DAC8551-Q1 [TI]

DAC8551-Q1 汽车类 16 位、超低毛刺脉冲、电压输出 DAC;
DAC8551-Q1
型号: DAC8551-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DAC8551-Q1 汽车类 16 位、超低毛刺脉冲、电压输出 DAC

脉冲
文件: 总29页 (文件大小:1392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
DAC8551-Q1 汽车类 16 位、超低毛刺脉冲、电压输出 DAC  
1 特性  
3 说明  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 的下列结果:  
DAC8551-Q1 是一款小型、低功耗、电压输出、16 位  
数模转换器 (DAC),符合汽车类 应用的需求。  
DAC8551-Q1 具有出色的线性度,并且最大限度减少  
了意外的码间瞬态电压。DAC8551-Q1 器件采用时钟  
速率达 30MHz 的通用三线制串口,并且兼容标准的  
SPIQSPIMicrowire 和数字信号处理器 (DSP) 接  
口。  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
器件组件充电模式 (CDM) ESD 分类等级 C4B  
相对精度:16 最低有效位 (LSB) 积分非线性 (INL)  
超低毛刺脉冲:0.1nV-s  
DAC8551-Q1 需要使用一个外部基准电压来设置其输  
出范围。DAC8551-Q1 包含一个上电复位电路,可确  
DAC 输出在 0V 时上电,并在器件被执行有效写操  
作之前一直保持此状态。DAC8551-Q1 包含一个由串  
口访问的掉电特性,可将器件在 5V 电压下的电流消耗  
降低至 800μA。  
稳定时间:8μs 达到 ±0.003% 满量程范围 (FSR)  
电源:3.2V 5.5V  
上电复位为零量程  
功耗运行:5V 时为 160μA  
具有施密特触发输入的低功耗串口  
支持轨至轨运行的片上输出缓冲放大器  
掉电能力  
DAC8551-Q1 5V 电压下的功耗仅为 800µW,在掉  
电模式下的功耗降至 4μW 以下。DAC8551-Q1 采用  
VSSOP-8 封装。  
二进制输入  
SYNC 中断功能  
1. 器件信息(1)  
采用微型超薄小外形尺寸封装 (VSSOP)-8 封装  
器件型号  
封装  
封装尺寸(标称值)  
超薄小外形尺寸封装  
(VSSOP) (8)  
2 应用  
DAC8551-Q1  
3.00mm × 3.00mm  
汽车雷达  
车用传感器  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
DAC8551-Q1 功能框图  
VDD  
VFB  
VREF  
Ref (+)  
VOUT  
16-Bit DAC  
16  
DAC Register  
16  
SYNC  
SCLK  
DIN  
Resistor  
Network  
Shift Register  
PWD Control  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASEB8  
 
 
 
 
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 14  
7.5 Programming .......................................................... 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Applications ................................................ 16  
8.3 System Examples .................................................. 19  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Timing Requirements............................................... 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 文档支持................................................................ 21  
11.2 社区资源................................................................ 21  
11.3 ....................................................................... 21  
11.4 静电放电警告......................................................... 21  
11.5 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
Changes from Original (February 2016) to Revision A  
Page  
已将数据表从产品预览更改为量产数据” ............................................................................................................................. 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
5 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
V
1
2
3
4
8
7
6
5
GND  
DD  
V
D
REF  
IN  
V
SCLK  
SYNC  
FB  
V
OUT  
Table 2. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
Serial data input. Data is clocked into the 24-bit input shift register on each falling edge of the serial clock  
input. Schmitt-trigger logic input.  
DIN  
7
I
GND  
8
6
GND Ground reference point for all circuitry on the device  
SCLK  
I
I
Serial clock input. Data can be transferred at rates up to 3 0MHz. Schmitt-trigger logic input.  
Level-triggered control input (active-low). This is the frame synchronization signal for the input data. SYNC  
going low enables the input shift register, and data is transferred in on the falling edges of the following  
clocks. The DAC is updated following the 24th clock (unless SYNC is taken high before this edge, in which  
case the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by the DAC8551-Q1).  
Schmitt-trigger logic input.  
SYNC  
5
VDD  
1
3
4
2
PWR Power supply input, 3.2 V to 5.5 V.  
VFB  
I
O
I
Feedback connection for the output amplifier. For voltage output operation, tie to VOUT externally.  
Analog output voltage from DAC. The output amplifier has rail-to-rail operation.  
Reference voltage input.  
VOUT  
VREF  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–65  
MAX  
6
UNIT  
V
VDD to GND  
Digital input voltage to GND  
VOUT to GND  
DIN, SCLK and SYNC  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
150  
V
V
VREF to GND  
V
VFB to GND  
V
Junction temperature range, TJ max  
Storage temperature, Tstg  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2016, Texas Instruments Incorporated  
3
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 4, 5, and  
8)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
3.2  
0
NOM  
MAX  
UNIT  
V
POWER SUPPLY  
Supply voltage  
VDD to GND  
5.5  
VDD  
VDD  
DIGITAL INPUTS  
Digital input voltage  
DIN, SCLK and SYNC  
V
REFERENCE INPUT  
VREF Reference input voltage  
AMPLIFIER FEEDBACK INPUT  
VFB Output amplifier feedback input  
TEMPERATURE RANGE  
0
V
VOUT  
V
TA  
Operating ambient temperature  
–40  
125  
°C  
6.4 Thermal Information  
DAC8551-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
173.7  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
94.2  
65.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
10.2  
ψJB  
92.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
VDD = 3.2 V to 5.5 V, VREF = VDD and TA = –40°C to 125°C, unless otherwise noted.  
PARAMETER  
STATIC PERFORMANCE(1)  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16  
Bits  
LSB  
Relative accuracy  
Differential nonlinearity  
Offset error  
±4  
±0.35  
±1  
±16  
±2  
LSB  
±15  
±0.5  
±0.2  
mV  
Full-scale error  
±0.05  
±0.02  
±5  
% of FSR  
% of FSR  
μV/°C  
Gain error  
Offset error drift  
ppm of  
FSR/°C  
Gain temperature coefficient  
±1  
PSRR  
Power-supply rejection ratio  
RL = 2 k, CL = 200 pF  
0.75  
mV/V  
(1) Linearity calculated using a reduced code range of 485 to 64,741; output unloaded.  
4
Copyright © 2016, Texas Instruments Incorporated  
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
Electrical Characteristics (continued)  
VDD = 3.2 V to 5.5 V, VREF = VDD and TA = –40°C to 125°C, unless otherwise noted.  
PARAMETER  
OUTPUT CHARACTERISTICS(2)  
Output voltage range  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0
VREF  
V
To ±0.003% FSR, 0200h to FD00h  
RL = 2 k, 0 pF < CL < 200 pF  
Output voltage settling time  
Slew rate  
8
μs  
1.4  
470  
1000  
0.1  
0.1  
1
V/μs  
pF  
RL = ∞  
Capacitive load stability  
RL = 2 kΩ  
pF  
Code change glitch impulse  
Digital feedthrough  
1 LSB change around major carry  
50 kseries resistance on digital lines  
At mid-code input  
nV-s  
nV-s  
DC output impedance  
Short-circuit current  
VDD = 3.2 V to 5.5 V  
35  
mA  
AC PERFORMANCE  
SNR  
THD  
Signal-to-noise ratio  
84  
–80  
84  
dB  
dB  
dB  
dB  
Total harmonic distortion  
Spurious-free dynamic range  
BW = 20 kHz, VDD = 5 V, VREF = 4.5 V, fOUT = 1 kHz  
First 19 harmonics removed for SNR calculation  
SFDR  
SINAD Signal to noise and distortion  
76  
REFERENCE INPUT  
VREF = VDD = 5.5 V  
VREF = VDD = 3.6 V  
50  
25  
Reference current  
μA  
Reference input range  
Reference input impedance  
LOGIC INPUTS(2)  
0
VDD  
V
125  
±1  
kΩ  
Input current  
μA  
VDD = 5 V  
VDD = 3.3 V  
VDD = 5 V  
VDD = 3.3 V  
0.3×VDD  
0.1×VDD  
VIN  
VIN  
L
Input low voltage  
V
0.7×VDD  
0.9×VDD  
H
Input high voltage  
Pin capacitance  
V
3
pF  
POWER REQUIREMENTS  
VDD  
Supply voltage  
3.2  
5.5  
V
Normal mode, input code = 32,768, no load, does not include  
reference current. VIH = VDD and VIL = GND,  
VDD = 3.6 V to 5.5 V  
160  
110  
250  
Normal mode, input code = 32,768, no load, does not include  
reference current. VIH = VDD and VIL = GND,  
VDD = 3.2 V to 3.6 V  
240  
IDD  
Supply current  
μA  
All power-down modes, VIH = VDD and VIL = GND,  
VDD = 3.6 V to 5.5 V  
0.8  
0.5  
3
3
All power-down modes, VIH = VDD and VIL = GND,  
VDD = 3.2 V to 3.6 V  
POWER EFFICIENCY  
IOUT / IDD  
ILOAD = 2 mA, VDD = 5 V  
89%  
TEMPERATURE RANGE  
TA  
Ambient temperature  
–40  
125  
°C  
(2) Specified by design and characterization; not production tested.  
Copyright © 2016, Texas Instruments Incorporated  
5
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
6.6 Timing Requirements(1)(2)  
VDD = 3.2 V to 5.5 V and TA = –40°C to 125°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 3.2 V to 5.5 V  
25  
30  
fSCLK Serial clock frequency  
MHz  
40  
34  
13  
13  
22.5  
13  
0
t1  
t2  
t3  
t4  
t5  
t6  
t7  
SCLK cycle time  
SCLK high time  
SCLK low time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SYNC to SCLK rising edge setup time  
Data setup time  
0
5
5
5
Data hold time  
5
0
24th SCLK falling edge to SYNC rising edge  
0
50  
34  
50  
t8  
t9  
Minimum SYNC high time  
ns  
ns  
24th SCLK falling edge to SYNC falling edge  
(1) All input signals are specified with tR = tF = 5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH) / 2.  
(2) See the Serial-Write-Operation Timing Diagram.  
6.7 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Coming out of power-down mode,  
VDD = 5 V  
2.5  
Power-up time  
µs  
Coming out of power-down mode,  
VDD = 3.3 V  
5
t9  
t1  
SCLK  
SYNC  
1
24  
t8  
t2  
t3  
t7  
t4  
t6  
t5  
DB23  
DIN  
DB0  
DB23  
Figure 1. Serial-Write-Operation Timing Diagram  
6
Copyright © 2016, Texas Instruments Incorporated  
 
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
6.8 Typical Characteristics  
At TA = 25°C, VDD = 5 V unless otherwise noted.  
6
6
4
VDD = 5V, VREF = 4.99V  
VDD = 5V, VREF = 4.99V  
4
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 2. Linearity Error and Differential Linearity Error vs  
Digital Input Code (–40°C)  
Figure 3. Linearity Error and Differential Linearity Error vs  
Digital Input Code (25°C)  
10  
6
VDD = 5 V  
VDD = 5V, VREF = 4.99V  
4
2
VREF = 4.99 V  
0
-2  
-4  
-6  
5
1.0  
0.5  
0
0
-0.5  
-1.0  
-5  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Figure 4. Linearity Error and Differential Linearity Error vs  
Digital Input Code (125°C)  
Figure 5. Offset Error vs Temperature  
0
6
5
4
3
2
1
0
VDD = 5 V  
VREF = 4.99 V  
DAC Loaded with FFFFh  
-5  
VDD = 5.5V  
VREF = VDD - 10mV  
DAC Loaded with 0000h  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
Temperature (°C)  
I(SOURCE/SINK) (mA)  
Figure 6. Full-Scale Error vs Temperature  
Figure 7. Source and Sink Current Capability  
Copyright © 2016, Texas Instruments Incorporated  
7
 
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5 V unless otherwise noted.  
300  
250  
200  
150  
100  
50  
VREF = VDD = 5 V  
VDD = VREF = 5V  
250  
200  
Reference Current Included  
150  
100  
50  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Temperature (°C)  
Figure 9. Power-Supply Current vs Temperature  
Figure 8. Supply Current vs Digital Input Code  
300  
1
0.8  
0.6  
0.4  
0.2  
0
VREF = VDD  
VREF = VDD  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
Reference Current Included, No Load  
3.2  
3.6  
4
4.4  
4.8  
5.2  
5.5  
3.2  
3.6  
4
4.4  
4.8  
5.2  
5.5  
VDD (V)  
VDD (V)  
Figure 10. Supply Current vs Supply Voltage  
Figure 11. Power-Down Current vs Supply Voltage  
1800  
1600  
1400  
1200  
1000  
800  
TA = 25°C, SCL Input (all other inputs = GND)  
Trigger Pulse 5V/div  
VDD = VREF = 5.5V  
VDD = 5V  
VREF = 4.096V  
From Code: D000  
600  
To Code: FFFF  
400  
Rising Edge  
1V/div  
Zoomed Rising Edge  
1mV/div  
200  
0
Time (2ms/div)  
0
1
2
3
4
5
VLOGIC (V)  
Figure 13. Full-Scale Settling Time: 5-V Rising Edge  
Figure 12. Supply Current vs Logic Input Voltage  
8
Copyright © 2016, Texas Instruments Incorporated  
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5 V unless otherwise noted.  
Trigger Pulse 5V/div  
Trigger Pulse 5V/div  
VDD = 5V  
VREF = 4.096V  
From Code: FFFF  
To Code: 0000  
VDD = 5V  
VREF = 4.096V  
From Code: 4000  
To Code: CFFF  
Rising  
Edge  
1V/div  
Falling  
Edge  
1V/div  
Zoomed Falling Edge  
1mV/div  
Zoomed Rising Edge  
1mV/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 14. Full-Scale Settling Time: 5-V Falling Edge  
Figure 15. Half-Scale Settling Time: 5-V Rising Edge  
Trigger Pulse 5V/div  
VDD = 5V  
VREF = 4.096V  
From Code: CFFF  
To Code: 4000  
VDD = 5V  
VREF = 4.096V  
From Code: 7FFF  
To Code: 8000  
Glitch: 0.08nV-s  
Falling  
Edge  
1V/div  
Zoomed Falling Edge  
1mV/div  
Time (2ms/div)  
Time (400ns/div)  
Figure 16. Half-Scale Settling Time: 5-V Falling Edge  
Figure 17. Glitch Impulse: 5 V, 1-LSB Step, Rising Edge  
VDD = 5V  
VDD = 5V  
VREF = 4.096V  
From Code: 8000  
To Code: 7FFF  
Glitch: 0.16nV-s  
Measured Worst Case  
VREF = 4.096V  
From Code: 8000  
To Code: 8010  
Glitch: 0.04nV-s  
Time (400ns/div)  
Time (400ns/div)  
Figure 18. Glitch Impulse: 5 V, 1-LSB Step, Falling Edge  
Figure 19. Glitch Impulse: 5 V, 16-LSB Step, Rising Edge  
Copyright © 2016, Texas Instruments Incorporated  
9
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5 V unless otherwise noted.  
VDD = 5V  
VREF = 4.096V  
From Code: 8010  
To Code: 8000  
Glitch: 0.08nV-s  
VDD = 5V  
VREF = 4.096V  
From Code: 8000  
To Code: 80FF  
Glitch: Not Detected  
Theoretical Worst Case  
Time (400ns/div)  
Time (400ns/div)  
Figure 20. Glitch Impulse: 5 V, 16-LSB Step, Falling Edge  
Figure 21. Glitch Impulse: 5 V, 256-LSB Step, Rising Edge  
-40  
VDD = 5V  
VDD = 5V  
VREF = 4.096V  
From Code: 80FF  
To Code: 8000  
VREF = 4.9V  
-50  
-1dB FSR Digital Input  
fS = 1MSPS  
-60  
-70  
Measurement Bandwidth = 20kHz  
THD  
Glitch: Not Detected  
Theoretical Worst Case  
-80  
-90  
2nd Harmonic  
1
3rd Harmonic  
-100  
Time (400ns/div)  
0
2
3
4
5
fOUT (kHz)  
Figure 22. Glitch Impulse: 5 V, 256-LSB Step, Falling Edge  
Figure 23. Total Harmonic Distortion vs Output Frequency  
98  
VREF = VDD = 5V  
VDD = 5V  
-10  
-30  
-1dB FSR Digital Input  
VREF = 4.096V  
fOUT = 1kHz  
96  
fS = 1MSPS  
Measurement Bandwidth = 20kHz  
94  
f
= 1MSPS  
CLK  
-50  
92  
90  
88  
86  
84  
-70  
-90  
-110  
-130  
0
5
10  
15  
20  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5  
fOUT (kHz)  
Frequency (kHz)  
Figure 25. Power Spectral Density  
Figure 24. Signal-to-Noise Ratio vs Output Frequency  
10  
Copyright © 2016, Texas Instruments Incorporated  
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5 V unless otherwise noted.  
350  
VDD = 5V  
VREF = 4.99V  
Code = 7FFFh  
No Load  
300  
250  
200  
150  
100  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 26. Output Noise Density  
Copyright © 2016, Texas Instruments Incorporated  
11  
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DAC8551-Q1 is a small, low-power, voltage-output, 16-bit digital-to-analog converters (DACs) qualified for  
automotive applications. The DAC8551-Q1 provides good linearity, and minimizes undesired code-to-code  
transient voltages. The DAC8551-Q1 devices use a versatile 3-wire serial interface that operates at clock rates to  
30 MHz and is compatible with standard SPI, QSPI, Microwire, and digital signal processor (DSP) interfaces.  
The DAC8551-Q1 requires an external reference voltage to set its output range. The DAC8551-Q1 incorporates  
a power-on-reset circuit that ensures the DAC output powers up at 0 V and remains there until a valid write to the  
device takes place. The DAC8551-Q1 contain a power-down feature, accessed over the serial interface, that  
reduces the current consumption of the device to 800 nA at 5 V.  
The DAC8551-Q1 power consumption is only 800 µW at 5 V, reducing to less than 4 μW in power-down mode.  
The DAC8551-Q1 is available in a VSSOP-8 package.  
7.2 Functional Block Diagram  
VFB  
VREF  
Ref (+)  
16-Bit DAC  
16  
VOUT  
GND  
VDD  
DAC Register  
16  
SYNC  
SCLK  
DIN  
Resistor  
Network  
Shift Register  
PWD Control  
7.3 Feature Description  
7.3.1 DAC Section  
The DAC8551-Q1 architecture consists of a string DAC followed by an output buffer amplifier. Figure 27 shows a  
block diagram of the DAC architecture.  
VREF  
50kW  
50kW  
VFB  
62kW  
REF (+)  
VOUT  
DAC  
Register  
Register String  
REF (-)  
GND  
Figure 27. DAC8551-Q1 Architecture  
The input coding to the DAC8551-Q1 device is straight binary, so the ideal output voltage is given by:  
DIN  
65536  
VOUT  
+
  VREF  
(1)  
where DIN = decimal equivalent of the binary code that is loaded to the DAC register; it can range from 0 to 65  
535.  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
Feature Description (continued)  
7.3.1.1 Resistor String  
The resistor string section is shown in Figure 28. It is simply a string of resistors, each of value R. The code  
loaded into the DAC register determines at which node on the string the voltage is tapped off to be fed into the  
output amplifier by closing one of the switches connecting the string to the amplifier. Monotonicity is ensured  
because of the string resistor architecture.  
7.3.1.2 Output Amplifier  
The output buffer amplifier is capable of generating rail-to-rail voltages on its output, giving an output range of  
0 V to VDD. It is capable of driving a load of 2 kin parallel with 1000 pF to GND. The source and sink  
capabilities of the output amplifier can be seen in the Typical Characteristics. The slew rate is 1.4 V/μs with a full-  
scale setting time of 8 μs with the output unloaded.  
The inverting input of the output amplifier is brought out to the VFB pin. This configuration allows for better  
accuracy in critical applications by tying the VFB point and the amplifier output together directly at the load. Other  
signal conditioning circuitry may also be connected between these points for specific applications.  
VREF  
RDIVIDER  
VREF  
2
R
To Output Amplifier  
(2x Gain)  
R
R
R
Figure 28. Resistor String  
7.3.2 Power-On Reset  
The DAC8551-Q1 contains a power-on-reset circuit that controls the output voltage during power up. On power  
up, the DAC registers are filled with zeros and the output voltages are 0 V; they remain that way until a valid  
write sequence is made to the DAC. The power-on reset is useful in applications where it is important to know  
the state of the output of the DAC while it is in the process of powering up.  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Power-Down Modes  
The DAC8551-Q1 supports four separate modes of operation. These modes are programmable by setting two  
bits (PD1 and PD0) in the control register. Table 3 shows how the state of the bits corresponds to the mode of  
operation of the device.  
Table 3. Operating Modes  
PD1 (DB17)  
PD0 (DB16)  
OPERATING MODE  
0
0
0
1
Normal operation  
Power-down modes  
Output typically 1 kto GND  
Output typically 100 kto GND  
High-Z  
1
0
1
1
When both bits are set to 0, the device works normally with its typical current consumption of 160 μA at 5 V.  
However, for the three power-down modes, the supply current falls to 800 nA at 5 V. Not only does the supply  
current fall, but the output stage is also internally switched from the output of the amplifier to a resistor network of  
known values. This configuration has the advantage that the output impedance of the device is known while it is  
in power-down mode. There are three different options. The output is connected internally to GND through a 1  
kresistor, a 100 kresistor, or it is left open-circuited (High-Z). The output stage is illustrated in Figure 29.  
VFB  
Amplifier  
VOUT  
Resistor  
String  
DAC  
Power-Down  
Circuitry  
Resistor  
Network  
Figure 29. Output Stage During Power Down  
All analog circuitry is shut down when the power-down mode is activated. However, the contents of the DAC  
register are unaffected when in power down. The time to exit power-down is typically 2.5 μs for VDD = 5 V, and  
5 μs for VDD = 3.3 V. See the Typical Characteristics for more information.  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
7.5 Programming  
The DAC8551-Q1 has a 3-wire serial interface (SYNC, SCLK, and DIN), which is compatible with SPI, QSPI, and  
Microwire interface standards, as well as most DSPs. See the Serial Write Operation Timing Diagram section for  
an example of a typical write sequence.  
The input shift register is 24 bits wide, as shown in Figure 30. The first six bits are don't care bits. The next two  
bits (PD1 andPD0) are control bits that control which mode of operation the part is in (normal mode or any one of  
three power-down modes). A more complete description of the various modes is located in the Power-Down  
Modes section. The next 16 bits are the data bits. These bits are transferred to the DAC register on the 24th  
falling edge of SCLK.  
DB23  
DB0  
X
X
X
X
X
X
PD1 PD0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 30. DAC8551-Q1 Data-Input Register Format  
The write sequence begins by bringing the SYNC line low. Data from the DIN line are clocked into the 24-bit shift  
register on each falling edge of SCLK. The serial clock frequency can be as high as 30 MHz, making the  
DAC8551-Q1 compatible with high-speed DSPs. On the 24th falling edge of the serial clock, the last data bit is  
clocked in and the programmed function is executed (that is, a change in DAC register contents and/or a change  
in the mode of operation).  
At this point, the SYNC line may be kept low or brought high. In either case, it must be brought high for a  
minimum of 33 ns before the next write sequence so that a falling edge of SYNC can initiate the next write  
sequence. As previously mentioned, it must be brought high again just before the next write sequence.  
7.5.1 SYNC Interrupt  
In a normal write sequence, the SYNC line is kept low for at least 24 falling edges of SCLK, and the DAC is  
updated on the 24th falling edge. However, if SYNC is brought high before the 24th falling edge, it acts as an  
interrupt to the write sequence. The shift register is reset, and the write sequence is seen as invalid. Neither an  
update of the DAC register contents nor a change in the operating mode occurs, as shown in Figure 31.  
24th Falling Edge  
24th Falling Edge  
CLK  
SYNC  
DIN  
DB23  
DB80  
DB23  
DB80  
Valid Write Sequence: Output Updates  
on the 24th Falling Edge  
Figure 31. SYNC Interrupt Facility  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
 
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.2 Typical Applications  
8.2.1 Loop-Powered 2-Wire 4-mA to 20-mA Transmitter With XTR116  
V+  
XTR116  
VREG  
V+  
Regulator  
C2 || C3  
0.1001 µF  
Vref  
Reference  
C1  
2.2 µF  
U1  
R1  
102.4 kΩ  
V+  
Vref  
R2  
49.9 W  
V+  
IIN  
VOUT  
DAC8551-Q1  
+
B
U2  
Q1  
R3  
25.6 kΩ  
Q1  
RLIM  
E
IRET  
2475 Ω  
25 Ω  
Return  
IO  
Figure 32. Loop-Powered Transmitter  
8.2.1.1 Design Requirements  
This design is commonly referred to as a loop-powered, or 2-wire, 4 mA to 20 mA transmitter. The transmitter  
has only two external input terminals: a supply connection and an output, or return, connection. The transmitter  
communicates back to its host, typically a PLC analog input module, by precisely controlling the magnitude of its  
return current. In order to conform to the 4 mA to 20 mA communication standard, the complete transmitter must  
consume less than 4 mA of current. The DAC8551-Q1 enables the accurate control of the loop current from 4  
mA to 20 mA in 16-bit steps.  
8.2.1.2 Detailed Design Procedure  
Although it is possible to recreate the loop-powered circuit using discrete components, the XTR116 provides  
simplicity and improved performance due to the matched internal resistors. The output current can be modified if  
necessary by looking using Equation 2.  
æ
ç
ö
÷
VREG  
R1  
V
´ Code  
2N ´R3  
æ
ö
÷
ø
2475 W  
25 W  
ref  
IOUT (Code) =  
+
´ 1+  
ç
ç
÷
è
è
ø
(2)  
For more details of this application, see 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design  
(TIDUAO7). It covers in detail the design of this circuit as well as how to protect it from EMC/EMI tests.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
Typical Applications (continued)  
8.2.1.3 Application Curves  
Total unadjusted error (TUE) is a good estimate for the performance of the output as shown in Figure 33. The  
linearity of the output or INL is in Figure 34.  
10  
8
0.1  
0.05  
0
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-0.05  
-0.1  
0
10k  
20k  
30k  
Code  
40k  
50k  
60k 65535  
0
10k  
20k  
30k  
Code  
40k  
50k  
60k 65535  
D001  
D002  
Figure 33. Total Unadjusted Error  
Figure 34. Integral Nonlineareity  
8.2.2 Bipolar Operation Using the DAC8551-Q1  
The DAC8551-Q1 has been designed for single-supply operation, but a bipolar output range is also possible  
using the circuit in Figure 35. The circuit shown gives an output voltage range of ±VREF. Rail-to-rail operation at  
the amplifier output is achievable using an OPA703 as the output amplifier.  
VREF  
6 V  
R1  
10 kW  
R2  
10 kW  
OPA703  
–6 V  
5 V  
VFB  
DAC8551-Q1  
VREF  
VOUT  
10 mF  
0.1 mF  
Three-Wire  
Serial Interface  
Figure 35. Bipolar Output Range  
The output voltage for any input code can be calculated as follows:  
R1 ) R2  
R2  
R1  
D
65536  
ǒ Ǔ  
ǒ Ǔ ǒ Ǔ  
VO +  
ƪ
VREF  
 
 
* VREF  
 
ƫ
R1  
(3)  
(4)  
where D represents the input code in decimal (0–65 535)  
with VREF = 5V, R1 = R2 = 10 k.  
10   D  
ǒ Ǔ* 5V  
VO +  
65536  
Using this example, an output voltage range of ±5 V with 0000h corresponding to a –5 V output and FFFFh  
corresponding to a 5 V output can be achieved. Similarly, using VREF = 2.5 V, a ±2.5 V output voltage range can  
be achieved.  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
 
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.2.3 Using the REF02 As a Power Supply for the DAC8551-Q1  
Due to the extremely low supply current required by the DAC8551-Q1, an alternative option is to use a precision  
reference such as the REF02 device to supply the required voltage to the device, as illustrated in Figure 36.  
15 V  
5 V  
REF02  
285 mA  
SYNC  
Three-Wire  
VOUT = 0 V to 5 V  
Serial  
Interface  
DAC8551-Q1  
SCLK  
DIN  
Figure 36. REF02 As a Power Supply to the DAC8551-Q1  
This configuration is especially useful if the power supply is quite noisy or if the system supply voltages are at  
some value other than 5 V. The REF02 device outputs a steady supply voltage for the DAC8551-Q1. If the  
REF02 device is used, the current it must supply to the DAC8551-Q1 is 200 μA. This configuration is with no  
load on the output of the DAC. When a DAC output is loaded, the REF02 also must supply the current to the  
load.  
The total current required (with a 5 kload on the DAC output) is:  
5V  
5kW  
200mA )  
+ 1.2mA  
(5)  
The load regulation of the REF02 is typically 0.005%/mA, resulting in an error of 299 μV for the 1.2 mA current  
drawn from it. This value corresponds to a 3.9 LSB error.  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
8.3 System Examples  
8.3.1 Interface from DAC8551-Q1 to 8051  
See Figure 37 for a serial interface between the DAC8551-Q1 and a typical 8051-type microcontroller. The setup  
for the interface is as follows: TXD of the 8051 drives SCLK of the DAC8551-Q1, while RXD drives the serial  
data line of the device. The SYNC signal is derived from a bit-programmable pin on the port of the 8051. In this  
case, port line P3.3 is used. When data are to be transmitted to the DAC8551-Q1, P3.3 is taken low. The 8051  
transmits data in 8-bit bytes; thus, only eight falling clock edges occur in the transmit cycle. To load data to the  
DAC, P3.3 is left low after the first eight bits are transmitted, then a second write cycle is initiated to transmit the  
second byte of data. P3.3 is taken high following the completion of the third write cycle. The 8051 outputs the  
serial data in a format that has the LSB first. The DAC8551-Q1 requires data with the MSB as the first bit  
received. The 8051 transmit routine must therefore take this into account, and mirror the data as needed.  
80C51 or 80L51(1)  
P3.3  
DAC8551-Q1(1)  
SYNC  
TXD  
RXD  
SCLK  
DIN  
NOTE: (1) Additional pins omitted for clarity.  
Figure 37. Interface from DAC8551-Q1 Devices to 80C51 or 80L51  
8.3.2 Interface from DAC8551-Q1 to Microwire  
Figure 38 shows an interface between the DAC8551-Q1 and any Microwire-compatible device. Serial data are  
shifted out on the falling edge of the serial clock and is clocked into the DAC8551-Q1 on the rising edge of the  
SK signal.  
MicrowireTM  
DAC8551-Q1(1)  
SYNC  
CS  
SCLK  
DIN  
SK  
SO  
NOTE: (1) Additional pins omitted for clarity.  
Figure 38. Interface from DAC8551-Q1 Devices to Microwire  
8.3.3 Interface from DAC8551-Q1 to 68HC11  
Figure 39 shows a serial interface between the DAC8551-Q1 and the 68HC11 microcontroller. SCK of the  
68HC11 drives the SCLK of the DAC8551-Q1, whereas the MOSI output drives the serial data line of the DAC.  
The SYNC signal is derived from a port line (PC7), similar to the 8051 diagram.  
68HC11(1)  
PC7  
DAC8551-Q1(1)  
SYNC  
SCK  
SCLK  
DIN  
MOSI  
NOTE: (1) Additional pins omitted for clarity.  
Figure 39. Interface from DAC8551-Q1 Devices to 68HC11  
The 68HC11 should be configured so that its CPOL bit is '0' and its CPHA bit is '1'. This configuration causes  
data appearing on the MOSI output to be valid on the falling edge of SCK. When data are being transmitted to  
the DAC, the SYNC line is held low (PC7). Serial data from the 68HC11 are transmitted in 8-bit bytes with only  
eight falling clock edges occurring in the transmit cycle. (Data are transmitted MSB first.) In order to load data to  
the DAC88551-Q1, PC7 is left low after the first eight bits are transferred, then a second and third serial write  
operation are performed to the DAC. PC7 is taken high at the end of this procedure.  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
 
 
DAC8551-Q1  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The DAC8551-Q1 can operate within the specified supply voltage range of 3.2 V to 5.5 V. The power applied to  
VDD should be well-regulated and low-noise. Switching power supplies and dc/dc converters often have high-  
frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high-  
frequency spikes. This noise can easily couple into the DAC output voltage through various paths between the  
power connections and analog output. In order to further minimize noise from the power supply, a strong  
recommendation is to include a 1 μF to 10 μF capacitor and 0.1 μF bypass capacitor. The current consumption  
on the VDD pin, the short-circuit current limit, and the load current for the device is listed in the Electrical  
Characteristics table. The power supply must meet the aforementioned current requirements.  
10 Layout  
10.1 Layout Guidelines  
A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power  
supplies.  
The DAC8551-Q1 offers single-supply operation, and are often used in close proximity with digital logic,  
microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and  
the higher the switching speed, the more difficult it is to keep digital noise from appearing at the output.  
Due to the single ground pin of the DAC8551-Q1, all return currents, including digital and analog return currents  
for the DAC, must flow through a single point. Ideally, GND would be connected directly to an analog ground  
plane. This plane would be separate from the ground connection for the digital components until they were  
connected at the power-entry point of the system.  
As with the GND connection, VDD should be connected to a power-supply plane or trace that is separate from the  
connection for digital logic until they are connected at the power-entry point. In addition, a 1 μF to 10 μF  
capacitor and 0.1 μF bypass capacitor are strongly recommended. In some situations, additional bypassing may  
be required, such as a 100 μF electrolytic capacitor or even a Pi filter made up of inductors and capacitors—all  
designed to essentially low-pass filter the 5 V supply, removing the high-frequency noise.  
10.2 Layout Example  
1
2
3
4
8
7
6
5
Figure 40. Layout Diagram  
20  
版权 © 2016, Texas Instruments Incorporated  
DAC8551-Q1  
www.ti.com.cn  
ZHCSEV4A FEBRUARY 2016REVISED MARCH 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
《通过 EMC/EMI 测试的双线制 4mA-20mA 发送器参考设计》(文献编号:TIDUAO7)  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。本数据随时可能发生变更并  
且不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
版权 © 2016, Texas Instruments Incorporated  
21  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC6551AQDGKRQ1  
DAC8551AQDGKRQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
D61Q  
D81Q  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC6551AQDGKRQ1  
DAC8551AQDGKRQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC6551AQDGKRQ1  
DAC8551AQDGKRQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

DAC8551AQDGKRQ1

DAC8551-Q1 汽车类 16 位、超低毛刺脉冲、电压输出 DAC | DGK | 8 | -40 to 125
TI

DAC8551IADGK

SERIAL INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PDSO8, PLASTIC, MSOP-8
TI

DAC8551IADGKR

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT
TI

DAC8551IADGKRG4

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT
TI

DAC8551IADGKT

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT
TI

DAC8551IADGKTG4

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT
TI

DAC8551IDGK

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC8551IDGKR

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC8551IDGKRG4

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC8551IDGKT

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC8551IDGKTG4

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT
TI

DAC8551IDRBR

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI