DAC7664YBT [TI]

16-BIT, QUAD VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER; 16位四路电压输出数位类比转换器
DAC7664YBT
型号: DAC7664YBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-BIT, QUAD VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
16位四路电压输出数位类比转换器

转换器 数模转换器 输出元件
文件: 总28页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
SBAS271 − MARCH 2004  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢈꢉꢊ ꢋꢌꢍ ꢅ ꢉꢎꢏ ꢐ ꢈꢅ ꢑꢈꢅ  
FEATURES  
DESCRIPTION  
D
D
D
D
D
Low Glitch: 1nV-s (typ)  
The DAC7664 is  
a
16-bit, quad voltage output  
digital-to-analog converter (DAC) with 16-bit monotonic  
performance over the specified temperature range. It  
accepts 16-bit parallel input data, has double-buffered  
DAC input logic (allowing simultaneous update of all  
DACs), and provides a readback mode of the internal input  
registers. Programmable asynchronous reset clears all  
registers to a mid-scale code of 8000h or to a zero-scale  
of 0000h. The DAC7664 can operate from a single +5V  
supply or from +5V and −5V supplies.  
Low Power: 18mW  
Unipolar or Bipolar Operation  
Settling Time: 12µs to 0.003%  
16-Bit Linearity and Monotonicity:  
–40°C to +85°C  
Programmable Reset to Mid-Scale or  
Zero-Scale  
D
D
D
D
D
D
Data Readback  
Low power and small size per DAC make the DAC7664  
ideal for automatic test equipment, DAC-per-pin  
programmers, data acquisition systems, and closed-loop  
servo control. The DAC7664 is available in an LQFP-64  
package and is specified for operation over the −40°C to  
+85°C temperature range.  
Double-Buffered Data Inputs  
Internal Bandgap Voltage Reference  
Power-On Reset  
3V to 5V Logic Interface  
VD  
VS  
VC  
D
S
C
APPLICATIONS  
D
D
D
D
D
Process Control  
V
REFH A and B  
Closed-Loop Servo Control  
Motor Control  
DAC7664  
V
REFL A and B  
Bandgap  
Voltage Reference  
Data Acquisition Systems  
DAC-per-Pin Programmers  
V
O UTA Sense 2  
O UTA Sense 1  
O UTA  
Input  
DAC  
V
DAC A  
DAC B  
DAC C  
Data  
Register A  
Register A  
V
DB0DB15  
Latch  
VREF  
VREF  
VREF  
VREF  
OFSR2A  
OFSR1A  
V
O UTB Sense 2  
O UTB Sense 1  
O UTB  
Input  
Register B  
DAC  
V
Register B  
V
OFSR2B  
OFSR1B  
V
O UTC Sense 2  
O UTC Sense 1  
O UTC  
Input  
Register C  
DAC  
V
A0  
A1  
Register C  
V
OFSR2C  
OFSR1C  
CS  
Control  
Logic  
RST  
RSTSEL  
LDAC  
R/W  
V
O UTD Sense 2  
O UTD Sense 1  
O UTD  
Input  
Register D  
DAC  
V
DAC D  
Register D  
V
OFSR2D  
OFSR1D  
VREFL C  
and D  
V
REFH C  
and D  
AGND  
DGND  
This device has ESD-CDM sensitivity and special handling precautions must be taken.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢛꢜ ꢐ ꢒꢝ ꢖ ꢞꢟ ꢐꢠ ꢒ ꢓꢞꢓ ꢄꢔ ꢡꢌ ꢘ ꢢꢉ ꢅꢄꢌꢔ ꢄꢣ ꢤꢈ ꢘ ꢘ ꢏꢔꢅ ꢉꢣ ꢌꢡ ꢑꢈꢥ ꢍꢄꢤ ꢉꢅꢄ ꢌꢔ ꢊꢉ ꢅꢏꢦ ꢛꢘ ꢌꢊꢈ ꢤꢅꢣ  
ꢤ ꢌꢔ ꢡꢌꢘ ꢢ ꢅꢌ ꢣ ꢑꢏ ꢤ ꢄ ꢡꢄ ꢤ ꢉ ꢅꢄ ꢌꢔꢣ ꢑ ꢏꢘ ꢅꢧꢏ ꢅꢏ ꢘ ꢢꢣ ꢌꢡ ꢞꢏꢨ ꢉꢣ ꢟꢔꢣ ꢅꢘ ꢈꢢ ꢏꢔꢅ ꢣ ꢣꢅ ꢉꢔꢊ ꢉꢘ ꢊ ꢩ ꢉꢘ ꢘ ꢉ ꢔꢅꢪꢦ  
ꢛꢘ ꢌ ꢊꢈꢤ ꢅ ꢄꢌ ꢔ ꢑꢘ ꢌ ꢤ ꢏ ꢣ ꢣ ꢄꢔ ꢎ ꢊꢌ ꢏ ꢣ ꢔꢌꢅ ꢔꢏ ꢤꢏ ꢣꢣ ꢉꢘ ꢄꢍ ꢪ ꢄꢔꢤ ꢍꢈꢊ ꢏ ꢅꢏ ꢣꢅꢄ ꢔꢎ ꢌꢡ ꢉꢍ ꢍ ꢑꢉ ꢘ ꢉꢢ ꢏꢅꢏ ꢘ ꢣꢦ  
Copyright 2004, Texas Instruments Incorporated  
www.ti.com  
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
(1)  
ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE−LEAD  
DAC7664YT  
DAC7664YR  
DAC7664YBT  
DAC7664YBR  
DAC7664YCT  
DAC7664YCR  
Tape and Reel, 250  
Tape and Reel, 1500  
Tape and Reel, 250  
Tape and Reel, 1500  
Tape and Reel, 250  
Tape and Reel, 1500  
DAC7664Y  
DAC7664YB  
DAC7664YC  
LQFP−64  
LQFP−64  
LQFP−64  
PM  
PM  
PM  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
DAC7664Y  
DAC7664YB  
DAC7664YC  
(1)  
For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
proper handling and installation procedures can cause damage.  
DAC7664  
−0.3 to 11  
−0.3 to 5.5  
UNIT  
IOV , V  
DD CC  
and V  
and V  
to V  
SS  
V
V
V
V
V
DD  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
IOV , V  
DD CC  
to GND  
DD  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
ESD-CDM  
−0.3 to V  
+ 0.3  
DD  
−0.3 to V  
+ 0.3  
DD  
200  
+150  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (soldering, 10s)  
°C  
°C  
°C  
°C  
−40 to +85  
−65 to +125  
+300  
(1)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to  
absolute maximum conditions for extended periods may degrade  
device reliability. These are stress ratings only, and functional  
operationof the device at these or any other conditions beyond  
those specified is not implied.  
2
www.ti.com  
SBAS271 − MARCH 2004  
ELECTRICAL CHARACTERISTICS: V  
= 0V  
SS  
All specifications at T = T  
A
to T  
, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, and V  
= 0V, unless otherwise noted.  
MIN  
MAX  
SS  
DAC7664Y  
TYP  
DAC7664YB  
DAC7664YC  
MIN TYP MAX  
PARAMETER  
Accuracy  
TEST CONDITIONS  
MIN  
MAX  
MIN  
TYP MAX  
UNIT  
Linearity error  
3
4
2
4
3
2
2
1
3
2
[
[
[
LSB  
LSB  
Linearity match  
Differential linearity error  
−1  
16  
+2  
LSB  
Monotonicity, T  
to T  
MAX  
14  
15  
Bit  
MIN  
Unipolar zero error  
1
5
5
10  
20  
15  
7
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
mV  
Unipolar zero error drift  
Full-scale error  
[
[
12.5  
[
ppm/°C  
mV  
6
4
Full-scale error drift  
Unipolar zero matching  
Full-scale matching  
7
[
ppm/°C  
mV  
Channel-to-channel matching  
Channel-to-channel matching  
3
2
5
4
10  
100  
2
8
mV  
Power-supply rejection ratio (PSRR) At full-scale  
10  
[
[
ppm/V  
Analog Output  
Voltage output  
R
= 10kΩ  
0
2.5  
[
[
[
[
[
[
[
[
V
L
Output current  
−1.25  
+1.25  
mA  
pF  
Maximum load capacitance  
Short-circuit current  
Short-circuit duration  
Dynamic Performance  
Settling time  
No oscillation  
500  
20  
[
[
[
[
[
[
mA  
GND or V  
CC  
Indefinite  
To 0.003%, 2.5V output step  
12  
0.5  
2
15  
[
[
[
[
[
[
[
[
[
[
µs  
LSB  
Channel-to-channel crosstalk  
Digital feedthrough  
Output noise voltage  
nV-s  
f = 10kHz  
130  
nV/Hz  
7FFFh to 8000h or  
8000h to 7FFFh  
DAC glitch  
1
5
[
[
[
[
nV-s  
Digital Input  
V
[
[
V
V
0.7 × IOV  
IH  
DD  
V
[
[
[
[
[
[
0.3 × IOV  
DD  
IL  
I
I
10  
µA  
µA  
IH  
10  
IL  
Digital Output  
V
V
V
V
I
I
I
I
= −0.8mA, IOV  
= 5V  
3.6  
2.4  
4.5  
0.3  
2.6  
0.3  
[
[
[
[
[
[
[
[
[
[
[
[
V
V
V
V
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
DD  
= 1.6mA, IOV  
= 5V  
0.4  
0.4  
[
[
[
[
DD  
= −0.4mA, IOV  
= 0.8mA, IOV  
= 3V  
DD  
= 3V  
DD  
Power Supply  
V
+4.75  
+2.7  
+4.75  
0
+5.0  
+5.0  
+5.0  
0
+5.25  
+5.25  
+5.25  
0
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
V
V
DD  
IOV  
DD  
CC  
V
V
V
V
SS  
CC  
DD  
I
I
3.5  
50  
5
mA  
µA  
µA  
mW  
I(IOV  
)
50  
DD  
Power  
18  
25  
[
[
Temperature Range  
Specified performance  
−40  
+85  
[
[
[
°C  
[ specifications same as the grade to the left  
3
www.ti.com  
SBAS271 − MARCH 2004  
ELECTRICAL CHARACTERISTICS: V  
= −5V  
SS  
All specifications at T = T  
A
to T  
, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, and V = −5V, unless otherwise noted.  
SS  
MIN  
MAX  
DAC7664Y  
TYP  
DAC7664YB  
DAC7664YC  
PARAMETER  
Accuracy  
TEST CONDITIONS  
MIN  
MAX  
MIN  
TYP MAX MIN TYP MAX  
UNIT  
Linearity error  
3
4
2
4
3
2
2
1
3
2
[
[
[
LSB  
LSB  
Linearity match  
Differential linearity error  
−1  
16  
+2  
LSB  
Monotonicity, T  
to T  
MAX  
14  
15  
Bit  
MIN  
Bipolar zero error  
1
5
5
10  
20  
15  
7
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
mV  
Bipolar zero error drift  
Full-scale error  
[
[
12.5  
[
ppm/°C  
mV  
6
4
Full-scale error drift  
Bipolar zero matching  
Full-scale matching  
7
[
ppm/°C  
mV  
Channel-to-channel matching  
Channel-to-channel matching  
3
2
5
4
10  
100  
2
8
mV  
Power-supply rejection ratio (PSRR) At full-scale  
10  
[
[
ppm/V  
Analog Output  
Voltage output  
R
= 10kΩ  
−2.5  
+2.5  
[
[
[
[
[
[
[
[
V
L
Output current  
−1.25  
+1.25  
mA  
pF  
Maximum load capacitance  
Short-circuit current  
Short-circuit duration  
Dynamic Performance  
Settling time  
No oscillation  
500  
[
[
[
[
[
[
−15, +30  
Indefinite  
mA  
GND or V  
CC  
or V  
SS  
To 0.003%, 5V output step  
12  
0.5  
2
15  
[
[
[
[
[
[
[
[
[
[
µs  
LSB  
Channel-to-channel crosstalk  
Digital feedthrough  
Output noise voltage  
nV-s  
f = 10kHz  
200  
nV/Hz  
7FFFh to 8000h or  
8000h to 7FFFh  
DAC glitch  
2
7
[
[
[
[
nV-s  
Digital Input  
V
[
[
V
V
0.7 × IOV  
IH  
DD  
V
[
[
[
[
[
[
0.3 × IOV  
DD  
IL  
I
I
10  
µA  
µA  
IH  
10  
IL  
Digital Output  
V
V
V
V
I
I
I
I
= −0.8mA, IOV  
= 5V  
3.6  
2.4  
4.5  
0.3  
2.6  
0.3  
[
[
[
[
[
[
[
[
[
[
[
[
V
V
V
V
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
DD  
= 1.6mA, IOV  
= 5V  
0.4  
0.4  
[
[
[
[
DD  
= −0.4mA, IOV  
= 0.8mA, IOV  
= 3V  
DD  
= 3V  
DD  
Power Supply  
V
+4.75  
+2.7  
+5.0  
+5.0  
+5.0  
−5.0  
4
+5.25  
+5.25  
+5.25  
−4.75  
5.5  
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
V
V
DD  
IOV  
DD  
CC  
V
V
+4.75  
−5.25  
V
V
SS  
CC  
DD  
I
I
mA  
µA  
µA  
mA  
mW  
50  
I(IOV  
)
50  
DD  
I
−3.5  
−40  
−2.0  
30  
[
[
[
[
SS  
Power  
45  
[
[
Temperature Range  
Specified performance  
+85  
[
°C  
[ specifications same as the grade to the left  
4
www.ti.com  
SBAS271 − MARCH 2004  
PIN ASSIGNMENTS  
LQFP PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
Offset D Range 1 49  
32 LDAC  
50  
51  
52  
31  
30  
29  
Offset D Range 2  
Offset C Range 2  
Offset C Range 1  
R/W  
CS  
DB0  
V
V
OUTC Sense 2 53  
28 DB1  
54  
55  
56  
27  
26  
OUTC Sense 1  
OUTC  
REF GND  
DB2  
DB3  
V
25 DB4  
24 DB5  
23 DB6  
DAC7664  
REF GND 57  
VOUT  
B
58  
59  
60  
61  
62  
22  
21  
20  
19  
V
OUTB Sense 1  
DB7  
DB8  
DB9  
DB10  
VOUTB Sense 2  
Offset B Range 1  
Offset B Range 2  
Offset A Range 2 63  
64  
18 DB11  
17  
Offset A Range 1  
DB12  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
5
www.ti.com  
SBAS271 − MARCH 2004  
Terminal Functions  
PIN  
NAME  
DESCRIPTION  
PIN  
NAME  
DESCRIPTION  
1
2
3
4
5
6
NC  
NC  
No Connection  
No Connection  
38  
RSTSEL Reset select. Determines the action of RST.  
If high, an RST command sets the DAC  
registers to mid-scale (8000h). If low, an RST  
command sets the DAC registers to zero  
(0000h).  
V
Analog –5V power supply or 0V single supply  
Analog +5V power supply  
SS  
CC  
V
V
V
A
DAC A output voltage  
OUT  
39  
40  
41  
42  
43  
44  
NC  
NC  
NC  
NC  
NC  
No connection  
No connection  
No connection  
No connection  
No connection  
A
Connect to V  
A for unipolar mode  
OUT  
Sense 1  
OUT  
7
V
A
Connect to V  
A for bipolar mode  
OUT  
OUT  
Sense 2  
AGND  
DGND  
8
Analog ground  
Digital ground  
V
D
Connect to V  
D for bipolar mode  
D for unipolar mode  
OUT  
OUT  
9
Sense 2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
V
Digital +5V power supply  
Interface power supply  
Data bit 15 (MSB)  
Data bit 14  
DD  
IOV  
45  
V
D
Connect to V  
OUT  
Sense 1  
OUT  
DD  
DB15  
DB14  
DB13  
NC  
46  
47  
48  
49  
V
D
DAC D output  
No connection  
No connection  
OUT  
NC  
Data bit 13  
NC  
No connection  
No connection  
Data bit 12  
Offset D  
Range 1  
Connect to Offset D Range 2 for unipolar  
mode  
NC  
DB12  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
CS  
50  
51  
52  
53  
54  
Offset D  
Range 2  
Connect to Offset D Range 1 for unipolar  
mode  
Data bit 11  
Offset C  
Range 2  
Connect to Offset C Range 1 for unipolar  
mode  
Data bit 10  
Data bit 9  
Offset C  
Range 1  
Connect to Offset C Range 2 for unipolar  
mode  
Data bit 8  
Data bit 7  
V
C
Connect to V C for bipolar mode  
OUT  
OUT  
Sense 2  
Data bit 6  
Data bit 5  
V
C
Connect to V C for unipolar mode  
OUT  
OUT  
Sense 1  
Data bit 4  
Data bit 3  
55  
56  
57  
58  
59  
V C  
OUT  
DAC C output  
Data bit 2  
REF GND Reference ground  
REF GND Reference ground  
Data bit 1  
Data bit 0  
V
B
DAC B output  
OUT  
OUT  
Chip select, active low  
V
B
Connect to V  
B for unipolar mode  
B for bipolar mode  
OUT  
R/W  
Enabled by CS; controls the data read and  
data write.  
Sense 1  
60  
61  
62  
63  
64  
V
B
Connect to V  
OUT  
OUT  
32  
LDAC  
DAC register load control, rising edge  
triggered.  
Sense 2  
Offset B  
Range 1  
Connect to Offset B Range 2 for unipolar  
mode  
33  
34  
35  
NC  
NC  
A1  
No connection  
No connection  
Offset B  
Range 2  
Connect to Offset B Range 1 for unipolar  
mode  
Enabled by CS; in combination with A0,  
selects the individual DAC input registers.  
Offset A  
Range 2  
Connect to Offset A Range 1 for unipolar  
mode  
36  
37  
A0  
Enabled by CS; in combination with A1,  
selects the individual DAC input registers.  
Offset A  
Range 1  
Connect to Offset A Range 2 for unipolar  
mode  
RST  
Reset, rising edge triggered. Depending on  
the state of RSTSEL, the DAC registers are  
set to either mid-scale or zero.  
6
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= 0V (+25°C)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= 0V, representative unit, unless otherwise noted.  
A
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
(DAC A, +25 C)  
_
(DAC B, +25 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 1  
Figure 2  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC D, +25 C)  
(DAC C, +25 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Figure 3  
Figure 4  
7
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= 0V (+85°C)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= 0V, representative unit, unless otherwise noted.  
A
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, +85 C)  
(DAC B, +85 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 5  
Figure 6  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC C, +85 C)  
(DAC D, +85 C)  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 7  
Figure 8  
8
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= 0V (−40°C)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= 0V, representative unit, unless otherwise noted.  
A
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, 40 C)  
(DAC B, 40 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 9  
Figure 10  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC C, 40 C)  
(DAC D, 40 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 11  
Figure 12  
9
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= 0V  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V = 0V, representative unit, unless otherwise noted.  
SS  
A
SUPPLY CURRENT vs TEMPERATURE  
SUPPLY CURRENT vs DIGITAL INPUT CODE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
All DACs at Midscale  
No Load  
All DACs  
No Load  
ICC  
ICC  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
15  
40  
10  
35  
60  
85  
Digital Input Code  
_
Temperature ( C)  
Figure 13  
Figure 14  
ZERO−SCALE ERROR vs TEMPERATURE  
(Code 0000h)  
POSITIVE FULL−SCALE ERROR vs TEMPERATURE  
10  
8
10  
(Code FFFFh)  
8
6
4
2
0
2
4
6
8
6
DAC D  
4
DAC B  
DAC C  
DAC B  
DAC C  
DAC A  
2
0
2
4
6
8
DAC D  
DAC A  
10  
10  
15  
40  
15  
10  
35  
60  
85  
40  
10  
35  
60  
85  
_
Temperature ( C)  
_
Temperature ( C)  
Figure 15  
Figure 16  
BROADBAND NOISE  
(Code = 8000h, BW = 10kHz)  
OUTPUT NOISE VOLTAGE vs FREQUENCY  
1000  
100  
10  
Time (10ms/div)  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 17  
Figure 18  
10  
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= 0V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= 0V, representative unit, unless otherwise noted.  
A
SETTLING TIME  
(0V to +2.5V)  
SETTLING TIME  
(+2.5V to 39mV)  
Large Signal: 1.0V/div  
µ
Small Signal: 100 V/div  
Large Signal: 1.0V/div  
µ
Small Signal: 100 V/div  
µ
µ
Time (5 s/div)  
Time (5 s/div)  
Figure 19  
Figure 20  
MIDSCALE GLITCH PERFORMANCE  
CODE 7FFFh to 8000h  
MIDSCALE GLITCH PERFORMANCE  
CODE 8000h to 7FFFh  
Unfiltered DAC Output  
Unfiltered DAC Output  
DAC Output after  
DAC Output After  
2K, 470pF Low−Pass Filter  
2K, 470pF Low−Pass Filter  
µ
µ
Time (0.5 s/div)  
Time (0.5 s/div)  
Figure 21  
Figure 22  
OVERSHOOT FOR TRANSITION OF 100 CODES  
CODE 32750 to 32850  
OVERSHOOT FOR TRANSITION OF 100 CODES  
CODE 32850 to 32750  
Unfiltered DAC Output  
DAC Output After  
2K, 470pF Low−Pass Filter  
DAC Output After  
2K, 470pF Low−Pass Filter  
100  
Codes  
Unfiltered DAC Output  
µ
µ
Time (1.0 s/div)  
Time (1.0 s/div)  
Figure 23  
Figure 24  
11  
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= 0V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= 0V, representative unit, unless otherwise noted.  
A
IOVDD SUPPLY CURRENT  
vs LOGIC INPUT LEVEL FOR DIGITAL INPUTS  
VOUT vs RLOAD  
0.8  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Typical of One  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Digital Input  
IOVDD = 5V  
Source  
Sink  
10  
0
1
2
3
4
5
0.01  
0.1  
1
100  
Logic Input Level for Digital Inputs (V)  
RLOAD (k  
)
Figure 26  
Figure 25  
12  
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= −5V (+25°C)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= −5V, representative unit, unless otherwise noted.  
A
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, +25 C)  
(DAC B, +25 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 27  
Figure 28  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC C, +25 C)  
(DAC D, +25 C)  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 29  
Figure 30  
13  
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= −5V (+85°C)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= −5V, representative unit, unless otherwise noted.  
A
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, +85 C)  
(DAC B, +85 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 31  
Figure 32  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC C, +85 C)  
(DAC D, +85 C)  
2.0  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 33  
Figure 34  
14  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= −5V (−40°C)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= −5V, representative unit, unless otherwise noted.  
A
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, 40 C)  
(DAC B, 40 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 35  
Figure 36  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC C, 40 C)  
(DAC D, 40 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 37  
Figure 38  
15  
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= −5V  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V = −5V, representative unit, unless otherwise noted.  
SS  
A
SUPPLY CURRENT vs TEMPERATURE  
ICC  
SUPPLY CURRENT vs DIGITAL INPUT CODE  
ICC  
5
4
3
2
1
0
5
4
3
2
1
0
1
2
3
4
5
1
2
3
4
5
ISS  
ISS  
All DACs  
No Load  
All DACs at Midscale  
No Load  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
15  
40  
10  
35  
60  
85  
Digital Input Code  
_
Temperature ( C)  
Figure 39  
Figure 40  
BIPOLAR ZERO ERROR vs TEMPERATURE  
(Code 8000h)  
POSITIVE FULL− SCALE ERROR vs TEMPERATURE  
10  
8
10  
8
(Code FFFFh)  
6
6
DAC C  
DAC B  
4
4
DAC C  
DAC D  
DAC D  
DAC B  
2
2
0
0
2
4
6
8
2
4
6
8
DAC A  
DAC A  
10  
10  
15  
40  
15  
10  
35  
60  
85  
40  
10  
35  
60  
85  
_
_
Temperature ( C)  
Temperature ( C)  
Figure 41  
Figure 42  
NEGATIVE FULLSCALE ERROR vs TEMPERATURE  
(Code 0000h)  
10  
8
6
DAC B  
4
2
DAC A  
0
2
4
6
8
DAC C  
DAC D  
10  
15  
40  
10  
35  
60  
85  
_
Temperature ( C)  
Figure 43  
16  
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= −5V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V = −5V, representative unit, unless otherwise noted.  
SS  
A
BROADBAND NOISE  
(Code = 8000h, BW = 10kHz)  
OUTPUT NOISE VOLTAGE vs FREQUENCY  
1000  
100  
10  
10  
100  
1k  
10k  
100k  
1M  
Time (10ms/div)  
Frequency (Hz)  
Figure 44  
Figure 45  
SETTLING TIME  
SETTLING TIME  
(+2.5V to 2.5V)  
( 2.5V to +2.5V)  
Large Signal: 1.0V/div  
µ
Small Signal: 100 V/div  
µ
Small Signal: 100 V/div  
Large Signal: 1.0V/div  
µ
µ
Time (5 s/div)  
Time (5 s/div)  
Figure 46  
Figure 47  
MIDSCALE GLITCH PERFORMANCE  
CODE 7FFFh to 8000h  
MIDSCALE GLITCH PERFORMANCE  
CODE 8000h to 7FFFh  
Unfiltered DAC Output  
Unfiltered DAC Output  
DAC Output after  
DAC Output After  
2K, 470pF LowPass Filter  
2K, 470pF LowPass Filter  
µ
µ
Time (0.5 s/div)  
Time (0.5 s/div)  
Figure 48  
Figure 49  
17  
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
TYPICAL CHARACTERISTICS: V  
= −5V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V = −5V, representative unit, unless otherwise noted.  
SS  
A
OVERSHOOT FOR TRANSITION OF 100 CODES  
CODE 32750 to 32850  
OVERSHOOT FOR TRANSITION OF 100 CODES  
CODE 32850 to 32750  
Unfiltered DAC Output  
DAC Output After  
2K, 470pF LowPass Filter  
DAC Output After  
2K, 470pF LowPass Filter  
100  
Codes  
Unfiltered DAC Output  
µ
µ
Time (1.0 s/div)  
Time (1.0 s/div)  
Figure 50  
Figure 51  
VOUT vs RLOAD  
5
4
3
2
1
0
Source  
1
2
3
4
5
Sink  
0.01  
0.1  
1
10  
100  
RLOAD (k  
)
Figure 52  
18  
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
THEORY OF OPERATION  
The DAC7664 is a quad voltage output 16-bit DAC. The  
architecture is an R−2R ladder configuration with the three  
most significant bits (MSBs) segmented, followed by an  
operational amplifier that serves as a buffer. Each DAC  
has its own R−2R ladder network, segmented MSBs, and  
output op amp, as shown in Figure 53. The minimum  
voltage output (zero-scale) and maximum voltage output  
(full-scale) are set by the internal voltage references and  
the resistors associated with the output operational  
amplifier.  
The digital input is a 16-bit parallel word and the DAC input  
registers offer readback capability. The converters can be  
powered from either a single +5V supply or a dual 5V  
supply. The device offers a reset function that immediately  
sets all DAC output voltages and DAC registers to  
mid-scale (code 8000h) or to zero-scale, code 0000h. See  
Figure 54 and Figure 55 for the basic operation of the  
DAC7664.  
VOUTS1  
13K  
13K  
VOUTS2  
100  
R
VOUT  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
OFSR2  
13K  
11K  
12K  
OFSR1  
VREF  
H
L
VREF  
Figure 53. DAC7664 Architecture  
19  
www.ti.com  
SBAS271 − MARCH 2004  
0V to +2.5V  
NC NC  
NC NC NC NC NC NC  
NC NC  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49  
50  
51  
32  
31  
30  
Offset D Range 1  
LDAC  
R/W  
CS  
Load DAC Registers  
Read/Write  
Offset D Range 2  
Offset C Range 2  
Chip Select  
52 Offset C Range 1  
(LSB) DB0 29  
NC  
53  
54  
55  
28  
27  
26  
V
V
V
OUTC Sense 2  
OUTC Sense 1  
OUTC  
DB1  
DB2  
DB3  
0V to +2.5V  
DAC7664  
56 Reference GND  
DB4 25  
Single Supply  
NC = No Connection  
57  
58  
59  
24  
23  
Reference GND  
DB5  
DB6  
DAC  
Input  
Data  
V
V
OUTB  
DB7 22  
DB8 21  
DB9 20  
0V to +2.5V  
OUTB Sense 1  
NC 60 VOUTB Sense 2  
61 Offset B Range 1  
62  
63  
64  
19  
18  
17  
Offset B Range 2  
Offset A Range 2  
Offset A Range 1  
DB10  
DB11  
DB12  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
NC NC  
NC NC  
NC  
DAC  
Input Data  
0V to +2.5V  
+5V  
+3V to +5V  
+
+
µ
1 F  
µ
µ
µ
1 F  
0.1 F  
0.1 F  
Figure 54. Basic Single-Supply Operation of the DAC7664  
20  
www.ti.com  
SBAS271 − MARCH 2004  
2.5V to +2.5V  
+5V  
NC NC  
NC  
NC NC NC NC NC  
NC NC  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49  
50  
LDAC 32  
R/W 31  
Load DAC Registers  
Read/Write  
NC  
NC  
Offset D Range 1  
Offset D Range 2  
Offset C Range 2  
NC 51  
CS 30  
Chip Select  
NC 52 Offset C Range 1  
53 VOUTC Sense 2  
(LSB) DB0 29  
DB1 28  
NC 54 VOUTC Sense 1  
DB2 27  
55  
V
OUTC  
DB3 26  
2.5V to +2.5V  
2.5V to +2.5V  
DAC7664  
Dual Supply  
NC = No Connection  
56 Reference GND  
57 Reference GND  
DB4 25  
DB5 24  
DAC  
Input  
Data  
58 VOUT  
B
DB6 23  
DB7  
NC 59 VOUTB Sense 1  
22  
60  
61  
62  
63  
64  
DB8 21  
DB9 20  
VOUTB Sense 2  
NC  
NC  
NC  
NC  
Offset B Range 1  
Offset B Range 2  
Offset A Range 2  
Offset A Range 1  
DB10 19  
DB11 18  
DB12 17  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
NC NC  
NC NC  
NC  
5V  
DAC  
Input Data  
µ
1 F  
µ
0.1 F  
+
2.5V to +2.5V  
+5V  
+3V to +5V  
+
+
µ
1 F  
µ
0.1 F  
µ
µ
1 F  
0.1 F  
Figure 55. Basic Dual-Supply Operation of the DAC7664  
21  
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
The DAC7664 offers  
a
force and sense output  
ANALOG OUTPUTS  
configuration for the high open-loop gain output amplifier.  
This feature allows the loop around the output amplifier to  
be closed at the load (as shown in Figure 56), thus  
ensuring an accurate output voltage.  
When VSS = –5V (dual-supply operation), the output  
amplifier can swing to within 2.25V of the supply rails over  
a range of –40°C to +85°C. When VSS = 0V (single-supply  
operation), and with RLOAD also connected to ground, the  
output can swing to within 5mV of ground. Care must be  
taken when measuring the zero-scale error when  
VSS = 0V. Since the output voltage cannot swing below  
ground, the output voltage may not change for the first few  
digital input codes (0000h, 0001h, 0002h, etc.) if the output  
amplifier has a negative offset.  
DIGITAL INTERFACE  
Table 1 shows the basic control logic for the DAC7664.  
Note that each internal register is edge-triggered and not  
level-triggered. When the LDAC signal is transitioned to  
high, the digital word currently in the register is latched.  
The first set of registers (the input registers) are triggered  
via the A0, A1, R/W, and CS inputs. Only one of these  
registers is transparent at any given time.  
Due to the high accuracy of these DACs, system design  
problems such as grounding and contact resistance are  
very important. A 16-bit converter with a 2.5V full-scale  
range has a 1LSB value of 38µV. With a load current of  
1mA, series wiring and connector resistance of only 40mΩ  
(RW2) will cause a voltage drop of 40µV, as shown in  
Figure 56. To understand what this means in terms of  
system layout, the resistivity of a typical 1-ounce  
copper-clad printed circuit board is 1/2 mper square. For  
a 1mA load, a 0.01-inch-wide printed circuit conductor 0.6  
inches long will result in a voltage drop of 30µV.  
The double-buffered architecture is designed mainly so  
each DAC input register can be written to at any time and  
then all DAC voltages updated simultaneously by the  
rising edge of LDAC. It also allows a DAC input register to  
be written to at any point and the DAC voltages to be  
synchronously changed via a trigger signal connected to  
LDAC.  
RW1  
VOUTA Sense1  
6
5
8
RW2  
VOUTA  
VOUT  
DAC7664  
AGND  
RW1  
V
OUTB Sense1 59  
58  
RW2  
VOUT  
V
OUTB  
Figure 56. Analog Output Closed-Loop Configuration (1/2 DAC7664). R represents wiring resistances.  
W
Table 1. DAC7664 Logic Truth Table  
A1  
L
L
A0  
L
R/W  
L
CS  
L
RST  
H
RSTSEL LDAC INPUT REGISTER DAC REGISTER  
MODE  
Write input  
Write input  
Write input  
Write input  
Read input  
Read input  
Read input  
Read input  
Update  
DAC  
A
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
Write  
Write  
Hold  
Hold  
H
L
L
L
H
B
H
H
L
L
L
L
H
Write  
Hold  
C
H
L
L
L
H
Write  
Hold  
D
H
H
H
H
X
L
H
Read  
Hold  
A
H
L
L
H
Read  
Hold  
B
H
H
X
X
X
X
L
H
Read  
Hold  
C
H
X
X
X
X
L
H
Read  
Hold  
D
H
H
X
X
H
Hold  
Write  
All  
All  
All  
All  
X
H
H
X
X
Hold  
Hold  
Hold  
X
Reset to zero  
Reset to zero  
Reset to zero  
X
H
Reset to mid-scale Reset to mid-scale Reset to mid-scale  
22  
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
3V TO 5V LOGIC INTERFACE  
DIGITAL TIMING  
All of the digital input and output pins are compatible with  
any logic supply voltage between 3V and 5V. Connect the  
interface logic supply voltage to the IOVDD pin. Note that  
the internal digital logic operates from 5V, so the VDD pin  
must connect to a 5V supply.  
Figure 57 and Table 2 provide detailed timing information  
for the digital interface of the DAC7664.  
DIGITAL INPUT CODING  
The DAC7664 input data is in straight binary format. The  
output voltage for single-supply operation is given by  
Equation 1:  
GLITCH SUPPRESSION CIRCUIT  
Figure 21, Figure 22, Figure 48, and Figure 49 show the  
typical DAC output when switching between codes 7FFFh  
and 8000h. For R-2R ladder DACs, this is potentially the  
worst-case glitch condition, since every switch in the DAC  
changes state. To minimize the glitch energy at this and  
other code pairs with possible high-glitch outputs, an  
internal track-and-hold circuit is used to maintain the DAC  
ouput voltage at a nearly constant level during the internal  
switching interval. This track-and-hold circuit is activated  
only when the transition is at, or close to, one of the code  
pairs with the high-glitch possibility.  
2.5   N  
VOUT  
+
65, 536  
(1)  
where N is the digital input code.  
This equation does not include the effects of offset  
(zero-scale) or gain (full-scale) errors.  
The output for the dual supply operation is given by  
Equation 2:  
5   N  
VOUT  
+
* 2.5  
It is advisable to avoid digital transitions within 1µs of the  
rising edge of the LDAC signal. These signals can affect  
the charge on the track-and-hold capacitor, thus  
increasing the glitch energy.  
65, 536  
(2)  
23  
ꢒꢓ ꢖ ꢙ ꢁꢁ ꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
tWCS  
tWS  
CS  
tWH  
R/W  
tRCS  
tRDS  
tAH  
CS  
tAS  
tRDH  
A0/A1  
tLH  
tLX  
R/W  
tLS  
tLWD  
tAH  
tAS  
0.003% of FSR  
Error Band  
LDAC  
A0/A1  
tDS  
tDH  
tDZ  
Data In  
tS  
Data Out  
Data Valid  
tCSD  
VOUT  
Data Read Timing  
Data Write Timing  
tSS  
0.003% of FSR  
Error Band  
tSH  
RESET SEL  
tRSH  
tRSS  
RST  
+FS  
VOUT, RESET SEL LOW  
FS  
+FS  
MS  
VOUT, RESET SEL HIGH  
FS  
DAC7664 Reset Timing  
Figure 57. Digital Input and Output Timing  
24  
ꢒ ꢓꢖ ꢙꢁ ꢁꢚ  
www.ti.com  
SBAS271 − MARCH 2004  
Table 2. Timing Specifications for Figure 57  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
t
t
CS low for read  
150  
ns  
RCS  
RDS  
RDH  
R/W high to CS low  
R/W high after CS high  
CS high to data bus in high impedance  
CS low to data bus valid  
CS low for write  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
t
t
100  
150  
DZ  
CSD  
t
100  
t
40  
0
WCS  
t
R/W low to CS low  
WS  
t
R/W low after CS high  
Address valid to CS low  
Address valid after CS high  
CS low to LDAC high  
CS low after LDAC high  
LDAC high  
10  
0
WH  
t
AS  
t
10  
30  
100  
100  
0
AH  
t
LS  
t
LH  
t
LX  
t
Data valid to CS low  
DS  
DH  
t
Data valid after CS low  
LDAC low  
10  
100  
0
t
LWD  
t
RSTSEL valid before RST high  
RSTSEL valid after RST high  
RSTSEL low before RST high  
RSTSEL low after RST high  
Settling time  
SS  
t
200  
10  
10  
SH  
t
RSS  
t
RSH  
t
S
12  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2004  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
DAC7664YBR  
DAC7664YBT  
DAC7664YCR  
DAC7664YCT  
DAC7664YR  
DAC7664YT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
PM  
PM  
PM  
64  
64  
64  
64  
64  
64  
1500  
250  
1500  
250  
1500  
250  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
MECHANICAL DATA  
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

DAC7664YBTG4

PARALLEL, WORD INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PQFP64, GREEN, PLASTIC, LQFP-64
TI

DAC7664YCR

16-BIT, QUAD VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC7664YCRG4

IC PARALLEL, WORD INPUT LOADING, 12 us SETTLING TIME, 16-BIT DAC, PQFP64, GREEN, PLASTIC, LQFP-64, Digital to Analog Converter
TI

DAC7664YCT

16-BIT, QUAD VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC7664YR

16-BIT, QUAD VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC7664YRG4

PARALLEL, WORD INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PQFP64, GREEN, PLASTIC, LQFP-64
TI

DAC7664YT

16-BIT, QUAD VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC7664YTG4

PARALLEL, WORD INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PQFP64, GREEN, PLASTIC, LQFP-64
TI

DAC7678

12-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output, Two-Wire Interface Digital-to-Analog Converter with 2.5V Internal Reference
TI

DAC7678SPW

12-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output, Two-Wire Interface Digital-to-Analog Converter with 2.5V Internal Reference
TI

DAC7678SPWR

12-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output, Two-Wire Interface Digital-to-Analog Converter with 2.5V Internal Reference
TI

DAC7678SRGER

12-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output, Two-Wire Interface Digital-to-Analog Converter with 2.5V Internal Reference
TI