DLP480REAAFXG [TI]

0.48-inch, WUXGA DLP® digital micromirror device (DMD) | FXG | 257 | 0 to 70;
DLP480REAAFXG
型号: DLP480REAAFXG
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.48-inch, WUXGA DLP® digital micromirror device (DMD) | FXG | 257 | 0 to 70

文件: 总44页 (文件大小:1626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP480RE  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
DLP480RE 0.48 WUXGA DMD  
1 特性  
3 说明  
0.48 英寸对角线微镜阵列  
TI DLP480RE 数字微镜器件 (DMD) 是一款数控微机电  
系统 (MEMS) 空间照明调制器 (SLM)可用于实现高  
分辨率 WUXGA 显示系统。DLP480RE DMD 通过与  
DLPC4430 显示控制器、DLPA100 控制器电源和电机  
驱动器配合使用可提供实现高性能系统的能力是需  
要在更小封装中实现更高分辨率及 16:10 宽高比、高  
亮度和系统简单性的显示应用的理想之选。  
WUXGA1920 × 1200显示分辨率  
5.4 微米微镜间距  
±17° 微镜倾斜度相对于平坦表面)  
– 底部照明  
2xLVDS 输入数据总线  
DLP480RE 芯片组包括:  
器件信息  
封装(1)  
DLP470TE DMD  
DLPC4430 控制器  
DLPA100 控制器电源管理和电机驱动IC  
封装尺寸标称值)  
器件型号  
DLP480RE  
FXG (257)  
32mm × 22mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
WUXGA 显示屏  
智能显示屏  
数字标牌  
企业投影仪  
教育投影仪  
DLP480RE 简化应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS160  
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
Table of Contents  
7.4 Device Functional Modes..........................................24  
7.5 Optical Interface and System Image Quality  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications................................................................ 10  
6.1 Absolute Maximum Ratings...................................... 10  
6.2 Storage Conditions................................................... 10  
6.3 ESD Ratings..............................................................11  
6.4 Recommended Operating Conditions.......................11  
6.5 Thermal Information..................................................14  
6.6 Electrical Characteristics...........................................14  
6.7 Capacitance at Recommended Operating  
Conditions................................................................... 14  
6.8 Timing Requirements................................................15  
6.9 System Mounting Interface Loads............................ 18  
6.10 Micromirror Array Physical Characteristics.............19  
6.11 Micromirror Array Optical Characteristics............... 21  
6.12 Window Characteristics.......................................... 22  
6.13 Chipset Component Usage Specification............... 22  
7 Detailed Description......................................................23  
7.1 Overview...................................................................23  
7.2 Functional Block Diagram.........................................23  
7.3 Feature Description...................................................24  
Considerations............................................................ 24  
7.6 Micromirror Array Temperature Calculation.............. 25  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 26  
8 Application and Implementation..................................29  
8.1 Application Information............................................. 29  
8.2 Typical Application.................................................... 29  
8.3 DMD Die Temperature Sensing................................ 31  
9 Power Supply Recommendations................................33  
9.1 DMD Power Supply Power-Up Procedure................33  
9.2 DMD Power Supply Power-Down Procedure........... 33  
10 Layout...........................................................................35  
10.1 Layout Guidelines................................................... 35  
10.2 Layout Example...................................................... 35  
11 Device and Documentation Support..........................36  
11.1 第三方产品免责声明................................................36  
11.2 Device Support........................................................36  
11.3 Documentation Support.......................................... 37  
11.4 Receiving Notification of Documentation Updates..37  
11.5 支持资源..................................................................37  
11.6 Trademarks............................................................. 37  
11.7 静电放电警告...........................................................37  
11.8 术语表..................................................................... 37  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (June 2022) to Revision B (February 2023)  
Page  
• 将控制器更改DLPC4430更新了应用图.......................................................................................................1  
• 通篇将控制器更改DLPC4430.........................................................................................................................1  
Added the lamp illumination section..................................................................................................................11  
Added DMD efficiency specification..................................................................................................................21  
Changes from Revision * (April 2019) to Revision A (June 2022)  
Page  
• 根据最新的德州仪(TI) 和行业数据表标准对本文档进行了更新.......................................................................1  
Updated Timing Requirements ........................................................................................................................ 15  
Updated 6-3 ................................................................................................................................................ 15  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
5 Pin Configuration and Functions  
12 14  
26  
28 30  
2
4
6
8
10  
16 18 20 22 24  
1
3
5
7
9 11 13 15 17 19 21 23 25 27 29  
Z
V
T
W
U
R
N
L
P
M
K
H
F
J
G
E
C
A
D
B
5-1. Series 410 257-pin FXG Bottom View  
CAUTION  
To ensure reliable, long-term operation of the .48-inch WUXGA S410 DMD, it is critical to properly manage the layout and  
operation of the signals identified in the table below. For specific details and guidelines, refer to the PCB Design  
Requirements for TI DLP Standard TRP Digital Micromirror Devices application report before designing the board.  
5-1. Pin Functions  
PIN  
TRACE  
LENGTH  
(mil)  
DATA  
INTERNAL  
I/O(3)  
SIGNAL  
DESCRIPTION  
RATE TERMINATION  
NAME  
D_AN(0)  
NO.  
C6  
C3  
E1  
C4  
D1  
B8  
F4  
D_AN(1)  
D_AN(2)  
D_AN(3)  
D_AN(4)  
D_AN(5)  
D_AN(6)  
D_AN(7)  
D_AN(8)  
D_AN(9)  
D_AN(10)  
D_AN(11)  
D_AN(12)  
D_AN(13)  
D_AN(14)  
D_AN(15)  
E3  
C11  
F3  
NC  
LVDS  
DDR Differential  
No connect  
805.0  
K4  
H3  
J3  
C13  
A5  
A3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TRACE  
LENGTH  
(mil)  
DATA  
INTERNAL  
I/O(3)  
SIGNAL  
DESCRIPTION  
RATE TERMINATION  
NAME  
D_AP(0)  
NO.  
C7  
C2  
E2  
B4  
C1  
B7  
E4  
D3  
C12  
F2  
D_AP(1)  
D_AP(2)  
D_AP(3)  
D_AP(4)  
D_AP(5)  
D_AP(6)  
D_AP(7)  
D_AP(8)  
D_AP(9)  
D_AP(10)  
D_AP(11)  
D_AP(12)  
D_AP(13)  
D_AP(14)  
D_AP(15)  
D_BN(0)  
D_BN(1)  
D_BN(2)  
D_BN(3)  
D_BN(4)  
D_BN(5)  
D_BN(6)  
D_BN(7)  
D_BN(8)  
D_BN(9)  
D_BN(10)  
D_BN(11)  
D_BN(12)  
D_BN(13)  
D_BN(14)  
D_BN(15)  
NC  
LVDS  
DDR Differential  
No connect  
805.0  
J4  
G3  
J2  
C14  
A6  
A4  
N4  
Z11  
W4  
W10  
L1  
V8  
W6  
M1  
R4  
W1  
U4  
V2  
Z5  
NC  
LVDS  
DDR Differential  
No connect  
805.0  
N3  
Z2  
L4  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP480RE  
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TRACE  
LENGTH  
(mil)  
DATA  
INTERNAL  
I/O(3)  
SIGNAL  
DESCRIPTION  
RATE TERMINATION  
NAME  
D_BP(0)  
NO.  
M4  
Z12  
Z4  
D_BP(1)  
D_BP(2)  
D_BP(3)  
D_BP(4)  
D_BP(5)  
D_BP(6)  
D_BP(7)  
D_BP(8)  
D_BP(9)  
D_BP(10)  
D_BP(11)  
D_BP(12)  
D_BP(13)  
D_BP(14)  
D_BP(15)  
D_CN(0)  
D_CN(1)  
D_CN(2)  
D_CN(3)  
D_CN(4)  
D_CN(5)  
D_CN(6)  
D_CN(7)  
D_CN(8)  
D_CN(9)  
D_CN(10)  
D_CN(11)  
D_CN(12)  
D_CN(13)  
D_CN(14)  
D_CN(15)  
Z10  
L2  
V9  
W7  
N1  
NC  
LVDS  
DDR Differential  
No connect  
805.0  
P4  
V1  
T4  
V3  
Z6  
N2  
Z3  
L3  
H27  
A20  
H28  
K28  
K30  
C23  
G27  
J30  
B24  
A21  
A27  
C29  
A26  
C25  
A29  
C30  
I
LVDS  
DDR Differential  
Data negative  
805.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP480RE  
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TRACE  
LENGTH  
(mil)  
DATA  
INTERNAL  
I/O(3)  
SIGNAL  
DESCRIPTION  
RATE TERMINATION  
NAME  
D_CP(0)  
NO.  
J27  
A19  
H29  
K27  
K29  
C22  
F27  
H30  
B25  
B21  
B27  
C28  
A25  
C24  
A28  
B30  
V25  
V28  
T30  
V27  
U30  
W23  
R27  
T28  
V20  
R28  
L27  
N28  
M28  
V18  
Z26  
Z28  
D_CP(1)  
D_CP(2)  
D_CP(3)  
D_CP(4)  
D_CP(5)  
D_CP(6)  
D_CP(7)  
D_CP(8)  
D_CP(9)  
D_CP(10)  
D_CP(11)  
D_CP(12)  
D_CP(13)  
D_CP(14)  
D_CP(15)  
D_DN(0)  
D_DN(1)  
D_DN(2)  
D_DN(3)  
D_DN(4)  
D_DN(5)  
D_DN(6)  
D_DN(7)  
D_DN(8)  
D_DN(9)  
D_DN(10)  
D_DN(11)  
D_DN(12)  
D_DN(13)  
D_DN(14)  
D_DN(15)  
I
LVDS  
DDR Differential  
Data positive  
805.0  
805.0  
I
LVDS  
DDR Differential  
Data negative  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP480RE  
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TRACE  
LENGTH  
(mil)  
DATA  
INTERNAL  
I/O(3)  
SIGNAL  
DESCRIPTION  
RATE TERMINATION  
NAME  
D_DP(0)  
NO.  
V24  
V29  
T29  
W27  
V30  
W24  
T27  
U28  
V19  
R29  
M27  
P28  
M29  
V17  
Z25  
Z27  
G1  
805.0  
D_DP(1)  
D_DP(2)  
D_DP(3)  
D_DP(4)  
D_DP(5)  
D_DP(6)  
D_DP(7)  
I
LVDS  
DDR Differential  
Data positive  
D_DP(8)  
D_DP(9)  
D_DP(10)  
D_DP(11)  
D_DP(12)  
D_DP(13)  
D_DP(14)  
D_DP(15)  
SCTRL_AN  
SCTRL_AP  
SCTRL_BN  
SCTRL_BP  
SCTRL_CN  
SCTRL_CP  
SCTRL_DN  
SCTRL_DP  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
DCLK_CN  
DCLK_CP  
DCLK_DN  
DCLK_DP  
F1  
NC  
LVDS  
DDR Differential  
No connect  
805.0  
V5  
V4  
C26  
C27  
P30  
R30  
H2  
I
I
I
I
LVDS  
LVDS  
LVDS  
LVDS  
DDR Differential  
DDR Differential  
DDR Differential  
DDR Differential  
Serial control negative  
Serial control positive  
Serial control negative  
Serial control positive  
805.0  
805.0  
805.0  
805.0  
H1  
NC  
LVDS  
Differential  
No connect  
805.0  
V6  
V7  
D27  
E27  
N29  
N30  
I
I
I
I
LVDS  
LVDS  
LVDS  
LVDS  
Differential  
Differential  
Differential  
Differential  
Clock negative  
Clock positive  
Clock negative  
Clock positive  
805.0  
805.0  
805.0  
805.0  
Serial communications port clock. Active only  
when SCPENZ is logic low  
SCPCLK  
SCPDI  
A10  
A12  
I
I
LVCMOS  
LVCMOS  
Pulldown  
Serial communications port Data Input.  
Synchronous to SCPCLK rising edge  
SDR Pulldown  
SCPENZ  
C10  
A11  
Z13  
W13  
V10  
W14  
W9  
I
LVCMOS  
LVCMOS  
Pulldown  
SDR  
Serial communications port enable active low  
Serial communications port output  
SCPDO  
O
RESET_ADDR(0)  
RESET_ADDR(1)  
RESET_ADDR(2)  
RESET_ADDR(3)  
RESET_MODE(0)  
RESET_SEL(0)  
RESET_SEL(1)  
I
I
LVCMOS  
LVCMOS  
Pulldown  
Pulldown  
Reset driver address select  
Reset driver mode select  
Reset driver level select  
Reset driver level select  
V14  
Z8  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP480RE  
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TRACE  
LENGTH  
(mil)  
DATA  
INTERNAL  
I/O(3)  
SIGNAL  
DESCRIPTION  
RATE TERMINATION  
NAME  
NO.  
Rising edge latches in RESET_ADDR,  
RESET_MODE, and RESET_SEL  
RESET_STROBE  
PWRDNZ  
Z9  
A8  
I
I
I
LVCMOS  
LVCMOS  
LVCMOS  
Pulldown  
Pulldown  
Pullup  
Active low device reset  
Active low output enable for internal reset  
driver circuits  
RESET_OEZ  
W15  
Active low output interrupt to DLP® display  
controller  
RESET_IRQZ  
EN_OFFSET  
PG_OFFSET  
V16  
C9  
O
O
I
LVCMOS  
LVCMOS  
LVCMOS  
Active high enable for external VOFFSET  
regulator  
Active low fault from external VOFFSET  
regulator  
A9  
Pullup  
TEMP_N  
TEMP_P  
B18  
B17  
Analog  
Analog  
Temperature sensor diode cathode  
Temperature sensor diode anode  
D12, D13,  
D14, D15,  
D16, D17,  
D18, D19,  
U12, U13,  
U14, U15  
Do not connect on the printed circuit board  
(PCB). No connect. No electrical connections  
from CMOS bond pad to package pin  
RESERVED  
NC  
Analog  
Pulldown  
U16, U17,  
U18, U19  
No connect. No electrical connection from  
CMOS bond pad to package pin  
No Connect  
NC  
O
RESERVED_BA  
RESERVED_BB  
RESERVED_BC  
RESERVED_BD  
RESERVED_PFE  
RESERVED_TM  
RESERVED_TP0  
RESERVED_TP1  
RESERVED_TP2  
W11  
B11  
Z20  
C18  
A18  
C8  
Do not connect on the printed circuit board  
(PCB)  
LVCMOS  
Connect to ground on the printed circuit board  
(PCB)  
I
I
LVCMOS  
Analog  
Pulldown  
Z19  
W20  
W19  
Do not connect on the printed circuit board  
(PCB)  
C15, C16,  
V11, V12  
Supply voltage for positive bias level of  
micromirror reset signal  
VBIAS(1)  
P
P
Analog  
Analog  
G4, H4,  
J1, K1  
Supply voltage for negative reset level of  
micromirror reset signal  
VRESET(1)  
Supply voltage for HVCMOS logic. Supply  
voltage for positive offset level of micromirror  
reset signal. Supply voltage for stepped high  
voltage at micromirror address electrodes  
A30, B2,  
M30, Z1,  
Z30  
VOFFSET(1)  
P
Analog  
A24, A7,  
B10, B13,  
B16, B19,  
B22, B28,  
B5, C17,  
C20, D4,  
J29, K2,  
L29, M2,  
N27, U27,  
V13, V15,  
V22, W17,  
W21,  
Supply voltage for LVCMOS core. Supply  
voltage for positive offset level of micromirror  
reset signal during Power down. Supply  
voltage for normal high level at micromirror  
address electrodes  
VCC(1)  
P
Analog  
W26,  
W29, W3,  
Z18, Z23,  
Z29, Z7  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP480RE  
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TRACE  
LENGTH  
(mil)  
DATA  
INTERNAL  
I/O(3)  
SIGNAL  
DESCRIPTION  
RATE TERMINATION  
NAME  
NO.  
A13, A22,  
A23, B12,  
B14, B15,  
B20, B23,  
B26, B29,  
B3, B6,  
B9, C19,  
C21, C5,  
D2, G2,  
J28, K3,  
L28, L30,  
M3, P27,  
P29, U29,  
V21, V23,  
V26, W12,  
W16,  
VSS(2)  
G
Device ground. Common return for all power  
W18, W2,  
W22,  
W25,  
W28,  
W30, W5,  
W8, Z21,  
Z22, Z24  
(1) VBIAS, VCC, VOFFSET, and VRESET power supplies must be connected for proper DMD operation.  
(2) VSS must be connected for proper DMD operation.  
(3) I = Input, O = Output, P = Power, G = Ground, NC = No connect  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
SUPPLY VOLTAGES  
VCC  
Supply voltage for LVCMOS core logic(2)  
2.3  
11  
V
V
V
V
V
V
0.5  
0.5  
0.5  
15  
VOFFSET  
VBIAS  
Supply voltage for HVCMOS and micromirror electrode(2) (3)  
Supply voltage for micromirror electrode(2)  
Supply voltage for micromirror electrode(2)  
Supply voltage difference (absolute value)(4)  
Supply voltage difference (absolute value)(5)  
19  
VRESET  
-0.3  
11  
|VBIAS VOFFSET  
|
34  
|VBIAS VRESET  
|
INPUT VOLTAGES  
Input voltage for all other LVCMOS input pins(2)  
Input differential voltage (absolute value)(6)  
Input differential current(7)  
VCC + 0.5  
500  
V
0.5  
|VID|  
mV  
mA  
IID  
6.3  
Clocks  
Clock frequency for LVDS interface, DCLK_C  
Clock frequency for LVDS interface, DCLK_D  
400  
400  
MHz  
MHz  
ƒCLOCK  
ƒCLOCK  
ENVIRONMENTAL  
Temperature, operating(8)  
0
90  
90  
°C  
°C  
TARRAY and  
TWINDOW  
Temperature, nonoperating(8)  
40  
Absolute Temperature difference between any point on the window edge and  
the ceramic test point TP1 (9)  
|TDELTA  
TDP  
|
30  
81  
°C  
°C  
Dew Point Temperature, operating and nonoperating (noncondensing)  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltages are referenced to common ground VSS. VBIAS, VCC, VOFFSET, and VRESET power supplies are all required for proper DMD  
operation. VSS must also be connected.  
(3) VOFFSET supply transients must fall within specified voltages.  
(4) Exceeding the recommended allowable voltage difference between VBIAS and VOFFSET may result in excessive current draw.  
(5) Exceeding the recommended allowable voltage difference between VBIAS and VRESET may result in excessive current draw.  
(6) This maximum LVDS input voltage rating applies when each input of a differential pair is at the same voltage potential.  
(7) LVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.  
(8) The highest temperature of the active array (as calculated using 7.6) or of any point along the window edge as defined in 7-1.  
The locations of thermal test points TP2, TP3, TP4 and TP5 in 7-1 are intended to measure the highest window edge temperature.  
If a particular application causes another point on the window edge to be at a higher temperature, use that point.  
(9) Temperature difference is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown  
in 7-1. The window test points TP2, TP3, TP4 and TP5 shown in 7-1 are intended to result in the worst case difference. If a  
particular application causes another point on the window edge to result in a larger difference temperature, use that point.  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system  
MIN  
MAX  
80  
UNIT  
°C  
Tstg  
DMD storage temperature  
40  
TDP-AVG Average dew point temperature, (non-condensing) (1)  
28  
°C  
TDP-ELR Elevated dew point temperature range , (non-condensing) (2)  
28  
36  
°C  
CTELR  
Cumulative time in elevated dew point temperature range  
24 Months  
(1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
(2) Limit exposure to dew point temperatures in the elevated range during storage and operation to less than a total cumulative time of  
CTELR  
.
6.3 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is  
implied when operating the device above or below these limits.  
MIN  
NOM  
MAX  
UNIT  
VOLTAGE SUPPLY  
VCC  
LVCMOS logic supply voltage(1)  
1.65  
9.5  
1.8  
10  
1.95  
10.5  
V
V
V
V
VOFFSET  
VBIAS  
Mirror electrode and HVCMOS voltage(1) (2)  
Mirror electrode voltage(1)  
17.5  
18  
18.5  
VRESET  
Mirror electrode voltage(1)  
14.5  
14  
13.5  
|VBIAS  
VOFFSET  
|
Supply voltage difference (absolute value)(3)  
Supply voltage difference (absolute value)(4)  
10.5  
33  
V
V
|VBIAS  
VRESET  
|
LVCMOS INTERFACE  
VIH(DC)  
DC input high voltage(5)  
0.7 × VCC  
0.3  
VCC + 0.3  
0.3 × VCC  
VCC + 0.3  
0.2 × VCC  
V
V
VIL(DC)  
DC input low voltage(5)  
AC input high voltage(5)  
AC input low voltage(5)  
PWRDNZ pulse duration(6)  
VIH(AC)  
0.8 × VCC  
0.3  
V
VIL(AC)  
V
tPWRDNZ  
SCP INTERFACE  
ƒSCPCLK  
10  
ns  
SCP clock frequency(7)  
500  
900  
kHz  
ns  
Propagation delay, Clock to Q, from risingedge of SCPCLK to valid  
tSCP_PD  
0
1
SCPDO(8)  
Time between falling-edge of SCPENZ and the first rising- edge of  
SCPCLK  
tSCP_NEG_ENZ  
µs  
tSCP_POS_ENZ  
tSCP_DS  
Time between falling-edge of SCPCLK and the rising-edge of SCPENZ  
SCPDI Clock setup time (before SCPCLK falling edge)(8)  
SCPDI Hold time (after SCPCLK falling edge)(8)  
1
800  
900  
2
µs  
ns  
ns  
µs  
tSCP_DH  
tSCP_PW_ENZ  
SCPENZ inactive pulse duration (high level)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP480RE  
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is  
implied when operating the device above or below these limits.  
MIN  
NOM  
MAX  
UNIT  
LVDS INTERFACE  
Clock frequency for LVDS interface (all channels), DCLK(9)  
400  
440  
MHz  
mV  
mV  
mV  
ns  
ƒCLOCK  
|VID|  
Input differential voltage (absolute value)(10)  
Common mode voltage(10)  
150  
1100  
880  
300  
VCM  
1200  
1300  
1520  
2000  
120  
VLVDS  
tLVDS_RSTZ  
ZIN  
LVDS voltage(10)  
Time required for LVDS receivers to recover from PWRDNZ  
Internal differential termination resistance  
Line differential impedance (PWB/trace)  
80  
90  
100  
100  
Ω
ZLINE  
110  
Ω
ENVIRONMENTAL  
40 to  
70(13)  
Array temperature, Longterm operational(11) (12) (13) (14)  
10  
0
°C  
TARRAY  
Array temperature, Shortterm operational(12) (15)  
Window temperature operational(19) (21)  
10  
85  
°C  
°C  
TWINDOW  
Absolute temperature difference between any point on the window edge  
and the ceramic test point TP1(16) (17)  
|TDELTA  
|
14  
°C  
Average dew point temperature (noncondensing)(18)  
Elevated dew point temperature range (non-condensing)(20)  
Cumulative time in elevated dew point temperature range  
TDP -AVG  
TDP-ELR  
CTELR  
28  
36  
°C  
°C  
28  
24 Months  
ILLUMINATION (Lamp)  
L
Operating system luminance(17)  
4000  
lm  
2.00 mW/cm2  
mW/cm2  
ILLUV  
ILLVIS  
ILLIR  
ILLθ  
Illumination Wavelengths < 395 nm(11)  
Illumination Wavelengths between 395 nm and 800 nm  
Illumination Wavelengths > 800 nm  
0.68  
Thermally limited  
10 mW/cm2  
Illumination Marginal Ray Angle(21)  
55  
deg  
lm  
ILLUMINATION (Solid State)  
L
Operating system luminance(17)  
6000  
ILLUV  
ILLVIS  
ILLIR  
Illumination Wavelengths < 436 nm(11)  
0.45 mW/cm2  
Illumination Wavelengths between 436 nm and 800 nm  
Illumination Wavelengths > 800 nm  
Thermally limited mW/cm2  
10 mW/cm2  
ILLθ  
Illumination Marginal Ray Angle(21)  
55  
lm  
(1) All voltages are referenced to common ground VSS. VBIAS, VCC, VOFFSET, and VRESET power supplies are all required for proper  
DMD operation. VSS must also be connected.  
(2) VOFFSET supply transients must fall within specified max voltages.  
(3) To prevent excess current, the supply voltage difference |VBIAS VOFFSET| must be less than specified limit. See 9, 9-1, and  
9-1.  
(4) To prevent excess current, the supply voltage difference |VBIAS VRESET| must be less than specified limit. See 9, 9-1, and 表  
9-1.  
(5) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low-Power Double Data Rate (LPDDR)JESD209B.Tester Conditions for VIH and VIL.  
Frequency = 60 MHz. Maximum Rise Time = 2.5 ns @ (20% 80%)  
Frequency = 60 MHz. Maximum Fall Time = 2.5 ns @ (80% 20%)  
(6) PWRDNZ input pin resets the SCP and disables the LVDS receivers. PWRDNZ input pin overrides SCPENZ input pin and tristates the  
SCPDO output pin.  
(7) The SCP clock is a gated clock. Duty cycle must be 50% ± 10%. SCP parameter is related to the frequency of DCLK.  
(8) See 6-2.  
(9) See LVDS Timing Requirements in 6.8 and 6-6.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
 
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
(10) See 6-5 LVDS Waveform Requirements.  
(11) Simultaneous exposure of the DMD to the maximum 6.4 for temperature and UV illumination reduces device lifetime.  
(12) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in 7-1 and the package thermal resistance 7.6.  
(13) Per 6-1, the maximum operational array temperature must be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. See 7.7 for a definition of micromirror landed duty cycle.  
(14) Long-term is defined as the usable life of the device.  
(15) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is  
defined as cumulative time over the usable life of the device and is less than 500 hours.  
(16) Temperature difference is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown  
in 7-1. The window test points TP2, TP3, TP4 and TP5 shown in 7-1 are intended to result in the worst case difference  
temperature. If a particular application causes another point on the window edge to result in a larger difference in temperature, use that  
point.  
(17) DMD is qualified at the combination of the maximum temperature and maximum lumens specified. Operation of the DMD outside of  
these limits has not been tested.  
(18) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(19) The locations of Thermal Test Points TP2, TP3, TP4 and TP5 in Figure 10 are intended to measure the highest window edge  
temperature. For most applications, the locations shown are representative of the highest window edge temperature. If a particular  
application causes additional points on the window edge to be at a higher temperature, add those test points  
(20) Limit exposure to dew point temperatures in the elevated range during storage and operation to less than a total cumulative time of  
CTELR  
.
(21) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors  
(POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily  
been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not  
been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM)  
will contribute to thermal limitations described in this document, and may negatively affect lifetime.  
80  
70  
60  
50  
40  
30  
0/100  
100/0  
5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
65/35  
95/5  
90/10  
85/15  
80/20  
75/25  
70/30  
60/40  
55/45  
50/50  
Micromirror Landed Duty Cycle  
6-1. Maximum Recommended Array Temperature - Derating Curve  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP480RE  
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
6.5 Thermal Information  
DLP480RE  
FXG Package  
257 PINS  
0.90  
THERMAL METRIC  
UNIT  
Thermal resistance, active area to test point 1 (TP1)(1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the Recommended Operating Conditions. The total heat load on the  
DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by  
the window aperture and electrical power dissipation of the array. Optical systems must be designed to minimize the light energy falling  
outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC = 1.8 V, IOH = 2 mA  
VCC = 1.95 V, IOL = 2 mA  
MIN  
TYP  
MAX  
UNIT  
V
VOH  
VOL  
High level output voltage  
Low level output voltage  
0.8 × VCC  
0.2 x VCC  
25  
V
High impedance output  
current  
IOZ  
VCC = 1.95 V  
µA  
40  
1  
IIL  
Low level input current  
VCC = 1.95 V, VI = 0  
VCC = 1.95 V, VI = VCC  
VCC = 1.95 V  
µA  
µA  
IIH  
High level input current (1) (2)  
110  
715  
ICC  
Supply current VCC  
mA  
mA  
mA  
mA  
mW  
IOFFSET  
IBIAS  
IRESET  
PCC  
Supply current VOFFSET (2)  
Supply current VBIAS (2) (3)  
Supply current VRESET (3)  
VOFFSET = 10.5 V  
VBIAS = 18.5 V  
7
2.75  
-5  
VRESET = 14.5 V  
Supply power dissipation VCC VCC = 1.95 V  
Supply power dissipation  
1394.25  
POFFSET  
PBIAS  
PRESET  
PTOTAL  
VOFFSET = 10.5 V  
73.50  
50.87  
mW  
mW  
mW  
mW  
(2)  
VOFFSET  
Supply power dissipation  
VBIAS = 18.5 V  
(2) (3)  
VBIAS  
Supply power dissipation  
72.5  
VRESET = 14.5 V  
(3)  
VRESET  
Supply power dissipation  
VTOTAL  
1591.12  
(1) Applies to LVCMOS pins only. Excludes LVDS pins and MBRST (15:0) pins.  
(2) To prevent excess current, the supply voltage difference |VBIAS VOFFSET| must be less than the specified limits listed in the 6.4  
table.  
(3) To prevent excess current, the supply voltage difference |VBIAS VRESET| must be less than specified limit in Recommended  
Operating Conditions.  
6.7 Capacitance at Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CI_lvds  
LVDS input capacitance 2× LVDS  
20  
pF  
ƒ= 1 MHz  
Non-LVDS input capacitance 2×  
LVDS  
CI_nonlvds  
20  
pF  
ƒ= 1 MHz  
Temperature diode input capacitance  
2× LVDS  
CI_tdiode  
CO  
30  
20  
pF  
pF  
ƒ= 1 MHz  
ƒ= 1 MHz  
Output capacitance  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
6.8 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
SCP(1)  
tr  
Rise time  
Fall time  
20% to 80% reference points  
80% to 20% reference points  
30  
30  
ns  
ns  
tf  
LVDS(2)  
tr  
tf  
Rise slew rate  
Fall slew rate  
20% to 80% reference points  
80% to 20% reference points  
DCLK_C,LVDS pair  
0.7  
0.7  
1
1
V/ns  
V/ns  
ns  
2.5  
tC  
Clock cycle  
DCLK_D, LVDS pair  
2.5  
ns  
DCLK_C LVDS pair  
1.19  
1.25  
1.25  
ns  
tW  
Pulse duration  
DCLK_D LVDS pair  
1.19  
ns  
D_C(15:0) before DCLK_C, LVDS pair  
D_D(15:0) before DCLK_D, LVDS pair  
SCTRL_C before DCLK_C, LVDS pair  
SCTRL_D before DCLK_D, LVDS pair  
D_C(15:0) after DCLK_C, LVDS pair  
D_D(15:0) after DCLK_D, LVDS pair  
SCTRL_C after DCLK_C, LVDS pair  
SCTRL_D after DCLK_D, LVDS pair  
0.275  
0.275  
0.275  
0.275  
0.195  
0.195  
0.195  
0.195  
ns  
ns  
tSu  
Setup time  
ns  
ns  
ns  
ns  
th  
Hold time  
Skew time  
ns  
ns  
LVDS(2)  
tSKEW  
Channel D relative to Channel C(3) (4), LVDS pair  
1.25  
ns  
1.25  
(1) See 6-3 for rise time and fall time for SCP.  
(2) See 6-5 for timing requirements for LVDS.  
(3) Channel C (Bus C) includes the following LVDS pairs: DCLK_CN and DCLK_CP, SCTRL_CN and SCTRL_CP, D_CN(15:0) and  
D_CP(15:0).  
(4) Channel D (Bus D) includes the following LVDS pairs: DCLK_DN and DCLK_DP, SCTRL_DN and SCTRL_DP, D_DN(15:0) and  
D_DP(15:0).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP480RE  
 
 
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
SCPCLK falling–edge capture for SCPDI.  
SCPCLK rising–edge launch for SCPDO.  
tSCP_NEG_ENZ  
tSCP_POS_ENZ  
50%  
50%  
SCPENZ  
tSCP_DS  
tSCP_DH  
50%  
50%  
DI  
SCPDI  
tC  
fSCPCLK = 1 / tC  
50%  
50%  
50%  
50%  
SCPCLK  
tSCP_PD  
50%  
DO  
SCPDO  
6-2. SCP Timing Requirements  
See 6.4 for fSCPCLK, tSCP_DS, tSCP_DH and tSCP_PD specifications.  
SCPCLK, SCPDI,  
SCPDO, SCPENZ  
100%  
80%  
20%  
0%  
tf  
tr  
Time  
6-3. SCP Requirements for Rise and Fall  
See 6.8 for tr and tf specifications and conditions.  
Device pin  
output under test  
Tester channel  
CLOAD  
6-4. Test Load Circuit for Output Propagation Measurement  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account.  
System designers use IBIS or other simulation tools to correlate the timing reference load to a system  
environment.  
VLVDS max = VCM max + | 1/2 * VID max  
|
tf  
VCM  
VID  
tr  
VLVDS min = VCM min œ | 1/2 * VID max  
|
6-5. LVDS Waveform Requirements  
See 6.4 for VCM, VID, and VLVDS specifications and conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP480RE  
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
t
c
t
w
t
w
DCLK_P  
DCLK_N  
50%  
t
t
t
t
h
h
h
h
t
t
t
t
su  
su  
su  
su  
D_P(?:0)  
D_N(?:0)  
50%  
SCTRL_P  
SCTRL_N  
50%  
t
skew  
t
c
t
w
t
w
DCLK_P  
DCLK_N  
50%  
t
t
t
t
h
h
h
h
t
t
t
t
su  
su  
su  
su  
D_P(?:0)  
D_N(?:0)  
50%  
SCTRL_P  
SCTRL_N  
50%  
6-6. Timing Requirements  
See 6.8 for timing requirements and LVDS pairs per channel (bus) defining D_P(?:0) and D_N(?:0).  
6.9 System Mounting Interface Loads  
6-1. System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
12  
UNIT  
kg  
Thermal interface area(1)  
Electrical interface area(1)  
25  
kg  
(1) Uniformly distributed within area shown in 6-7  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
Electrical Interface Area  
Thermal Interface Area  
6-7. System Mounting Interface Loads  
6.10 Micromirror Array Physical Characteristics  
6-2. Micromirror Array Physical Characteristics  
PARAMETER DESCRIPTION  
VALUE  
1920  
1200  
5.4  
UNIT  
micromirrors  
micromirrors  
µm  
Number of active columns (1)  
M
N
P
Number of active rows (1)  
Micromirror (pixel) pitch (1)  
Micromirror active array width (1)  
Micromirror active array height (1)  
Micromirror active border (Top / Bottom) (2)  
Micromirror active border (Right / Left) (2)  
Micromirror Pitch × number of active columns  
Micromirror Pitch × number of active rows  
Pond of micromirrors (POM)  
10.368  
6.48  
20  
mm  
mm  
micromirrors/side  
micromirrors/side  
Pond of micromirrors (POM)  
84  
(1) See 6-8.  
(2) The structure and qualities of the border around the active array includes a band of partially functional micromirrors referred to as the  
Pond Of Mirrors (POM). These micromirrors are structurally and electrically prevented from tilting toward the bright or ON state but still  
require an electrical bias to tilt toward the OFF state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP480RE  
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
Off-State  
Light Path  
0
1
2
3
Active Micromirror Array  
M x N Micromirrors  
N x P  
Nœ 4  
Nœ 3  
Nœ 2  
Nœ 1  
M x P  
P
Incident  
Illumination  
Light Path  
P
P
Pond Of Micromirrors (POM) omitted for clarity.  
Details omitted for clarity. Not to scale.  
P
6-8. Micromirror Array Physical Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
6.11 Micromirror Array Optical Characteristics  
6-3. Micromirror Array Optical Characteristics  
PARAMETER  
MIN  
NOM  
17.0  
MAX  
18.4  
UNIT  
Mirror Tilt angle, variation device to device(1) (2)  
15.6  
degrees  
Adjacent micromirrors  
0
10  
68  
Number of out-of-specification micromirrors (3)  
micromirrors  
%
Non-Adjacent  
micromirrors  
DMD Efficiency (420 nm680 nm)  
(1) Limits on variability of micromirror tilt angle are critical in the design of the accompanying optical system. Variations in tilt angle within a  
device may result in apparent non-uniformities, such as line pairing and image mottling, across the projected image. Variations in the  
average tilt angle between devices may result in colorimetric and system contrast variations.  
(2) See Micromirror Landed Orientation and Tilt.  
(3) An out-of-specification micromirror is defined as a micromirror that is unable to transition between the two landed states within the  
specified micromirror switching time.  
Border micromirrors omitted for clarity  
Off State  
Light Path  
Details omitted for clarity.  
Not to scale.  
0
1
2
3
Tilted Axis of  
Pixel Rotation  
Off-State  
Landed Edge  
On-State  
Landed Edge  
Nœ 4  
Nœ 3  
Nœ 2  
Nœ 1  
Incident  
Illumination  
Light Path  
A. Pond of Mirrors (POM) omitted for clarity  
B. Refer to Micromirror Array Physical Characteristics table for M, N, and P specifications.  
6-9. Micromirror Landed Orientation and Tilt  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP480RE  
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
6.12 Window Characteristics  
6-4. DMD Window Characteristics  
DESCRIPTION  
MIN  
NOM  
Corning  
Eagle XG  
Window Material Designation  
Window Refractive Index at 546.1 nm  
1.5119  
Window Transmittance, minimum within the wavelength range 420680 nm. Applies to all angles 030°  
97%  
97%  
AOI. (1) (2)  
Window Transmittance, average over the wavelength range 420680 nm. Applies to all angles 3045° AOI.  
(1) (2)  
(1) Single-pass through both surfaces and glass.  
(2) Angle of incidence (AOI) is the angle between an incident ray and the normal to a reflecting or refracting surface.  
6.13 Chipset Component Usage Specification  
Reliable function and operation of the DLP480RE DMD requires that it be used in conjunction with the other  
components of the applicable DLP chipset, including those components that contain or implement TI DMD  
control technology. TI DMD control technology is the TI technology and devices for operating or controlling a  
DLP DMD.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
7 Detailed Description  
7.1 Overview  
The DMD is a 0.48-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum  
micromirrors. The DMD is an electrical input, optical output micro-optical-electrical-mechanical system  
(MOEMS). The electrical interface is Low Voltage Differential Signaling (LVDS). The DMD consists of a two-  
dimensional array of 1-bit CMOS memory cells. The array is organized in a grid of M memory cell columns by N  
memory cell rows. Refer to the Function Block Diagram. The positive or negative deflection angle of the  
micromirrors can be individually controlled by changing the address voltage of underlying CMOS addressing  
circuitry and micromirror reset signals (MBRST).  
The DLP480RE DMD is part of the chipset comprising the DLP480RE DMD, the DLPC4430 display controller  
and the DLPA100 power and motor driver. To ensure reliable operation, the DLP480RE DMD must always be  
used with the DLPC4430 display controller and the DLPA100 power and motor driver.  
7.2 Functional Block Diagram  
Channel C Interface  
Column Read and Write  
Control  
Control  
(0,0)  
Voltages  
Word Lines  
Voltage  
Generators  
Micromirror Array  
Row  
(M-1, N-1)  
Column Read and Write  
Channel D Interface  
Control  
Control  
Copyright © 2017, Texas Instruments Incorporated  
For pin details on Channels C, and D, refer to Pin Functions and the LVDS Interface section of 6.8. RESET_CTRL is used in  
applications when an external reset signal is required.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
7.3 Feature Description  
7.3.1 Power Interface  
The DMD requires 5 DC voltages: DMD_P3P3V, DMD_P1P8V, VOFFSET, VRESET, and VBIAS. DMD_P3P3V  
is created by the DLPA100 power and motor driver and is used on the DMD board to create the other 4 DMD  
voltages, as well as powering various peripherals (TMP411, I2C, and TI level translators). DMD_P1P8V is  
created by the TI PMIC LP38513S and provides the VCC voltage required by the DMD. VOFFSET (10V),  
VRESET (-14V), and VBIAS(18V) are made by the TI PMIC TPS65145 and are supplied to the DMD to control  
the micromirrors.  
7.3.2 Timing  
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. 6-4 shows an equivalent test load circuit for the output  
under test. Timing reference loads are not intended as a precise representation of any particular system  
environment or depiction of the actual load presented by a production test. System designers use IBIS or other  
simulation tools to correlate the timing reference load to a system environment. The load capacitance value  
stated is only for characterization and measurement of AC timing signals. This load capacitance value does not  
indicate the maximum load the device is capable of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC4430 display controller. See the DLPC4430 Display Controller  
Data Sheet or contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
7.5.1 Optical Interface and System Image Quality  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
needs to be the same. This angle should not exceed the nominal device micromirror tilt angle unless appropriate  
apertures are added in the illumination and projection pupils to block out flat-state and stray light from the  
projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any  
other light path, including undesirable flat-state specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger  
than the illumination numerical aperture angle, objectionable artifacts may occur in the display border or active  
area.  
7.5.1.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the display border and active area, which may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.5.1.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. Design the illumination optical  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
system to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the  
average flux level in the active area. Depending on the particular system optical architecture, overfill light may  
have to be further reduced below the suggested 10% level in order to be acceptable.  
7.6 Micromirror Array Temperature Calculation  
Array  
TP2  
2X 11.75  
TP5  
TP4  
TP3  
2X 16.10  
Window Edge  
(4 surfaces)  
TP3 (TP2)  
TP5  
TP4  
TP1  
5.05  
16.10  
TP1  
7-1. DMD Thermal Test Points  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP480RE  
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
Micromirror array temperature can be computed analytically from measurement points on the outside of the  
package, the package thermal resistance, the electrical power, and the illumination heat load. The relationship  
between micromirror array temperature and the reference ceramic temperature is provided by the following  
equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
)
QARRAY = QELECTRICAL + (QILLUMINATION  
)
where  
TARRAY = computed array temperature (°C)  
TCERAMIC = measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = thermal resistance of package from array to ceramic TP1 (°C/Watt)  
QARRAY = Total DMD power on the array (Watts) (electrical + absorbed)  
QELECTRICAL = nominal electrical power  
QILLUMINATION = (CL2W × SL)  
CL2W = Conversion constant for screen lumens to power on DMD (Watts/Lumen)  
SL = measured screen lumens  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 0.9 Watts. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The equations shown above are valid for a 1-Chip DMD system with  
projection efficiency from the DMD to the screen of 87%.  
The conversion constant CL2W is based on array characteristics. It assumes a spectral efficiency of 300 lumens/  
Watt for the projected light and illumination distribution of 83.7% on the active array, and 16.3% on the array  
border.  
Sample calculations for typical projection application:  
QELECTRICAL = 0.9 W  
CL2W = 0.00266  
SL = 4000 lm  
TCERAMIC = 55.0°C  
QARRAY = 0.9 W + (0.00266 × 4000 lm) = 11.54 W  
TARRAY = 55.0°C + (11.54 W × 0.90°C/W) = 65.39°C  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the On state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the ON state 100% of the  
time (and in the Off state 0% of the time); whereas 0/100 indicate that the pixel is in the OFF state 100% of the  
time. Likewise, 50/50 indicates that the pixel is ON for 50% of the time (and OFF for 50% of the time).  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
always add to 100.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMD micromirror array (also called the active array) to an asymmetric landed  
duty cycle for a prolonged period of time can reduce the DMD usable life.  
Note that it is the symmetry or asymmetry of the landed duty cycle that is of relevance. The symmetry of the  
landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a  
landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect DMD usable life, and this interaction can  
be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD usable life. This is  
quantified in the de-rating curve shown in 6-1. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the Maximum Operating DMD Temperature that the DMD operates at for a given  
long-term average Landed Duty Cycle.  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
operates under a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the  
pixel operates under a 0/100 Landed Duty Cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
7-1. Grayscale Value and Landed Duty Cycle  
GRAYSCALE VALUE  
LANDED DUTY CYCLE  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP480RE  
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and blue) for the given pixel as well as the color  
cycle time for each primary color, where color cycle timeis the total percentage of the frame time that a  
given primary must be displayed in order to achieve the desired white point.  
Use 方程1 to calculate the landed duty cycle of a given pixel during a given time period  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% (1)  
×
Blue_Scale_Value)  
where  
Red_Cycle_%, represents the percentage of the frame time that red s displayed to achieve the desired white  
point  
Green_Cycle_% represents the percentage of the frame time that green s displayed to achieve the desired  
white point  
Blue_Cycle_%, represents the percentage of the frame time that blue is displayed to achieve the desired  
white point  
For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in  
order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green,  
blue color intensities are as shown in 7-2 and 7-3.  
7-2. Example Landed Duty Cycle for Full-Color,  
Color Percentage  
CYCLE PERCENTAGE  
RED  
GREEN  
BLUE  
50%  
20%  
30%  
7-3. Example Landed Duty Cycle for Full-Color  
SCALE VALUE  
GREEN  
0%  
LANDED DUTY  
CYCLE  
RED  
0%  
BLUE  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
7/93  
0%  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
60%  
60%  
100%  
12%  
100%  
0%  
100%  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
Texas Instruments DLP® technology is a micro-electro-mechanical systems (MEMS) technology that modulates  
light using a digital micromirror device (DMD). The DMD is a spatial light modulator, which reflects incoming light  
from an illumination source to one of two directions, towards the projection optics or collection optics. The new  
TRP pixel with a higher tilt angle increases brightness performance and enables smaller system electronics for  
size constrained applications. Typical applications using the DLP480RE include business, education, and large  
venue projectors, interactive displays, and portable smart displays.  
The most recent class of chipsets from Texas Instruments is based on a breakthrough micromirror technology,  
called TRP. With a smaller pixel pitch of 5.4 μm and increased tilt angle of 17 degrees, TRP chipsets enable  
higher resolution in a smaller form factor and enhanced image processing features while maintaining high optical  
efficiency. DLP® chipsets are a great fit for any system that requires high resolution and high brightness displays.  
The following orderables have been replaced by the DLP480RE.  
Device Information  
PART NUMBER  
DLP480RETA  
PACKAGE  
BODY SIZE (NOM)  
Mechanical ICD  
FXG (257)  
FXG (257)  
FXG (257)  
FXG (257)  
32 mm × 22 mm  
2516206  
2516206  
2516206  
2516206  
1912-5132B  
1912-5137B  
1912-543AB  
32 mm × 22 mm  
32 mm × 22 mm  
32 mm × 22 mm  
8.2 Typical Application  
The DLP480RE DMD combined with a DLPC4430 digital controller and DLPA100 power management device  
provides full HD resolution for bright, colorful display applications. 8-1 shows a typical display system using  
the DLP480RE, as well as additional system components.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP480RE  
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
12V  
12V  
1.21V  
1.8V  
3.3V  
5V  
1.21V  
1.8V  
3.3V  
5V  
DLPA100  
Controller  
PMIC  
DLPA100  
Controller  
PMIC  
Flash  
(23) (16)  
CW Driver  
CW Driver  
ADDR  
DATA  
Wheel Motor #2  
CTRL  
Wheel Motor #1  
CTRL  
CW_INDEX1  
CW_INDEX1  
FE CTRL  
DATA  
3D L/R  
CTRL  
2xLVDS  
SCP CTRL  
DLPC4430  
Controller  
Front End Device  
DLP DMD  
1.8 V  
USB CTRL  
GPIO  
1.15V  
1.8V  
3.3V  
VBIAS  
VOFFSET  
VRESET  
CTRL  
3.3V  
DMD PMIC  
(Power Management IC)  
(3)  
I2C  
EEPROM  
TI DLP chipset  
Third party component  
8-1. Typical DLPC4430 Application (LED, Top; LPCW, Bottom)  
8.2.1 Design Requirements  
A DLP480RE projection system is created by using the DMD chipset, including the DLP480RE, DLPC4430, and  
DLPA100. The DLP480RE is used as the core imaging device in the display system and contains a 0.48-inch  
array of micromirrors. The DLPC4430 controller is the digital interface between the DMD and the rest of the  
system, taking digital input from front end receiver and driving the DMD over a high speed interface. The  
DLPA100 power management device provides voltage regulators for the DMD, controller, and illumination  
functionality.  
Other core components of the display system include an illumination source, an optical engine for the  
illumination and projection optics, other electrical and mechanical components, and software. The illumination  
source options include lamp, LED, laser or laser phosphor. The type of illumination used and desired brightness  
will have a major effect on the overall system design and size.  
8.2.2 Detailed Design Procedure  
For connecting the DLPC4430 display controller and the DLP480RE DMD, see the reference design schematic.  
For a complete the DLP® system, an optical module or light engine is required that contains the DLP480RE  
DMD, associated illumination sources, optical elements, and necessary mechanical components.  
To ensure reliable operation, the DLP480RE DMD must always be used with the DLPC4430 display controllers  
and a DLPA100 PMIC driver. Refer to PCB Design Requirements for DLP® Standard TRP Digital Micromirror  
Devices for the DMD board design and manufacturing handling of the DMD sub assemblies.  
8.2.3 Application Curve  
When LED illumination is utilized, typical LED-current-to-Luminance relationship is shown in 8-2.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP480RE  
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
8-2. Luminance vs. Current  
8.3 DMD Die Temperature Sensing  
The DMD features a built-in thermal diode that measures the temperature at one corner of the die outside the  
micromirror array. The thermal diode can be interfaced with the TMP411 temperature sensor as shown in 8-3.  
The serial bus from the TMP411 can be connected to the display controller to enable its temperature sensing  
features. See the DLPC4430 ProgrammersGuide for instructions on installing the controller support firmware  
bundle and obtaining the temperature readings.  
The software application contains functions to configure the TMP411 to read the DMD temperature sensor diode.  
This data can be leveraged to incorporate additional functionality in the overall system design such as adjusting  
illumination, fan speeds, and so forth. All communication between the TMP411 and the DLPC4430 controller will  
be completed using the I2C interface. The TMP411 connects to the DMD via pins B17 and B18 as outlined in 节  
5.  
3.3V  
R1  
R2  
TMP411  
DLP480RE  
SCL  
VCC  
D+  
R3  
R5  
TEMP_P  
SDA  
ALERT  
THERM  
GND  
C1  
R4  
R6  
D-  
TEMP_N  
GND  
A. Details omitted for clarity, see the TI Reference Design for connections to the DLPC4430 controller.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
B. See the TMP411 datasheet for system board layout recommendation.  
C. See the TMP411 datasheet and the TI reference design for suggested component values for R1, R2, R3, R4, and C1.  
D. R5 = 0 Ω. R6 = 0 Ω. Zero ohm resistors need be located close to the DMD package pins.  
8-3. TMP411 Sample Schematic  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP480RE  
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD:  
VSS  
VBIAS  
VCC  
VOFFSET  
VRESET  
DMD power-up and power-down sequencing is strictly controlled by the DLP® display controller.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to any of the prescribed power-up and power-down requirements may  
affect device reliability. See 9-1 DMD Power Supply Sequencing Requirements.  
VBIAS, VCC, VOFFSET, and VRESET power supplies must be coordinated during power-up and  
power-down operations. Failure to meet any of the below requirements will result in a significant  
reduction in the DMD reliability and lifetime. Common ground VSS must also be connected.  
9.1 DMD Power Supply Power-Up Procedure  
During power-up, VCC must always start and settle before VOFFSET plus Delay1 specified in 9-1, VBIAS,  
and VRESET voltages are applied to the DMD.  
During power-up, it is a strict requirement that the voltage difference between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4.  
During power-up, there is no requirement for the relative timing of VRESET with respect to VBIAS.  
Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-up, LVCMOS input pins must not be driven high until after VCC have settled at operating  
voltages listed in 6.4.  
9.2 DMD Power Supply Power-Down Procedure  
During power-down, VCC must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to  
within the specified limit of ground. See 9-1.  
During power-down, it is a strict requirement that the voltage difference between VBIAS and VOFFSET must  
be within the specified limit shown in 6.4.  
During power-down, there is no requirement for the relative timing of VRESET with respect to VBIAS.  
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-down, LVCMOS input pins must be less than specified in 6.4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP480RE  
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
Not to scale. Details omitted for clarity  
Note 1  
VCC  
VSS  
VSS  
Note 2  
ûV < Specification  
VOFFSET  
Note 4  
Delay 1  
VBIAS  
VSS  
VSS  
Note 3  
ûV < Specification  
VRESET  
EN_OFFSET  
VSS  
Note 9  
Delay 2  
Note 5  
PG_OFFSET  
Note 7  
VSS  
RESET_OEZ  
VSS  
Note 6  
Note 8  
PWRDNZ  
and RESETZ  
VSS  
A. See 6.4, and Pin Functions .  
B. To prevent excess current, the supply voltage difference |VOFFSET VBIAS| must be less than specified limit in 6.4.  
C. To prevent excess current, the supply voltage difference |VBIAS VRESET| must be less than specified limit in 6.4.  
D. VBIAS must power up after VOFFSET has powered up, per the Delay1 specification in 9-1  
E. PG_OFFSET must turn off after EN_OFFSET has turned off, per the Delay2 specification in 9-1.  
F. DLP® controller software enables the DMD power supplies to turn on after RESET_OEZ is at logic high.  
G. DLP® controller software initiates the global VBIAS command.  
H. After the DMD micromirror park sequence is complete, the DLP® controller software initiates a hardware power-down that activates  
PWRDNZ and disables VBIAS, VRESET and VOFFSET.  
I.  
Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the DLP® controller hardware,  
EN_OFFSET may turn off after PG_OFFSET has turned off. The OEZ signal goes high prior to PG_OFFSET turning off to indicate the  
DMD micromirror has completed the emergency park procedures.  
9-1. DMD Power Supply Requirements  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
9-1. DMD Power-Supply Requirements  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
ms  
Delay from VOFFSET settled at recommended operating voltage to  
VBIAS and VRESET power up  
Delay1  
Delay2  
1
2
PG_OFFSET hold time after EN_OFFSET goes low  
100  
ns  
10 Layout  
10.1 Layout Guidelines  
The DLP480RE DMD is part of a chipset that is controlled by the DLPC4430 display controller in conjunction  
with the DLPA100 power and motor driver. These guidelines are targeted at designing a PCB board with the  
DLP480RE DMD. The DLP480RE DMD board is a high-speed multi-layer PCB, with primarily high-speed digital  
logic utilizing dual edge clock rates up to 400MHz for DMD LVDS signals. The remaining traces are comprised of  
low speed digital LVTTL signals. TI recommends that mini power planes are used for VOFFSET, VRESET, and  
VBIAS. Solid planes are required for DMD_P3P3V(3.3V), DMD_P1P8V and Ground. The target impedance for  
the PCB is 50 Ω ±10% with the LVDS traces being 100 Ω ±10% differential. TI recommends using an 8 layer  
stack-up as described in 10-1.  
10.2 Layout Example  
10.2.1 Layers  
The layer stack-up and copper weight for each layer is shown in 10-1. Small sub-planes are allowed on signal  
routing layers to connect components to major sub-planes on top or bottom layers if necessary.  
10-1. Layer Stack-Up  
LAYER  
NO.  
LAYER NAME  
Side A - DMD only  
COPPER WT. (oz.)  
COMMENTS  
1
1.5  
1
DMD, escapes, low frequency signals, power sub-planes.  
Solid ground plane (net GND).  
2
Ground  
3
Signal  
0.5  
1
50 Ωand 100 Ωdifferential signals  
4
Ground  
Solid ground plane (net GND)  
5
DMD_P3P3V  
1
+3.3-V power plane (net DMD_P3P3V)  
50 Ωand 100 Ωdifferential signals  
6
Signal  
0.5  
1
7
Ground  
Solid ground plane (net GND).  
8
Side B - All other Components  
1.5  
Discrete components, low frequency signals, power sub-planes  
10.2.2 Impedance Requirements  
TI recommends that the board has matched impedance of 50 Ω ±10% for all signals. The exceptions are listed  
in 10-2.  
10-2. Special Impedance Requirements  
Signal Type  
Signal Name  
Impedance (ohms)  
DDCP(0:15), DDCN(0:15)  
DCLKC_P, DCLKC_N  
SCTRL_CP, SCTRL_CN  
DDDP(0:15), DDDN(0:15)  
DCLKD_P, DCLKD_N  
SCTRL_DP, SCTRL_DN  
100 ±10% differential across  
each pair  
C channel LVDS differential pairs  
100 ±10% differential across  
each pair  
D channel LVDS differential pairs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP480RE  
 
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
10.2.3 Trace Width, Spacing  
Unless otherwise specified, TI recommends that all signals follow the 0.005-inch/0.005-inch design rule.  
Minimum trace clearance from the ground ring around the PWB has a 0.1-inch minimum. An analysis of  
impedance and stack-up requirements determine the actual trace widths and clearances.  
10.2.3.1 Voltage Signals  
10-3. Special Trace Widths, Spacing Requirements  
MINIMUM TRACE WIDTH TO  
SIGNAL NAME  
GND  
LAYOUT REQUIREMENT  
Maximize trace width to connecting pin  
PINS (MIL)  
15  
15  
15  
15  
15  
15  
DMD_P3P3V  
DMD_P1P8V  
VOFFSET  
VRESET  
Maximize trace width to connecting pin  
Maximize trace width to connecting pin  
Create mini plane from U2 to U3  
Create mini plane from U2 to U3  
Create mini plane from U2 to U3  
VBIAS  
All U3 control  
connections  
10  
Use 10 mil etch to connect all signals/voltages to DMD pads  
11 Device and Documentation Support  
11.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Device Support  
11.2.1 Device Nomenclature  
DLP480RE AA FXG  
Package  
TI Internal Numbering  
Device Descriptor  
11-1. Part Number Description  
11.2.2 Device Markings  
The device marking includes both human-readable information and a 2-dimensional matrix code. The human-  
readable information is described in 11-2. The 2-dimensional matrix code is an alpha-numeric character string  
that contains the DMD part number, part 1 of serial number, and part 2 of serial number. The first character of the  
DMD Serial Number (part 1) is the manufacturing year. The second character of the DMD Serial Number (part 1)  
is the manufacturing month. The last character of the DMD Serial Number (part 2) is the bias voltage bin letter.  
Example: *1912-513AB GHXXXXX LLLLLLM  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLP480RE  
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
2-Dimension Matrix Code  
(Part Number and Serial Number)  
DMD Part Number  
*1912-513xB  
GHXXXXX LLLLLLM  
Part 1 of Serial Number  
(7 characters)  
Part 2 of Serial Number  
(7 characters)  
11-2. DMD Marking Locations  
11.3 Documentation Support  
11.3.1 Related Documentation  
The following documents contain additional information related to the chipset components used with the  
DLP480RE.  
DLPC4430 Display Controller Data Sheet  
DLPA100 Power and Motor Driver Data Sheet  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.6 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.7 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLP480RE  
 
 
 
 
 
 
 
DLP480RE  
www.ti.com.cn  
ZHCSQB5B APRIL 2019 REVISED FEBRUARY 2023  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLP480RE  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP480REAAFXG  
ACTIVE  
CLGA  
FXG  
257  
33  
RoHS & Green  
Call TI  
N / A for Pkg Type  
0 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLP500YX

DLP® 0.50 英寸、2048x1200 阵列、S410 数字微镜器件 (DMD)  
TI

DLP500YXFXK

DLP® 0.50 英寸、2048x1200 阵列、S410 数字微镜器件 (DMD)   | FXK | 257 | 0 to 70
TI

DLP5500

DLP® 0.55 XGA Series 450 DMD
TI

DLP5500AFYA

DLP&reg; 0.55 XGA DMD 149-CPGA
TI

DLP5500BFYA

0.55 XGA Series
TI

DLP5500FYA

DLP® 0.55 XGA Series 450 DMD
TI

DLP5500FYAT

DLP® 0.55 XGA Series 450 DMD
TI

DLP550HE

0.55 英寸 SVGA DLP® 数字微镜器件 (DMD)
TI

DLP550HEA0FYA

0.55 英寸 SVGA DLP® 数字微镜器件 (DMD) | FYA | 149 | 0 to 70
TI

DLP550JE

DLP® 0.55 XGA DMD
TI

DLP550JEFYA

0.55-inch, XGA DLP® digital micromirror device (DMD) | FYA | 149 | 0 to 70
TI

DLP5530-Q1

适用于内部显示应用的 DLP® 汽车 0.55" 数字微镜器件 (DMD)
TI