DLPC100 [TI]

DLP® Digital Controller for the DLP1700 DMD; DLP®数字控制器的DLP1700 DMD
DLPC100
型号: DLPC100
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® Digital Controller for the DLP1700 DMD
DLP®数字控制器的DLP1700 DMD

控制器
文件: 总25页 (文件大小:495K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
®
DLP Digital Controller for the DLP1700 DMD  
Check for Samples: DLPC100  
1
FEATURES  
Optimized to Operate With DLPR100 and  
DLP1700  
Frame Rate Conversion  
LED Current Control Adjustment  
Programmable Degamma  
Single 24-Bit Input Port (RGB or BT656-YUV)  
With Pixel Clock Support up to 30 MHz  
Spatial-Temporal Multiplexing (Dithering)  
Automatic Gain Control  
Input Image Size 320 x 240 (QVGA), 480 x 320  
(HVGA), or 640 x 480 (VGA)  
60 MHz Double Data Rate (DDR) DMD Interface  
Three RGB Input Color Bit-Depth Options:  
RGB888, RGB666, RGB565  
External Memory Support: 100 MHz SDR  
SDRAM  
Supports 1 Hz to 60 Hz Frame Rates  
I2C Control Interface for Device Configuration  
Pixel Data Processing:  
Serial FLASH Interface  
System Control:  
Programmable LED Currents  
Color Space Conversion  
DMD Power and Reset Driver Control  
DMD Horizontal and Vertical Image Flip  
Built-in Test Pattern Generation  
Chroma Interpolation for 4:2:2 to 4:4:4  
Conversion  
Color Coordinate Adjustment  
Image Resizing (Scaling)  
JTAG with Boundary Scan Test Support  
Packaged in 256-Pin Ultra Fineline Ball-Grid  
Array (uBGA)  
De-Interlacing Via Field Scaling  
DESCRIPTION  
The DLPC100 performs all the image processing and control, along with DMD data formatting, for driving a 0.17  
HVGA DMD (DLP1700).  
The DLPC100 is one of three components in the 0.17 HVGA Chipset (see Figure 1). Proper function and  
operation of the DLP1700 requires that it be used in conjunction with the other components of the 0.17 HVGA  
Chip-Set. Refer to the 0.17 HVGA Chip-Set Data Sheet for further details (TI literature number DLPS017).  
In DLP electronics solutions, image data is 100% digital from the DLPC100 input port to the image projected on  
to the display screen. The image stays in digital form and is never converted into an analog signal. The  
DLPC100 processes the digital input image and converts the data into a format needed by the DMD. The DMD  
then reflects light to the screen using binary pulse-width-modulation (PWM) for each pixel mirror.  
Commands can be input to the DLPC100 over an I2C interface.  
The digital input interface switching levels, for image data, is nominally 1.8 V, 2.5 V, or 3.3 V. The switching level  
used is selected by setting pin INTFPWR to 1.8 V, 2.5 V, or 3.3 V. The input image interface and I2C interface  
switching levels must be the same.  
Related Documents  
DOCUMENT  
TI LITERATURE NUMBER  
DLPS017  
DLP 0.17 HVGA Chip-Set data sheet  
DLPR100 Configuration PROM data sheet  
DLP1700 0.17 HVGA DMD data sheet  
DLPS020  
DLPS018  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009–2010, Texas Instruments Incorporated  
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
24-bit RGB DATA  
Digital Video  
VSYNC  
HSYNC  
DVI  
Receiver  
2
I C  
2
5VDC  
Voltage Control  
Voltage  
Regulator  
2
I C  
2
Control  
MSP430  
Control  
RED STROBE  
GREEN STROBE  
BLUE STROBE  
Illumination  
Optics  
Projection  
Optics  
Configuration  
DLPC100  
DLPR100  
LED  
DLP1700  
Driver  
RED PWM  
GREEN PWM  
BLUE PWM  
Mobile  
SDR  
Memory  
OSC  
Figure 1. Typical Application  
SDRAM  
I/F  
FORMAT  
CONVERSION  
IMAGE  
ENHANCEMENT  
ARTIFACT  
MITIGATION  
DMD  
FORMATTING  
DMD DDR Data  
10  
RGB (YUV) Data  
RGB Control  
Chroma interpolation  
Color space conversion  
Gamma correction  
Degamma  
Automatic gain control  
Image scaling  
Spatial-temporal  
multiplexing  
Memory management/  
control  
DMD I/F processing  
Horizontal and vertical  
flip processing  
24  
DMD DDR Control  
Flash I/F  
I2C Bus  
CONTROL  
DMD Reset Control  
Oscillator  
SYSTEM CLOCK AND RESET SUPPORT  
Figure 2. Functional Block Diagram  
2
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
 
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
Projector Image Port Signal Sharing  
Figure 2 illustrates the basic processing that occurs in the controller. The DLPC100 provides a single input port  
for graphics and motion video inputs. The signals listed below support two input interface modes. Thus some  
signals have different uses depending on the input interface mode being used.  
Below are the two input image interface modes, signal descriptions, and pins needed on the DLPC100. describes  
all the signals in the DLPC100.  
BT.656, 9 pins  
PDATA(7-0) – Projector Data  
PCLK – Projector Clock (rising edge to capture input data)  
Parallel Bus, 20 pins or 22 pins or 28 pins  
PDATA(15-0) or PDATA(17-0) or PDATA(23-0) – Projector Data  
HSYNC – Horizontal Sync  
VSYNC – Vertical Sync  
DATEN – Data En (active high)  
PCLK – Projector Clock (rising edge, or falling edge, to capture input data)  
The Terminal Functions table describes the input/output characteristics of signals that interface to the DLPC100  
by functional groups. Signals are referenced by names shown in the Pico Projector Formatter Reference  
Schematic, TI drawing 2509552. The voltage characteristics of various I/O types are described in the I/O  
Characteristics table.  
ZCT PACKAGE  
(BOTTOM VIEW)  
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11  
13  
15  
2
4
6
8
10  
12  
14  
16  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): DLPC100  
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TERMINAL FUNCTIONS  
TERMINAL  
NAME  
CFG_DATA  
CFG_DCLK  
I/O  
TYPE  
CLOCK  
SYSTEM  
DESCRIPTION  
NO.  
H2  
I1  
CFG_DCLK  
CFG_DCLK  
Data input from DLPR100 device  
DLPR100 data clock  
H1  
O1  
CFG_ASDO  
Serial data output. This pin sends address and control  
information to the DLPR100 during configuration.  
C1  
O1  
CFG_DCLK  
MSEL_2  
MSEL_1  
MSEL_0  
CE  
G12  
H12  
H13  
J3  
I1  
I1  
I1  
I1  
Asynch  
Asynch  
Asynch  
Asynch  
Mode selection signals. (Must be tied low for proper operation)  
Mode selection signals. (Must be tied high for proper operation)  
Mode selection signals. (Must be tied low for proper operation)  
Configuration chip enable. Active low.  
CFG  
Configuration control. Configuration will start when a low to high  
transition is detected at this pin.  
H5  
F4  
I1  
Asynch  
NSTATUS  
B1  
B1  
CFG_DCLK  
CFG_DCLK  
Configuration status pin.  
CFG_DONE  
Configuration Done status pin. Signal goes high at the end of  
configuration.  
H14  
Board Level Test & Debug  
JTAG_TDI  
H4  
H3  
J5  
I2  
I3  
JTAG_TCK  
N/A  
JTAG, serial data in  
JTAG_TCK  
JTAG, serial data clock  
JTAG, test mode select  
JTAG, serial data out  
JTAG_TMS  
JTAG_TDO  
System Interfaces  
CLK_IN  
I2  
JTAG_TCK  
JTAG_TCK  
J4  
O1  
E16  
L8  
I4  
I5  
N/A  
Async  
Async  
N/A  
Input oscillator clock (60 MHz)  
Device reset (active low)  
RESET  
PWRGOOD  
P_SCL  
T3  
I5  
System power good indicator  
I2C clock  
I2C data  
I2C address selection (low = device address x36)  
Reserved. Must be tied to GND for DLPC100.  
Not used. Pin reserved for future use.  
R3  
B2  
B2  
I4  
P_SDA  
L3  
N/A  
I2C_ADDR_SEL  
Reserved  
R9  
Async  
Async  
Async  
M16  
G15  
I4  
Reserved  
I4  
Test/Debug Interfaces  
SpareIn_B8  
SpareIn_B9  
SpareIn_E1  
SpareIn_E15  
SpareIn_E2  
SpareIn_M1  
SpareIn_M15  
SpareIn_M2  
SpareIn_A9  
SpareIn_T9  
B8  
B9  
E1  
E15  
E2  
I1,4,5  
N/A  
Reserved. Should be tied to GND to minimize power.  
M1  
M15  
M2  
A9  
T9  
4
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
NAME  
I/O  
TYPE  
CLOCK  
SYSTEM  
DESCRIPTION  
NO.  
P6  
AUXSYNC0  
TEST1  
P11  
P14  
L14  
J13  
J15  
J16  
D16  
G16  
F14  
D15  
C16  
C11  
C15  
B16  
F13  
D1  
TEST2  
TEST3  
TEST4  
TEST5  
TEST6  
TEST7  
AUXSYNC1  
AUXSYNC2  
AUXSYNC3  
AUXSYNC4  
TEST12  
TEST13  
TEST14  
TEST15  
TEST16  
TEST17  
TEST18  
TEST19  
TEST20  
TEST21  
TEST22  
TESTx outputs are Reserved for factory testing. AUXSYNC0-4  
are available for Pattern Display Synchronization. See  
associated application note.  
O1,3,4  
N/A  
F16  
F15  
G15  
G1  
M8  
N8  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): DLPC100  
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
NAME  
I/O  
TYPE  
CLOCK  
SYSTEM  
DESCRIPTION  
NO.  
Main Video Data & Control  
PARALLEL RGB  
Clock  
BT.656  
Clock  
PCLK  
R8  
T5  
R4  
N3  
T4  
T2  
R5  
P2  
N5  
N2  
P8  
L2  
I5  
I6  
I6  
I6  
O5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
N/A  
VSYNC_WE  
HSYNC_CS  
DATEN_CMD  
Reserved_RFU  
PDATA0  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
Vsync  
Unused  
Unused  
Unused  
Unused  
Data0  
Hsync  
Active data  
Unused  
Data  
PDATA1  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data(1)  
Data1  
PDATA2  
Data2  
PDATA3  
Data3  
PDATA4  
Data4  
PDATA5  
Data5  
PDATA6  
Data6  
PDATA7  
T7  
K2  
R7  
J2  
Data7  
PDATA8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
PDATA9  
PDATA10  
PDATA11  
PDATA12  
PDATA13  
PDATA14  
PDATA15  
PDATA16  
PDATA17  
PDATA18  
PDATA19  
PDATA20  
PDATA21  
PDATA22  
PDATA23  
DMD Interface  
DMD_D0  
DMD_D1  
DMD_D2  
DMD_D3  
DMD_D4  
DMD_D5  
DMD_D6  
DMD_D7  
DMD_D8  
DMD_D9  
DMD_DCLK  
DMD_LOADB  
DMD_SCTRL  
M7  
R1  
L7  
P1  
M6  
N1  
N6  
L1  
P3  
K1  
R6  
J1  
T6  
P9  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
N/A  
R16  
R13  
R12  
R11  
L15  
J14  
L13  
N16  
N15  
N12  
N9  
DMD data pins. DMD Data pins are double data rate (DDR)  
signals that are clocked on both edges of DMD_DCLK.  
DMD data clock  
DMD_CLK  
DMD_CLK  
DMD data serial control signal  
DMD data load signal  
P16  
(1) 24-bit data is mapped according to RGB565/RGB666/RGB888 pixel format. See Figure 3.  
Submit Documentation Feedback  
6
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
NAME  
I/O  
TYPE  
CLOCK  
SYSTEM  
DESCRIPTION  
NO.  
T10  
T11  
T14  
T12  
K16  
T15  
R10  
T13  
L16  
K15  
R14  
G5  
DMD_TRC  
DMD_A0  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
O3  
I4  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
DMD_CLK  
N/A  
DMD data toggle rate control  
DMD reset address 0  
DMD reset address 1  
DMD reset address 2  
DMD reset select 0  
DMD_A1  
DMD_A2  
DMD_SEL0  
DMD_SEL1  
DMD reset select 1  
DMD_MODE  
DMD_STROBE  
DMD_SACBUS  
DMD_SACCLK  
DMD_OEZ  
DMD_PWR_EN  
RESERVED  
RESERVED  
SDRAM Interface  
MEM_A0  
DMD reset mode  
DMD reset strobe  
DMD serial bus data  
DMD serial bus clock  
DMD reset output enable  
DMD power regulator enable  
Pin reserved for future use  
Not used. Pin reserved for future use.  
H16  
H15  
N/A  
N/A  
D12  
B12  
B14  
C14  
D14  
A15  
A13  
B13  
A14  
B3  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
O2  
B3  
B3  
B3  
B3  
B3  
B3  
B3  
B3  
B3  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
N/A  
Multiplexed row and column address 0 for the SDRAM  
Multiplexed row and column address 1 for the SDRAM  
Multiplexed row and column address 2 for the SDRAM  
Multiplexed row and column address 3 for the SDRAM  
Multiplexed row and column address 4 for the SDRAM  
Multiplexed row and column address 5 for the SDRAM  
Multiplexed row and column address 6 for the SDRAM  
Multiplexed row and column address 7 for the SDRAM  
Multiplexed row and column address 8 for the SDRAM  
Multiplexed row and column address 9 for the SDRAM  
Multiplexed row and column address 10 for the SDRAM  
Multiplexed row and column address 11 for the SDRAM  
Bank select for the SDRAM  
MEM_A1  
MEM_A2  
MEM_A3  
MEM_A4  
MEM_A5  
MEM_A6  
MEM_A7  
MEM_A8  
MEM_A9  
MEM_A10  
MEM_A11  
MEM_BA0  
MEM_BA1  
MEM_RAS  
MEM_CAS  
MEM_CKE  
MEM_CS  
A12  
D11  
B11  
A11  
C9  
Bank select for the SDRAM  
Row address strobe. Active low.  
D9  
Column address strobe. Active low.  
E9  
Clock enable. Active high.  
B10  
A10  
D8  
Chip select. Active low.  
MEM_HDQM  
MEM_LDQM  
MEM_WE  
Data mask high byte.  
Data mask low byte  
F8  
Write enable. Active low.  
MEM_CLK  
MEM_DQ0  
MEM_DQ1  
MEM_DQ2  
MEM_DQ3  
MEM_DQ4  
MEM_DQ5  
MEM_DQ6  
MEM_DQ7  
MEM_DQ8  
F9  
Memory clock. Generated by internal PLL. 100 MHz  
Bidirectional data 0 for the SDRAM  
A3  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
B4  
Bidirectional data 1 for the SDRAM  
A5  
Bidirectional data 2 for the SDRAM  
A6  
Bidirectional data 3 for the SDRAM  
B6  
Bidirectional data 4 for the SDRAM  
E6  
Bidirectional data 5 for the SDRAM  
A7  
Bidirectional data 6 for the SDRAM  
C8  
Bidirectional data 7 for the SDRAM  
E8  
Bidirectional data 8 for the SDRAM  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): DLPC100  
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
NAME  
MEM_DQ9  
I/O  
TYPE  
CLOCK  
SYSTEM  
DESCRIPTION  
NO.  
B7  
E7  
A2  
D6  
B5  
D5  
A4  
B3  
B3  
B3  
B3  
B3  
B3  
B3  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
Bidirectional data 9 for the SDRAM  
MEM_DQ10  
MEM_DQ11  
MEM_DQ12  
MEM_DQ13  
MEM_DQ14  
MEM_DQ15  
LED Driver Interface  
BLU_PWM  
Bidirectional data 10 for the SDRAM  
Bidirectional data 11 for the SDRAM  
Bidirectional data 12 for the SDRAM  
Bidirectional data 13 for the SDRAM  
Bidirectional data 14 for the SDRAM  
Bidirectional data 15 for the SDRAM  
C6  
C3  
D3  
F1  
G2  
F2  
A8  
O3  
O3  
O3  
O1  
O1  
O1  
I4  
CLK_IN  
CLK_IN  
CLK_IN  
CLK_IN  
CLK_IN  
CLK_IN  
Async  
Blue LED PWM signal used to control the LED current  
Red LED PWM signal used to control the LED current  
RED_PWM  
GRN_PWM  
Green LED PWM signal used to control the LED current  
Blue LED enable  
BLU_STROBE  
RED_STROBE  
GRN_STROBE  
LED_FAULT  
Red LED enable  
Green LED enable  
LED fault indication. Signal forces LEDDRV_ON low and RGB  
strobes low  
LED_ENABLE  
T8  
I5  
Async  
LED enable. Signal forces LEDDRV_ON low and RGB strobes  
low.  
LEDDRV_ON  
RESERVED  
RESERVED  
Impedance Control(2)  
RUP2  
F3  
B1  
C2  
O1  
I1  
CLK_IN  
Async  
Async  
LED driver enable  
Not used. Reserved for future use.  
Not used. Reserved for future use.  
O1  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Bank 4 control  
Bank 4 control  
Bank 5 control  
Bank 5 control  
Bank 7 control  
Bank 7 control  
RDN2  
RUP3  
RDN3  
RUP4  
RDN4  
Power and Ground(2)  
P1P2V  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.2 V core power  
P2P5V_DPLL  
P1P8V  
2.5 V filtered power for internal PLL  
1.8 V I/O power  
P2P5V  
2.5 V I/O power  
P3P3V  
3.3 V I/O power  
GND  
Common digital ground  
Common PLL ground  
GNDA  
(2) To see how these are connected, see the reference schematic  
8
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
16-Bit Input Bus, RGB565 (Parallel Bus)  
PDATA(150), the input data bus  
PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0  
Bus Assignment Mapping  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
RGB565 format  
18-Bit Input Bus, RGB666 (Parallel Bus)  
PDATA(170),  
PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0  
Bus Assignment Mapping  
B0  
RGB666 format  
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
24-Bit Input Bus, RGB888 (Parallel Bus Only)  
PD23 PD22 PD21 PD20 PD19 PD18 PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0  
R0  
G7  
G6  
G5  
G4  
G3 G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
R7  
R6  
R5  
R4  
R3 R2  
R1  
RGB888 format  
Figure 3. Pixel Mapping  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): DLPC100  
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
I/O CHARACTERISTICS(1)  
all inputs/outputs are LVCMOS  
I/O TYPE  
CONDITIONS  
VIL  
VIH  
MIN  
VOL  
VOH  
UNIT  
MIN  
-0.3  
-0.3  
-0.3  
MAX  
0.8  
MAX  
VCCIO+0.3  
VCCIO+0.3  
VCCIO+0.3  
MIN  
MAX  
I1  
I2  
I3  
Input  
VCCIO = 2.5 V  
1.7  
1.7  
1.7  
V
V
Input  
Input  
VCCIO = 2.5 V  
0.8  
VCCIO = 2.5 V, internal  
pulldown resistor  
0.8  
V
I4  
I5  
I6  
Input  
Input  
Input  
VCCIO = 1.8 V  
-0.3  
-0.3  
-0.3  
0.35 * VCCIO  
0.35 * VCCIO  
0.35 * VCCIO  
0.65 * VCCIO  
0.65 * VCCIO  
0.65 * VCCIO  
VCCIO+0.3  
VCCIO+0.3  
VCCIO+0.3  
V
V
VCCIO = 1.8 to 3.3 V  
VCCIO = 1.8 to 3.3 V,  
internal pullup resistor  
V
O1  
O2  
O3  
O4  
B1  
Output 8 mA  
Output 4 mA  
Output 8 mA  
Output 4 mA  
VCCIO = 2.5 V  
0.4  
0.45  
0.45  
0.45  
0.4  
2
VCCIO – 0.45  
VCCIO – 0.45  
VCCIO – 0.45  
V
V
V
V
VCCIO = 1.8 V  
VCCIO = 1.8 V  
VCCIO = 1.8 to 3.3 V  
Bi-directional output, VCCIO = 2.5 V  
open drain  
-0.3  
-0.3  
-0.3  
0.8  
0.35 * VCCIO  
0.35 * VCCIO  
1.7  
0.65 * VCCIO  
0.65 * VCCIO  
VCCIO+0.3  
VCCIO+0.3  
VCCIO+0.3  
V
V
V
B2  
B3  
Bi-directional output, VCCIO = 1.8 to 3.3 V  
open drain  
0.45  
0.45  
Bi-directional output, VCCIO = 1.8 V  
4 mA  
VCCIO – 0.45  
(1) Cross reference to IO assignments  
POWER AND GROUND PINS  
NAME  
DESCRIPTION  
PIN NUMBER(S)  
Input Power and Ground Pins  
F7, F11, G6, G7, G8, G9, G10, H6, H11,  
J6, J12, K7, K9, K10, K11, L6, M9, M11  
VCC12  
1.2-V power supply for core logic  
2.5-V power supply for internal PLLs  
VCC25_DPLL  
F5, F12, L5, L12  
A1, A16, C4, C7, C10, C13, E14, G14,  
VCCIO18  
1.8-V power supply for I/Os on banks 4-8  
K14,  
M14, P10, P13, T16  
2.5-V or 3.3-V power supply for bank I/Os (Serial configuration FLASH  
interface) Bank 1  
E3, G3  
FLASHPWR  
INTFPWR  
1.8V, 2.5V or 3.3V power supply for I/Os on Video Interface Banks 2-3  
1.2V power supply for DLL  
K3, M3, P4, P7, T1  
N4, D13, D4, N13  
VCCD_PLL1-4  
B2, B15, C5, C12, D7, D10, E4, E13, F6,  
F10, G4, G11, G13, H7, H8, H9, H10,  
J7,  
GND  
Common ground  
Analog ground  
J8, J9, J10, J11, K4, K6, K8, K12, K13,  
L9,  
L10, L11, M4, M13, N7, N10, P5, P12,  
R2, R15  
GNDA1-4  
M5, E12, E5, M12  
Input Signals Tied to a Fixed Level  
GND  
Virtual GND output pins that are driven to a low level for noise reduction.  
none  
On-Chip Series Termination with Calibration(1)  
RDN1, RUP1  
RDN2, RUP2  
RDN3, RUP3  
RDN4, RUP4  
Bank 2 - Not connected  
L4, K5  
Bank 4 DMD interface support  
Bank 5 DMD interface support  
Bank 7 and 8 memory interface support  
N11, M10  
P15, N14  
E10, E11  
(1) The device supports on-chip series termination with calibration in all banks. The on-chip series termination calibration circuit compares  
the total impedance of the I/O buffer to the external 50 Ω ±1% resistors connected to the RUP and RDN pins, and dynamically adjusts  
the I/O buffer impedance until they match. OCT with calibration is achieved using the OCT calibration block circuitry. There is one OCT  
calibration block in bank 2, 4, 5, and 7.  
10  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
Video Input Pixel Interface  
TIMING REQUIREMENTS(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
1
MAX  
UNIT  
MHz  
ns  
fclock  
tt  
Clock frequency, PCLK  
30  
Transition time, tt = tf/tr PCLK  
20% to 80% reference points (signal)  
50% to 50% reference points (signal)  
50% to 50% reference points (signal)  
1.0  
11  
11  
tw(H)  
tw(L)  
tj  
Pulse duration, high  
ns  
Pulse duration, low  
ns  
(2)  
Clock period jitter, PCLK  
See  
ns  
(3)  
tsu  
th  
Setup time, PDATA(23-0) valid before PCLK  
Hold time, PDATA(23-0) valid after PWCLK  
Setup time, VSYNC_WE valid before PCLK  
Hold time, VSYNC_WE valid after PCLK  
Setup time, HSYNC_CS valid before PCLK  
Hold time, HSYNC_CS valid after PCLK  
See  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
ns  
(3)  
See  
ns  
(3)  
tsu  
th  
See  
ns  
(3)  
See  
ns  
(3)  
tsu  
th  
See  
ns  
(3)  
See  
ns  
(3)  
tsu  
th  
Setup time, DATEN_CMD valid before PCLK See  
ns  
(3)  
Hold time, DATEN,_CMD valid after PCLK  
See  
ns  
(1) Contact TI for I2C, LED driver, power-up and power=down timing information.  
(2) PCLK may be inverted from that shown in Figure 4. In that case the same specifications in the table are valid except now referenced to  
the falling edge of the clock. If the falling edge of PCLK is to be used, an I2C command is needed to tell the DLPC100 to use the falling  
edge of PCLK.  
(3) Use the following formula to obtain the jitter. Jitter = [1/frequency – 30 ns]. Setup and hold must still be met.  
t
c
t
t
w(L)  
w(H)  
t
t
PCLK  
(input)  
80%  
20%  
50%  
50%  
50%  
t
t
su  
h
PDATA  
VSYNC_WE  
HSYNC_CS  
DATEN_CMD  
Valid  
(inputs)  
Figure 4. Input Port Interface  
I2C Interface  
The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be  
connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data  
transfer may be initiated only when the bus is not busy.  
I2C communication with this device is initiated by a master sending a Start condition, a high-to-low transition on  
the SDA input/output while the SCL input is high (see Figure 5). After the Start condition, the device address byte  
is sent, MSB first, including the data direction bit (R/W).  
After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during  
the high of the ACK-related clock pulse.  
On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control  
commands (Start or Stop) (see Figure 6).  
A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the  
master (see Figure 5).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): DLPC100  
 
 
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Any number of data bytes can be transferred from the transmitter to the receiver between the Start and the Stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see  
Figure 7). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly,  
the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold  
times must be met to ensure proper operation.  
A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after  
the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high.  
In this event, the transmitter must release the data line to enable the master to generate a Stop condition.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 5. Definition of Start and Stop Conditions  
SDA  
SCL  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
Figure 6. Bit Transfer  
Data Output  
by Transmitter  
NACK  
Data Output  
by Receiver  
ACK  
SCL From  
Master  
1
2
8
9
S
Start  
Clock Pulse for  
Condition  
Acknowledgment  
Figure 7. Acknowledgment on I2C Bus  
12  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
 
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
I2C INTERFACE TIMING REQUIREMENTS  
PARAMETER  
MIN  
0
MAX UNIT  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
400  
kHz  
ms  
ms  
ns  
1
1
20  
tsds  
tsdh  
ticr  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
I2C output fall time  
I2C bus free time between Stop and Start conditions  
I2C Start or repeated Start condition setup  
I2C Start or repeated Start condition hold  
I2C Stop condition setup  
100  
100  
20  
30  
1.3  
1
ns  
ns  
300  
200  
ns  
tocf  
tbuf  
tsts  
tsth  
tsph  
50 pF  
ns  
ms  
ms  
ms  
ms  
ms  
ms  
pF  
1
1
Valid-data time  
SCL low to SDA output valid  
1
1
tvd  
Valid-data time of ACK condition  
I2C bus capacitive load  
ACK signal from SCL low to SDA (out) low  
tsph  
0
100  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): DLPC100  
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
V
CC  
R
L
= 1 k  
SDA  
DUT  
C
L
= 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
Three Bytes for Complete  
Device Programming  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
R/W  
Bit 0  
(LSB)  
Data  
Bit 7  
(MSB)  
Data  
Bit 0 Condition  
(LSB)  
Stop  
Address  
Bit 6  
Address  
Bit 1  
ACK  
(A)  
(P)  
t
scl  
t
sch  
0.7 × V  
0.3 × V  
CC  
SCL  
SDA  
CC  
t
icr  
t
sts  
t
PHL  
t
icf  
t
buf  
t
t
sp  
PLH  
0.7 × V  
0.3 × V  
CC  
CC  
t
icf  
t
icr  
t
sdh  
t
sps  
t
sth  
t
sds  
Repeat  
Start  
Condition  
Stop  
Condition  
Start or  
Repeat  
Start  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
1
DESCRIPTION  
2
I C address  
2, 3  
P-port data  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 8. I2C Interface Load Circuit and Voltage Waveforms  
14  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
I2C Bus Transactions  
Data is exchanged between the master and the DLPC100 through write and read commands.  
Writes  
Data is transmitted to the DLPC100 by sending the device address and setting the least-significant bit to a logic  
0. The data bytes are sent after the address and determines which register receives the data that follows the  
address byte. Data is clocked into the register on the rising edge of the ACK clock pulse. .  
Reads  
The bus master first must send the DLPC100 address with the least-significant bit set to a logic 0. The read  
address byte is sent after the device address and read command (x15) and the read address determines which  
register is accessed. After a restart, the device address is sent again, but this time, the least-significant bit is set  
to a logic 1. Data from the register defined by the read address byte then is sent by the DLPC100. See  
Programmers guide for a full description of the register read/write protocol and available registers.  
Flash Memory Interface  
The DLPC100 controller flash memory interface consists of a SPI flash serial interface at 33.3 MHz (nominal).  
FLASH INTERFACE TIMING REQUIREMENTS  
PARAMETER  
Clock frequency, SPI_CLK  
Clock period, SPI_CLK  
TEST CONDITIONS  
MIN  
33.3266  
29.994  
MAX  
33.34  
30.006  
200  
UNIT  
MHz  
ns  
(1)  
fclock  
tp_clkper  
tp_clkjit  
tp_wh  
tp_wl  
See  
50% reference points  
Max fclock  
Clock jitter, SPI_CLK  
ps  
Pulse width low, SPI_CLK  
Pulse width high, SPI_CLK  
Transition time – all signals  
50% reference points  
50% reference points  
20% to 80% reference points  
10  
10  
ns  
ns  
tt  
0.2  
10  
4
1
ns  
Setup Time – SPI_DIN valid before SPI_CLK rising  
edge  
ns  
tp_su  
tp_h  
tp_clqv  
tp_clqx  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
Hold Time – SPI_DIN valid after SPI_CLK rising  
edge  
0
ns  
ns  
ns  
SPI_CLK clock low to output valid time – SPI_DOUT  
& SPI_CSZ  
SPI_CLK clock low output hold time – SPI_DOUT &  
SPI_CSZ  
-1  
(1) This range include the 200 ppm of the external oscillator  
tp_clkper  
tp_wh  
tp_wl  
SPI_CLK  
tp_h  
tp_su  
SPI_DATA  
Figure 9. Flash Memory Interface Timing  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): DLPC100  
 
 
 
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
DMD Interface  
The DLPC100 ASIC DMD interface consists of a 60.0 MHz (nominal) DDR output-only interface with LVCMOS  
signaling.  
DMD INTERFACE TIMING REQUIREMENTS  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
MHz  
ns  
(1)  
fclock  
Clock frequency, DMD_DCLK & DMD_SAC_CLK  
Clock period, DMD_DCLK & DMD_SAC_CLK  
Clock jitter, DMD_DCLK & DMD_SAC_CLK  
Pulse width low, DMD_DCLK & DMD_SAC_CLK  
Pulse width high, DMD_DCLK & DMD_SAC_CLK  
See  
60.05  
tp_clkper  
tp_clkjit  
tp_wh  
50% reference points  
Max fclock  
16.5  
200  
ps  
50% reference points  
50% reference points  
7.5  
7.5  
0.3  
ns  
tp_wl  
ns  
20% to 80% reference  
points  
2.0  
1.5  
ns  
tt  
Transition time – all signals  
Output setup time – DMD_D(14:0), DMD_SCTRL,  
DMD_LOADB & DMD_TRC relative to both rising and  
falling edges of DMD_DCLK  
ns  
ns  
tp_su  
50% reference points  
50% reference points  
Output hold time – DMD_D(14:0), DMD_SCTRL,  
DMD_LOADB & DMD_TRC signals relative to both rising  
and falling edges of DMD_DCLK DMD  
1.5  
tp_h  
Data skew – DMD_D(14:0), DMD_SCTRL, DMD_LOADB &  
DMD_TRC signals relative to each other  
0.20  
0.20  
0.20  
ns  
ns  
ns  
tp_d1_skew  
tp_clk_skew  
50% reference points  
50% reference points  
Clock skew – DMD_DCLK & DMD_SAC_CLK relative to  
each other DAD/ SAC  
Data Skew - DMD_SAC_BUS, DMD_DAD_OEZ,  
tp_d2_skew DMD_DAD_BUS & DMD_DAD_STRB signals relative to  
DMD_SAC_CLK  
50% reference points  
(1) This range include the 200 ppm of the external oscillator  
tp_d1_skew  
DMD_D(1:0)  
DMD_SCTRL  
DMD_TRC  
DMD_LOADB  
tp_h  
tp_su  
DMD_DCLK  
tp_wl  
tp_wh  
tclk_skew  
DMD_SAC_CLK  
tp_d2_skew  
DMD_SAC_BUS  
DMD_DAD_OEZ  
DMD_DAD_BUS  
DMD_DAD_STRB  
Figure 10. DMD I/F Timing  
16  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
 
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
Mobile SDR Memory Interface  
The DLPC100 Controller Mobile SDR Memory interface consists of a 16-bit wide, mobile SDR interface (i.e.  
LVCMOS signaling) operated at 100.0 MHz (nominal).  
MOBILE SDR MEMORY INTERFACE TIMING REQUIREMENTS  
PARAMETER  
MIN  
10  
3
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCYCLE  
tCH  
Cycle time reference  
CK high pulse width(1)  
CK low pulse width(1)  
Command setup  
Command hold  
tCL  
3
tCMS  
tCMH  
tAS  
1.5  
1
Address setup  
1.5  
1
tAH  
Address hold  
tDS  
Write data setup  
Write data hold  
2.5  
1
tDH  
tAC  
Read data access time  
Read data hold time  
8
8
tOH  
tLZ  
2.5  
1
Read data low impedance time  
Read data high impedance time  
tHZ  
(1) CK and DQS pulse width specs for the DLPC100 assume it is interfacing to a 125 MHz mDDR device. Even though these memories are  
only operated at 100.0 MHz, according to memory vendors, the rated tCK spec (i.e. 8 ns) can be applied to determine minimum CK and  
DQS pulse width requirements to the memory.  
tCYCLE  
MEM_CLK  
tCH  
tCL  
tAS  
tAH  
MEM_A(11:0)  
MEM_BA(11:0)  
MEM_xDQM  
MEM_RAS\  
MEM_CAS\  
MEM_WE\  
MEM_CS\  
tCMS  
tCMH  
MEM_CKE  
tDS  
tDH  
MEM_DQ(15:0)  
mSDR Memory Write Data Timing  
Figure 11. Mobile SDR Memory I/F Write Timing  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): DLPC100  
 
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
tCYCLE  
MEM_CLK  
tCH  
tCL  
tAS  
tAH  
MEM_A(11:0)  
MEM_BA(11:0)  
MEM_xDQM  
tCMS  
MEM_RAS\  
tCMH  
MEM_CAS\  
MEM_WE\  
MEM_CS\  
MEM_CKE  
tAC  
tOH  
Valid  
Data  
MEM_DQ(15:0)  
tLZ  
tHZ  
mSDR Memory Read Data Timing  
Figure 12. Mobile SDR Memory I/F Read Timing  
18  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
SDRAM Memory  
The DLPC100 requires an external Mobile SDR SDRAM. The DLPC100 can support either a 128 Mbit or a 64  
Mbit SDRAM. The basic requirements for the SDRAM are:  
SDRAM type: mobile SDR  
Speed: 125 MHz minimum  
16-bit interface size: 64 Mbit or 128 Mbit  
Supply voltage: 1.8 V  
Supported SDRAM Devices shows the SDRAM parts that have been tested by TI. All have been found to work  
properly and are therefore recommended for production use with the DLPC100.  
Table 1. Supported SDRAM Devices  
PART NUMBER  
K4M64163PK-BG750JR  
K4M28163PH-BG750JR  
MT48H4M16LFB4-8  
MT48H8M16LFB4-8  
MANUFACTURER  
Samsung  
Samsung  
Micron  
SIZE  
64 Mbit  
128 Mbit  
64 Mbit  
128 Mbit  
Micron  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): DLPC100  
 
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
VCC12  
–0.5 V to 1.80  
–0.5 V to 3.90  
–0.5 V to 3.75  
–0.5 V to 3.90  
-0.5 V to 1.80  
–0.5 V to 3.95  
0.300  
VCCIO18  
(2)  
VCCA25_DPLL  
INTFPWR  
VCCD_PLL1-4  
VI  
Supply voltage range  
V
Input voltage range(3)  
1.8 V, 2.5V, 3.3V  
V
Continuous total power dissipation: typical  
Operating junction temperature range  
Storage temperature range  
W
°C  
°C  
TJ  
–40°C to 125  
–60°C to 150  
Tstg  
HBM  
Electrostatic discharge voltage using the Human  
Body Model  
+/- 2000  
+/- 500  
V
V
CD  
Electrostatic discharge voltage using the Charged  
Device Model  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND, and at the device not at the power supply.  
(3) Applies to external input and bidirectional buffers.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
1.15  
1.71  
NOM  
1.2  
MAX  
1.25  
1.89  
UNIT  
VCC12  
VCC18  
1.2-V Supply voltage, core logic  
V
1.5-V supply voltage, HSTL output  
buffers  
1.8  
V
VCCA25_DPLL  
INTFPWR  
INTFPWR  
INTFPWR  
VCCD_PLL1-4  
VIH  
2.5-V analog voltage for PLL regulator  
At 1.8-V IO rail  
2.375  
1.71  
2.5  
1.8  
2.5  
3.3  
1.2  
2.625  
1.89  
V
V
V
V
V
At 2.5-V IO rail  
2.375  
3.15  
2.625  
3.45  
At 3.3-V IO rail  
1.2-V supply voltage, for PLL  
High-level input voltage  
1.15  
1.25  
1.8V LVCMOS  
2.5V LVCMOS  
3.3VLVCMOS  
1.8V LVCMOS  
2.5V LVCMOS  
3.3VLVCMOS  
0.65*VCCIO  
1.7  
V
V
1.7  
VIL  
Low-level input voltage  
0.35*VCCIO  
0.8  
0.8  
VI  
Input voltage  
-0.5  
0
3.6  
V
V
VO  
tRamp  
TJ  
Output voltage  
VCCIO  
3 ms  
85  
Power supply ramptime  
Operating junction temperature  
50 us  
-20  
-
°C  
Thermal Considerations  
The underlying thermal limitation for the DLPC100 is that the maximum operating junction temperature (TJ) not  
be exceeded (see Recommended Operating Conditions). This temperature is dependent on operating ambient  
temperature, airflow, PCB design (including the component layout density and the amount of copper used),  
power dissipation of the DLPC100 and power dissipation of surrounding components. The DLPC100’s package  
is designed primarily to extract heat through the power and ground planes of the PCB, thus copper content and  
airflow over the PCB are important factors.  
20  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
DLPC100  
www.ti.com  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
Device Marking  
Device marking should be as shown below.  
25094xx – AB  
DPP150x  
®
Date Code  
Country of Origin  
Assy. Lot Number  
Trace code  
25094xx = 2509408 or 2509427; DPP150x = DPP1500 or DPP1505  
Marking Key:  
Line 1 : TI Reference Number  
Line 2 : Device Name  
Line 3 : DLP® logo  
Line 4 : Date Code  
Line 5 : Country of Origin  
Line 6 : Assembly Lot Number  
Line 7 : Trace Code  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): DLPC100  
DLPC100  
DLPS019B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Table 2. Revision History  
REVISION  
SECTION(S)  
COMMENT  
*
All  
Initial release  
I2C Interface,  
I2C Bus Transactions,  
Flash Memory Interface,  
DMD Interface,  
Added description, graphics, and timing requirements, status changed to Production  
Data  
A
Mobile SDR Memory Interface,  
22  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): DLPC100  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Dec-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
DLPC100ZCT  
ACTIVE  
NFBGA  
ZCT  
256  
1
Pb-Free (RoHS)  
POST-PLATE Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

DLPC100ZCT

DLP® Digital Controller for the DLP1700 DMD
TI

DLPC120-Q1

适用于 DLP3030-Q1 芯片组的汽车类 DLP® 数字微镜器件控制器
TI

DLPC120ZXSQ1

适用于 DLP3030-Q1 芯片组的汽车类 DLP® 数字微镜器件控制器 | ZXS | 216 | -40 to 105
TI

DLPC120ZXSRQ1

适用于 DLP3030-Q1 芯片组的汽车类 DLP® 数字微镜器件控制器 | ZXS | 216 | -40 to 105
TI

DLPC1438

适用于 DLP300S 和 DLP301S 数字微镜器件 (DMD) 的 DLP® 控制器
TI

DLPC1438ZEZ

适用于 DLP300S 和 DLP301S 数字微镜器件 (DMD) 的 DLP® 控制器 | ZEZ | 201 | -30 to 105
TI

DLPC150

适用于 DLP2010NIR DMD 的 数字控制器
TI

DLPC150ZEZ

适用于 DLP2010NIR DMD 的 数字控制器 | ZEZ | 201 | -30 to 85
TI

DLPC200

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200ZEW

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200ZEWCM

暂无描述
TI

DLPC200ZEWT

DLP® Digital Controller for the DLP5500 DMD
TI