DAC43508 [TI]

具有 SPI 的八路 8 位缓冲电压输出 DAC;
DAC43508
型号: DAC43508
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 SPI 的八路 8 位缓冲电压输出 DAC

文件: 总38页 (文件大小:4082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
DACx3508 采用微3 × 3 WQFN 封装的八10 8 SPI 接口  
缓冲电压输DAC  
1 特性  
3 说明  
±1LSB INL DNL  
• 宽工作范围  
10 DAC53508 8 DAC43508 (DACx3508) 是  
低功耗、八通道、电压输出数模转换器 (DAC)。  
DACx3508 根据设计在 1.8V 5.5V 的宽电源电压范  
围内具有单调性。DACx3508 使用外部基准可提供  
1.8V 5.5V 的满标度输出电压范围同时每通道消耗  
的静态电流为 0.1mADACx3508 还包括基于每通道  
且用户可编程的断电寄存器。这些寄存器有助于 DAC  
输出缓冲器以 10k-AGND 断电状态启动并保持该  
状态直到向这些输出缓冲器发出加电命令。  
– 电源1.8V 5.5V  
– 温度范围40°C +125°C  
3 线SPI 接口  
2.7V VDD 5.5V VIH = 2.4V  
1.8V VDD 2.7V VIH = (VDD 0.3V)  
• 通LDAC 引脚实现同步输出更新  
• 功耗极低0.1mA/(1.8V)  
• 低功耗启动模式输出断电并通10k连接至  
AGND。  
DACx3508 具有低静态电流、宽电源电压范围、八通  
道和每通道断电选项因此非常适合高密度、低功耗的  
电池供电系统。  
• 微型封装  
16 WQFN (3mm × 3mm)  
这些器件通3 线只写SPI 接口进行通信。这些器  
件还具有负DAC (LDAC) 和清CLR 输入。  
2 应用  
多功能打印机  
电视显示面板  
OLED 电视  
虚拟现实耳麦  
点钞机  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
DAC53508  
DAC43508  
WQFN (16)  
3.00mm × 3.00mm  
自动取款(ATM)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VDD  
VREFIN  
DACx3508  
SCLK  
DAC  
Registers  
SDI  
SYNC  
DAC  
VOUTA  
VOUTH  
BUF  
Channel A  
Channel H  
LDAC  
CLR  
Power-On Reset  
Resistive Network  
Power-Down Logic  
AGND  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASF08  
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................22  
8.5 Programming............................................................ 22  
8.6 Register Map.............................................................23  
9 Application and Implementation..................................26  
9.1 Application Information............................................. 26  
9.2 Typical Applications.................................................. 26  
10 Power Supply Recommendations..............................30  
11 Layout...........................................................................30  
11.1 Layout Guidelines................................................... 30  
11.2 Layout Example...................................................... 30  
12 Device and Documentation Support..........................31  
12.1 Documentation Support.......................................... 31  
12.2 接收文档更新通知................................................... 31  
12.3 支持资源..................................................................31  
12.4 Trademarks.............................................................31  
12.5 静电放电警告.......................................................... 31  
12.6 术语表..................................................................... 31  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configurations and Functions.................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Timing Requirements: SPI.......................................... 7  
7.7 Timing Requirements: Logic....................................... 7  
7.8 Timing Diagrams ........................................................8  
7.9 Typical Characteristics: Static Performance............... 9  
7.10 Typical Characteristics: Dynamic Performance...... 15  
7.11 Typical Characteristics: General............................. 17  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................19  
Information.................................................................... 31  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2021  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
DAC53508  
DAC43508  
10-Bit  
8-Bit  
6 Pin Configurations and Functions  
VOUTA  
VOUTB  
VOUTC  
VOUTD  
1
2
3
4
12  
11  
10  
9
VOUTH  
VOUTG  
VOUTF  
VOUTE  
Thermal Pad  
Not to scale  
6-1. RTE (16-Pin WQFN) Package, Top View  
6-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
VOUTA  
VOUTB  
VOUTC  
VOUTD  
SDIN  
Output  
Output  
Output  
Output  
Input  
Analog voltage output from DAC channel A.  
Analog voltage output from DAC channel B.  
Analog voltage output from DAC channel C.  
Analog voltage output from DAC channel D.  
SPI data input.  
2
3
4
5
6
SCLK  
Input  
SPI clock input.  
7
SYNC  
Input  
SPI chip select input (active low).  
8
LDAC  
Input  
Load DAC (active low) input for synchronous output update, simultaneous output update, or both.  
Analog voltage output from DAC channel E.  
9
VOUTE  
VOUTF  
VOUTG  
VOUTH  
VDD  
Output  
Output  
Output  
Output  
Power  
Ground  
Power  
Input  
10  
11  
12  
13  
14  
15  
16  
Analog voltage output from DAC channel F.  
Analog voltage output from DAC channel G.  
Analog voltage output from DAC channel H.  
Power supply input (1.8 V to 5.5 V).  
AGND  
Ground reference for all circuitry on the device.  
External reference input. To use VDD as the reference, connect this pin to VDD.  
Asynchronous output clear input (active low).  
VREFIN  
CLR  
Thermal Pad  
Ground  
Connect thermal pad to AGND.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC53508 DAC43508  
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
10  
40  
65  
MAX  
UNIT  
V
VDD  
Power-supply voltage to AGND  
External reference voltage to AGND  
Digital input(s) to AGND  
6
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
10  
VREFIN  
V
V
VOUT  
Voltage output to AGND  
V
Current into any pin  
mA  
°C  
°C  
TJ  
Junction temperature,TJ  
Storage temperature, Tstg  
150  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
MAX  
5.5  
UNIT  
V
VDD to AGND  
Positive supply voltage to ground  
Reference input supply voltage to ground  
Digital input high voltage, 1.8 V VDD 2.7 V  
Digital input high voltage, 2.7 V < VDD 5.5 V  
Digital input low voltage  
VREFIN to AGND  
1.8  
VDD  
V
VDD 0.3  
2.4  
VIH  
V
VIL  
TA  
0.5  
V
Ambient temperature  
125  
°C  
40  
7.4 Thermal Information  
DACx3508  
THERMAL METRIC(1)  
RTE (WQFN)  
UNIT  
16 PIN  
49  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
50  
24.1  
1.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
YJB  
24.1  
8.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
 
 
 
 
 
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
all minimum/maximum specifications at TA = 40°C to +125°C and all typical specification at TA = 25°C, 1.8 V VDD 5.5  
V, VREFIN = 2.5 V for VDD 2.7 V, VREFIN = 1.8 V for VDD 2.7 V, RL= 5 kΩto AGND, CL = 200 pF to AGND, and digital inputs  
at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE  
DAC53508  
DAC43508  
10  
8
Resolution  
Bits  
INL  
Integral nonlinearity(1)  
Differential nonlinearity(1)  
Zero-code error  
1
1
LSB  
LSB  
mV  
1  
1  
DNL  
Code 0d into DAC  
Code 0d into DAC  
6
12  
Zero-code-error temperature  
coefficient  
±5  
µV/°C  
Offset error(1)  
0.25  
±0.0003  
0.25  
0.5  
0.5  
%FSR  
%FSR/°C  
%FSR  
0.5  
0.5  
Offset-error temperature coefficient(1)  
Gain error(1)  
Gain-error temperature coefficient(1)  
±0.0004  
0.25  
%FSR/°C  
0.5  
1
2.7 V VDD 5.5 V  
1.8 V VDD 2.7 V  
0.5  
1  
Full-scale error(4)  
%FSR  
0.5  
Full-scale-error temperature  
coefficient(4)  
±0.0004  
%FSR/°C  
OUTPUT  
VOUTX  
Output voltage  
0
5.5  
1
V
RL = Infinite  
CL  
Capacitive load(2)  
nF  
2
DAC at midscale,  
10 mA IOUT +10 mA, VDD = 5.5 V  
Load regulation  
0.1  
mV/mA  
VDD = 1.8 V  
10  
25  
Short-circuit current(3)  
VDD = 2.7 V  
mA  
V
VDD = 5.5 V  
50  
Output voltage headroom  
Output voltage headroom(2)  
To VDD, DAC output unloaded  
0.05  
To VDD, load current = 10 mA at VDD = 5.5  
V, load current = 3 mA at VDD = 2.7 V,  
load current = 1 mA at VDD = 1.8 V,  
DAC code at full-scale  
10  
%FSR  
DAC at midscale  
DAC at code 4d  
DAC at code 1016d  
0.25  
0.25  
0.26  
ZO  
DC output impedance  
Ω
DC  
PSRR  
Power supply rejection ratio (dc)  
DAC at midscale, VDD = 5 V ±10%  
0.25  
mV/V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and all typical specification at TA = 25°C, 1.8 V VDD 5.5  
V, VREFIN = 2.5 V for VDD 2.7 V, VREFIN = 1.8 V for VDD 2.7 V, RL= 5 kΩto AGND, CL = 200 pF to AGND, and digital inputs  
at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale  
settling to 10%FSR, VDD = 5.5 V  
tsett  
SR  
Output voltage settling time  
10  
µs  
Slew rate  
VDD = 5.5 V  
0.6  
V/µs  
mV  
Power-on glitch magnitude  
110  
f = 0.1 Hz to 10 Hz, DAC at midscale,  
VDD = 5.5 V  
Vn  
Vn  
Output noise  
Output noise  
40  
µVpp  
f = 0.1 Hz to 100 kHz, DAC at midscale,  
VDD = 5.5 V  
0.05  
mVrms  
f = 1 kHz, DAC at midscale, VDD = 5.5 V  
f = 10 kHz, DAC at midscale, VDD = 5.5 V  
0.2  
0.2  
Vn  
Output noise density  
µV/Hz  
200-mV, 50-Hz or 60-Hz sine wave  
superimposed on power-supply voltage,  
DAC at midscale  
AC  
PSRR  
Power-supply rejection ratio (ac)  
Channel-to-channel ac crosstalk  
Channel-to-channel dc crosstalk  
dB  
71  
1.5  
Full-scale swing on adjacent channel  
nV-s  
LSB  
Full-scale swing on all channels,  
measured channel at zero-scale or  
full-scale  
0.05  
±1-LSB change around midscale  
(including feedthrough)  
Code change glitch impulse  
10  
25  
nV-s  
mV  
Code change glitch impulse  
magnitude  
±1-LSB change around midscale  
(including feedthrough)  
VOLTAGE REFERENCE INPUT  
Reference input impedance  
Reference input capacitance  
DIGITAL INPUTS  
All channels powered on  
12.5  
50  
kΩ  
pF  
SCLK = 1 MHz, DAC output static at  
midscale  
Digital feedthrough  
20  
10  
nV-s  
pF  
Pin capacitance  
Per pin  
POWER  
Normal mode, all DACs at full-scale,  
SPI static  
3
5
mA  
µA  
IDD  
Current flowing into VDD  
All DAC channels powered down  
50  
(1) End point fit between codes: code 4d to code 1016d for 10 bit, code 1d to code 251d for 8 bit.  
(2) Characterized by design. Not production tested.  
(3) Full-scale output shorted per channel to AGND or zero-scale output shorted to VDD  
.
(4) Code 1023d into DAC, no headroom.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.6 Timing Requirements: SPI  
All inputs signals are specified with tR = tF = 1 V/ns (10% to 90% of VDD) and timed from a voltage level of VDD/2,  
1.8 V VDD 5.5 V and 40°C TA +125°C  
MIN  
NOM  
MAX  
25  
UNIT  
Serial clock frequency, 1.7 V VDD < 2.7 V  
Serial clock frequency, 2.7 V VDD 5.5 V  
SCLK high time, 1.7 V VDD < 2.7 V  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
MHz  
50  
20  
10  
20  
10  
16  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high time, 2.7 V VDD 5.5 V  
SCLK low time, 1.7 V VDD < 2.7 V  
SCLK low time, 2.7 V VDD 5.5 V  
SDI setup time, 1.7 V VDD < 2.7 V  
SDI setup time, 2.7 V VDD 5.5 V  
10  
5
SDI hold time, 1.7 V VDD < 2.7 V  
tSDIH  
SDI hold time, 2.7 V VDD 5.5 V  
36  
18  
10  
5
SYNC to SCLK falling edge setup time, 1.7 V VDD < 2.7 V  
SYNC to SCLK falling edge setup time, 2.7 V VDD 5.5 V  
SCLK falling edge to SYNC rising edge, 1.7 V VDD < 2.7 V  
SCLK falling edge to SYNC rising edge, 2.7 V VDD 5.5 V  
SYNC high time, 1.7 V VDD < 2.7 V  
tCSS  
tCSH  
50  
25  
tCSHIGH  
SYNC high time, 2.7 V VDD 5.5 V  
7.7 Timing Requirements: Logic  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 1.8 V VREFIN VDD, 40°C TA +125°C,  
Vpullup = VDD for 1.8 V VDD 2.7 V, Vpullup = 2.7 V or VDD for 2.7 V VDD 5.5 V  
MIN  
100  
50  
NOM  
MAX  
UNIT  
SYNC rise edge to LDAC fall edge, 1.7 V VDD < 2.7 V  
SYNC rise edge to LDAC fall edge, 2.7 V VDD 5.5 V  
LDAC low time, 1.7 V VDD < 2.7 V  
tCS2LDAC  
tLDACW  
tCLRW  
ns  
60  
ns  
ns  
30  
LDAC low time, 2.7 V VDD 5.5 V  
60  
CLR low time, 1.7 V VDD < 2.7 V  
30  
CLR low time, 2.7 V VDD 5.5 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC53508 DAC43508  
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.8 Timing Diagrams  
tCSS  
tCSH  
tCSHIGH  
SYNC  
SCLK  
tSCLKLOW  
tSCLKHIGH  
tSDIH  
tSDIS  
SDIN  
Bit 23  
Bit 1  
Bit 0  
LDAC  
tCS2LDAC  
tLDACW  
7-1. Serial Interface Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.9 Typical Characteristics: Static Performance  
at TA = 25°C, reference = 1.8 V, and DAC outputs unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4
132  
260  
388  
516  
644  
772  
900 1016  
4
132  
260  
388  
516  
644  
772  
900 1016  
Code  
Code  
VDD = 1.8 V  
VDD = 5.5 V  
7-2. Integral Nonlinearity vs Digital Input Code  
7-3. Integral Nonlinearity vs Digital Input Code  
1
1
INL Max  
INL Min  
INL Max  
INL Min  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
VDD = 1.8 V  
VDD = 5.5 V  
7-4. Integral Nonlinearity vs Temperature  
7-5. Integral Nonlinearity vs Temperature  
1
INL Max  
INL Min  
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
1.8  
2.725  
3.65  
4.575  
5.5  
Voltage Reference (V)  
VDD = 5.5 V  
7-6. Integral Nonlinearity vs Supply Voltage  
7-7. Integral Nonlinearity vs Voltage Reference  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.9 Typical Characteristics: Static Performance (continued)  
at TA = 25°C, reference = 1.8 V, and DAC outputs unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4
132  
260  
388  
516  
644  
772  
900 1016  
4
132  
260  
388  
516  
644  
772  
900 1016  
Code  
Code  
VDD = 1.8 V  
VDD = 5.5 V  
7-8. Differential Nonlinearity vs Digital Input Code  
7-9. Differential Nonlinearity vs Digital Input Code  
VDD = 1.8 V  
VDD = 5.5 V  
7-10. Differential Nonlinearity vs Temperature  
7-11. Differential Nonlinearity vs Temperature  
1
1
DNL Max  
DNL Max  
DNL Min  
DNL Min  
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
1.8  
2.725  
3.65  
4.575  
5.5  
1.8  
2.725  
3.65  
4.575  
5.5  
VDD (V)  
Voltage Reference (V)  
7-12. Differential Nonlinearity vs Supply Voltage  
7-13. Differential Nonlinearity vs Voltage Reference  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.9 Typical Characteristics: Static Performance (continued)  
at TA = 25°C, reference = 1.8 V, and DAC outputs unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4
132  
260  
388  
516  
644  
772  
900 1016  
4
132  
260  
388  
516  
644  
772  
900 1016  
Code  
Code  
VDD = 1.8 V  
VDD = 5.5 V  
7-14. Total Unadjusted Error vs Digital Input Code  
7-15. Total Unadjusted Error vs Digital Input Code  
1
1
TUE Max  
TUE Min  
TUE Max  
TUE Min  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
VDD = 1.8 V  
VDD = 5.5 V  
7-16. Total Unadjusted Error vs Temperature  
7-17. Total Unadjusted Error vs Temperature  
1
1
TUE Max  
TUE Min  
TUE Max  
TUE Min  
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
1.8  
2.725  
3.65  
4.575  
5.5  
1.8  
2.725  
3.65  
4.575  
5.5  
VDD (V)  
Voltage Reference (V)  
VDD = 5.5 V  
7-18. Total Unadjusted Error vs Supply Voltage  
7-19. Total Unadjusted Error vs Voltage Reference  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC53508 DAC43508  
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.9 Typical Characteristics: Static Performance (continued)  
at TA = 25°C, reference = 1.8 V, and DAC outputs unloaded (unless otherwise noted)  
6
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
4
2
0
-2  
-4  
-6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
VDD = 5.5 V  
VDD = 1.8 V  
7-21. Zero-Code Error vs Temperature  
7-20. Zero-Code Error vs Temperature  
12  
10  
8
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
6
4
2
0
1.8  
2.725  
3.65  
4.575  
5.5  
Voltage Reference (V)  
VDD = 5.5 V  
7-22. Zero-Code Error vs Supply Voltage  
7-23. Zero-Code Error vs Voltage Reference  
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
VDD = 1.8 V  
VDD = 5.5 V  
7-24. Offset Error vs Temperature  
7-25. Offset Error vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.9 Typical Characteristics: Static Performance (continued)  
at TA = 25°C, reference = 1.8 V, and DAC outputs unloaded (unless otherwise noted)  
1
0.75  
0.5  
1
0.75  
0.5  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
1.8  
2.725  
3.65  
4.575  
5.5  
1.8  
2.725  
3.65  
4.575  
5.5  
VDD (V)  
Voltage Reference (V)  
VDD = 5.5 V  
7-26. Offset Error vs Supply Voltage  
7-27. Offset Error vs Voltage Reference  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
VDD = 1.8 V  
VDD = 5.5 V  
7-28. Gain Error vs Temperature  
7-29. Gain Error vs Temperature  
1
1
0.75  
0.5  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
1.8  
2.725  
3.65  
4.575  
5.5  
1.8  
2.725  
3.65  
4.575  
5.5  
VDD (V)  
Voltage Reference (V)  
VDD = 5.5 V  
7-30. Gain Error vs Supply Voltage  
7-31. Gain Error vs Voltage Reference  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC53508 DAC43508  
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.9 Typical Characteristics: Static Performance (continued)  
at TA = 25°C, reference = 1.8 V, and DAC outputs unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
VDD = 1.8 V  
VDD = 5.5 V  
7-32. Full-Scale Error vs Temperature  
7-33. Full-Scale Error vs Temperature  
1
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
1.8  
2.725  
3.65  
4.575  
5.5  
1.8  
2.725  
3.65  
4.575  
5.5  
VDD (V)  
Voltage Reference (V)  
VDD = 5.5 V  
VDD = 5.5 V  
7-34. Full-Scale Error vs Supply Voltage  
7-35. Full-Scale Error vs Voltage Reference  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics: Dynamic Performance  
at TA = 25°C, VDD = 5.5 V, reference = 5.5 V, and DAC outputs unloaded (unless otherwise noted)  
VOUT (1 LSB/div)  
LDAC (2.5 V/div)  
VOUT (1 LSB/div)  
LDAC (2.5 V/div)  
Time (1 s/div)  
Time (1 s/div)  
DAC code transition from midscale 1 to midscale,  
output load: 5 k|| 200 pF  
DAC code transition from midscale to midscale 1 LSB,  
output load: 5 k|| 200 pF  
7-36. Glitch Impulse, Rising Edge, 1-LSB Step  
7-37. Glitch Impulse, Falling Edge, 1 LSB Step  
Small Signal VOUT (1 LSB/div)  
Large Signal VOUT (2.5 V/div)  
LDAC (2.5 V/div)  
Small Signal VOUT (1 LSB/div)  
Large Signal VOUT (2.5 V/div)  
LDAC (2.5 V/div)  
Time (5 s/div)  
Time (5 s/div)  
DAC code transition from 102d to 922d, typical  
channel shown, output load: 5 k|| 200 pF  
DAC code transition from 922d to 102d, typical  
channel shown, output load: 5 k|| 200 pF  
7-38. Full-Scale Settling Time, Rising Edge  
7-39. Full-Scale Settling Time, Falling Edge  
18  
16  
14  
12  
10  
8
20  
15  
10  
5
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
0
6
-5  
4
2
-10  
-15  
-20  
0
-2  
-4  
Time (1 ms/div)  
Time (50 s/div)  
Output load: 5 k|| 200 pF  
7-41. Power-off Glitch  
Output load: 5 k|| 200 pF  
7-40. Power-on Glitch  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.10 Typical Characteristics: Dynamic Performance (continued)  
at TA = 25°C, VDD = 5.5 V, reference = 5.5 V, and DAC outputs unloaded (unless otherwise noted)  
10  
VOUT (2 mV/div)  
SCL (2.5 V/div)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
1000000  
Time (1 s/div)  
DAC at midscale, reference tied to VDD  
,
DAC at full-scale, output load: 5 k|| 200 pF,  
output load: 5 k|| 200 pF, SCLK = 1 MHz  
7-42. Clock Feedthrough  
VDD = 5.25 V + 0.2 VPP, VREFIN = 4.5 V  
7-43. AC Power-Supply Rejection Ratio vs Frequency  
1000  
Code 0x20  
Code 0x800  
Code 0xFDC  
800  
600  
400  
200  
0
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
Time (1 s/div)  
DAC at midscale, f = 0.1 Hz to 10 Hz  
7-44. Flicker Noise  
7-45. Noise Spectral Density  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.11 Typical Characteristics: General  
at TA = 25°C, and DAC outputs unloaded (unless otherwise noted)  
3
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
128  
256  
384  
512  
640  
768  
896 1024  
0
128  
256  
384  
512  
640  
768  
896 1024  
Code  
Code  
VDD = 1.8 V, reference = 1.8 V  
VDD = 5.5 V, reference = 5.5 V  
7-46. Power-Supply Current vs Digital Input Code  
7-47. Power-Supply Current vs Digital Input Code  
5
3
VDD = 5.5 V  
VDD = 3.65 V  
VDD = 1.8 V  
4.5  
2.5  
4
3.5  
3
2
1.5  
1
2.5  
2
1.5  
1
0.5  
0.5  
0
0
1.8  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
2.725  
3.65  
4.575  
5.5  
VDD (V)  
DAC at midscale  
DAC at midscale, reference tied to VDD  
7-49. Power-Supply Current vs Supply Voltage  
7-48. Power-Supply Current vs Temperature  
6
5
4
3
2
1
0
Code 0x3FF  
Code 0  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
Load Current (mA)  
VDD = 1.8 V, reference = 1.8 V  
VDD = 5.5 V, reference = 5.5 V  
7-51. Output Source and Sink Capability  
7-50. Output Source and Sink Capability  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
7.11 Typical Characteristics: General (continued)  
at TA = 25°C, and DAC outputs unloaded (unless otherwise noted)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VDD = 5.5 V  
VDD = 3.65 V  
VDD = 1.8 V  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
VDD = 5.5 V  
7-52. Power-Down Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The 10-bit DAC53508 and 8-bit DAC43508 (DACx3508) are a pin-compatible family of eight-channel, buffered  
voltage-output digital-to-analog converters (DACs). With an external reference ranging from 1.8 V to 5.5 V, a full-  
scale output voltage of 1.8 V to 5.5 V is achievable. These devices are specified monotonic across the power-  
supply range.  
Communication to the devices is established through a three-wire SPI-compatible interface. These devices do  
not support readback operation. These devices include a load DAC (LDAC) pin for simultaneous DAC updates  
and a clear (CLR) pin for setting the outputs to zero scale.  
The DACx3508 devices are characterized for operation over the temperature range of 40°C to +125°C and are  
available in tiny QFN packages.  
8.2 Functional Block Diagram  
VDD  
VREFIN  
DACx3508  
SCLK  
SDI  
DAC  
Registers  
DAC  
VOUTA  
VOUTH  
BUF  
SYNC  
LDAC  
CLR  
Channel A  
Channel H  
Power-On Reset  
Resistive Network  
Power-Down Logic  
AGND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC53508 DAC43508  
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Digital-to-Analog Converter (DAC) Architecture  
Each output channel in the DACx3508 family of devices consists of string architecture with an output buffer  
amplifier. 8-1 shows a block diagram of the DAC architecture.  
VREFIN  
VDD  
Serial Interface  
DAC Data Register  
DAC  
Buffer  
DAC  
Active  
VOUTX  
String  
BUF  
Register  
Register  
READ  
WRITE  
(Asynchronous Mode)  
LDAC Trigger  
(Synchronous Mode)  
AGND  
8-1. DACx3508 DAC Architecture  
8.3.1.1 DAC Transfer Function  
The device writes the input data to the individual DAC Data registers in straight binary format. After a power-on  
or a reset event, the device sets all DAC registers to zero-code. 方程1 shows DAC transfer function.  
DACn_DATA  
V
=
× V  
(1)  
OUTX  
REFIN  
N
2
where:  
N = resolution in bits: 10 (DAC53508) or 8 (DAC43508)  
DACn_DATA is the decimal equivalent of the binary code that is loaded to the DAC register  
DACn_DATA ranges from 0 to 2N 1  
VREFIN is the DAC reference voltage  
8.3.1.2 DAC Register Update and LDAC Functionality  
The device stores the data written to the DAC Data registers in the DAC buffer registers. Transfer of data from  
the DAC buffer registers to the DAC active registers can be set to happen immediately (asynchronous mode) or  
initiated by an LDAC trigger (synchronous mode). After the DAC active registers are updated, the DAC outputs  
change to the new values.  
The update mode for each DAC channel is determined by the status of LDAC pin.  
In asynchronous mode (LDAC = low before the DAC write command), a write to the DAC data register results in  
an immediate update of the DAC active register and DAC output at the end of SPI frame.  
In synchronous mode (LDAC = high before the DAC write command), writing to the DAC data register does not  
automatically update the DAC output. Instead, the update occurs only after LDAC is pulled low. The  
synchronous update mode enables simultaneous update of all DAC outputs.  
8.3.1.3 CLR Functionality  
The CLR pin is an asynchronous input pin to the DAC. When this pin is pulled low, the DAC buffers and the DAC  
active registers are set to zero code.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
8.3.1.4 Output Amplifier  
The output buffer amplifier generates rail-to-rail voltages on the output, giving a maximum output range of 0 V to  
DD. 方程式 1 shows that the full-scale output range of the DAC output is determined by the voltage on the  
V
VREFIN pin  
8.3.2 Reference  
The DACx3508 require an external reference to operate. However, the reference pin, VREFIN, and the supply  
pin, VDD, can be tied together. The reference input pin voltage ranges from 1.8 V to VDD. The typical input  
impedance of this pin when all the channels are powered on is 12.5 kΩ.  
8.3.3 Power-On Reset (POR)  
The DACx3508 family of devices includes a power-on reset (POR) function that controls the output voltage at  
power up. After the VDD supply has been established, a POR event is issued. The POR causes all registers to  
initialize to default values, and communication with the device is valid only after a 5-ms delay, when VDD reaches  
DAC operating range. The default value for the DAC data registers is zero-code. The DAC output remains at the  
power-up voltage until a valid command is written to a channel.  
When the device powers up, a POR circuit sets the device to the default mode. The POR circuit requires specific  
VDD levels, as indicated in 8-2, to make sure that the internal capacitors discharge and reset the device on  
power up. To make sure that a POR occurs, VDD must be less than 0.7 V for at least 1 ms. When VDD drops to  
less than 1.7 V but remains greater than 0.7 V (shown as the undefined region), the device may or may not reset  
under all specified temperature and power-supply conditions. In this case, initiate a POR. When VDD remains  
greater than 1.7 V, a POR does not occur.  
VDD (V)  
5.50  
Specified supply  
voltage range  
No power-on reset  
1.80  
1.70  
Undefined  
0.70  
Power-on reset  
0.00  
8-2. Threshold Levels for VDD POR Circuit  
8.3.4 Software Reset  
A device software reset event is initiated by writing the reserved code 0x1010 to the SW_RST bit in the  
STATUS_TRIGGER register.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
8.4 Device Functional Modes  
The DACx3508 has two modes of operation: normal and power-down.  
8.4.1 Power-Down Mode  
The DACx3508 DAC output amplifiers can be independently or globally powered down (10 kto AGND) through  
the DEVICE_CONFIG register. In this state, the device consumes 50 µA (VDD = 1.8 V). At power-up, all output  
channels buffer amplifiers start in power down (10 k-AGND) mode until a power up command is issued by  
writing 0 to the per-channel power-down register bits.  
8.5 Programming  
8.5.1 Serial Peripheral Interface (SPI)  
The DACx3508 supports a three-wire SPI interface with write-only functionality. An SPI write cycle for DACx3508  
is initiated by asserting the SYNC pin low. The serial clock, SCLK, can be a continuous or gated clock. SDI data  
are clocked on SCLK falling edges. The SPI frame for DACx3508 is 24 bits long; therefore, the SYNC pin must  
stay low for at least 24 SCLK falling edges. The write cycle ends when the SYNC pin is deasserted high. If the  
write cycle contains less than the minimum clock edges, the communication is ignored. If the write cycle contains  
more than the minimum clock edges, only the first 24 bits are used by the device.  
8-1 describes the format for the 24-bit SPI write access cycle. The first byte input to SDI is the instruction  
cycle. The instruction cycle identifies the request as the 8-bit address to be written. The last 16 bits in the cycle  
form the data cycle.  
8-1. SPI Write Access Cycle  
BIT  
FIELD  
DESCRIPTION  
23-16  
15-0  
A[7:0]  
Register address: specifies the register to be accessed during the write operation.  
DI[15:0]  
Data cycle bits: The data cycle bits are the values written to the register with  
address A[7:0].  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
8.6 Register Map  
8-2. Register Map  
DATA BITS  
B6  
COMMAND  
BITS  
REGISTER NAME  
MSDB  
B11  
LSDB  
B4  
B23-B16  
B15-B12  
B10  
B9  
B8  
B7  
PDNH  
B5  
B3  
B2  
B1  
B0  
DEVICE_CONFIG  
(8.6.1)  
01h  
X
RESERVED  
PDN-All  
PDNG  
PDNF  
PDNE  
PDND  
PDNC  
PDNB  
PDNA  
STATUS_TRIGGER  
(8.6.2)  
02h  
03h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
X
X
X
X
X
X
X
X
X
X
X
SW_RST  
BRDCAST  
(8.6.3)  
BRDCAST_DATA[9:0] / BRDCAST_DATA[7:0]  
DACA_DATA[9:0] / DACA_DATA[7:0]  
DACB_DATA[9:0] / DACB_DATA[7:0]  
DACC_DATA[9:0] / DACC_DATA[7:0]  
DACD_DATA[9:0] / DACD_DATA[7:0]  
DACE_DATA[9:0] / DACE_DATA[7:0]  
DACF_DATA[9:0] / DACF_DATA[7:0]  
DACG_DATA[9:0] / DACG_DATA[7:0]  
DACH_DATA[9:0] / DACAH_DATA[7:0]  
X
X
X
X
X
X
X
X
X
DACA_DATA  
(8.6.4)  
DACB_DATA  
(8.6.4)  
DACC_DATA  
(8.6.4)  
DACD_DATA  
(8.6.4)  
DACE_DATA  
(8.6.4)  
DACF_DATA  
(8.6.4)  
DACG_DATA  
(8.6.4)  
DACH_DATA  
(8.6.4)  
8-3. Register Section/Block Access Type Codes  
Access Type  
Code  
Description  
W
W
-n  
W
Write only  
X
Don't care  
Value after reset or the default value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
8.6.1 DEVICE_CONFIG Register (address = 01h) [reset = 00FFh]  
8-3. DEVICE_CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
RESERVED  
W-0h  
PDN-All PDNH  
W-0b  
PDNG  
PDNF  
PDNE  
PDND  
PDNC  
PDNB  
PDNA  
W-0h  
W-FFh  
8-4. DEVICE_CONFIG Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-12  
11-9  
8
X
W
0h  
00  
0
Don't care  
RESERVED  
PDN-All  
W
Reserved  
W
Global power down bit:  
0: Normal operation  
1: All DAC channels and internal biasing blocks are powered  
down.  
7-0  
PDNx  
W
FFh  
Channel-specific power down bits:  
0: DACx powered up  
1: DACx powered down with 10 kpulldown resistor to AGND  
.
8.6.2 STATUS_TRIGGER Register (address = 02h) [reset = 0000h]  
8-4. STATUS_TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
SW_RST  
W-0h  
W-000h  
8-5. STATUS_TRIGGER Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
000h  
0h  
DESCRIPTION  
15-4  
3-0  
X
W
Don't care  
SW_RST  
W
Device resets to default value when this bit field is set to 1010.  
Other values do not have any impact.  
8.6.3 BRDCAST Register (address = 03h) [reset = 0000h]  
8-5. BRDCAST Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
BRDCAST_DATA[9:0] / BRDCAST_DATA[7:0]  
W-000h  
X
W-0h  
W-00b  
8-6. BRDCAST Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-12  
11-2  
X
W
0h  
Don't care  
BRDCAST_DATA[9:0] /  
BRDCAST_DATA[7:0]  
W
000h  
Writing to the BRDCAST register forces the DAC channel to  
update the active register data to BRDCAST_DATA.  
Data are MSB-aligned in straight-binary format and follow the  
format below:  
DAC53508: { DATA[9:0] }  
DAC43508: { DATA[7:0], x, x }  
x Dont care bits  
1-0  
X
W
00  
Don't care  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
8.6.4 DACn_DATA Register (address = 08h to 0Fh) [reset = 0000h]  
8-6. DACn_DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
DACn_DATA[9:0] / DACn_DATA[7:0]  
W-000h  
X
W-0h  
W-00b  
8-7. DACn_DATA Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-12  
11-2  
X
W
0h  
Don't care  
DACn_DATA[9:0] / DACn_DATA[7:0] W  
000h  
Writing to the DACn_DATA register forces the respective DAC  
channel to update the active register data to the DACn_DATA.  
Data are MSB-aligned in straight-binary format and follow the  
format below:  
DAC53508: { DATA[9:0] }  
DAC43508: { DATA[7:0], x, x }  
x Dont care bits  
1-0  
X
W
00  
Don't care  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The DACx3508 is a buffered output, eight-channel, low-power DAC available in a tiny 3-mm x 3-mm package.  
The multichannel, low power, and small package makes this DAC an excellent choice for general-purpose  
applications in wide range of end equipment. Some of the most-common applications for these devices are LED  
biasing-in multifunction printers, power-supply supervision with programmable comparators, offset and gain  
trimming in precision circuits, and power-supply margining.  
9.2 Typical Applications  
9.2.1 Programmable LED Biasing  
End equipments such as multifunction printers, projectors and electronic point-of-sale (EPOS) require a steady  
luminous intensity from the LED. 9-1 shows a simplified circuit diagram for biasing an LED using the  
DAC53508.  
VCC  
ILED=ISET  
LED  
VDD  
VDAC  
DAC53508  
+
Q1  
VDAC  
RSET  
ISET  
9-1. Programmable LED Biasing  
9.2.1.1 Design Requirements  
Programmable constant current through an LED tied to a power supply on one end  
DAC output range: 0 V to 5 V  
LED current range: 0 mA to 20 mA  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
The DAC is used to set the source current of a MOSFET using a unity-gain buffer, as shown in 9-1. Connect  
the LED between the power supply and the drain of the MOSFET. This configuration allows the DAC to control or  
set the amount of current through the LED. The buffer following the DAC controls the gate-source voltage of the  
MOSFET inside the feedback loop, thus compensating this drop and corresponding drift due to temperature,  
current, and ageing of the MOSFET. The current set by the DAC that flows through the LED is calculated with 方  
2. To generate 0 mA to 20 mA from a 0 V to 5 V DAC output range, a 250-ΩRSET is required.  
V
DAC  
I
=
(2)  
SET  
R
SET  
The following pseudocode is provided to help get started with the LED biasing application:  
//SYNTAX: WRITE <REGISTER NAME(Hex Code)>, <DATA>  
//Power-up the device and channels  
WRITE DEVICE_CONFIG(0x01), 0x0000  
//Program mid code (or the desired voltage) on all channels  
WRITE DACA_DATA(0x08), 0x07FC //10-bit MSB aligned  
WRITE DACB_DATA(0x09), 0x07FC //10-bit MSB aligned  
WRITE DACC_DATA(0x0A), 0x07FC //10-bit MSB aligned  
WRITE DACD_DATA(0x0B), 0x07FC //10-bit MSB aligned  
WRITE DACE_DATA(0x0C), 0x07FC //10-bit MSB aligned  
WRITE DACF_DATA(0x0D), 0x07FC //10-bit MSB aligned  
WRITE DACG_DATA(0x0E), 0x07FC //10-bit MSB aligned  
WRITE DACH_DATA(0x0F), 0x07FC //10-bit MSB aligned  
9.2.1.3 Application Curve  
9-2. DC Transfer Characteristics of LED Biasing Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC53508 DAC43508  
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
9.2.2 Programmable Window Comparator  
End equipment that use a centralized power supply (such as network servers, optical modules, and others)  
require the monitoring of power buses to protect the components. This monitoring or supervision is  
accomplished using a window comparator. A window comparator monitors a signal input for upper- and lower-  
threshold violations. A trigger signal is generated when the threshold violations occur. Multichannel monitoring is  
required to supervise all power supplies available in a module. The DACx3508 provides an easy-to-use, low-  
footprint method to address this requirement. 9-3 shows how the DAC53508 is used to create a  
programmable window comparator.  
VIO  
VDD  
VDD  
RPULL-UP  
VOUT  
THLD-HI  
RA  
DAC53508  
+
R1  
R2  
VIN  
RB  
+
THLD-LO  
9-3. Programmable Window Comparator  
9.2.2.1 Design Requirements  
Voltage to be monitored: 5 V  
High threshold: 5 V + 10%  
Low threshold: 5 V 10%  
Trigger output: 3.3-V open-drain single output  
9.2.2.2 Detailed Design Procedure  
9-3 provides an example in which single DAC channel is used to compare both high and low thresholds. A  
dual comparator is used per DAC channel, as shown. A voltage divider formed by resistors RA and RB are used  
in order to bring the signal level within the DAC range. Another pair of resistors, R1 and R2, are used to settle the  
low threshold as a factor of the high threshold. This configuration allows the use of a single DAC channel to  
monitor both the high- and low-threshold levels. Use open-drain comparators to provide the following  
advantages.  
Generate a logic output level appropriate for the monitoring processor  
Allow shorting of the two outputs to generate a single trigger  
In the circuit depicted in 9-3, the output of the circuit remains high as long as the signal input remains within  
the high- and low-threshold levels. Upon violation of any one threshold, the output goes low. 方程式 3 provides  
the derivation of the low threshold voltage from the high threshold set by the DAC.  
R
2
+ R  
V
= V  
×
DAC  
(3)  
THLD LO  
R
1
2
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
To monitor a power supply of 5 V within ±10%, place the nominal value at the DAC midcode. The output range of  
the DACx3508 is 0 V to 5 V, thus the midcode voltage output is 2.5 V. Therefore, RA and RB are chosen so that  
the voltage to be compared is 2.5 V. For this example, RA equals RB; use 10-kΩresistors for both. One channel  
of the DACx3508 must be programmed to VTHLD-HI (for example, 2.5 V + 5% = 2.625 V). This result corresponds  
to a 10-bit DAC code of (210 / 5 V) × 2.625 V = 537.6 (0x21Ah). To generate VTHLD-LO (for example, 2.5 V 5%  
= 2.405 V) from 2.625 V, the values of R1 and R2 are calculated as 7.5 kΩ and 82 kΩ, respectively, using 方程  
3.  
The following pseudocode is provided to help get started with the programmable window comparator application  
at the desired DAC value.  
//SYNTAX: WRITE <REGISTER NAME(Hex Code)>, <DATA>  
//Power-up the device and channels  
WRITE DEVICE_CONFIG(0x01), 0x0000  
//Program 2.625V on channel A  
WRITE DACA_DATA(0x08), 0x0868 //10-bit MSB aligned  
9.2.2.3 Application Curve  
9-4. Programmable Comparator Output Waveform  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC53508 DAC43508  
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The DACx3508 family of devices does not require specific supply sequencing. These devices require a single  
power supply, VDD. A 0.1-µF decoupling capacitor is recommended for the VDD pin.  
11 Layout  
11.1 Layout Guidelines  
The DACx3508 pinout separates the analog, digital, and power pins for an optimized layout. For signal integrity,  
separate digital and analog traces and place decoupling capacitors close to the device pins.  
11.2 Layout Example  
11-1 shows an example layout drawing with decoupling capacitors and pullup resistors.  
VREFIN  
VDD  
Decoupling  
Capacitor  
VIO  
GND  
GND  
VOUTA  
1
2
3
4
12  
11  
10  
9
VOUTH  
VOUTG  
VOUTF  
VOUTE  
VOUTB  
VOUTC  
VOUTD  
DACx3508  
VIO  
VIO  
11-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC53508 DAC43508  
 
 
 
 
 
DAC53508, DAC43508  
ZHCSNR2 DECEMBER 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following: Texas Instruments, DAC53608EVM user's guide  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC53508 DAC43508  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC43508RTER  
DAC53508RTER  
DAC53508RTET  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
16  
16  
16  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
D43508  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
D53508  
D53508  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DAC43508RTER

具有 SPI 的八路 8 位缓冲电压输出 DAC | RTE | 16 | -40 to 125
TI

DAC43608

采用微型 QFN 封装的 8 位、8 通道、I2C、电压输出 DAC
TI

DAC43608RTER

采用微型 QFN 封装的 8 位、8 通道、I2C、电压输出 DAC | RTE | 16 | -40 to 125
TI

DAC43608RTET

采用微型 QFN 封装的 8 位、8 通道、I2C、电压输出 DAC | RTE | 16 | -40 to 125
TI

DAC43701

具有 GPIO 触发器和函数发生器的单通道输出电压、8 位智能 DAC
TI

DAC43701-Q1

具有 GPIO 触发器的汽车类 8 位、单通道、电压输出、智能 DAC
TI

DAC43701DSGR

具有 GPIO 触发器和函数发生器的单通道输出电压、8 位智能 DAC | DSG | 8 | -40 to 125
TI

DAC43701DSGRQ1

具有 GPIO 触发器的汽车类 8 位、单通道、电压输出、智能 DAC | DSG | 8 | -40 to 125
TI

DAC43701DSGT

具有 GPIO 触发器和函数发生器的单通道输出电压、8 位智能 DAC | DSG | 8 | -40 to 125
TI

DAC43701DSGTQ1

具有 GPIO 触发器的汽车类 8 位、单通道、电压输出、智能 DAC | DSG | 8 | -40 to 125
TI

DAC4813

QUAD 12-BIT DIGITAL-TO-ANALOG CONVERTER 12-bit port interface
BB

DAC4813AP

QUAD 12-BIT DIGITAL-TO-ANALOG CONVERTER 12-bit port interface
BB