CC3235MODSF [TI]

具有 1MB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4 双频带 Wi-Fi CERTIFIED™ 无线模块;
CC3235MODSF
型号: CC3235MODSF
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1MB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4 双频带 Wi-Fi CERTIFIED™ 无线模块

无线 无线模块 闪存
文件: 总117页 (文件大小:4348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
CC3235MODx CC3235MODAx SimpleLink™ Wi-Fi CERTIFIED™ 双频带无线天线  
MCU 模块  
• 安全性  
1 特性  
WEP  
WPA/ WPA2PSK  
WPA2 企业  
• 完全集成的绿RoHS 模块包括所有必需的时  
钟、SPI 闪存和无源器件  
WPA3个人版  
WPA3企业版  
– 互联网和应用协议:  
802.11a/b/g/n2.4GHz 5GHz  
FCCIC/ISEDETSI/CEMIC SRRC 认  
1  
FIPS 140-2 1 级验证的内IC  
• 多层安全特性可帮助开发人员保护身份信息、数据  
和软IP  
• 低功耗模式适用于电池供电应用  
2.4GHz 无线电共存  
• 工业温度40°C +85°C  
CC3235MODx 多内核架构、片上系(SoC)  
CC3235MODAx 模块包含集PCB 天线可轻松  
集成到主机系统中  
1.27mm QFM 封装实现轻松组装和低成本  
PCB 设计  
HTTP 服务器、mDNSDNS-SD DHCP  
IPv4 IPv6 TCP/IP 堆栈  
16 BSD 套接字完全安全TLS v1.2 和  
SSL 3.0)  
– 内置的电源管理子系统:  
• 可配置的低功耗配置始终开启、间歇性连  
接、标签)  
• 高级低功耗模式  
• 集成式直流/直流稳压器  
多层安全特性:  
– 独立执行环境  
• 可转让Wi-Fi 联盟®认证  
• 应用微控制器子系统:  
– 网络安全  
– 设备身份和密钥  
– 硬件加速器加密引擎AESDESSHA/MD5  
CRC)  
– 文件系统安全加密、身份验证、访问控制)  
– 初始安全编程  
– 软件篡改检测  
®运行频率80MHz Arm® Cortex®-M4 内核  
– 用户专用存储器  
256KB RAM  
• 可选1MB 可执行文件闪存  
– 多种外设和计时器  
McASP 支持两I2S 通道  
SDSPII2CUART  
8 位同步成像仪接口  
– 安全引导  
– 证书注册请(CSR)  
– 每个设备具有唯一密钥对  
• 应用吞吐量  
4 12 ADC  
UDP16Mbps  
TCP13Mbps  
电源管理子系统:  
4 个具16 PWM 模式的通用计时器  
(GPT)  
• 看门狗计时器  
• 多27 GPIO 引脚  
• 调试接口JTAGcJTAGSWD  
Wi-Fi 网络处理器子系统:  
– 集成式直流/直流转换器支持宽电源电压范围:  
• 单电源电压VBAT2.3V 3.6V  
– 高级低功耗模式:  
Wi-Fi® 内核:  
• 关断1µA休眠5.5µA  
802.11 a/b/g/n 2.4GHz 5GHz  
• 模式:  
• 低功耗深度睡(LPDS)120µA  
• 空闲连接MCU LPDS 状态):710µA  
RX 流量MCU 处于活动模式):59 mA  
TX 流量MCU 处于活动模式):223 mA  
– 接入(AP)  
– 基(STA)  
Wi-Fi Direct®2.4GHz 受支持)  
1
有关使SRRC ID 认证的更多信息请联TIwww.ti.com.cn/tool/cn/SIMPLELINK-CC3XXX-CERTIFICATION  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS243  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
Wi-Fi TX 功率  
2 应用  
2.4 GHz1 DSSS 16dBm  
5 GHz6 OFDM 15.1dBm  
Wi-Fi RX 灵敏度  
• 对于物联网应用例如:  
医疗和保健  
多参数患者监护仪  
心电(ECG)  
电子病床和床控制器  
远程保健系统  
2.4 GHz1 DSSS -94.5dBm  
5 GHz6 OFDM -89dBm  
• 其他集成元件  
40.0MHz 晶体  
32.768kHz (RTC)  
32Mb SPI 串行闪存  
楼宇和住宅自动化:  
HVAC 系统和恒温器  
视频监控、可视门铃和低功耗摄像头  
楼宇安全系统和电子锁  
– 射频滤波器、双工器和无源器件  
• 尺寸兼容QFM 封装  
电器  
资产跟踪  
工厂自动化  
电网基础设施  
CC3235MODx1.27mm 间距、  
63 引脚、20.5mm × 17.5mm  
CC3235MODAx1.27mm 间距、  
63 引脚、20.5mm × 25.0mm  
• 模块支SimpleLink 开发人员生态系统  
3 描述  
使用此完全可编程的无线微控制器 (MCU) 模块开始您的设计它经过 FCCIC/ISEDETSI/CEMIC SRRC  
认证且具有内置双带 Wi-Fi 连接。该模块集成有 40MHz 晶体、32.768kHz RTC 时钟、32Mb SPI 串行闪存、射  
频滤波器、双工器和无源器件。  
SimpleLinkCC3235MODx 模块提供两种型号:  
CC3235MODS 256KB RAMIoT 网络安全性、器件身份和密钥以MCU 级安全特性例如文件系统加  
密、用IPMCU 图像加密、安全启动和调试安全性。  
CC3235MODSF CC3235MODS 而构建256KB RAM 以外还集成了一个用户专用1MB 可执  
行文件闪存。  
SimpleLinkCC3235MODAx 模块提供两种型号:  
CC3235MODAS 256KB RAMIoT 网络安全性、器件身份和密钥以MCU 级安全特性例如文件系统  
加密、用IPMCU 图像加密、安全启动和调试安全性。  
CC3235MODASF CC3235MODAS 而构建256KB RAM 以外还集成了一个用户专用1MB 可  
执行文件闪存。  
德州仪器 (TI) SimpleLink™ Wi-Fi® CC3235MODx CC3235MODAx 模块系列专为物联网而设计是集成了  
两个物理隔离片MCU 的无线模块。  
• 应用处理- Arm® Cortex®-M4 MCU具有用户专用256KB RAM 和可选1MB 可执行闪存。  
• 用以运行所Wi-Fi 和互联网逻辑层的网络处理器此基ROM 的子系统完全减轻了主MCU 的负载包括  
802.11 a/b/g/n 双频2.4GHz 5GHz 无线电、基带和带有强大硬件加密引擎MAC。  
这一代引进了可进一步简化物联网连接的新功能。主要新特性包括:  
802.11a/b/g/n2.4GHz 5GHz 支持  
2.4GHz 与低功Bluetooth ® 无线电共存  
• 天线分集  
FIPS 140-2 1 级验证的内IC 增强了安全性认证。  
• 可同时打开更多安全套接字16 )  
• 证书注册请(CSR)  
• 在线证书状态协(OCSP)  
• 针对具有低功耗功能以及其他功能IoT 应用经Wi-Fi 联盟®认证  
• 降低模板包传输负载的无主机模式  
• 改善了快速扫描  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
CC3235MODx CC3235MODAx 器件系列是 SimpleLink MCU 平台的一部分该平台是一个常见、易用的开发  
环境基于单核软件开发套件 (SDK)具有丰富的工具集和参考设计。E2E支持论坛支持 Wi-Fi、低功耗蓝牙、  
1GHz 和主MCU。关于更多信息请访www.ti.com.cn/simplelink www.ti.com.cn/simplelinkwifi。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
CC3235MODSM2MOB  
封装  
QFM (63)  
QFM (63)  
QFM (63)  
QFM (63)  
20.5mm × 17.5mm  
20.5mm × 17.5mm  
20.5 mm × 25 mm  
20.5 mm × 25 mm  
CC3235MODSF12MOB  
CC3235MODASM2MON  
CC3235MODASF12MON  
(1) 如需更多信息请参13。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
4 功能方框图  
4-1 显示CC3235MODx 模块的功能方框图。  
CC3235  
40 MHz  
RF_ABG  
32.768 kHz  
BGN  
UART  
SPI  
WRF_BGN  
F
D
5 GHz  
SPDT  
nReset  
Aband  
F
WRF_A  
2.3 V to 3.6 V  
VBAT  
PM  
32-Mbit  
SFlash  
External SPI  
Programming  
User GPIOx  
4-1. CC3235MODx 功能方框图  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
4-2 显示CC3235MODAx 模块的功能方框图。  
CC3235  
40 MHz  
RF_ABG  
32.768 kHz  
BGN  
UART  
SPI  
WRF_BGN  
F
D
5 GHz  
SPDT  
nReset  
Aband  
F
WRF_A  
2.3 V to 3.6 V  
VBAT  
PM  
32-Mbit  
SFlash  
External SPI  
Programming  
User GPIOx  
4-2. CC3235MODAx 功能方框图  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
4-3 显示CC3235x 硬件概述。  
CC32xx œ Single-Chip Wireless MCU  
1-MB Flash (optional)  
256-KB RAM  
ROM  
ARM  
Cortex-M4  
80 MHz  
1x SPI  
2x UART  
DMA  
Timers  
1x I2C  
1x I2S/PCM  
1x SD/MMC  
GPIOs  
COEX I/Os  
Antenna Selection  
8-bit Camera  
4x ADC  
Network Processor  
Application  
Power  
Management  
Protocols  
Wi-Fi Driver  
TCP/IP Stack  
Oscillators  
DC-DC  
RTC  
RAM  
ROM  
(ARM Cortex)  
Dual Band  
Wi-Fi  
Synthesizer  
4-3. CC3235x 硬件概览  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
4-4 显示CC3235x 嵌入式软件的概述。  
Applications MCU  
Customer Application  
BSD  
Socket  
NetApp  
Wi-Fi  
Peripherals  
Driver  
SimpleLink Driver APIs  
Host Interface  
Network Applications  
TCP/IP Stack  
WLAN Security  
and  
Management  
WLAN MAC and PHY  
Network Processor  
4-4. CC3235x 嵌入式软件概览  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
Table of Contents  
9.4 Wi-Fi Network Processor Subsystem....................... 66  
9.5 Security.....................................................................68  
9.6 FIPS 140-2 Level 1 Certification............................... 70  
9.7 Power-Management Subsystem...............................70  
9.8 Low-Power Operating Mode..................................... 70  
9.9 Memory.....................................................................73  
9.10 Restoring Factory Default Configuration.................75  
9.11 Boot Modes.............................................................75  
9.12 Hostless Mode........................................................ 76  
9.13 Device Certification and Qualification..................... 77  
9.14 Module Markings.....................................................79  
9.15 End Product Labeling..............................................80  
9.16 Manual Information to the End User....................... 80  
10 Applications, Implementation, and Layout............... 81  
10.1 Typical Application.................................................. 81  
10.2 Device Connection and Layout Fundamentals....... 88  
10.3 PCB Layout Guidelines...........................................88  
11 Environmental Requirements and SMT  
Specifications................................................................95  
11.1 PCB Bending...........................................................95  
11.2 Handling Environment.............................................95  
11.3 Storage Condition................................................... 95  
11.4 PCB Assembly Guide..............................................95  
11.5 Baking Conditions................................................... 96  
11.6 Soldering and Reflow Condition..............................97  
12 Device and Documentation Support..........................98  
12.1 Development Tools and Software........................... 98  
12.2 Firmware Updates...................................................99  
12.3 Device Nomenclature..............................................99  
12.4 Documentation Support........................................ 100  
12.5 Related Links........................................................ 102  
12.6 支持资源................................................................102  
12.7 Trademarks...........................................................103  
12.8 Electrostatic Discharge Caution............................103  
12.9 Glossary................................................................103  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 描述................................................................................... 2  
4 功能方框图.........................................................................4  
5 Revision History.............................................................. 8  
6 Device Comparison.........................................................9  
6.1 Related Products...................................................... 12  
7 Terminal Configuration and Functions........................13  
7.1 CC3235MODx and CC3235MODAx Pin Diagram....13  
7.2 Pin Attributes and Pin Multiplexing........................... 14  
7.3 Signal Descriptions................................................... 31  
7.4 Drive Strength and Reset States for Analog-  
Digital Multiplexed Pins............................................... 36  
7.5 Pad State After Application of Power to Chip, but  
Before Reset Release................................................. 36  
7.6 Connections for Unused Pins................................... 36  
8 Specifications................................................................ 37  
8.1 Absolute Maximum Ratings...................................... 37  
8.2 ESD Ratings............................................................. 37  
8.3 Recommended Operating Conditions.......................37  
8.4 Current Consumption (CC3235MODS and  
CC3235MODAS).........................................................38  
8.5 Current Consumption (CC3235MODSF and  
CC3235MODASF).......................................................40  
8.6 TX Power Control for 2.4 GHz Band.........................42  
8.7 TX Power Control for 5 GHz..................................... 44  
8.8 Brownout and Blackout Conditions...........................44  
8.9 Electrical Characteristics for GPIO Pins................... 46  
8.10 CC3235MODAx Antenna Characteristics...............48  
8.11 WLAN Receiver Characteristics..............................48  
8.12 WLAN Transmitter Characteristics..........................49  
8.13 BLE and WLAN Coexistence Requirements...........50  
8.14 Reset Requirement.................................................50  
8.15 Thermal Resistance Characteristics for MOB  
and MON Packages.................................................... 50  
8.16 Timing and Switching Characteristics..................... 51  
9 Detailed Description......................................................64  
9.1 Overview...................................................................64  
9.2 Functional Block Diagram.........................................64  
9.3 Arm Cortex-M4 Processor Core Subsystem.............65  
Information.................................................................. 104  
13.1 Mechanical, Land, and Solder Paste Drawings.... 104  
13.2 Package Option Addendum..................................104  
5 Revision History  
Changes from August 20, 2020 to May 13, 2021 (from Revision A (Aug 2020) to Revision B  
(May 2021))  
Page  
• 向1“安全”中Wi-Fi 网络处理器子系统添加WPA3 企业版................................................................... 1  
• 更改了4-1 ...................................................................................................................................................... 4  
Added WPA3 enterprise to 9.4 ....................................................................................................................66  
Added WPA3 Enterprise to 9.4.1 .................................................................................................................66  
Added WPA3 enterprise to Wi-Fi security Feature in 9-1 ............................................................................66  
Changed 12-1 ............................................................................................................................................. 99  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
6 Device Comparison  
6-2 shows the features supported across different CC3x35 modules.  
6-1. Device Features Comparison  
DEVICE  
FEATURE  
CC3135MOD  
CC3235MODS  
CC3235S  
No  
CC3235MODSF  
CC3235SF  
On-board chip  
On-board ANT  
sFlash  
CC3135  
No  
No  
32-Mbit  
32-Mbit  
32-Mbit  
Regulatory certifications  
Wi-Fi Alliance® Certification  
Input voltage  
FCC, IC/ISED, ETSI/CE, MIC  
Yes  
FCC, IC/ISED, ETSI/CE, MIC  
Yes  
FCC, IC/ISED, ETSI/CE, MIC  
Yes  
2.3 V to 3.6 V  
17.5 mm × 20.5 mm QFM  
40°C to +85°C  
Wi-Fi Network Processor  
802.11 a/b/g/n  
2.4 GHz, 5 GHz  
IPv4, IPv6  
2.3 V to 3.6 V  
2.3 V to 3.6 V  
17.5 mm × 20.5 mm QFM  
40°C to +85°C  
Wireless Microcontroller  
802.11 a/b/g/n  
2.4 GHz, 5 GHz  
IPv4, IPv6  
Package  
17.5 mm × 20.5 mm QFM  
40°C to +85°C  
Wireless Microcontroller  
802.11 a/b/g/n  
Operating temperature range  
Classification  
Standard  
Frequency  
2.4 GHz, 5 GHz  
IPv4, IPv6  
TCP/IP Stack  
Secured sockets  
Integrated MCU  
16  
16  
16  
Arm Cortex-M4 at 80 MHz  
Arm Cortex-M4 at 80 MHz  
ON-CHIP APPLICATION MEMORY  
RAM  
256KB  
256KB  
1MB  
Flash  
PERIPHERALS AND INTERFACES  
Universal Asynchronous  
Receiver/Transmitter (UART)  
1
2
2
Serial Port Interface (SPI)  
1
1
1
Multichannel Audio Serial Port (McASP)- I2S or PCM  
Inter-Integrated Circuit (I2C)  
2-ch  
2-ch  
1
1
Analog-to-digital converter (ADC)  
Parallel interface (8-bit PI)  
4-ch, 12-bit  
4-ch, 12-bit  
1
1
4
1
General-purpose timers  
4
Multimedia card (MMC / SD)  
1
SECURITY FEATURES  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
6-1. Device Features Comparison (continued)  
DEVICE  
FEATURE  
CC3135MOD  
CC3235MODS  
CC3235MODSF  
Unique Device Identity  
Unique Device Identity  
Unique Device Identity  
Additional networking security  
Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Hardware acceleration  
Secure boot  
Hardware Crypto Engines  
Hardware Crypto Engines  
Yes  
Hardware Crypto Engines  
Yes  
File system security  
File system security  
Secure key storage  
Secure key storage  
Enhanced Application Level Security  
FIPS 140-2 Level 1 Certification  
Software tamper detection  
Cloning protection  
Initial secure programming  
Software tamper detection  
Cloning protection  
Initial secure programming  
Yes  
Yes  
Yes  
6-2. Device Features Comparison  
DEVICE  
FEATURE  
CC3135MOD  
CC3135  
No  
CC3235MODS  
CC3235S  
No  
CC3235MODSF  
CC3235MODAS  
CC3235S  
Yes  
CC3235MODASF  
CC3235SF  
Yes  
On-board chip  
On-board ANT  
sFlash  
CC3235SF  
No  
32-Mbit  
32-Mbit  
32-Mbit  
32-Mbit  
32-Mbit  
FCC, IC/ISED, ETSI/CE, MIC,  
SRRC(1)  
FCC, IC/ISED, ETSI/CE, MIC,  
Regulatory certifications  
FCC, IC/ISED, ETSI/CE, MIC  
FCC, IC/ISED, ETSI/CE, MIC  
FCC, IC/ISED, ETSI/CE, MIC  
SRRC(1)  
Wi-Fi Alliance® Certification  
Input voltage  
Yes  
Yes  
Yes  
Yes  
Yes  
2.3 V to 3.6 V  
17.5 mm × 20.5 mm QFM  
40°C to +85°C  
Wi-Fi Network Processor  
802.11 a/b/g/n  
2.4 GHz, 5 GHz  
IPv4, IPv6  
2.3 V to 3.6 V  
2.3 V to 3.6 V  
2.3 V to 3.6 V  
2.3 V to 3.6 V  
25.0 mm × 20.5 mm QFM  
40°C to +85°C  
Wireless Microcontroller  
802.11 a/b/g/n  
2.4 GHz, 5 GHz  
IPv4, IPv6  
Package  
17.5 mm × 20.5 mm QFM  
40°C to +85°C  
Wireless Microcontroller  
802.11 a/b/g/n  
2.4 GHz, 5 GHz  
IPv4, IPv6  
17.5 mm × 20.5 mm QFM  
40°C to +85°C  
Wireless Microcontroller  
802.11 a/b/g/n  
2.4 GHz, 5 GHz  
IPv4, IPv6  
25.0 mm × 20.5 mm QFM  
40°C to +85°C  
Wireless Microcontroller  
802.11 a/b/g/n  
2.4 GHz, 5 GHz  
IPv4, IPv6  
Operating temperature range  
Classification  
Standard  
Frequency  
TCP/IP Stack  
Secured Sockets  
16  
16  
16  
16  
16  
Integrated MCU  
Arm Cortex-M4 at 80 MHz  
Arm Cortex-M4 at 80 MHz  
Arm Cortex-M4 at 80 MHz  
Arm Cortex-M4 at 80 MHz  
ON-CHIP APPLICATION MEMORY  
RAM  
256KB  
256KB  
1MB  
256KB  
256KB  
1MB  
Flash  
PERIPHERALS AND INTERFACES  
Universal Asynchronous  
Receiver/Transmitter (UART)  
1
1
2
1
2
1
2
1
2
1
Serial Port Interface (SPI)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
FEATURE  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
6-2. Device Features Comparison (continued)  
DEVICE  
CC3135MOD  
CC3235MODS  
CC3235MODSF  
CC3235MODAS  
CC3235MODASF  
Multichannel Audio Serial Port  
(McASP)- I2S or PCM  
2-ch  
2-ch  
2-ch  
2-ch  
Inter-Integrated Circuit (I2C)  
Analog-to-digital converter (ADC)  
Parallel interface (8-bit PI)  
General-purpose timers  
1
1
1
1
4-ch, 12-bit  
4-ch, 12-bit  
4-ch, 12-bit  
4-ch, 12-bit  
1
4
1
1
1
4
1
1
4
1
4
Multimedia card (MMC / SD)  
1
SECURITY FEATURES  
Unique Device Identity  
Unique Device Identity  
Unique Device Identity  
Unique Device Identity  
Unique Device Identity  
Additional networking security  
Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Hardware acceleration  
Secure boot  
Hardware Crypto Engines  
Hardware Crypto Engines  
Yes  
Hardware Crypto Engines  
Yes  
Hardware Crypto Engines  
Yes  
Hardware Crypto Engines  
Yes  
File system security  
File system security  
File system security  
File system security  
Secure key storage  
Software tamper detection  
Cloning protection  
Secure key storage  
Software tamper detection  
Cloning protection  
Secure key storage  
Software tamper detection  
Cloning protection  
Secure key storage  
Software tamper detection  
Cloning protection  
Enhanced Application Level  
Security  
Initial secure programming  
Initial secure programming  
Initial secure programming  
Initial secure programming  
FIPS 140-2 Level 1 Certification  
Yes  
Yes  
Yes  
Yes  
Yes  
(1) Contact TI for more information on using SRRC ID Certification: www.ti.com/tool/SIMPLELINK-CC3XXX-CERTIFICATION  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
6.1 Related Products  
For information about other devices in this family of products or related products see the links below.  
The SimpleLink™ MCU offers a single development environment that delivers flexible hardware, software and  
Portfolio  
tool options for customers developing wired and wireless applications. With 100  
percent code reuse across host MCUs, Wi-Fi®, Bluetooth® low energy, Sub-1GHz  
devices and more, choose the MCU or connectivity standard that fits your design. A  
one-time investment with the SimpleLink software development kit (SDK) allows you  
to reuse often, opening the door to create unlimited applications.  
SimpleLink™ Wi-Fi®  
Family  
The SimpleLink Wi-Fi Family offers several Internet-on-a chip solutions, which  
address the need of battery operated, security enabled products. Texas instruments  
offers a single chip wireless microcontroller and a wireless network processor which  
can be paired with any MCU, to allow developers to design new wi-fi products, or  
upgrade existing products with wi-fi capabilities.  
BoosterPack™ Plug-In BoosterPackPlug-In Modules extend the functionality of TI LaunchPad Kit.  
Modules  
Application specific BoosterPack Plug in modules allow you to explore a broad range  
of applications, including capacitive touch, wireless sensing, LED Lighting control, and  
more. Stack multiple BoosterPack modules onto a single LaunchPad kit to further  
enhance the functionality of your design.  
Reference Designs for TI Designs Reference Design Library is a robust reference design library spanning  
CC3200, CC3220, and analog, embedded processor and connectivity. Created by TI experts to help you jump  
CC3235 Modules  
start your system design, all TI Designs include schematic or block diagrams, BOMs  
and design files to speed your time to market.  
SimpleLink™ Wi-Fi®  
CC3235 SDK  
The SDK contains drivers for the CC3235 programmable MCU, sample applications,  
and documentation required to start development with CC3235x solutions.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7 Terminal Configuration and Functions  
7.1 CC3235MODx and CC3235MODAx Pin Diagram  
7-1 shows the pin diagram for the CC3235MODx module.  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
16  
15  
14  
13  
12  
11  
10  
9
GND  
FLASH_SPI_CLK  
FLASH_SPI_nCS_IN  
FLASH_SPI_MISO  
JTAG_TDI  
CC3235MODx  
GPIO22  
GPIO13  
GPIO12  
8
GPIO17  
GPIO16  
63  
62  
59  
56  
61  
7
6
GPIO15  
GPIO14  
60  
55  
58  
57  
5
4
GPIO11  
GPIO10  
GND  
3
2
1
54  
53  
52  
49  
51  
50  
48  
47  
46  
45  
44  
GND  
7-1 shows the approximate location of pins on the module.  
7-1. CC3235MODx Pin Diagram Bottom View  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
7-2 shows the pin diagram for the CC3235MODAx module.  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
16  
15  
14  
13  
12  
11  
10  
9
GND  
FLASH_SPI_CLK  
FLASH_SPI_nCS_IN  
FLASH_SPI_MISO  
JTAG_TDI  
GPIO22  
CC3235MODAx  
GPIO13  
GPIO12  
8
GPIO17  
63  
62  
59  
56  
61  
7
GPIO16  
6
GPIO15  
GPIO14  
60  
55  
58  
57  
5
4
GPIO11  
GPIO10  
GND  
3
2
1
54  
53  
52  
49  
51  
50  
48  
47  
46  
45  
44  
GND  
7-2. CC3235MODAx Pin Diagram Bottom View  
7.2 Pin Attributes and Pin Multiplexing  
7.2.1 lists the pin descriptions of the CC3235MODx and CC3235MODAx module.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7.2.1 Module Pin Descriptions  
MODULE PIN  
CC3235 DEVICE PIN  
NO.  
TYPE(1)  
MODULE PIN DESCRIPTION  
NO.  
1
NAME  
GND  
Ground  
Ground  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
1
2
GND  
3
GPIO10  
4
GPIO11  
2
5
GPIO14  
5
6
GPIO15  
6
7
GPIO16  
7
8
GPIO17  
8
9
GPIO12  
3
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GPIO13  
4
GPIO22  
15  
16  
JTAG_TDI  
FLASH_SPI_MISO  
FLASH_SPI_nCS_IN  
FLASH_SPI_CLK  
GND  
JTAG TDI input. Leave unconnected if not used on product(2)  
External serial flash programming: SPI data in  
External serial flash programming: SPI chip select (active low)  
External serial flash programming: SPI clock  
Ground  
17  
18  
I
I
O
FLASH_SPI_MOSI  
JTAG_TDO  
GPIO28  
External serial flash programming: SPI data out  
JTAG TDO output. Leave unconnected if not used on product(1)  
GPIO(2)  
I/O  
I/O  
NC  
No Connect  
I/O  
I/O  
19  
20  
JTAG TCK input. Leave unconnected if not used on product.(2) An internal 100-kΩ  
pulldown resistor is tied to this pin.  
JTAG TMS input. Leave unconnected if not used on product.(2)  
21  
22  
23  
JTAG_TCK  
JTAG_TMS  
SOP2  
An internal 100-kΩpulldown resistor is tied to this SOP pin. An external 10-kΩresistor  
is required to pull this pin high. See 9.11.1 for SOP[2:0] configuration modes.  
21  
34  
An internal 100-kΩpulldown resistor is tied to this SOP pin. An external 10-kΩresistor  
is required to pull this pin high. See 9.11.1 for SOP[2:0] configuration modes.  
24  
SOP1  
25  
26  
27  
28  
GND  
GND  
GND  
GND  
Ground  
Ground  
Ground  
Ground  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
MODULE PIN  
TYPE(1)  
CC3235 DEVICE PIN  
NO.  
MODULE PIN DESCRIPTION  
NO.  
29  
NAME  
GND  
Ground  
Ground  
30  
GND  
CC3235MODx: RF ABG band  
CC3235MODAx: NC  
31  
I/O  
31  
2.4 GHz and 5 GHz RF input/output  
32  
33  
GND  
NC  
Ground  
No Connect  
An internal 100-kΩpulldown resistor is tied to this SOP pin. An external 10-kΩresistor  
is required to pull this pin high. See 9.11.1 for SOP[2:0] configuration modes.  
34  
35  
SOP0  
35  
32  
nRESET  
I
There is an internal, 100-kΩpullup resistor option from the nRESET pin to  
VBAT_RESET. Note: VBAT_RESET is not connected to VBAT1 or VBAT2 within the  
module. The following connection schemes are recommended:  
Connect nRESET to a switch, external controller, or host, only if nRESET will be in a  
defined state under all operating conditions. Leave VBAT_RESET unconnected to  
save power.  
36  
VBAT_RESET  
37  
39  
If nRESET cannot be in a defined state under all operating conditions, connect  
VBAT_RESET to the main module power supply (VBAT1 and VBAT2). Due to the  
internal pullup resistor a leakage current of 3.3 V / 100 kΩis expected.  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
VBAT1  
GND  
Power  
Power supply for the module, must be connected to battery (2.3 V to 3.6 V)  
Ground  
47  
NC  
No Connect  
VBAT2  
NC  
Power  
10, 44, 54  
Power supply for the module, must be connected to battery (2.3 V to 3.6 V)  
No Connect  
GPIO(2)  
GPIO30  
GND  
I/O  
53  
Ground  
GPIO(2)  
GPIO0  
NC  
I/O  
50  
No Connect  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
GPIO(2)  
55  
57  
58  
59  
60  
61  
62  
63  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
MODULE PIN  
NAME  
GPIO9  
GND  
CC3235 DEVICE PIN  
NO.  
TYPE(1)  
MODULE PIN DESCRIPTION  
NO.  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
I/O  
64  
GPIO(2)  
Thermal ground  
Thermal ground  
Thermal ground  
Thermal ground  
Thermal ground  
Thermal ground  
Thermal ground  
Thermal ground  
Thermal ground  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
(1) I = input; O = output; I/O = bidirectional  
(2) For pin multiplexing details, see 7-1.  
The module makes extensive use of pin multiplexing to accommodate the large number of peripheral functions in the smallest possible package. To  
achieve this configuration, pin multiplexing is controlled using a combination of hardware configuration (at module reset) and register control.  
The board and software designers are responsible for the proper pin multiplexing configuration. Hardware does not ensure that the proper pin  
multiplexing options are selected for the peripherals or interface mode used. 7-1 describes the general pin attributes and presents an overview of pin  
multiplexing. All pin multiplexing options are configurable using the pin MUX registers. The following special considerations apply:  
All I/Os support drive strengths of 2, 4, and 6 mA. Drive strength is individually configurable for each pin.  
All I/Os support 10-µA pullup and pulldown resistors.  
By default, all I/Os float in the Hibernate state. However, the default state can be changed by SW.  
All digital I/Os are non fail-safe.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
Note  
If an external device drives a positive voltage to the signal pads and the CC3235MODx or CC3235MODAx module is not powered, DC is  
drawn from the other device. If the drive strength of the external device is adequate, an unintentional wakeup and boot of the CC3235MODx or  
CC3235MODAx module can occur. To prevent current draw, TI recommends any one of the following conditions:  
All devices interfaced to the CC3235MODx and CC3235MODAx module must be powered from the same power rail as the chip.  
Use level shifters between the device and any external devices fed from other independent rails.  
The nRESET pin of the CC3235MODx and CC3235MODAx module must be held low until the VBAT supply to the module is driven and  
stable.  
All GPIO pins default to high impedance unless programmed by the MCU. The bootloader sets the TDI, TDO, TCK, TMS, and Flash_SPI  
pins to mode 1. All the other pins are left in the Hi-Z state.  
The ADC inputs are tolerant up to 1.8 V (see 8-24 for more details about the usable range of the ADC). On the other hand, the digital pads  
can tolerate up to 3.6 V. Hence, take care to prevent accidental damage to the ADC inputs. TI recommends first disabling the output buffers of  
the digital I/Os corresponding to the desired ADC channel (that is, converted to Hi-Z state), and thereafter disabling the respective pass  
switches (S7 [Pin 47], S8 [Pin 48], S9 [Pin 49], and S10 [Pin 50]). For more information, see 7-3.  
7-1. Pin Attributes and Pin Multiplexing  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
1
2
GND  
GND  
GND  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z,  
Pull,  
Drive  
0
1
3
GPIO10  
GPIO  
I/O  
I/O  
(open  
drain)  
Hi-Z,  
Pull,  
Drive  
I2C_SCL  
I2C clock  
GPIO_PAD_  
CONFIG_10  
Hi-Z,  
Pull,  
Hi-Z,  
Pull,  
Drive  
Pulse-width  
modulated O/P  
3
GPIO10  
I/O  
No  
No  
No  
Hi-Z  
GT_PWM06  
UART1_TX  
O
(0x4402 E0C8)  
Drive  
7
6
UART TX data  
O
O
1
0
SDCARD_CLK SD card clock  
Hi-Z,  
Pull,  
12  
GT_CCP01 Timer capture port  
I
Drive  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
Hi-Z,  
0
1
GPIO11  
GPIO  
I/O  
Pull,  
Drive  
I/O  
(open  
drain)  
Hi-Z,  
Pull,  
Drive  
I2C_SDA  
I2C data  
Hi-Z,  
Pull,  
Drive  
Pulse-width  
modulated O/P  
3
4
6
GT_PWM07  
pXCLK (XVCLK)  
SDCARD_CMD  
O
O
Free clock to  
parallel camera  
0
GPIO_PAD_  
CONFIG_11  
Hi-Z,  
Pull,  
4
GPIO11  
I/O  
Yes  
No  
No  
Hi-Z  
I/O  
(open  
drain)  
Hi-Z,  
Pull,  
Drive  
SD card command  
line  
(0x4402 E0CC)  
Drive  
Hi-Z,  
Pull,  
Drive  
7
UART1_RX  
GT_CCP02  
UART RX data  
I
I
Hi-Z,  
Pull,  
12  
Timer capture port  
Drive  
Hi-Z,  
Pull,  
Drive  
I2S audio port  
frame sync  
13  
0
MCAFSX  
GPIO14  
O
GPIO  
I/O  
I/O  
(open  
drain)  
5
I2C_SCL  
GSPI_CLK  
I2C clock  
GPIO_PAD_  
CONFIG_14  
(0x4402 E0D8)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
5
GPIO14  
I/O  
No  
No  
No  
Hi-Z  
7
4
General SPI clock  
I/O  
pDATA8  
(CAM_D4)  
Parallel camera  
data bit 4  
I
I
12  
GT_CCP05  
Timer capture port  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
nRESET = 0  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
Value  
0
GPIO15  
I2C_SDA  
GPIO  
I/O  
I/O  
(open  
drain)  
5
I2C data  
GPIO_PAD_  
CONFIG_15  
(0x4402 E0DC)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
7
4
GSPI_MISO  
General SPI MISO  
I/O  
6
GPIO15  
I/O  
No  
No  
No  
Hi-Z  
pDATA9  
(CAM_D5)  
Parallel camera  
data bit 5  
I
I
13  
8
GT_CCP06  
Timer capture port  
SD card data  
SDCARD_  
DATA0  
I/O  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
0
GPIO16  
GPIO  
I/O  
I/O  
Hi-Z,  
Pull,  
Drive  
GPIO_PAD_  
CONFIG_16  
Hi-Z,  
Pull,  
Hi-Z,  
Pull,  
7
GPIO16  
I/O  
No  
No  
No  
Hi-Z  
7
GSPI_MOSI  
General SPI MOSI  
(0x4402 E0E0)  
Drive  
Drive  
Hi-Z,  
Pull,  
Drive  
pDATA10  
(CAM_D6)  
Parallel camera  
data bit 6  
4
5
I
UART1_TX  
GT_CCP07  
UART1 TX data  
O
I
1
Hi-Z,  
Pull,  
Drive  
13  
8
Timer capture port  
SDCARD_CLK SD card clock  
O
Zero  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
0
5
GPIO17  
GPIO  
I/O  
I
UART1_RX  
UART1 RX data  
General SPI chip  
select  
GPIO_PAD_  
CONFIG_17  
(0x4402 E0E4)  
7
4
8
GSPI_CS  
I/O  
I
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
8
GPIO17  
GPIO12  
GPIO13  
I/O  
I/O  
I/O  
Yes  
No  
No  
No  
No  
No  
No  
Hi-Z  
pDATA11  
(CAM_D7)  
Parallel camera  
data bit 7  
SDCARD_  
CMD  
SD card command  
line  
I/O  
Hi-Z,  
Pull,  
Drive  
0
3
4
GPIO12  
McACLK  
GPIO  
I/O  
O
I
Hi-Z,  
Pull,  
Drive  
I2S audio port clock  
output  
Hi-Z,  
Pull,  
Drive  
Parallel camera  
vertical sync  
GPIO_PAD_  
CONFIG_12  
(0x4402 E0D0)  
Hi-Z,  
Pull,  
Drive  
pVS (VSYNC)  
9
No  
Hi-Z  
I/O  
(open  
drain)  
Hi-Z,  
Pull,  
Drive  
5
7
I2C_SCL  
UART0_TX  
GT_CCP03  
GPIO13  
I2C clock  
UART0 TX data  
Timer capture port  
GPIO  
O
1
Hi-Z,  
Pull,  
Drive  
12  
0
I
I/O  
I/O  
(open  
drain)  
5
I2C_SDA  
I2C data  
GPIO_PAD_  
CONFIG_13  
(0x4402 E0D4)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
10  
Yes  
Hi-Z  
Parallel camera  
horizontal sync  
4
pHS (HSYNC)  
I
7
UART0_RX  
GT_CCP04  
UART0 RX data  
I
I
12  
Timer capture port  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
0
7
5
1
GPIO22  
McAFSX  
GT_CCP04  
TDI  
GPIO  
I/O  
GPIO_PAD_  
CONFIG_22  
(0x4402 E0F8)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
I2S audio port  
frame sync  
11  
12  
GPIO22  
I/O  
I/O  
No  
No  
No  
No  
No  
O
I
Hi-Z  
Timer capture port  
JTAG TDI. Reset  
default pinout.  
Hi-Z,  
Pull,  
Drive  
I
0
2
GPIO23  
GPIO  
I/O  
O
Muxed  
GPIO_PAD_  
with JTAG CONFIG_23  
Hi-Z,  
Pull,  
Drive  
JTAG_TDI  
Hi-Z  
UART1_TX  
UART1 TX data  
1
TDI  
(0x4402 E0FC)  
I/O  
(open  
drain)  
Hi-Z,  
Pull,  
Drive  
9
I2C_SCL  
I2C clock  
FLASH_  
SPI_  
MISO  
Data from SPI  
FLASH_SPI_MISO serial flash (fixed  
default)  
13  
14  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
1
Hi-Z  
Hi-Z  
Hi-Z  
FLASH_  
SPI_  
nCS_IN  
Chip select to SPI  
Hi-Z,  
Pull,  
Drive  
FLASH_SPI_nCS_  
serial flash (fixed  
IN  
default)  
Hi-Z,  
Pull,  
Hi-Z,  
Pull,  
Drive  
FLASH_  
SPI_CLK  
FLASH_SPI_  
CLK  
Clock to SPI serial  
flash (fixed default)  
15  
16  
17  
N/A  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
N/A  
Hi-Z  
Drive(3)  
GND  
GND  
GND  
N/A  
N/A  
FLASH_  
SPI_  
MOSI  
Hi-Z,  
Pull,  
Hi-Z,  
Pull,  
Drive  
Data to SPI serial  
flash (fixed default)  
FLASH_SPI_MOSI  
Drive(3)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
JTAG TDO. Reset  
O
1
0
5
2
TDO  
GPIO24  
PWM0  
default pinout.  
GPIO  
I/O  
O
I
Driven  
high in  
SWD;  
driven  
low in 4-  
wire  
Pulse-width  
modulated O/P  
Muxed  
with JTAG CONFIG_ 24  
TDO  
GPIO_PAD_  
Hi-Z,  
Pull,  
Drive  
UART1_RX  
UART1 RX data  
18  
JTAG_TDO  
I/O  
Yes  
No  
Hi-Z  
I/O  
(open  
drain)  
(0x4402 E100)  
9
I2C_SDA  
I2C data  
JTAG  
4
6
GT_CCP06  
McAFSX  
Timer capture port  
I
I2S audio port  
frame sync  
O
GPIO_PAD_  
CONFIG_ 40  
(0x4402 E140)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
19  
20  
GPIO28  
NC  
I/O  
No  
No  
No  
0
N/A  
1
GPIO28  
NC  
GPIO  
I/O  
N/A  
I
Hi-Z  
N/A  
WLAN  
analog  
N/A  
N/A  
N/A  
N/A  
Reserved  
N/A  
N/A  
JTAG/SWD TCK.  
Reset default  
pinout.  
Muxed  
with  
JTAG/  
SWD-  
TCK  
TCK  
GPIO_PAD_  
CONFIG_ 28  
(0x4402 E110)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
21  
22  
JTAG_TCK  
JTAG_TMS  
I/O  
I/O  
No  
No  
No  
No  
Hi-Z  
Hi-Z  
Pulse-width  
modulated O/P  
8
GT_PWM03  
O
Muxed  
with  
JTAG/  
SWD-  
TMSC  
JTAG/SWD TMS.  
Reset default  
pinout.  
GPIO_PAD_  
CONFIG_ 29  
(0x4402 E114)  
1
0
TMS  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
I/O  
GPIO29  
GPIO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
nRESET = 0  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
Value  
Hi-Z,  
0
9
GPIO25  
GT_PWM02  
McAFSX  
GPIO  
O
O
O
O
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
Pulse-width  
modulated O/P  
GPIO_PAD_  
CONFIG_ 25  
(0x4402 E104)  
Hi-Z,  
Pull,  
Drive  
I2S audio port  
frame sync  
Driven  
Low  
23(4)  
SOP2  
O only  
No  
No  
No  
2
Hi-Z  
Enable to optional  
external 40-MHz  
TCXO  
See(5)  
TCXO_EN  
0
Hi-Z,  
Pull,  
Drive  
See(6)  
N/A  
SOP2  
SOP1  
Sense-on-power 2  
Sense-on-power 1  
I
Config  
sense  
24  
SOP1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
25  
26  
27  
28  
29  
30  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
WLAN  
analog  
CC3235MODx:  
RF ABG band  
31  
32  
33  
RF_ABG  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
NC  
GND  
WLAN  
analog  
NC  
Reserved  
Config  
sense  
34  
35  
36  
SOP0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
SOP0  
nRESET  
Sense-on-power 0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Master chip reset.  
Active low.  
nRESET  
Global reset  
Global reset  
VBAT_  
RESET  
VBAT to nRESET  
pullup resistor  
VBAT_RESET  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
Analog DC/DC  
Supply  
input  
input (connected to  
chip input supply  
[VBAT])  
37  
VBAT1  
N/A  
N/A  
N/A  
N/A  
N/A  
VBAT1  
N/A  
N/A  
N/A  
N/A  
38  
39  
GND  
NC  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
NC  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
WLAN  
analog  
Reserved  
Supply  
input  
Analog input supply  
VBAT  
40  
41  
VBAT2  
NC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VBAT2  
NC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
WLAN  
analog  
Reserved  
Hi-Z,  
Pull,  
Drive  
0
9
2
GPIO30  
UART0_TX  
McACLK  
GPIO  
I/O  
O
UART0 TX data  
I2S audio port clock  
1
Hi-Z,  
Pull,  
O
User  
config  
not  
Drive  
GPIO_PAD_  
CONFIG_30  
(0x4402 E118)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
42  
GPIO30  
I/O  
No  
No  
Hi-Z  
I2S audio port  
frame sync  
3
4
McAFSX  
O
I
required  
(7)  
Hi-Z,  
Pull,  
GT_CCP05  
Timer capture port  
Drive  
Hi-Z,  
Pull,  
Drive  
7
GSPI_MISO  
GND  
General SPI MISO  
GND  
I/O  
43  
GND  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
Hi-Z,  
Pull,  
Hi-Z,  
Pull,  
0
12  
6
GPIO0  
UART0_CTS  
McAXR1  
GPIO  
I/O  
I
Hi-Z  
Drive  
Drive  
UART0 Clear-to-  
Send input (active  
low)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
I2S audio port data  
1 (RX/TX)  
I/O  
I
User  
config  
not  
Hi-Z,  
Pull,  
Drive  
GPIO_PAD_  
CONFIG_0  
7
GT_CCP00  
GSPI_CS  
Timer capture port  
44  
GPIO0  
I/O  
No  
No  
Hi-Z,  
Pull,  
Drive  
required  
(0x4402 E0A0)  
(7)  
Hi-Z,  
Pull,  
Drive  
Hi-Z  
General SPI chip  
select  
9
I/O  
UART1 Request-to-  
Send (active low)  
10  
3
UART1_RTS  
UART0_RTS  
O
O
1
1
UART0 Request-to-  
Send (active low)  
Hi-Z,  
Pull,  
Drive  
I2S audio port data  
0 (RX/TX)  
4
McAXR0  
NC  
I/O  
WLAN  
analog  
45  
46  
NC  
N/A  
N/A  
N/A  
N/A  
N/A  
Reserved  
GPIO  
N/A  
N/A  
N/A  
N/A  
Hi-Z,  
Pull,  
Drive  
0
3
4
6
7
GPIO1  
I/O  
O
I
UART0_TX  
UART0 TX data  
Pixel clock from  
pCLK (PIXCLK) parallel camera  
sensor  
1
GPIO_PAD_  
CONFIG_1  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
GPIO1  
I/O  
No  
No  
No  
Hi-Z  
(0x4402 E0A4)  
Drive  
UART1_TX  
UART1 TX data  
O
I
1
Hi-Z,  
Pull,  
GT_CCP01  
Timer capture port  
Drive  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
Hi-Z,  
Pull,  
Drive  
ADC channel 0  
input (1.5-V max)  
See(5)  
ADC_CH0  
GPIO2  
I
Hi-Z,  
Pull,  
0
GPIO  
I/O  
Drive  
Analog  
input (up to  
1.8 V)/  
GPIO_PAD_  
CONFIG_2  
(0x4402 E0A8)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
47(9)  
GPIO2  
Yes  
See(8)  
No  
3
6
UART0_RX  
UART1_RX  
GT_CCP02  
ADC_CH1  
UART0 RX data  
UART1 RX data  
Timer capture port  
I
I
I
I
Hi-Z  
digital I/O  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
7
Hi-Z,  
Pull,  
Drive  
ADC channel 1  
input (1.5-V max)  
See(5)  
Hi-Z,  
Pull,  
Drive  
Analog  
input (up to  
1.8 V)/  
GPIO_PAD_  
CONFIG_3  
(0x4402 E0AC)  
Hi-Z,  
Pull,  
Drive  
0
6
4
GPIO3  
GPIO  
I/O  
O
I
48(9)  
GPIO3  
No  
See(8)  
No  
Hi-Z  
digital I/O  
UART1_TX  
UART1 TX data  
1
Hi-Z,  
Pull,  
Drive  
pDATA7  
(CAM_D3)  
Parallel camera  
data bit 3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
nRESET = 0  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
Value  
Hi-Z,  
Pull,  
Drive  
ADC channel 2  
input (1.5-V max)  
See(5)  
ADC_CH2  
GPIO4  
I
Hi-Z,  
Pull,  
0
GPIO  
I/O  
Analog  
input (up to  
1.8 V)/  
GPIO_PAD_  
CONFIG_4  
(0x4402 E0B0)  
Hi-Z,  
Pull,  
Drive  
Drive  
49(9)  
GPIO4  
Yes  
See(8)  
Yes  
Hi-Z  
Hi-Z,  
Pull,  
digital I/O  
6
UART1_RX  
UART1 RX data  
I
Drive  
Hi-Z,  
Pull,  
Drive  
pDATA6  
(CAM_D2)  
Parallel camera  
data bit 2  
4
I
i-Z,  
Pull,  
Drive  
ADC channel 3  
input (1.5 V max)  
See(5)  
ADC_CH3  
GPIO5  
I
I/O  
I
Hi-Z,  
Pull,  
Drive  
0
4
6
7
GPIO  
Analog  
input up to  
1.5 V  
GPIO_PAD_  
CONFIG_5  
(0x4402 E0B4)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
pDATA5  
(CAM_D1)  
Parallel camera  
data bit 1  
50(9)  
GPIO5  
No  
See(8)  
No  
Hi-Z  
Hi-Z,  
Pull,  
Drive  
I2S audio port data  
1 (RX, TX)  
McAXR1  
I/O  
I
Hi-Z,  
Pull,  
GT_CCP05  
Timer capture port  
Drive  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
nRESET = 0  
Value  
Hi-Z,  
0
5
4
GPIO6  
GPIO  
I/O  
O
I
Pull,  
Drive  
UART0 Request-to-  
Send (active low)  
UART0_RTS  
1
Hi-Z,  
Pull,  
Drive  
pDATA4  
(CAM_D0)  
Parallel camera  
data bit 0  
GPIO_PAD_  
CONFIG_6  
(0x4402 E0B8)  
Hi-Z,  
Pull,  
Drive  
51  
GPIO6  
I/O  
No  
No  
No  
Hi-Z  
Hi-Z,  
Pull,  
Drive  
UART1 Clear to  
send (active low)  
3
6
UART1_CTS  
UART0_CTS  
GT_CCP06  
GPIO7  
I
I
Hi-Z,  
Pull,  
Drive  
UART0 Clear to  
send (active low)  
Hi-Z,  
Pull,  
Drive  
7
Timer capture port  
GPIO  
I
Hi-Z,  
Pull,  
Drive  
0
I/O  
O
Hi-Z,  
Pull,  
Drive  
13  
McACLK  
I2S audio port clock  
GPIO_PAD_  
CONFIG_7  
Hi-Z,  
Pull,  
52  
GPIO7  
I/O  
No  
No  
No  
Hi-Z  
(0x4402 E0BC)  
UART1 Request to  
send (active low)  
Drive  
3
UART1_RTS  
UART0_RTS  
O
O
1
UART0 Request to  
send (active low)  
10  
1
1
11  
0
UART0_TX  
GPIO8  
UART0 TX data  
GPIO  
O
I/O  
Interrupt from SD  
card (future  
support)  
6
SDCARD_IRQ  
I
GPIO_PAD_  
CONFIG_8  
Hi-Z,  
Pull,  
Hi-Z,  
Pull,  
53  
GPIO8  
I/O  
No  
No  
No  
Hi-Z  
(0x4402 E0C0)  
Drive  
Drive  
I2S audio port  
frame sync  
7
McAFSX  
O
I
12  
GT_CCP06  
Timer capture port  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
nRESET = 0  
7-1. Pin Attributes and Pin Multiplexing (continued)  
GENERAL PIN ATTRIBUTES  
FUNCTION  
PAD STATES  
Dig. Pin  
Mux  
Config.  
Mode  
Config.  
Addl.  
Analog  
Mux  
Select as  
Wakeup  
Source  
Muxed  
With  
JTAG  
Signal  
Dig. Pin Mux  
Config. Reg.  
Pkg. Pin Pin Alias  
Use  
Signal Name  
Signal Description Directio LPDS(1)  
n
Hib(2)  
Value  
0
3
GPIO9  
GPIO  
I/O  
O
Pulse-width  
modulated O/P  
GT_PWM05  
GPIO_PAD_  
CONFIG_9  
(0x4402 E0C4)  
Hi-Z,  
Pull,  
Drive  
Hi-Z,  
Pull,  
Drive  
SDCARD_  
DATA0  
54  
GPIO9  
I/O  
No  
No  
No  
6
7
SD card data  
I/O  
I/O  
Hi-Z  
I2S audio port data  
(RX, TX)  
McAXR0  
12  
GT_CCP00  
GND  
Timer capture port  
GND  
I
55  
56  
57  
58  
59  
60  
61  
62  
63  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7.3 Signal Descriptions  
7-2. Signal Descriptions  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
ADC_CH0  
ADC_CH1  
ADC_CH2  
ADC_CH3  
GPIO10  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO12  
GPIO22  
GPIO28  
GPIO0  
47  
48  
49  
50  
3
I/O  
I/O  
I/O  
I
I
ADC channel 0 input (maximum of 1.5 V)  
ADC channel 1 input (maximum of 1.5 V)  
ADC channel 2 input (maximum of 1.5 V)  
ADC channel 3 input (maximum of 1.5 V)  
I
ADC  
I
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
5
6
7
8
9
BLE/2.4 GHz  
radio  
11  
19(1)  
44  
42(1)  
50  
51  
53  
54  
3
Coexistence inputs and outputs  
coexistence(2)  
GPIO30  
GPIO5  
GPIO6  
GPIO8  
GPIO9  
4
5
I/O  
I/O  
I/O  
I/O  
I/O  
O
6
7
8
9
10  
11  
19(1)  
23  
42(1)  
44  
48  
49  
50  
51  
53  
54  
12  
18  
21  
22  
I/O  
I/O  
O
Hostless mode  
HM_IO  
Hostless mode inputs and outputs  
I/O  
I/O  
O
I/O  
I/O  
O
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
TDI  
JTAG TDI. Reset default pinout.  
TDO  
TCK  
TMS  
O
JTAG TDO. Reset default pinout.  
JTAG/SWD TCK. Reset default pinout.  
JTAG/SWD TMS. Reset default pinout.  
JTAG / SWD  
I
I/O  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
3
5
I2C_SCL  
I/O  
I/O  
I/O (open drain) I2C clock data  
9
12  
4
I2C  
6
I2C_SDA  
I/O (open drain) I2C data  
10  
18  
3
GT_PWM06  
GT_CCP01  
GT_PWM07  
GT_CCP02  
GT_CCP03  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
I
Pulse-width modulated O/P  
Timer capture port  
Pulse-width modulated O/P  
46  
4
O
I
47  
9
I
10  
11  
5
I
GT_CCP04  
GT_CCP05  
I
I
Timer capture ports  
6
I
18  
51  
53  
7
I
GT_CCP06  
I
Timers  
I
GT_CCP07  
PWM0  
I
18  
21  
23  
44  
54  
42  
46  
47  
50  
54  
O
O
O
I
GT_PWM03  
GT_PWM02  
Pulse-width modulated outputs  
Timer capture ports  
I/O  
I/O  
I/O  
I/O  
I/O  
I
GT_CCP00  
I
GT_CCP05  
GT_CCP01  
GT_CCP02  
GT_CCP05  
GT_PWM05  
I
I
I
I
Timer capture port Input  
I/O  
O
Pulse-width modulated output  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
FUNCTION  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7-2. Signal Descriptions (continued)  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
SIGNAL NAME  
GPIO10  
DESCRIPTION  
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
GPIO11  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO12  
GPIO13  
GPIO22  
GPIO23  
GPIO24  
GPIO28  
GPIO29  
GPIO25  
GPIO0  
4
5
6
7
8
9
10  
11  
12  
18  
19  
22  
23  
44  
42  
46  
47  
48  
49  
50  
51  
52  
53  
54  
4
GPIO  
General-purpose inputs or outputs  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO30  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
11  
18  
23  
42  
53  
9
MCAFSX  
I/O  
O
I2S audio port frame sync  
I2S audio port clock outputs  
McASP  
I/O  
I/O  
I/O  
I
O
O
I2S or PCM  
McACLK  
McAXR1  
42  
44  
50  
44  
54  
52  
3
I/O  
I/O  
I/O  
I/O  
O
I2S audio port data 1 (RX/TX)  
I2S audio port data 1 (RX and TX)  
I2S audio port data 0 (RX and TX)  
I2S audio port data (RX and TX)  
I2S audio port clock  
I/O  
I/O  
I/O  
McAXR0  
McACLKX  
SDCARD_CLK  
I/O  
O
SD card clock data  
7
4
I/O  
I/O  
I/O (open drain)  
I/O  
SDCARD_CMD  
SD card command line  
Multimedia card  
(MMC or SD)  
8
6
SDCARD_DATA0  
SDCARD_IRQ  
I/O  
I/O  
I/O  
I
SD card data  
54  
53  
Interrupt from SD card(3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
Free clock to parallel camera  
pXCLK (XVCLK)  
pVS (VSYNC)  
4
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
O
I
Parallel camera vertical sync  
Parallel camera horizontal sync  
Parallel camera data bit 4  
Parallel camera data bit 5  
Parallel camera data bit 6  
Parallel camera data bit 7  
Pixel clock from parallel camera sensor  
Parallel camera data bit 3  
Parallel camera data bit 2  
Parallel camera data bit 1  
Parallel camera data bit 0  
Power supply for the module  
Power supply for the module  
WLAN analog RF 802.11 a/b/g/n bands  
General SPI clock  
pHS (HSYNC)  
pDATA8 (CAM_D4)  
pDATA9 (CAM_D5)  
pDATA10 (CAM_D6)  
pDATA11 (CAM_D7)  
pCLK (PIXCLK)  
pDATA7 (CAM_D3)  
pDATA6 (CAM_D2)  
pDATA5 (CAM_D1)  
pDATA4 (CAM_D0)  
VBAT1  
10  
5
I
I
6
I
7
I
Parallel interface  
(8-bit π)  
8
I
46  
48  
49  
50  
51  
37  
40  
31  
5
I
I
I
I
I/O  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I
Power  
RF(4)  
VBAT2  
RF_ABG  
GSPI_CLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
6
GSPI_MISO  
GSPI_CS  
General SPI MISO  
42  
8
SPI  
General SPI device select  
44  
7
GSPI_MOSI  
General SPI MOSI  
FLASH_SPI_CLK  
FLASH_SPI_DOUT  
FLASH_SPI_DIN  
FLASH_SPI_CS  
15  
17  
13  
14  
Clock to SPI serial flash (fixed default)  
Data to SPI serial flash (fixed default)  
Data from SPI serial flash (fixed default)  
O
O
FLASH SPI  
I
I
O
O
Device select to SPI serial flash (fixed default)  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
FUNCTION  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
7-2. Signal Descriptions (continued)  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
SIGNAL NAME  
DESCRIPTION  
3
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
O
O
I
UART TX data  
UART1_TX  
12  
46  
48  
4
UART1 TX data  
UART RX data  
8
I
UART1_RX  
18  
47  
49  
44  
52  
51  
9
I
I
UART1 RX data  
I
O
O
I
UART1_RTS  
UART1_CTS  
UART1 request-to-send (active low)  
UART1 clear-to-send (active low)  
UART  
O
O
O
O
I
42  
46  
52  
10  
47  
44  
51  
44  
51  
52  
23(5)  
24  
34  
UART0_TX  
UART0 TX data  
UART0 RX data  
UART0 RX data  
UART0_RX  
I
UART0_CTS  
I/O  
I
UART0 clear-to-send input (active low)  
I/O  
I/O  
I/O  
O
O
O
O
I
UART0_RTS  
SOP2  
UART0 request-to-send (active low)  
Sense-on-power 2  
Sense-On-Power SOP1  
SOP0  
I
I
Configuration sense-on-power 1  
Configuration sense-on-power 0  
I
I
(1) LPDS retention unavailable.  
(2) The CC3235MODx or CC3235MODAx modules are compatible with TI BLE modules using an external RF switch.  
(3) Future support.  
(4) This pins is not accessible on the CC3235MODAx devices as it is directly tied to the integrated antenna.  
(5) This pin has dual functions: as a SOP[2] (device operation mode), and as an external TCXO enable. As a TXCO enable, the pin is an  
output on power up and driven logic high. During hibernate low-power mode, the pin is in a Hi-Z state but is pulled down for SOP mode  
to disable TCXO. Because of the SOP functionality, the pin must be used as an output only.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
7.4 Drive Strength and Reset States for Analog-Digital Multiplexed Pins  
7-3 describes the use, drive strength, and default state of analog- and digital-multiplexed pins at first-time  
power up and reset (nRESET pulled low).  
7-3. Drive Strength and Reset States for Analog-Digital Multiplexed Pins  
MAXIMUM  
STATE AFTER CONFIGURATION  
OF ANALOG SWITCHES (ACTIVE,  
LPDS, and HIB POWER MODES)  
EFFECTIVE  
DRIVE  
STRENGTH  
(mA)  
BOARD LEVEL  
CONFIGURATION AND USE  
DEFAULT STATE AT FIRST POWER  
UP OR FORCED RESET  
PIN  
Analog is isolated. The digital I/O cell Determined by the I/O state, as are  
is also isolated. other digital I/Os.  
42  
44  
47  
48  
49  
50  
Generic I/O  
Generic I/O  
4
4
4
4
4
4
Analog is isolated. The digital I/O cell Determined by the I/O state, as are  
is also isolated. other digital I/Os.  
Analog signal (1.8-V absolute,  
1.46-V full scale)  
ADC is isolated. The digital I/O cell is Determined by the I/O state, as are  
also isolated. other digital I/Os.  
Analog signal (1.8-V absolute,  
1.46-V full scale)  
ADC is isolated. The digital I/O cell is Determined by the I/O state, as are  
also isolated. other digital I/Os.  
Analog signal (1.8-V absolute,  
1.46-V full scale)  
ADC is isolated. The digital I/O cell is Determined by the I/O state, as are  
also isolated. other digital I/Os.  
Analog signal (1.8-V absolute,  
1.46-V full scale)  
ADC is isolated. The digital I/O cell is Determined by the I/O state, as are  
also isolated. other digital I/Os.  
7.5 Pad State After Application of Power to Chip, but Before Reset Release  
When a stable power is applied to the CC3235MODx or CC3235MODAx module for the first time or when supply  
voltage is restored to the proper value following a prior period with supply voltage below 1.5 V, the level of the  
digital pads are undefined in the period starting from the release of nRESET and until the DIG_DCDC of the  
CC3235x chip powers up. This period is less than approximately 10 ms. During this period, pads can be  
internally pulled weakly in either direction. If a certain set of pins are required to have a definite value during this  
pre-reset period, an appropriate pullup or pulldown must be used at the board level. The recommended value of  
these external pullup or pulldown resistors is 2.7 kΩ.  
7.6 Connections for Unused Pins  
All unused pin should be configured as stated in 7-4.  
7-4. Connections for Unused Pins  
FUNCTION  
SIGNAL DESCRIPTION  
PIN NUMBER  
ACCEPTABLE PRACTICE  
Wake up I/O source should not be floating during  
hibernate.  
All the I/O pins will float while in Hibernate and Reset  
states. Ensure pullup and pulldown resistors are available  
on board to maintain the state of the I/O.  
Leave unused GPIOs as NC  
GPIO  
General-purpose input or output  
20, 31(1), 33, 39,  
41, 45  
No Connect  
SOP  
NC  
Unused pin, leave as NC.  
Leave as NC (Modules contain internal 100-kΩpulldown  
resistors on the SOP lines). An external 10-kΩpullup  
resistor is required to pull these pins high. See 9.11.1  
for SOP[2:0] configuration modes.  
Configuration sense-on-power  
23, 24, 34  
Reset  
JTAG  
RESET input for the device  
JTAG interface  
Never leave the reset pin floating  
Leave as NC if unused  
(1) The CC3235MODAx's RF_ABG pin is a NC as it is directly tied to the integrated PCB antenna.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8 Specifications  
8.1 Absolute Maximum Ratings  
All measurements are referenced at the module pins unless otherwise indicated. All specifications are over process and  
voltage unless otherwise indicated.  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.5  
0.5  
0.5  
0.5  
40  
40  
MAX  
UNIT  
V
VBAT  
3.8  
Digital I/O  
VBAT + 0.5  
V
RF pin  
2.1  
2.1  
85  
V
Analog pins  
V
Operating temperature (TA)  
°C  
°C  
°C  
Storage temperature (Tstg  
)
85  
Junction temperature (Tj)(3)  
120  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Junction temperature is for the CC3235x device that is contained within the module.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
±2000  
VESD  
Electrostatic discharge  
V
Charged device model (CDM),  
All pins  
±500  
per JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(2) (1) (3)  
MIN  
2.3  
TYP  
3.3  
25  
MAX  
3.6  
85  
UNIT  
VBAT  
V
°C  
Operating temperature  
Ambient thermal slew  
40  
20  
20  
°C/minute  
(1) When operating at an ambient temperature of over 75°C, the transmit duty cycle must remain below 50% to avoid the auto-protect  
feature of the power amplifier. If the auto-protect feature triggers, the device takes a maximum of 60 seconds to restart the  
transmission.  
(2) To ensure WLAN performance, the ripple on the power supply must be less than ±300 mV. The ripple should not cause the supply to  
fall below the brownout voltage.  
(3) The minimum voltage specified includes the ripple on the supply voltage and all other transient dips. The brownout condition is also 2.1  
V, and care must be taken when operating at the minimum specified voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.4 Current Consumption (CC3235MODS and CC3235MODAS)  
8-1. Current Consumption Summary (CC3235MODS and CC3235MODAS) 2.4 GHz RF Band  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (5)  
TX power level = 0  
MIN  
TYP(6)  
272  
190  
248  
182  
223  
160  
59  
MAX UNIT  
1 DSSS  
6 OFDM  
54 OFDM  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX  
RX  
NWP ACTIVE  
MCU ACTIVE  
mA  
1 DSSS  
54 OFDM  
59  
NWP idle connected(3)  
15.3  
269  
187  
245  
179  
220  
157  
56  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
NWP ACTIVE  
MCU SLEEP  
mA  
1 DSSS  
RX  
54 OFDM  
56  
NWP idle connected(3)  
12.2  
266  
184  
242  
176  
217  
154  
53  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
NWP ACTIVE  
mA  
MCU LPDS  
1 DSSS  
54 OFDM  
64 KB  
RX  
53  
120  
135  
710  
1
NWP LPDS(2)  
SRAM Retention  
256 KB  
µA  
NWP idle connected(3)  
MCU SHUTDOWN MCU shutdown  
MCU HIBERNATE MCU hibernate  
µA  
µA  
5.5  
VBAT = 3.6 V  
VBAT = 3.3 V  
VBAT = 2.3 V  
420  
450  
610  
Peak calibration current(4)  
mA  
(1) TX power level = 0 implies maximum power (see 8-1, 8-2, and 8-3). TX power level = 4 implies output power backed off  
approximately 4 dB.  
(2) LPDS current does not include the external serial flash. The CC3235MODS and CC3235MODAS device can be configured to retain  
0 KB, 64 KB, 128 KB, 192 KB, or 256 KB of SRAM in LPDS. Each 64-KB block of MCU retained SRAM increases LPDS current by 4  
µA.  
(3) DTIM = 1  
(4) The complete calibration can take up to 17 mJ of energy from the battery over a time of 24 ms. In default mode, calibration is  
performed sparingly, and typically occurs when re-enabling the NWP and when the temperature has changed by more than 20°C.  
There are two additional calibration modes that may be used to reduced or completely eliminate the calibration event. For further  
details, see CC31xx, CC32xx SimpleLink™ Wi-Fi® and IoT Network Processor Programmer's Guide.  
(5) The CC3235MODS and CC3235MODAS system is a constant power-source system. The active current numbers scale based on the  
VBAT voltage supplied.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
(6) Typical numbers assume a VSWR of 1.5:1.  
8-2. Current Consumption Summary (CC3235MODS and CC3235MODAS) 5 GHz RF Band  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (4)  
6 OFDM  
MIN  
TYP(5)  
318  
293  
67  
MAX UNIT  
TX  
RX  
NWP ACTIVE  
54 OFDM  
MCU ACTIVE  
MCU SLEEP  
mA  
54 OFDM  
NWP idle connected(3)  
15.3  
315  
290  
64  
6 OFDM  
54 OFDM  
54 OFDM  
TX  
NWP ACTIVE  
mA  
RX  
NWP idle connected(3)  
TX  
RX  
SRAM Retention  
12.2  
312  
287  
61  
6 OFDM  
54 OFDM  
54 OFDM  
64 KB  
NWP ACTIVE  
NWP LPDS(2)  
mA  
µA  
MCU LPDS  
120  
135  
710  
1
256 KB  
NWP idle connected(3)  
MCU SHUTDOWN MCU shutdown  
MCU HIBERNATE MCU hibernate  
µA  
µA  
5.5  
VBAT = 3.6 V  
VBAT = 3.3 V  
VBAT = 2.7 V  
VBAT = 2.3 V  
290  
310  
310  
365  
Peak calibration current(6)  
mA  
(1) Measurements taken at maximum TX power  
(2) LPDS current does not include the external serial flash. The CC3235MODx and CC3235MODAx can be configured to retain 0 KB,  
64 KB, 128 KB, 192 KB, or 256 KB of SRAM in LPDS. Each 64-KB block of MCU retained SRAM increases LPDS current by 4 µA.  
(3) DTIM = 1  
(4) The CC3235MODx and CC3235MODAx system is a constant power-source system. The active current numbers scale based on the  
VBAT voltage supplied.  
(5) Typical numbers assume a VSWR of 1.5:1.  
(6) The complete calibration can take up to 17 mJ of energy from the battery over a time of 24 ms. In default mode, calibration is  
performed sparingly, and typically occurs when re-enabling the NWP and when the temperature has changed by more than 20°C.  
There are two additional calibration modes that may be used to reduced or completely eliminate the calibration event. For further  
details, see CC31xx, CC32xx SimpleLink™ Wi-Fi® and IoT Network Processor Programmer's Guide.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.5 Current Consumption (CC3235MODSF and CC3235MODASF)  
8-3. Current Consumption Summary (CC3235MODSF and CC3235MODASF) 2.4 GHz RF Band  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (5)  
TX power level = 0  
MIN  
TYP(5)  
286  
202  
255  
192  
232  
174  
74  
MAX UNIT  
1 DSSS  
6 OFDM  
54 OFDM  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX  
RX  
NWP ACTIVE  
MCU ACTIVE  
mA  
1 DSSS  
54 OFDM  
74  
NWP idle connected(3)  
25.2  
282  
198  
251  
188  
228  
170  
70  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
NWP ACTIVE  
MCU SLEEP  
mA  
1 DSSS  
RX  
NWP idle connected(3)  
54 OFDM  
70  
21.2  
266  
184  
242  
176  
217  
154  
53  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
NWP active  
mA  
MCU LPDS  
1 DSSS  
54 OFDM  
64 KB  
RX  
53  
120  
135  
710  
SRAM  
Retention  
NWP LPDS(2)  
256 KB  
µA  
NWP idle connected(3)  
MCU shutdown  
MCU  
SHUTDOWN  
1
µA  
µA  
MCU  
HIBERNATE  
MCU hibernate  
5.5  
VBAT = 3.6 V  
VBAT = 3.3 V  
VBAT = 2.3 V  
420  
450  
610  
Peak calibration current(4)  
mA  
(1) TX power level = 0 implies maximum power (see 8-2, 8-2, and 8-3). TX power level = 4 implies output power backed off  
approximately 4 dB.  
(2) LPDS current does not include the external serial flash. The CC3235MODx and CC3235MODAx can be configured to retain 0 KB,  
64 KB, 128 KB, 192 KB, or 256 KB of SRAM in LPDS. Each 64-KB block of MCU retained SRAM increases LPDS current by 4 µA.  
(3) DTIM = 1  
(4) The complete calibration can take up to 17 mJ of energy from the battery over a period of 24 ms. Calibration is performed sparingly,  
typically when coming out of HIBERNATE and only if temperature has changed by more than 20°C. The calibration event can be  
controlled by a configuration file in the serial flash.  
(5) Typical numbers assume a VSWR of 1.5:1.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8-4. Current Consumption Summary (CC3235MODS and CC3235MODAS) 5 GHz RF Band  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (4)  
6 OFDM  
MIN TYP(4) MAX UNIT  
329  
TX  
RX  
NWP ACTIVE  
54 OFDM  
54 OFDM  
306  
mA  
80  
MCU ACTIVE  
MCU SLEEP  
NWP idle connected(3)  
25.2  
325  
6 OFDM  
54 OFDM  
54 OFDM  
TX  
NWP ACTIVE  
302  
mA  
76  
RX  
NWP idle connected(3)  
21.2  
312  
6 OFDM  
54 OFDM  
54 OFDM  
64 KB  
TX  
NWP active  
289  
63  
mA  
µA  
RX  
MCU LPDS  
120  
135  
710  
SRAM  
Retention  
NWP LPDS(2)  
256 KB  
NWP idle connected(3)  
MCU shutdown  
MCU  
SHUTDOWN  
1
µA  
µA  
MCU  
HIBERNATE  
MCU hibernate  
5.5  
VBAT = 3.6 V  
290  
310  
310  
333  
VBAT = 3.3 V  
VBAT = 2.7 V  
VBAT = 2.3 V  
mA  
Peak calibration current(5)  
(1) Measurements taken at maximum TX power  
(2) LPDS current does not include the external serial flash. The CC3235MODS and CC3235MODAS can be configured to retain 0 KB,  
64 KB, 128 KB, 192 KB, or 256 KB of SRAM in LPDS. Each 64-KB block of MCU retained SRAM increases LPDS current by 4 µA.  
(3) DTIM = 1  
(4) Typical numbers assume a VSWR of 1.5:1.  
(5) The complete calibration can take up to 17 mJ of energy from the battery over a period of 24 ms. Calibration is performed sparingly,  
typically when coming out of HIBERNATE and only if temperature has changed by more than 20°C. The calibration event can be  
controlled by a configuration file in the serial flash.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.6 TX Power Control for 2.4 GHz Band  
The CC3235MODS and CC3235MODAS has several options for modifying the output power of the device when  
required. For the 2.4 GHz band it is possible to lower the overall output power at a global level using the global  
TX power level setting. In addition, the 2.4 GHz band allows the user to enter additional back-offs 2, per channel,  
3
region and modulation rates 4 5, through Image creator (see the Uniflash with Image Creator User Guide for  
more details).  
8-1, 8-2, and 8-3 show TX power and IBAT versus TX power level settings for the CC3235MODS  
module at modulations of 1 DSSS, 6 OFDM, and 54 OFDM, respectively. For the CC3235MODSF module, the  
IBAT current has an increase of approximately 10 mA to 15 mA depending on the transmitted rate. The TX  
power level remains the same.5  
In 8-1, the area enclosed in the circle represents a significant reduction in current during transition from TX  
power level 3 to level 4. In the case of lower range requirements (14-dBm output power), TI recommends using  
TX power level 4 to reduce the current.  
1 DSSS  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-1. TX Power and IBAT vs TX Power Level Settings (1 DSSS)  
2
3
4
The back-off range is between 6 dB to +6 dB in 0.25-dB increments.  
FCC, IC/ISED, ETSI/CE, MIC, and SRRC are supported.  
Back-off rates are grouped into 11b rates, high modulation rates (MCS7, 54 OFDM and 48 OFDM), and lower modulation rates (all  
other rates).  
There will be a difference between the CC3135MOD and CC3135 IC TX power levels.  
5
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
6 OFDM  
19.00  
17.00  
280.00  
Color by  
264.40  
TX Power (dBm)  
249.00  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
233.30  
218.00  
202.00  
186.70  
171.00  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-2. TX Power and IBAT vs TX Power Level Settings (6 OFDM)  
54 OFDM  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-3. TX Power and IBAT vs TX Power Level Settings (54 OFDM)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.7 TX Power Control for 5 GHz  
5-GHz power control is done via Image Creator where the maximum transmit power is provided 6. Within Image  
Creator, power control is possible per channel, region 7, and modulation rate 8. In addition, it is possible to enter  
an additional back-off 9factor per channel and modulation rate for further margin to regulatory requirements.  
It is also possible to set the TX and RX trace losses to the antenna per band 10. The peak antenna gain 11can  
also be provided, thus allowing further control. For a full description of options and capabilities see Uniflash with  
Image Creator User Guide.  
8.8 Brownout and Blackout Conditions  
The module enters a brownout condition whenever the input voltage dips below VBROWNOUT (see 8-4 and 图  
8-5). This condition must be considered during design of the power supply routing, especially if operating from a  
battery. High-current operations, such as a TX packet or any external activity (not necessarily related directly to  
networking) can cause a drop in the supply voltage, potentially triggering a brownout. The resistance includes  
the internal resistance of the battery, contact resistance of the battery holder (four contacts for a 2× AA battery),  
and the wiring and PCB routing resistance.  
Note  
When the module is in HIBERNATE state, brownout is not detected. Only blackout is in effect during  
HIBERNATE state.  
6
The maximum transmit power range is 18 dBm to 0.125 dBm in 0.125-dBm decrements.  
FCC, IC/ISED, ETSI/CE, MIC, and SRRC are supported.  
Rates are grouped into high modulation rates (MCS7, 54 OFDM and 48 OFDM) and lower modulation rates (all other rates).  
The back-off range is 0 dBm to 18 dBm in 0.125-dBm increments, with the maximum back-off not exceed that of the maximum  
7
8
9
transmit power.  
10  
The range of losses if from 0 dBm to 7.75 dBm in 0.125-dBm increments.  
The antenna gain has a range of -2 dBi to 5.75 dBi in 0.125-dBi increments.  
11  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8-4. Brownout and Blackout Levels (1 of 2)  
8-5. Brownout and Blackout Levels (2 of 2)  
In the brownout condition, all sections of the device shut down within the module except for the Hibernate block  
(including the 32-kHz RTC clock), which remains on. The current in this state can reach approximately 400 µA.  
The blackout condition is equivalent to a hardware reset event in which all states within the module are lost.  
Vbrownout = 2.1 V and Vblackout = 1.67 V  
8-5 lists the brownout and blackout voltage levels.  
8-5. Brownout and Blackout Voltage Levels  
CONDITION  
Vbrownout  
VOLTAGE LEVEL  
UNIT  
V
2.1  
Vblackout  
1.67  
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.9 Electrical Characteristics for GPIO Pins  
8-6. GPIO Pins Except 25, 26, 42, and 44 (25°C)(1)  
TA = 25°C, VBAT = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
pF  
V
CIN  
VIH  
VIL  
IIH  
Pin capacitance  
4
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
0.65 × VDD  
VDD + 0.5 V  
0.35 × VDD  
V
0.5  
5
5
nA  
nA  
IIL  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.8  
VDD × 0.7  
VDD × 0.7  
VDD × 0.75  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V VDD < 3.6 V  
VOH  
High-level output voltage  
V
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
2.4 V VDD < 3.6 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.3 V VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.2  
VDD × 0.2  
VDD × 0.2  
VDD × 0.25  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V VDD < 3.6 V  
VOL  
Low-level output voltage  
V
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
2.4 V VDD < 3.6 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.3 V VDD < 2.4 V  
2-mA drive  
2
4
6
2
4
6
High-level  
source current,  
IOH  
4-mA drive  
mA  
mA  
6-mA drive  
2-mA drive  
Low-level sink  
4-mA drive  
current,  
IOL  
6-mA drive  
(1) TI recommends using the lowest possible drive strength that is adequate for the applications. This recommendation minimizes the risk  
of interference to the WLAN radio and reduces any potential degradation of RF sensitivity and performance. The default drive strength  
setting is 6 mA.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8-7. GPIO Pins 25, 26, 42, and 44 (25°C)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
pF  
V
CIN  
VIH  
VIL  
IIH  
Pin capacitance  
7
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
0.65 × VDD  
VDD + 0.5 V  
0.35 × VDD  
V
0.5  
50  
50  
nA  
nA  
IIL  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.8  
VDD × 0.7  
VDD × 0.7  
VDD × 0.75  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V VDD < 3.6 V  
VOH High-level output voltage  
V
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
2.4 V VDD < 3.6 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.3 V VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.2  
VDD × 0.2  
VDD × 0.2  
VDD × 0.25  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V VDD < 3.6 V  
VOL Low-level output voltage  
V
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
2.4 V VDD < 3.6 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.3 V VDD < 2.4 V  
2-mA drive  
1.5  
2.5  
3.5  
1.5  
2.5  
3.5  
High-level source  
current, VOH = 2.4  
IOH  
4-mA drive  
6-mA drive  
2-mA drive  
4-mA drive  
6-mA drive  
mA  
Low-level sink  
current,  
IOL  
mA  
V
VIL  
nRESET  
0.6  
(1) TI recommends using the lowest possible drive strength that is adequate for the applications. This recommendation minimizes the risk  
of interference to the WLAN radio and reduces any potential degradation of RF sensitivity and performance. The default drive strength  
setting is 6 mA.  
8.9.1 Electrical Characteristics for Pin Internal Pullup and Pulldown (25°C)  
PARAMETER  
Pullup current  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
IOH  
IOL  
10  
µA  
(VDD = 3.0 V)  
Pulldown current  
(VDD = 3.0 V)  
10  
µA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.10 CC3235MODAx Antenna Characteristics  
TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Polarization  
Peak Gain  
Linear  
2.4 GHz Band  
5 GHz Band  
2.4 GHz Band  
5 GHz Band  
3.5  
4.5  
dBi  
dBi  
70%  
65%  
Efficiency  
8.11 WLAN Receiver Characteristics  
8-8. WLAN Receiver Characteristics: 2.4 GHz Band  
TA = 25°C, VBAT = 2.3 V to 3.6 V. Parameters are measured at the SoC pin on channel 6 (2437 MHz).  
PARAMETER  
TEST CONDITIONS (Mbps)  
MIN  
TYP  
94.5  
92.5  
86.5  
89  
MAX  
UNIT  
1 DSSS  
2 DSSS  
11 CCK  
6 OFDM  
Sensitivity  
(8% PER for 11b rates, 10% PER for 11g/11n  
9 OFDM  
dBm  
88.5  
85  
rates)(1)  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7 (GF)(2)  
802.11b  
79  
73  
70  
2.5  
8.5  
Maximum input level  
(10% PER)  
dBm  
802.11g  
(1) Sensitivity is 1-dB worse on channel 13 (2472 MHz).  
(2) Sensitivity for mixed mode is 1-dB worse.  
8-9. WLAN Receiver Characteristics: 5 GHz Band  
TA = 25°C, VBAT = 2.3 V to 3.6 V.  
PARAMETER  
TEST CONDITIONS (Mbps)  
6 OFDM  
MIN  
TYP  
-89  
MAX  
UNIT  
dBm  
dBm  
9 OFDM  
-88  
18 OFDM  
-85  
Sensitivity  
(10% PER for 11g/11n rates)  
36 OFDM  
-78.5  
-72  
54 OFDM  
MCS7 (GF)(1)  
-68  
Maximum input level  
802.11a  
-17  
(1) Sensitivity for mixed mode is 1-dB worse.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8.12 WLAN Transmitter Characteristics  
8-10. WLAN Transmitter Characteristics: 2.4 GHz Band  
TA = 25°C, VBAT = 2.3 V to 3.6 V.(1) Parameters measured at SoC pin on channel 6 (2437 MHz).(2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Operating frequency range(4) (5)  
2412  
2472  
MHz  
1 DSSS  
2 DSSS  
11 CCK  
16  
16  
16.3  
15.3  
15.3  
15  
6 OFDM  
9 OFDM  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7  
Maximum RMS output power measured at 1  
dB from IEEE spectral mask or EVM  
dBm  
ppm  
14  
12.5  
11  
Transmit center frequency accuracy  
25  
25  
(1) Transmit power will be reduced by 1.5dB for VBAT < 2.8V  
(2) The 11g/n low rates on edge channels (2412 and 2462 MHz) have reduced TX power to meet FCC emission limits.  
(3) Power of 802.11b rates are reduced to meet ETSI requirements in Europe.  
(4) Channels 1 (2142 MHz) through 11 (2462 MHz) are supported for FCC.  
(5) Channels 1 (2142 MHz) through 13 (2472MHz) are supported for Europe and Japan. Note that channel 14 is not supported for Japan.  
8-11. WLAN Transmitter Characteristics: 5 GHz Band  
TA = 25°C, VBAT = 2.3 V to 3.6 V.(1) Parameters measured at SoC pin are the average of channels 40, 56, 120, and 157 .(5) (6)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Operating frequency range(2) (3) (4)  
5180  
5825  
MHz  
6 OFDM  
9 OFDM  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7  
15.1  
15.1  
15.1  
13.6  
12  
Maximum RMS output power measured at 1  
dB from IEEE spectral mask or EVM  
dBm  
ppm  
11  
Transmit center frequency accuracy  
-20  
20  
(1) Transmit power will be reduced by 1.5dB for VBAT < 2.8V  
(2) FCC band covers U-NII-1, U-NII-2A, U-NII-2C, and U-NII-3 20-MHz BW modulations.  
(3) Europe bands 1, 2 and 3, 20-MHz BW modulations are supported.  
(4) For Japan, W52, W53 and W56, 20-MHz BW modulations are supported.  
(5) FCC channels 36, 60, 64, 100, and 140, where harmonics/sub-harmonics of fall in the FCC restricted band, have reduced output  
power to meet the FCC RSE requirement.  
(6) The edge channels (100 and 140) have reduced TX power to meet FCC emissions limits.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.13 BLE and WLAN Coexistence Requirements  
For proper BLE and WLAN 2.4 GHz radio coexistence, the following requirements must be met:  
8-12. BLE/WLAN Coex(1) Isolation Requirement  
PARAMETER  
Band  
MIN  
TYP  
MAX  
UNIT  
Port-to-port isolation  
Dual antenna configuration(2)  
20(3)  
dB  
(1) The CC3235MODS and CC3235MODAS modules are compatible with TI BLE modules using an external RF switch.  
(2) A single antenna configuration is possible using the CC3x35 devices.  
(3) For dual antenna configuration, the antenna placement must be such that isolation between the BLE and WLAN ports is at least 20 dB.  
8.14 Reset Requirement  
PARAMETER  
Operation mode level  
MIN  
TYP  
0.65 × VBAT  
0.6  
MAX UNIT  
VIH  
VIL  
V
V
Shutdown mode level(1)  
0
5
Minimum time for nReset low for resetting the module  
Rise and fall times  
ms  
µs  
Tr and Tf  
20  
(1) The nRESET pin must be held below 0.6 V for the module to register a reset.  
8.15 Thermal Resistance Characteristics for MOB and MON Packages  
NO.  
T1  
PARAMETER  
RΘJC  
DESCRIPTION  
°C/W(1) (2)  
AIR FLOW (m/s)(3)  
11.4  
8.0  
N/A  
N/A  
0
Junction-to-case  
Junction-to-board  
Junction-to-free air  
T2  
RΘJB  
T3  
19.1  
14.7  
13.4  
12.5  
5.4  
T4  
1
RΘJA  
T5  
Junction-to-moving air  
Junction-to-free air  
Junction-to-package top  
Junction-to-free air  
Junction-to-board  
2
T6  
3
T7  
0
T8  
5.8  
1
ΨJT  
T9  
6.1  
2
T10  
T11  
T12  
T13  
T14  
6.5  
3
6.8  
0
6.6  
1
ΨJB  
6.6  
2
6.5  
3
(1) °C/W = degrees Celsius per watt.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70°C is assumed.  
(3) m/s = meters per second.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8.16 Timing and Switching Characteristics  
8.16.1 Power-Up Sequencing  
For proper start-up of the CC3235MODx and CC3235MODAx module, perform the recommended power-up  
sequencing as follows:  
1. Tie VBAT1 (pin 37) and VBAT2 (pin 40) together on the board.  
2. Hold the nRESET pin low while the supplies are ramping up.  
8-6 shows the reset timing diagram for the first-time power-up and reset removal.  
T1  
T2  
T3  
T4  
VBAT  
nRESET  
APP CODE  
EXECUTION  
POWER  
APP CODE  
LOAD  
RESET  
HW INIT  
FW INIT  
STATE  
OFF  
32-kHz  
RTC CLK  
8-6. First-Time Power-Up and Reset Removal Timing Diagram  
8-13 lists the timing requirements for the first-time power-up and reset removal.  
8-13. First-Time Power-Up and Reset Removal Timing Requirements  
ITEM  
NAME  
DESCRIPTION  
MIN  
TYP  
1
MAX UNIT  
T1 nReset time  
nReset timing after VBAT supplies are stable  
ms  
ms  
T2 Hardware wake-up time  
25  
Time taken by ROM  
T3 firmware to initialize  
hardware  
Includes internal 32-kHz XOSC settling time  
CC3235MODS and CC3235MODAS  
CC3235MODSF and CC3235MODASF  
1.1  
s
App code load time for  
CC3235MODS and  
Image size (KB) × 1.7 ms  
Image size (KB) × 0.06 ms  
CC3235MODAS  
T4  
App code load time for  
CC3235MODSF and  
CC3235MODASF  
8.16.2 Power-Down Sequencing  
For proper power down of the CC3235MODx and CC3235MODAx module, ensure that the nRESET (pin 35) and  
nHIB (pin 4) pins have remained in a known state for a minimum of 200 ms before removing power from the  
module.  
8.16.3 Device Reset  
When a device restart is required, issue a negative pulse to the nRESET pin. Ensure the reset is properly  
applied: A negative reset pulse (on pin 35) of at least 200-mS duration.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.16.4 Wake Up From Hibernate Timing  
8-14 lists the software hibernate timing requirements.  
Note  
The internal 32.768-kHz crystal is kept enabled by default when the module goes to hibernate.  
8-14. Software Hibernate Timing Requirements  
ITEM  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
THIB_MIN  
Minimum hibernate time  
10  
ms  
Hardware wakeup time plus  
firmware initialization time  
(1)  
Twake_from_hib  
50(2)  
ms  
App code load time for  
CC3235MODS and  
CC3235MODAS  
CC3235MODS and CC3235MODAS  
Image size (KB) × 1.7 ms  
Image size (KB) × 0.06 ms  
T_APP_CODE_LOAD  
App code load time for  
CC3235MODSF and  
CC3235MODASF  
CC3235MODSF and  
CC3235MODASF  
(1) Twake_from_hib can be 200 ms on rare occasions when calibration is performed. Calibration is performed sparingly, typically when exiting  
Hibernate and only if temperature has changed by more than 20°C or more than 24 hours have elapsed since a prior calibration.  
(2) Wake-up time can extend to 75 ms if a patch is downloaded from the serial flash.  
8-7 shows the timing diagram for wake up from the hibernate state.  
Application software requests  
entry to hibernate moade  
Twake_from_hib  
TAPP_CODE_LOAD  
THIB_MIN  
VBAT  
nRESET  
STATE  
APP CODE  
LOAD  
ACTIVE  
Hibernate  
HW WAKEUP  
FW INIT  
EXECUTION  
32-kHz  
RTC CLK  
8-7. Wake Up From Hibernate Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8.16.5 Peripherals Timing  
This section describes the peripherals that are supported by the CC3235MODx and CC3235MODAx module, as  
follows:  
SPI  
I2S  
GPIOs  
I2C  
IEEE 1149.1 JTAG  
ADC  
Camera parallel port  
External flash  
UART  
SD Host  
Timers  
8.16.5.1 SPI  
8.16.5.1.1 SPI Master  
The CC3235MODx and CC3235MODAx MCU includes one SPI module, which can be configured as a master or  
slave device. The SPI includes a serial clock with programmable frequency, polarity, and phase; a programmable  
timing control between chip select and external clock generation; and a programmable delay before the first SPI  
word is transmitted. Slave mode does not include a dead cycle between two successive words.  
8-8 shows the timing diagram for the SPI master.  
T2  
CLK  
T6  
T7  
MISO  
MOSI  
T9  
T8  
8-8. SPI Master Timing Diagram  
8-15 lists the timing parameters for the SPI master.  
8-15. SPI Master Timing Parameters  
ITEM  
NAME  
DESCRIPTION  
MIN  
MAX  
UNIT  
MHz  
ns  
F(1)  
Tclk  
D(1)  
Clock frequency  
Clock period  
20  
(1)  
T2  
50  
45%  
1
Duty cycle  
55%  
(1)  
T6  
T7  
T8  
T9  
tIS  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
ns  
ns  
ns  
ns  
(1)  
tIH  
2
(1)  
(1)  
tOD  
tOH  
8.5  
8
(1) Timing parameter assumes a maximum load of 20 pF.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.16.5.1.2 SPI Slave  
8-9 shows the timing diagram for the SPI slave.  
T2  
CLK  
T6  
T7  
MISO  
T9  
T8  
MOSI  
8-9. SPI Slave Timing Diagram  
8-16 lists the timing parameters for the SPI slave.  
8-16. SPI Slave Timing Parameters  
ITEM  
NAME  
DESCRIPTION  
MIN  
MAX  
20  
UNIT  
MHz  
ns  
Clock frequency @ VBAT = 3.3 V  
F(1)  
12  
Clock frequency @ VBAT 2.3 V  
Clock period  
(1)  
T2  
Tclk  
D(1)  
50  
45%  
4
Duty cycle  
55%  
(1)  
T6  
T7  
T8  
T9  
tIS  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
ns  
ns  
ns  
ns  
(1)  
tIH  
4
(1)  
(1)  
tOD  
tOH  
20  
24  
(1) Timing parameter assumes a maximum load of 20 pF at 3.3 V.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8.16.5.2 I2S  
The McASP interface functions as a general-purpose audio serial port optimized for multichannel audio  
applications and supports transfer of two stereo channels over two data pins. The McASP consists of transmit  
and receive sections that operate synchronously and have programmable clock and frame-sync polarity. A  
fractional divider is available for bit-clock generation.  
8.16.5.2.1 I2S Transmit Mode  
8-10 shows the timing diagram for the I2S transmit mode.  
T2  
T1  
T3  
McACLKX  
T4  
T4  
McAFSX  
McAXR0/1  
8-10. I2S Transmit Mode Timing Diagram  
8-17 lists the timing parameters for the I2S transmit mode.  
8-17. I2S Transmit Mode Timing Parameters  
ITEM  
T1  
NAME  
DESCRIPTION  
MIN  
MAX  
9.216  
1/2 fclk  
1/2 fclk  
22  
UNIT  
MHz  
ns  
(1)  
fclk  
Clock frequency  
T2  
tLP (1)  
Clock low period  
(1)  
T3  
tHT  
Clock high period  
ns  
(1)  
T4  
tOH  
TX data hold time  
ns  
(1) Timing parameter assumes a maximum load of 20 pF.  
8.16.5.2.2 I2S Receive Mode  
8-11 shows the timing diagram for the I2S receive mode.  
T2  
T1  
T3  
McACLKX  
T5  
T4  
McAFSX  
McAXR0/1  
8-11. I2S Receive Mode Timing Diagram  
8-18 lists the timing parameters for the I2S receive mode.  
8-18. I2S Receive Mode Timing Parameters  
ITEM  
T1  
NAME  
DESCRIPTION  
MIN  
MAX  
9.216  
1/2 fclk  
1/2 fclk  
0
UNIT  
MHz  
ns  
(1)  
fclk  
Clock frequency  
T2  
tLP (1)  
Clock low period  
(1)  
T3  
tHT  
Clock high period  
ns  
(1)  
T4  
tOH  
RX data hold time  
ns  
(1)  
T5  
tOS  
RX data setup time  
15  
ns  
(1) Timing parameter assumes a maximum load of 20 pF.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.16.5.3 GPIOs  
All digital pins of the module can be used as general-purpose input/output (GPIO) pins. The GPIO module  
consists of four GPIO blocks, each of which provides eight GPIOs. The GPIO module supports 24  
programmable GPIO pins, depending on the peripheral used. Each GPIO has configurable pullup and pulldown  
strength (weak 10 µA), configurable drive strength (2, 4, and 6 mA), and open-drain enable.  
8-12 shows the GPIO timing diagram.  
VDD  
80%  
20%  
tGPIOF  
tGPIOR  
SWAS031-067  
8-12. GPIO Timing Diagram  
8-19 lists the GPIO output transition times for VBAT = 2.3 V.  
8-19. GPIO Output Transition Times (VBAT = 2.3 V)(1) (2)  
Tr  
Tf  
DRIVE  
STRENGTH (mA)  
DRIVE STRENGTH  
CONTROL BITS  
UNIT  
ns  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
2MA_EN=1  
4MA_EN=0  
2MA_EN=0  
4MA_EN=1  
2MA_EN=1  
4MA_EN=1  
2
4
6
11.7  
13.9  
15.6  
6.4  
16.3  
11.5  
13.9  
11.6  
4.7  
16.7  
13.7  
5.5  
18.0  
7.4  
9.9  
3.8  
13.6  
5.8  
ns  
ns  
(1) VBAT = 2.3 V, T = 25°C, total pin load = 30 pF  
(2) The transition data applies to the pins other than the multiplexed analog-digital pins 25, 26, 42, and 44.  
8-20 lists the GPIO output transition times for VBAT = 3.3 V.  
8-20. GPIO Output Transition Times (VBAT = 3.3 V)(1) (2)  
Tr  
Tf  
DRIVE  
STRENGTH (mA)  
DRIVE STRENGTH  
CONTROL BITS  
UNIT  
ns  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
2MA_EN=1  
4MA_EN=0  
2MA_EN=0  
4MA_EN=1  
2MA_EN=1  
4MA_EN=1  
2
4
6
8.0  
9.3  
7.1  
3.5  
10.7  
8.2  
9.5  
11.0  
6.6  
3.2  
7.6  
3.7  
4.7  
2.3  
5.2  
2.6  
5.8  
2.9  
ns  
ns  
(1) VBAT = 3.3 V, T = 25°C, total pin load = 30 pF  
(2) The transition data applies to the pins except the multiplexed analog-digital pins 29, 30, 45, 50, 52 and 53.  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8.16.5.3.1 GPIO Input Transition Time Parameters  
8-21 lists the input transition time parameters.  
8-21. GPIO Input Transition Time Parameters  
MIN  
MAX  
UNIT  
ns  
tr  
tf  
1
3
3
Input transition time (tr, tf), 10% to 90%  
1
ns  
8.16.5.4 I2C  
The CC3235MODx and CC3235MODAx MCU includes one I2C module operating with standard (100 kbps) or  
fast (400 kbps) transmission speeds.  
8-13 shows the I2C timing diagram.  
T2  
T6  
T5  
I2CSCL  
I2CSDA  
T1  
T7  
T4  
T8  
T3  
T9  
8-13. I2C Timing Diagram  
8-22 lists the I2C timing parameters.  
8-22. I2C Timing Parameters(3)  
ITEM  
T2  
NAME  
DESCRIPTION  
MIN  
MAX  
UNIT  
System clock  
ns  
tLP  
Clock low period  
See (1)  
T3  
tSRT  
tDH  
tSFT  
tHT  
SCL/SDA rise time  
Data hold time  
See (2)  
T4  
NA  
3
T5  
SCL/SDA fall time  
Clock high time  
ns  
T6  
See (1)  
tLP/2  
36  
System clock  
System clock  
System clock  
System clock  
T7  
tDS  
Data setup time  
T8  
tSCSR  
tSCS  
Start condition setup time  
Stop condition setup time  
T9  
24  
(1) This value depends on the value programmed in the clock period register of I2C. Maximum output frequency is the result of the minimal  
value programmed in this register.  
(2) Because I2C is an open-drain interface, the controller can drive logic 0 only. Logic is the result of external pullup. Rise time depends on  
the value of the external signal capacitance and external pullup register.  
(3) All timing is with 6-mA drive and 20-pF load.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.16.5.5 IEEE 1149.1 JTAG  
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a test access port (TAP) and boundary  
scan architecture for digital integrated circuits and provides a standardized serial interface to control the  
associated test logic. For detailed information on the operation of the JTAG port and TAP controller, see the  
IEEE Standard 1149.1,Test Access Port and Boundary-Scan Architecture.  
8-14 shows the JTAG timing diagram.  
T2  
T3  
T4  
TCK  
TMS  
TDI  
T7  
TMS Input Valid  
T9 T10  
TDI Input Valid  
T8  
T8  
TMS Input Valid  
T7  
T9  
T10  
TDI Input Valid  
T1  
T11  
TDO Output Valid  
TDO  
TDO Output Valid  
8-14. JTAG Timing Diagram  
8-23 lists the JTAG timing parameters.  
8-23. JTAG Timing Parameters  
ITEM  
T1  
NAME  
DESCRIPTION  
MIN  
MAX  
15  
UNIT  
MHz  
ns  
fTCK  
tTCK  
tCL  
Clock frequency  
T2  
Clock period  
1 / fTCK  
tTCK / 2  
tTCK / 2  
T3  
Clock low period  
Clock high period  
TMS setup time  
TMS hold time  
TDI setup time  
TDI hold time  
ns  
T4  
tCH  
ns  
T7  
tTMS_SU  
tTMS_HO  
tTDI_SU  
tTDI_HO  
tTDO_HO  
1
16  
1
ns  
T8  
ns  
T9  
ns  
T10  
T11  
16  
ns  
TDO hold time  
15  
ns  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8.16.5.6 ADC  
8-24 lists the ADC electrical specifications. See CC32xx ADC Appnote for further information on using the  
ADC and for application-specific examples.  
Repeats Every 16 µs  
Internal Ch  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
ADC CLOCK  
= 10 MHz  
Sampling  
4 cycles  
SAR Conversion  
16 cycles  
Sampling  
4 cycles  
SAR Conversion  
16 cycles  
Sampling  
4 cycles  
SAR Conversion  
16 cycles  
Sampling  
4 cycles  
SAR Conversion  
16 cycles  
EXT CHANNEL 0  
EXT CHANNEL 1  
INTERNAL CHANNEL  
INTERNAL CHANNEL  
8-15. ADC Clock Timing Diagram  
8-15 shows the ADC clock timing diagram.  
8-24. ADC Electrical Specifications  
TEST CONDITIONS /  
ASSUMPTIONS  
PARAMETER  
Nbits  
DESCRIPTION  
Number of bits  
MIN  
TYP  
MAX  
UNIT  
12  
Bits  
Worst-case deviation from  
histogram method over full scale  
(not including first and last three  
LSB levels)  
INL  
Integral nonlinearity  
2.5  
LSB  
2.5  
Worst-case deviation of any step  
from ideal  
DNL  
Differential nonlinearity  
4
1.4  
LSB  
V
1  
Input range  
0
Driving source  
impedance  
100  
Ω
Successive approximation input  
clock rate  
FCLK  
Clock rate  
10  
MHz  
pF  
Input capacitance  
12  
2.15  
0.7  
ADC Pin 57  
ADC Pin 58  
ADC Pin 59  
ADC Pin 60  
Input impedance  
kΩ  
2.12  
1.17  
4
Number of channels  
Fsample  
Sampling rate of each pin  
62.5  
KSPS  
kHz  
F_input_max  
Maximum input signal frequency  
31  
Input frequency DC to 300 Hz  
and 1.4 Vpp sine wave input  
SINAD  
Signal-to-noise and distortion  
Active supply current  
55  
60  
dB  
Average for analog-to-digital  
during conversion without  
reference current  
I_active  
1.5  
mA  
Total for analog-to-digital when  
not active (this must be the SoC  
level test)  
Power-down supply current for  
core supply  
I_PD  
1
µA  
Absolute offset error  
Gain error  
FCLK = 10 MHz  
±2  
mV  
±2%  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8-24. ADC Electrical Specifications (continued)  
TEST CONDITIONS /  
ASSUMPTIONS  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Vref  
ADC reference voltage  
1.467  
V
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8.16.5.7 Camera Parallel Port  
The fast camera parallel port interfaces with a variety of external image sensors, stores the image data in a  
FIFO, and generates DMA requests. The camera parallel port supports 8 bits.  
8-16 shows the timing diagram for the camera parallel port.  
T3  
T2  
T4  
pCLK  
T6  
T7  
pVS, pHS  
pDATA  
8-16. Camera Parallel Port Timing Diagram  
8-25 lists the timing parameters for the camera parallel port.  
8-25. Camera Parallel Port Timing Parameters  
ITEM  
NAME  
DESCRIPTION  
MIN  
MAX  
2
UNIT  
MHz  
ns  
pCLK  
Tclk  
tLP  
Clock frequency  
T2  
T3  
T4  
T6  
T7  
Clock period  
1/pCLK  
Tclk/2  
Tclk/2  
2
Clock low period  
Clock high period  
RX data setup time  
RX data hold time  
ns  
tHT  
ns  
tIS  
ns  
tIH  
2
ns  
8.16.5.8 UART  
The CC3235MODx and CC3235MODAx MCU includes two UARTs with the following features:  
Programmable baud-rate generator allowing speeds up to 3 Mbps  
Separate 16-bit × 8-bit TX and RX FIFOs to reduce CPU interrupt service loading  
Programmable FIFO length, including a 1-byte-deep operation providing conventional double-buffered  
interface  
FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
Standard asynchronous communication bits for start, stop, and parity  
Generation and detection of line-breaks  
Fully programmable serial interface characteristics:  
5, 6, 7, or 8 data bits  
Generation and detection of even, odd, stick, or no-parity bits  
Generation of 1 or 2 stop-bits  
RTS and CTS hardware flow support  
Standard FIFO-level and end-of-transmission interrupts  
Efficient transfers using µDMA:  
Separate channels for transmit and receive  
Receive single request asserted when data is in the FIFO; burst request asserted at programmed FIFO  
level  
Transmit single request asserted when there is space in the FIFO; burst request asserted at programmed  
FIFO level  
System clock is used to generate the baud clock.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.16.5.9 External Flash Interface  
The CC3235MODx and CC3235MODAx MCU includes the Macronix32-Mbit serial flash. The serial flash can  
be programmed directly using the external flash interface (pins 13, 14, 15, and 17). During normal operation, the  
external flash interface should remain unconnected.  
For timing details, see the MX25R3235F data sheet.  
8.16.5.10 SD Host  
The CC3235MODx and CC3235MODAx MCU provides an interface between a local host (LH), such as an MCU  
and an SD memory card, and handles SD transactions with minimal LH intervention.  
The SD host does the following:  
Provides SD card access in 1-bit mode  
Deals with SD protocol at the transmission level  
Handles data packing  
Adds cyclic redundancy checks (CRC)  
Start and end bit  
Checks for syntactical correctness  
The application interface sends every SD command and either polls for the status of the adapter or waits for an  
interrupt request. The result is then sent back to the application interface in case of exceptions or to warn of end-  
of-operation. The controller can be configured to generate DMA requests and work with minimum CPU  
intervention. Given the nature of integration of this peripheral on the CC3235x platform, TI recommends that  
developers use peripheral library APIs to control and operate the block. This section emphasizes understanding  
the SD host APIs provided in the peripheral library of the CC3235x Software Development Kit (SDK).  
The SD host features are as follows:  
Full compliance with SD command and response sets, as defined in the SD memory card  
Specifications, v2.0  
Includes high-capacity (size >2 GB) cards HC SD  
Flexible architecture, allowing support for new command structure.  
1-bit transfer mode specifications for SD cards  
Built-in 1024-byte buffer for read or write  
512-byte buffer for both transmit and receive  
Each buffer is 32-bits wide by 128-words deep  
32-bit-wide access bus to maximize bus throughput  
Single interrupt line for multiple interrupt source events  
Two slave DMA channels (1 for TX, 1 for RX)  
Programmable clock generation  
Integrates an internal transceiver that allows a direct connection to the SD card without external transceiver  
Supports configurable busy and response timeout  
Support for a wide range of card clock frequency with odd and even clock ratio  
Maximum frequency supported is 24 MHz  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
8.16.5.11 Timers  
Programmable timers can be used to count or time external events that drive the timer input pins. The general-  
purpose timer module (GPTM) of the CC3235MODx and CC3235MODAx MCU contains 16- or 32-bit GPTM  
blocks. Each 16- or 32-bit GPTM block provides two 16-bit timers or counters (referred to as Timer A and Timer  
B) that can be configured to operate independently as timers or event counters, or they can be concatenated to  
operate as one 32-bit timer. Timers can also be used to trigger µDMA transfers.  
The GPTM contains four 16- or 32-bit GPTM blocks with the following functional options:  
Operating modes:  
16- or 32-bit programmable one-shot timer  
16- or 32-bit programmable periodic timer  
16-bit general-purpose timer with an 8-bit prescaler  
16-bit input-edge count- or time-capture modes with an 8-bit prescaler  
16-bit PWM mode with an 8-bit prescaler and software-programmable output inversion of the PWM signal  
Counts up or counts down  
Sixteen 16- or 32-bit capture compare pins (CCP)  
User-enabled stalling when the microcontroller asserts CPU Halt flag during debug  
Ability to determine the elapsed time between the assertion of the timer interrupt and entry into the interrupt  
service routine  
Efficient transfers using micro direct memory access controller (µDMA):  
Dedicated channel for each timer  
Burst request generated on timer interrupt  
Runs from system clock (80 MHz)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The CC3235MODx and CC3235MODAx MCU is a Dual-Band Wi-Fi internet-on-a chip module that consists of an  
Arm Cortex-M4 processor with a rich set of peripherals for diverse application requirements, a Wi-Fi network  
processor, and power-management subsystems.  
9.2 Functional Block Diagram  
9-1 shows the functional block diagram of the CC3235MODx and CC3235MODAx SimpleLink™ Wi-Fi®  
solution.  
BLE/WLAN  
COEX  
I2C  
Peripheral  
SPI  
Peripheral  
GSPI  
I2C  
Dual-Band Wi-Fi  
VCC  
(2.3 V to 3.6 V)  
CC3235MODx  
CC3235MODAx  
Parallel  
Camera Port  
GPIO/PWM  
I2S  
Miscellaneous  
Peripheral  
Camera  
Sensor  
Audio  
Codec  
9-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
9.3 Arm Cortex-M4 Processor Core Subsystem  
The high-performance Arm Cortex-M4 processor provides a low-cost platform that meets the needs of minimal  
memory implementation, reduced pin count, and low power consumption, while delivering outstanding  
computational performance and exceptional system response to interrupts.  
The Cortex-M4 core has low-latency interrupt processing with the following features:  
A 32-bit Arm Thumb® instruction set optimized for embedded applications  
Handler and thread modes  
Low-latency interrupt handling by automatic processor state saving and restoration during entry and exit  
Support for ARMv6 unaligned accesses  
Nested vectored interrupt controller (NVIC) closely integrated with the processor core to achieve low-latency  
interrupt processing. The NVIC includes the following features:  
Bits of priority configurable from 3 to 8  
Dynamic reprioritization of interrupts  
Priority grouping that enables selection of preempting interrupt levels and nonpreempting interrupt levels  
Support for tail-chaining and late arrival of interrupts, which enables back-to-back interrupt processing  
without the overhead of state saving and restoration between interrupts  
Processor state automatically saved on interrupt entry and restored on interrupt exit with no instruction  
overhead  
Wake-up interrupt controller (WIC) providing ultra-low-power sleep mode support  
Bus interfaces:  
Advanced high-performance bus (AHB-Lite) interfaces: system bus interfaces  
Bit-band support for memory and select peripheral that includes atomic bit-band write and read operations  
Low-cost debug solution featuring:  
Debug access to all memory and registers in the system, including access to memory-mapped devices,  
access to internal core registers when the core is halted, and access to debug control registers even while  
SYSRESETn is asserted  
Serial wire debug port (SW-DP) or serial wire JTAG debug port (SWJ-DP) debug access  
Flash patch and breakpoint (FPB) unit to implement breakpoints and code patches  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
9.4 Wi-Fi Network Processor Subsystem  
The Wi-Fi network processor subsystem includes a dedicated Arm MCU to completely offload the host MCU  
along with an 802.11 a/b/g/n radio, baseband, and MAC with a powerful crypto engine for a fast, secure WLAN  
and Internet connections with 256-bit encryption. The CC3235MODx and CC3235MODAx MCU supports station,  
AP, and Wi-Fi Direct modes. The module also supports WPA2 personal and enterprise security, WPS 2.0, and  
WPA3 personal and enterprise 12. The Wi-Fi network processor includes an embedded IPv6, IPv4 TCP/IP stack,  
TLS stack, and network applications such as HTTPS server.  
9.4.1 WLAN  
The WLAN features are as follows:  
802.11 a/b/g/n integrated radio, modem, and MAC supporting WLAN communication as a BSS station, AP,  
Wi-Fi Direct client and group owner with CCK and OFDM rates in the 2.4 GHz ISM band, channels 1 to 13,  
and 5 GHz U-NII band.  
Note  
802.11n is supported only in Wi-Fi station, Wi-Fi Direct, and P2P client modes.  
Autocalibrated radio with a single-ended 50-Ωinterface enables easy connection to the antenna without  
requiring expertise in radio circuit design.  
Advanced connection manager with multiple user-configurable profiles stored in serial-flash allows automatic  
fast connection to an access point without user or host intervention.  
Supports all common Wi-Fi security modes for personal and enterprise networks with on-chip security  
accelerators, including: WEP, WPA/WPA2 PSK, WPA2 Enterprise (802.1x), WPA3 Personal and WPA3  
Enterpise.  
Smart provisioning options deeply integrated within the module providing a comprehensive end-to-end  
solution. With elaborate events notification to the host, enabling the application to control the provisioning  
decision flow. The wide variety of Wi-Fi provisioning methods include:  
Access Point using HTTPS  
SmartConfig Technology: a 1-step, 1-time process to connect a CC3235MODx or CC3235MODAx-  
enabled module to the home wireless network, removing dependency on the I/O capabilities of the host  
MCU; thus, it is usable by deeply embedded applications  
802.11 transceiver mode allows transmitting and receiving of proprietary data through a socket without  
adding MAC or PHY headers. The 802.11 transceiver mode provides the option to select the working  
channel, rate, and transmitted power. The receiver mode works with the filtering options.  
9.4.2 Network Stack  
The Network Stack features are as follows:  
Integrated IPv4, IPv6 TCP/IP stack with BSD socket APIs for simple Internet connectivity with any MCU,  
microprocessor, or ASIC  
Note  
Not all APIs are 100% BSD compliant. Not all BSD APIs are supported.  
Support of 16 simultaneous TCP, UDP, RAW, SSL\TLS sockets  
Built-in network protocols:  
Static IP, LLA, DHCPv4, DHCPv6 with DAD and stateless autoconfiguration  
ARP, ICMPv4, IGMP, ICMPv6, MLD, ND  
DNS client for easy connection to the local network and the Internet  
Built-in network application and utilities:  
HTTP/HTTPS  
12  
See CC3x35 SDK v3.40 or newer for details. Limited to STA mode only.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
Web page content stored on serial flash  
RESTful APIs for setting and configuring application content  
Dynamic user callbacks  
Service discovery: Multicast DNS service discovery lets a client advertise its service without a centralized  
server. After connecting to the access point, the CC3235MODx or CC3235MODAx MCU provides critical  
information, such as device name, IP, vendor, and port number.  
DHCP server  
Ping  
9-1 describes the NWP features.  
9-1. NWP Features  
Feature  
Description  
802.11a/b/g/n station  
Wi-Fi standards  
802.11a/b/g AP supporting up to four stations  
Wi-Fi Direct client and group owner  
2.4 GHz ISM and 5 GHz U-NII Channels  
20 MHz  
Wi-Fi channels  
Channel Bandwidth  
Wi-Fi security  
Wi-Fi provisioning  
IP protocols  
WEP, WPA/WPA2 PSK, WPA2 enterprise (802.1x), WPA3 personal and enterprise (1)  
SmartConfig technology, Wi-Fi protected setup (WPS2), AP mode with internal HTTP web server  
IPv4/IPv6  
IP addressing  
Cross layer  
Static IP, LLA, DHCPv4, DHCPv6 with DAD  
ARP, ICMPv4, IGMP, ICMPv6, MLD, NDP  
UDP, TCP  
Transport  
SSLv3.0/TLSv1.0/TLSv1.1/TLSv1.2  
RAW  
Ping  
HTTP/HTTPS web server  
Network applications and  
utilities  
mDNS  
DNS-SD  
DHCP server  
Host interface  
UART/SPI  
Device identity  
Trusted root-certificate catalog  
TI root-of-trust public key  
The CC3235S and CC3235SF variants also support:  
Secure key storage  
Online certificate status protocol (OCSP)  
Certificate signing request (CSR)  
Unique per device Key-Pair  
File system security  
Security  
Software tamper detection  
Cloning protection  
Secure boot  
Validate the integrity and authenticity of the run-time binary during boot  
Initial secure programming  
Debug security  
JTAG and debug  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
9-1. NWP Features (continued)  
Feature  
Description  
Enhanced power policy management uses 802.11 power save and deep-sleep power modes  
Transceiver  
Power management  
Other  
Programmable RX filters with event-trigger mechanism  
Rx Metrics for tracking the surrounding RF environment  
(1) See CC3x35 SDK v3.40 or newer for details. Limited to STA mode only.  
9.5 Security  
The SimpleLink Wi-Fi CC3235MODx and CC3235MODAx internet-on-a chip module enhances the security  
capabilities available for development of IoT devices, while completely offloading these activities from the MCU  
to the networking subsystem. The security capabilities include the following key features:  
Wi-Fi and Internet Security:  
Personal and enterprise Wi-Fi security  
Personal standards  
AES (WPA2-PSK)  
TKIP (WPA-PSK)  
WEP  
Enterprise standards  
EAP Fast  
EAP PEAPv0/1  
EAP PEAPv0 TLS  
EAP PEAPv1 TLS EAP LS  
EAP TLS  
EAP TTLS TLS  
EAP TTLS MSCHAPv2  
Secure sockets  
Protocol versions: SSL v3, TLS 1.0, TLS 1.1, TLS 1.2  
Powerful crypto engine for fast, secure Wi-Fi and internet connections with 256-bit AES encryption for TLS  
and SSL connections  
Ciphers suites  
SL_SEC_MASK_SSL_RSA_WITH_RC4_128_SHA  
SL_SEC_MASK_SSL_RSA_WITH_RC4_128_MD5  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_RC4_128_SHA  
SL_SEC_MASK_TLS_RSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256  
SL_SEC_MASK_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256  
Server authentication  
Client authentication  
Domain name verification  
Runtime socket upgrade to secure socket STARTTLS  
Secure HTTP server (HTTPS)  
Trusted root-certificate catalog Verifies that the CA used by the application is trusted and known secure  
content delivery  
TI root-of-trust public key Hardware-based mechanism that allows authenticating TI as the genuine origin  
of a given content using asymmetric keys  
Secure content delivery Allows encrypted file transfer to the system using asymmetric keys created by the  
device  
Code and Data Security:  
Network passwords and certificates are encrypted and signed  
Cloning protection Application and data files are encrypted by a unique key per device  
Access control Access to application and data files only by using a token provided in file creation time. If  
an unauthorized access is detected, a tamper protection lockdown mechanism takes effect  
Encrypted and authenticated file system  
Secured boot Authentication of the application image on every boot  
Code and data encryption User application and data files are encrypted in sFlash  
Code and data authentication User Application and data files are authenticated with a public key certificate  
Offloaded crypto library for asymmetric keys, including the ability to create key-pair, sign and verify data  
buffer  
Recovery mechanism  
Device Security:  
Separate execution environments Application processor and network processor run on separate Arm  
cores  
Initial secure programming Allows for keeping the content confidential on the production line  
Debug security  
JTAG lock  
Debug ports lock  
True random number generator  
9-2 shows the high-level structure of the CC3235S and CC3235SF devices that are contained within the  
CC3235MODS and CC3235MODSF modules, respectively. The application image, user data, and network  
information files (passwords, certificates) are encrypted using a device-specific key.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
CC3235S and CC3235SF  
Network Processor + MCU  
MCU  
Network Processor  
Peripherals  
ARM® Cortex®-M4  
Processor  
SPI and I2C  
GPIO  
Internet  
Wi-Fi®  
MAC  
Internet  
256KB RAM /  
UART  
HTTPS  
TLS/SSL  
TCP/IP  
1MB Flash (CC3235SF)  
PWM  
ADC  
Baseband  
OEM  
Application  
Dual-Band Radio  
Serial Flash  
OEM  
Application  
Data Files  
Network Information  
9-2. CC3235S and CC3235SF High-Level Structure  
9.6 FIPS 140-2 Level 1 Certification  
The Federal Information Processing Standard (FIPS) Publication 140-2 is a U.S. government computer security  
standard. It is commonly referred to as FIPS 140-2, and is used to accredit the design and implementation of  
cryptographic functions, for example within a chip. A cryptographic function within a chip security system is  
necessary to maintain the confidentiality and integrity of the information that is being processed.  
The security functions of the CC3235x chip that is inside the CC3235MODx or CC3235MODAx module, are  
FIPS certified to FIPS 140-2 level 1. This certification covers topics such as: cryptographic specifications, ports  
and interfaces, a finite state model for the cryptographic functions, the operational environment of the function,  
and how cryptographic keys are managed. The certification provides the assurance that the implementation  
meets FIPS 140-2 level 1 standards.  
9.7 Power-Management Subsystem  
The CC3235MODx and CC3235MODAx power-management subsystems contain DC/DC converters to  
accommodate the differing voltage or current requirements of the system.  
The CC3235MODx and CC3235MODAx MCU is a fully integrated module-based WLAN radio solution used on  
an embedded system with a wide-voltage supply range. The internal power management, including DC/DC  
converters and LDOs, generates all of the voltages required for the module to operate from a wide variety of  
input sources. For maximum flexibility, the module can operate in the modes described in the following sections.  
9.7.1 VBAT Wide-Voltage Connection  
In the wide-voltage battery connection, the module can be directly connected to two AA alkaline batteries. All  
other voltages required to operate the module are generated internally by the DC/DC converters. This scheme is  
the most common mode for the module because it supports wide-voltage operation from 2.3 to 3.6 V.  
9.8 Low-Power Operating Mode  
From a power-management perspective, the CC3235MODx and CC3235MODAx MCU comprises the following  
two independent subsystems:  
Arm Cortex-M4 application processor subsystem  
Networking subsystem  
Each subsystem operates in one of several power states.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
The Arm Cortex-M4 application processor runs the user application loaded from an internal serial flash, or on-  
module XIP flash (in CC3235MODSF). The networking subsystem runs preprogrammed TCP/IP and Wi-Fi data  
link layer functions.  
The user program controls the power state of the application processor subsystem and can be in one of the five  
modes described in 9-2.  
9-2. User Program Modes  
APPLICATION PROCESSOR  
DESCRIPTION  
(MCU) MODE(1)  
MCU active mode  
MCU executing code at 80-MHz state rate.  
The MCU clocks are gated off in sleep mode and the entire state of the device is retained. Sleep mode  
offers instant wakeup. The MCU can be configured to wake up by an internal fast timer or by activity  
from any GPIO line or peripheral.  
MCU sleep mode  
State information is lost and only certain MCU-specific register configurations are retained. The MCU  
can wake up from external events or by using an internal timer. (The wake-up time is less than 3 ms.)  
Certain parts of memory can be retained while the MCU is in LPDS mode. The amount of memory  
retained is configurable. Users can choose to preserve code and the MCU-specific setting. The MCU  
can be configured to wake up using the RTC timer or by an external event on specific GPIOs as the  
wake-up source.  
MCU LPDS mode  
The lowest power mode in which all digital logic is power-gated. Only a small section of the logic directly  
powered by the input supply is retained. The RTC keeps running and the MCU supports wakeup from an  
external event or from an RTC timer expiry. Wake-up time is longer than LPDS mode at about 15 ms  
plus the time to load the application from serial flash, which varies according to code size. In this mode,  
the MCU can be configured to wake up using the RTC timer or external event on a GPIO.  
MCU hibernate mode  
MCU shutdown mode  
The lowest power mode system-wise. All device logics are off, including the RTC. The wake-up time in  
this mode is longer than hibernate at about 1.1 s. To enter or exit the shutdown mode, the state of the  
nRESET line is changed (low to shut down, high to turn on).  
(1) Modes are listed in order of power consumption, with highest power modes listed first.  
The NWP can be active or in LPDS mode and takes care of its own mode transitions. When there is no network  
activity, the NWP sleeps most of the time and wakes up only for beacon reception (see  
9-3).  
9-3. Networking Subsystem Modes  
NETWORK PROCESSOR  
DESCRIPTION  
MODE  
Network active mode  
Transmitting or receiving IP protocol packets  
(processing layer 3, 2, and 1)  
Network active mode  
Transmitting or receiving MAC management frames; IP processing not required.  
(processing layer 2 and 1)  
Network active listen mode  
Network connected Idle  
Special power optimized active mode for receiving beacon frames (no other frames supported)  
A composite mode that implements 802.11 infrastructure power save operation. The CC3235MODx and  
CC3235MODAx NWPs automatically go into LPDS mode between beacons and then wakes to active  
listen mode to receive a beacon and determine if there is pending traffic at the AP. If not, the NWP  
returns to LPDS mode and the cycle repeats.  
Low-power state between beacons in which the state is retained by the NWP, allowing for a rapid wake  
up.  
Network LPDS mode  
Network disabled  
The network is disabled  
The operation of the application and network processor ensures that the module remains in the lowest power  
mode most of the time to preserve battery life.  
The following examples show the use of the power modes in applications:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
A product that is continuously connected to the network in the 802.11 infrastructure power-save mode but  
sends and receives little data spends most of the time in connected idle, which is a composite of receiving a  
beacon frame and waiting for the next beacon.  
A product that is not continuously connected to the network but instead wakes up periodically (for example,  
every 10 minutes) to send data, spends most of the time in hibernate mode, jumping briefly to active mode to  
transmit data.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
9.9 Memory  
9.9.1 Internal Memory  
The CC3235x device within the CC3235MODx and CC3235MODAx modules includes on-chip SRAM to which  
application programs are downloaded and executed. The application developer must share the SRAM for code  
and data. The micro direct memory access (µDMA) controller can transfer data to and from SRAM and various  
peripherals. The CC3235x device ROM holds the rich set of peripheral drivers, which saves SRAM space. For  
more information on drivers, see the CC3235x API list.  
9.9.1.1 SRAM  
The CC3235MODx and CC3235MODAx MCU family provides 256KB of on-chip SRAM. Internal RAM is capable  
of selective retention during LPDS mode. This internal SRAM is at offset 0x2000 0000 of the device memory  
map.  
Use the µDMA controller to transfer data to and from the SRAM.  
When the device enters low-power mode, the application developer can choose to retain a section of memory  
based on need. Retaining the memory during low-power mode provides a faster wakeup. The application  
developer can choose the amount of memory to retain in multiples of 64KB. For more information, see the API  
guide.  
9.9.1.2 ROM  
The internal zero-wait-state ROM of the CC3235MODx and CC3235MODAx module is at address 0x0000 0000  
of the device memory and is programmed with the following components:  
Bootloader  
Peripheral driver library (DriverLib) release for product-specific peripherals and interfaces  
The bootloader is used as an initial program loader (when the serial flash memory is empty). The DriverLib  
software library of the CC3235MODx and CC3235MODAx MCU controls on-chip peripherals with a bootloader  
capability. The library performs peripheral initialization and control functions, with a choice of polled or interrupt-  
driven peripheral support. The DriverLib APIs in ROM can be called by applications to reduce flash memory  
requirements and free the flash memory to be used for other purposes.  
9.9.1.3 Flash Memory  
The CC3235SF device within the CC3235MODSF and CC3235MODASF modules comes with an on-chip flash  
memory of 1MB that allows application code to execute in place while freeing SRAM exclusively for read-write  
data. The flash memory is used for code and constant data sections and is directly attached to the ICODE/  
DCODE bus of the Arm Cortex-M4 core. A 128-bit-wide instruction prefetch buffer allows maintenance of  
maximum performance for linear code or loops that fit inside the buffer.  
The flash memory is organized as 2-KB sectors that can be independently erased. Reads and writes can be  
performed at word (32-bit) level.  
9.9.1.4 Memory Map  
9-4 describes the various MCU peripherals and how they are mapped to the processor memory. For more  
information on peripherals, see the API document.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
9-4. Memory Map  
START ADDRESS  
0x0000 0000  
0x0100 0000  
0x2000 0000  
0x2200 0000  
0x4000 0000  
0x4000 4000  
0x4000 5000  
0x4000 6000  
0x4000 7000  
0x4000 C000  
0x4000 D000  
0x4002 0000  
0x4002 4000  
0x4002 0800  
0x4003 0000  
0x4003 1000  
0x4003 2000  
0x4003 3000  
0x400F7000  
0x400F E000  
0x400F F000  
0x4200 0000  
0x4401 0000  
0x4401 8000  
0x4401 C000  
0x4402 0000  
0x4402 1000  
0x4402 5000  
0x4402 6000  
0x4402 D000  
0x4402 E000  
0x4402 F000  
END ADDRESS  
0x0007 FFFF  
0x010F FFFF  
0x2003 FFFF  
0x23FF FFFF  
0x4000 0FFF  
0x4000 4FFF  
0x4000 5FFF  
0x4000 6FFF  
0x4000 7FFF  
0x4000 CFFF  
0x4000 DFFF  
0x4000 07FF  
0x4002 4FFF  
0x4002 0FFF  
0x4003 0FFF  
0x4003 1FFF  
0x4003 2FFF  
0x4003 3FFF  
0x400F 7FFF  
0x400F EFFF  
0x400F FFFF  
0x43FF FFFF  
0x4401 0FFF  
0x4401 8FFF  
0x4401 DFFF  
0x4402 0FFF  
0x4402 1FFF  
0x4402 5FFF  
0x4402 6FFF  
0x4402 DFFF  
0x4402 EFFF  
0x4402 FFFF  
DESCRIPTION  
On-chip ROM (bootloader + DriverLib)  
On-chip flash (for user application code)  
Bit-banded on-chip SRAM  
Bit-band alias of 0x2000 0000 to 0x200F FFFF  
Watchdog timer A0  
COMMENT  
SF devices only  
GPIO port A0  
GPIO port A1  
GPIO port A2  
GPIO port A3  
UART A0  
UART A1  
I2C A0 (master)  
GPIO group 4  
I2C A0 (slave)  
General-purpose timer A0  
General-purpose timer A1  
General-purpose timer A2  
General-purpose timer A3  
Configuration registers  
System control  
µDMA  
Bit band alias of 0x4000 0000 to 0x400F FFFF  
SDIO master  
Camera Interface  
McASP  
SSPI  
Used for external serial flash  
Used by application processor  
GSPI  
MCU reset clock manager  
MCU configuration space  
Global power, reset, and clock manager (GPRCM)  
MCU shared configuration  
Hibernate configuration  
Crypto range (includes apertures for all crypto-related  
blocks as follows)  
0x4403 0000  
0x4403 FFFF  
0x4403 0000  
0x4403 5000  
0x4403 7000  
0x4403 9000  
0xE000 0000  
0xE000 1000  
0xE000 2000  
0xE000 E000  
0xE004 0000  
0xE004 1000  
0xE004 2000  
0x4403 0FFF  
0x4403 5FFF  
0x4403 7FFF  
0x4403 9FFF  
0xE000 0FFF  
0xE000 1FFF  
0xE000 2FFF  
0xE000 EFFF  
0xE004 0FFF  
0xE004 1FFF  
0xE00F FFFF  
DTHE registers and TCP checksum  
MD5/SHA  
AES  
DES  
Instrumentation trace Macrocell™  
Data watchpoint and trace (DWT)  
Flash patch and breakpoint (FPB)  
NVIC  
Trace port interface unit (TPIU)  
Reserved for embedded trace macrocell (ETM)  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
9.10 Restoring Factory Default Configuration  
The module has an internal recovery mechanism that rolls back the file system to its predefined factory image or  
restoring the factory default parameters of the device. The factory image is kept in a separate sector on the  
sFLASH in a secure manner and cannot be accessed from the host processor. The following restore modes are  
supported:  
Noneno factory restore settings  
Enable restore of factory default parameters  
Enable restore of factory image and factory default parameters  
The restore process is performed by calling software APIs, or by pulling or forcing SOP[2:0] = 011 pins and  
toggling the nRESET pin from low to high.  
The process is fail-safe and resumes operation if a power failure occurs before the restore is finished. The  
restore process typically takes about 8 seconds, depending on the attributes of the serial flash vendor.  
9.11 Boot Modes  
9.11.1 Boot Mode List  
The CC3235MODx and CC3235MODAx MCU implements a sense-on-power (SoP) scheme to determine the  
device operation mode.  
SoP values are sensed from the module pin during power up. This encoding determines the boot flow. Before  
the device is taken out of reset, the SoP values are copied to a register and used to determine the device  
operation mode while powering up. These values determine the boot flow as well as the default mapping for  
some of the pins (JTAG, SWD, UART0). 9-5 lists the pull configurations.  
All CC3235MODx and CC3235MODAx MCUs contain internal pulldown resistors on the SOP[2:0] lines. The  
application can use SOP2 for other functions after chip has powered up. However, to avoid spurious SOP values  
from being sensed at power up, TI strongly recommends using the SOP2 pin only for output signals. The SOP0  
and SOP1 pins are multiplexed with the WLAN analog test pins and are not available for other functions.  
9-5. CC3235MODx and CC3235MODAx Functional Configurations  
NAME  
SOP[2]  
SOP[1]  
SOP[0]  
SoP MODE  
COMMENT  
Factory, lab flash, and SRAM loads  
through the UART. The device waits  
indefinitely for the UART to load code.  
The SOP bits then must be toggled to  
configure the device in functional mode.  
Also puts JTAG in 4-wire mode.  
UARTLOAD  
Pullup  
Pulldown Pulldown LDfrUART  
Functional development mode. In this  
mode, 2-pin SWD is available to the  
developer. TMS and TCK are available for  
debugger connection.  
FUNCTIONAL_2WJ  
FUNCTIONAL_4WJ  
Pulldown Pulldown Pullup  
Fn2WJ  
Functional development mode. In this  
mode, 4-pin JTAG is available to the  
developer. TDI, TMS, TCK, and TDO are  
available for debugger connection. The  
default configuration for CC3235MODx  
and CC3235MODAx MCUs.  
Pulldown Pulldown Pulldown Fn4WJ  
Supports flash and SRAM load through  
UART and functional mode. The MCU  
bootloader tries to detect a UART break  
on UART receive line. If the break signal  
is present, the device enters the  
UARTLOAD_FUNCTIONAL_4WJ  
Pulldown Pullup  
Pulldown LDfrUART_FnWJ  
UARTLOAD mode, otherwise, the device  
enters the functional mode. TDI, TMS,  
TCK, and TDO are available for debugger  
connection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
9-5. CC3235MODx and CC3235MODAx Functional Configurations (continued)  
NAME  
SOP[2]  
SOP[1]  
SOP[0]  
SoP MODE  
COMMENT  
When module reset is toggled, the MCU  
bootloader kickstarts the procedure to  
restore factory default images.  
RET_FACTORY_IMAGE  
Pulldown Pullup  
Pullup  
RetFactDef  
9.12 Hostless Mode  
The SimpleLink™ Wi-Fi® CC3235MODx or CC3235MODAx devices incorporate a scripting ability that enables  
offloading of simple tasks from the host processor. Using simple and conditional scripts, repetitive tasks can be  
handled internally, which allows the host processor to remain in a low-power state. In some cases where the  
scripter is being used to send packets, it reduces code footprint and memory consumption. The if-this-then-that  
style conditioning can include anything from GPIO toggling to transmitting packets.  
The conditional scripting abilities can be divided into conditions and actions. The conditions define when to  
trigger actions. Only one action can be defined per condition, but multiple instances of the same condition may  
be used, so in effect multiple actions can be defined for a single condition. In total, 16 condition and action pairs  
can be defined. The conditions can be simple, or complex using sub-conditions (using a combinatorial AND  
condition between them). The actions are divided into two types, those that can occur during runtime and those  
that can occur only during the initialization phase.  
The following actions can only be performed when triggered by the pre-initialization condition:  
Set roles AP, station, P2P, and Tag modes  
Delete all stored profiles  
Set connection policy  
Hardware GPIO indication allows an I/O to be driven directly from the WLAN core hardware to indicate  
internal signaling  
The following actions may be activated during runtime:  
Send transceiver packet  
Send UDP packet  
Send TCP packet  
Increment counter increments one of the user counters by 1  
Set counter allows setting a specific value to a counter  
Timer control  
Set GPIO allows GPIO output from the device using the internal networking core  
Enter Hibernate state  
Note  
Consider the following limitations:  
Timing cannot be ensured when using the network scripter because some variable latency will  
apply depending on the utilization of the networking core.  
The scripter is limited to 16 pairs of conditions and reactions.  
Both timers and counters are limited to 8 instances each. Timers are limited to a resolution of 1  
second. Counters are 32 bits wide.  
Packet length is limited to the size of one packet and the number of possible packet tokens is  
limited to 8.  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
9.13 Device Certification and Qualification  
The CC3235MODx and CC3235MODAx MCU from TI is certified for FCC, IC/ISED, ETSI/CE, Japan MIC, and  
SRRC. Moreover, the module is also Wi-Fi CERTIFIEDwith the ability to request a certificate transfer for Wi-Fi  
Alliance® members. TI customers that build products based on the CC3235MODx or CC3235MODAx MCU from  
TI can save in testing cost and time per product family.  
9-6. CC3235MODx and CC3235MODAx List of Certifications  
Regulatory Body  
FCC (USA)  
Specification  
ID (IF APPLICABLE)  
Part 15C + MPE FCC RF Exposure  
RSS-102 (MPE) and RSS-247 (Wi-Fi)  
EN300328 v2.2.1 (2.4GHz Wi-Fi)  
EN301893 v2.1.1 (5GHz Wi-Fi)  
EN62311:2008 (MPE)  
Z64-CC3235MOD  
IC/ISED (Canada)  
451I-CC3235MOD  
ETSI/CE (Europe)  
EN301489-1 v2.2.1 (General EMC)  
EN301489-17 v3.2.0 (EMC)  
EN60950-1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013  
MIC (Japan)  
Article 49-20 of ORRE  
201-190033  
Please contact TI for more information on  
using SRRC ID Certification: www.ti.com/tool/  
SIMPLELINK-CC3XXX-CERTIFICATION  
SRRC (China)  
9.13.1 FCC Certification and Statement  
FCC RF Radiation Exposure Statement:  
CAUTION  
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled  
environment. End users must follow the specific operating instructions for satisfying RF exposure  
limits. This transmitter must not be co-located or operating with any other antenna or transmitter.  
The CC3235MODx and CC3235MODAx modules from TI are certified for the FCC as a single-modular  
transmitter. The modules are FCC-certified radio modules that carries a modular grant.  
You are cautioned that changes or modifications not expressly approved by the party responsible for compliance  
could void the users authority to operate the equipment.  
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:  
This device may not cause harmful interference.  
This device must accept any interference received, including interference that may cause undesired  
operation of the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
9.13.2 IC/ISED Certification and Statement  
CAUTION  
IC RF Radiation Exposure Statement:  
To comply with IC RF exposure requirements, this device and its antenna must not be co-located or  
operating in conjunction with any other antenna or transmitter.  
Pour se conformer aux exigences de conformité RF canadienne l'exposition, cet appareil et son  
antenne ne doivent pas étre co-localisés ou fonctionnant en conjonction avec une autre antenne ou  
transmetteur.  
The CC3235MODx and CC3235MODAx modules from TI are certified for IC as a single-modular transmitter. The  
CC3235MODx and CC3235MODAx modules from TI meet IC modular approval and labeling requirements. The  
IC follows the same testing and rules as the FCC regarding certified modules in authorized equipment.  
This device complies with Industry Canada licence-exempt RSS standards.  
Operation is subject to the following two conditions:  
This device may not cause interference.  
This device must accept any interference, including interference that may cause undesired operation of the  
device.  
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de  
licence.  
L'exploitation est autorisée aux deux conditions suivantes:  
L'appareil ne doit pas produire de brouillage  
L'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est  
susceptible d'en compromettre le fonctionnement.  
9.13.3 ETSI/CE Certification  
The CC3235MODx and CC3235MODAx modules from TI are CE certified with certifications to the appropriate  
EU radio and EMC directives summarized in the Declaration of Conformity and evidenced by the CE mark. The  
modules are tested against the new Radio Equipment Directive (RE-D). See the full text of the EU Declaration of  
Conformity for the CC3235MODSM2MOB and CC3235MODSF12MOB devices.  
9.13.4 MIC Certification  
The CC3235MODx and CC3235MODAx modules from TI are MIC certified against article 49-20 and the relevant  
articles of the Ordinance Regulating Radio Equipment.  
Operation is subject to the following condition:  
The host system does not contain a wireless wide area network (WWAN) device.  
This device operates in the W52 and W53 bands and is for indoor use only (except communication to high power  
radio).  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
9.14 Module Markings  
9-3 and 9-4 show the markings for the SimpleLink™ CC3235MODx module.  
9-3. CC3235MODS Module Marking  
9-4. CC3235MODSF Module Marking  
9-5 and 9-6 show the markings for the SimpleLink™ CC3235MODAx modules.  
9-6. CC3235MODASF Module Marking  
9-5. CC3235MODAS Module Marking  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
9-7 lists the CC3235MODx and CC3235MODAx module markings.  
9-7. Module Descriptions  
MARKING  
DESCRIPTION  
CC3235MODSM2MOB  
CC3235MODSF12MOB  
CC3235MODASM2MON  
CC3235MODASF12MON  
Model  
Model  
LTC (Lot Trace Code):  
Y = Year  
YMWLLLC  
M = Month  
WLLLC = Reserved for internal use  
Z64-CC3235MOD  
451I-CC3235MOD  
FCC ID: single modular FCC grant ID  
IC: single modular IC grant ID  
MIC compliance mark  
R 201-190033  
MIC ID: modular MIC grant ID  
CE compliance mark  
CE  
9.15 End Product Labeling  
These modules are designed to comply with the FCC single modular FCC grant, FCC ID: Z64-CC3235MOD.  
The host system using this module must display a visible label indicating the following text:  
Contains FCC ID: Z64-CC3235MOD  
These modules are designed to comply with the IC single modular FCC grant, IC: 451I-CC3235MOD. The host  
system using this module must display a visible label indicating the following text:  
Contains IC: 451I-CC3235MOD  
This module is designed to comply with the JP statement, 201-190033. The host system using this module must  
display a visible label indicating the following text:  
Contains transmitter module with certificate number: 201-190033  
9.16 Manual Information to the End User  
The OEM integrator must be aware not to provide information to the end user regarding how to install or remove  
this RF module in the users manual of the end product which integrates this module.  
The end user manual must include all required regulatory information and warnings as shown in this manual.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
10 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Typical Application  
10.1.1 BLE/2.4 GHz Radio Coexistence  
The CC3235MODx and CC3235MODAx devices are designed to support BLE/2.4 GHz radio coexistence.  
Because WLAN is inherently more tolerant to time-domain disturbances, the coexistence mechanism gives  
priority to the Bluetooth® low energy entity over the WLAN. Bluetooth® low energy operates in the 2.4 GHz band,  
therefore the coexistence mechanism does not affect the 5 GHz band. The CC3235MODx and CC3235MODAx  
device can operate normally on the 5 GHz band, while the Bluetooth® low energy works on the 2.4 GHz band  
without mutual interference.  
The following coexistence modes can be configured by the user:  
Off mode or intrinsic mode  
No BLE/2.4 GHz radio coexistence, or no synchronization between WLAN and Bluetooth® low energyin  
case Bluetooth® low energy exists in this mode, collisions can randomly occur.  
Time Division Multiplexing (TDM, Dual Antenna)  
Dual-band Wi-Fi (see 10-1)  
In this mode, the WLAN can operate on either a 2.4 or 5 GHz band and Bluetooth® low energy operates  
on the 2.4 GHz band.  
10-1 shows the dual antenna implementation of a complete Bluetooth® low energy and WLAN coexistence  
network with the WLAN operating on either a 2.4- or a 5 GHz band. Note in this implementation a Coex switch is  
not required and only a single GPIO from the BLE device to the CC3235MOD device is needed. In addition, the  
CC3235MODx's antenna is external while the CC3235MODAx's antenna is integrated.  
Dual-band Antenna  
BLE Ant.  
RF  
RF_ABG  
WLAN  
CC3235MODx  
BLE  
CCxxxx  
Coex IO  
CC_COEX_BLE_IN  
10-1. Dual-Antenna Coexistence Mode Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
10.1.2 Antenna Selection (CC3235MODx only)  
The CC3235MODx device is designed to also support antenna selection and is controlled from Image Creator.  
When enabled, there are 3 options possible options:  
ANT 1: When selected, the GPIOs that are defined for antenna selection with set the RF path for antenna 1.  
ANT 2: When selected, the GPIOs that are defined for antenna selection will set the RF path for antenna 2.  
Autoselect: When selected, during a scan and prior to connecting to an AP, CC3235MODx device will  
determine the best RF path and select the appropriate antenna 13 14. The result is the saved as port of the  
profile.  
10-2 shows the antenna selection implementation for Wi-Fi, with BLE operating on it's own antenna. Note in  
this implementation, only a single GPIO from the BLE device to the CC3235MODx device is required. The  
Antenna switch 15is controlled by 2 GPIO lines from the CC3235MODx device. 7.3 lists which GPIOs can be  
used for Antenna Selection.  
Dual Band Ant. 1  
Antenna Selection  
SPDT RF Switch  
RF_ABG  
ANT_SEL_1  
Dual Band Ant. 2  
ANT_SEL_2  
WLAN  
CC3235MODx  
BLE Ant.  
BLE  
CCxxxx  
CC_COEX_BLE_IN  
Coex IO  
RF  
10-2. Coexistence Solution with Wi-Fi Antenna Selection and Dedicated BLE Antenna  
13  
14  
15  
When selecting Autoselect via the API, a reset is required in order for the CC3235MODx device to determine the best antenna for use.  
Refer to the Uniflash with Image Creator User Guidefor more information.  
The recommended Antenna switch is the Richwave RTC6608OSP.  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
10.1.3 Typical Application Schematic (CC3235MODx)  
10-3 shows the typical application schematic using the CC3235MODx module. See the full reference schematic for CC3235MODx.  
Note that the CC3235MODx and CC3235MODAx modules share the same reference schematic. The difference between the two references is the  
antenna and its matching circuitry. The CC3235MODAx's pin 31 is not accessible to the designer because it is directly tied to the integrated antenna.  
Note  
The following guidelines are recommended for implementation of the RF design:  
Ensure an RF path is designed with an impedance of 50 Ω  
Tuning of the antenna impedance πmatching network is recommended after manufacturing of the PCB to account for PCB parasitics  
πor L matching and tuning may be required between cascaded passive components on the RF path  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
Optional:  
Consider adding extra decoupling  
capaci tors itfhe battery cannot source  
the peak cu rrenst.  
VBAT_CC  
VBAT_CC  
C1  
0.1uF  
C4  
100uF  
C5  
100uF  
GND  
CC1  
C2  
0.1uF  
37  
40  
44  
46  
47  
48  
49  
50  
51  
52  
53  
54  
3
VBAT1  
VBAT2  
GPIO0  
GPIO01  
GPIO02  
GPIO03  
GPIO04  
GPIO05  
GPIO06  
GPIO07  
GPIO08  
GPIO09  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO22  
GPIO28  
GPIO30  
P50_GPIO_00  
P55_GPIO_01  
P57_GPIO_02  
GND  
GND  
GND  
At a minimum, pull thesepins out  
P58_GPIO_03  
P59_GPIO_04  
P60_GPIO_05  
to test pointsto aid in debug:  
Pin 48: RS232_TX  
Pin 49: RS232_RX  
Pin 50: WLAN_LOG  
Pin 52: NWP_LOG  
36  
35  
VBAT_RESET  
RESET  
P61_GPIO_06  
P62_GPIO_07  
P63_GPIO_08  
SEE TABLE 4-1 FOR  
VBAT_RESET and nRESET  
CONNECTION OPTIONS  
P64_GPIO_09  
P01_GPIO_10  
P02_GPIO_11  
P03_GPIO_12  
P04_GPIO_13  
P05_GPIO_14  
P06_GPIO_15  
P07_GPIO_16  
P08_GPIO_17  
P15_GPIO_22  
P18_GPIO_28  
P53_GPIO_30  
Matching circuit shown belowis for  
the antenna. The module is matched  
internallyto 50©. Final solution  
may require antennamatching  
optimization with a pi-network.  
39  
4
NC  
9
10  
5
E1  
6
7
12  
18  
21  
22  
8
JTAG_TDI  
JTAG_TDO  
JTAG_TCK  
JTAG_TMS  
11  
19  
42  
C3  
RF_ABG  
JTAG/DEBUG  
1pF  
L1  
4.7nH  
1
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VBAT_CC  
31  
2
RF_ABG  
GNDGND  
16  
25  
26  
27  
28  
29  
30  
32  
38  
43  
55  
56  
57  
58  
59  
60  
61  
62  
63  
SOP[2:0] USED TO CONFIGURBEOOT MODES (TABLE 5-5)  
J1  
R1  
10k  
GND  
1
3
5
2
4
6
34  
24  
23  
SOP0  
SOP1  
SOP2  
13  
14  
15  
17  
FLASH_SPI_MISO  
FLASH_SPI_CS_IN  
FLASH_SPI_CLK  
FLASH_SPI_MOSI  
EXTERNAL  
PROGRAMMING  
20  
33  
41  
45  
NC  
NC  
NC  
NC  
CC3235MODSF12MOBR  
GND  
10-3. CC3235MODx Typical Application Schematic  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
10-1 provides the bill of materials for a typical application using the CC3235MODx module in 10-3.  
For full operation reference design, see the CC3235MODAx SimpleLink™ and Internet of Things Hardware Design Files.  
10-1. Bill of Materials  
QTY  
PART REFERENCE VALUE  
MANUFACTURER  
PART NUMBER  
DESCRIPTION  
2
1
2
C1, C2  
C3  
0.1 µF  
1 pF  
Murata  
GRM155R61A104KA01D  
GRM1555C1H1R0CA01D  
LMK325ABJ107MMHT  
Capacitor, ceramic, 0.1 µF, 10 V, ±10%, X5R, 0402  
Capacitor, ceramic, 1 pF, 50 V, ±5%, C0G/NP0, 0402  
Murata  
C4, C5  
100 µF  
Murata  
Capacitor, ceramic, 100 µF, 10 V, ±20%, X5R, AEC-  
Q200 Grade 3, 1210  
1
1
E1  
L1  
2.4 GHz, 5 GHz Ant  
4.7 nH  
Ethertronics  
Murata  
M830520  
Antenna Bluetooth WLAN Zigbee®  
LQG15HS4N7C02D  
Inductor, Multilayer, Air Core, 4.7nH, 0.7 A, 0.16 Ω,  
SMD  
1
1
R1  
10k  
Vishay-Dale  
CRCW040210K0JNED  
RES, 10k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402  
CC1  
CC3235MODx  
Texas Instruments  
CC3235MODSM2MOB/  
CC3235MODSF12MOB  
SimpleLink™ Wi-Fi® and Internet-of-Things Module  
Solution, a Single-Chip Wireless Dual-Band MCU,  
MOB0063A  
10.1.4 Typical Application Schematic (CC3235MODAx)  
10-4 shows the typical application schematic using the CC3235MODAx module. See the full reference schematic for CC3235MODAx.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
Optional:  
Consider adding extra decoupling  
capacitors if the battery cannot source  
the peak currents.  
VBAT_CC  
VBAT_CC  
C1  
0.1uF  
C4  
100uF  
C5  
100uF  
GND  
CC?  
C2  
0.1uF  
37  
40  
44  
46  
47  
48  
49  
50  
51  
52  
53  
54  
3
VBAT1  
VBAT2  
GPIO_0  
GPIO_01  
GPIO_02  
GPIO_03  
GPIO_04  
GPIO_05  
GPIO_06  
GPIO_07  
GPIO_08  
GPIO_09  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
GPIO_17  
GPIO_22  
GPIO_28  
GPIO_30  
P50_GPIO_00  
P55_GPIO_01  
P57_GPIO_02  
GND  
GND  
GND  
At a minimum, pull these pins out  
P58_GPIO_03  
to test points to aid in debug:  
Pin 48: RS232_TX  
Pin 49: RS232_RX  
Pin 50: WLAN_LOG  
Pin 52: NWP_LOG  
P59_GPIO_04  
P60_GPIO_05  
P61_GPIO_06  
P62_GPIO_07  
36  
35  
VBAT_RESET  
RESET  
SEE TABLE 4-1 FOR  
VBAT_RESET and nRESET  
CONNECTION OPTIONS  
P63_GPIO_08  
P64_GPIO_09  
P01_GPIO_10  
P02_GPIO_11  
P03_GPIO_12  
P04_GPIO_13  
P05_GPIO_14  
P06_GPIO_15  
P07_GPIO_16  
P08_GPIO_17  
P15_GPIO_22  
P18_GPIO_28  
P53_GPIO_30  
12  
18  
21  
22  
4
JTAG_TDI  
JTAG_TDO  
JTAG_TCK  
JTAG_TMS  
9
JTAG/DEBUG  
10  
5
6
7
8
31  
11  
19  
42  
RF_ABG  
VBAT_CC  
25  
26  
GND  
GND  
SOP[2:0] USED TO CONFIGURE BOOT MODES (TABLE 5-5)  
J1  
R1  
10k  
1
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
2
1
3
5
2
4
6
34  
24  
23  
16  
27  
28  
30  
32  
38  
43  
55  
56  
57  
58  
59  
60  
61  
62  
63  
SOP0  
SOP1  
SOP2  
15  
14  
17  
13  
FLASH_SPI_CLK  
FLASH_SPI_CS_IN  
FLASH_SPI_MOSI  
FLASH_SPI_MISO  
EXTERNAL  
PROGRAMMING  
20  
29  
33  
39  
41  
45  
NC  
GND  
NC  
NC  
NC  
NC  
GND  
CC3235MODASM2MONR  
GND  
10-4. CC3235MODAx Typical Application Schematic  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
10-2 provides the bill of materials for a typical application using the CC3235MODAx module in 10-4.  
For full operation reference design, see the CC3235MODAx SimpleLink™ and Internet of Things Hardware Design Files.  
10-2. Bill of Materials  
QTY  
PART REFERENCE VALUE  
MANUFACTURER  
PART NUMBER  
DESCRIPTION  
2
2
C1, C2  
C4, C5  
0.1 µF  
100 µF  
Murata  
GRM155R61A104KA01D  
LMK325ABJ107MMHT  
Capacitor, ceramic, 0.1 µF, 10 V, ±10%, X5R, 0402  
Murata  
Capacitor, ceramic, 100 µF, 10 V, ±20%, X5R, AEC-  
Q200 Grade 3, 1210  
1
1
R1  
10k  
Vishay-Dale  
CRCW040210K0JNED  
RES, 10k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402  
CC1  
CC3235MODAx  
Texas Instruments  
CC3235MODASM2MON/  
CC3235MODASF12MON  
SimpleLink™ Wi-Fi® and Internet-of-Things Module  
Solution, a Single-Chip Wireless Dual-Band MCU,  
MON0063A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
10.2 Device Connection and Layout Fundamentals  
10.2.1 Power Supply Decoupling and Bulk Capacitors  
Depending upon routing resistors and battery type, TI recommends adding two 100-µF ceramic capacitors to  
help provide the peak current drawn by the CC3235MODx and CC3235MODAx modules.  
Note  
The module enters a brown-out condition whenever the input voltage dips below VBROWN (see 8-4  
and 8-5). This condition must be considered during design of the power supply routing specifically if  
operating from a battery. For more details on brown-out consideration, see 8.8.  
10.2.2 Reset  
The module features an internal RC circuit to reset the device during power ON. The nRESET pin must be held  
below 0.6 V for at least 5 ms for the device to successfully reset.  
10.2.3 Unused Pins  
All unused pins can be left unconnected without the concern of having leakage current.  
10.3 PCB Layout Guidelines  
This section details the PCB guidelines to speed up the PCB design using the CC3235MODx and  
CC3235MODAx. The integrator of theCC3235MODxandCC3235MODAx modules must comply with the PCB  
layout recommendations described in the following subsections to minimize the risk with regulatory certifications  
for the FCC, IC/ISED, ETSI/CE, MIC, and SRRC. Moreover, TI recommends customers follow the guidelines  
described in this section to achieve similar performance to that obtained with the TI reference design.  
10.3.1 General Layout Recommendations  
Ensure that the following general layout recommendations are followed:  
Have a solid ground plane and ground vias under the module for stable system and thermal dissipation.  
Do not run signal traces underneath the module on a layer where the module is mounted.  
10.3.2 CC3235MODx RF Layout Recommendations  
The RF section of this wireless module gets top priority in terms of layout. It is very important for the RF section  
to be laid out correctly to ensure optimum performance from the module. A poor layout can cause low-output  
power, EVM degradation, sensitivity degradation, and mask violations.  
10-5 shows the RF placement and routing of the CC3235MODx module with external antenna.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
10-5. RF Section Layout  
Follow these RF layout recommendations for the CC3235MODx device:  
RF traces must have 50-Ωimpedance.  
RF trace bends must be made with gradual curves, and 90° bends must be avoided.  
RF traces must not have sharp corners.  
There must be no traces or ground under the antenna section.  
RF traces must have via stitching on the ground plane beside the RF trace on both sides.  
RF traces must be as short as possible. The antenna, RF traces, and the module must be on the edge of the  
PCB product in consideration of the product enclosure material and proximity.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
For optimal RF performance, ensure the copper cut out on the top layer under the RF-BG pin (pin 31) is as  
shown in 10-6.  
Copyright © 2017, Texas Instruments Incorporated  
10-6. Top Layer Copper Pullback on RF Pads  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
10.3.2.1 Antenna Placement and Routing  
The antenna is the element used to convert the guided waves on the PCB traces to the free space  
electromagnetic radiation. The placement and layout of the antenna are the keys to increased range and data  
rates. 10-3 provides a summary of the recommended antennas to use with the CC3235MODx module.  
10-3. Antenna Guidelines  
SR NO.  
GUIDELINES  
1
Place the antenna on an edge or corner of the PCB.  
Ensure that no signals are routed across the antenna elements on all the layers of the  
PCB.  
2
3
Most antennas, including the chip antenna used on the LaunchPad, require ground  
clearance on all the layers of the PCB. Ensure that the ground is cleared on inner layers  
as well.  
Ensure that there is provision to place matching components for the antenna. These must  
be tuned for best return loss when the complete board is assembled. Any plastics or  
casing must also be mounted while tuning the antenna because this can impact the  
impedance.  
4
5
Ensure that the antenna impedance is 50 Ωbecause the module is rated to work only  
with a 50-Ωsystem.  
In case of printed antenna, ensure that the simulation is performed with the solder mask in  
consideration.  
6
7
Ensure that the antenna has a near omnidirectional pattern.  
The feed point of the antenna is required to be grounded. This is only for the antenna type  
used on the CC3235MODx Launchpad. See the specific antenna data sheets for the  
recommendations.  
8
10-4 lists the recommended antennas to use with the CC3235MODx module. Other antennas may be  
available for use with the CC3235MODx modules.  
10-4. Recommended Components  
CHOICE  
PART NUMBER  
MANUFACTURER  
NOTES  
Can be placed on edge of the PCB and uses much less PCB  
space  
1
M830520  
Ethertronics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
10.3.2.2 Transmission Line Considerations  
The RF signal from the module is routed to the antenna using a Coplanar Waveguide with ground (CPW-G)  
structure. CPW-G structure offers the maximum amount of isolation and the best possible shielding to the RF  
lines. In addition to the ground on the L1 layer, placing GND vias along the line also provides additional  
shielding.  
10-7 shows a cross section of the coplanar waveguide with the critical dimensions.  
10-8 shows the top view of the coplanar waveguide with GND and via stitching.  
10-7. Coplanar Waveguide (Cross Section)  
S
W
10-8. CPW With GND and Via Stitching (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
The recommended values for the PCB are provided for 2-layer boards in 10-5 and 4-layer boards in 10-6.  
10-5. Recommended PCB Values for 2-Layer  
Board (L1 to L2 = 42.1 mils)  
PARAMETER  
VALUE  
UNIT  
mils  
mils  
mils  
F/m  
W
S
26  
5.5  
H
42.1  
4.2  
Er (FR-4 substrate)  
10-6. Recommended PCB Values for 4-Layer  
Board (L1 to L2 = 16 mils)  
PARAMETER  
VALUE  
UNITS  
mils  
W
S
21  
10  
mils  
H
16  
mils  
Er (FR-4 substrate)  
4.5  
F/m  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
10.3.3 CC3235MODAx RF Layout Recommendations  
Use the following guidelines to lay out the CC3235MODAx module with an integrated antenna, as shown in 图  
10-9.  
The module must have an overhang of 1 mm from the PCB edge.  
The module must have a 6-mm clearance on all layers (no copper) to the left and right of the module  
placement.  
There must be at least one ground-reference plane under the module on the main PCB.  
10-9. CC3235MODAx Layout Guidelines  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
11 Environmental Requirements and SMT Specifications  
11.1 PCB Bending  
The PCB follows IPC-A-600J for PCB twist and warpage < 0.75% or 7.5 mil per inch.  
11.2 Handling Environment  
11.2.1 Terminals  
The product is mounted with motherboard through land-grid array (LGA). To prevent poor soldering, do not make  
skin contact with the LGA portion.  
11.2.2 Falling  
The mounted components will be damaged if the product falls or is dropped. Such damage may cause the  
product to malfunction.  
11.3 Storage Condition  
11.3.1 Moisture Barrier Bag Before Opened  
A moisture barrier bag must be stored in a temperature of less than 30°C with humidity under 85% RH. The  
calculated shelf life for the dry-packed product will be 24 months from the date the bag is sealed.  
11.3.2 Moisture Barrier Bag Open  
Humidity indicator cards must be blue, < 30%.  
11.4 PCB Assembly Guide  
The wireless MCU modules are packaged in a substrate base Leadless Quad Flatpack (QFM) package.  
Components were mounted onto the substrate with standard SMT process with the additional of a metal lid  
covering the top of the module. The module are designed with pull back leads for easy PCB layout and board  
mounting.  
11.4.1 PCB Land Pattern & Thermal Vias  
We recommended a solder mask defined land pattern to provide a consistent soldering pad dimension in order  
to obtain better solder balancing and solder joint reliability. PCB land pattern are 1:1 to module soldering pad  
dimension. Thermal vias on PCB connected to other metal plane are for thermal dissipation purpose. It is critical  
to have sufficient thermal vias to avoid device thermal shutdown. Recommended vias size are 0.2mm and  
position not directly under solder paste to avoid solder dripping into the vias.  
11.4.2 SMT Assembly Recommendations  
The module surface mount assembly operations include:  
Screen printing the solder paste on the PCB  
Monitor the solder paste volume (uniformity)  
Package placement using standard SMT placement equipment  
X-ray pre-reflow check - paste bridging  
Reflow  
X-ray post-reflow check - solder bridging and voids  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
11.4.3 PCB Surface Finish Requirements  
A uniform PCB plating thickness is key for high assembly yield. For an electroless nickel immersion gold finish,  
the gold thickness should range from 0.05 µm to 0.20 µm to avoid solder joint embrittlement. Using a PCB with  
Organic Solderability Preservative (OSP) coating finish is also recommended as an alternative to Ni-Au.  
11.4.4 Solder Stencil  
Solder paste deposition using a stencil-printing process involves the transfer of the solder paste through pre-  
defined apertures with the application of pressure. Stencil parameters such as aperture area ratio and the  
fabrication process have a significant impact on paste deposition. Inspection of the stencil prior to placement of  
package is highly recommended to improve board assembly yields.  
11.4.5 Package Placement  
Packages can be placed using standard pick and place equipment with an accuracy of ±0.05 mm. Component  
pick and place systems are composed of a vision system that recognizes and positions the component and a  
mechanical system that physically performs the pick and place operation. Two commonly used types of vision  
systems are:  
A vision system that locates a package silhouette  
A vision system that locates individual pads on the interconnect pattern  
The second type renders more accurate placements but tends to be more expensive and time consuming. Both  
methods are acceptable since the parts align due to a self-centering features fo the solder joint during solder  
reflow. It is recommended to release the package to 1 to 2 mils into the solder paste or with minimum force to  
avoid causing any possible damage to the thinner packages.  
11.4.6 Solder Joint Inspection  
After surface mount assembly, transmission X-ray should be used for sample monitoring of the solder  
attachment process. This identifies defects such as solder bridging, shorts, opens, and voids. It is also  
recommended to use side view inspection in addition to X-rays to determine if there are "Hour Glass" shaped  
solder and package tilting existing. The "Hour Glass" solder shape is not a reliable joint. 90° mirror projection can  
be used for side view inspection.  
11.4.7 Rework and Replacement  
TI recommends removal of modules by rework station applying a profile similar to the mounting process. Using a  
heat gun can sometimes cause damage to the module by overheating.  
11.4.8 Solder Joint Voiding  
TI recommends to control solder joint voiding to be less than 30% (per IPC-7093). Solder joint voids could be  
reduced by baking of components and PCB, minimized solder paste exposure duration, and reflow profile  
optimization.  
11.5 Baking Conditions  
Products require baking before mounting if:  
Humidity indicator cards read > 30%  
Temp < 30°C, humidity < 70% RH, over 96 hours  
Baking condition: 90°C, 12 to 24 hours  
Baking times: 1 time  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
11.6 Soldering and Reflow Condition  
Heating method: Conventional convection or IR convection  
Temperature measurement: Thermocouple d = 0.1 mm to 0.2 mm CA (K) or CC (T) at soldering portion or  
equivalent method  
Solder paste composition: SAC305  
Allowable reflow soldering times: 2 times based on the reflow soldering profile (see 11-1)  
Temperature profile: Reflow soldering will be done according to the temperature profile (see  
11-1)  
Peak temperature: 260°C  
11-1. Temperature Profile for Evaluation of Solder Heat Resistance of a Component (at Solder Joint)  
11-1. Temperature Profile  
Profile Elements  
Convection or IR(1)  
Peak temperature range  
235 to 240°C typical (260°C maximum)  
Pre-heat / soaking (150 to 200°C)  
Time above melting point  
Time with 5°C to peak  
Ramp up  
60 to 120 seconds  
60 to 90 seconds  
30 seconds maximum  
< 3°C / second  
Ramp down  
< -6°C / second  
(1) For details, refer to the solder paste manufacturer's recommendation.  
Note  
TI does not recommend the use of conformal coating or similar material on the SimpleLink™ module.  
This coating can lead to localized stress on the solder connections inside the module and impact the  
module reliability. Use caution during the module assembly process to the final PCB to avoid the  
presence of foreign material inside the module.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
12 Device and Documentation Support  
TI offers and extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed in this section.  
12.1 Development Tools and Software  
For the most up to date list of Development Tools and Software, visit the CC3235MOD tools and software page.  
Or, click on the Alert me button in the top-right corner of the page, to stay informed of updates related to the  
CC3235MOD.  
Pin Mux Tool  
The supported devices are: CC3200, CC3220x, and CC3235x.  
The Pin Mux Tool is a software tool that provides a graphical user interface (GUI) for  
configuring pin multiplexing settings, resolving conflicts and specifying I/O cell  
characteristics for MPUs from TI. Results are output as C header/code files that can  
be imported into software development kits (SDKs) or used to configure customers'  
custom software. Version 3 of the Pin Mux Tool adds the capability of automatically  
selecting a mux configuration that satisfies the entered requirements.  
SimpleLink™ Wi-Fi®  
Starter Pro  
The supported devices are: CC3100, CC3200, CC3120R, CC3220x, CC3135, and  
CC3235x.  
The SimpleLinkWi-Fi® Starter Pro mobile App is a new mobile application for  
SimpleLinkprovisioning. The app goes along with the embedded provisioning  
library and example that runs on the device side (see SimpleLink™ Wi-Fi® SDK plugin  
and TI SimpleLink ™ CC32XX Software Development Kit (SDK)). The new  
provisioning release is a TI recommendation for Wi-Fi® provisioning using SimpleLink  
™ Wi-Fi® products. The provisioning release implements advanced AP mode and  
SmartConfig™ technology provisioning with feedback and fallback options to ensure  
successful process has been accomplished. Customers can use both embedded  
library and the mobile library for integration to their end products.  
SimpleLink™ CC32XX  
The CC3235x devices are supported.  
Software Development  
Kit (SDK)  
The SimpleLinkCC32XX SDK contains drivers for the CC3235 programmable  
MCU, more than 30 sample applications, and documentation needed to use the  
solution. It also contains the flash programmer, a command line tool for flashing  
software, configuring network and software parameters (SSID, access point channel,  
network profile, BS NIEW), system files, and user files (certificates, web pages, and  
more). This SDK can be used with TIs SimpleLink™ Wi-Fi® CC3235 LaunchPad™  
development kits.  
Uniflash Standalone  
Flash Tool for TI  
The supported devices are: CC3120R, CC3220x, CC3135, and CC3235x.  
Microcontrollers (MCU), CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs  
Sitara Processors &  
SimpleLink Devices  
and on-board flash memory for Sitara™ processors. Uniflash has a GUI, command  
line, and scripting interface. CCS Uniflash is available free of charge.  
SimpleLink™ Wi-Fi®  
Radio Testing Tool  
The supported devices are: CC3100, CC3200, CC3120R, CC3220, CC3135, and  
CC3235x.  
The SimpleLink™ Wi-Fi® Radio Testing Tool is a Windows-based software tool for RF  
evaluation and testing of SimpleLink™ Wi-Fi® CC3x20 and CC3x35 designs during  
development and certification. The tool enables low-level radio testing capabilities by  
manually setting the radio into transmit or receive modes. Using the tool requires  
familiarity and knowledge of radio circuit theory and radio test methods.  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
Created for the internet-of-things (IoT), the SimpleLink™ Wi-Fi® CC31xx and CC32xx  
family of devices include on-chip Wi-Fi®, Internet, and robust security protocols with  
no prior Wi-Fi® experience needed for faster development. For more information on  
these devices, visit SimpleLink™ Wi-Fi® family, Internet-on-a chip™ solutions.  
UniFlash Standalone  
Flash Tool for TI  
Microcontrollers (MCU),  
Sitara™ Processors and  
SimpleLink™ Devices  
CCS UniFlash is a standalone tool used to program on-chip flash memory on TI  
MCUs and on-board flash memory for Sitaraprocessors. UniFlash has a GUI,  
command line, and scripting interface. CCS UniFlash is available free of charge.  
12.2 Firmware Updates  
TI updates features in the service pack for this module with no published schedule. Due to the ongoing changes,  
TI recommends users have the latest service pack in their module for production.  
To stay informed, sign up for updates using the SDK Alert me button in the top-right corner of the product page,  
or visit http://www.ti.com/tool/download/SIMPLELINK-CC32XX-SDK.  
12.3 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of the  
CC3235MODx and CC3235MODAx and support tools (see 12-1).  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, CC3235MODxandCC3235MODAx). Texas Instruments recommends two of three possible prefix  
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product  
development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X
CC 3235 MOD  
X
XXXX XXX  
R
PACKAGING  
R = tape/reel  
PREFIX  
X = preproduction device  
no prefix = production device  
PACKAGE DESIGNATOR  
MON = LGA package  
DEVICE FAMILY  
CC = wireless connectivity  
SERIES NUMBER  
3 = Wi-Fi Centric  
SM2 = S module  
SF12 = SF module  
MODULE  
MOD = module  
A = integral antenna  
No prefix = no antenna  
12-1. CC3235MODx and CC3235MODAx Module Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
For orderable part numbers of the CC3235MODx and CC3235MODAx devices in the QFM package type, see 节  
13.2, see ti.com, or contact your TI sales representative.  
12.4 Documentation Support  
To receive notification of documentation updates including silicon errata go to the CC3235MOD product  
folder on ti.com. In the upper-right corner, click on Alert me to receive a weekly digest of any product information  
that has changed. For change details, check the revision history of any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is as  
follows.  
Application Reports  
CC3135 and CC3235 SimpleLink™  
CC3135 and CC3235 SimpleLink Wi-Fi Embedded Programming User  
Wi-Fi® Embedded Programming User Guide  
Guide  
SimpleLink™ CC3135, CC3235 Wi-Fi® This application report describes the best practices for power  
Internet-on-a chip™ Networking Sub- management and extended battery life for embedded low-power Wi-Fi  
System Power Management  
devices such as the SimpleLink Wi-Fi Internet-on-a chip solution from  
Texas Instruments.  
SimpleLink™ CC31xx, CC32xx Wi-Fi® The SimpleLink Wi-Fi CC31xx and CC32xx Internet-on-a chip family of  
Internet-on-a chip™ Solution Built-In  
Security Features  
devices from Texas Instruments offer a wide range of built-in security  
features to help developers address a variety of security needs, which  
is achieved without any processing burden on the main microcontroller  
(MCU). This document describes these security-related features and  
provides recommendations for leveraging each in the context of  
practical system implementation.  
SimpleLink™ CC3135, CC3235 Wi-Fi® This document describes the OTA library for the SimpleLink Wi-Fi  
and Internet-of-Things Over-the-Air  
Update  
CC3x35 family of devices from Texas Instruments and explains how to  
prepare a new cloud-ready update to be downloaded by the OTA  
library.  
SimpleLink™ CC3135, CC3235 Wi-Fi® This guide describes the provisioning process, which provides the  
Internet-on-a chip™ Solution Device  
Provisioning  
SimpleLink Wi-Fi device with the information (network name, password,  
and so forth) needed to connect to a wireless network.  
Transfer of TI's Wi-Fi® Alliance  
Certifications to Products Based on  
SimpleLink™  
This document explains how to employ the Wi-Fi® Alliance (WFA)  
derivative certification transfer policy to transfer a WFA certification,  
already obtained by Texas Instruments, to a system you have  
developed.  
Using Serial Flash on SimpleLink™  
CC3135 and CC3235 Wi-Fi® and  
Internet-of-Things Devices  
This application note is divided into two parts. The first part provides  
important guidelines and best- practice design techniques to consider  
when choosing and embedding a serial Flash paired with the CC3135  
and CC3235 (CC3x35) devices. The second part describes the file  
system, along with guidelines and considerations for system designers  
working with the CC3x35 devices.  
More Literature  
CC3235MODx SimpleLink™ Wi-Fi® and Internet-of-Things Hardware Design Files  
CC3220MODAx SimpleLink™ Wi-Fi® and Internet-of-Things Hardware Design Files  
CC3x35x SimpleLink™ Wi-Fi® and Internet-of-Things Design Checklist  
User's Guides  
CC3135 and CC3235  
SimpleLink™ Wi-Fi®  
CC3135 and CC3235 SimpleLink Wi-Fi Embedded Programming User Guide  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
Embedded Programming  
User Guide  
UniFlash SimpleLink™  
This document describes the installation, operation, and usage of the SimpleLink  
CC31xx/32xx Wi-Fi® and IoC ImageCreator tool as part of the UniFlash.  
™ Solution ImageCreator  
and Pro  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
SimpleLink™ Wi-Fi® and  
Internet-of-Things CC31xx  
and CC32xx Network  
Processor  
This document provides software (SW) programmers with all of the required  
knowledge for working with the networking subsystem of the SimpleLink Wi-Fi  
devices. This guide provides basic guidelines for writing robust, optimized  
networking host applications, and describes the capabilities of the networking  
subsystem. The guide contains some example code snapshots, to give users an  
idea of how to work with the host driver. More comprehensive code examples can  
be found in the formal software development kit (SDK). This guide does not  
provide a detailed description of the host driver APIs.  
SimpleLink™ Wi-Fi® CC3135  
and CC3235 Provisioning for  
Mobile Applications  
This guide describes TIs SimpleLink Wi-Fi provisioning solution for mobile  
applications, specifically on the usage of the Androidand IOS® building blocks  
for UI requirements, networking, and provisioning APIs required for building the  
mobile application.  
CC3235 SimpleLink™ Wi-Fi® This technical reference manual details the modules and peripherals of the  
and Internet of Things  
CC3235 SimpleLink™ Wi-Fi® MCU. Each description presents the module or  
Technical Reference Manual peripheral in a general sense. Not all features and functions of all modules or  
peripherals may be present on all devices. Pin functions, internal signal  
connections, and operational parameters differ from device to device. The user  
should consult the device-specific data sheet for these details.  
SimpleLink™ Wi-Fi® and  
The Radio Tool serves as a control panel for direct access to the radio, and can  
Internet-on-a chip™ CC3135 be used for both the radio frequency (RF) evaluation and for certification  
and CC3235 Solution Radio purposes. This guide describes how to have the tool work seamlessly on Texas  
Tool  
Instruments evaluation platforms such as the BoosterPack™ plus FTDI emulation  
board for CC3235 devices, and the LaunchPad™ for CC3235 devices.  
CC3235MOD SimpleLink™ The CC3235MOD SimpleLink LaunchPad™ Development Kit  
Wi-Fi® LaunchPad™  
Development Kit  
(LAUNCHCC3235MOD) is a low-cost evaluation platform for Arm®Cortex®-M4-  
based MCUs. The LaunchPad design highlights the CC3235MOD Internet-on-a  
chip™ solution and Dual-Band Wi-Fi capabilities. The CC3235MOD LaunchPad  
also features temperature and accelerometer sensors, programmable user  
buttons, an RGB LED for custom applications, and onboard emulation for  
debugging. The stackable headers of the CC3235MOD LaunchPad XL interface  
demonstrate how easy it is to expand the functionality of the LaunchPad when  
interfacing with other peripherals on many existing BoosterPack™ Plug-in  
Module add-on boards, such as graphical displays, audio codecs, antenna  
selection, environmental sensing, and more.  
12.5 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
12-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
CC3235MODS  
CC3235MODSF  
CC3235MODAS  
CC3235MODASF  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.6 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
12.7 Trademarks  
WPA, WPA2, WPA3, Wi-Fi CERTIFIEDare trademarks of Wi-Fi Alliance.  
SimpleLink, E2E, BoosterPack, LaunchPad, Sitara, and TI E2Eare trademarks of Texas Instruments.  
Macronixis a trademark of Macronix International Co..  
Macrocellis a trademark of Kappa Global Inc.  
Androidis a trademark of Google LLC.  
Wi-Fi 联盟®, Wi-Fi®, Wi-Fi Direct®, and are registered trademarks of Wi-Fi Alliance.  
®, Arm®, Cortex®, Thumb® are registered trademarks of Arm Limited.  
Zigbee® is a registered trademark of Zigbee Alliance Inc.  
IOS® is a registered trademark of Cisco.  
所有商标均为其各自所有者的财产。  
12.8 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.9 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document.  
13.1 Mechanical, Land, and Solder Paste Drawings  
Note  
The total height of the module is 2.4 mm.  
The weight of the CC3235MODx module is 1.8 g typical.  
The weight of the CC3235MODAx module is 1.8 g typical.  
Note  
1. All dimensions are in mm.  
2. Solder mask should be the same or 5% larger than the dimension of the pad.  
3. Solder paste must be the same as the pin for all peripheral pads. For ground pins, make the  
solder paste 20% smaller than the pad.  
13.2 Package Option Addendum  
The CC3235MODx is only offered in a 750-unit reel. The CC3235MODAx is only offered in a 700-unit reel.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
13.2.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish  
Orderable Device  
Status (1)  
ACTIVE  
Pins  
63  
Eco Plan (2)  
MSL, Peak Temp (3)  
3, 260°C  
Op Temp (°C)  
40 to 85  
40 to 85  
40 to 85  
40 to 85  
Device Marking(4) (5)  
CC3235MODSF12MOB  
CC3235MODSM2MOB  
CC3235MODASF12MON  
CC3235MODASM2MON  
Green (RoHS  
and no Sb/Br)  
CC3235MODSF12MOBR  
CC3235MODSM2MOBR  
CC3235MODASF12MONR  
CC3235MODASM2MONR  
QFM  
QFM  
QFM  
QFM  
MOB  
MOB  
MON  
MON  
750  
750  
700  
700  
ENIG  
ENIG  
ENIG  
ENIG  
Green (RoHS  
and no Sb/Br)  
ACTIVE  
63  
3, 260°C  
Green (RoHS  
and no Sb/Br)  
PREVIEW  
PREVIEW  
63  
3, 260°C  
Green (RoHS  
and no Sb/Br)  
63  
3, 260°C  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1%  
by weight in homogeneous material)  
space  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by  
third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable  
steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain  
information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
105  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
 
 
 
 
 
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
www.ti.com.cn  
13.2.2 Tape and Reel Information  
D
N
D
330.0 max  
101±1.0  
N
W1 44±±.0  
W± 45.8 max  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
CC3235MODS, CC3235MODSF, CC3235MODAS, CC3235MODASF  
www.ti.com.cn  
ZHCSKT8B FEBRUARY 2020 REVISED MAY 2021  
13.2.3 CC3235MODx Tape Specifications  
1. 10 sprocket hole pitch cumulative tolerance 0.20.  
2. Material: Polystyrene  
3. All dimensions meet EIA-481-E requirements.  
4. Thickness: 0.2 0.05mm  
13.2.4 CC3235MODAx Tape Specifications  
1. 10 sprocket hole pitch cumulative tolerance 0.ꢀ0.  
ꢀ. Material: Polystyrene  
3. All dimensions meet EIA-481-E requirements.  
4. Thickness: 0.ꢀ 0.0ꢁmm  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: CC3235MODS CC3235MODSF CC3235MODAS CC3235MODASF  
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC3235MODASF12MONR  
ACTIVE  
QFM  
MON  
63  
700  
RoHS (In  
Work) & Green  
(In Work)  
NIAU  
Level-3-260C-168 HR  
-40 to 85  
CC3235MODASF12MON  
Z64-CC3235MOD  
451I-CC3235MOD  
201-190033  
Samples  
XXXXXXXXXX(M)  
CC3235MODASM2MONR  
CC3235MODSF12MOBR  
CC3235MODSM2MOBR  
ACTIVE  
ACTIVE  
ACTIVE  
QFM  
QFM  
QFM  
MON  
MOB  
MOB  
63  
63  
63  
700  
750  
750  
RoHS (In  
Work) & Green  
(In Work)  
NIAU  
NIAU  
NIAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
CC3235MODASM2MON  
Z64-CC3235MOD  
451I-CC3235MOD  
201-190033  
Samples  
Samples  
Samples  
RoHS & Green  
CC3235MODSF12MOB  
Z64-CC3235MOD  
451I-CC3235MOD  
201-190033  
RoHS (In  
Work) & Green  
(In Work)  
CC3235MODSM2MOB  
Z64-CC3235MOD  
451I-CC3235MOD  
201-190033  
E
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Jul-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
MOB0063A  
QFM - 2.4 mm max height  
SCALE 0.650  
QUAD FLAT MODULE  
17.75  
17.25  
B
A
PIN 1 INDEX  
AREA  
20.75  
20.25  
2X (0.45)  
2X (0.38)  
C
2.40  
2.03  
0.1  
0.88  
0.72  
2X 12.7  
20X 1.27  
(0.3) TYP  
30X 1.27  
17  
27  
16  
15  
28  
29  
(0.32)  
PADS 1,16,28 & 43  
(0.3)  
TYP  
9X  
0.05  
2
1.5  
60  
57  
56  
63  
2X  
19.05  
59  
62  
61  
6X 3  
55  
58  
54X 0.81 0.08  
2
1
42  
0.15  
0.05  
C A B  
C
44 43  
54  
PIN 1 ID  
(45 X1)  
1.5  
6X 3  
4221462/D 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
MOB0063A  
QFM - 2.4 mm max height  
QUAD FLAT MODULE  
PKG  
SEE DETAIL  
54X ( 0.81)  
54  
44  
1
2
43  
42  
(
8.1)  
9X ( 2)  
0.05 MIN TYP  
58  
(45 X 1)  
(
0.2) TYP  
VIA  
61  
62  
55  
56  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
9X  
59  
PKG  
6X (3)  
(1.5)  
2X (19.1)  
63  
57  
(0.65)  
TYP  
60  
(1.5)  
(0.65)  
TYP  
6X (3)  
(1.27) TYP  
15  
16  
29  
28  
17  
27  
(R0.05)  
ALL PADS  
2X (16.1)  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:6X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SIGNAL PADS DETAIL  
4221462/D 06/2019  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
MOB0063A  
QFM - 2.4 mm max height  
QUAD FLAT MODULE  
PKG  
54X ( 0.81)  
54  
44  
1
2
43  
(R0.05)  
TYP  
42  
SOLDER MASK  
EDGE, TYP  
SOLDER MASK EDGE  
SEE DETAILS  
58  
55  
61  
62  
59  
56  
57  
PKG  
(3) TYP  
2X (19.1)  
(1.5) TYP  
63  
60  
(1.5) TYP  
(3) TYP  
(1.27) TYP  
15  
16  
29  
28  
17  
27  
2X (16.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PADS PRINTED SOLDER COVERAGE BY AREA  
PAD 55: 77.5 %, PADS 56 - 63: 79%  
SCALE:6X  
(1.54)  
(0.55) TYP  
(0.55) TYP  
(0.55) TYP  
(0.45)  
(
0.89) TYP  
2X ( 0.89)  
(0.55 TYP)  
METAL  
TYP  
(R0.05) TYP  
(R0.05)  
TYP  
PADS 56 - 63 DETAIL  
PAD 55 DETAIL  
SCALE:10X  
SCALE:10X  
4221462/D 06/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
MON0063A  
QFM - 2.4 mm max height  
SCALE 0.600  
QUAD FLAT MODULE  
25.25  
24.75  
B
A
PIN 1 ID  
20.75  
20.25  
19.61 0.1  
PICK & PLACE  
NOZZLE AREA  
16.74 0.1  
2.40  
2.03  
C
SEATING PLANE  
0.08 C  
0.88  
0.72  
2X 12.7  
PKG  
20X 1.27  
30X 1.27  
17  
27  
28  
16  
15  
29  
9X  
0.05  
2
1.5  
60  
2X  
63  
57  
19.05  
PADS 1-16  
& 28-43  
PKG  
56  
55  
19.038  
PADS 17-27  
& 44-54  
59  
62  
61  
6X 3  
58  
PIN 1 ID  
(45 X1)  
2
1
42  
54  
44  
43  
(0.326) TYP  
54X 0.81 0.08  
6X 3  
11.769  
2.224  
0.15  
0.05  
C A B  
C
4.321  
4223415/D 11/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
MON0063A  
QFM - 2.4 mm max height  
QUAD FLAT MODULE  
SEE DETAIL  
PATTERN  
PKG  
54X ( 0.81)  
44  
54  
1
2
43  
42  
(
8.1)  
9X ( 2)  
(
0.2) TYP  
0.05 MIN TYP  
58  
VIA  
(45 X 1)  
61  
55  
56  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
9X  
59  
62  
(19.048)  
PKG  
6X (3)  
(20.5)  
(1.5)  
63  
57  
(0.65)  
TYP  
60  
(1.5)  
(0.65)  
TYP  
6X (3)  
(1.27) TYP  
15  
16  
29  
28  
17  
27  
(R0.05)  
ALL PADS  
(8.05)  
(3.724)  
(25)  
(4.326)  
NO TRACES, VIAS, GND PLANE  
OR SILK SCREEN SHOULD BE  
LOCATED WITHIN THIS AREA  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:5X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SIGNAL PADS DETAIL  
4223415/D 11/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
MON0063A  
QFM - 2.4 mm max height  
QUAD FLAT MODULE  
PATTERN  
PKG  
54X ( 0.81)  
54  
44  
1
2
43  
42  
SOLDER MASK  
EDGE, TYP  
SOLDER MASK EDGE  
SEE DETAILS  
58  
61  
62  
55  
56  
59  
(3) TYP  
(19.048)  
PKG  
57  
63  
(1.5) TYP  
60  
(1.5) TYP  
(3) TYP  
(1.27) TYP  
29  
28  
15  
16  
17  
27  
(R0.05)  
TYP  
(8.05)  
(3.724)  
(16.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PADS PRINTED SOLDER COVERAGE BY AREA  
PAD 55: 77.5 %, PADS 56 - 63: 79%  
SCALE:6X  
(1.54)  
(0.55) TYP  
(0.55) TYP  
(0.55) TYP  
(0.45)  
2X ( 0.89)  
(
0.89) TYP  
(0.55 TYP)  
EXPOSED METAL  
TYP  
(R0.05) TYP  
(R0.05)  
TYP  
PAD 55 DETAIL  
PADS 56 - 63 DETAIL  
SCALE:10X  
SCALE:10X  
4223415/D 11/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CC3235MODSF12MOBR

具有 1MB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4 双频带 Wi-Fi CERTIFIED™ 无线模块 | MOB | 63 | -40 to 85
TI

CC3235MODSM2MOBR

具有 256kB RAM 闪存的 SimpleLink™ 32 位 Arm Cortex-M4 双频带 Wi-Fi CERTIFIED™ 无线模块 | MOB | 63 | -40 to 85
TI

CC3235S

具有 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4 双频带 Wi-Fi® 无线 MCU
TI

CC3235SF

具有 1MB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4 双频带 Wi-Fi® 无线 MCU
TI

CC3235SF12RGKR

具有 1MB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4 双频带 Wi-Fi® 无线 MCU | RGK | 64 | -40 to 85
TI

CC3235SM2RGKR

具有 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4 双频带 Wi-Fi® 无线 MCU | RGK | 64 | -40 to 85
TI

CC327

PNP/NPN SILICON PLANAR EPITAXIAL TRANSISTORS
CDIL

CC327-16

TRANSISTOR | BJT | PNP | 50V V(BR)CEO | 500MA I(C) | TO-92
ETC

CC327-25

TRANSISTOR | BJT | PNP | 50V V(BR)CEO | 500MA I(C) | TO-92
ETC

CC327-40

TRANSISTOR | BJT | PNP | 50V V(BR)CEO | 500MA I(C) | TO-92
ETC

CC327A

PNP/NPN SILICON PLANAR EPITAXIAL TRANSISTORS
CDIL

CC327APNP

PNP/NPN SILICON PLANAR EPITAXIAL TRANSISTORS
CDIL