded frame. Frame CRC is calculated  
only if no physical level error, IERR, BERR, SOF error detected.  
0: No fault  
1: Fault  
7.5.37 Register: DEBUG_UART_FRAME  
Address: 0x2303  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
TR_SOF  
TR_WAIT  
RC_IERR  
RC_SOF  
RC_BYTE_ERR  
RC_CRC  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
TR_SOF  
Indicates that a UART COMM CLEAR is received while the device is still transmitting data to host.  
0: No fault  
1: Fault  
TR_WAIT  
RC_IERR  
The device is waiting for its turn to transfer a response out but the action is terminated because: 1. the device receives a UART COMM  
CLEAR signal, or 2. the device receives a new command This bit is valid when broadcast or stack read command has been issued.  
0: No fault  
1: Fault  
Detects initialization byte error in the received command frame. Example: a STOP error is detected, reserved command bits in the  
INIT byteis set, expected a INIT byte, but it is configured as response frame instead (e.g. 1st byte received after COMM CLEAR  
signal should but a INIT byte) All bytes that follow are ignored until a communication CLEAR is received.  
0: No fault  
1: Fault  
RC_SOF  
Detects a start-of-frame (SOF) error. Mostly, this is UART COMM CLEAR is received on the UART before the current frame is finished.  
0: No fault  
1: Fault  
RC_BYTE_ERR  
Other than INIT byte, if STOP error is detected in rest of byte in the frame or TX receives data while RX is using. CRC is not calculated and  
doesnt forward communication in daisy chain. All bytes that follow are ignored until a communication CLEAR is received.  
0: No fault  
1: Fault  
RC_CRC  
Detects CRC error in the received command frame from UART. The frame will be considered as discarded frame. Frame CRC is calculated  
only if no physical level error, IERR, BERR, SOF error detected  
0: No fault  
1: Fault  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.38 Register: DEBUG_COMH_PHY  
Address: 0x2304  
B7  
B6  
RSVD  
0
B5  
B4  
PERR  
0
B3  
B2  
B1  
B0  
BIT  
0
BERR_TAG  
SYNC2  
SYNC1  
0
0
0
0
0
R
R
R
R
R
R
R
R
PERR  
Pertain to received response frame from stack device only. PERR is a lump bit of all physical errors. Any error bit that is set in this register  
will also set the [PERR] bit. However, abnormality that isnt classified in the register can also trigger the [PERR] bit (e.g. detecting missing  
of data or wrong data order.)  
0: no comm error detected  
1: detected abnormality of the received comm frame. BERR is asserted to the forwarded communication.  
BERR_TAG  
SYNC2  
Indicates BERR bit is set in at least one byte in received response frame from stack device  
0: received response frame doesnt have BERR  
1: received response frame has BERR  
Timing information extracted from the demodulation of the preamble half-bit and the two full bits of synchronization is outside of the  
expected window, this bit is set and the byte is not processed.  
0: No fault  
1: Fault  
SYNC1  
BIT  
If the demodulation of the preamble half-bit and the two full bits of synchronization data have errors and the timing is likely not correct, this  
bit is set and the byte is not processed.  
0: No fault  
1: Fault  
The device has detected a data bit, however, the detection samples is not enough to guarantee a strong 1or 0.  
0: No fault  
1: Fault  
7.5.39 Register: DEBUG_COMH_FRAME  
Address: 0x2305  
B7  
B6  
RSVD  
0
B5  
B4  
B3  
B2  
B1  
B0  
RR_IERR  
RR_SOF  
RR_BYTE_ERR  
RR_UNEXP  
RR_CRC  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
RR_IERR  
Detects initialization byte error in the received response frame. This may due to improper formatting of a byte such as a frame initialization  
byte is expected, but start-of-frame (SOF) bit is not set, or an invalid frame type is selected. All bytes from VIF that follows are ignored until  
a SOF bit is received (BQ79600 still forwards data from VIF to UART/SPI).  
0: No fault  
1: Fault  
RR_SOF  
Valid when [DIR_SEL] = 0. Detects a start-of-frame (SOF) error on COMH. The SOF bit shall only be set in the initialization frame but the  
SOF bit is set in the current frame that is not expected.  
0: No fault  
1: Fault  
RR_BYTE_ERR  
Valid when [DIR_SEL] = 0. Detected any byte errors, other than the error in the initialization byte, in the received response frame. If the  
byte err is on the last byte of the CRC, it would check CRC in addition to discarding the frame. This error can be triggered by one or more  
error bit set in the DEBUG_COMH_PHY register. All bytes from VIF that follows are ignored until a SOF bit is received (BQ79600 still  
forwards data from VIF to UART/SPI).  
0: No fault  
1: Fault  
RR_UNEXP  
RR_CRC  
If [DIR_SEL] = 1, but device received response frame from COMH which is an invalid condition and device will set this error bit.  
0: No fault  
1: Fault  
Indicates one or more COMH response frames being discarded due to CRC error.  
0: No fault  
1: Fault  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
7.5.40 Register: DEBUG_COML_PHY  
Address: 0x2306  
B7  
B6  
RSVD  
0
B5  
B4  
PERR  
0
B3  
B2  
B1  
B0  
BIT  
0
BERR_TAG  
SYNC2  
SYNC1  
0
0
0
0
0
R
R
R
R
R
R
R
R
PERR  
Pertain to received response frame from stack device only. PERR is a lump bit of all physical errors. Any error bit that is set in this register  
will also set the [PERR] bit. However, abnormality that isnt classified in the register can also trigger the [PERR] bit (e.g. detecting missing  
of data or wrong data order.)  
0: no comm error detected  
1: detected abnormality of the received comm frame. BERR is asserted to the forwarded communication.  
BERR_TAG  
SYNC2  
Indicates BERR bit is set in at least one byte in received response frame from stack device  
0: received response frame doesnt have BERR  
1: received response frame has BERR  
Timing information extracted from the demodulation of the preamble half-bit and the two full bits of synchronization is outside of the  
expected window, this bit is set and the byte is not processed.  
0: No fault  
1: Fault  
SYNC1  
BIT  
If the demodulation of the preamble half-bit and the two full bits of synchronization data have errors and the timing is likely not correct, this  
bit is set and the byte is not processed.  
0: No fault  
1: Fault  
The device has detected a data bit, however, the detection samples is not enough to guarantee a strong 1or 0.  
0: No fault  
1: Fault  
7.5.41 Register: DEBUG_COML_FRAME  
Address: 0x2307  
B7  
B6  
RSVD  
0
B5  
B4  
B3  
B2  
B1  
B0  
RR_IERR  
RR_SOF  
RR_BYTE_ERR  
RR_UNEXP  
RR_CRC  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
RR_IERR  
Detects initialization byte error in the received response frame. This may due to improper formatting of a byte such as a frame initialization  
byte is expected, but start-of-frame (SOF) bit is not set, or an invalid frame type is selected. All bytes from VIF that follows are ignored until  
a SOF bit is received (BQ79600 still forwards data from VIF to UART/SPI).  
0: No fault  
1: Fault  
RR_SOF  
Valid when [DIR_SEL] = 1. Detects a start-of-frame (SOF) error on COML. The SOF bit shall only be set in the initialization frame but the  
SOF bit is set in the current frame that is not expected.  
0: No fault  
1: Fault  
RR_BYTE_ERR  
Valid when [DIR_SEL] = 1. Detected any byte errors, other than the error in the initialization byte, in the received response frame. If the  
byte err is on the last byte of the CRC, it would check CRC in addition to discarding the frame. This error can be triggered by one or more  
error bit set in the DEBUG_COML_PHY register. All bytes from VIF that follows are ignored until a SOF bit is received (BQ79600 still  
forwards data from VIF to UART/SPI).  
0: No fault  
1: Fault  
RR_UNEXP  
RR_CRC  
If [DIR_SEL] = 0, but device received response frame from COML which is an invalid condition and device will set this error bit.  
0: No fault  
1: Fault  
Indicates one or more COML response frames being discarded due to CRC error.  
0: No fault  
1: Fault  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
This section is concerned with the external operation, what external components are required to add to the  
device to make it usable in a particular design, and how to calculate the values for those external components.  
8.2 Typical Applications  
8.2.1 Bridge With Reverse Wakeup in UART  
The following application circuit is used when user chooses to use UART interface and any of those features:  
reverse wakeup, ring architecture, fault/heartbeat tone.  
12V Battery  
10  
Low  
Voltage  
Domain  
How  
Voltage  
Domain  
50V 0.1uF  
AFE fault  
100K Real Time Clock  
KEY ON  
SBC  
(PMIC)  
3.3V/5V  
CAN_WK  
0.1uF  
DVDD  
INH  
0.22uF  
5.5V-40V  
BAT  
Twisted pair  
cabling  
CVDD  
VIO  
VIO  
Ratio:1 to 1  
0.22uF  
51  
100K  
10K  
10K  
COMHP  
PESD5V0L2BT  
Cap/  
Cap+choke/  
XFMR  
100pF  
100pF  
BQ battery  
monitor  
BQ battery  
monitor  
GPIO0  
MOSI/RX  
MISO/TX  
1K  
GPIO1  
GPIO2  
Isolation  
51  
MCU  
COMHN  
COMLP  
SCLK  
nCS  
BQ79600-Q1  
GPIO3  
100pF  
100pF  
GND  
nUART/SPI (SPI_RDY)  
NFAULT  
GPIO4  
GPIO5  
51  
PESD5V0L2BT  
GND  
Cap/  
Cap+choke/  
XFMR  
100pF  
GND  
1K  
Isolation  
51  
COMLN  
GND  
100pF  
8-1. Typical Bridge with Reverse Wakeup in UART Applications Circuit  
8.2.1.1 Design Requirements  
8-1 describes the design parameters.  
8-1. Recommended Design Requirement  
PARAMETER  
VALUE  
UART speed  
1Mbps  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 MCU Interface (UART, NFAULT)  
To select UART interface, connect nCS, nUART/SPI and SCLK pins to GND. UART interface includes RX/TX  
pins. They are pulled up through a 10-100kΩresistor to VIO like figure above.  
NFAULT pin, if not used, connect to GND. Otherwise, pull it up wtih 100kΩto VIO.  
8.2.1.2.2 Daisy Chain Interface  
Given that galvanic isolation is expected between BQ79600-Q1 and stack BQ devices, transformer isolation is  
recommended. 8.2.1 shows the interface components values.  
Contact TI for transformer recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: BQ79600-Q1  
 
 
 
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
8.2.1.2.3 INH Connection  
INH pin is connected to the power management IC (PMIC) enable pin such that when reverse wakeup is  
triggered, INH would be pulled towards BAT and enable PMIC. INH pin should always be lower than BAT pin.  
The 100kΩconnected to INH in 8.2.1 is to make sure INH pin potential is defined when INH driver is off.  
8.2.1.3 Application Performance Plot  
8-2. Command and Response Frame for Read from 2 Stack Devices  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
8-3. Zoomed View of Response Frame for 8 Registers Read from Stack Devices  
8.2.2 Bridge Without Reverse Wakeup in SPI  
The following application circuit is used when user chooses to use SPI interface and none of those features:  
reverse wakeup, ring architecture, fault/heartbeat tone.  
12V Battery  
Low  
Voltage  
Domain  
How  
Voltage  
Domain  
5V  
Real Time Clock  
KEY ON  
SBC  
(PMIC)  
3.3V/5V  
CAN_WK  
0.1uF  
DVDD  
INH  
0.22uF  
BAT  
Twisted pair  
cabling  
CVDD  
VIO  
VIO  
Ratio:1 to 1  
0.22uF  
51  
100K 100K 10K  
10K  
10K  
COMHP  
PESD5V0L2BT  
Cap/  
Cap+choke/  
XFMR  
100pF  
100pF  
BQ battery  
monitor  
BQ battery  
monitor  
GPIO0  
MOSI/RX  
MISO/TX  
1K  
GPIO1  
GPIO2  
Isolation  
51  
MCU  
COMHN  
COMLP  
SCLK  
nCS  
BQ79600-Q1  
GPIO3  
100pF  
100pF  
nUART/SPI (SPI_RDY)  
NFAULT  
GPIO4  
GPIO5  
51  
10K  
PESD5V0L2BT  
GND  
Cap/  
Cap+choke/  
XFMR  
100pF  
GND  
1K  
Isolation  
51  
COMLN  
GND  
100pF  
RED is optional  
8-4. Typical Bridge without Reverse Wakeup in SPI Applications Circuit  
8.2.2.1 Design Requirements  
8-2 describes the design parameters.  
8-2. Key Requirements  
PARAMETER  
VALUE  
SPI speed  
2 - 6Mbps  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 MCU Interface (SPI, SPI_RDY, NFAULT)  
To select SPI interface, connect MOSI, MISO, SCLK, nCS, nUART/SPI as figure above shows. Connect  
SPI_RDY to MCU GPIO port for SPI flow control use, 7.3.2.1.2.2.1.  
NFAULT pin, if not used, connect to GND. Otherwise, pull it up wtih 100KΩto VIO.  
8.2.2.2.2 Daisy Chain Interface  
Refer to 8.2.1.2.2.  
8.2.2.3 Application Performance Plot  
See Application Performance Plot for application performanace curve.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The BQ79600-Q1 can be powered by either directly from 12-V battery (nominal 9 - 16V) or regulated 5-V supply.  
The design consideration for both options are described in the table below.  
9-1. Supply Design Considerations  
12-V BATTERY (nominal 9 - 16 V)  
REGULATED 5-V SUPPLY  
3.125 - 5.25V, decouple 0.1-µF  
capacitor to gnd  
VIO  
BAT  
3.125 - 5.25V, decouple 0.1-µF capacitor to gnd  
4.75 - 5.25V, decouple 0.22-µF  
capacitor to gnd  
Put RC between supply battery and BAT pin, R = 10Ω, C = 0.1-µF capacitor.  
Make sure BAT pin sees no less than 5.5V and no larger than 40V.  
CVDD  
DVDD  
Decouple 0.22-µF capacitor to gnd  
Decouple 0.22-µF capacitor to gnd  
shorted to BAT  
Decouple 0.22-µF capacitor to gnd  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: BQ79600-Q1  
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
10 Layout  
The layout for this device must be designed carefully. Any design outside these guidelines can affect the  
communication robustness and EMI performance. Care must be taken in the layout of signals to and from the  
device to avoid coupling noise onto sensitive inputs. The layout of ground and power connections, as well as  
communication signals, should also be made carefully.  
10.1 Layout Guidelines  
10.1.1 Ground Planes  
It is very important to establish a clean grounding scheme to ensure best performance of the device. There is  
one ground pin (GND) on the device. It is a good practice to use top and bottom PCB layers for signal routing,  
and use middle layers as ground planes. Even on a PCB layer that is mainly for signal routing, it is good practice  
to have a small island of ground pour if possible to provide a low-impedance ground, rather than simply a via  
through the ground trace to an lower ground plane. Create a keep-out area (no other traces and no ground  
plane) around the daisy chain components in all PCB layers.  
There is a strong recommendation to have a minimum of 4 layers in the PCB, with one fully dedicated layer as  
an unbroken VSS plane (except thermal reliefs). Avoid placing tracks on this layer to maintain the unbroken  
integrity of the plane structure.  
10.1.2 Bypass Capacitors for Power Supplies  
The bypass capacitors of the following pins must be placed as close to the device pins as possible to ensure  
proper performance.  
BAT, VIO, CVDD, DVDD  
10.1.3 UART/SPI communication  
The UART/SPI interface (MISO/TX, MOSI/RX, SCLK, nCS, nUART/SPI_RDY) between MCU and BQ79600-Q1  
shall be kept as short and straight as possible for optimized EMC performance.  
10.1.4 Daisy Chain Communication  
It is important to have proper layout on the COMHP/N and COMLP/N circuits in order to have the best robust  
daisy chain communication.  
Keep differential traces as short as possible and as straight as possible. Minimize turns and avoid any  
looping on the traces.  
Keep the differential traces on the same layers. Run the trace in parallel with shielding and matching trace  
impedance.  
Place the isolation components close to the connectors.  
Create a keep-out area (no other traces and no ground plane) around the daisy chain components in all PCB  
layers.  
10.2 Layout Example  
This section presents the BQ79600-Q1 Evaluation Module (EVM) design as a layout example. Given the EVM  
doesn't have an MCU, the example of UART/SPI connection layout is not optimized.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
10-1. Top Layer Layout  
10-2. Signal 1 Layer Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
10-3. Signal 2 Layer Layout  
10-4. Bottom Layer Layout  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.2 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: BQ79600-Q1  
 
 
 
 
 
 
 
 
BQ79600-Q1  
ZHCSR35A NOVEMBER 2019 REVISED AUGUST 2020  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: BQ79600-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ79600PWRQ1  
ACTIVE  
TSSOP  
PW  
16  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
BQ79600  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ79600PWRQ1  
TSSOP  
PW  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
BQ79600PWRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ79606A-Q1

符合 ASIL-D 标准的汽车类 6 节串联精密电池监测器、平衡器和集成保护器
TI

BQ79606APHPRQ1

符合 ASIL-D 标准的汽车类 6 节串联精密电池监测器、平衡器和集成保护器 | PHP | 48 | -40 to 105
TI

BQ79606APHPTQ1

符合 ASIL-D 标准的汽车类 6 节串联精密电池监测器、平衡器和集成保护器 | PHP | 48 | -40 to 105
TI

BQ79612-Q1

符合 ASIL-D 标准的汽车类 12 节串联精密电池监控器、平衡器和集成保护器
TI

BQ79612PAPRQ1

符合 ASIL-D 标准的汽车类 12 节串联精密电池监控器、平衡器和集成保护器 | PAP | 64 | -40 to 125
TI

BQ79614-Q1

符合 ASIL-D 标准的汽车类 14 节串联精密电池监控器、平衡器和集成保护器
TI

BQ79614PAPRQ1

符合 ASIL-D 标准的汽车类 14 节串联精密电池监控器、平衡器和集成保护器 | PAP | 64 | -40 to 125
TI

BQ79616-Q1

符合 ASIL-D 标准的汽车类 16 节串联精密电池监控器、平衡器和集成保护器
TI

BQ79616PAPRQ1

符合 ASIL-D 标准的汽车类 16 节串联精密电池监控器、平衡器和集成保护器 | PAP | 64 | -40 to 125
TI

BQ79631-Q1

具有电压、电流和绝缘电阻检测功能的汽车类高电压电池包监测器
TI

BQ79631PAPRQ1

具有电压、电流和绝缘电阻检测功能的汽车类高电压电池包监测器

| PAP | 64 | -40 to 125
TI

BQ79652-Q1

BQ79656-Q1, BQ79654-Q1, BQ79652-Q1 Functional Safety-Compliant Automotive 16S/14S/12S Battery Monitor, Balancer and Integrated Hardware Protector with Integrated Current Sense
TI