CDC960DLR [TI]

200-MHz CLOCK SYNTHESIZER/DRIVER WITH SPREAD SPECTURM CAPABILITY AND DEVICE CONTROL INTERFACE; 200 - MHz的时钟合成器/驱动器,具有SPREAD SPECTURM能力建设与设备控制接口
CDC960DLR
型号: CDC960DLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

200-MHz CLOCK SYNTHESIZER/DRIVER WITH SPREAD SPECTURM CAPABILITY AND DEVICE CONTROL INTERFACE
200 - MHz的时钟合成器/驱动器,具有SPREAD SPECTURM能力建设与设备控制接口

晶体 驱动器 时钟发生器 微控制器和处理器 外围集成电路 光电二极管
文件: 总38页 (文件大小:551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕ ꢁꢔ ꢒ ꢖꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 – APRIL 2002  
DL PACKAGE  
(TOP VIEW)  
D
D
D
Generates Clocks for AMD-K8 Clawhammer  
Desktop Systems  
Uses a 14.318-MHz Crystal Input to  
Generate Multiple Output Frequencies  
FS0 & REF0  
FS1 & REF1  
GND  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
V
2
3
4
5
6
7
8
9
DD  
Includes Spread Spectrum Clocking (SSC),  
0.5% Downspread for Reduced EMI  
XIN  
XOUT  
GND  
V
DD  
FS2 & REF2  
SPREAD  
D
Power Management Control Terminals  
D
SMBus Serial Interface Provides Output  
Enable and Control  
PCI/LDT_SEL  
PCI/LDT0  
V
DDA  
GNDA  
CPU0  
CPU0  
GND  
PCI/LDT1  
D
Low-Output Skew and Low Jitter for Clock  
Distribution  
V
DD  
GND  
PCI/LDT2  
LDT_Stop  
PCI0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
D
Operates From Single 3.3-V Supply  
V
DD  
D
Generates the Following Clocks:  
– 2 CPU (3.3 V, 180° shifted pairs,  
200/166/133/100 MHz)  
CPU1  
CPU1  
PCI1  
V
DD  
– 6 PCI (3.3 V, 33 MHz)  
GND  
GND  
– 1 PCI_F (3.3 V, 33 MHz)  
– 3 REF (3.3 V, 14.318 MHz)  
– 1 USB (3.3 V, 48 MHz)  
V
GNDF  
DD  
PCI2  
PCI3  
V
DDF  
USB  
GND  
– 1 FDC (3.3 V, 24 MHz or 48 MHz)  
V
DD  
– 3 PCI/LDT (3.3 V, 33 MHz or 66 MHz)  
GND  
PCI4  
V
DD  
D
Packaged in 48-Pin SSOP Package  
24/48_SEL & FDC  
GND  
PCI5  
description  
PCI_F  
SDATA  
The CDC960 is a clock synthesizer/driver and  
PCI_Stop  
SCLK  
buffer that generates CPU, PCI, PCI/LDT, USB,  
FDC, and REF system clock signals to support  
PCs with an AMD-K8 Clawhammer-class system.  
All output frequencies are generated from a 14.318-MHz crystal input. A reference clock input can be provided  
at the XIN input instead of a crystal. It is recommended to use the bypass mode of the internal oscillator in this  
case. Two phase-locked loops (PLLs) are used to generate the host frequencies and 48-MHz clock frequencies.  
On-chip loop filters and internal feedback eliminate the need for external components.  
The device provides a standard mode (100 kbps) SMBus 1.1 serial interface for device control. The  
implementation is as a slave with read and write capability. The device address is specified in the SMBus serial  
interface device address table. Both SMBus inputs (SDATA and SCLK) provide integrated pullup resistors  
(typically 150 k).  
Seven 8-bit SMBus registers provide individual enable control for each of the outputs. The controllable outputs  
default to enabled at power up and can be placed in a disabled mode with a low-level output when a low-level  
control bit is written to the control register. The registers must be accessed in sequential order (i.e., random  
access of the registers not supported).  
The CPU, PCI, PCI_F, LDT, FDC (24/48-MHz), and USB (48-MHz) clock outputs provide low-skew/low-jitter  
clock signals for reliable clock operation. All outputs have 3-state capability, which can be selected via control  
inputs FS0, FS1, and FS2 at power-up preset condition.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LDT is equivalent to HT66 shown on AMD specification.  
Copyright 2002, Texas Instruments Incorporated  
ꢐꢨ  
ꢤ ꢨ ꢥ ꢤꢝ ꢞꢲ ꢠꢟ ꢣ ꢫꢫ ꢩꢣ ꢡ ꢣ ꢢ ꢨ ꢤ ꢨ ꢡ ꢥ ꢭ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
description (continued)  
The CPU bus is a 3.3-V differential push-pull output type. All others are single-ended CMOS buffers.  
The host frequencies are fixed and are controlled by the FS0, FS1 and FS2 signals at power-up. The CPU bus  
frequencies are 200, 166, 133 and 100 MHz.  
Because the CDC960 is based on PLL circuitry, it requires a stabilization time to achieve phase-lock of the PLL.  
With use of external reference clock, this signal must be fixed-frequency and fixed-phase prior stabilization time  
starts.  
FUNCTION TABLES  
DEVICE FREQUENCY SELECT FUNCTIONS  
SMBUS  
INPUTS  
OUTPUTS  
CONTROLLED  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
H
H
H
L
H
H
H
H
H
H
H
L
H
H
H
H
H
L
H
H
H
H
L
200 MHz  
200 MHz  
200 MHz  
200 MHz  
166 MHz  
133 MHz  
100 MHz  
Xin  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
Xin/6  
33 MHz  
66 MHz  
33 MHz  
66 MHz  
33/66 MHz  
33/66 MHz  
33/66 MHz  
Xin/6  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
24 MHz  
24 MHz  
48 MHz  
48 MHz  
14.31818 MHz  
14.31818 MHz  
L
L
H
14.31818 MHz  
L
L
L
14.31818 MHz  
L
H/L  
H/L  
H/L  
X
H/L  
H/L  
H/L  
H
48 MHz 24/48 MHz  
48 MHz 24/48 MHz  
48 MHz 24/48 MHz  
14.31818 MHz  
L
H
L
14.31818 MHz  
L
L
14.31818 MHz  
L
L
H
H
H
H
H
H
L
L
L
L
f
f
= 0 to  
(xin)  
200 MHz  
L
X
L
L
L
Xin  
Xin/6  
Xin/3  
L
L
L
L
H
H
L
H
H
H
H
H
L
Xin  
Xin/6  
Xin/6  
Xin/2  
Xin/2  
Xin/2  
Xin/2  
Xin/4  
Xin/4  
Xin/2  
Xin/2  
Xin  
Xin  
Xin  
Xin  
L
H
L
L
Xin  
Xin/6  
Xin/3  
= 0 to  
(xin)  
16 MHz  
L
L
H
L
Xin  
Xin/6  
Xin/6  
L
L
L
L
Xin  
Xin/6  
Xin/3  
L
X
X
L
Reserved for future use  
Hi-Z Hi-Z  
L
X
X
L
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
H
H
H
H
H
H
H
H
X
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H/L  
H
H
H
H
L
H
H
L
H
L
90 MHz  
119 MHz  
30 MHz  
30 MHz  
30/60 MHz  
30/60 MHz  
48 MHz 24/48 MHz  
48 MHz 24/48 MHz  
14.31818 MHz  
14.31818 MHz  
14.31818 MHz  
14.31818 MHz  
14.31818 MHz  
14.31818 MHz  
14.31818 MHz  
14.31818 MHz  
10%  
10%  
10%  
10%  
10%  
H
L
180 MHz 36.3 MHz 36.3/72.6 MHz 48 MHz 24/48 MHz  
L
180 MHz  
111 MHz  
30 MHz  
30/60 MHz  
48 MHz 24/48 MHz  
H
H
L
H
L
36.9 MHz 36.9/73.9 MHz 48 MHz 24/48 MHz  
L
148 MHz 36.9 MHz 36.9/73.9 MHz 48 MHz 24/48 MHz  
222 MHz 44.4 MHz 44.4/88.8 MHz 48 MHz 24/48 MHz  
222 MHz 36.9 MHz 36.9/73.9 MHz 48 MHz 24/48 MHz  
Not-yet-defined settings  
10%  
L
H
L
10%  
L
L
10%  
X
X
X
If the REF, USB, and FDC outputs are disabled in by pass mode, the Xin-input can be driven with an external clock signal from 0 MHz to 200 MHz.  
Otherwise the maximum input frequency is limited to 16 MHz.  
24/48_SEL and PCI/LDT_SEL inputs operate independently from each other and the frequency of the corresponding bus, as shown in detail  
for the 200-MHz configuration.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢘꢔ  
ꢘꢑ  
ꢐꢔ  
SCAS675 APRIL 2002  
FUNCTION TABLES (Continued)  
SPREAD SPECTRUM  
INPUT  
0
1
Spread spectrum disabled  
Spread  
Spread spectrum enabled, 0.5% at CPU/CPU, PCI/LDT, PCI_F, PCI  
DEVICE ENABLE FUNCTIONS  
SMBus  
CONTROLLED  
INPUTS  
OUTPUTS  
INTERNAL  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
L
X
H
H
L
X
H
L
L
H
H
H
H
H
H
H
H
L
L
X
X
X
X
X
X
X
X
L
L
X
X
X
X
X
X
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Xtal  
Xtal  
Xtal  
Xtal  
Xtal  
Xtal  
Xtal  
Xtal  
Xtal  
H
Hi-Z  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
H
Hi-Z  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
L
Hi-Z  
↑↓  
Hi-Z  
↑↓  
L
Hi-Z  
↑↓  
L
Hi-Z  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
L
Hi-Z  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
L
Hi-Z  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
↑↓  
L
Off  
↑↓  
Off  
↑↓  
↑↓  
↑↓  
↑↓  
H
L
↑↓  
↑↓  
L
↑↓  
L
↑↓  
↑↓  
L
↑↓  
↑↓  
↑↓  
H
H
L
H
L
↑↓  
↑↓  
L
↑↓  
↑↓  
L
↑↓  
↑↓  
L
↑↓  
↑↓  
↑↓  
L
H
L
↑↓  
↑↓  
L
↑↓  
↑↓  
L
L
↑↓  
L
↑↓  
↑↓  
X
H
H
L
X
X
H
L
H
H
L
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
L
HL  
HL  
L
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
H
L
L
L
H
H
L
HL  
L
L
L
L
L
L
H
H
H
L
L
L
L
L
H
HL  
L
L
L
L
H
H
H
H
L
L
L
H
H
H
H
H
H
H
H
H
L
L
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
HL  
L
L
L
L
H
L
L
H
H
L
L
H
H
L
HL  
HL  
L
HL  
HL  
HL  
L
L
L
L
L
H
H
L
L
L/H  
L/H  
L/H  
L/H  
L/H  
L/H  
H/L  
H/L  
H/L  
L
H
L
L
HL  
L
L
L
L
L
SMBus bits set to their reset values  
Hi-Z will have LOW state if external load circuit is applied, CPU and CPU are push-pull type outputs.  
↑↓ Outputs toggle at the selected frequency according to the Device Frequency Select FunctionS table above.  
HL device output state is undefined, either L or H. It is L if Xin is held static at L or H before the bypass mode is selected.  
OUTPUT BUFFER SPECIFICATIONS  
V
DD  
RANGE  
(V)  
IMPEDANCE  
BUFFER NAME  
LUMPED TEST LOAD  
()  
CPU  
3.135 3.465  
3.135 3.465  
3.135 3.465  
40  
25  
35  
10 pF  
30 pF  
20 pF  
PCI, PCI_F, LDT  
REF, USB, FDC  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢘꢙ  
ꢊꢒ  
ꢐꢑ  
SCAS675 APRIL 2002  
functional block diagram  
25  
SCLK  
26  
SMBus  
SDATA  
44  
SPREAD  
Control  
Logic  
V
DD  
/2  
1 x FDC  
24/48 MHz  
24/48_SEL  
(28)  
V
DD  
@ Power Up  
1 x USB  
48MHz  
(31)  
48 MHz  
PLL  
V
DD  
3
4
XIN  
3 x REF  
Xtal  
Oscillator  
14.318 MHz  
FS0, FS1, FS2  
(1, 45, 48)  
XOUT  
@ Power Up  
CPU  
PLL  
/2  
/2  
/3  
/4  
2 x CPU  
(200/166/133/100 MHz)  
(37, 41)  
SPREAD  
SPECTRUM  
2 x CPU  
(200/166/133/100 MHz)  
(36, 40)  
V
DD  
12  
0
1
LDT_Stop  
/5  
/6  
V
DD  
3 x PCI/LDT  
33/66 MHz  
(7, 8, 11)  
/2  
6
PCI/LDT_SEL  
PCI_Stop  
24  
6 x PCI  
33 MHz  
(13, 14, 17, 18, 21, 22)  
1 x PCI_F  
33 MHz  
(23)  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
CPU[0:1],CPU[0:1]  
41, 37  
40, 36  
O
3.3-V, differential CPU clock outputs  
CPU Clock Outputs 0 and 1: CPU push-pull true clock outputs of the differential pair  
CPU Clock Outputs 0 and 1: CPU push-pull complementary clock outputs of the differential pair  
FS[0:2] & REF[0:2]  
1, 48, 45  
I/O  
G
3.3 V, 14.318-MHz clock outputs  
Frequency Select inputs: Poweron strapping to set device operating frequency as described in  
the Device Frequency Select Functions table. These inputs have 150-kinternal pullup resistors.  
Low = 0, High = 1. 3.3-V reference clock outputs: Fixed clock output at 14.318 MHz  
GND  
5, 10, 15,  
20, 27, 30,  
34, 39, 47  
Power Connection: Connected to V . Used to ground digital portions of the chip  
SS  
GNDA  
GNDF  
42  
33  
G
G
Analog GND: Connected to VSS through filter. Used to ground the main CPU-PLL on the chip  
Analog GND for 48-MHz PLL: Connected to V  
the chip  
through filter. Used to ground the 48-MHz PLL on  
SS  
LDT_Stop  
12  
I
Control for 66-MHz PCI clocks: Active LOW control input to halt all 66-MHz PCI clocks except the  
free-running clock. This input has a 150-kinternal pullup resistor. Once this input has been  
asserted, PCI/LDT outputs if operating at 66-MHz must stop in the low state within 1 µs.  
Low = stop, High = running  
PCI[0:5]  
PCI_F  
13, 14, 17,  
18, 21, 22  
O
O
3.3-V PCI clock outputs divided down from CPU-PLL  
3.3-V PCI clock outputs: PCI clocks operate at 33 MHz.  
23  
7, 8, 11  
6
3.3-V, 33-MHz clocks divided down from CPU-PLL  
3.3-V Free-Running PCI clock output: The free-running PCI clock pin operates at 33 MHz. The  
free-running PCI clock is not turned off when PCI_Stop# is activated LOW.  
PCI/LDT[0:2]  
PCI/LDT_SEL  
O
I
3.3-V PCI 33-MHz or LDT 66-MHz outputs: This group of outputs is selectable between 33 MHz  
and 66 MHz based upon the state of PCI/LDT_SEL. When running at 66 MHz these outputs are for  
use as reference clocks to LDT devices.  
PCI 33-MHz/LDT 66-MHz Select: This input selects the output frequency of PCI/LDT outputs to  
either 33 MHz or 66 MHz. This is a dedicated input pin to avoid corruption of the input state due to  
PCI add-in cards that may have termination resistors on the input clocks. This input has a 150-kΩ  
internal pullup resistor. Low = 66-MHz outputs, High = 33-MHz outputs  
PCI_Stop  
24  
I
3.3-V LVTTL-compatible input for PCI_Stop active low  
Control for 33-MHz PCI clocks: Active LOW control input to halt all 33-MHz PCI clocks except the  
free-running clock. This input has a 150-kinternal pullup resistor. Once this input has been  
asserted, the PCI outputs and PCI/LDT outputs operating at 33 MHz must stop in the low state  
within 1 µs.  
Low = stop, High = running  
SCLK  
25  
26  
I
SMBus compatible SCLK.  
Clock pin for SMBus circuitry (SMBus revision 1.1). This input has an internal pull-up resistor of  
150 k. SCLK is a 3.6-V tolerant signal input. High impedance at power down is not supported.  
SDATA  
I/O  
SMBus compatible SDATA  
Data pin for SMBus circuitry (SMBus revision 1.1). This output is open drain and has an internal  
pullup resistor of 150 k. SDATA is a 3.6V tolerant signal IO. High impedance at power down is not  
supported.  
SPREAD  
44  
I
Spread Spectrum Clocking Enable: Power-on strapping to set spread spectrum clocking as  
enabled or disabled. This input allows the default spread spectrum clocking mode to be enabled or  
disabled upon power up. This input has a 150-kinternal pullup resistor.  
Low = disable, High = enable. Note that all Athlon and Hammer systems are recommended to use  
SSC; therefore, the default of this pin is enabled and should only be turned off for debug and test  
purposes.  
USB  
31  
O
P
3.3-V, fixed 48-MHz non-SSC clock output  
3.3-V USB clock output: Fixed clock output at 48 MHz  
V
DD  
2, 9, 16,  
19, 29, 35,  
38, 46  
Power Connection: Connected to 3.3-V power supply. Used to supply digital portions of the chip  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
V
V
43  
P
Analog V : Connected to 3.3-V power supply through filter. Used to supply the main CPU-PLL  
DD  
DDA  
on the chip  
32  
3
P
I
Analog V  
48-MHz PLL on the chip  
for 48-MHz PLL: Connected to 3.3-V power supply through filter. Used to supply the  
DDF  
DD  
XIN  
Crystal input 14.318 MHz  
Crystal Connection or External Reference: Reference crystal input or external reference clock  
input. This pin includes an internal 36-pF load capacitance to eliminate the need for an external  
load capacitor.  
XOUT  
4
O
Crystal output 14.318 MHz  
Crystal Connection: Reference crystal feedback. This output includes an internal 36-pF load  
capacitance to eliminate the need for an external load capacitor.  
24/48_SEL & FDC  
28  
I/O  
3.3-V super I/O clock output: The super I/O clock can be strapped for 24 MHz or 48 MHz. This  
input has a 150-kinternal pullup resistor.  
Low = 48-MHz output, High = 24-MHz output  
connecting SCLK and SDATA to 5-V SMBus signals  
SCLK and SDATA of CDC960 have been designed to work within a 3.3-V supply voltage environment only. In  
order to connect SCLK and SDATA to a 5-V SMBus configuration, external circuitry is required. A simple and  
inexpensive solution is to use clamping diodes. Two approaches are recommended for this solution:  
1. Using Zener diode to clamp to GND in reverse-biased direction  
3.3 V  
150 kΩ  
SCLK  
OR  
R1  
V
O
V
IO  
SDATA  
Driver  
SCLK  
or  
SDATA  
D1  
CDC960  
Figure 1. SCLK SDATA Connection to 5-V SMBus Using Zener Diode  
Zener diode D1 in Figure 1 is chosen such that the Zener voltage (V ) cannot exceed 300 mV above V  
of  
DD  
IH  
ZK  
the CDC960. The minimum value of V must be greater than 2.1 V to meet minimum requirement for V of  
ZK  
the CDC960. The value of R1 is chosen to satisfy requirements both for I  
of the driver of SCLK and SDATA  
OH  
and for V and I of SDATA of CDC960.  
OL  
OL  
V
* V  
O
IO  
I
(For the driver of SCLK and SDATA. RS is the source driver impedance.)  
v ǒR1 ) RSǓ  
OH  
(1)  
0.8 V  
R1 ) Z  
2 mA v  
v 6 mA  
(For a SDATA of CDC960, 25 W t Z t 47 W)  
O
O
(2)  
(3)  
ǒR1 ) Z  
Ǔ
  1.75 mA t 0.4 V (For a SDATA of CDC960, 25 W t Z t 47 W)  
O
O
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
connecting SCLK and SDATA to 5-V SMBus signals (continued)  
There are many manufacturers making Zener diodes that can be used for this application. Panasonic MA8033  
and Vishay BZX84C3V3 that have 3.1 V < V < 3.5 V can be used for this application. In this case R1 is  
Z
recommended as 150 Ω.  
The worst I  
in equation (1) is 16 mA when V  
= 5.5 V, R = 0 and V = 3.1 V.  
OH  
OH S IO  
The current in equation (2), between 4 mA and 4.6 mA, satisfies the requirement.  
Equation (3) is also satisfied with the selected R1 and diode.  
2. Clamping Diode to V  
DD  
3.3 V  
3.3 V  
D1  
150 kΩ  
SCLK  
OR  
R1  
V
O
V
IO  
SDATA  
Driver  
SCLK  
or  
SDATA  
CDC960  
Figure 2. SCLK SDATA Connection to 5-V SMBus Using Clamping Diode to V  
DD  
Diode D1 in Figure 2 should have a small forward voltage (V ). Ideally, we want V to be less than 300 mV to  
F
F
meet the input voltage requirement of the CDC960. International IOR Rectifier has a device (part number  
10BQ015) with maximum V of 350 mV at 1.0 A. Using the 10BQ015 with R1 = 150 , the worst-case I  
calculated using equation (4).  
is  
F
OH  
5.5 V * (3.0 * 0.35) V  
I
+
+ 14 mA  
OH  
150 W  
(4)  
The calculation for equations (2) and (3) is the same as in part 1.  
When using the configuration in Figure 2, the power supply is required to have a capability of sinking current.  
The total amount of sinking current is dependent on the overall load connected to that power supply.  
Using the above interface circuitry with a high-impedance source, the available high-level voltage on the SMBus  
is limited to about (Vzk) for the configuration in Figure 1 and (VDD  
Figure 2. One has to choose which option best fits a given SMBus configuration.  
+ V  
) for the configuration in  
(CDC960)  
F(D1)  
Actually, the typical SMBus configuration is an open-drain configuration with pullup resistors to the  
corresponding power supply. It does not require a 5-V SMBus driver that has a low impedance to drive the  
CDC960 SMBus ports with its additional components as shown in Figure 1 and Figure 2. The external  
components are not needed if the pullup resistors of the SMBus are directly connected to a voltage equal to  
the supply voltage of the CDC960 (typically 3.3 V). This pullup resistor connection is strongly recommended.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
power-up sequences  
Sampled inputs are: FS0, FS1, FS2 and 24/48_SEL.  
State S1 is an analog controlled delay derived from internal reference voltages to ensure that a valid input state  
is captured. There is no specific delay in this state after power up.  
Figure 3 shows the symbolic sequence of the CDC960 during power up. States S0S4 are required to ensure  
proper configuration and operation of the device functions.  
Outputs Disabled  
S2  
S1  
V
DD  
2 V  
Sample  
Input Straps  
Delay  
Outputs  
Undefined  
Enable  
Outputs  
S0  
S4  
S3  
V
DD  
= Off  
Power Up  
Wait  
3 ms  
Normal  
Operation  
Power Off  
Figure 3. Power-Up State Transitions  
SMBus serial interface  
The following section describes the SMBus interface programming.  
In general the CDC960 SMBus protocol supports only block write and block read operations.  
SMBus device address  
A6  
1
A5  
1
A4  
0
A3  
1
A2  
0
A1  
0
A0  
1
R/W  
0
0 = write to CDC960  
1 = read from CDC960  
writing to the SMBus interface  
1. Send the address D2  
and validate the acknowledge from the slave.  
(H)  
2. Send the dummy byte as a command code and validate the acknowledge from the slave.  
3. Send the number of data bytes to write and validate the acknowledge from the slave.  
4. Write the desired data bytes to registers and validate the acknowledge from the slave for each data byte.  
Clock Generator  
Addr (7 bits)  
+8 bits dummy  
command code  
+8 bits byte  
count  
ACK  
ACK  
ACK  
Data byte 0  
ACK  
Data byte N  
ACK  
A(6:0) & R/W  
D2  
(H)  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
SMBus serial interface (continued)  
reading the SMBus interface, using address pre-phase  
1. Send the address D2 and validate the acknowledge from the slave.  
(H)  
2. Send dummy byte as command code and validate the acknowledge from the slave.  
3. Send repeated start condition followed by address D3 and validate the acknowledge from the slave.  
(H)  
4. The slave returns the number of bytes it is going to send (byte count) and validates the acknowledge from  
the master.  
5. Read back the desired data bytes and validate the acknowledge sent by the master for each data byte.  
Clock  
Generator  
Addr  
Clock  
Generator  
Addr  
+8 bits  
dummy  
command  
code  
(7 bits)  
(7 bits)  
Repeated  
Start  
+8 bit byte ACK by  
count master  
Data  
byte 0  
ACK by  
master  
Data  
byte N  
ACK by  
master  
ACK  
ACK  
ACK  
A(6:0)&  
R/W  
A(6:0)&  
R/W  
D2  
(H)  
D3  
(H)  
reading the SMBus interface, using direct read  
1. Send the address D3 and validate the acknowledge from the slave.  
(H)  
2. The slave returns the number of bytes it is going to send (byte count) and validates the acknowledge from  
the master.  
3. Read back the desired data bytes and validate the acknowledge sent by the master for each data byte.  
Clock  
Generator  
+8 bit byte  
Addr (7 bits)  
A(6:0)& R/W  
ACK  
ACK by master  
Data byte 0  
ACK by master  
Data byte N  
ACK by master  
count  
D3  
(H)  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
SMBus configuration command bitmap  
Byte 0: Frequency and Spread Spectrum Control Register (see Note 1)  
(H = Enable, L = Disable)  
PIN AFFECTED  
SOURCE PIN  
(READ  
BIT TYPE  
PUD  
DESCRIPTION  
(WRITE  
OPERATION)  
OPERATION)  
Write disable (write once). A 1 written to this bit after a 1 has been written to  
Byte0, Bit0 disables modification of all configuration registers until the de-  
vice has been powered off.  
7
6
R/W  
R/W  
L
Register value  
Spread spectrum enable. This bit provides a software programmable con-  
trol forspread spectrum clocking. The truth table for SSC is as follows:  
Spread (ext. Pin)  
Byte0, Bit6  
SSC Function  
Disabled  
L
L
L
H
L
L
Register value  
Enabled  
H
H
Enabled  
H
Enabled  
5
4
R/W  
R/W  
L
L
FS4 (corresponds to frequency selection table)  
FS3 (corresponds to frequency selection table)  
Register value  
Register value  
Externally FS2 (corresponds to frequency selection table). If write is enabled, this bit  
3
2
1
R/W  
R/W  
R/W  
45 at power up  
48 at power up  
1 at power up  
selected  
can be set differently than the power-up condition.  
Externally FS1 (corresponds to frequency selection table). If write is enabled, this bit  
selected  
can be set differently than the power-up condition.  
Externally FS0 (corresponds to frequency selection table). If write is enabled, this bit  
selected  
can be set differently than the power-up condition.  
Write Enable. A 1 written to this bit after power up enables modification of all  
configuration registers and subsequent 0s written to this bit disable modifi-  
cation of all configuration registers except this single bit. Note that when a 1  
has been written to Byte0, Bit 7, all modification is permanently disabled un-  
til the device power cycles. Note also, that block write transactions to the  
interface are completed. However, unless the interface has been previously  
unlocked, the writes have no effect.  
0
R/W  
L
Register value  
PUD = Power-up condition  
The value of this bit is according to level applied to corresponding device pin at power up.  
NOTE 1: Byte0, Bit0 controls the write enable status for the device SMBus. If a 1 is written to Byte0, Bit0, the SMBus registers are write enabled.  
Once write has been enabled, a new block write protocol must be sent to the device to program the desired register values. Once after  
power up a 1 is written to Byte0, Bit0, the device functionality is according to the settings of the different registers. E.g., the device function  
table is according to setting of Bits[16] of Byte0 and other functions are according to corresponding SMBus register settings.  
If a 0 is written to Byte0, Bit0, write is disabled and the device function is according to the previous settings of the last write cycle.  
Byte 1: PCI Clock Control Register  
(H = Enable, L = Disable)  
PIN AFFECTED  
(WRITE OPERATION)  
SOURCE PIN  
(READ OPERATION)  
BIT  
TYPE  
PUD  
DESCRIPTION  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
H
H
H
H
H
H
H
H
PCI/LDT1 enable  
PCI/LDT0 enable  
PCI5 enable  
PCI4 enable  
PCI3 enable  
PCI2 enable  
PCI1 enable  
PCI0 enable  
8
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
7
22  
21  
18  
17  
14  
13  
PUD = Power-up condition  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
SMBus configuration command bitmap (continued)  
Byte 2: PCI Clock USB FDC and REF Control Register  
(H = Enable, L = Disable)  
PIN AFFECTED  
(WRITE OPERATION)  
SOURCE PIN  
(READ OPERATION)  
BIT  
TYPE  
PUD  
DESCRIPTION  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
H
H
H
H
H
H
H
H
CPU1 enable‡  
CPU0 enable‡  
36, 37  
40, 41  
45  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
REF2 enable  
REF1 enable  
48  
REF0 enable  
1
FDC (24_48 MHz) enable  
USB enable  
28  
31  
PCI/LDT2 enable  
11  
PUD = Power-up condition  
If a CPU clock is disabled by setting its control bit (bit 6 or bit 7) low, both the CPU and CPU outputs for the disabled clock are set low.  
Byte 3: PCI Clock Free Running Control Register  
(H = Free running, L = controlled by PCI_Stop/LDT_Stop))  
PIN AFFECTED  
(WRITE OPERATION)  
SOURCE PIN  
(READ OPERATION)  
BIT  
TYPE  
PUD  
DESCRIPTION  
§
§
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
L
L
L
L
L
L
L
L
PCI/LDT1 free-running enable  
8
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
PCI/LDT0 free-running enable  
7
§
§
§
§
§
§
PCI5 free-running enable  
PCI4 free-running enable  
PCI3 free-running enable  
PCI2 free-running enable  
PCI1 free-running enable  
PCI0 free-running enable  
22  
21  
18  
17  
14  
13  
§
PUD = Power-up condition  
The above individual free-running enable/disable controls are intended to allow individual clock outputs to be made free running. A clock output  
that has its free-running bit enabled (set to H) is not turned off with the assertion of either PCI_Stop or LDT_Stop. If a particular bit is disabled  
in Byte1, the Byte1 settings overwrite the Byte3 settings.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
SMBus configuration command bitmap (continued)  
Byte 4: Pin Latched/Real Time State Control Register (see Note 2)  
(H = Enable, L = Disable)  
PIN AFFECTED  
(WRITE OPERATION)  
SOURCE PIN  
(READ OPERATION)  
BIT  
7
TYPE  
R/W  
R
PUD  
DESCRIPTION  
PCI_F enable  
H
23  
Register value  
44  
Externally  
‡§  
6
SPREAD actual pin state  
selected  
Externally  
5
4
3
2
R
R
R
R
24/48_SEL pin power up latched state  
PCI/LDT_SEL actual pin state  
FS2 power-up latched pin state  
FS1 power-up latched pin state  
FS0 power-up latched pin state  
28 at power up  
6
selected  
Externally  
‡§  
selected  
Externally  
selected  
45 at power up  
48 at power up  
Externally  
selected  
Externally  
selected  
1
0
R
1 at power up  
Register value  
R/W  
L
PCI/LDT2 free-running enable  
11  
§
PUD = Power-up condition  
The value of this bit is determined by the level applied to the corresponding device pin at power up.  
If the SMBus is in read mode, and the byte-count byte is being sent, the device input pin is sampled again at the falling edge of SCLK at the same  
state as the acknowledge state for the byte count that is initiated by SCLK.  
The above individual free running enable/disable controls are intended to allow individual clock outputs to be made free running. A clock output  
that has its free-running bit enabled (set to H) is not turned off with the assertion of either PCI_Stop or LDT_Stop. If a particular bit is disabled  
in Byte2, the Byte2 settings overwrite the Byte4 settings.  
NOTE 2: Byte4 holds the power-up information for pins latched at power up. In the case that an unintentional write has been made to these bits  
of Byte4, the SMBus write is ignored; the bits always return the power-up latched value during an SMBus read operation.  
This does not relate to the bits which hold the actual (current) pin state. Those bits can not be overwritten by software in order to get  
the hardware setting states back via software.  
Byte 5: Vendor Identification Register  
(H = Enable, L = Disable)  
PIN AFFECTED  
(WRITE OPERATION)  
SOURCE PIN  
(READ OPERATION)  
BIT  
TYPE  
PUD  
DESCRIPTION  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
H
H
H
L
Manufacturer ID (MSB)  
Manufacturer ID  
Returns H  
Returns H  
Returns H  
Returns L  
Returns L  
Returns L  
Returns L  
Returns H  
Manufacturer ID, TI is shown for vendor ID = 111  
Device revision ID (MSB)  
L
Device revision ID  
L
Device revision ID  
L
Device revision ID  
H
Device revision ID, device revision: 00001  
PUD = Power-up condition  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
SMBus configuration command bitmap (continued)  
Byte 6: Byte Count Control Register  
(H = Enable, L = Disable)  
PIN AFFECTED  
(WRITE OPERATION)  
SOURCE PIN  
(READ OPERATION)  
BIT  
TYPE  
PUD  
DESCRIPTION  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
L
L
Byte count bit, MSB  
Byte count bit  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
L
Byte count bit  
L
Byte count bit  
L
Byte count bit  
H
H
H
Byte count bit  
Byte count bit  
Byte count bit, LSB  
PUD = Power-up condition  
Byte 7: Vendor Specific Register (reserved)  
(H = Enable, L = Disable)  
PIN AFFECTED  
(WRITE OPERATION)  
SOURCE PIN  
(READ OPERATION)  
BIT  
TYPE  
PUD  
DESCRIPTION  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
L
L
L
L
L
L
L
L
Must be set to L during the byte write  
Must be set to L during the byte write  
Must be set to L during the byte write  
Must be set to L during the byte write  
Must be set to L during the byte write  
Must be set to L during the byte write  
Must be set to L during the byte write  
Must be set to L during the byte write  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
R
PUD = Power-up condition  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
SMBus configuration command bitmap (continued)  
Byte 8: Vendor Specific Register (reserved)  
(H = Enable, L = Disable)  
PIN AFFECTED  
(WRITE OPERATION)  
SOURCE PIN  
(READ OPERATION)  
BIT  
TYPE  
PUD  
DESCRIPTION  
Trigger single pulse at the L-to-H transition of this bit  
after an SMBus write cycle completes. This bit must be  
written back to L in order to trigger a following pulse with  
a new L-to-H transition at the completion of a write  
protocol.  
7
R/W  
L
CPU, CPU  
Register value  
Single-pulse ARM bit  
H = enable, L = disable single-pulse feature  
6
R/W  
L
Register value  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
L
L
L
L
L
L
Must set to L during the byte write  
Must set to L during the byte write  
Must set to L during the byte write  
Must set to L during the byte write  
Must set to L during the byte write  
Must set to L during the byte write  
Register value  
Register value  
Register value  
Register value  
Register value  
Register value  
PUD = Power-up condition  
Single-pulse initialization  
1. Device is in normal operating mode (frequencies selected by FS[4:0] as usual).  
2. Put device into SMBus mode (set write enable bit according to specification).  
3. Put device into required operating mode via the SMBus.  
4. Set Byte8/Bit6 to H. Byte8 is a TI control byte, Bit6 is the ARM bit.  
a. The device continues running as in the normal operating mode, but the CPUx/CPUx outputs are pulled  
to low/high, respectively; i.e., the clock is low.  
b. All other clocks (PCI, LDT66, USB, 48-MHz, REFCLOCK) continue running as long as they are not  
disabled by the SMBus or other means.  
5. Set Byte8/Bit7 to H. Byte8/Bit 7 is the SHOOT bit.  
a. The device recognizes a rising edge on this bit and sends a single high pulse on CPUx. The CPUx  
output is complementary (low). The pulse duration depends on frequency settings for the CPU-BUS  
(half of the period).  
b. CPU1 or CPU0 can still be enabled/disabled via the SMBus as usual.  
6. Set Byte8/Bit7 back to L for the next shot.  
a. Because the device only detects L! H transitions, this bit must be reset to L.  
7. Now the device is ready for the next pulse (write H to Byte8/Bit7).  
8. When setting the ARM bit to L, the single-shot feature is disabled and the device runs as usual.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
spread spectrum clock (SSC) implementation for CDC960  
Simultaneously switching at a fixed frequency generates a significant power peak at the selected frequency,  
which in turn causes an EMI disturbance to the environment. The purpose of the internal frequency modulation  
of the CPU-PLL is to distribute the energy to many different frequencies, thus reducing the power peak.  
A typical characteristic for a single-frequency spectrum and a modulated-frequency spectrum is shown in  
Figure 4.  
Maximum Peak  
Non-SSC  
SSC  
δ of f  
nom  
f
nom  
Figure 4. Frequency Power Spectrum With and Without the Use of SSC  
The modulated spectrum has its distribution to the left side of the single-frequency spectrum, which indicates  
a down-spread modulation.  
The peak reduction depends on the modulation scheme and modulation profile. System performance and timing  
requirements are the limiting factors for actual design implementations. The implementation is driven to keep  
the average clock frequency close to its upper specification limit. The modulation amount is set to 0.5%.  
In order to allow a downstream PLL to follow the frequency modulated signal, the bandwidth of the modulation  
signal is limited in order to minimize SSC-induced tracking skew jitter.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4.6 V  
DD  
Input voltage range, V (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
I
DD  
Voltage range applied to any output in the high-impedance state or power-off state,  
V (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
O
DD  
Current into any output in the low state, I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 × rated I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 mA  
O
OL  
Input clamp current:  
Output clamp current:  
I
I
I
I
(V < 0)  
IK  
IK  
I
. .  
DD  
(V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 mA  
I
(V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
OK  
OK  
O
(V > V  
)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
DD  
Package thermal impedance, θ (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95°C/W  
Maximum power dissipation at T = 55°C (in still air) (see Note 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W  
Operating free-air temperature range, T  
Storage temperature range, T  
JA  
A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 3. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
4. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for the through-hole packages,  
°
which use a trace length of zero. The absolute maximum power dissipation allowed at T = 55 C (in still air) is 1.0 W.  
A
5. The maximum package power dissipation is calculated using a junction temperature of 150_C and a board trace length of 750 mils.  
For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data  
Book, literature number SCBD002.  
DISSIPATION RATING TABLE  
T
25°C  
OPERATING FACTOR  
T = 70°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
DL  
1.3 W  
10.7 mW/°C  
0.85 W  
This is the inverse of the traditional junction-to-case thermal resistance (R  
board-mounted device at 95°C/W.  
) and uses a  
θJA  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢕꢁ  
ꢘꢔ  
ꢘꢑ  
ꢘꢙ  
ꢔꢜꢙ  
ꢀꢑ  
SCAS675 APRIL 2002  
recommended operating conditions (see Notes 4 and 5)  
MIN  
NOM  
MAX  
UNIT  
Supply voltages, V  
DD  
3.3 V  
3.135  
3.465  
V
PCI_Stop, LDT_Stop, PCI/LDT_SEL, 24/48_SEL, FS0, FS1,  
FS2, SPREAD  
2
V
DD  
+0.3  
High-level input voltage, V  
IH  
V
V
SDATA, SCLK (see Note 6)  
XIN  
2.0  
2.0  
V
V
+0.3  
+0.3  
DD  
DD  
PCI_Stop, LDT_Stop, PCI/LDT_SEL, 24/48_SEL, FS0, FS1,  
FS2, SPREAD  
0.3  
0.8  
Low-level input voltage, V  
IL  
SDATA, SCLK (see Note 6)  
XIN  
0.3  
0.3  
1.08  
0.5  
PCI_Stop, LDT_Stop, PCI/LDT_SEL, 24/48_SEL, FS0, FS1,  
FS2, SPREAD  
0.3  
0.3  
V
V
+0.3  
DD  
Input Voltage, V  
V
I
SDATA, SCLK (see Note 6)  
CPU  
+0.3  
18  
12  
12  
18  
9
DD  
USB, FDC, REF  
PCI, LDT  
High-level output current, I  
mA  
OH  
CPU  
USB, FDC, REF  
PCI, LDT  
Low-level output current, I  
mA  
OL  
9
SDATA  
4
PCI_Stop, LDT_Stop, PCI/LDT_SEL, 24/48_SEL, FS0, FS1,  
FS2, SPREAD  
100  
220  
Input resistance to V  
DD,  
R
I
kΩ  
SDATA, SCLK  
100  
0
220  
200  
16  
Reference frequency, f  
PLL BYPASS MODE  
NORMAL MODE  
MHz  
MHz  
kHz  
µs  
(XIN)  
§
Crystal frequency, f  
(XTAL)  
10 14.31818  
SCLK frequency, f  
100  
(SCLK)  
Bus free time, t  
(BUS)  
4.7  
4.7  
4.0  
4.7  
4.0  
START setup time, t  
µs  
su(START)  
START hold time, t  
µs  
h(START)  
SCLK low pulse duration, t  
w(SCLL)  
µs  
SCLK high pulse duration, t  
µs  
w(SCLH)  
SDATA input rise time, t  
r(SDATA)  
1000  
300  
ns  
SDATA input fall time, t  
f(SDATA)  
ns  
SDATA setup time, t  
su(SDATA)  
250  
5
ns  
SDATA hold time, th(SDATA)  
ns  
STOP setup time, t  
su(STOP)  
4
µs  
Operating freeair temperature, T  
0
70  
°C  
A
All typical values are measured at their respective nominal V  
.
DD  
Reference frequency is a test clock driven on the XIN input during the device test mode and normal mode. In test mode, XIN can be driven  
externally up to f = 0 MHz to 200 MHz. If XIN is driven externally, XOUT is floating.  
(XIN)  
§
This is a fundamental crystal with f = 14.31818 MHz and 18 pF load in a parallel resonance application (Pierce-type oscillator)  
O
This conforms to SMBus Specification, Version 1.1.  
NOTES: 4. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for the through-hole packages,  
°
which use a trace length of zero. The absolute maximum power dissipation allowed at T = 55 C (in still air) is 1.0 W.  
A
°
5. The maximum package power dissipation is calculated using a junction temperature of 150 C and a board trace length of 750 mils.  
For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data  
Book, literature number SCBD002.  
6. The CMOS-level inputs fall within these limits: V min = 0.7 × V  
IH DD  
and V max = 0.3 × V .  
IL DD  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
Input clamp voltage  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
IK  
V
V
= 3.135 V,  
= 3.465 V,  
I = 18 mA  
0.7  
1.2  
V
DD  
I
XIN  
V = 2.0  
I
2.5  
DD  
PCI/LDT_SEL, PCI_Stop,  
LDT_Stop, SPREAD  
V
= 3.465 V,  
V = V  
5
DD  
I
DD  
High-level input  
current  
I
IH  
µA  
FS0, FS1, FS2, 24/48_SEL  
SDATA, SCLK  
XIN  
V
DD  
V
DD  
V
DD  
= 3.465 V,  
= 3.465 V,  
= 3.465 V,  
V = V  
5
5
I
DD  
V = V  
I
DD  
V = GND  
I
1.5  
mA  
PCI/LDT_SEL, PCI_Stop,  
LDT_Stop, SPREAD  
V
= 3.465 V,  
V = GND  
50  
DD  
I
Low-level input  
current  
I
IL  
µA  
FS0, FS1, FS2, 24/48_SEL  
SDATA, SCLK  
V
DD  
V
DD  
V
DD  
V
DD  
= 3.465 V,  
= 3.465 V,  
= 3.465 V,  
= 3.465 V,  
V = GND  
I
50  
50  
±5  
V = GND  
I
I
I
High-impedance-state output current  
V
= V  
= V  
or GND  
µA  
µA  
OZ  
O
O
DD  
High-impedance-state output current, SDATA  
V
5
OZ  
DD  
Static supply  
All outputs open,  
current  
All outputs = low or high,  
I
4.5  
mA  
DD  
TEST MODE,  
V
= 3.465 V  
= 3.465 V  
DD  
DD  
SSC = ON/OFF,  
C
= MAX,  
CPU = 166 MHz,  
V
180  
L
LDT = 66 MHz,  
CPU outputs: TEST LOAD  
All others loaded with  
corresponding load  
capacitance only.  
Dynamic supply  
current  
I
mA  
DD  
CPU = 200 MHz,  
V
DD  
= 3.465 V  
185  
CPU =166 MHz/ 200 MHz,  
= 3.465 V  
All outputs disabled (LOW)  
45  
38  
55  
50  
V
DD  
High-impedance-  
state supply  
current  
All outputs open, and out-  
puts are in 3-state  
I
CPU = 200 MHz,  
V
DD  
= 3.465 V  
mA  
DD(Z)  
C
V = V  
DD  
or GND  
2.3  
29  
15  
2.7  
31  
pF  
pF  
pF  
I
I
Input capacitance to GND  
V
V
= 3.3 V  
= 3.3 V,  
XIN,  
XOUT  
DD  
V = 1.5 V  
I
27  
C
Cryatal terminal capacitance (see Note 7)  
V = 1.5 V  
I
XTAL  
DD  
All typical values are measured at their respective nominal V  
DD.  
I
IL  
is caused by internal pullup resistors.  
NOTE 7: This is the corresponding electrical capacitive load for the crystal in this oscillator application (Pierce-type oscillator). Parasitic pin-to-pin  
capacitance = 2 pF.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
CPU (200/166/133/100 MHz)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
TYP  
MAX  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
= MIN to MAX,  
= 3.135 V,  
= MIN to MAX,  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
I
I
I
I
= 1 mA  
= 18 mA  
= 1 mA  
V
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
OH  
OH  
OL  
OL  
V
V
High-level output voltage  
V
OH  
2.3  
0.05  
0.6  
Low-level output voltage  
High-level output current  
V
OL  
= 18 mA  
= 2.0 V  
V
V
V
V
V
V
V
43  
43  
14  
32  
O
O
O
O
O
O
O
= 1.65 V  
= 2.735 V  
= 0.8 V  
27  
56  
I
mA  
OH  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
= 1.55 V  
= 0.4 V  
29  
41  
52  
I
Low-level output current  
mA  
OL  
= 3.135 V,  
= 3.3 V,  
17  
C
Output capacitance  
Output impedance  
= V  
DD  
or GND  
2.7  
40  
3.0  
55  
55  
pF  
O
High state  
Low state  
= 0.5 V  
,
,
Z
V
/I  
25  
25  
O
O
DD  
O = O OH  
Z
O
= 0.5 V  
Z
V
/I  
40  
DD  
O = O OL  
All typical values are measured at their nominal V  
DD  
values.  
REF (14.318 MHz)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
= MIN to MAX,  
= 3.135 V,  
= MIN to MAX,  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
I
I
I
I
= 1 mA  
= 12 mA  
= 1 mA  
V
DD  
0.1  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
OH  
OH  
OL  
OL  
V
V
High-level output voltage  
Low-level output voltage  
V
OH  
2.5  
0.1  
0.4  
V
OL  
= 9 mA  
V
V
V
V
V
V
V
= 2.0 V  
46  
47  
15  
33  
O
O
O
O
O
O
O
= 1.65 V  
= 2.735 V  
= 0.8 V  
29  
61  
I
High-level output current  
Low-level output current  
mA  
OH  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
= 1.65 V  
= 0.4 V  
30  
42  
52  
I
mA  
OL  
= 3.135 V,  
= 3.3 V,  
17  
C
Output capacitance  
Output impedance  
= V  
DD  
or GND  
3.2  
35  
3.7  
52  
52  
pF  
O
High state  
Low state  
= 0.5 V  
,
,
Z
V
/I  
22  
22  
O
O
DD  
O = O OH  
Z
O
= 0.5 V  
Z
V
/I  
35  
DD  
O = O OL  
All typical values are measured at their nominal V  
DD  
.
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
USB (48 MHz), FDC (24 MHz or 48 MHz)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
TYP  
MAX  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
= MIN to MAX,  
= 3.135 V,  
= MIN to MAX,  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
I
I
I
I
= 1 mA  
= 16 mA  
= 1 mA  
V
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
OH  
OH  
OL  
OL  
V
V
High-level output voltage  
V
OH  
2.4  
0.1  
0.4  
Low-level output voltage  
High-level output current  
V
OL  
= 9 mA  
V
V
V
V
V
V
V
= 2.0 V  
46  
47  
15  
33  
O
O
O
O
O
O
O
= 1.65 V  
= 2.735 V  
= 0.8 V  
29  
61  
I
mA  
OH  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
= 1.65 V  
= 0.4 V  
30  
42  
52  
I
Low-level output current  
mA  
OL  
= 3.135 V,  
= 3.3 V,  
17  
C
Output capacitance  
Output impedance  
= V  
DD  
or GND  
3.2  
35  
3.7  
52  
52  
pF  
O
High state  
Low state  
= 0.5 V  
,
,
Z
V
/I  
22  
22  
O
O
DD  
O = O OH  
Z
O
= 0.5 V  
Z
V
/I  
35  
DD  
O = O OL  
All typical values are measured at their nominal V  
DD  
.
PCI, PCI_F (33 MHz) and LDT (33 MHz or 66 MHz)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
= MIN to MAX,  
= 3.135 V,  
= MIN to MAX,  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
I
I
I
I
= 1 mA  
= 12 mA  
= 1 mA  
V
DD  
0.1  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
OH  
OH  
OL  
OL  
V
V
High-level output voltage  
Low-level output voltage  
V
OH  
2.4  
0.1  
0.4  
V
OL  
= 9 mA  
V
V
V
V
V
V
V
= 2.V  
71  
71  
23  
38  
O
O
O
O
O
O
O
= 1.65 V  
= 2.735 V  
= 0.8 V  
40  
97  
I
High-level output current  
Low-level output current  
mA  
OH  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
= 1.65 V  
= 0.4 V  
37  
71  
100  
I
mA  
OL  
= 3.135 V,  
= 3.3 V,  
19  
C
Output capacitance  
Output impedance  
= V  
DD  
or GND  
3.2  
25  
3.7  
37  
37  
pF  
O
High state  
Low state  
= 0.5 V  
,
,
Z
V
/I  
12  
22  
O
O
DD  
O = O OH  
Z
O
= 0.5 V  
Z
V
/I  
25  
DD  
O = O OL  
All typical values are measured at their nominal V  
DD  
.
SDATA  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.2  
Unit  
V
V
V
V
V
= MIN to MAX,  
= 3.135 V,  
= 3.465 V,  
= 3.3 V,  
I
I
= 4 mA  
= 6 mA  
= 0.8 V  
= 1.65 V  
= 0.4 V  
DD  
DD  
DD  
DD  
DD  
OL  
V
OL  
Low-level output voltage, SDATA  
V
0.4  
OL  
V
V
V
35  
46  
19  
36  
4.5  
O
O
O
33  
25  
57  
I
Low-level output current, SDATA  
mA  
OL  
= 3.135 V,  
Z
O
Output impedance, low state  
0.5 V  
DD  
,
Z
V
/I  
47  
O = O OL  
C
Input/output capacitance, SDATA  
V
DD  
= 3.3 V,  
V = V  
O DD  
or GND  
5.1  
pF  
I/O  
All typical values are measured at their nominal V  
DD  
.
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
switching characteristics, V  
= MIN to MAX, T = 0°C to 70°C  
DD  
A
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
v
/v  
Overshoot/undershoot  
All clocks  
±0.7  
(over) (under)  
f
= 33/66 MHz to disable  
(PCI/LDT)  
PCI/LDT in next cycle (PCI/LDT = low)  
t
t
t
t
PCI_Stopor LDT_Stopto PCI_F↑  
PCI_Stopor LDT_Stopto PCI_F↑  
PCI_Stopor LDT_Stopto PCI_F↑  
PCI_Stopor LDT_Stopto PCI_F↑  
10  
0
ns  
ns  
ns  
ns  
su(disable)  
h(disable)  
su(enable)  
h(enable)  
f
= 33/66 MHz to disable  
(PCI/LDT)  
PCI/LDT in next cycle (PCI/LDT = low)  
f
= 33/66 MHz to enable PCI/LDT  
(PCI/LDT)  
in next cycle (PCI/LDT = high)  
10  
0
f
= 33/66 MHz to enable PCI/LDT  
(PCI/LDT)  
in next cycle (PCI/LDT = high)  
SSC(midx)  
SSC spread amount  
f
f
= 100 MHz to 200 MHz  
= 100 MHz to 200 MHz  
0.5  
31.4  
0.03  
0.13  
%
(CPU)  
f
SSC modulation frequency  
kHz  
(mod)  
stab  
(CPU)  
FS0, FS1, FS2 or SMBus update  
After power up  
3
3
t
Stabilization time  
ms  
Stabilization time is the time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. In order for  
phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at XIN. Until phase lock is obtained, the specifications  
for propagation delay and skew parameters given in the switching characteristics tables are not applicable. Stabilization time is defined as the  
time from when V  
DD  
achieves its nominal operating level until the output frequency is stable and operating within specification.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
switching characteristics, V  
= 3.135 V to 3.465 V, T = 0°C to 70°C  
A
DD  
CPU, C = 10 pF, R = Test Load  
L
L
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
Unit  
t
t
Propagation delay time  
Propagation delay time  
XIN  
CPUx  
CPUx  
f
1 MHz, TEST MODE  
3.5  
15  
ns  
ns  
pd1  
(XIN)  
Test mode  
SCLK ↑  
18  
pd2  
f
f
f
f
f
f
= 100 MHz  
10.0  
7.5  
6.0  
5.0  
10.1  
7.60  
6.08  
5.1  
(CPU)  
(CPU)  
(CPU)  
(CPU)  
(CPU)  
(CPU)  
= 133 MHz  
t
t
CPU clock period  
ns  
c
= 166 MHz  
= 200 MHz  
Cycle to cycle jitter  
Duty cycle  
Synthesizer mode  
= 100 to 200 MHz  
= 100 to 200 MHz  
160  
53  
ps  
%
jit(cc)  
odc  
47  
t
Accumulated jitter, SSC = ON, see Note 8  
f(CPU) = 100 to 200 MHz  
150  
150  
70  
ps  
ps  
jit(acc)  
tsk(b)  
CPU bank skew edges  
CPUx  
CPUx  
PCIx  
f = 100 to 200 MHz  
(CPU)  
CPU x-point to edges  
Output skew window  
time independent (3.3 V)  
CPUx  
CPUx  
CPUx  
CPUx  
f
= 33.3 MHz  
= 66.7 MHz  
= 33.3 MHz  
= 66.7 MHz  
500  
500  
200  
200  
(PCI)  
(LDT)  
(PCI)  
(LDT)  
CPU  
200 MHz  
LDTx  
PCIx  
LDTx  
f
f
f
tsk  
ps  
(ow)  
CPU x-point to edges  
Output skew window  
time variant skew  
CPU  
200 MHz  
100  
2.5  
300  
8.0  
ps  
V/ns  
t
t
Rise time  
Fall time  
r
Test load at the ac coupling  
node including CPU load.  
V
= 0V "400 mV  
ref  
differential measured  
100  
2.5  
300  
8.0  
ps  
V/ns  
f
Edge rate rising edge  
(maintained during total  
transition)  
Test load at the ac coupling  
node including CPU load.  
V
= 0V "400 mV  
ref  
differential measured  
v
v
2.0  
2.0  
8.0  
8.0  
V/ns  
V/ns  
r
f
Edge rate falling edge  
(maintained during total  
transition)  
Test load at ac coupling  
node  
All typical values are measured at their nominal V  
DD  
values.  
NOTE 8: Accumulated jitter is the sum of individual consecutive cycle-to-cycle jitter reads added for a at least 32 µs (one SSC modulation period).  
The limit corresponds to the w/c cumulative shortest and longest jitter number found during evaluation time.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
CPU C = 10 pF, R = Test Load (see Note 9) (continued)  
L
L
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
Unit  
Test load at ac  
coupling node  
VOD  
Differential output voltage  
CPU to CPU  
1.3  
1.7  
V
including CPU load.  
Change in dc differential output  
voltage  
V  
CPU to CPU  
CPU to CPU  
CPU to CPU  
15  
1.3  
15  
1.4  
10  
mV  
V
OD_DC  
V
OCM  
Common mode voltage  
Change in common mode  
voltage  
V  
10  
mV  
OCM  
Common mode voltages (MIN/  
MAX)  
VCM_AC  
CPU to CPU  
1.0  
1.0  
1.4  
1.2  
V
V
Test load at ac  
coupling node  
including CPU load.  
Absolute cross point voltages  
crosspoint (low and high)  
v
CPU and CPU  
cross  
v  
Variation of V  
cross  
, rising edge  
, all edges  
At CPU(xn), (max-min)  
At or CPU(xn),(max-min)  
90  
mV  
mV  
cross  
Tv  
Total variation V  
cross  
140  
cross  
The average over any 1-µs period of time is greater than the minimum specified period  
NOTES: 9. This specification does not include variations caused by K8 input resistor network or K8  
voltage variations.  
VDD  
+V )/2. See the measurement information section for details.  
The common mode voltage is calculated as: (V  
10. This applies also to CPU outputs.  
OH OL  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
switching characteristics, V  
= 3.135 V to 3.465 V, T = 0°C to 70°C (continued)  
A
DD  
USB, FDC (48 MHz) and FDC (24 MHz), C = 20 pF, (USB) R = 500 Ω  
L
L
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
1 MHz, TEST MODE  
(XIN)  
MIN TYP  
MAX  
UNIT  
t
t
Propagation delay time  
XIN  
USB/FDC  
f
2
15  
ns  
ns  
pd1  
Propagation delay time  
SCLK↑  
USB/FDC TEST MODE  
18  
pd2  
USB/FDC (48 MHz) clock period  
f
f
f
f
f
f
f
= 48 MHz  
20.8  
41.6  
20.84  
41.68  
200  
180  
160  
55  
(USB/FDC)  
t
c
ns  
FDC (24 MHz) clock period  
= 24 MHz  
(FDC)  
Cycle to cycle jitter FDC (48 MHz) or FDC (24 MHz)  
Cycle to cycle jitter USB (48 MHz), FDC=24 or 48 MHz  
Accumulated jitter USB (48 MHz), FDC=24 or 48 MHz  
Duty cycle USB/FDC  
= 100 to 200 MHz  
= 100 to 200 MHz  
= 100 to 200 MHz  
(CPU)  
t
t
ps  
ps  
jit(cc)  
(CPU)  
160  
45  
jit(acc)  
(CPU)  
= 48 MHz  
(USB/FDC)  
odc  
%
Duty cycle FDC  
= 24 MHz  
45  
55  
(FDC)  
USB to FDC skew edges  
time-independent and  
time-variant skew combined  
f
f
= 48 MHz  
500  
500  
(USB/FDC)  
t
USB  
FDC  
ps  
sk(ow)  
= 48 / 24 MHz  
= 48 MHz  
(USB/FDC)  
(USB/FDC)  
USB/FDC pulse skew  
FDC pulse skew  
USB/FDC USB/FDC  
f
f
f
f
f
f
2
2
6.5  
6.5  
t
t
t
t
t
ns  
ns  
ns  
sk(p)  
w(H)  
w(L)  
r
FDC  
FDC  
= 24 MHz  
(FDC)  
= 48 MHz  
7.5  
18  
(USB/FDC)  
Pulse duration, high  
Pulse duration, low  
Rise time  
= 24 MHz  
(FDC)  
= 48 MHz  
11.5  
22  
(USB/FDC)  
= 24 MHz  
(FDC)  
USB  
FDC  
USB  
FDC  
USB  
FDC  
USB  
FDC  
1.1  
2
2.5  
0.7  
ns  
V/ns  
V
= 20% to 80% of V  
= 20% to 80% of V  
= 20% to 60% of V  
= 20% to 60% of V  
ref  
O
1.1  
2
2.5  
0.7  
ns  
V/ns  
Fall time  
V
ref  
f
O
Edge rate, rising edge (maintained during total  
transition)  
v
V
0.25  
0.25  
1.1  
1.1  
V/ns  
V/ns  
r
ref  
DD  
DD  
Edge rate falling edge (maintained during total  
transition)  
v
V
f
ref  
All typical values are measured at their nominal V  
values.  
The average over any 1-µs period of time is greater than the minimum specified period  
DD  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
switching characteristics, V  
= 3.135 V to 3.465 V, T = 0°C to 70°C (continued)  
A
DD  
PCI, LDT (33 MHz), PCI_F and LDT (66 MHz), C = 30 pF, R = 500 Ω  
L
L
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
t
t
Propagation delay time  
Propagation delay time  
XIN  
PCIx,LDT  
f
1 MHz, Test mode  
2.0  
15  
ns  
ns  
pd1  
(XIN)  
SCLK↑  
PCIx, LDT Test mode  
18  
pd2  
f
= 33.3 MHz  
= 66.7MHz  
29.95  
14.95  
30.3  
15.15  
170  
290  
300  
55  
(PCI)  
(LDT)  
t
PCI clock period  
ns  
ps  
c
f
Cycle-to-cycle jitter PCI/LDT (33 MHz), LDT (33 MHz)  
Cycle-to-cycle jitter LDT (66 MHz), PCI (33 MHz)  
Accumulated jitter PCI/LDT (33 MHz), LDT (66 MHz)  
Duty cycle PCI (33 MHz)  
t
t
f
= 100 to 200 MHz  
= 100 to 200 MHz  
jit(cc)  
(CPU)  
f
f
f
300  
45  
ps  
%
%
jit(acc)  
(CPU)  
odc  
= 33.3 MHz  
= 66.7 MHz  
(PCI)  
(LDT)  
t
dc  
Duty cycle LDT (66MHz)  
45  
55  
PCI bank skew edges  
time-independent (3.3 V)  
500  
200  
500  
200  
500  
200  
500  
200  
t
PCIx  
PCIx  
f
f
f
f
= 33.3 MHz  
= 33.3 MHz  
= 66.7 MHz  
= 66.7 MHz  
ps  
ps  
ps  
ps  
sk(b)  
(PCI)  
(PCI)  
(LDT)  
(LDT)  
PCI bank skew edges  
time-variant skew  
edges to CPU x-point  
time-independent (3.3 V)  
t
t
t
PCIn  
LDTx  
CPUx  
LDTx  
sk(ow)  
edges to CPU x-point  
time-variant skew  
LDT bank skew edges  
time-independent (3.3 V)  
sk(b)  
LDT bank skew edges  
time-variant skew  
edges to CPU x-point  
time-independent (3.3 V)  
LDTx  
LDTx  
CPUx  
CPUx  
sk(ow)  
edges to CPU x-point tim-  
variant skew  
All typical values are measured at their nominal V  
The average over any 1-µs period of time is greater than the minimum specified period  
values.  
DD  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
PCI, LDT (33 MHz), PCI_F and LDT (66 MHz), C = 30 pF, R = 500 (continued)  
L
L
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
500  
200  
500  
200  
Unit  
edges to LDT time  
independent (3.3 V)  
PCIx  
PCIx  
PCIx  
PCIx  
LDTx  
f
f
= 33.3 MHz  
(PCI/LDT)  
edges to LDT time variant  
skew  
LDTx  
LDTx  
LDTx  
t
ps  
sk(ow)  
edges to LDT time  
independent (3.3)  
= 33.3 MHz/66.7 MHz  
(PCI/LDT)  
edges to LDT time variant  
skew  
PCI pulse skew  
PCIn  
LDTn  
PCIn  
LDTn  
f
f
f
f
f
f
= 33.3 MHz  
1.5  
1.4  
3.7  
3.6  
(PCI)  
(LDT)  
(PCI)  
(LDT)  
(PCI)  
(LDT)  
t
t
ns  
ns  
ns  
sk(p)  
LDT pulse skew  
= 66.7 MHz  
Pulse duration, high PCI (33 MHz)  
Pulse duration, high LDT (66 MHz)  
Pulse duration, low PCI (33 MHz)  
Pulse duration, low LDT (66 MHz)  
= 33.3 MHz  
= 66.7 MHz  
= 33.3 MHz  
= 66.7 MHz  
13.6  
6.2  
w(H)  
16.0  
8.4  
t
t
t
w(L)  
0.7  
2.9  
1.6  
1.2  
ns  
V/ns  
Rise time PCI/LDT (33 MHz), LDT (66 MHz)  
Fall time PCI/LDT (33 MHz), LDT (66 MHz)  
V
= 20% to 80% of V  
r
f
ref  
O
O
0.6  
3.5  
1.6  
1.2  
ns  
V/ns  
V
= 20% to 80% of V  
ref  
v
v
0.3  
0.4  
1.7  
1.7  
r
f
Edge rate rising edge (maintained during total transition)  
V
ref  
= 20% to 60% of V  
V/ns  
DD  
All typical values are measured at their nominal V  
DD  
values.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
switching characteristics, V  
= 3.135 V to 3.465 V, T = 0°C to 70°C (continued)  
A
DD  
REF, C = 20 pF, R = 500 Ω  
L
L
FROM  
(INPUT) (OUTPUT)  
TO  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
t
t
t
t
t
t
Propagation delay time  
Propagation delay time  
XIN  
REF  
REF  
f
1 MHz, TEST MODE  
2
10.0  
ns  
ns  
ns  
ps  
ps  
ps  
%
pd1  
(XIN)  
TEST MODE  
SCLK↑  
18  
pd2  
REF clock period  
f
f
f
f
f
f
f
f
f
= 14.318 MHz  
= 100 to 200 MHz  
= 100 to 200 MHz  
= 100 to 200 MHz  
= 14.318 MHz  
= 14.318 MHz  
= 14.318 MHz  
= 14.318 MHz  
= 14.318 MHz  
69.8  
200  
45  
69.84  
250  
200  
300  
55  
c
(REF)  
(CPU)  
(CPU)  
(CPU)  
(REF)  
(REF)  
(REF)  
(REF)  
(REF)  
Cycle to cycle jitter  
Accumulated jitter  
Phase jitter  
jit(cc)  
jit(acc)  
jit(  
)
odc  
Duty cycle  
t
t
t
t
REF bank skew edges  
REF pulse skew  
REFx  
REF  
REFx  
REF  
500  
5.8  
ps  
ps  
ns  
ns  
sk(b)  
sk(p)  
w(H)  
w(L)  
2
27  
32  
Pulse duration width, high  
Pulse duration width, low  
1.1  
2
2.7  
0.7  
ns  
V/ns  
t
Rise time  
Fall time  
V
= 20% to 80% of Vo  
r
f
ref  
1.1  
2
2.7  
0.7  
ns  
V/ns  
t
V
ref  
= 20% to 80% of Vo  
v
v
Edge rate rising edge (maintained during total transition)  
Edge rate falling edge (maintained during total transition)  
V
ref  
= 20% to 60% of VDD  
0.25  
0.25  
1.1  
1.1  
V/ns  
V/ns  
r
f
All typical values are measured at their nominal V  
values.  
The average over any 1-µs period of time is greater than the minimum specified period  
DD  
SDATA, C = 10 pF to 400 pF, R = 1 kΩ  
L
L
FROM  
(INPUT)  
TO  
(OUTPUT)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
t
t
t
Propagation delay time  
Propagation delay time  
Propagation delay time  
SCLK↓  
SCLK↓  
SCLK↓  
Data acknnowledge See Figure 6  
0.375  
0.375  
0.375  
2
2
µs  
µs  
µs  
PHL  
PLH  
PHL  
Data valid  
Data valid  
See Figure 6  
See Figure 6  
2
C
C
= 10 pF  
86  
250  
250  
L
L
t
f
Fall time  
ns  
= 400 pF  
115  
All typical values are measured at their nominal V  
This is a digital controlled delay. It equals to 6 REF clock cycles plus the internal gate delay (20 ns).  
values.  
DD  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢘꢑ  
ꢊꢒ  
ꢐꢑ  
ꢜꢙ  
SCAS675 APRIL 2002  
PARAMETER MEASUREMENT INFORMATION  
R
= 500 Ω  
V
L
S1  
O_REF(OFF)  
OPEN  
From Output  
Under Test  
TEST  
/t  
S1  
GND  
t
t
t
Open  
PLH PHL  
C
L
R = 500 Ω  
L
/t  
V
PLZ PZL  
/t  
O_REF(OFF)  
GND  
(see Note A)  
PHZ PZH  
LOAD CIRCUIT for t and t  
pd  
sk  
t
w
From Output  
Under Test  
Test  
Point  
3 V  
V
V
V
IH_REF  
T_REF  
IL_REF  
Input  
C
L
0 V  
(see Note A)  
VOLTAGE WAVEFORMS  
LOAD CIRCUIT FOR t and t  
r
f
Output  
Enable  
(high-level  
enabling)  
V
3 V  
0 V  
DD  
Input  
V
V
T_REF  
V
V
T_REF  
T_REF  
T_REF  
0 V  
t
PZL  
t
t
PLH  
PHL  
V
t
PLZ  
Output  
Waveform 1  
S1 at 6 V  
3 V  
V
V
OH  
IH_REF  
V
Output  
V
T_REF  
IL_REF  
T_REF  
V
+ 0.3 V  
OL  
(see Note B)  
V
V
OL  
V
OL  
t
PZH  
t
t
t
f
PHZ  
r
Output  
Waveform 2  
S1 at GND  
OH  
t
V
OH  
0.3 V  
w_high  
V
T_REF  
t
w_low  
(see Note B)  
0 V  
VOLTAGE WAVEFORMS  
VOLTAGE WAVEFORMS  
NOTES: A.  
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR v 14.318 MHz, Z = 50 , t 2.5 ns,  
C includes probe and jig capacitance. C = 10 pF (CPU), C = 20 pF (USB, FDC, REF), C = 30 pF (PCI, LDC)  
L L L L  
O
r
t 2.5 ns.  
f
D. The outputs are measured one at a time with one transition per measurement.  
PARAMETER  
3.3-V INTERFACE  
UNIT  
V
V
V
V
High-level reference voltage  
Low-level reference voltage  
Input threshold reference voltage  
Off-state reference voltage  
2.4  
0.4  
1.5  
6
V
V
V
V
IH_REF  
IL_REF  
T_REF  
O_REF  
Figure 5. Load Circuit and Voltage Waveforms  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
PARAMETER MEASUREMENT INFORMATION  
V
O
= 3.3 V  
R
= 1 kΩ  
L
DUT  
C
C
= 10 pF or  
= 400 pF  
L
L
GND  
TEST CIRCUIT  
4 to N Bytes for Complete Device Programming  
Start  
Condition  
(S)  
Bit 0  
Stop  
Condition  
(P)  
Bit 7  
MSB  
Acknowledge  
(A)  
LSB  
Bit 6  
(R/W)  
t
t
t
w(SCLL)  
w(SCLH)  
su(START)  
0.7 V  
0.3 V  
CC  
SCLOCK  
t
CC  
t
t
PHL  
su(START)  
r
t
PLH  
t
t
f
(BUS)  
0.7 V  
CC  
SDATA  
0.3 V  
CC  
t
t
t
t
h(SDATA)  
f(DATA)  
t
su(STOP)  
Stop Condition  
r(SDATA)  
t
su(SDATA)  
h(START)  
Start or  
Repeat Start Condition  
Repeat Start Condition  
(see Note A)  
VOLTAGE WAVEFORMS  
NOTE A: The repeat start condition is supported, but not clock stretching.  
BYTE  
DESCRIPTION  
1
SMBus address  
2
3
Command (dummy value, ignored)  
Byte count  
4
SMBus data byte 0  
SMBus data byte 1 N  
5 N  
Figure 6. Propagation Delay Times, t and t  
r
f
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
PARAMETER MEASUREMENT INFORMATION  
PCI_F  
t
t
su  
su  
LDT or PCI_Stop  
PCI or LDT  
PCI/LDT_SEL  
(High)  
PCI_F  
t
t
h
h
LDT or PCI_Stop  
PCI or LDT  
PCI/LDT_SEL  
(High)  
NOTE: Assertion and deassertion of PCI_STOP or LDT_STOP maintain signals duty cycle.  
t
t
is the time at which no pulse exists in following period.  
is the time at which a pulse exists in following period.  
su(disable)  
su(enable)  
Figure 7. PCI_Stop or LDT_Stop to PCI (LDT)  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
PARAMETER MEASUREMENT INFORMATION  
V
T_REF  
Bus Clock  
Bus Clock  
(n)  
t
c
V
IH_REF  
V
T_REF  
(n+1)  
V
IL_REF  
t
t
t
w(h)  
(sk_0)  
w(l)  
t
t
(high)  
(low)  
t
(sk_0)  
t
(low or high)  
+ Ťt  
Ť
t
* t  
Duty Cycle +  
  100  
(sk_p)  
w(l)  
w(h)  
t
c
Refer to Figure 4  
Bus  
Bus  
Clock  
Clock  
V
(A)  
(x)  
T_REF  
V
T_REF  
(B)  
(x)  
t
t
= Bus  
(B)  
Clock Bus  
(x) (A)  
Clock  
(x)  
(sk_0)  
(sk_0)  
a) Single-Ended Outputs  
V
(cross_H)  
(cross_L)  
CPU Clock  
(n)  
V
t
t
(sk_b)  
c
CPU Clock  
(n+1)  
t
t
t
w(h)  
(sk_b)  
w(l)  
t
w(Low or High)  
Duty Cycle =  
x 100  
t
c
V
V
(cross_H)  
(cross_L)  
CPU Clock  
(x)  
V
Bus  
(B)  
Clock  
T_REF  
(x)  
t
t
= Bus  
(B)  
Clock CPU Clock  
(x)  
(sk_0)  
(sk_0)  
(x)  
b) Differential Ouput  
Figure 8. Waveforms for Calculation of Skew and Offset  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
PARAMETER MEASUREMENT INFORMATION  
Bus Clock  
(n)  
V
T_REF  
t
t
c(n+1)  
c(n)  
3
3
Cycle-to-Cycle Jitter  
Mean Cycle Time  
t
= | t  
t  
|
n > 2 x 10  
jit(cc)  
c(n) c(n+1)  
n
t
Σ
c(n)  
t
=
n > 2 x 10  
0
n = 1  
n
a) Single-Ended Output  
t
t
c(n+1)  
c(n)  
V
V
(cross_H)  
(cross_L)  
CPU Clock  
(n)  
t
t
t
w(n+2)  
w(n)  
w(n+1)  
3
3
Cycle-to-Cycle Jitter  
Mean Cycle Time  
t
= | t  
t  
|
n > 2 x 10  
jit(cc)  
c(n) c(n+1)  
n
t
Σ
c(n)  
t
=
0
n = 1  
n > 2 x 10  
n
b) Differential Output  
Figure 9. Waveforms for Calculation of Jitter  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
= 2.5 V  
V
DD  
= 2.5 V  
Differential Impedance = 100 Ω  
250 Ω  
1%  
3900 pF  
R
R
= 15 Ω  
S1  
S1  
CPU  
CDC960  
CPU  
TLA  
TLB  
TLC  
TLD  
TLD  
250 Ω  
1%  
C
= 5 pF  
= 5 pF  
1%  
L
NPO 10%  
169 Ω  
1%  
200 Ω  
1%  
3900 pF  
= 15 Ω  
TLC  
C
L
1%  
200 Ω  
NPO 10%  
1%  
Test Node  
Clock  
Test Node  
Clock  
R
= 50 Ω  
R
= 50 Ω  
T2  
T1  
TLA = TLB: Z = 60 , L = 12.7 cm (750 ps)  
O
TLC: Z = 60 , L = 1.27 cm (75 ps)  
O
TLD: Z = 60 , L = ~3.43 cm (~180 ps)  
O
Figure 10. Load Circuit and Voltage Waveforms for CPU Bus  
correction for measurements at 50 nodes  
Voltage levels and readings are scaled for the voltage divider 200 to 50 versus all reads and reference levels  
must be multiplied/divided by the fixed scale of five.  
t
sk(ow2)  
t
sk(ow1)  
t
sk(ow5)  
Bank1  
t
sk(ow3)  
1
Bank2  
Bank2  
2
Bank2  
3
Bank2  
4
t
sk(ow4)  
5
Bank2  
6
Bank2  
t
sk(ow6)  
MIN to MAX Output Skew  
Figure 11. Bank and Output Skew; t  
: Output Skew Window and MIN-to-MAX Phase  
sk(owx)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
PARAMETER MEASUREMENT INFORMATION  
The common mode voltage is measured single-ended and is the result of the following calculation:  
Vocm = [Vo(CPUT) + Vo(CPUC) ]/2  
(t)  
(t)  
(t)  
t
w(h)  
t
w(l)  
Avg.  
Avg.  
CPUx  
CPUx  
V
cm(Max)  
V
cm(Min)  
0 V (GND)  
V
cm0  
V
cm1  
45%  
of  
45%  
of  
t
t
w(h)  
w(l)  
75%  
of  
75%  
of  
t
t
w(h)  
w(l)  
V
is calculated from the average of Vocm within 45%75% (region without switching noise) of the pulse while CPUx is in the  
cm0  
LOW state.  
is calculated from the average of Vocm within 45%75% (region without switching noise) of the pulse while CPUx is in the  
V
cm1  
HIGH state.  
= (V  
V
+ V )/2  
cm1  
V  
cm0 cm1  
ocm  
V  
cm0  
= V  
ocm  
a) Static  
t
w(h)  
t
w(l)  
CPUx  
CPUx  
V
cm(Max)  
V
cm(Min)  
0 V (GND)  
V
cm0  
V
cm1  
t = 0 to t  
w(l)  
t = 0 to t  
w(h)  
V  
ocm(t)  
= MAX (V  
) MIN (V  
) and  
cm1(t)  
)
cm1(t)  
cm0(t)  
V  
ocm(t)  
= MIN (V  
) MAX (V  
cm0(t)  
b) Dynamic  
Figure 12. Common Mode Voltage  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀ ꢂꢃ ꢄ  
ꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀꢊ ꢋ ꢀꢌ ꢍꢎ ꢏꢐ ꢈꢑꢍꢒ ꢓ ꢑꢔ ꢕꢁ ꢔꢒ ꢖ ꢑ ꢔ  
ꢗ ꢒ ꢐꢈ ꢍ ꢘꢔ ꢑꢙ ꢁ ꢍ ꢘꢑ ꢀ ꢐꢔ ꢚꢇ ꢀꢙꢘꢙꢛꢒ ꢊ ꢒꢐ ꢎ ꢙꢏꢁ ꢁꢑ ꢖꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙ ꢀꢑ  
SCAS675 APRIL 2002  
PARAMETER MEASUREMENT INFORMATION  
The differential voltage is measured single-ended and is the result of the following calculation:  
Vod = Vo(CPUx) Vo(CPUx)  
(t)  
(t)  
(t)  
t
w(h)  
t
w(l)  
CPUx  
CPUx  
V
o(Max)  
V
dif  
V
o(Min)  
0 V (GND)  
Avg.  
Avg.  
|V  
dif(Max)  
|
|
|V  
dif  
|
|V  
dif(Min)  
0 V (GND)  
V
od_0  
V
od_1  
45%  
of  
45%  
of  
t
t
w(h)  
w(l)  
75%  
75%  
of  
of  
t
t
w(h)  
w(l)  
Vod_0 is calculated from the average of Vod within 45%75% (region without switching noise) of the pulse while CPUx is in the  
LOW state.  
Vod_1 is calculated from the average of Vod within 45%75% (region without switching noise) of the pulse while CPUx is in the  
HIGH state.  
Vod = (Vod_0 + Vod_1/2  
Vod_DC = Vod_0 Vod_1  
Vod_AC = |Vdif(max0| |Vdif(min)|  
Figure 13. Differential Output Voltage  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢀꢂ ꢃ ꢄ  
ꢅꢄ ꢄꢆꢇ ꢈꢉ ꢀ ꢊ ꢋꢀꢌ ꢍ ꢎꢏ ꢐꢈ ꢑꢍ ꢒ ꢓꢑ ꢔꢕ ꢁ ꢔꢒ ꢖ ꢑꢔ  
ꢗꢒ ꢐ ꢈ ꢍꢘ ꢔꢑ ꢙ ꢁ ꢍ ꢘꢑ ꢀꢐ ꢔꢚ ꢇ ꢀꢙ ꢘꢙꢛ ꢒ ꢊꢒ ꢐ ꢎ ꢙꢏꢁ ꢁꢑꢖ ꢒꢀ ꢑ ꢀꢋ ꢏꢐ ꢔꢋ ꢊ ꢒꢏ ꢐꢑ ꢔꢜꢙꢀꢑ  
SCAS675 APRIL 2002  
MECHANICAL DATA  
DL (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0.025 (0,635)  
48  
0.0135 (0,343)  
0.005 (0,13)  
M
0.008 (0,203)  
25  
0.010 (0,25)  
0.005 (0,13)  
0.299 (7,59)  
0.291 (7,39)  
0.420 (10,67)  
0.395 (10,03)  
Gage Plane  
0.010 (0,25)  
0°ā8°  
1
24  
0.040 (1,02)  
A
0.020 (0,51)  
Seating Plane  
0.004 (0,10)  
0.008 (0,20) MIN  
PINS **  
0.110 (2,79) MAX  
28  
48  
0.630  
56  
DIM  
0.380  
(9,65)  
0.730  
A MAX  
A MIN  
(16,00) (18,54)  
0.370  
(9,40)  
0.620  
0.720  
(15,75) (18,29)  
4040048/E 12/01  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MO-118  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
SSOP  
SSOP  
Drawing  
CDC960DL  
ACTIVE  
ACTIVE  
DL  
48  
48  
25  
None  
None  
Call TI  
Call TI  
Level-1-220C-UNLIM  
Level-1-220C-UNLIM  
CDC960DLR  
DL  
1000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

CDC9841

PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS
TI

CDC9841DW

PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS
TI

CDC9841DWR

PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS
TI

CDC9842

PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER
TI

CDC9842DW

PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER
TI

CDC9842DW

Processor Specific Clock Generator, 66MHz, BICMOS, PDSO28, PLASTIC, SOIC-28
ROCHESTER

CDC9842DWR

3.3Vdriver 28-SOIC
TI

CDC9842DWR

66 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO28, PLASTIC, SOIC-28
ROCHESTER

CDC9843

PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS
TI

CDC9843DW

PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS
TI

CDC9843DWR

PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS
TI

CDCBT1001

1.2V 至 1.8V 时钟缓冲器和电平转换器
TI