DLP550JE [TI]

DLP® 0.55 XGA DMD;
DLP550JE
型号: DLP550JE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® 0.55 XGA DMD

文件: 总35页 (文件大小:1433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP550JE  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
DLP550JE 0.55 XGA 数字微镜器件  
1 特性  
3 说明  
0.55 英寸微镜阵列对角线  
TI DLP550JE 数字微镜器件 (DMD) 是一款数控微机电  
系统 (MEMS) 空间照明调制器 (SLM)能够实现明  
亮、经济实惠的 DLP® 0.55 XGA 示解决方案。  
DLP550JE DMD 过与 DLPC4430 示控制器、  
DLPA100 电源和电机驱动器及 DLPA200 DMD 微镜驱  
动器配合使用可提供实现高性能系统的能力是需要  
4:3 纵横比、高亮度和系统简单性的显示应用的理想之  
选。  
XGA (1024 × 768)  
10.8 微米微镜间距  
±12° 微镜倾斜角  
相对于平面状态)  
– 角落照明  
2xLVDS 输入数据总线  
DLP550JE 芯片组包括:  
器件信息  
封装(1)  
DLP470TE DMD  
DLPC4430 控制器  
DLPA100 控制器电源管理和电机驱动IC  
DLPA200  
封装尺寸标称值)  
器件型号  
DLP550JE  
FYA (149)  
32.20 mm × 22.30 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
数字标牌  
教育投影仪  
企业投影仪  
DLP550JE 简化应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS101  
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
Table of Contents  
7.2 Feature Description...................................................19  
7.3 Optical Interface and System Image Quality  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 Storage Conditions..................................................... 6  
6.3 ESD Ratings............................................................... 7  
6.4 Recommended Operating Conditions.........................7  
6.5 Thermal Information....................................................9  
6.6 Electrical Characteristics...........................................10  
6.7 Timing Requirements................................................10  
6.8 Window Characteristics............................................ 14  
6.9 System Mounting Interface Loads............................ 14  
6.10 Micromirror Array Physical Characteristics.............15  
6.11 Micromirror Array Optical Characteristics............... 17  
6.12 Chipset Component Usage Specification............... 17  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
Considerations............................................................ 19  
7.4 Micromirror Array Temperature Calculation.............. 20  
7.5 Micromirror Landed-on/Landed-Off Duty Cycle........ 21  
8 Application and Implementation..................................24  
8.1 Application Information............................................. 24  
8.2 Typical Application.................................................... 24  
9 Power Supply Recommendations................................27  
9.1 DMD Power-Up and Power-Down Procedures.........27  
10 Device and Documentation Support..........................28  
10.1 Device Support....................................................... 28  
10.2 支持资源..................................................................28  
10.3 接收文档更新通知................................................... 29  
10.4 Trademarks.............................................................29  
10.5 静电放电警告.......................................................... 29  
10.6 术语表..................................................................... 29  
11 Mechanical, Packaging, and Orderable  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (September 2022) to Revision B (February 2023)  
Page  
• 将控制器更新DLPC4430所有芯片组元件均为有效链接..............................................................................1  
• 将控制器更新DLPC4430DMD 链接到文档.............................................................................................1  
Updated this section......................................................................................................................................... 24  
Updated controller to DLPC4430, updated the application diagram.................................................................24  
Updated controller to DLPC4430......................................................................................................................25  
Updated controller to DLPC4430......................................................................................................................27  
Changes from Revision * (November 2017) to Revision A (September 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 将文档状态从“预告信息”更改为量产数据................................................................................................ 1  
• 更新了措辞将“MOEMS”替换为“MEMS.................................................................................................1  
Updated wording in "Input Voltages" in 6.1 ...................................................................................................6  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
5 Pin Configuration and Functions  
1
3
5
7
9
11 13 15 17 19  
12 14 16 18 20  
2
4
6
8
10  
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
5-1. FYA Package 149-Pin Bottom View  
5-1. Pin Functions  
PIN(1)  
NAME  
TYPE  
(I/O/P )  
DATA  
INTERNAL  
TERM(3)  
TRACE  
(mils)(4)  
SIGNAL  
CLOCK  
DESCRIPTION  
RATE(2)  
NO.  
DATA INPUTS  
D_AN1  
G20  
H20  
H19  
G19  
F18  
G18  
E18  
D18  
C20  
D20  
B18  
A18  
A20  
B20  
B19  
A19  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
760.78  
760.86  
760.73  
760.76  
760.73  
760.81  
760.77  
760.81  
760.67  
760.74  
760.68  
760.77  
760.82  
760.77  
760.79  
760.75  
D_AP1  
D_AN3  
D_AP3  
D_AN5  
D_AP5  
D_AN7  
D_AP7  
Input data bus A (LVDS)  
D_AN9  
D_AP9  
D_AN11  
D_AP11  
D_AN13  
D_AP13  
D_AN15  
D_AP15  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP550JE  
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
NAME  
TYPE  
(I/O/P )  
DATA  
INTERNAL  
TERM(3)  
TRACE  
(mils)(4)  
SIGNAL  
CLOCK  
DESCRIPTION  
RATE(2)  
NO.  
K20  
J20  
D_BN1  
D_BP1  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
Differential  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
760.72  
760.80  
760.79  
760.82  
760.77  
760.85  
760.78  
760.81  
760.76  
760.83  
760.78  
760.80  
760.78  
760.72  
760.80  
760.77  
760.73  
760.80  
760.72  
760.80  
D_BN3  
J19  
D_BP3  
K19  
L18  
K18  
M18  
N18  
P20  
N20  
R18  
T18  
T20  
R20  
R19  
T19  
D19  
E19  
N19  
M19  
D_BN5  
D_BP5  
D_BN7  
D_BP7  
Input data bus B (LVDS)  
D_BN9  
D_BP9  
D_BN11  
D_BP11  
D_BN13  
D_BP13  
D_BN15  
D_BP15  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
Input data bus A Clock  
(LVDS)  
Input data bus B Clock  
(LVDS)  
DATA CONTROL INPUTS  
SCTRL_AN  
SCTRL_AP  
SCTRL_BN  
SCTRL_BP  
F20  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
Differential  
Differential  
Differential  
Differential  
DCLK_A  
DCLK_A  
DCLK_B  
DCLK_B  
760.74  
760.70  
760.83  
760.78  
E20  
L20  
M20  
Data Control (LVDS)  
SERIAL COMMUNICATION (SCP) AND CONFIGURATION  
SCP_CLK  
SCP_DO  
SCP_DI  
A8  
A9  
A5  
B7  
B9  
Input  
Output  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Pulldown  
SCP_CLK  
SCP_CLK  
SCP_CLK  
Pulldown  
Pulldown  
Pulldown  
SCP_EN  
PWRDN  
Input  
Input  
MICROMIRROR BIAS CLOCKING PULSE  
MODE_A  
MBRST0  
MBRST1  
MBRST2  
MBRST3  
MBRST4  
MBRST5  
MBRST6  
MBRST7  
MBRST8  
MBRST9  
MBRST10  
MBRST11  
MBRST12  
MBRST13  
MBRST14  
MBRST15  
A4  
C3  
D2  
D3  
E2  
G3  
E1  
G2  
G1  
N3  
M2  
M3  
L2  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Pulldown  
Micromirror Bias  
Clocking Pulse  
"MBRST" signals "clock"  
micromirrors into state of  
LVCMOS memory cell  
associated with each  
mirror.  
J3  
L1  
J2  
J1  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP550JE  
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
NAME  
POWER  
TYPE  
(I/O/P )  
DATA  
INTERNAL  
TERM(3)  
TRACE  
(mils)(4)  
SIGNAL  
CLOCK  
DESCRIPTION  
RATE(2)  
NO.  
B11, B12,  
B13, B16,  
R12, R13,  
R16, R17  
Power for LVCMOS  
Logic  
VCC  
Power  
Analog  
A12, A14,  
A16, T12,  
T14, T16  
Power supply for LVDS  
Interface  
VCCI  
Power  
Power  
Analog  
Analog  
C1, D1,  
M1, N1  
Power for High Voltage  
CMOS Logic  
VOFFSET  
A6, A11,  
A13, A15,  
A17, B4,  
B5, B8,  
B14, B15,  
B17, C2,  
C18, C19,  
F1, F2,  
F19, H1,  
H2, H3,  
Common return for all  
power inputs  
VSS  
Power  
Analog  
H18, J18,  
K1, K2,  
L19, N2,  
P18, P19,  
R4, R9,  
R14, R15,  
T7, T13,  
T15, T17  
RESERVED SIGNALS (Not for use in system)  
RESERVED_FC  
RESERVED_FD  
RESERVED_PFE  
RESERVED_STM  
R7  
R8  
T8  
B6  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
Pins should be  
connected to VSS  
.
A3, A7,  
A10, B2,  
B3, B10,  
E3, F3,  
K3, L3,  
P1, P2,  
P3, R1,  
R2, R3,  
R5, R6,  
R10, R11,  
T1, T2,  
T3, T4,  
T5, T6,  
T9, T10,  
T11  
NO_CONNECT  
Do not connect.  
(1) The following power supplies are required to operate the DMD: VCC, VCCI, VOFFSET. VSS must also be connected.  
(2) DDR = Double Data Rate. SDR = Single Data Rate. Refer to the Timing Requirements for specifications and relationships.  
(3) Refer to Electrical Characteristics for differential termination specification.  
(4) Internal Trace Length (mils) refers to the Package electrical trace length. See the DLP 0.55 XGA Chip-Set Data Manual for details  
regarding signal integrity considerations for end-equipment designs.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP550JE  
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted).(7)  
MIN  
MAX  
UNIT  
SUPPLY VOLTAGES  
VCC  
Supply voltage for LVCMOS core logic(1)  
Supply voltage for LVDS Interface(1)  
Micromirror Electrode and HVCMOS voltage(1) (2)  
Voltage applied to MBRST[0:15] Input Pins  
Supply voltage change(3)  
4
4
V
V
V
V
V
0.5  
0.5  
0.5  
28  
VCCI  
VOFFSET  
VMBRST  
|VCC VCCI  
9
28  
0.3  
|
INPUT VOLTAGES  
Input voltage for all other input pins(1)  
VCC + 0.3  
700  
V
0.5  
|VID  
|
Input differential voltage (absolute value) (4)  
mV  
CLOCKS  
Clock frequency for LVDS interface, DCLK_A  
Clock frequency for LVDS interface, DCLK_B  
400  
400  
MHz  
MHz  
ƒclock  
ƒclock  
ENVIRONMENTAL  
TARRAY and TWINDOW  
Temperature, operating(5)  
0
90  
90  
30  
°C  
°C  
°C  
Temperature, non-operating (5)  
40  
|TDELTA  
TDP  
|
Absolute Temperature delta between any point on the window  
edge and the ceramic test point TP1(6)  
Dew Point Temperature, operating and non-operating (non-  
condensing)  
81  
°C  
(1) All voltages are referenced to common ground VSS. Voltages VCC, VCCI, and VOFFSET are required for proper DMD operation. VSS must  
also be connected.  
(2) VOFFSET supply transients must fall within specified voltages.  
(3) Exceeding the recommended allowable absolute voltage difference between VCC and VCCI may result in excess current draw.  
(4) This maximum LVDS input voltage rating applies when each input of a differential pair is at the same voltage potential.  
(5) The highest temperature of the active array (as calculated by the 7.4) or of any point along the Window Edge as defined in 7-1.  
The locations of thermal test points TP2, TP3, TP4, and TP5 in 7-1 are intended to measure the highest window edge temperature.  
If a particular application causes another point on the window edge to be at a higher temperature, that point should be used.  
(6) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst-case delta. If a particular  
application causes another point on the window edge to result in a larger delta temperature, that point should be used.  
(7) Stresses beyond those listed under 6.1 may cause permanent damage to the device. These are stress ratings only, which do not  
imply functional operation of the device at these or any other conditions beyond those indicated under 6.4. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operational in a system.  
MIN  
MAX  
80  
UNIT  
°C  
TDMD  
DMD storage temperature  
40  
TDP-AVG Average dew point temperature (non-condensing)(1)  
28  
°C  
TDP-ELR Elevated dew point temperature range (non-condensing)(2)  
28  
36  
°C  
CTELR  
Cumulative time in elevated dew point temperature range  
24  
Months  
(1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
6.3 ESD Ratings  
VALUE  
±2000  
<250  
UNIT  
All pins except MBRST(15:0)  
Pins MBRST(15:0)  
Electrostatic  
V(ESD)  
Human-body model (HBM), per ANSI/  
ESDA/JEDEC JS-001(1)  
V
discharge  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is  
implied when operating the device above or below these limits.  
MIN NOM  
MAX UNIT  
VOLTAGE SUPPLY  
VCC  
Supply voltage for LVCMOS core logic(1)  
Supply voltage for LVDS receivers(1)  
Mirror Electrode and HVCMOS voltage(1) (2)  
Micromirror clocking pulse voltages(1)  
Supply voltage delta (absolute value)(3)  
3.0  
3.0  
3.3  
3.3  
8.5  
3.6  
3.6  
V
V
V
V
V
VCCI  
VOFFSET  
VMBRST  
|VCCIVCC  
8.25  
27  
8.75  
26.5  
0.3  
|
LVCMOS INTERFACE  
VIH  
High level input voltage  
1.7  
2.5  
VCC + 0.3  
0.7  
V
V
VIL  
Low level input voltage  
0.3  
IOH  
High level output current at VOH = 2.4 V  
Low level output current at VOL = 0.4 V  
PWRDNZ pulse width(4)  
mA  
mA  
ns  
20  
IOL  
15  
tPWRDNZ  
10  
SCP INTERFACE  
fSCPCLK  
SCP clock frequency(5)  
50  
0
500  
900  
kHz  
ns  
Propagation delay, clock to Q, from rising-edge of SCPCLK to valid  
SCPDO(6)  
tSCP_PD  
tSCP_DS  
tSCP_DH  
SCPDI clock setup time (before SCPCLK falling-edge)(6)  
SCPDI hold time (after SCPCLK falling-edge)(6)  
800  
900  
ns  
Time between falling-edge of SCPENZ and the first rising-edge of  
SCPCLK  
tSCP_NEG_ENZ  
1
us  
tSCP_POS_ENZ  
tSCP_PW_ENZ  
tr_SCP  
Time between falling-edge of SCPCLK and the rising-edge of SCPENZ  
SCPENZ inactive pulse width (high level)  
Rise time for SCP signals  
1
1
us  
1/fSCPCLK  
ns  
200  
200  
tfP  
Fall time for SCP signals  
ns  
LVDS INTERFACE  
fCLOCK  
Clock frequency for LVDS interface (all channels), DCLK(7)  
Input differential voltage (absolute difference)(8)  
Common mode voltage(8)  
320  
400  
330  
600  
MHz  
mV  
mV  
mV  
ps  
|VID  
|
100  
VCM  
1200  
VLVDS  
LVDS voltage(8)  
0
100  
100  
2000  
400  
400  
10  
tr  
Rise time (20% to 80%)  
tr  
Fall time (80% to 20%)  
ps  
tLVDS_RSTZ  
ZIN  
Time required for LVDS receivers to recover from PWRDNZ  
Internal differential termination resistance  
ns  
95  
105  
Ω
ENVIRONMENTAL  
Array temperature, long-term operational(9) (10) (11)  
Array temperature, short-term operational(10) (13)  
10  
0
40 to 70(12)  
10  
°C  
°C  
TARRAY  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP550JE  
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is  
implied when operating the device above or below these limits.  
MIN NOM  
MAX UNIT  
Window temperature operational(14)  
TWINDOW  
T|DELTA |  
85  
26  
°C  
°C  
Absolute temperature delta between any point on the window edge and  
the ceramic test point TP1(15)  
TDP-AVG  
TDP-ELR  
CTELR  
ILLUV  
Average dew point temperature (non-condensing)(16)  
Elevated dew point temperature range (non-condensing)(17)  
Cumulative time in elevated dew point temperature range  
Illumination wavelengths < 395 nm(9)  
28  
36  
°C  
°C  
28  
24 Months  
2.00 mW/cm2  
mW/cm2  
0.68  
ILLVIS  
ILLIR  
Illumination wavelengths between 395 nm and 800 nm  
Illumination wavelengths > 800 nm  
Thermally limited  
10 mW/cm2  
(1) All voltages are referenced to common ground VSS. VBIAS, VCC, VOFFSET, and VRESET power supplies are all required for proper DMD  
operation. VSS must also be connected.  
(2) VOFFSET supply transients must fall within specified max voltages.  
(3) To prevent excess current, the supply voltage delta |VCCI VCC| must be less than specified limit. See 9.  
(4) PWRDNZ input pin resets the SCP and disables the LVDS receivers. PWRDNZ input pin overrides SCPENZ input pin and tristates the  
SCPDO output pin.  
(5) The SCP clock is a gated clock. Duty cycle shall be 50% ± 10%. SCP parameter is related to the frequency of DCLK.  
(6) See 6-2.  
(7) See LVDS Timing Requirements in 6.7 and 6-5.  
(8) Refer to 6-7, 6-8, and 6-9.  
(9) Simultaneous exposure of the DMD to the maximum 6.4 for temperature and UV illumination reduces device lifetime.  
(10) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in 7-1 and the package 6.5 using the calculation in 7.4 .  
(11) Long-term is defined as the average over the usable life.  
(12) Per 6-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. See 7.5 for a definition of micromirror landed duty cycle.  
(13) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (for example, power-up).  
Short-term is defined as cumulative time over the usable life of the device and is less than 500 hours.  
(14) The locations of thermal test points TP2, TP3, TP4, and TP5 in 7-1 are intended to measure the highest window edge temperature.  
For most applications, the locations shown are representative of the highest window edge temperature. If a particular application  
causes additional points on the window edge to be at a higher temperature, test points should be added to those locations.  
(15) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst-case delta temperature. If a  
particular application causes another point on the window edge to result in a larger delta in temperature, that point should be used.  
(16) The average over time (including storage and operating) that the device is not in the "elevated dew point temperature range."  
(17) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
80  
70  
60  
50  
40  
30  
0/100  
100/0  
5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
65/35  
95/5  
90/10  
85/15  
80/20  
75/25  
70/30  
60/40  
55/45  
50/50  
Micromirror Landed Duty Cycle  
6-1. Maximum Recommended DMD TemperatureDerating Curve  
6.5 Thermal Information  
DLP550JE  
THERMAL METRIC  
FYA PACKAGE  
149 PINS  
0.60  
UNIT  
Thermal resistance, active array to test point 1 (TP1)(1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the 6.4.  
The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include  
light energy absorbed by the window aperture and electrical power dissipation of the array.  
Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal  
load in this area can significantly degrade the reliability of the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP550JE  
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
VCC = 3.0 V, IOH = 20 mA  
VCC = 3.6 V, IOL = 15 mA  
VCC = 3.6 V  
MIN  
TYP  
MAX  
UNIT  
V
VOH  
VOL  
IOZ  
High-level output voltage  
Low-level output voltage  
High impedance output current  
Low-level input current  
High-level input current(1)  
Current into VCC pin  
2.4  
0.4  
10  
V
µA  
µA  
µA  
mA  
mA  
mA  
Ω
IIL  
VCC = 3.6 V, VI = 0 V  
VCC = 3.6 V, VI = VCC  
VCC = 3.6 V  
60  
200  
531  
374  
25  
IIH  
ICC  
ICCI  
IOFFSET  
ZIN  
Current into VCC1 pin(2)  
Current into VOFFSET pin(3)  
Internal Differential Impedance  
VCCI = 3.6 V  
VOFFSET = 8.75 V  
95  
90  
105  
Line Differential Impedance (PWB or  
Trace)  
ZLINE  
100  
110  
Ω
CI  
Input capacitance(1)  
Output capacitance(1)  
f = 1 MHz  
f = 1 MHz  
10  
10  
pF  
pF  
pF  
CO  
CIM  
Input capacitance for MBRST[0:15] pins f = 1 MHz  
160  
210  
(1) Applies to LVCMOS pins only. Excludes LVDS pins and test pad pins  
(2) To prevent excess current, the supply voltage change |VCCI VCC| must be less than specified limits listed in the 6.4.  
(3) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than the specified limit in 6.4.  
6.7 Timing Requirements  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
NOM  
MAX  
UNIT  
LVDS (1)  
tc  
Clock Cycle for DLCK_A  
3.03  
3.03  
1.36  
1.36  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
1.51  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc  
Clock Cycle for DCLKC_B  
tw  
Pulse Duration DCLK_A  
1.52  
1.52  
tw  
Pulse Duration for DCLK_B  
tSU  
tSU  
tSU  
tSU  
tH  
Setup Time, D_A[0:15] before DCLK_A  
Setup Time, D_B[0:15] before DCLK_B  
Setup Time, SCTRL_A before DCLK_A  
Setup Time, SCTRL_B before DCLK_B  
Hold Time, D_A[0:15] after DCLK_A  
Hold Time, D_B[0:15] after DCLK_B  
Hold Time, SCTRL_A after DCLK_A  
Hold Time, SCTRL_B after DCLK_B  
Channel B relative to Channel A(2) (3)  
tH  
tH  
tH  
tskew  
1.51  
(1) See 6-5 for timing requirements for LVDS.  
(2) Channel A (Bus A) includes the following LVDS pairs: DCLK_AN and DCLK_AP, SCTRL_AN and SCTRL_AP, D_AN(15:0) and  
D_AP(15:0).  
(3) Channel B (Bus B) includes the following LVDS pairs: DCLK_BN and DCLK_BP, SCTRL_BN and SCTRL_BP, D_BN(15:0) and  
D_BP(15:0).  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
 
 
 
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
SCPCLK falling–edge capture for SCPDI.  
SCPCLK rising–edge launch for SCPDO.  
tSCP_NEG_ENZ  
tSCP_POS_ENZ  
50%  
50%  
SCPENZ  
tSCP_DS  
tSCP_DH  
50%  
50%  
DI  
SCPDI  
tC  
fSCPCLK = 1 / tC  
50%  
50%  
50%  
50%  
SCPCLK  
tSCP_PD  
50%  
DO  
SCPDO  
6-2. SCP Timing Parameters  
LVDS Interface  
SCP Interface  
1.0 * VCC  
1.0 * V  
ID  
V
CM  
0.0 * VCC  
0.0 * V  
ID  
tr  
tf  
tr  
tf  
Not to scale  
Refer to 6.7.  
Refer to 5 for list of LVDS pins and SCP pins.  
6-3. Rise Time and Fall Time  
Device pin  
output under test  
Tester channel  
CLOAD  
6-4. Test Load Circuit for Output Propagation Measurement  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP550JE  
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account.  
System design should use IBIS or other simulation tools to correlate the timing reference load to a system  
environment. See 6-4.  
6-5. Timing Requirements  
tf_SCP  
tr_SCP  
Input Controller VCC  
SCP_CLK,  
SCP_DI,  
SCP_EN  
VCC/2  
0 v  
6-6. Serial Communications Bus Waveform Requirements  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
Refer to LVDS Interface section of 6.4.  
Refer to 5 for list of LVDS pins.  
6-7. LVDS Voltage Definitions (References)  
VLVDS (v)  
VLVDSmax = VCM + |½VID|  
VLVDSmax  
Tf (20% - 80%)  
VLVDS = VCM +/- | 1/2 VID  
|
VCM  
VID  
Tr (20% - 80%)  
VLVDS min  
VLVDS min = 0  
Time  
Not to scale  
Refer to LVDS Interface section of the 6.4.  
6-8. LVDS Voltage Parameter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP550JE  
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
Refer to LVDS Interface section of the 6.4.  
Refer to 5 for list of LVDS pins.  
6-9. LVDS Equivalent Input Circuit  
6.8 Window Characteristics  
PARAMETER  
MIN  
NOM  
Corning Eagle  
XG  
Window material  
Window refractive index at wavelength 546.1 nm  
1.5119  
Window Transmittance, minimum within the wavelength range 420680 nm. Applies to all angles 0°30°  
97%  
97%  
AOI.(1) (2)  
Window Transmittance, average over the wavelength range 420680 nm. Applies to all angles 30°45°  
AOI.(1) (2)  
(1) Single-pass through both surfaces and glass.  
(2) Angle of incidence (AOI) is the angle between an incident ray and the normal to a reflecting or refracting surface.  
6.9 System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
Condition 1:  
Thermal Interface area(1)  
11.3  
11.3  
kg  
kg  
Electrical Interface area(1)  
Condition 2:  
Thermal Interface area(1)  
0
kg  
kg  
Electrical Interface area(1)  
22.6  
(1) Uniformly distributed within the area shown in 6-10  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
 
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
Electrical Interface Area  
Thermal Interface Area  
6-10. System Interface Loads  
6.10 Micromirror Array Physical Characteristics  
PARAMETER  
Number of active columns(1)  
VALUE  
1024  
768  
UNIT  
M
N
P
micromirrors  
Number of active rows(1)  
Micromirror (pixel) pitch(1)  
10.8  
µm  
mm  
Micromirror active array width(1)  
Micromirror active array height (1)  
Micromirror active array border(2)  
Micromirror pitch × number of active columns  
Micromirror pitch × number of active columns  
Pond of Micromirror (POM)  
11.059  
8.294  
10  
mm  
micromirrors/side  
(1) See 6-11.  
(2) The structure and qualities of the border around the active array includes a band of partially functional micromirrors referred to as the  
Pond Of Mirrors (POM). These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but  
still require an electrical bias to tilt toward OFF.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP550JE  
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
Refer to the 6.10 for M, N, and P specifications.  
6-11. Micromirror Array Physical Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
6.11 Micromirror Array Optical Characteristics  
PARAMETER  
MIN  
NOM  
MAX  
13  
UNIT  
Micromirror tilt angle, variation device to device (1) (2) (3) (4)  
11  
12  
degrees  
Adjacent micromirrors  
0
Number of out-of-specification micromirrors (5)  
micromirrors  
Non-adjacent  
micromirrors  
10  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Variation can occur between any two individual micromirrors located on the same device or located on different devices.  
(3) Additional variation exists between the micromirror array and the package datums. See package drawing.  
(4) See 6-12.  
(5) An out-of-specification micromirror is defined as a micromirror that is unable to transition between the two landed states.  
illumination  
Not To Scale  
0
1
2
3
On-State  
Tilt Direction  
Off-State  
45°  
Tilt Direction  
N œ 4  
N œ 3  
N œ 2  
N œ 1  
Refer to section 6.10 table for M, N, and P specifications.  
6-12. Micromirror Landed Orientation and Tilt  
6.12 Chipset Component Usage Specification  
Reliable function and operation of the DLP550JE DMD requires that it be used in conjunction with the other  
components of the applicable DLP chipset, including those components that contain or implement TI DMD  
control technology. TI DMD control technology consists of the TI technology and devices used for operating or  
controlling a DLP DMD.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP550JE  
 
 
 
 
 
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
7 Detailed Description  
7.1 Overview  
The DLP550JE is a 0.55 inch diagonal spatial light modulator which consists of an array of highly reflective  
aluminum micromirrors. Pixel array size and square grid pixel arrangement are shown in 6-11.  
The DMD is an electrical input, optical output micro-electrical-mechanical system (MEMS). The electrical  
interface is Low Voltage Differential Signaling (LVDS), Double Data Rate (DDR).  
The DLP550JE DMD consists of a two-dimensional array of 1-bit CMOS memory cells. The array is organized in  
a grid of M memory cell columns by N memory cell rows.  
The positive or negative deflection angle of the micromirrors can be individually controlled by changing the  
address voltage of underlying CMOS addressing circuitry and micromirror reset signals (MBRST).  
Each cell of the M × N memory array drives its true and complement (Qand QB) data to two electrodes  
underlying one micromirror, one electrode on each side of the diagonal axis of rotation. The micromirrors are  
electrically tied to the micromirror reset signals (MBRST) and the micromirror array is divided into reset groups.  
Electrostatic potentials between a micromirror and its memory data electrodes cause the micromirror to tilt  
toward the illumination source in a DLP projection system or away from it, thus reflecting its incident light into or  
out of an optical collection aperture. The positive (+) tilt angle state corresponds to an 'on' pixel, and the negative  
() tilt angle state corresponds to an 'off' pixel.  
Refer to 6.11 for the ± tilt angle specifications. Refer to the 5 for more information on micromirror clocking  
pulse (reset) control.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
7.2 Feature Description  
7.2.1 Power Interface  
The DMD requires 3 DC voltages: DMD_P3P3V, VOFFSET, and MBRST. DMD_P3P3V is created by the DLPA100  
power and motor driver and the DLPA200 DMD micromirror driver. Both the DLPA100 and DLPA200 create the  
main DMD voltages, as well as powering various peripherals (TMP411, I2C, and TI level translators).  
DMD_P3P3V provides the VCC voltage required by the DMD. VOFFSET (8.5V) and MBRST are made by the  
DLPA200 and are supplied to the DMD to control the micromirrors.  
7.2.2 Timing  
The data sheet provides timing analysis as measured at the device pin. For output timing analysis, the tester pin  
electronics and its transmission line effects must be considered. 6-4 shows an equivalent test load circuit for  
the output under test. Timing reference loads are not intended as a precise representation of any particular  
system environment or depiction of the actual load presented by a production test. TI suggests that system  
designers use IBIS or other simulation tools to correlate the timing reference load to a system environment. The  
load capacitance value stated is only for characterization and measurement of AC timing signals. This load  
capacitance value does not indicate the maximum load the device is capable of driving.  
7.3 Optical Interface and System Image Quality Considerations  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
System optical performance and image quality strongly relate to optical system design parameter trade offs.  
Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.3.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate  
apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the  
projection lens. The mirror tilt angle defines DMD capability to separate the "ON" optical path from any other light  
path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other  
system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt  
angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination  
numerical aperture angle (and vice versa), contrast degradation, and objectionable artifacts in the displays  
border and/or active area could occur.  
7.3.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the displays border and/or active area, which may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.3.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system  
should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately  
10% of the average flux level in the active area. Depending on the particular systems optical architecture,  
overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP550JE  
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
7.4 Micromirror Array Temperature Calculation  
TP2  
Array  
2X 12.0  
TP5  
TP4  
2X 16.7  
TP3  
Window Edge  
(4 surfaces)  
TP4  
TP3 (TP2)  
TP1  
TP5  
4.5  
16.1  
TP1  
7-1. Thermal Test Point Location  
7.4.1 Micromirror Array Temperature Calculation  
Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from  
measurement points on the outside of the package, the package thermal resistance, the electrical power, and  
the illumination heat load. The relationship between array temperature and the reference ceramic temperature  
(thermal test TP1 in 7-1) is provided by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAYTOCERAMIC  
QARRAY = QELECTRICAL + QILLUMINATION  
QILLUMINATION = (CL2W × SL)  
)
where  
TARRAY = Computed array temperature (°C)  
TCERAMIC = Measured ceramic temperature (°C), TP1 location in 7-1  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
RARRAYTOCERAMIC = Thermal resistance of package (specified in 6.5) from array to ceramic TP1(°C/  
Watts).  
QARRAY = Total DMD Power (electrical + absorbed) on array (Watts).  
QELECTRICAL = Nominal electrical power  
CL2W = Conversion constant for screen lumens to absorbed optical power on the DMD (W/lm) specified below  
SL = Measured ANSI screen lumens (lm)  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 1.4 W. The  
absorbed optical power from the illumination source is variable and depends on the operating state of the  
micromirrors and the intensity of the light source. The equations shown above are valid for a 1-chip DMD system  
with total projection efficiency through the projection lens from DMD to the screen of 87%.  
The conversion constant CL2W is based on the DMD micromirror array characteristics. It assumes a spectral  
efficiency of 300 lm/W for the projected light and illumination distribution of 83.7% on the DMD active array, and  
16.3% on the DMD array border and window aperture. The conversion constant is calculated to be 0.00274  
W/lm.  
Sample calculations:  
TCERAMIC = 55°C  
SL = 3000 lm  
QELECTRICAL = 1.4 W  
CL2W = 0.00274 W/lm  
QARRAY = 1.4 W + (0.00274 × 3000) = 9.62 W  
TARRAY = 55°C + (9.62 W × 0.6 C/W) = 60.8°C  
7.5 Micromirror Landed-on/Landed-Off Duty Cycle  
7.5.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the Onstate versus the amount of time the same  
micromirror is landed in the Offstate.  
As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On-state 100% of the  
time (and in the Off-state 0% of the time); whereas 0/100 would indicate that the pixel is in the Off-state 100% of  
the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (On or Off), the two numbers (percentages)  
always add to 100.  
7.5.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMDs micromirror array (also called the active array) to an asymmetric  
landed duty cycle for a prolonged period of time can reduce the DMDs usable life.  
Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed  
duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed  
duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP550JE  
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
7.5.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD Temperature and Landed Duty Cycle interact to affect the DMDs usable life, and this  
interaction can be exploited to reduce the impact that an asymmetrical Landed Duty Cycle has on the DMDs  
usable life. This is quantified in the de-rating curve shown in 6-1. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the maximum operating DMD Temperature at a given long-term average Landed  
Duty Cycle.  
7.5.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
will experience a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the  
pixel will experience a 0/100 Landed Duty Cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
7-1. Grayscale Value and Landed Duty Cycle  
GRAYSCALE VALUE  
LANDED DUTY CYCLE  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color  
cycle time for each primary color, where color cycle timeis the total percentage of the frame time that a  
given primary must be displayed in order to achieve the desired white point.  
During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% (1)  
×
Blue_Scale_Value)  
where  
Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_%, represent the percentage of the frame time that Red,  
Green, and Blue are displayed (respectively) to achieve the desired white point.  
For example, assume that the red, green, and blue color cycle times are 50%, 20%, and 30% respectively (in  
order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green,  
and blue color intensities would be as shown in 7-2.  
7-2. Example Landed Duty Cycle for Full-Color  
Red Cycle Percentage  
50%  
Green Cycle Percentage  
20%  
Blue Cycle Percentage  
30%  
Landed Duty Cycle  
Red Scale Value  
Green Scale Value  
Blue Scale Value  
0%  
100%  
0%  
0%  
0%  
0%  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
0%  
7/93  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
0%  
60%  
60%  
100%  
12%  
100%  
100%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP550JE  
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
Texas Instruments DLP technology is a micro-electromechanical system (MEMS) technology that modulates light  
using a digital micromirror device (DMD). The DMD is a spatial light modulator, which reflects incoming light from  
an illumination source to one of two directions, either towards the projection optics or the collection optics. The  
large micromirror array size and ceramic package provides great thermal performance for bright display  
applications. Typical applications using the DLP550JE include digital signage, educational projector, and  
business projector.  
The following orderables have been replaced by the DLP650JE:  
Device Information  
PART NUMBER  
DLP550JET  
1076-6434B  
1076-6438B  
1076-6439B  
1076-643AB  
PACKAGE  
FYA (149)  
FYA (149)  
FYA (149)  
FYA (149)  
FYA (149)  
BODY SIZE (NOM)  
32.20 mm × 22.30 mm  
32.20 mm × 22.30 mm  
32.20 mm × 22.30 mm  
32.20 mm × 22.30 mm  
32.20 mm × 22.30 mm  
MECHANICAL ICD  
2512194  
2512194  
2512194  
2512194  
2512194  
8.2 Typical Application  
The DLP550JE digital micromirror device (DMD), combined with a DLPC4430 digital controller and a DLPA100  
power management or a DLPA200 power management device, provides XGA resolution for bright, colorful  
display applications. A typical display system using the DLP550JE and additional system components is shown  
in Typical DLPC4430 Application (LED Top, LPCW Bottom).  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
12V  
12V  
1.21V  
1.8V  
3.3V  
5V  
1.21V  
1.8V  
3.3V  
5V  
DLPA100  
Controller  
PMIC  
DLPA100  
Controller  
PMIC  
Flash  
(23) (16)  
CW Driver  
CW Driver  
ADDR  
DATA  
Wheel Motor #2  
CTRL  
Wheel Motor #1  
CTRL  
CW_INDEX1  
CW_INDEX1  
FE CTRL  
DATA  
3D L/R  
CTRL  
2xLVDS  
SCP CTRL  
DLPC4430  
Controller  
Front End Device  
DLP DMD  
1.8 V  
USB CTRL  
GPIO  
1.15V  
1.8V  
3.3V  
VBIAS  
VOFFSET  
VRESET  
CTRL  
3.3V  
DMD PMIC  
(Power Management IC)  
(3)  
I2C  
EEPROM  
TI DLP chipset  
Third party component  
8-1. Typical DLPC4430 Application (LED Top, LPCW Bottom)  
8.2.1 Design Requirements  
The DLP550JE projection system is created by using the DMD chipset, including the DLP550JE, DLPC4430,  
DLPA100, and the DLPA200. The DLP550JE is used as the core imaging device in the display system and  
contains a 0.55-inch array of micromirrors. The DLPC4430 controller is the digital interface between the DMD  
and the rest of the system, taking digital input from front end receiver that converts the data from the source and  
using the converted data for driving the DMD over a high speed interface. The DLPA100 power management  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP550JE  
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
device provides voltage regulators for the controller and illumination functionality. The DLPA200 provides the  
power and sequencing to drive the DLP550JE.  
Other core components of the display system include an illumination source, an optical engine for the  
illumination and projection optics, other electrical and mechanical components, and software. The illumination  
source options include a lamp, LED, laser, or laser phosphor. The type of illumination used and desired  
brightness will have a major effect on the overall system design and size.  
8.2.2 Detailed Design Procedure  
For connecting the DLPC4430 display controller and the DLP550JE DMD, see the reference design schematic.  
For a complete DLP system, an optical module or light engine is required that contains the DLP550JE DMD,  
associated illumination sources, optical elements, and necessary mechanical components. The optical module is  
typically supplied by an OMM (optical module manufacturer) who specializes in designing optics for DLP  
projectors.  
To ensure reliable operation, the DLP550JE DMD must always be used with the DLPC4430 display controller, a  
DLPA100 PMIC driver, and a DLPA200 DMD micromirror driver.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP550JE  
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
9 Power Supply Recommendations  
9.1 DMD Power-Up and Power-Down Procedures  
The DLP550JE power-up and power-down procedures are defined by the DLPC4430 data sheet. The power  
supply guidelines are defined in the DLPA200 DMD Micromirror Driver Data Sheet. These procedures must be  
followed to ensure reliable operation of the device.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to the prescribed power-up and power-down procedures may affect  
device reliability. VCC, VCCI, VOFFSET, and VMBRST power supplies have to be coordinated during  
power-up and power-down operations. VSS must also be connected. Failure to meet any of these  
requirements results in a significant reduction in the DMDs reliability and lifetime.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP550JE  
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.1.2 Device Nomenclature  
DLP550JE FYA  
Package Type  
Device Descriptor  
10-1. Device Number Description  
10.1.3 Device Markings  
The device marking includes both human-readable information and a 2-dimensional matrix code. The human  
readable information is described in 10-2. The 2-dimensional matrix code is an alpha-numeric character string  
that contains the DMD part number, Part 1 of Serial Number, and Part 2 of Serial Number. The first character of  
the DMD Serial Number (part 1) is the manufacturing year. The second character of the DMD Serial Number  
(part 1) is the manufacturing month. The last character of the DMD Serial Number (part 2) is the bias voltage bin  
letter.  
Example: *1076-643AB GHXXXXX LLLLLLM  
TI Internal Numbering  
Part 2 of Serial Number  
(7 characters)  
Part 1 of Serial Number  
(7 characters)  
DMD Part Number  
2-Dimension Matrix Code  
(Part Number and Serial Number)  
10-2. DMD Marking (Device Top View)  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP550JE  
 
 
 
 
DLP550JE  
www.ti.com.cn  
ZHCSN33B NOVEMBER 2017 REVISED FEBRUARY 2023  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.2.1 Related Documentation  
The following documents contain additional information related to the chipset components used with the  
DLP470NE.  
DLPC4430 Display Controller Data Sheet  
DLPA100 Power and Motor Driver Data Sheet  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of TI.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP550JE  
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP550JEFYA  
ACTIVE  
CPGA  
FYA  
149  
33  
RoHS & Green  
NI-AU  
N / A for Pkg Type  
0 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLP550JEFYA

0.55-inch, XGA DLP® digital micromirror device (DMD) | FYA | 149 | 0 to 70
TI

DLP5530-Q1

适用于内部显示应用的 DLP® 汽车 0.55" 数字微镜器件 (DMD)
TI

DLP5530AFYKQ1

适用于内部显示应用的 DLP® 汽车 0.55" 数字微镜器件 (DMD) | FYK | 149 | -40 to 105
TI

DLP5530S-Q1

符合汽车功能安全标准的 DLP® 0.55 英寸数字微镜器件 (DMD)
TI

DLP5530SAFYSQ1

符合汽车功能安全标准的 DLP® 0.55 英寸数字微镜器件 (DMD)

| FYS | 149 | -40 to 105
TI

DLP5531-Q1

DLP® 汽车 0.55 英寸数字微镜器件 (DMD)
TI

DLP5531A-Q1

汽车类 0.55 英寸 DLP® 数字微镜器件 (DMD)
TI

DLP5531AAFYSQ1

Automotive 0.55-inch DLP® digital micromirror device (DMD) | FYS | 149 | -40 to 105
TI

DLP5531AFYKQ1

DLP® 汽车 0.55 英寸数字微镜器件 (DMD) | FYK | 149 | -40 to 105
TI

DLP5532-Q1

适用于内部显示和透明窗口显示的汽车类 0.55 英寸 DLP® 数字微镜器件
TI

DLP5532AFYSQ1

Automotive 0.55-inch DLP® digital micromirror device for interior and transparent window displays | FYS | 149 | -40 to 105
TI

DLP5533A-Q1

DLP® 汽车类 0.55 英寸数字微镜器件 (DMD)
TI