DLPA2005ERSLR [TI]

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs | RSL | 48 | -10 to 85;
DLPA2005ERSLR
型号: DLPA2005ERSLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs | RSL | 48 | -10 to 85

驱动 集成电源管理电路 接口集成电路
文件: 总56页 (文件大小:1910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
DLPA2005 电源管理和 LED/灯驱动器 IC  
1
1 特性  
高效红-绿-蓝三色 (RGB) 发光二极管 (LED)/灯驱动  
光传感器(用于白点修正)  
内部基准电压  
器,在小型芯片级封装中集成了降压/升压 DC-DC  
转换器、数字微镜器件 (DMD) 电源、数字电源外  
(DPP) 内核电源、1.8V 负载开关以及测量系统  
外部(热敏电阻)温度传感器  
监视和保护电路  
三个用于通道选择的低阻抗(27°C 时典型值为  
30mΩ)金属氧化物半导体场效应晶体管  
(MOSFET) 开关  
热模警告和热关断  
低电池电压警告  
可编程的电池欠压闭锁 (UVLO)  
负载开关 UVLO  
每个通道具有独立的 10 位电流控制  
针对 DLPA2005 嵌入式应用的最大 LED 电流为  
2.4A  
过流和欠压保护  
DMD 调节器  
DLPA2005 QFN 封装  
仅需一个电感器  
48 引脚 0.4mm 间距  
VOFS10V  
芯片尺寸:6.0mm × 6.0mm ± 0.15mm  
VBIAS18V  
2 应用  
VRST–14V  
DLP® Pico™投影仪  
DLP®移动传感  
当禁用时对接地 (GND) 被动放电  
DPP 1.1V 内核电源  
具有集成开关场效应晶体管 (FET) 的同步降压  
转换器  
3 说明  
DLPA2005 是一款专用于 DLP2010DLP2010NIR 和  
DLP3010 数字微镜器件 (DMD) 的电源管理多通道 IC  
(PMIC)/RGB LED/灯驱动器,与 DLPC3430、  
DLPC3433DLPC3435DLCP3438 DLPC150 数  
字控制器搭配使用。为确保这些芯片组可靠运行,必须  
DLPA2000 DLPA2005 搭配使用。  
支持高达 600mA 的输出电流  
VLED 降压/升压转换器  
轻负载电流状态下的省电模式  
低阻抗负载开关  
VIN 范围为 1.8V 3.6V  
支持高达 200mA 的电流  
器件信息(1)  
当禁用时对接地 (GND) 被动放电  
器件型号  
DLPA2005  
封装  
封装尺寸(标称值)  
DMD 复位信号生成和电源排序  
33MHz 串行外设接口 (SPI)  
用于测量模拟信号的多路复用器  
6.00mm × 6.00mm  
± 0.150mm  
VQFN (48)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
电池电压  
LED 电压,LED 电流  
DC_IN  
Charger  
BAT  
...  
2.3V-5.5V  
Projector Module Electronics  
DC Supplies  
1.8V  
VSPI  
Other  
Supplies  
1.8V  
1.1V  
1.8V  
1.1V  
Reg  
On/Off  
L3  
SYSPWR  
1.8V  
VDD  
HDMI  
VGA  
HDMI  
Receiver  
PROJ_ON  
PROJ_ON  
VLED  
Current  
Sense  
L1  
L2  
Triple  
ADC  
GPIO_8 (Normal Park)  
SPI_0  
Keystone  
Sensor  
DLPA2005  
FLASH  
Cal data  
(optional)  
4
Front-End  
Chip  
RED  
GREEN  
BLUE  
EEPROM  
SPI_1  
4
FLASH,  
SDRAM  
RESETZ  
INTZ  
I2C_1  
- OSD  
- AutoLock  
- Scaler  
PARKZ  
HOST_IRQ  
BIAS, RST, OFS  
3
LED_SEL(2)  
CMP_PWM  
Illumination  
Optics  
DLPC3430/  
DLPC3435  
WPC  
LABB  
- uController  
Keypad  
Parallel I/F  
28  
CMP_OUT  
eDRAM  
DLP2010  
DMD)  
SD Card  
Reader,  
etc.  
(optional)  
Thermistor  
I2C  
(WVGA  
Sub-LVDS DATA  
CTRL  
1.8V  
1.1V  
VIO  
VCC_INTF  
VCC_FLSH  
VCORE  
Spare R/W  
GPIO  
18  
TVP5151  
BT.656  
CVBS  
Video  
Decoder  
Included in DLP® Chip Set  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: DLPS047  
 
 
 
 
 
 
 
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 25  
7.5 Register Maps......................................................... 27  
Application and Implementation ........................ 38  
8.1 Application Information............................................ 38  
8.2 Typical Projector Application .................................. 38  
8.3 Typical Mobile Sensing Application ....................... 40  
Power Supply Recommendations...................... 43  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Data Transmission Timing Requirements............... 10  
6.7 Typical Characteristics............................................ 11  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 44  
10.1 Layout Guidelines ................................................. 44  
10.2 Layout Example .................................................... 44  
10.3 Thermal Considerations........................................ 45  
11 器件和文档支持 ..................................................... 46  
11.1 器件支持................................................................ 46  
11.2 ....................................................................... 46  
11.3 静电放电警告......................................................... 46  
11.4 Glossary................................................................ 46  
12 机械、封装和可订购信息....................................... 46  
7
4 修订历史记录  
Changes from Revision A (September 2014) to Revision B  
Page  
已更新标题.............................................................................................................................................................................. 1  
已添加 移动传感应用 .............................................................................................................................................................. 1  
Updated Detailed Description .............................................................................................................................................. 12  
Added new Typical Mobile Sensing application in Application Information ......................................................................... 38  
Changes from Original (August 2014) to Revision A  
Page  
已更新特性, 应用, 说明 ...................................................................................................................................................... 1  
已更改 器件状态产品预览量产数据并发布了完整文档................................................................................................ 1  
2
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
5 Pin Configuration and Functions  
DLPA2005 VQFN Package  
(BOTTOM VIEW)  
Package Marking DLPA2005  
(TOP VIEW)  
PGNDR  
SWN  
VINC  
12  
11  
10  
9
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PWM_IN  
PROJ_ON  
CMP_OUT  
VCORE  
SENS2  
VINR  
TI  
= TI LETTERS  
SPI_DOUT  
SPI_CSZ  
SPI_CLK  
INTZ  
YM = YEAR / MONTH DATE CODE  
LLLL = ASSY LOT CODE  
PAD2005  
A4  
8
S
= ASSEMBLY SITE CODE  
PER QSS 005-120  
7
LED_SEL0  
VSPI  
6
TI YMS$$  
LLLL G4  
$$  
= WAFER FAB CODE  
(1 or 2 CHARACTERS)  
=pin 1 Marking  
AGND1  
RESETZ  
SPI_DIN  
VINL  
5
SENS1  
4
LED_SEL1  
V6V  
3
2
VINL  
RLIM_K  
1
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
1
2
VINL  
I
Power supply input for VLED BUCK-BOOST power stage. Connect to system power.  
SPI_DIN  
RESETZ  
AGND1  
INTZ  
3
I
SPI data input  
4
O
Reset output to the DLP system (active low). Pin is held low to reset DLP system.  
Analog ground. Connect to ground plane.  
5
GND  
6
O
Interrupt output signal (open drain). Connect to pullup resistor or short to ground.  
Clock input for SPI interface  
SPI_CLK  
SPI_CSZ  
7
I
8
I
SPI chip select (active low)  
SPI_DOUT  
VINR  
9
O
SPI data output  
10  
11  
12  
13  
14  
15  
I
I
Power supply input for DMD switch mode power supply (SMPS). Connect to system power.  
Connection for the DMD SMPS-inductor (high-side switch).  
Power ground for DMD SMPS. Connect to ground plane.  
Connection for the DMD SMPS-inductor (low-side switch).  
Connection to VRST for fast discharge function  
VBIAS output rail. Connect to ceramic capacitor.  
SWN  
PGNDR  
SWP  
GND  
O
CNTR_VRST  
VBIAS  
O
O
Previously reference pin for the VRST regulator. On A4 design this reference is internal to  
DLPA2005 chip.  
No Connect  
16  
I
VOFS  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
O
VOFS output rail. Connect to ceramic capacitor.  
VINA  
POWER Power supply input for sensitive analog circuitry  
V2V5  
O
Internal supply filter pin for digital logic; typical 2.5 V  
Ground connection to be connected to ground plane.  
Load switch  
GND  
GND  
LS_OUT  
LS_IN  
PGNDC  
SWC  
O
I
Load switch  
GND  
Power ground for VCORE BUCK  
I/0  
Connection for 1.1-V BUCK inductor  
VINC  
I
I
I
Power supply input for VCORE BUCK power stage. Connect to system power.  
Reference voltage input for analog comparator.  
Input signal to enable or disable the IC and DLP projector.  
PWM_IN  
PROJ_ON  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
CMP_OUT  
VCORE  
SENS2  
NUMBER  
28  
29  
30  
31  
32  
33  
34  
35  
O
I
Analog-comparator output.  
VCORE BUCK converter feedback pin.  
I
Input signal from temperature sensor.  
LED_SEL0  
VSPI  
I
Digital input to the RGB Strobe Decoder  
I
Power supply input for SPI interface. Connect to system I/O voltage.  
Input signal from light sensor.  
SENS1  
I
LED_SEL1  
V6V  
I
Digital input to the RGB Strobe Decoder  
O
Internal supply filter pin for gate driver circuitry. Typical 6.25 V  
Kelvin sense connection to top side of LED current sense resistor.  
RLIM_K  
36  
I
For best accuracy, route this trace directly to the top of the current sense resistor and  
separate it from the normal trace from the current sense resistor to the RLIM pins.  
SW6  
SW5  
SW4  
37  
38  
39  
O
O
O
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
Connection to LED ‘current sense’ resistor.  
Bottom side of sense resistor is connected to GND.  
RLIM  
40  
O
VLED  
L2  
41 / 42  
43 / 44  
45 / 46  
47 / 48  
O
I
VLED BUCK-BOOST converter output pin.  
Connection for VLED BUCK-BOOST inductor.  
Power ground for VLED BUCK-BOOST. Connect to ground plane.  
Connection for VLED BUCK-BOOST inductor.  
PGNDL  
L1  
GND  
O
4
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–18  
MAX  
7
UNIT  
V
Input voltage at VINL, VINA, VINR, VINC  
Ground pins to system ground  
Voltage at SWN  
0.3  
7
V
V
Voltage at SWP, VBIAS  
–0.3  
–0.3  
–0.3  
–0.3  
20  
12  
7
V
Voltage at VOFS  
V
Voltage at V6V, VLED, L1, L2, SWC, SW4, SW5, SW6, INTZ, PROJ_ON  
Voltage at all pins, unless noted otherwise  
Source current RESETZ, CMP_OUT  
Source current SPI_DOUT  
V
3.6  
1
V
mA  
mA  
mA  
mA  
5.5  
1
Sink current RESETZ, CMP_OUT  
Sink current SPI_DOUT, INTZ  
Peak output current  
5.5  
Internally limited  
Internally limited by thermal  
shutdown  
Continuous total power dissipation  
TJ  
Tstg  
Operating junction temperature  
Storage temperature  
–30  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions . Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted).  
MIN  
2.7  
NOM  
3.6  
MAX UNIT  
Full functional and parametric performance  
6
6
V
Input voltage at VINL, VINA,  
VINR, VINC,  
Extended operating range, limited parametric performance  
2.3  
3.6  
Voltage at VSPI  
1.65  
–10  
–10  
1.8  
3.6  
85  
V
Operational ambient temperature  
Operational junction temperature  
°C  
°C  
120  
6.4 Thermal Information  
DLPA2005  
THERMAL METRIC(1)  
UNIT  
°C/W  
RSL (48 PINS)  
RθJA  
Junction-to-ambient thermal resistance(2)  
27.9  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) Estimated when mounted on high K JEDEC board per JESD 51-7 with thickness of 1.6 mm, 4 layers, size of 76.2 mm × 114.3 mm, and  
2-oz. copper for top and bottom plane. Actual thermal impedance will depend on PCB used in the application.  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
 
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted) (see  
(1)(2)(3)  
)
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
SUPPLIES  
INPUT VOLTAGE  
Input voltage range  
Extended input voltage range(1)  
Low-battery warning threshold  
Hysteresis  
2.7  
2.3  
3.6  
3.6  
3
6
V
6
VIN  
VINA, VINR, VINL, VINC  
VINA falling  
V
VLOW_BAT  
VINA rising  
100  
mV  
Undervoltage lockout threshold  
Hysteresis  
VINA falling (through 5-bit trim function)  
VINA rising  
2.3  
2.5  
4.5  
V
mV  
V
Vhys(UVLO)  
100  
VSTARTUP  
Startup voltage  
VBIAS, VOFS, VRST; loaded with 2 mA  
INPUT CURRENT  
IQ  
ACTIVE mode  
STANDBY mode  
IDLE mode  
Motor current excluded  
15  
900  
10  
mA  
µA  
µA  
ISTD  
IIDLE  
INTERNAL SUPPLIES  
VV6V  
Internal supply, analog  
6.25  
100  
2.5  
V
nF  
V
CLDO_V6V  
VV2V5  
Filter capacitor for V6V LDO  
Internal supply, logic  
CLDO_V2V5  
Filter capacitor for V2V5 LDO  
2.2  
µF  
DMD REGULATOR  
Switch E (from VINR to SWN)  
Switch F (from SWP to PGNDR)  
1000  
320  
RDS(ON) MOSFET ON-resistance  
mΩ  
Switch G(2) (from SWP to VBIAS[2])  
VINR = 5 V, VSWP = 2 V, IF = 100 mA  
1.3  
1.3  
VFW  
Forward voltage drop  
V
Switch H (from SWP to VOFS)  
VINR = 5 V, VSWP = 2 V, IF = 100 mA  
tDIS  
tPG  
ILIMIT  
L
Rail discharge time  
Power-good timeout  
Switch current limit  
Inductor value  
VIN = 2.9 V; COUT = 110 nF  
Not tested in production  
40  
µs  
ms  
mA  
µH  
6
312  
10  
VOFS REGULATOR  
Output voltage  
10  
V
DC output voltage accuracy  
DC load regulation  
IOUT = 2 mA  
–2%  
2%  
VOFS  
VIN = 3.6 V, IOUT = 0 to 2 mA  
–19  
35  
V/A  
VINA, VINL, VINR, VINC 2.7 to 6 V, IOUT = 2  
mA  
DC line regulation  
mV/V  
VRIPPLE  
IOUT  
Output ripple  
VIN = 3.6 V, IOUT = 2 mA, COUT = 440 nF(4)  
375  
mVpp  
mA  
Output current  
0
3
VOFS rising  
86%  
66%  
100  
Power-good threshold  
(fraction of nominal output voltage)  
PG  
VOFS falling  
RDIS  
Output discharge resistor  
Active when rail is disabled  
Ω
Recommended value (output capacitors for  
VOFS / VBIAS must be equal)  
110  
100  
220  
nF  
nF  
COUT  
Output capacitor  
tDISCHARGE < 40 µs at 2.9 V  
110  
(1) Fully functional but limited parametric performance  
(2) Including rectifying diode  
(3) Typicals are at 25 C.  
(4) To reduce ripple the COUT can be increased. VRIPPLE is inversely proportional to COUT  
.
6
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (see (1)(2)(3)  
)
PARAMETER  
VBIAS REGULATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output voltage  
18  
V
DC output voltage accuracy  
DC Load regulation  
IOUT = 2 mA  
–2%  
2%  
VBIAS  
VIN = 3.6 V, IOUT = 0 to 2 mA  
–14  
18  
V/A  
VINA, VINL, VINR, VINC 2.7 to 6 V, IOUT = 2  
mA  
DC Line regulation  
mV/V  
mVpp  
VIN = 3.6 V, IOUT = 2 mA, COUT = 440 nF  
VRIPPLE  
IOUT  
Output ripple  
375  
(4)  
(see  
)
Output current  
0
4
mA  
VBIAS rising  
86%  
66%  
100  
Power-good threshold  
(fraction of nominal output voltage)  
PG  
VBIAS falling  
RDIS  
Output discharge resistor  
Active when rail is disabled  
Ω
Recommended value (output capacitors for  
VOFS / VBIAS must be equal)  
110  
100  
220  
COUT  
Output capacitor  
nF  
tDISCHARGE < 40 µs at 2.9 V  
110  
3%  
VRST REGULATOR  
Output voltage  
–14  
V
DC output voltage accuracy  
DC load regulation  
IOUT = 2 mA  
–3%  
VRST  
VIN = 3.6 V, IOUT = 0 to 2 mA  
13  
V/A  
VINA, VINL, VINR, VINC 2.7 to 6 V, IOUT = 2  
mA  
DC line regulation  
Output ripple  
–21  
mV/V  
VIN = 3.6 V, IOUT = 2 mA, COUT = 440 nF  
VRIPPLE  
375  
500  
mVpp  
(4)  
(see  
)
VREF_VRST  
IOUT  
Reference voltage  
Output current  
mV  
mA  
0
4
VRST rising  
90%  
90%  
±150  
220  
Power-good threshold (fraction of  
nominal output voltage)  
PG  
VRST falling  
RDIS  
Output discharge resistor  
Output capacitor  
Active when rail is disabled  
Ω
110  
100  
COUT  
nF  
tDISCHARGE < 70 µs at VBAT 2.7 V  
110  
LED DRIVER  
VLED BUCK-BOOST  
Output voltage range  
1.2  
5.5  
3.5  
5.4  
7
VLED  
V
Default output voltage  
Output overvoltage protection  
Fault detection threshold  
Switch current limit  
SW4, SW5, SW6 in OPEN position  
Clamps buck-boost output  
3.5  
VOVP  
V
V
A
VLED_OVP  
ISW  
Triggers VLED_OVP interrupt  
5.4  
4.0  
4.5  
Switch A (from VINL to L1)  
Switch B (from L1 to PGNDL)  
Switch C (from L2 to PGNDL)  
Switch D (from L2 to VLED)  
50  
50  
RDS(ON)  
MOSFET ON-resistance  
mΩ  
50  
50  
fSW  
Switching frequency  
Output capacitance  
2.25  
2 × 22  
MHz  
µF  
COUT  
RGB STROBE CONTROLLER SWITCHES  
RDS(ON)  
ILEAK  
Drain-source ON-resistance  
OFF-state leakage current  
SW4, SW5, SW6  
VDS = 5 V  
30  
75  
1
mΩ  
µA  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (see (1)(2)(3)  
)
PARAMETER  
LED CURRENT CONTROL  
TEST CONDITIONS  
MIN  
TYP  
Vƒ  
LED forward voltage  
4.55  
V
VIN 4.50 V, VLED 4.8 V; (closed loop  
operation)  
Covers USB power and 5 V AC adapter  
Current at max. code 0x3CBh for  
SWx_IDAC[9:0]  
2200  
2400  
2600  
RLIM =39mΩ, 0.1%, TA 45°C (see register  
settings)  
LED Currents  
mA  
VIN 2.7 V, VLED 4.8 V, (closed loop  
operation)  
Covers single cell Li-ion battery with high  
current loading  
Current at max. code 0x20Eh for  
SWx_IDAC[9:0]  
1300  
ILED  
RLIM = 39 mΩ, 0.1%, TA=25 C (see register  
settings)  
DC current accuracy, SW4, 5, 6  
Transient LED current limit range  
RLIM = 39 mΩ  
±100  
333  
mA  
mA  
ILIM[3  
:0] =  
0000  
at RLIM = 39 mΩ  
ILIM[3  
:0] =  
3846  
1111  
ILED from 5% to 95%, ILED = 300 mA,  
Transient current limit disabled  
Not tested in production  
trise  
Current rise time  
50  
µs  
1.1-V REGULATOR  
VCORE (BUCK)  
VIN  
Input voltage  
2.3  
6
V
V
Nominal fixed output voltage  
1.1  
VOUT  
0 mA IOUT 600 mA at VIN > 2.5 V  
VOUT = 1.1 V  
DC output voltage accuracy  
–1.5%  
1.5%  
d
Maximum duty cycle  
100%  
380  
Low-side MOSFET on-resistance  
High-side MOSFET on-resistance  
Output current  
185  
240  
300  
1
mΩ  
mΩ  
mA  
A
RDS(ON)  
VIN = 3.6 V, TJ = 27ºC  
VIN > 2.3 V  
480  
IOUT  
600  
ILIMIT  
Switch current limit  
Time to ramp from 10% to 90% of VOUT, VIN  
= 3.6 V  
tSS  
Soft-start time  
250  
µs  
COUT  
Output capacitance  
Nominal Inductance  
10  
µF  
µH  
L
2.2  
LOAD SWITCH  
VIN  
Input voltage range  
LS_IN  
1.8  
3.6  
385  
12  
V
RDS(ON)  
P-channel MOSFET on-resistance  
Output capacitor  
VIN = 1.8 V, over full temperature range  
340  
10  
mΩ  
µF  
Ceramic  
Ceramic  
4.7  
5
COUT  
ESR of output capacitor  
20  
500  
mΩ  
MEASUREMENT SYSTEM (AFE)  
AFE_GAIN[1:0] = 01  
AFE_GAIN[1:0] = 10  
AFE_GAIN[1:0] = 11  
1.0  
9.5  
18  
G
Amplifier gain (PGA)  
V/V  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (see (1)(2)(3)  
)
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PGA, AFE_CAL_DIS = 1  
Not tested in production  
–1  
1
mV  
1.5  
VOFS  
Input referred offset voltage  
Comparator  
Not tested in production  
–1.5  
To 1% of final value (not tested in  
production)  
15  
µs  
52  
tsettle  
Settling time  
To 0.1% of final value (not tested in  
production)  
ƒsample  
Sampling rate  
Not tested in production  
19  
kHz  
LOGIC LEVELS AND TIMING CHARACTERISTICS  
IO = 0.5-mA sink current  
(RESETZ, CMP_OUT)  
0
0
0.3  
VOL  
Output low-level  
V
IO = 5-mA sink current  
(SPI_DOUT, INTZ)  
0.3 ×  
VSPI  
IO = 0.5-mA source current  
(RESETZ, CMP_OUT)  
1.3  
2.5  
VOH  
Output high-level  
Input low-level  
V
IO = 5-mA source current  
(SPI_DOUT)  
0.7 ×  
VSPI  
VSPI  
0.4  
PROJ_ON, LED_SEL0, LED_SEL1  
SPI_CSZ, SPI_CLK, SPI_DIN  
PROJ_ON, LED_SEL0, LED_SEL1  
SPI_CSZ, SPI_CLK, SPI_DIN  
0
VIL  
V
V
0.3 ×  
VSPI  
0
1.2  
VIH  
Input high-level  
Input bias current  
Deglitch time  
0.7 ×  
VSPI  
VSPI  
0.5  
IBIAS  
VIO = 3.3 V, any input pin  
µA  
ms  
PROJ_ON, (not tested in production)  
1
tDEGLITCH  
LED_SEL0, LED_SEL1 pins (not tested in  
production)  
300  
ns  
INTERNAL OSCILLATOR  
Oscillator frequency  
Frequency accuracy  
THERMAL SHUTDOWN  
9
MHz  
ƒOSC  
TA = –30 to 85°C  
–10%  
10%  
Thermal warning (HOT threshold)  
120  
10  
TWARN  
°C  
°C  
Hysteresis  
Thermal shutdown (TSD threshold)  
Hysteresis  
150  
15  
TSHTDWN  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
 
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
6.6 Data Transmission Timing Requirements  
VBAT = 3.6 ± 5%, TA = 25 ºC, CL = 10 pF (unless otherwise noted)  
MIN  
0
TYP  
MAX  
UNIT  
MHz  
ns  
ƒCLK  
tCLKL  
tCLKH  
tt  
Serial clock frequency  
36  
Pulse width low, SPI_CLK, 50% level  
Pulse width high, SPI_CLK, 50% level  
Transition time, 20% to 80% level, all signals  
SPI_CSZ falling to SPI_CLK rising, 50% level  
SPI_CLK falling to SPI_CSZ rising, 50% level  
SPI_DIN data setup time, 50% level  
SPI_DIN data hold time, 50% level  
SPI_DOUT data setup time(1)), 50% level  
SPI_DOUT data hold time(1), 50% level  
SPI_CLK falling to SPI_DOUT data valid, 50% level  
SPI_CSZ rising to SPI_DOUT HiZ  
10  
10  
0.2  
8
ns  
4
1
ns  
tCSCR  
tCFCS  
tCDS  
tCDH  
tiS  
ns  
ns  
7
6
ns  
ns  
10  
0
ns  
tiH  
ns  
tCFDO  
tCSZ  
13  
6
ns  
ns  
(1) The DLPC3430/DLPC3435 processors send and receive data on the falling edge of the clock.  
SPI_CSZ  
(SS)  
tCSCR  
tCLKL  
tCLKH  
tCFCS  
SPI_CLK  
(SCLK)  
tCDS  
tCDH  
SPI_DIN  
(MOSI)  
tCFDO  
tiH  
tCSZ  
tiS  
SPI_DOUT  
(MISO)  
HiZ  
HiZ  
Figure 1. SPI Timing Diagram  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
6.7 Typical Characteristics  
The maximum output current of the buck-boost is a function of input voltage (VIN), and output voltage (VLED).  
The relationship between VIN, VLED, and MAX ILED is shown in Figure 2. Please note that VLED is the output  
of the buck-boost regulator, which includes the voltage drop across the sense resistor RLIM (39 mOhms typical),  
internal strobe control switch (75 mΩ max), and the forward voltage of the LED. For example, to drive 2.4 A of  
current through a LED with Vƒ = 4.8 V using the DLPA2005, the minimum input voltage needs to be 4.5 V.  
2.3 V < VLED < 4.8 V  
Figure 2. Maximum LED Output Current as a Function of  
Input Voltage (VIN) and Buck-Boost Output Voltage (VLED)  
NOTE  
Measured on a typical unit. VLED is the output of the buck-boost regulator and includes  
the voltage drop across the sense resistor, internal strobe control switch, and the forward  
voltage of the LED.  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
 
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DLPA2005 is a power management and LED driver IC optimized for DLP video and data display systems.  
DLPA2005 is part of the chipset comprising of either DLP2010 (.2WVGA) DMD and DLPC3430/DLPC3435  
controller, the DLP2010NIR (.2WVGA-NIR) DMD and DLPC150 controller, or the DLP3010 (.3 720p) DMD and  
DLPC3433/DLPC3438 controller. The DLPA2005 contains a complete LED driver including high efficiency power  
convertors. The DLPA2005 can supply up to 2.4 A per LED. Integrated high-current switches are included for  
sequentially selecting R, G, and B LEDs. The DLPA2005 also contains three regulated DC supplies for the DMD  
reset circuitry: VBIAS, VRST and VOFS, as well as a regulated DC supply of 1.1 V and a load switch for the 1.8  
V to support the controllers. The DLPA2005 has a SPI used for setting the configuration. Using SPI, currents can  
be set independently for each LED with 10-bit resolution. Other features included are the generation of the  
system reset, power sequencing, input signals for sequentially selecting the active LED, IC self-protections, and  
an analog MUX for routing analog information to an external ADC.  
7.2 Functional Block Diagram  
VINA  
V2V5  
V6V  
REFERENCE  
SYSTEM  
VREF  
VLED  
From system power  
LDO_V2V5  
LDO_V6V  
2.2µ  
1µ  
UVLO  
VREF  
VLED_OVP  
100n  
LOW_BAT  
VREF  
VINL  
L1  
From system power  
GND  
A
B
C
D
SET_LOW_BAT_USB  
1µ  
PGNDL  
L2  
VLED  
BUCK-BOOST  
AFE_GAIN [1:0]  
AFE_SEL[3:0]  
2.2µ  
VINA/3  
VLED/3  
SW4  
AFE  
PWM_IN  
From host  
To host  
SW5  
CMP_OUT  
SW6  
RLIM_K  
VREF  
VLED  
MUX  
22µ  
22µ  
SW4  
SW5  
SW6  
SENS1  
SENS2  
From light sensor  
RGB  
From temperature sensor  
STROBE  
DECODER  
RLIM  
VINR  
RLIM  
From system power  
VRST  
RLIM_K  
E
10µ  
SWN  
SWP  
220n  
VINC  
SWC  
10µ  
From system power  
H
CNTR_VRST  
G
2.2uH  
Vout DCDC1 (0.9-1.2V @ 450mA)  
F
DMD  
RESET  
REGULATORS  
VCORE  
BUCK  
220n  
220n  
PGNDR  
VBIAS  
VOFS  
10µF  
GND  
VBIAS  
VOFS  
VCORE  
LS_IN  
from any 1.8V-3.3V supply  
to system load  
LS_OUT  
Load Switch  
10mF  
V2V5  
PROJ_ON  
LED_SEL0  
LED_SEL1  
RESETZ  
From host  
From host  
From host  
To system  
0.1u  
DIGITAL  
CORE  
VSPI  
SPI_CSZ  
SPI_CLK  
SPI_DIN  
VIO (depends on DPP requirements)  
5k  
From host  
From host  
INTZ  
GND  
To DPP (optional)  
From host  
From host  
SPI  
SPI_DOUT  
To host  
A. Pin names refer to DLPA2005 pinout  
B. Pins connected to ‘system power’ can be locally decoupled with the capacity as indicated in the block diagram. At  
least adequate decoupling capacity (50 μF or more) should be connected at the location the supply is entering the  
board.  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
7.3 Feature Description  
7.3.1 DMD Regulators  
DLPA2005 contains three switch-mode power supplies that power the DMD. These rails are VOFS, VBIAS, and  
VRST. After pulling the PROJ_ON pin high, the DMD is first initialized followed by a power-up of the VOFS line  
after a small delay of less than 10 ms followed by VBIAS and VRST with an additional delay of 145 ms. The LED  
driver and STROBE DECODER circuit can only be enabled after all three rails are enabled. There are two  
power-down sequences, the normal power-down timing initiated after pulling the PROJ_ON pin low, and a fast  
power-down mode where if any one of the rails encounters a fault such as an output short, all three rails are  
discharged simultaneously. The detailed power-up and power-down diagrams are shown in Figure 3 and  
Figure 4.  
5 ms (min)  
System Power  
(VINx)  
10 ms  
25 ms  
PROJ_ON  
DMD_EN  
in register 0x01h  
V2V5  
Stop Regulating  
VBIAS  
VBIAS  
Pad DMD_EN  
by DPP through  
VOFS  
SPI write  
VRST  
Stop Regulating  
VRST  
10 ms  
DMD  
initialization  
by DPP  
10 ms  
145 ms  
10 ms  
VCORE  
LS_OUT (1.8 V)  
VLED  
INTZ  
Startup DPP  
RESETZ  
ACTIVE1  
OFF  
STANDBY  
ACTIVE2  
OFF  
STATE  
Figure 3. Power Sequence Normal Shutdown Mode  
NOTE  
All values are typical (unless otherwise noted).  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
 
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Feature Description (continued)  
Fault Condition  
5 ms (min)  
System Power  
(VINx)  
PROJ_ON  
DMD_EN  
in register 0x01h  
V2V5  
Stop Regulating  
VBIAS  
VBIAS Delay  
VBIAS  
Pad DMD_EN  
by DPP through  
VOFS  
VOFS  
Delay  
SPI write  
VRST  
VRST Delay  
10 ms  
DMD  
initialization  
by DPP  
10 ms  
145 ms  
Stop Regulating  
VRST  
10 ms  
VCORE  
LS_OUT (1.8V)  
VLED  
INTZ  
Startup DPP  
RESETZ  
RESETZ Delay  
ACTIVE1  
OFF  
STANDBY  
ACTIVE2  
STANDBY  
STATE  
(1) If the FAULT condition happens and its associated interrupt is masked in the Interrupt Mask Register (0Dh), the INTZ  
does not go low, but all other timing shown in the diagram is unaffected.  
Figure 4. Power Sequence Fault Shutdown Mode  
NOTE  
All values are typical (unless otherwise noted).  
7.3.2 RGB Strobe Decoder  
DLPA2005 contains RGB color-sequential circuitry that is composed of three NMOS switches, the LED driver,  
the strobe decoder, and the LED current control. The NMOS switches are connected to the terminals of the  
external LED package and turn the currents through the LEDs on and off. Package connections are shown in  
Figure 5 and Figure 9 and corresponding switch map in Table 1.  
The LED_SEL[1:0] signals typically receive a rotating code switching from RED to GREEN to BLUE and then  
back to RED. When the LED_SEL[1:0] input signals select a specific color, the NMOSFETs are controlled based  
on the color selected, and a 10-bit current control DAC for this color is selected that provides a control current to  
the RGB LEDs feedback control network.  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Feature Description (continued)  
VLED  
SW4  
SW5  
SW6  
R
G
B
SW4  
SW5  
SW6  
RLIM  
RLIM_K  
RLIM  
RBOT_K  
Figure 5. Switch Connection for a Common-Anode LED Assembly  
Table 1. Switch Positions for Common Anode RGB LEDs (MAP = 0)  
Common Anode  
LED_SEL[1:0]  
0x00h  
SW6  
Open  
Open  
Open  
Closed  
SW5  
Open  
Open  
Closed  
Open  
SW4  
Open  
Closed  
Open  
Open  
IDAC Input  
N/A  
0x01h  
SW4_IDAC[9:0]  
SW5_IDAC[9:0]  
SW6_IDAC[9:0]  
0x02h  
0x03h  
The switching of the three NMOS switches is controlled such that switches are returned to the open position first  
before the closed connections are made (break before make). The dead time between opening and closing  
switches is controlled through the BBM register. Switches that already are in the closed position (and are to  
remain in the closed state according to the SWCNTRL register) are not opened during the BBM delay time.  
BBM dead time  
SW6  
SW4  
SW5  
SW6  
SW4  
TIME  
Figure 6. BBM Timing (See Register 0Bh in Table 20)  
7.3.3 LED Current Control  
DLPA2005 provides time-sequential circuitry to drive three LEDs with independent current control. A system  
based on a common anode LED configuration is shown in Figure 9 and consists of a buck-boost converter,  
which provides the voltage to drive the LEDs, three switches connected to the cathodes of the LEDs, an RLIM  
resistor used to sense the LED current, and a current DAC to control the LED current. The voltage measured at  
the pin V(RLIM_K) is used by the regulator loop.  
The STROBE DECODER controls the switch positions as described in the previous section (RGB Strobe  
Decoder ). With all switches in the open position, the buck-boost output assumes an output voltage of 3.5 V.  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
 
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
For a common-anode RGB LED configuration, the buck-boost output voltage (VLED) assumes a value such that  
the voltage drop across the sense resistor equals  
SPACE  
(SW4_IDAC[9:0]Ivalue + ILED) × RLIM  
(1)  
SPACE  
when SW4 is closed. The exact value of VLED depends on the current setting and the voltage drop across the  
LED but is limited to 5.4 V. When the STROBE decoder switches from SW4 to SW5, the buck-boost assumes a  
new output voltage such that the sense voltage equals:  
SPACE  
(SW5_IDAC[9:0]Ivalue + ILED) × RLIM  
(2)  
SPACE  
and finally when SW6 is selected.  
SPACE  
(SW6_IDAC[9:0]Ivalue + ILED) × RLIM  
(3)  
SPACE  
7.3.4 Maximum Led Currents and Efficiency Considerations  
The DLPA2005 comprises a buck-boost power converter to supply the appropriate VLED to the LEDs. The  
maximum obtainable LED current for a given LED forward voltage are limited by three items:  
The inherent maximum LED current of the PAD2005, i.e. for DAC setting 03FFh.  
The maximum input current of about 4 A.  
The converter efficiency.  
Junction and ambient temperature  
In the Figure 2 graph the LED current versus DAC setting is given for several supply voltages (VIN). The load  
was configured for each supply case such that at the maximum attainable current VOUT max=4.8 V.  
For the higher supply voltages VIN>4.5 V the DAC current increases linearly up to the max setting of 3FFh. At  
that setting the ILED is about 2.5 A. For VIN=2.3 V and VIN=2.7 V the LED current is typically limited to 0.9 A  
and 1.3 A, respectively. Main reason of this limitation is the maximum input current in combination with the  
limited converter efficiency. This can be understood by looking at the equation describing the power conversion:  
SPACE  
VOUT IOUT  
=heff VIN IIN  
This equation states that the output power of the converter is equal to the input power times the converter  
efficiency. As indicated above, the input current IIN of the power converter is maximized to about 4A. The neff is  
the efficiency of the power converter, as described further down this section. For the lower input voltage the  
power converter runs as a boost converter.  
(VOUT=4.8 V). Assuming 100% efficiency, VIN=2.3 V, VOUT=4.8 V and IINmax=4 A, the maximum attainable  
ILED is:  
heff VIN IIN  
12.3V 4A  
4.8V  
ILED  
=
=
=1.9A  
VOUT  
For the power converter approaching the maximum input current, the efficiency can roll down significantly. As a  
result the maximum LED current for VIN=2.3 V and VOUT=4.8 V is about 0.9 A.  
The efficiency of the power converter depends on the input supply voltage and the output loading, i.e. output  
voltage and output current. In the below graph efficiency curves as a function of the LED current are given for  
several input supply voltages. Again for each of these supply cases the load was controlled such that at  
maximum output current the output voltage was about 4.8 V.  
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Figure 7. Measured Typical Power converter efficiency as a function of ILED for several supply voltages  
(VOUTmax=4.8V for each supply)  
Note that in the measurement the output of the buck-boost regulator includes the voltage drop across the sense  
resistor RLIM, the voltage drop across the internal strobe control switch, and the forward voltage of the LED.  
For higher input voltages the power converter runs at an efficiency of 85% or better. For the lower supply  
voltages because of the boost action, the efficiency quickly rolls down. Refer to section Thermal Considerations  
for information related to these efficiencies.  
7.3.5 Calculating Inductor Peak Current  
To properly configure the DLPA2005 device, a 2.2-μH inductor must be connected between pin L1 and pin L2.  
The peak current for the inductor in steady state operation can be calculated.  
Equation 4 shows how to calculate the peak current I1 in step down mode operation, and Equation 5 shows how  
to calculate the peak current I2 in boost mode operation. VIN1 is the maximum input voltage, VIN2 is the minimum  
input voltage, ƒ is the switching frequency (2.25 MHz), and L the inductor value (2.2 μH).  
VOUT  
VIN1 - VOUT  
IOUT  
0.8  
(
)
I1 =  
+
2ì VIN1 ì f ìL  
(4)  
V
V
- V  
VOUT ìIOUT  
(
)
IN2  
OUT IN2  
I2 =  
+
0.8ì V  
2ì VOUT ì f ìL  
IN2  
(5)  
The critical current value for selecting the right inductor is the higher value of I1 and I2. Also consider that load  
transients and error conditions may cause higher inductor currents. This needs to be accounted for when  
selecting an appropriate inductor. Internally the switching current is limited to a maximum of 4 A.  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
 
 
 
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.3.6 LED Current Accuracy  
The LED drive current is controlled by a current DAC (Digital to Analog Converter) and can be set independently  
for switch SW4, SW5 and SW6. For the DLPA2005, the DAC is trimmed at a current of 2528 mA at code:  
0x3FFh, and the step size is 2.47 mA. First order gain-error of the DAC can be neglected, but an offset current  
error must be taken into account. This offset error differs depending on the used RLIM, and is ±100 mA for the  
DLPA2005 using a current sense resistor of 39 mΩ.  
The max current of the DLPA2005 (SWx_IDAC[9:0] = 0x3FFh) is regulated to 2528 mA. At the lowest setting  
(SWx_IDAC[9:0] = 0x029h) the current is regulated to 101 mA (DLPA2005). For this current setting (0x028h), the  
absolute current error results into a large relative error, however this is not a typical operating point.  
For best accuracy of the LED current, take the below two considerations into account:  
The LED current setting does not only depend on the accuracy of the RLIM resistor but also strongly depends  
on the added resistance of pcb traces in the ground route of RLIM and the soldering quality. Due to the low  
value of the current sense resistor RLIM, any extra introduced resistance of e.g. several milliohms will result  
in a noticeable different LED current.  
Voltage sensing across RLIM is internally referred to the analog ground, i.e. pin 5 AGND1 and pin 20 GND.  
To prevent any voltage drop between the ground connection of RLIM and the AGND of the PAD2005, make a  
star connection of the RLIM ground near pin 5. Take care to make it a low ohmic route that can handle the  
high LED current. Subsequently, make the ground connection for pin 5 to the system ground low ohmic as  
well.  
Taking the above measures relative to RLIM, the ILED current should align with the calculated value according  
to:  
Decimal_Code# = (set_current - min_current)/ step_current.  
If needed translate the Decimal_Code# to HEX code before entering in the control software.  
7.3.7 Transient Current Limiting  
Typically the forward voltages of the green and blue diodes are close to each other (about 3 to 4 V). However,  
the forward voltage of the red diode is significantly lower (1.8 to 2.5 V). This can lead to a current spike in the red  
diode when the strobe controller switches from green or blue to red because VLED is initially at a higher voltage  
than required to drive the RED diode. DLPA2005 provides transient current limiting for each switch to limit the  
current in the LEDs during the transition. The transient current limit value is controlled through the ILIM[3:0] bits  
in the IREG register. The same register also contains three bits to select which switch employs the transient  
current limiting feature. In a typical application, the transient current limit will only apply to the RED diode, and  
the ILIM[3:0] value will typically be set approximately 10% higher than the DC regulation current. The effect that  
the transient current limit has on the LED current is shown in Figure 8.  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
1500  
1200  
900  
600  
300  
0
1500  
1200  
900  
600  
300  
0
Current overshoot due to  
initially too high buck-boost  
output voltage  
Transient current  
limit active  
TIME  
TIME  
LED current with transient current limit.  
Red LED current without transient current limit. The  
current overshoots because the buck-boost voltage  
starts at the (higher) level of the green or blue LED.  
Figure 8. RED LED Current With and Without Transient Current Limit  
Copyright © 2014–2015, Texas Instruments Incorporated  
19  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
VLED  
VLED  
SW4  
FB  
BUCK-BOOST  
SW4LIM_EN  
I-LED  
I-LED  
I-LED  
0
ILIM [3:0]  
VDAC  
E/A  
1
SW5LIM_EN  
SW5  
0
E/A  
1
SW6LIM_EN  
SW6  
RLIM  
0
LED_SEL [1:0]  
STROBE  
MAP  
DECODER  
E/A  
1
SW4_IDAQ [9:0]  
RLIM_K  
SW5_IDAQ [9:0]  
SW6_IDAQ [9:0]  
IDAC  
I-DAC  
200  
RLIM  
Figure 9. LED Driver Block Diagram  
7.3.8 1.1-V Regulator (Buck Converter)  
The buck converter creates a voltage of 1.1 V, and due to its switching nature, an output ripple with a frequency  
of approximately 2.25 MHz occurs on its output. This ripple is strongly dependent on the decoupling capacitor at  
the output in combination with the inductor. The magnitude of the ripple can be calculated with Equation 6.  
VCORE  
1 -  
«
÷
V
1
INC  
DVCORE = VCORE  
ì
ì
+ ESR  
L ì f  
8 ì COUT ì f  
(6)  
The best way to minimize this ripple is to select a capacitor with a very-low ESR.  
20  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
7.3.9 Measurement System  
The measurement system is composed of a 10:1 analog multiplexer (MUX), a programmable-gain amplifier, and  
a comparator. It works together with the DPP processor to provide:  
White-point correction (WPC) by independently adjusting the RGB LED currents after measuring the  
brightness of each color with an external light sensor  
A measurement of the:  
Battery voltage  
LED forward voltage  
Exact LED current  
Temperature as derived by measuring the voltage across an external thermistor  
Figure 10 shows a block diagram of the measurement system.  
AFE_GAIN [1:0]  
AFE_SEL[3:0]  
From host  
VINA/3  
VLED/3  
SW4  
AFE  
PWM_IN  
SW5  
CMP_OUT  
MUX  
To host  
From light sensor  
SENS1  
SENS2  
From temperature sensor  
Figure 10. Block Diagram of the Measurement System  
Table 2. Recommended Configuration of the AFE for Different Input Selections  
RECOMMENDED GAIN SETTING  
AFE-GAIN[1:0]  
RECOMMENDED SETTING OF  
AFE_CAL_DIS BIT  
AFE_SEL[3:0]  
SELECTED INPUT  
0x00h  
0x01h  
0x02h  
0x03h  
SENS2  
VLED  
0x01h (1x)  
0x01h (1x)  
0x01h (1x)  
0x01h (1x)  
Setting has no effect on measurement  
Setting has no effect on measurement  
Setting has no effect on measurement  
Setting has no effect on measurement  
VINA  
SENS1  
Set to 1 if sense voltage is >100 mV.  
Otherwise set to 0 (default)  
0x04h  
0x05h  
0x06h  
0x07h  
RLIM_K  
SW4  
0x03h (18x)  
0x02h (9.5x)  
0x02h (9.5x)  
0x02h (9.5x)  
Set to 1 if sense voltage is >200 mV.  
Otherwise set to 0 (default)  
Set to 1 if sense voltage is >200 mV.  
Otherwise set to 0 (default)  
SW5  
Set to 1 if sense voltage is >200 mV.  
Otherwise set to 0 (default)  
SW6  
0x08h  
0x09h  
No connect  
VREF  
N/A  
N/A  
0x01h (1x)  
Setting has no effect on measurement  
Copyright © 2014–2015, Texas Instruments Incorporated  
21  
 
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.3.10 Protection Circuits  
DLPA2005 has several protection circuits to protect the IC and system from damage due to excessive power  
consumption, die temperature, or over-voltages. These circuits are described in the following sections.  
7.3.10.1 Thermal Warning (HOT) and Thermal Shutdown (TSD)  
DLPA2005 continuously monitors the junction temperature and issues a HOT interrupt if temperature exceeds  
the HOT threshold. If the temperature continues to increase above the thermal shutdown threshold, all rails are  
disabled and the TSD bit in the INT register is set. After the temperature drops below its threshold, the system  
recovers and waits for the DPP to resend the DMD_EN bit.  
Thermal Shutdown  
Threshold  
Hysteresis  
Thermal warning  
Threshold  
Hysteresis  
Temperature  
HOT  
(Internal Signal)  
TSD  
(Internal Signal)  
Available Time for Controlled  
Shutdown of System  
Figure 11. Definition of the Thermal Shutdown and Hot-Die Temperature Warning  
7.3.10.2 Low Battery Warning (BAT_LOW) and Undervoltage Lockout (UVLO)  
If the battery voltage drops below the BAT_LOW threshold (typically 3 V) the BAT_LOW interrupt is issued, but  
normal operation continues. After the battery drops below the undervoltage threshold which has a default  
hardcoded value of 2.3 V (this UVLO voltage can be changed through register 09 h from 2.3 to 4.5 V), the UVLO  
interrupt is issued, all rails are powered down in sequence, the DMD_EN bit is reset, and the part enters  
STANDBY mode. The power rails cannot be re-enabled before the input voltage recovers to >2.4 V. To re-enable  
the rails, the PROJ_ON pin must be toggled. The undervoltage threshold is programmable from 2.3 to 4.5 V in  
31 steps.  
The UVLO shutdown process will protect the DMD by allowing time for the mirrors to park, then doing a fast  
discharge of VOFS, VRST, and VBIAS. This protection occurs even in the case of sudden battery removal from  
the projector, as long as the bulk capacitance on the battery voltage (VINx) keeps this voltage above 2.3 V for as  
long as needed for VOFS, VRST, and VBIAS to discharge to the required safe levels as shown in the DMD data  
sheet. VOFS, VRST, and VBIAS discharge times depend on the load capacitance on each regulator. When for  
instance every supply is decoupled using a capacitor of 0.5 µF, VINx should stay above 2.3 V for at least 100 µs  
after the battery is suddenly removed. During this time, the mirrors can be placed in a safe position and VOFS,  
VRST, and VBIAS can be discharged.  
NOTE  
Capacitive loads should be such that LS_OUT stays above 1.65 V until VOFS, VRST, and  
VBIAS have discharged to their required safe levels.  
22  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
VINA  
Hysteresis  
BAT_LOW Threshold  
Hysteresis  
UVLO Threshold  
ACTIVE  
BAT LOW  
(Internal Signal)  
INACTIVE  
ACTIVE  
200-µs  
deglitch  
UVLO  
INACTIVE  
(Internal Signal)  
Programmable Deglitch Time1  
(1) This time is programmable from 0 to 100 µs  
Figure 12. UVLO is Asserted When the Input Supply Drops Below the UVLO Threshold  
7.3.10.3 DMD Regulator Fault (DMD_FLT)  
The DMD regulator is continuously monitored to check if the output rails are in regulation and if the inductor  
current increases as expected during a switching cycle. If either one of the output rails drops out of regulation (for  
example, due to a shorted output) or the inductor current does not increase as expected during a switching cycle  
(due to a disconnected inductor), the DMD_FLT interrupt bit is set in the INT register, the DMD_EN bit is reset,  
and the DMD regulator is shut down. Resetting the DMD_EN bit also causes the LED driver to power down. To  
restart the system, the PROJ_ON pin must be toggled. In case the interrupt is masked, it is sufficient to set the  
DMD_EN bit to restart the system.  
7.3.10.4 V6V Power-Good (V6V_PGF) Fault  
The LED driver regulation loop requires the V6V rail for proper operation. The rail is continuously monitored and  
should the output drop below the power-good threshold, the V6V_PGF bit is set. The VLED buck-boost is then  
disabled and attempts to restart automatically.  
7.3.10.5 VLED Overvoltage (VLED_OVP) Fault  
If the buck-boost output voltage rises above 5.4 V, the VLED_OVP interrupt is set but the buck-boost regulator is  
not turned off. A typical condition to cause this fault is an open LED.  
7.3.10.6 VLED Power Save Mode  
In normal PWM operation, the efficiency of the VLED buck-boost converter dramatically reduces for LED currents  
below 100 mA. In this case, the power save mode allows high converting efficiency at low output currents by  
skipping pulses in the switcher’s gate driver control.  
7.3.10.7 V1V8 PG Failure  
If for any reason the voltage on the LS_OUT drops below approximately 1.3 V, then VOFS, VBIAS, and VRST  
immediately go into fast shut down. Holding off power down to do mirror parking is not included since 1.3 V is too  
low to wait for this. Reactivating can only be done by toggling the PROJ_ON off and on again.  
7.3.10.8 Interrupt Pin (INTZ)  
Use the interrupt pin to signal events and fault conditions to the host processor. Whenever a fault or event occurs  
in the IC, the corresponding interrupt bit is set in the INT register, and the open-drain output is pulled low. The  
INTZ pin is released (returns to HiZ state) and fault bits are cleared when the INT register is read by the host.  
However, if a failure persists, the corresponding INT bit remains set and the INTZ pin is pulled low again after a  
maximum of 32 µs.  
Copyright © 2014–2015, Texas Instruments Incorporated  
23  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Interrupt events include fault conditions such as power-good faults, over-voltage, over-temperature shutdown,  
and UVLO. For all interrupt conditions see the interrupt register on Table 22.  
The MASK register is used to mask events from generating interrupts, that is, from pulling the INTZ pin low. The  
MASK settings affect the INTZ pin only and have no impact on protection and monitor circuits themselves. When  
an interrupt is masked, the event causing the interrupt still sets the corresponding bit in the INT register.  
However, it does not pull the INTZ pin low.  
7.3.10.9 SPI  
DLPA2005 provides a 4-wire SPI port that supports high-speed serial data transfers up to 33.3 MHz. Support  
includes register and data buffer write and read operations. The SPI_CSZ input serves as the active low chip  
select for the SPI port. The SPI_CSZ input must be forced low in order to write or read registers and data  
buffers. When SPI_CSZ is forced high, the data at the SPI_DIN input is ignored, and the SPI_DOUT output is  
forced to a high-impedance state. The SPI_DIN input serves as the serial data input for the port; the SPI_DOUT  
output serves as the serial data output. The SPI_CLK input serves as the serial data clock for both the input and  
output data. Data is latched at the SPI_DIN input on the rising edge of SPI_CLK, while data is clocked out of the  
SPI_DOUT output on the falling edge of SPI_CLK. Figure 13 illustrates the SPI port protocol. Byte 0 is referred to  
as the command byte, where the most significant bit is the write/not read bit. For the W/nR bit, a 1 indicates a  
write operation, while a 0 indicates a read operation. The remaining seven bits of the command byte are the  
register address targeted by the write or read operation. The SPI port supports write and read operations for  
multiple sequential register addresses through the implementation of an auto-increment mode. As shown in  
Figure 13, the auto-increment mode is invoked by simply holding the SPI_CSZ input low for multiple data bytes.  
The register address is automatically incremented after each data byte transferred, starting with the address  
specified by the command byte. After reaching address 0x7Fh the address pointer jumps back to 0x00h.  
Set SPI_CSZ = 1 here to write/read one register location  
Hold SPI_CSZ = 0 to enable auto-increment mode  
SPI_CSZ  
SPI_DIN  
Header  
Register Data (write)  
Byte0  
Byte1  
Byte2  
Byte3  
ByteN  
Register Data (read)  
Data for A[6:0]  
Data for A[6:0] + 1  
SPI_DOUT  
SPI_CLK  
Data for A[6:0] + (N – 2)  
Byte 0  
Byte 1  
W/nR  
W/nR  
SPI_DIN  
A6 A5 A4 A3 A2 A1 A0 N7 N6 N5 N4 N3 N2 N1 N0  
Set high for write, low for read  
Register Address  
SPI_CLK  
Figure 13. SPI Protocol  
7.3.11 Password Protected Registers  
Register addresses 0x11h through 0x27h can be read-accessed the same way as any other register, but are  
protected against accidental write operations through the PASSWORD register (address 0x10h). To write to a  
protected register, follow these steps:  
1. Write data 0xBAh to register address 0x10h.  
2. Write data 0xBEh to register address 0x10h.  
Both writes must be consecutive, that is, there must be no other read or write operation in between sending the  
two bytes. After the password has been successfully written, registers 0x11h through 0x27h are unlocked and  
can be write accessed using the regular SPI protocol. They remain unlocked until any byte other than 0xBAh is  
written to the PASSWORD register or the part is power cycled.  
To check if the registers are unlocked, read back the PASSWORD register. If the data returned is 0x00h, the  
registers are locked. If the PASSWORD register returns 0x01h, the registers are unlocked.  
24  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
7.4 Device Functional Modes  
MODES OF OPERATION  
OFF  
This is the lowest-power mode of operation. All power functions are turned off, registers are reset to  
their default values and the IC does not respond to SPI commands. RESETZ pin is pulled low. The  
IC will enter OFF mode whenever the PROJ_ON pin is low.  
STANDBY The DMD regulators and LED power (VLED) are turned off, but the IC does respond to the SPI  
interface. The device enters STANDBY mode whenever PROJ_ON is set high or DMD_EN7 bit is  
set to 0 using the SPI interface after PROJ_ON is already high. The device also enters STANDBY  
mode when a fault condition is detected8. (see the section about Protection Circuits on pages 28 &  
30)  
ACTIVE1  
The DMD supplies are enabled but LED power (VLED) is disabled. PROJ_ON pin must be high,  
DMD_EN bit must be set to 1, and VLED_EN9 bit is set to 0.  
ACTIVE2  
DMD supplies and LED power are enabled. PROJ_ON pin must be high and DMD_EN and  
VLED_EN bits must both be set to 1.  
Copyright © 2014–2015, Texas Instruments Incorporated  
25  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
POWERDOWN  
Valid power source connected  
VRST = OFF  
VBIAS = OFF  
VOFS = OFF  
VLED = OFF  
PROJ_ON = low  
OFF  
SPI interface disabled  
PWR_EN = low  
RESETZ = low  
All registers set to default values  
PROJ_ON = low  
PROJ_ON = high  
VRST = OFF  
VBIAS = OFF  
VOFS = OFF  
DMD_EN = 0  
||  
VLED = OFF  
FAULT = 1  
STANDBY  
SPI interface enabled  
PWR_EN = high  
RESETZ = high (but is low if entered  
state due to UVLO detection)  
DMD_EN = 1  
FAULT = 0  
&
VRST = ON  
VBIAS = ON  
VOFS = ON  
ACTIVE 1  
VLED = OFF  
SPI interface enabled  
PWR_EN = high  
RESETZ = high  
VLED_EN = 1  
VLED_EN = 0  
VRST = ON  
VBIAS = ON  
VOFS = ON  
VLED = ON  
ACTIVE 2  
SPI interface enabled  
PWR_EN = high  
RESETZ = high  
A. || = OR , & = AND  
B. FAULT = Undervoltage on any supply (except LS_OUT), thermal shutdown, or UVLO detection  
C. UVLO detection, per the diagram, causes the DLPA2005 to go into the standby state. This is not the lowest power  
state. If lower power is desired, PROJ_ON should be set low.  
D. DMD_EN register bit can be reset or set by SPI writes. DMD_EN defaults to 0 when PROJ_ON goes from low to high  
and then the DPP ASIC software automatically sets it to 1. Also, FAULT = 1 causes the DMD_EN register bit to be  
reset.  
E. PWR_EN is a signal internal to the DLPA2005. This signal turns on the VCORE regulator and the load switch that  
drives pin LS_OUT  
Figure 14. State Diagram  
26  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Table 3. Device State as a Function of Control-Pin  
Status  
PROJ_ON PIN  
STATE  
LOW  
OFF  
STANDBY  
ACTIVE1  
ACTIVE2  
HIGH  
(Device state depends on  
DMD_EN and VLED_EN bits  
and whether there are any  
fault conditions.)  
Table 4. Modes of Operation  
MODE  
DESCRIPTION  
This is the lowest-power mode of operation. All power functions are turned off, registers are reset to their default values, and  
the IC does not respond to SPI commands. RESETZ pin is pulled low. The IC will enter OFF mode whenever the PROJ_ON  
pin is low.  
OFF  
The DMD regulators and LED power (VLED) are turned off, but the IC does respond to the SPI. The device enters STANDBY  
mode whenever PROJ_ON is set high or DMD_EN(1) bit is set to 0 using the SPI interface after PROJ_ON is already high.  
The device also enters STANDBY mode when a fault condition is detected(2). (See Protection Circuits .)  
STANDBY  
The DMD supplies are enabled but LED power (VLED) is disabled. PROJ_ON pin must be high, DMD_EN bit must be set to  
1, and VLED_EN(3) bit is set to 0.  
ACTIVE1  
ACTIVE2  
DMD supplies and LED power are enabled. PROJ_ON pin must be high and DMD_EN and VLED_EN bits must both be set  
to 1.  
(1) Settings can be done through Reg01h [9] and Reg2E [119]  
(2) Power-good faults, over-voltage, overtemperature shutdown, and undervoltage lockout  
(3) Settings can be done through Reg47h [60], bit is named VLED_EN_SET  
7.5 Register Maps  
Table 5. Register Description  
REGISTE ADDRESS  
DEFAULT  
NAME  
TABLE  
DESCRIPTION  
R
(Hex)  
USER CONFIGURATION DEFINITIONS  
R
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
CHIP ID  
CHIPENABLE  
IREG  
Table 6  
Table 7  
Table 8  
Table 9  
Chip Revision Register; DLPA2005  
Enable Register  
C4  
0F  
30  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Transient-current limit settings  
Regulation current MSB, SW4  
Regulation current LSB, SW4  
Regulation current MSB, SW5  
Regulation current LSB, SW5  
Regulation current MSB, SW6  
Regulation current LSB, SW6  
Switch ON/OFF control (direct mode)  
AFE (MUX) control  
SW4MSB  
SW4LSB  
SW5MSB  
SW5LSB  
SW6MSB  
SW6LSB  
SWCNTRL  
AFE  
Table 10, Table 11  
Table 12  
0
0
Table 13, Table 14  
Table 15  
0
0
Table 16, Table 17  
Table 18  
0
0
Table 19  
0
BBM  
Table 20, Table 21  
Table 22, Table 23  
Table 24, Table 25  
Table 26, Table 27  
Break Before Make timing  
0
INT  
Interrupt register  
0
R/W  
R/W  
INT MASK  
TIMING  
Interrupt Mask register  
DFh  
7
Timing register VOFS, VBIAS, VRST, and RESETZ  
USER PROTECTED DEFINITION  
R/W  
R/W  
0x10  
0x11  
PASSWORD  
SYSTEM  
Table 28  
Table 29  
Password register  
0
0
System Configuration register  
USER EEPROM SCRATCH PAD DEFINITION  
R/W 0x20 BYTE0 Table 31  
User EEPROM, Byte0  
0
Copyright © 2014–2015, Texas Instruments Incorporated  
27  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
DEFAULT  
Register Maps (continued)  
Table 5. Register Description (continued)  
REGISTE ADDRESS  
NAME  
BYTE1  
TABLE  
DESCRIPTION  
R
(Hex)  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 32  
User EEPROM, Byte1  
0
0
0
0
0
0
0
BYTE2  
BYTE3  
BYTE4  
BYTE5  
BYTE6  
BYTE7  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
User EEPROM, Byte2  
User EEPROM, Byte3  
User EEPROM, Byte4  
User EEPROM, Byte5  
User EEPROM, Byte6  
User EEPROM, Byte7  
Table 6. Chip Revision Register  
REGISTER = 00h  
DATA BIT  
FIELD NAME  
READ/WRITE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
CHIP ID [7:0]  
R
1
R
1
R
0
R
R
R
1
R
0
R
0
RESET VALUE  
DLPA2005  
0
0
C4  
FIELD NAME  
BIT  
BIT DEFINITION  
7:4  
3:0  
CHIPID<3:0>  
REVID<3:0>  
CHIP ID  
[7:0]  
Table 7. Enable Register  
REGISTER = 01h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
CHIPENABLE [15:8]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
0F  
BIT  
BIT DEFINITION  
15:12  
11  
USER_GPO<3:0>  
VLED_POWER_SAVE_MODE_DIS  
Power save mode is used to improve efficiency at light load.  
FAST_SHUTDOWN_EN  
Applicable only during a fault condition.  
Shutdown timing is defined by register 0Eh. (see Figure 5)  
CHIPENABLE  
[15:8]  
10  
9
8
DMD_EN  
VLED_EN  
28  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Table 8. Transient-Current Limit Settings  
REGISTER = 02h  
DATA BIT  
Field Name  
Read/Write  
Reset Value  
FIELD NAME  
Not used  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
IREG [23:16]  
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
30  
BIT  
BIT DEFINITION  
23  
TBD  
IREG_ILIM<3:0>  
0000  
Rlim = 39 mΩ  
333 mA  
385 mA  
442 mA  
494 mA  
564 mA  
705 mA  
846 mA  
1128 mA  
1410 mA  
1692 mA  
1974 mA  
2256 mA  
2538 mA  
2974 mA  
3410 mA  
3846 mA  
0001  
0010  
0011  
0100  
0101  
0110  
IREG [3:0]  
22:19  
0111  
1000  
1001  
1010  
1011  
[23:16]  
1100  
1101  
1110  
1111  
SW6LIM_EN  
Transient current-limit enable for SW6  
0 – Transient current-limit is disabled  
1 – Transient current-limit is enabled  
SW6LIM_EN  
SW5LIM_EN  
SW4LIM_EN  
18  
17  
16  
SW5LIM_EN  
Transient current-limit enable for SW5  
0 – Transient current-limit is disabled  
1 – Transient current-limit is enabled  
SW4LIM_EN  
Transient current-limit enable for SW4  
0 – Transient current-limit is disabled  
1 – Transient current-limit is enabled  
Table 9. Regulation Current MSB, SW4(1)  
REGISTER = 03h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SW4MSB [31:24]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
Bit  
BIT DEFINITION  
31:26  
25:24  
TBD  
SW4_IDAC<9:8>  
SW4MSB  
[31:24]  
(1) The DLPA2005 can use up to code 0x3ffh for SW4_IDAC[9:0].  
Copyright © 2014–2015, Texas Instruments Incorporated  
29  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Table 10. Regulation Current LSB, SW4  
REGISTER = 04h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
SW4LSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SW4LSB [39:32]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
Bit  
BIT DEFINITION  
[39:32]  
39:32  
SW4_IDAC<7:0>  
Table 11. Regulation Current LSB, SW4 Bit Definitions  
(1) (2)  
DLPA2005  
LED  
CURRENT  
LED  
CURRENT  
LED  
CURRENT  
SW4_IDAC[9:0]  
SW4_IDAC[9:0]  
SW4_IDAC[9:0]  
SW4_IDAC[9:0]  
LED CURRENT  
0x000h  
0x029h  
0x02Ah  
...  
0 mA  
0x100h  
0x101h  
0x102h  
...  
633 mA  
635 mA  
638 mA  
...  
0x200h  
0x201h  
0x202h  
...  
1265 mA  
1268 mA  
1270 mA  
...  
0x300h  
0x301h  
0x302h  
...  
1898 mA  
1900 mA  
1903 mA  
...  
101 mA  
104 mA  
...  
0x0FEh  
0x0FFh  
628 mA  
630 mA  
0x1FEh  
0x1FFh  
1260 mA  
1263 mA  
0x2FEh  
0x2FFh  
1893 mA  
1895 mA  
0x3FEh  
0x3FFh  
2526 mA  
2528 mA  
(1) Values shown are for a typical DLPA2005 unit at T = 25°C. Typical step size is 2.47 mA for RLIM = 39 mΩ  
(2) The DLPA2005 can use up to code 0x3FFh for SW4_IDAC[9:0].  
Table 12. Regulation Current MSB, SW5(1)  
REGISTER = 05h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SW5MSB [47:40]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
Bit  
BIT DEFINITION  
47:42  
41:40  
TBD  
SW5_IDAC<9:8>  
SW5MSB  
[47:40]  
(1) The DLPA2005 can use up to code 0x3FFh for SW5_IDAC[9:0].  
Table 13. Regulation Current LSB, SW5  
REGISTER = 06h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
SW5LSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SW5LSB [55:48]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
[55:48]  
55:48  
SW5_IDAC<7:0>  
30  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Table 14. Regulation Current LSB, SW5 Bit Definitions  
(1) (2)  
DLPA2005  
LED  
CURRENT  
LED  
CURRENT  
LED  
CURRENT  
SW5_IDAC[9:0]  
SW5_IDAC[9:0]  
SW5_IDAC[9:0]  
SW5_IDAC[9:0]  
LED CURRENT  
0x000h  
0x029Ch  
0x02Ah  
...  
0 mA  
0x100h  
0x101h  
0x102h  
...  
633 mA  
635 mA  
638 mA  
...  
0x200h  
0x201h  
0x202h  
...  
1265 mA  
1268 mA  
1270 mA  
...  
0x300h  
0x301h  
0x302h  
...  
1898 mA  
1900 mA  
1903 mA  
...  
101 mA  
104 mA  
...  
0x0FEh  
0x0FFh  
628 mA  
630 mA  
0x1FEh  
0x1FFh  
1260 mA  
1263 mA  
0x2FEh  
0x2FFh  
1893 mA  
1895 mA  
0x3FEh  
0x3FFh  
2526 mA  
2528 mA  
(1) Values shown are for a typical DLPA2005 unit at T = 25°C. Typical step size is 2.47 mA for RLIM = 39 mΩ  
(2) The DLPA2005 can use up to code 0x3FFh for SW5_IDAC[9:0].  
Table 15. Regulation Current MSB, SW6(1)  
REGISTER = 07h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SW6MSB [63:56]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
63:58  
57:56  
TBD  
SW6_IDAC<9:8>  
SW6MSB  
[63:56]  
(1) The DLPA2005 can use up to code 0x3FFh for SW6_IDAC[9:0].  
Table 16. Regulation Current LSB, SW6  
REGISTER = 08h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
SW6LSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SW6LSB [71:64]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
[71:64]  
71:64  
SW6_IDAC<7:0>  
Table 17. Regulation Current LSB, SW6 Bit Definitions  
(1) (2)  
DLPA2005  
LED  
CURRENT  
LED  
CURRENT  
LED  
CURRENT  
SW6_IDAC[9:0]  
SW6_IDAC[9:0]  
SW6_IDAC[9:0]  
SW6_IDAC[9:0]  
LED CURRENT  
0x000h  
0x029h  
0x02Ah  
...  
0 mA  
0x100h  
0x101h  
0x102h  
...  
633 mA  
635 mA  
638 mA  
...  
0x200h  
0x201h  
0x202h  
...  
1265 mA  
1268 mA  
1270 mA  
...  
0x300h  
0x301h  
0x302h  
...  
1898 mA  
1900 mA  
1903 mA  
...  
101 mA  
104 mA  
...  
0x0FEh  
0x0FFh  
628 mA  
630 mA  
0x1 FEh  
0x1 FFh  
1260 mA  
1263 mA  
0x2FEh  
0x2FFh  
1893 mA  
1895 mA  
0x3FEh  
0x3FFh  
2526 mA  
2528 mA  
(1) Values shown are for a typical DLPA2005 unit at T = 25°C. Typical step size is 2.47 mA for RLIM = 39 mΩ  
(2) The DLPA2005 can use up to code 0x3FFh for SW6_IDAC[9:0].  
Copyright © 2014–2015, Texas Instruments Incorporated  
31  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Table 18. Switch On/Off Control (Direct Mode)  
REGISTER = 09h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SWCNTRL [79:72]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
79  
78  
SW6 (controls switch 6 if direct mode (see reg 11h) is enabled)  
SW5 (controls switch 5 if direct mode (see reg 11h) is enabled)  
SW4 (controls switch 4 if direct mode (see reg 11h) is enabled)  
UVLO_TRIM<4:0>  
SWCNTRL  
[79:72]  
77  
76:72  
00000  
00001  
.....  
11110  
11111  
2.3 V (minimum value – default value)  
2.37 V  
Step approximately 70 mV  
4.43 V  
4.5 V (maximum value)  
Table 19. AFE (MUX) Control  
REGISTER = 0Ah  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
AFE [87:80]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
87  
86  
AFE_EN  
AFE_CAL_DIS  
AFE_GAIN<1:0>  
AFE_SEL<3:0>  
AFE  
[87:80]  
85:84  
83:80  
Table 20. Break Before Make (BBM) Timing  
REGISTER = 0Bh  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
BBM [95:88]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
Table 21. Break Before Make (BBM) Timing Bit Definitions(1)  
FIELD NAME  
BIT  
BIT DEFINITION  
BBM_DELAY<7:0>  
0x00 – 0 ns  
0x01 – 333 ns  
0x02 – 444 ns  
...  
0x40 – 7326 ns  
0x41 – 7437 ns  
0x42 – 7548 ns  
...  
0x80 – 14430 ns  
0x81 – 14541 ns  
0x82 – 14652 ns  
...  
0xC0 – 21534 ns  
0xC1 – 21645 ns  
0xC2 – 21756 ns  
...  
BBM  
[95:88]  
95:88  
0x3E – 7104 ns  
0x3F – 7215 ns  
0x7E – 14208 ns  
0x7F – 14319 ns  
0xBE – 21312 ns  
0xBF – 21423 ns  
0xFE – 28416 ns  
0xFF – 28527 ns  
(1) It takes 333 to 444 ns to turn off the switches from the time a change occurs on LED_SEL[1:0].  
Table 22. Interrupt Register  
REGISTER = 0Ch  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
INT [103:96]  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
00  
32  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
FIELD NAME  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Table 23. Interrupt Register Bit Definitions  
BIT  
BIT DEFINITION  
VLED_OVP  
VLED buck_boost overvoltage fault interrupt (normal operation resumes)  
0 – No fault  
1 – Buck_boost output is above OVP threshold  
103  
102  
101  
IREG_PG_FAULT  
V6V power-good fault interrupt (normal operation resumes)  
0 – No fault  
1 – V6V is not in regulation  
PROJ_ON_INT  
Proj_On interrupt (part enters OFF mode)  
0 – Pin is pulled high, normal mode  
1 – Pin is pulled low, alerts the DPP that the DMD regulator is about to shut down.  
DMD_FAULT  
DMD regulator fault (part enters STANDBY mode and DMD_EN bit is cleared)  
0 – No fault  
100  
1 – The inductor current is not increasing at the correct rate, likely to be caused by an  
open inductor.  
Or, one of the regulator outputs has dropped below the power-good threshold, likely to  
be caused by a short  
INT  
[103:96]  
UVLO  
UVLO interrupt (sensed at VINA pin), DMD bit is cleared.  
0 – Battery voltage is above the UVLO threshold  
1 – Battery voltage has dropped below the UVLO threshold  
99  
98  
BAT_LOW_WARN  
Low battery warning interrupt (sensed at VINA pin, normal operation resumes)  
0 – Battery voltage is above the low-battery threshold  
1 – Battery voltage has dropped below the low-battery threshold  
TS_WARN  
Thermal warning interrupt (normal operation resumes)  
0 – Die temperature is in normal operating range  
1 – Die temperature is above the HOT threshold  
Or, part has not cooled down enough to recover from HOT.  
97  
96  
TS_WARN  
Thermal Warning Interrupt (normal operation resumes)  
0 – Die temperature is in normal operating range  
1 – Die temperature is above the HOT threshold  
Or, part has not cooled down enough to recover from HOT.  
Table 24. Interrupt Mask Register  
REGISTER = 0Dh  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
INT MASK [111:104]  
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
DF  
Copyright © 2014–2015, Texas Instruments Incorporated  
33  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Table 25. Interrupt Mask Register Bit Definitions  
FIELD NAME  
BIT  
BIT DEFINITION  
VLED BUCK_BOOST  
Overvoltage fault interrupt mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
111  
IREG_PG_FAULT_MASK  
0 – Interrupt is not masked  
1 – Interrupt is masked  
110  
109  
108  
107  
106  
105  
104  
PROJ_ON interrupt mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
DMD_REGULATOR fault mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
INT MASK  
[111:104]  
UVLO_MASK  
0 – Interrupt is not masked  
1 – Interrupt is masked  
Low Battery Warning Mask (sensed at VINA pin)  
0 – Interrupt is not masked  
1 – Interrupt is masked  
Thermal Shutdown Interrupt Mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
Thermal Warning Interrupt Mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
Table 26. Timing Register VOFS, VBIAS, VRST, and RESETZ  
REGISTER = 0Eh  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
TIMING [119:112]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
07  
34  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
FIELD NAME  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Table 27. Timing Register VOFS, VBIAS, VRST, and RESETZ Bit Definitions  
BIT  
BIT DEFINITION  
119:116  
115:112  
VOFS/RESETZ_DELAY<3:0> (for values see min and max delay)  
VBIAS/VRST_DELAY<3:0> (for values see min and max delay)  
Min Delay (μs)  
4.0  
Max Delay (μs)  
4.4  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
8.0  
8.9  
16.0  
17.8  
32.0  
35.5  
64.0  
71.1  
128.0  
256.0  
512.0  
6.2  
142.2  
284.4  
569.0  
7.1  
TIMING  
[119:112]  
12.4  
14.2  
24.9  
28.4  
49.8  
56.9  
99.5  
113.8  
227.6  
455.2  
1138.0  
199.1  
398.3  
1024.2  
Table 28. Password Register  
REGISTER = 10h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
PASSWORD [135:128]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
USER PASSWORD (0xBAh + 0xBEh) Disable (0x00h)  
Once set, register 11h can be written.  
PASSWORD  
[135:128]  
135:128  
Table 29. System Configuration Register  
REGISTER = 11h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SYSTEM [143:136]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
Table 30. System Configuration Register Bit Definitions  
FIELD NAME  
BIT  
BIT DEFINITION  
143:139  
138  
TBD  
EEPROM_PROGRAM  
Program scratch pad values to EEPROM  
SYSTEM  
[143:136]  
DIRECT_MODE  
137  
136  
Allows direct control of switches through SW CONTROL REGISTER  
TBD  
Copyright © 2014–2015, Texas Instruments Incorporated  
35  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Table 31. User EEPROM, BYTE0  
REGISTER = 20h  
D4 D3  
BYTE0 [7:0]  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
BYTE0  
D7  
D6  
D5  
D2  
D1  
D0  
HEX  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
[7:0]  
BIT DEFINITION  
7:0  
USER BYTE 0  
Table 32. User EEPROM, BYTE1  
REGISTER = 21h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
BYTE1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
BYTE1 [15:8]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
[15:8]  
BIT DEFINITION  
15:8  
USER BYTE 1  
Table 33. User EEPROM, BYTE2  
REGISTER = 22h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
BYTE2  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
BYTE2 [23:16]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
[23:16]  
23:16  
31:24  
39:32  
USER BYTE 2  
Table 34. User EEPROM, BYTE3  
REGISTER = 23h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
BYTE3  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
BYTE3 [31:24]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
[31:24]  
USER BYTE 3  
Table 35. User EEPROM, BYTE4  
REGISTER = 24h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
BYTE4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
BYTE4 [39:32]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
[39:32]  
USER BYTE 4  
36  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Table 36. User EEPROM, BYTE5  
REGISTER = 25h  
D4 D3  
BYTE5 [47:40]  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
BYTE5  
D7  
D6  
D5  
D2  
D1  
D0  
HEX  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
[47:40]  
47:40  
55:48  
63:56  
USER BYTE 5  
Table 37. User EEPROM, BYTE6  
REGISTER = 26h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
BYTE6  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
BYTE6 [55:48]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
00  
BIT  
BIT DEFINITION  
[55:48]  
USER BYTE 6  
Table 38. User EEPROM, BYTE7  
REGISTER = 27h  
DATA BIT  
FIELD NAME  
READ/WRITE  
RESET VALUE  
FIELD NAME  
BYTE7  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
BYTE7 [63:56]  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
00  
BIT  
BIT DEFINITION  
[63:56]  
USER BYTE 7  
Copyright © 2014–2015, Texas Instruments Incorporated  
37  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
A DLPC343x controller can be used with a DLP2010 (.2 WVGA) DMD or DLP3010 (.3 720p) DMD to provide a  
compact, reliable, high-efficiency display solution for many different video display applications. The DMDs are  
spatial light modulators which reflect incoming light from an illumination source to one of two directions with the  
primary direction being into collection optics within a projection lens. The projection lens sends the light to the  
destination needed for the application. Each application is derived primarily from the optical architecture of the  
system and the format of the pixel data being input into the DLPC343x.  
In display applications using the DLP2010 DMD or DLP3010 DMD, the DLPA2005 provides all needed analog  
functions including the analog power supplies and the RGB LED driver to provide a robust and efficient display  
solution. Display applications of interest include pico-projectors embedded in display devices like smart phones,  
tablets, cameras, and camcorders. Other applications include wearable (near-eye) displays, battery-powered  
mobile accessory, interactive display, low latency gaming displays, and digital signage.  
Alternately, a DLPC150 controller can be used with a DLP2010 or DLP2010NIR DMD. Applications of interest  
when using the DLPC150 controller include machine vision systems, spectrometers, skin analysis, medical  
systems, material identification, chemical sensing, infrared projection, and compressive sensing. In a  
spectroscopy application the DLPC150 controller and DLP2010NIR DMD are often combined with a single  
element detector to replace expensive InGaAs array-based detector designs. In this application the DMD acts as  
a wavelength selector reflecting specific wavelengths of light into the single point detector.  
8.2 Typical Projector Application  
A common application when using DLPA2005 with DLP2010 DMD and DLPC3430/DLPC3435 controller is for  
creating an accessory projector for a smart phone, tablet or any other portable smart device. The  
DLPC3430/DLPC3435 in an accessory projector typically receives images from a smart device over either HDMI  
as shown below (WI-FI can also be used to transmit data). DLPA2005 provides power supply sequencing and  
controls the RGB LED currents as required by the application.  
38  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Typical Projector Application (continued)  
DC_IN  
Charger  
BAT  
...  
2.3V-5.5V  
Projector Module Electronics  
DC Supplies  
1.8V  
VSPI  
1.8V  
Other  
Supplies  
1.1V  
1.8V  
1.1V  
Reg  
L3  
SYSPWR  
1.8V  
PROJ_ON  
PROJ_ON  
MSP430  
VLED  
Current  
Sense  
L1  
L2  
GPIO_8 (Normal Park)  
SPI_0  
DLPA2005  
FLASH  
Cal data  
4
(optional)  
RED  
GREEN  
BLUE  
EEPROM  
SPI_1  
4
RESETZ  
INTZ  
I2C_1  
HDMI  
PARKZ  
I2C  
BIAS, RST, OFS  
3
HDMI  
Receiver  
LED_SEL(2)  
CMP_PWM  
Illumination  
Optics  
28  
DLPC3430/  
DLPC3435  
WPC  
LABB  
Parallel I/F  
CMP_OUT  
eDRAM  
DLP2010  
DMD)  
Thermistor  
(WVGA  
Sub-LVDS DATA  
CTRL  
1.8V  
1.1V  
VIO  
VCC_INTF  
VCC_FLSH  
VCORE  
Spare R/W  
GPIO  
18  
Figure 15. Typical Setup Using DLPA2005  
8.2.1 Design Requirements  
A pico-projector is created by using a DLP chip set comprised of DLP2010 (.2 WVGA) DMD, DLPC3430 or  
DLPC3435 controller and DLPA2005 PMIC/LED driver. The DLPC3430 or DLPC3435 does the digital image  
processing, the DLPA2005 provides the needed analog functions for the projector, and DMD is the display  
device for producing the projected image. In addition to the three DLP chips in the chip set, other chips may be  
needed. At a minimum a flash part is needed to store the software and firmware to control the DLPC3430 or  
DLPC3435. The illumination light that is applied to the DMD is typically from red, green, and blue LEDs. These  
are often contained in three separate packages, but sometimes more than one color of LED die may be in the  
same package to reduce the overall size of the pico-projector. For connecting the DLPC3430 or DLPC3435 to  
the front end for receiving images parallel interface is used. While using parallel interface, I2C should be  
connected to the front end for sending commands to the DLPC3430 or DLPC3435. The only power supplies  
needed external to the projector are the battery (SYSPWR) and a regulated 1.8 V supply. The entire pico-  
projector can be turned on and off by using a single signal called PROJ_ON. When PROJ_ON is high, the  
projector turns on and begins displaying images. When PROJ_ON is set low, the projector turns off and draws  
just microamps of current on SYSPWR. When PROJ_ON is set low, the 1.8 V supply can continue to be left at  
1.8 V and used by other non-projector sections of the product. If PROJ_ON is low, the DLPA2005 will not draw  
current on the 1.8 V supply.  
8.2.2 Detailed Design Procedure  
For connecting together the DLP2010, DLPC3430 or DLPC3435 and DLPA2005, see the reference design  
schematic. When a circuit board layout is created from this schematic a very small circuit board is possible. An  
example small board layout is included in the reference design data base. Layout guidelines should be followed  
to achieve a reliable projector. The optical engine that has the LED packages and the DMD mounted to it is  
typically supplied by an optical OEM who specializes in designing optics for DLP projectors.  
Copyright © 2014–2015, Texas Instruments Incorporated  
39  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Projector Application (continued)  
8.2.3 Application Curves  
As the LED currents that are driven time-sequentially through the red, green, and blue LEDs are increased, the  
brightness of the projector increases. This increase is somewhat non-linear, and the curve for typical white  
screen lumens changes with LED currents. It’s assumed that the same current amplitude is applied to the red,  
green, and blue LEDs.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
500  
1000  
1500  
2000  
2500  
3000  
Current (mA)  
D001  
Figure 16. Luminance vs Current  
8.3 Typical Mobile Sensing Application  
A typical embedded system application using the DLPC150 controller and the DLPC2010NIR is shown in  
Figure 17. In this configuration, the DLPC150 controller supports a 24-bit parallel RGB input, typical of LCD  
interfaces, from an external source or processor. The DLPC150 controller processes the digital input image and  
converts the data into the format needed by the DLP2010NIR. The DLP2010NIR steers light by setting specific  
micromirrors to the "on" position, directing light to the detector, while unwanted micromirrors are set to "off"  
position, directing light away from the detector. The microprocessor sends binary images to the DLP2010NIR to  
steer specific wavelengths of light into the detector. The microprocessor uses an analog-to-digital converter to  
sample the signal received by the detector into a digital value. By sequentially selecting different wavelengths of  
light and capturing the values at the detector, the microprocessor can then plot a spectral response to the light.  
40  
Copyright © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
Typical Mobile Sensing Application (continued)  
0/F5:  
.-@  
/NGVMKV  
($)&XT&+$+&B  
<TZKV&  
9GSGMKRKSX  
'$,&B  
'$'&B  
;XNKV  
?YUUQOKW  
'$'#B  
>KM  
B5:  
?D?<C>  
<>;6F;:  
;S%;LL  
B00  
'$,&B  
'$,?&B  
B810  
8?F5:  
<>;6F;:  
A?.  
&')$"     
/1ꢀ  
&')$"  #  
<>;6F;:  
?<5Fꢀ  
>10  
0KXKIXTV  
-0/  
&*&  
28-?4  
/YVVKSX  
?KSWK  
?<5F'  
&*&  
>1?1@E  
5:@E  
28-?4"&  
?0>-9  
(,*1/01/*+22/1  
<->7E  
4;?@F5>=  
@>53F5:  
5QQYROSGXOTS&  
;UXOIW  
.5-?"&>?@"&;2?  
)
810F?18ꢁ(  
/9<F<C9  
&')%!#  
@>53F;A@&ꢁ(  
7K[UGJ  
/9<F;A@  
<GVGQQKQ&>3.&5%2&ꢁ(,  
?0&  
/GVJ  
08<(ꢀ'ꢀ:5>  
ꢁCB3-  
090  
@NKVROWXTV  
5(/  
?YH#8B0?&0-@-  
8<?0>&/@>8  
'$,?&B  
'$'&B  
B5;  
.QYKXTTXN  
B//F5:@2  
B//F28?4  
B/;>1  
<VTPKIXOTS&  
;UXOIW  
:5>&  
0KXKIXTV  
$&%ꢀ3ꢀ$.0-,ꢁ+1  
08<\&/NOU&?KX  
Figure 17. Typical Application Diagram  
8.3.1 Design Requirements  
All applications using the DLP 0.2-inch WVGA chipset require the:  
DLPC150 controller, and  
DLPA2005 PMIC, and  
DLP2010 or DLP2010NIR DMD  
components for operation. The system also requires an external parallel flash memory device loaded with the  
DLPC150 configuration and support firmware. DLPC150 does the digital image processing and formats the  
data for the DMD. DLPA2005 PMIC provides the needed analog functions for the DLPC150 and DLP2010 or  
DLP2010NIR. The chipset has several system interfaces and requires some support circuitry. The following  
interfaces and support circuitry are required:  
DLPC150 system interfaces:  
Control interface  
Trigger interface  
Input data interface  
Illumination interface  
DLPC150 support circuitry and interfaces:  
Reference clock  
PLL  
Program memory flash interface  
DMD interfaces:  
DLPC150 to DMD digital data  
DLPC150 to DMD control interface  
DLPC150 to DMD micromirror reset control interface  
Copyright © 2014–2015, Texas Instruments Incorporated  
41  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Mobile Sensing Application (continued)  
8.3.2 Detailed Design Procedure  
8.3.2.1 Dlpc150 System Interfaces  
The 0.2-inch WVGA chipset supports a16-bit or 24-bit parallel RGB interface for image data transfers from  
another device. There are two primary output interfaces: illumination driver control interface and sync outputs.  
8.3.2.1.1 Control Interface  
The 0.2-inch WVGA chipset supports I2C commands through the control interface. The control interface allows  
another master processor to send commands to the DLPC150 controller to query system status or perform  
realtime operations such as LED driver current settings.  
8.3.3 Application Curve  
In a reflective spectroscopy application, a broadband light source illuminates a sample and the reflected light  
spectrum is dispersed onto the DLP2010NIR. A microprocessor in conjunction with the DLPC150 controls  
individual DLP2010NIR micromirrors to reflect specific wavelengths of light to a single point detector. The  
microprocessor uses an analog-to-digital converter to sample the signal received by the detector into a digital  
value. By sequentially selecting different wavelengths of light and capturing the values at the detector, the  
microprocessor can then plot a spectral response to the light. This systems allows the measurement of the  
collected light and derive the wavelengths absorbed by the sample. This process leads to the absorption  
spectrum shown in Figure 18.  
Figure 18. Sample Dlpc150 Based Spectrometer Output  
42  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
9 Power Supply Recommendations  
The DLPA2005 is designed to operate from a 2.3 to 6 V input voltage supply or battery. To avoid insufficient  
supply current due to line drop, ringing due to trace inductance at the VIN terminal, or supply peak current  
limitations, additional bulk capacitance may be required. In the case ringing that is caused by the interaction with  
the ceramic input capacitors, an electrolytic or tantalum type capacitor may be needed for damping.  
The amount of bulk capacitance required should be evaluated such that the input voltage can remain in spec  
long enough for a proper fast shutdown to occur for the vofs, vrst, and vbias supplies. The shutdown begins  
when the input voltage drops below the programmable UVLO threshold such as when the external power supply  
or battery supply is suddenly removed from the system.  
Copyright © 2014–2015, Texas Instruments Incorporated  
43  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
As for all chips with switching power supplies, the layout is an important step in the design, especially in the case  
of high peak currents and high switching frequencies. If the layout is not carefully done, the regulators could  
show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current paths  
and for the power ground tracks. Input capacitors, output capacitors, and inductors should be placed as close as  
possible to the IC.  
Figure 19 shows an example layout that has critical parts placed as close as possible to the pins they are  
connected to. Here are recommendations for the following components:  
R1  
is RLIM and is connected via a wide trace (low resistance) to the system ground. The analog ground  
at pin 5 should be star connected to the point where RLIM is connected to the system ground. Aim on  
a wide and low-ohmic trace as well, although this one is less critical (tens of mA).  
L1  
is the big inductor for the VLED that is connected via two wide traces to the pins  
C4  
are the decoupling capacitors for the VLED and they are as close as possible placed to the part and  
directly connected to ground.  
L3/C20 are components used for the VCORE BUCK. L3 is placed close to the pin and connected with a wide  
trace to the part. C20 is placed directly beside the inductor and connected to the PGND pin  
L2  
This inductor is part of the DMD reset regulators and is also placed as close as possible to the  
DLPA2005 using wide PCB traces.  
10.2 Layout Example  
Figure 19. Example Layout of DLPA2005  
44  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
10.3 Thermal Considerations  
An important consequence of the efficiency numbers shown in Figure 7 is that it enables to perform DLPA2005  
thermal calculations. Since the efficiency is not 100%, power is dissipated in the DLPA2005 chip. Due to that  
dissipation die temperature will rise. For reliability reasons it is good to aim for as low as possible die  
temperatures. Using a heat sink and airflow are efficient means to keep die temperature reasonably low. In cases  
that airflow and / or a heat sink are / is not feasible, the system designer should specifically pay attention to the  
thermal design. The die temperature for regular operation should remain below 120°C.  
In the following an example is given of such a thermal calculation. The calculation starts with summarizing all  
blocks in the DLPA2005 that dissipate. Clearly, the buck-boost converter supplying the LED power is the main  
source of dissipation. For illustrating purposes here we assume this buck-boost converter to be the only block  
that dissipates significantly. For the example assume: VOUT=4.8 V (for all three LEDs), IOUT=2.4 A and VIN=5  
V. From Figure 7 it can be derived that the related efficiency equals about neff=88%.  
The power dissipated by the DLPA2005 is then given by:  
SPACE  
÷
100%  
100%  
88%  
P
= P - P = P  
-1 = 4.8V 2.4A∂  
-1 =1.6W  
÷
DISS  
IN  
OUT  
OUT  
«
÷
heff  
«
SPACE  
The rise of die temperature due to this power dissipation can be calculated using the thermal resistance from  
junction to ambient, M JA=27.9°C/W. This calculation yields:  
TJUNSCTPIOANC=ETAMBIENT + P  
qJA = 25°C +1.6W 27.9°C /W = 69.6°C  
DISS  
SPACE  
It is also possible to calculate the maximum allowable ambient temperature to prevent surpassing the maximum  
die temperature. Assume again the dissipation of PDISS=1.6W. The maximum ambient temperature that is  
allowed is then given by:  
SPACE  
TAMBIENT-max =TJUNCTION-max - P  
qJA =120°C -1.6W 27.9°C /W = 75.4°C  
DISS  
SPACE  
It is again stressed here that for proper calculations the total power dissipation of the PAD2005 should be taken  
into account. On top of that, if components that are close to the PAD2005 also dissipate a significant amount of  
power, the (local) ambient temperature can be higher than the ambient temperature of the system.  
If calculations show that the die temperature will surpass the maximum specified value, two basic options exist:  
Adding a heat sink with or without airflow. This will reduce 0JA yielding lower die temperature.  
Lowering the dissipation in the PAD2005 implying lowering the maximum allowable LED current.  
版权 © 2014–2015, Texas Instruments Incorporated  
45  
DLPA2005  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
Package Marking DLPA2005  
(TOP VIEW)  
TI  
= TI LETTERS  
YM = YEAR / MONTH DATE CODE  
LLLL = ASSY LOT CODE  
PAD2005  
A4  
S
= ASSEMBLY SITE CODE  
PER QSS 005-120  
TI YMS$$  
LLLL G4  
$$  
= WAFER FAB CODE  
(1 or 2 CHARACTERS)  
=pin 1 Marking  
20. 封装标记 DLPA2005(顶视图)  
11.2 商标  
Pico is a trademark of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
盖带  
盖带不覆盖导孔并且不会从载带移出。  
抗静电放电 (ESD) 载带和盖带使用的塑料材料均为抗静电型。  
器件插入方向 定位器件时,符号朝上,引脚朝下。  
46  
版权 © 2014–2015, Texas Instruments Incorporated  
DLPA2005  
www.ti.com.cn  
ZHCSD09B SEPTEMBER 2014REVISED OCTOBER 2015  
包装方法  
用胶带将导引带末端固定,然后用防潮袋来包装卷带并热封固定。方形扁平无引脚 (QFN) 器件的包装  
中含有干燥剂和湿度指示剂。  
带盒  
每个防潮袋均包装到带盒内。  
带结构  
载带由塑料制成,其结构如上文的电路原理图所示。器件置于载带的压纹区域,并由塑料制成的盖带  
覆盖。  
带盒材料  
瓦楞纸板  
版权 © 2014–2015, Texas Instruments Incorporated  
47  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPA2005ERSLR  
DLPA2005ERSLT  
ACTIVE  
VQFN  
VQFN  
RSL  
48  
48  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-10 to 85  
-10 to 85  
PAD2005  
A4  
Samples  
Samples  
ACTIVE  
RSL  
NIPDAU  
PAD2005  
A4  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DLPA2005ERSLR  
DLPA2005ERSLT  
VQFN  
VQFN  
RSL  
RSL  
48  
48  
3000  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DLPA2005ERSLR  
DLPA2005ERSLT  
VQFN  
VQFN  
RSL  
RSL  
48  
48  
3000  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
A
6.1  
5.9  
B
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.4  
13  
24  
44X 0.4  
12  
23  
SYMM  
49  
4.5  
4.3  
4.4  
1
36  
0.25  
0.15  
48X  
PIN 1 IDENTIFICATION  
(OPTIONAL)  
37  
48  
0.1  
C A B  
C
SYMM  
0.5  
0.3  
0.05  
48X  
4219205/A 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
(5.8)  
(
4.4)  
SYMM  
48  
37  
48X (0.6)  
48X (0.2)  
1
36  
44X (0.4)  
SYMM  
(5.8)  
10X (1.12)  
49  
6X (0.83)  
(R0.05) TYP  
12  
25  
13  
6X (0.83)  
24  
(Ø0.2) VIA  
10X (1.12)  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
0.05 MAX  
0.05 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219205/A 02/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
(5.8)  
SYMM  
48  
37  
48X (0.6)  
48X (0.2)  
1
49  
36  
44X (0.4)  
16X  
(
0.92)  
SYMM  
8X (0.56)  
(5.8)  
8X (1.12)  
(R0.05) TYP  
12  
25  
13  
8X (1.12)  
24  
METAL TYP  
8X (0.56)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
70% PRINTED COVERAGE BY AREA  
SCALE: 12X  
4219205/A 02/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLPA2005ERSLT

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs | RSL | 48 | -10 to 85
TI

DLPA200PFC

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA200PFCT

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA200PFP

DMD Micromirror Driver
TI

DLPA200_1

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA300

DLP® driver  for DLP780NE (0.78 1080p), DLP780TE (0.78 4K UHD), DLP800RE (0.80 WUXGA) DM
TI

DLPA3000

DLP® PMIC/LED driver for DLP3010 (0.3 720p) DMD
TI

DLPA3000DPFD

DLP® PMIC/LED driver for DLP3010 (0.3 720p) DMD

| PFD | 100 | 0 to 70
TI

DLPA3000DPFDR

DLP® PMIC/LED driver for DLP3010 (0.3 720p) DMD | PFD | 100 | 0 to 70
TI

DLPA3005

DLP® PMIC/LED driver  for DLP4710 (0.47 1080p) DMD
TI

DLPA3005DPFD

DLP® PMIC/LED driver  for DLP4710 (0.47 1080p) DMD | PFD | 100 | 0 to 70
TI

DLPA3005DPFDR

DLP® PMIC/LED driver  for DLP4710 (0.47 1080p) DMD | PFD | 100 | 0 to 70
TI