DLPC7540 [TI]

DLP® display controller for 4K UHD and 1080p DMD;
DLPC7540
型号: DLPC7540
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® display controller for 4K UHD and 1080p DMD

文件: 总105页 (文件大小:2538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLPC7540  
DLPS206 – MAY 2021  
DLPC7540 High Resolution Controller  
JTAG boundary scan test support  
LED, RGB Laser and Laser Phosphor illuminations  
1 Features  
DLPC7540 controller using DLP471TE,  
DLP471NE, DLP650TE or DLP651NE digital  
micromirror device (DMD) supports  
– Up to 4K UHD at 60 Hz  
– Up to 1080p at 240 Hz (2D) and 120 Hz (3D)  
Provides single V-by-One® HS video input port  
with one, two, four, or eight lanes  
– Up to 600 MHz Pixel clock support  
– Up to 3.0 Gbps input transmission rate  
Two OpenLDI (FPD-Link I) video input ports with  
6-lanes (5 data) per port  
2 Applications  
Enterprise projector  
Laser TV  
Smart projector  
Digital signage  
3 Description  
The DLPC7540 is a digital display controller for the  
4K UHD and 1080p display chipsets, which comprises  
of DLPC7540 controller, DLP471TE, DLP471NE,  
DLP650TE or DLP651NE DMDs and DLPA100  
Power and Motor driver. This solution targets display  
systems that require high resolution and high  
brightness in a small form factor. To ensure reliable  
operation, the DLPC7540 controller must always be  
used with the DLP471TE, DLP471NE, DLP650TE  
or DLP651NE DMDs and the DLPA100 power  
management integrated circuit in each application.  
Input formats supported  
– RGB, YCbCr and ICtCp  
– 4:4:4, 4:2:2, 4:2:0  
Internal Arm Cortex-R4F processor with FPU  
– 88 configurable GPIOs  
– Programmable PWM generator  
– Programmable capture and delay timers  
– USB 2.0 high-speed OTG controller  
– SPI primary/secondary controllers  
– I2C primary/secondary controllers  
– UART and interrupt controllers  
Warping engine  
– Improved 1D, 2D and 3D keystone correction  
– Optical distortion correction (radial and lateral  
color distortion e.g. for short throw )  
– Warping (multi-point manual warp and full warp  
map access 62x32 points)  
– Blending (manual blending and full bleding map  
access 63x32 points)  
Additional image processing  
– DynamicBlack  
– TI DLP® BrilliantColor™  
Device Information(1)(2)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
DLPC7540ZDC  
P-HBGA (676) 31.00 mm × 31.00 mm  
(1) For all available packages, see the orderable addendum.  
(2) Includes embedded heat slug.  
LS_Interface  
HSSI Macro A Data Pair  
8
DMD DCLKA  
HSSI Macro B Data Pair  
DLP471TE  
8
Or  
DLP471NE  
Or  
DMD DCLKB  
DLPC7540  
Display  
Controller  
Vx1  
DLP650TE  
Or  
DLP651NE  
HSSI DMD  
V
V
V
OFFSET  
BIAS  
– HDR10 (PQ and HLG) support  
– Frame rate conversion  
– Color coordinate adjustment  
SPI  
Power  
Management  
RESET  
– White color temperature adjustment  
– Programmable degamma  
1.8 V  
– Spatial-temporal multiplexing  
– Integrated support for 3-D display  
Splash screen display and capture  
Integrated 2G-bit frame memory eliminates need  
for external high-speed memory  
External memory support  
VREG  
Figure 3-1. Typical Standalone System  
– Parallel flash for µP and PWM sequences  
– Secondary flash for Splash Capture, Warping  
System control  
– DMD power and reset driver control  
– DMD horizontal and vertical image flip  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications................................................................ 23  
6.1 Absolute Maximum Ratings...................................... 23  
6.2 ESD Ratings............................................................. 23  
6.3 Recommended Operating Conditions.......................24  
6.4 Thermal Information..................................................26  
6.5 Power Electrical Characteristics............................... 27  
6.6 Pin Electrical Characteristics.................................... 29  
6.7 DMD HSSI Electrical Characteristics........................32  
6.8 DMD Low-Speed LVDS Electrical Characteristics.... 32  
6.9 V-by-One Interface Electrical Characteristics........... 33  
6.10 FPD-Link LVDS Electrical Characteristics.............. 33  
6.11 USB Electrical Characteristics ............................... 33  
6.12 System Oscillator Timing Requirements.................35  
6.13 Power Supply and Reset Timing Requirements..... 36  
6.14 DMD HSSI Timing Requirements........................... 40  
6.15 DMD Low-Speed LVDS Timing Requirements....... 41  
6.16 V-by-One Interface General Timing  
6.22 JTAG Boundary Scan Interface Timing  
Requirements (Debug Only)........................................50  
6.23 JTAG ARM Multi-Ice Interface Timing  
Requirements (Debug Only)........................................51  
6.24 Multi-Trace ETM Interface Timing Requirements... 52  
7 Detailed Description......................................................53  
7.1 Overview...................................................................53  
7.2 Functional Block Diagram.........................................53  
7.3 Feature Description...................................................54  
7.4 Device Operational Modes........................................77  
8 Application and Implementation..................................78  
8.1 Application Information............................................. 78  
8.2 Typical Application.................................................... 79  
9 Power Supply Recommendations................................81  
9.1 Power Supply Management......................................81  
9.2 Hot Plug Usage.........................................................81  
9.3 Power Supplies for Unused Input Source  
Interfaces.....................................................................81  
9.4 Power Supplies.........................................................81  
10 Layout...........................................................................82  
10.1 Layout Guidelines................................................... 82  
10.2 Thermal Considerations..........................................95  
11 Device and Documentation Support..........................96  
11.1 Device Support........................................................96  
11.2 Trademarks............................................................. 97  
11.3 Electrostatic Discharge Caution..............................97  
11.4 Glossary..................................................................97  
12 Mechanical, Packaging, and Orderable  
Requirements .............................................................41  
6.17 FPD-Link Interface General Timing  
Requirements..............................................................43  
6.18 Source Frame Timing Requirements...................... 45  
6.19 Synchronous Serial Port Interface Timing  
Requirements .............................................................46  
6.20 Master and Slave I2C Interface Timing  
Information.................................................................... 99  
12.1 Package Option Addendum..................................100  
Requirements .............................................................49  
6.21 Programmable Output Clock Timing  
Requirements..............................................................49  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
May 2021  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
5 Pin Configuration and Functions  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
Figure 5-1. ZDC Package 676-Pin PBGA Top View  
Table 5-1. Initialization, Board Level Test, and Debug  
PIN  
I/O  
DESCRIPTION  
(1)  
NAME  
NO.  
Power-On Sense: Signal provided from external voltage monitoring circuit  
('0' = All Controller supply voltages not at valid level, '1' = All Controller supply voltages have reached 90%  
specified minimum voltage)  
Drive this signal to inactive (low) after the falling edge of PWRGOOD as specified. See Section 6.13 for  
specific timing requirements as well as the required power up and power down sequence.  
This pin includes hysteresis  
POSENSE  
AE27  
I8  
Power Good: Signal provided from external power supply of voltage monitor  
A high value indicates all power is within operating voltage specifications and the system is safe to exit  
its reset state. A transition from high to low indicates that the Controller or DMD supply voltage drops  
below its rated minimum level. This transition must occur prior to the supply voltage dropping per the timing  
specified, as this is an early warning of an imminent power loss condition.  
This warning is required to enhance long term DMD reliability. When PWRGOOD goes low for the  
PWRGOOD  
AG30  
I8 specified minimum time, a DMD park and full Controller reset are performed, protecting the DMD. Note  
that both Controller and DMD supply voltages must be within operating voltage levels to successfully  
execute the DMD park. The minimum PWRGOOD de-assertion time is used to protect the system input  
from glitches. When PWRGOOD is low, the Controller is held in its reset state.  
See Section 6.13 for specific timing requirements as well as the required power up and power down  
sequence.  
This pin includes hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-1. Initialization, Board Level Test, and Debug (continued)  
PIN  
I/O  
DESCRIPTION  
(1)  
NAME  
NO.  
External Reset: General purpose reset output  
('0' = Reset, '1' = Normal Operation)  
This output is asserted low immediately upon POSENSE being asserted low, and remains low while  
O8 POSENSE remains low. This signal remains low after POSENSE is set high, until released by software.  
This signal is also asserted low approximately 5 µs after the detection of PWRGOOD going low, or any  
internally generated reset. In all cases, this signal remains active low for a minimum of 2ms.  
Note: this signal can also be independently driven via software register.  
EXT_ARSTZ  
AF29  
Color Wheel Motor Controller Reset: Color wheel motor controller reset output  
('0' = Reset, '1' = Normal Operation)  
This output is asserted low immediately upon POSENSE being asserted low, and remains low while  
O8 POSENSE remains low. This signal remains low after POSENSE is set high, until released by software.  
This signal is also asserted low approximately 5 µs after the detection of PWRGOOD going low, or any  
internally generated reset. In all cases, this signal remains active low for a minimum of 2ms.  
Note: this signal can also be independently driven via software register.  
MTR_ARSTZ  
AF27  
AK19  
JTAG, ARM-ICE, and CPU MBIST Serial Data Clock.  
This signal is shared between JTAG, ARM-ICE (TI test only), and CPU MBIST (Manufacturing test only)  
operation  
TCK  
I8  
Includes a weak internal pulldown.  
JTAG Test Mode Select  
Includes weak internal pullup.  
TMS1  
TMS2  
TMS3  
AH20  
AJ20  
AK20  
I8  
ARM-ICE Test Mode Select  
For normal operation, this pin must be left open or unconnected. Includes a weak internal pullup.  
I8  
CPU MBIST Test Mode Select  
For normal operation this pin must be left open or unconnected. Includes a weak internal pullup.  
I8  
JTAG, ARM-ICE, and CPU MBIST Reset.  
This signal is shared between JTAG, ARM-ICE (TI test only), and CPU MBIST (Manufacturing test only)  
operation.  
TRSTZ  
AG21  
I8 For normal operation, this pin must be pulled to ground through an external resistor with value 8 kΩ or  
less. Failure to pull this pin low during normal operation causes start-up and initialization problems.  
For JTAG Boundary Scan, ARM-ICE Debug operation, or CPU MBIST, this pin must be pulled-up or left  
disconnected. Includes a weak internal pullup and Hysteresis.  
JTAG, ARM-ICE, and CPU MBIST: Serial Data In  
Includes weak internal pullup.  
TDI  
AG20  
AG19  
AH19  
I8  
TDO1  
TDO2  
O8 JTAG Serial Data Out.  
ARM-ICE Serial Data Out  
For normal operation, this pin must be left open or unconnected.  
O8  
CPU MBIST Serial Data Out  
For normal operation, this pin must be left open or unconnected.  
TDO3  
AJ19  
C30  
D30  
O8  
ETM_TRACE  
CLK  
O8 TI internal use. Must be left unconnected. (Clock for Trace debug)  
ETM_TRACE  
CTL  
O8 TI internal use. Must be left unconnected. (Control for Trace Debug)  
IC Tristate Enable (Active high)  
Asserting this signal transitions all outputs into tristate (except for the JTAG interface).  
Includes a weak internal pulldown, however, an external pulldown is recommended for added protection.  
Also includes hysteresis.  
ICTSEN  
ICTSE  
K26  
M26  
I8  
TI internal use. Includes a weak internal pulldown, however, an external pulldown is recommended for  
added protection. Also includes hysteresis.  
I8  
Test pin 0  
This pin requires an external pulldown or pullup resistor (depending on the desired debug output as noted  
B8 below) with a value of ≤ 10 kΩ.  
TSTPT_0  
E29  
Tri-stated while PWRGOOD is asserted low. It may be driven as an output for debug use as described in  
Section 7.3.8.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-1. Initialization, Board Level Test, and Debug (continued)  
PIN  
I/O  
DESCRIPTION  
(1)  
NAME  
NO.  
Test pin 1  
This pin requires an external pulldown or pullup resistor (depending on the desired debug output as noted  
B8 below) with a value of ≤ 10 kΩ.  
TSTPT_1  
E30  
Tri-stated while PWRGOOD is asserted low. It may be driven as an output for debug use as described in  
Section 7.3.8.  
Test pin 2  
This pin requires an external pulldown or pullup resistor (depending on the desired debug output as noted  
B8 below) with a value of ≤ 10 kΩ.  
TSTPT_2  
TSTPT_3  
F26  
F27  
Tri-stated while PWRGOOD is asserted low. It can be driven as an output for debug use as described in  
Section 7.3.8.  
Test pin 3  
This pin requires an external pulldown or pullup resistor (depending on the desired debug output as noted  
B8 below) with a value of ≤ 10 kΩ.  
Tri-stated while PWRGOOD is asserted low. It may be driven as an output for debug use as described in  
Section 7.3.8.  
Test pin 4  
This pin requires an external pulldown resistor (≤ 10 kΩ).  
Tri-stated while PWRGOOD is asserted low. It can be driven as an output for debug use as described in  
Section 7.3.8.  
TSTPT_4  
TSTPT_5  
TSTPT_6  
TSTPT_7  
F28  
F29  
G26  
B8  
Test pin 5  
This pin requires an external pulldown resistor (≤ 10 kΩ).  
Tri-stated while PWRGOOD is asserted low. It can be driven as an output for debug use as described in  
Section 7.3.8.  
B8  
Test pin 6  
This pin requires an external pulldown resistor (≤ 10 kΩ).  
Tri-stated while PWRGOOD is asserted low. It can be driven as an output for debug use as described in  
Section 7.3.8.  
B8  
Test pin 7  
This pin requires an external pulldown resistor (≤ 10 kΩ).  
Tri-stated while PWRGOOD is asserted low. It can be driven as an output for debug use as described in  
Section 7.3.8.  
G28  
L26  
B8  
Manufacturing test enable signal.  
I8 This signal must be connected directly to ground on the PCB for normal operation.  
Includes weak internal pulldown and hysteresis.  
HWTEST_EN  
(1) See Table 5-13 for more information on I/O definitions.  
Table 5-2. Analog Front End (Not Supported in DLPC7540)  
PIN  
I/O  
DESCRIPTION  
(1)  
NAME  
NO.  
K2  
K3  
K4  
K5  
J1  
AFE_ARSTZ  
AFE_CLK  
O8 Reserved.  
O8 Reserved.  
I8 Reserved.  
I8 Reserved.  
I8 Reserved.  
I8 Reserved.  
AFE_IRQ  
ALF_VSYNC  
ALF_HSYNC  
ALF_CSYNC  
J2  
(1) See Table 5-13 for more information on I/O definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-3. V-by-One Interface Input Data and Control  
PIN  
I/O  
DESCRIPTION (2) (3)  
(1)  
NAME  
NO.  
VX1_DATA0_P  
VX1_DATA0_N  
VX1_DATA1_P  
VX1_DATA1_N  
VX1_DATA2_P  
VX1_DATA2_N  
VX1_DATA3_P  
VX1_DATA3_N  
VX1_DATA4_P  
VX1_DATA4_N  
VX1_DATA5_P  
VX1_DATA5_N  
VX1_DATA6_P  
VX1_DATA6_N  
VX1_DATA7_P  
VX1_DATA7_N  
C18  
D18  
A19  
B19  
C20  
D20  
A21  
B21  
C22  
D22  
A23  
B23  
C24  
D24  
A25  
B25  
I1 V-by-One interface data lanes.  
V-by-One interface hot plug detect (controller receiver pulls this signal low to indicate its  
O4 presence to the transmitter)  
VX1_HTPDN  
VX1_LOCKN  
E17  
E19  
This signal is open drain at the controller output. A pullup resistor is required at the transmitter.  
V-by-One interface clock detect lock (controller receiver pulls this signal low to indicate clock  
O4 extraction lock to the transmitter)  
This signal is open drain at the controller output. A pullup resistor is required at the transmitter.  
VX1_CM_CKREF0  
VX1_CM_CKREF1  
VX1_CM_CKREF2  
VX1_CM_CKREF3  
E20  
E21  
E23  
E24  
I1 V-by-One reserved: Tie these reserved pins to ground.  
VX1_CM_AMOUT0  
VX1_CM_AMOUT1  
VX1_CM_AMOUT2  
VX1_CM_AMOUT3  
F19  
F21  
F22  
F23  
O1 V-by-One reserved: These pins are reserved and must remain unconnected  
(1) See Table 5-13 for more information on I/O definitions.  
(2) The system supports 1 lane, 2 lane, 4 lane, or 8 lane operation, based on the bandwidth requirement of the input source. The inputs  
for any un-used data lanes must be left open.  
(3) The V-by-One port supports limited lane remapping to help optimize board layout. The details are described in Section 7.3.4.  
Table 5-4. OpenLDI (FPD-Link I) Ports Input Data and Control  
PIN  
I/O  
DESCRIPTION(2) (3)  
(1)  
NAME  
NO.  
FPDA_CLK_P  
FPDA_CLK_N  
H3  
H4  
I5 FPD-Link Port A Clock Lane  
I5 FPD-Link Port A Data Lanes  
I5 FPD-Link Port B Clock Lane  
FPDA_DATAA_P  
FPDA_DATAA_N  
FPDA_DATAB_P  
FPDA_DATAB_N  
FPDA_DATAC_P  
FPDA_DATAC_N  
FPDA_DATAD_P  
FPDA_DATAD_N  
FPDA_DATAE_P  
FPDA_DATAE_N  
G1  
G2  
F3  
F4  
E1  
E2  
D3  
D4  
C1  
C2  
FPDB_CLK_P  
FPDB_CLK_N  
A4  
B4  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
NAME  
Table 5-4. OpenLDI (FPD-Link I) Ports Input Data and Control (continued)  
PIN  
I/O  
DESCRIPTION(2) (3)  
(1)  
NO.  
FPDB_DATAA_P  
FPDB_DATAA_N  
FPDB_DATAB_P  
FPDB_DATAB_N  
FPDB_DATAC_P  
FPDB_DATAC_N  
FPDB_DATAD_P  
FPDB_DATAD_N  
FPDB_DATAE_P  
FPDB_DATAE_N  
C5  
D5  
A6  
B6  
C7  
D7  
A8  
B8  
C9  
D9  
I5 FPD-Link Port B Data Lanes  
FPDC_CLK_P  
FPDC_CLK_N  
A10  
I5 FPD-Link Port C - Reserved for Parallel Port use only.  
B10  
FPDC_DATAA_P  
FPDC_DATAA_N  
FPDC_DATAB_P  
FPDC_DATAB_N  
FPDC_DATAC_P  
FPDC_DATAC_N  
FPDC_DATAD_P  
FPDC_DATAD_N  
FPDC_DATAE_P  
FPDC_DATAE_N  
C11  
D11  
A12  
B12  
C13  
D13  
A14  
B14  
C15  
D15  
I5 FPD-Link Port C Data Lanes - Reserved for Parallel Port use only.  
(1) See Table 5-13 for more information on I/O definitions.  
(2) Throughout this document the terms FPD and FPD-Link refer to OpenLDI (FPD-Link I).  
(3) Tie the inputs for any un-used port(s) to ground, or pull to ground through an external resistor.  
Table 5-5. Parallel Port Input Data and Control (Not Supported in DLPC7540)  
PIN  
I/O  
DESCRIPTION  
PARALLEL RGB MODE  
(1)  
NAME  
NO.  
B6  
PCLK (FPDB_DATAB_N)  
VSYNC (FPDA_DATAE_P)  
HSYNC (FPDA_DATAE_N)  
DATEN (FPDB_DATAE_N)  
FIELD (FPDC_DATAE_P)  
3D_REF (FPDC_DATAE_N)  
I6 Reserved.  
I6 Reserved.  
I6 Reserved.  
I6 Reserved. (2)  
I6 Reserved.  
I6 Reserved.  
C1  
C2  
D9  
C15  
D15  
PDATA_A0 (FPDA_CLK_P)  
PDATA_A1 (FPDA_CLK_N)  
PDATA_A2 (FPDA_DATAA_P)  
PDATA_A3 (FPDA_DATAA_N)  
PDATA_A4 (FPDA_DATAB_P)  
PDATA_A5 (FPDA_DATAB_N)  
PDATA_A6 (FPDA_DATAC_P)  
PDATA_A7 (FPDA_DATAC_N)  
PDATA_A8 (FPDA_DATAD_P)  
PDATA_A9 (FPDA_DATAD_N)  
H3  
H4  
G1  
G2  
F3  
F4  
E1  
E2  
D3  
D4  
I6 Reserved.  
PDATA_B0 (FPDB_CLK_P)  
PDATA_B1 (FPDB_CLK_N)  
PDATA_B2 (FPDB_DATAA_P)  
PDATA_B3 (FPDB_DATAA_N)  
PDATA_B4 (FPDB_DATAB_P)  
PDATA_B5 (FPDB_DATAC_P)  
PDATA_B6 (FPDB_DATAC_N)  
PDATA_B7 (FPDB_DATAD_P)  
PDATA_B8 (FPDB_DATAD_N)  
PDATA_B9 (FPDB_DATAE_P)  
A4  
B4  
C5  
D5  
A6  
C7  
D7  
A8  
B8  
C9  
I6 Reserved.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-5. Parallel Port Input Data and Control (Not Supported in DLPC7540) (continued)  
PIN  
I/O  
DESCRIPTION  
PARALLEL RGB MODE  
(1)  
NAME  
NO.  
PDATA_C0 (FPDC_CLK_P)  
PDATA_C1 (FPDC_CLK_N)  
PDATA_C2 (FPDC_DATAA_P)  
PDATA_C3 (FPDC_DATAA_N)  
PDATA_C4 (FPDC_DATAB_P)  
PDATA_C5 (FPDC_DATAB_N)  
PDATA_C6 (FPDC_DATAC_P)  
PDATA_C7 (FPDC_DATAC_N)  
PDATA_C8 (FPDC_DATAD_P)  
PDATA_C9 (FPDC_DATAD_N)  
A10  
B10  
C11  
D11  
A12  
B12  
C13  
D13  
A14  
B14  
I6 Reserved.  
(1) See Table 5-13 for more information on I/O definitions.  
(2) If the DATEN is not actively driven, then it must be pulled up to 3.3V with a weak pull up resistor (50k Ohm max).  
Table 5-6. DMD Reset and Low Speed Interfaces  
PIN  
I/O  
DESCRIPTION  
(1)  
NAME  
NO.  
DMD_LS0_CLK_P  
DMD_LS0_CLK_N  
AH17  
AG17  
O2 DMD low speed differential interface, Port 0 Clock  
O2 DMD low speed differential interface, Port 0 Write Data  
O2 DMD low speed differential interface, Port 1 Clock (2)  
DMD_LS0_WDATA_P  
DMD_LS0_WDATA_N  
AK16  
AJ16  
DMD_LS1_CLK_P  
DMD_LS1_CLK_N  
AH15  
AG15  
DMD_LS1_WDATA_P  
DMD_LS1_WDATA_N  
AK14  
AJ14  
O2 DMD low speed differential interface, Port 1Write Data (2)  
DMD_LS0_RDATA  
AH13  
I3 DMD, low speed single ended serial interface, Port 0 Read Data (3)  
DMD, low speed single ended serial interface, Port 1 Read Data (2) (3). If this port  
I3 not used, this signal requires an external pullup or pulldown to keep this input  
from floating.  
DMD_LS1_RDATA  
AG13  
DMD driver enable signal / Active Low Asynchronous Reset  
('1' = Enabled, '0' = Reset)  
This signal is driven low after the DMD is parked and before power is removed  
O3 from the DMD.  
DMD_DEN_ARSTZ  
AK12  
If the 1.8-V power to the DLPC7540 is independent of the 1.8-V power to the  
DMD, then an external pulldown resistor must be used to hold the signal low in  
the event the DLPC7540 power is inactive while DMD power is applied.  
(1) See Table 5-13 for more information on I/O definitions.  
(2) DMD LS1 port is reserved for single controller, two DMD applications.  
(3) All control interface reads make use of the single ended low speed signals. The read data is clocked by the low speed differential  
write clock.  
Table 5-7. DMD HSSI (High Speed Serial Interface)  
PIN (1)  
I/O  
DESCRIPTION  
(2)  
NAME  
NO.  
DMD_HSSI0_CLK_P  
DMD_HSSI0_CLK_N  
AK25  
AJ25  
O7 DMD high speed serial interface, Port 0 Clock Lane.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
NAME  
Table 5-7. DMD HSSI (High Speed Serial Interface) (continued)  
PIN (1)  
I/O  
DESCRIPTION  
(2)  
NO.  
DMD_HSSI0_D0_P  
DMD_HSSI0_D0_N  
DMD_HSSI0_D1_P  
DMD_HSSI0_D1_N  
DMD_HSSI0_D2_P  
DMD_HSSI0_D2_N  
DMD_HSSI0_D3_P  
DMD_HSSI0_D3_N  
DMD_HSSI0_D4_P  
DMD_HSSI0_D4_N  
DMD_HSSI0_D5_P  
DMD_HSSI0_D5_N  
DMD_HSSI0_D6_P  
DMD_HSSI0_D6_N  
DMD_HSSI0_D7_P  
DMD_HSSI0_D7_N  
AK29  
AJ29  
AH28  
AG28  
AK27  
AJ27  
AH26  
AG26  
AH24  
O7 DMD high speed serial interface, Port 0 Data Lanes.  
AG24  
AK23  
AJ23  
AH22  
AG22  
AK21  
AJ21  
DMD_HSSI1_CLK_P  
DMD_HSSI1_CLK_N  
AH7  
O7 DMD high speed serial interface, Port 1 Clock Lane.  
AG7  
DMD_HSSI1_D0_P  
DMD_HSSI1_D0_N  
DMD_HSSI1_D1_P  
DMD_HSSI1_D1_N  
DMD_HSSI1_D2_P  
DMD_HSSI1_D2_N  
DMD_HSSI1_D3_P  
DMD_HSSI1_D3_N  
DMD_HSSI1_D4_P  
DMD_HSSI1_D4_N  
DMD_HSSI1_D5_P  
DMD_HSSI1_D5_N  
DMD_HSSI1_D6_P  
DMD_HSSI1_D6_N  
DMD_HSSI1_D7_P  
DMD_HSSI1_D7_N  
AH11  
AG11  
AK10  
AJ10  
AH9  
AG9  
AK8  
AJ8  
AK6  
AJ6  
AH5  
AG5  
AK4  
AJ4  
AK2  
AJ2  
O7 DMD high speed serial interface, Port 1 Data Lanes.  
HSSI_ATETEST  
AJ12  
O7 Manufacturing Test use only - Must be left open (i.e. unconnected)  
(1) A number of pin remapping options are available for the HSSI high speed channels to aid with optimizing board signal routing. See  
Section 7.3.5 for information on these pin remapping options.  
(2) See Table 5-13 for more information on I/O definitions.  
Table 5-8. Program Memory (FLASH ) Interface  
PIN  
I/O (1)  
DESCRIPTION  
NAME  
NO.  
T27  
T28  
T29  
T30  
U26  
U27  
U29  
U30  
V29  
V28  
V27  
V26  
W30  
PM_CSZ_0  
PM_CSZ_1  
PM_CSZ_2  
PM_ADDR_0  
PM_ADDR_1  
PM_ADDR_2  
PM_ADDR_3  
PM_ADDR_4  
PM_ADDR_5  
PM_ADDR_6  
PM_ADDR_7  
PM_ADDR_8  
PM_ADDR_9  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
Chip select: Boot FLASH Only (Boot FLASH must use this chip select)  
Chip select: Additional Peripheral Device  
Chip select: Additional Peripheral Device  
Address bit (LSB)  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-8. Program Memory (FLASH ) Interface (continued)  
PIN  
I/O (1)  
DESCRIPTION  
NAME  
NO.  
W29  
W28  
W26  
Y30  
PM_ADDR_10  
PM_ADDR_11  
PM_ADDR_12  
PM_ADDR_13  
PM_ADDR_14  
PM_ADDR_15  
PM_ADDR_16  
PM_ADDR_17  
PM_ADDR_18  
PM_ADDR_19  
PM_ADDR_20  
PM_ADDR_21  
PM_ADDR_22  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
O8  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Address bit  
Y29  
Y28  
Y27  
Y26  
AA30  
AA29  
AA27  
AA26  
AB29  
PM_ADDR_23  
(GPIO_47)  
AB28  
B8  
Address bit (MSB) (2)  
PM_WEZ  
PM_OEZ  
R28  
R29  
O8  
O8  
Write Enable (active low)  
Output Enable (active low)  
Lower Byte (7:0) Enable (active low) - only applicable to devices using  
PM_CSZ_1 or PM_CSZ_2  
PM_BLSZ_0  
PM_BLSZ_1  
R30  
T26  
O8  
O8  
Upper Byte (15:8) Enable (active low) - only applicable to devices using  
PM_CSZ_1 or PM_CSZ_2  
PM_Data_0  
PM_Data_1  
PM_Data_2  
PM_Data_3  
PM_Data_4  
PM_Data_5  
PM_Data_6  
PM_Data_7  
PM_Data_8  
PM_Data_9  
PM_Data_10  
PM_Data_11  
PM_Data_12  
PM_Data_13  
PM_Data_14  
PM_Data_15  
L29  
L30  
L28  
M27  
M28  
M29  
M30  
N26  
N27  
N29  
N30  
P26  
P27  
P28  
P29  
R26  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
Data bit  
(1) See Table 5-13 for more information on I/O definitions.  
(2) The Program Memory address bus can be extended by one bit to 24 bits by making use of GPIO_47. Add an external pulldown  
resistor when this GPIO is configured for this purpose.  
Table 5-9. Peripheral Interfaces  
PIN  
I/O (1)  
DESCRIPTION  
NAME  
NO.  
I2C Port 0 (Master-Slave), Typically slave for Host Command and Control to Controller, SCL  
(bidirectional, open-drain): An external pullup is required. The minimum acceptable value for this  
pullup is 1KΩ .  
IIC0_SCL  
E27  
B13  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-9. Peripheral Interfaces (continued)  
PIN  
I/O (1)  
DESCRIPTION  
NAME  
NO.  
I2C Port 0 (Master-Slave), Typically slave for Host Command and Control to Controller, SDA.  
(bidirectional, open-drain): An external pullup is required. The minimum acceptable value for this  
pullup is 1KΩ  
IIC0_SDA  
D29  
B13  
SSP0_TXD  
SSP0_RXD  
SSP0_CLK  
AD27  
AD29  
AD28  
O8  
I8  
SSP/SPI Port 0 Data Out (Master): Transmit data pin  
SSP/SPI Port 0 Data In (Master): Receive data pin  
SSP/SPI Port 0 Clock (Master): Clock pin  
O8  
SPI Port 0 chip select 2 (Master): Chip select (Active Low)  
An external pullup resistor (≤ 10 kΩ) is suggested to avoid a floating chip select input to the  
external device  
SSP0_CSZ_2  
SSP0_CSZ_1  
SSP0_CSZ_0  
AC28  
AC26  
AB27  
O8  
O8  
O8  
SPI Port 0 chip select 1 (Master): Chip select (Active Low)  
An external pullup resistor (≤ 10 kΩ) is suggested to avoid a floating chip select input to the  
external device  
SPI Port 0 chip select 0 (Master): Chip select (Active Low)  
An external pullup resistor (≤ 10 kΩ) is suggested to avoid a floating chip select input to the  
external device  
UART Port 0 (Slave): Serial Data Transmit  
This UART port is reserved for TI debug. An external pullup resistor (≤ 10 kΩ) is required  
UART0_TXD  
UART0_RXD  
UART0_RTSZ  
UART0_CTSZ  
P4  
P5  
N2  
N3  
O8  
I8  
UART Port 0 (Slave): Serial Data Receive  
This UART port is reserved for TI debug. An external pullup resistor (≤ 10 kΩ) is required  
UART Port 0 (Slave): Ready To Send (Hardware flow control signal (Active Low))  
This UART port is reserved for TI debug. An external pullup resistor (≤ 10 kΩ) is required  
O8  
I8  
UART Port 0 (Slave): Clear to Send (Hardware flow control signal (Active Low))  
This UART port is reserved for TI debug. An external pullup resistor (≤ 10 kΩ) is required  
USB_DAT_P  
USB_DAT_N  
B27  
A27  
B11  
B11  
USB OTG Data Lane (Master-Stave)  
USB_VBUS  
USB_ID  
D26  
C27  
USB OTG 5V Power Supply Detection (Master-Slave)  
IOther USB OTG Mini Receptacle Identification (Master-Slave)  
USB OTG Reference Resistor  
An external reference resistor must be connected as shown in Section 10.1.7  
USB_TXRTUNE  
USB_XI  
C26  
A29  
B29  
C28  
BGND  
USB OTG External Oscillator XI - Not used (clock provided internally)  
For normal operation this pin must be connected to GND.  
IGND  
USB OTG External Oscillator XO - Not used (clock provided internally)  
BGND  
USB_XO  
For normal operation this pin must be left open (unconnected).  
USB OTG Manufacturing Test  
BOther  
USB_ANALOGTEST  
This pin must be left open (unconnected)  
Interrupt from DLPA100 (Active Low)  
This signal requires an external pullup. It also has hysteresis  
PMD_INTZ  
CW_PWM  
CW_INDEX  
AD26  
AE30  
AE29  
I8  
O8  
I8  
Color Wheel Control PWM  
Color Wheel Index  
This pin has hysteresis  
(1) See Table 5-13 for more information on I/O definitions.  
Table 5-10. GPIO Peripheral Interface  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 87: Options:  
1. Alt 0: Reserved  
GPIO_87  
K1  
B8  
2. Alt 1: DAO_CLKIN (I)  
3. Optional GPIO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-10. GPIO Peripheral Interface (continued)  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 86: Options:  
1. Alt 0: Reserved  
GPIO_86  
GPIO_85  
GPIO_84  
GPIO_83  
GPIO_82  
GPIO_81  
GPIO_80  
GPIO_79  
GPIO_78  
GPIO_77  
GPIO_76  
L5  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
2. Alt 1: DAO_DI_1 (I)  
3. Optional GPIO  
General purpose I/O 85: Options:  
1. Alt 0: Reserved  
L4  
L3  
2. Alt 1: DAO_DI_0 (I)  
3. Optional GPIO  
General purpose I/O 84: Options:  
1. Alt 0: Reserved  
2. Alt 1: HBT_CLKIN_2 (I)  
3. Optional GPIO  
General purpose I/O 83: Options:  
1. Alt 0: Reserved  
L2  
2. Alt 1: HBT_DI_2 (I)  
3. Optional GPIO  
General purpose I/O 82: Options:  
1. Alt 0: Reserved  
M5  
M4  
M2  
M1  
N5  
N4  
AD5  
2. Alt 1: HBT_CLKIN_1 (I)  
3. Optional GPIO  
General purpose I/O 81: Options:  
1. Alt 0: Reserved  
2. Alt 1: HBT_DI_1 (I)  
3. Optional GPIO  
General purpose I/O 80: Options:  
1. Alt 0: Reserved  
2. Alt 1: HBT_CLKIN_0 (I)  
3. Optional GPIO  
General purpose I/O 79: Options:  
1. Alt 0: Reserved  
2. Alt 1: HBT_DI_0 (I)  
3. Optional GPIO  
General purpose I/O 78: Options:  
1. Alt 0: Reserved  
2. Alt 1: SEQ_SYNC (B/ OpenDrain)  
3. Optional GPIO  
General purpose I/O 77: Options:  
1. Alt 0: Reserved  
2. Alt 1: EFSYNC (O)/ DASYNC (I)  
3. Optional GPIO  
General purpose I/O 76: Options:  
1. Alt 0: AWC1_DACD_PWMB_1 (O)  
2. Alt 1: N/A  
3. Optional GPIO  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-10. GPIO Peripheral Interface (continued)  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 75: Options:  
1. Alt 0: AWC1_DACS_PWMA_1 (O)  
2. Alt 1: N/A  
GPIO_75  
AC1  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
3. Optional GPIO  
General purpose I/O 74: Options:  
1. Alt 0: AWC1_DACD_PWMB_0 (O)  
2. Alt 1: N/A  
GPIO_74  
GPIO_73  
GPIO_72  
GPIO_71  
GPIO_70  
GPIO_69  
GPIO_68  
GPIO_67  
GPIO_66  
GPIO_65  
AC2  
AC4  
AC5  
AD1  
AD2  
AD3  
AD4  
AF4  
AE2  
AE3  
3. Optional GPIO  
General purpose I/O 73: Options:  
1. Alt 0: AWC1_DACS_PWMA_0 (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 72: Options:  
1. Alt 0: AWC1_DACCLK_0_1 (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 71: Options:  
1. Alt 0: AWC1_OUT_ENZ (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 70: Options:  
1. Alt 0: AWC0_DACD_PWMB_1 (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 69: Options:  
1. Alt 0: AWC0_DACS_PWMA_1 (O)  
2. Alt 1: MEMAUX_1 (O) (#2)  
3. Optional GPIO  
General purpose I/O 68: Options:  
1. Alt 0: AWC0_DACD_PWMB_0 (O)  
2. Alt 1: IIC2_SDA (B) (#3)  
3. Optional GPIO  
General purpose I/O 67: Options:  
1. Alt 0: AWC0_DACS_PWMA_0 (O)  
2. Alt 1: IIC2_SCL (B) (#3)  
3. Optional GPIO  
General purpose I/O 66: Options:  
1. Alt 0: AWC0_DACCLK_0_1 (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 65: Options:  
1. Alt 0: AWC0_OUT_ENZ (O)  
2. Alt 1: N/A  
3. Optional GPIO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-10. GPIO Peripheral Interface (continued)  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 64: Options:  
1. Alt 0: OCLKB (O)  
2. Alt 1: N/A  
GPIO_64  
GPIO_63  
GPIO_62  
GPIO_61  
GPIO_60  
GPIO_59  
GPIO_58  
GPIO_57  
GPIO_56  
GPIO_55  
GPIO_54  
AE4  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
3. Optional GPIO  
General purpose I/O 63: Options:  
1. Alt 0: PWM_OUT_UVLED (O)  
2. Alt 1: OCLKD (O) (#2)  
3. Optional GPIO  
AG2  
AG3  
AF1  
AF2  
AG1  
V1  
General purpose I/O 62: Options:  
1. Alt 0: PWM_OUT_IRLED (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 61: Options:  
1. Alt 0: PWM_OUT_BLED (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 60: Options:  
1. Alt 0: PWM_OUT_GLED (O)  
2. Alt 1: UART2_RXD (I) (#2)  
3. Optional GPIO  
General purpose I/O 59: Options:  
1. Alt 0: PWM_OUT_RLED (O)  
2. Alt 1: UART2_TXD (O) (#2)  
3. Optional GPIO  
General purpose I/O 58: Options:  
1. Alt 0: PWM_OUT_STD_2 (O)  
2. Alt 1: Reserved  
3. Optional GPIO  
General purpose I/O 57: Options:  
1. Alt 0:  
V2  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 56: Options:  
1. Alt 0: PWM_OUT_STD_0 (O)  
2. Alt 1: N/A  
W2  
3. Optional GPIO  
General purpose I/O 55: Options:  
1. Alt 0: PWM_OUT_CW2 (O)  
2. Alt 1: Reserved  
K29  
K28  
3. Optional GPIO  
General purpose I/O 54: Options:  
1. Alt 0: PWM_OUT_CW1 (O)  
2. Alt 1: N/A  
3. Optional GPIO  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-10. GPIO Peripheral Interface (continued)  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 53: Options:  
1. Alt 0: Reserved  
GPIO_53  
W3  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
2. Alt 1: LED_DRIVER_ON (O)  
3. Optional GPIO  
General purpose I/O 52: Options:  
1. Alt 0: Reserved  
2. Alt 1: N/A  
GPIO_52  
GPIO_51  
GPIO_50  
GPIO_49  
GPIO_48  
GPIO_47  
GPIO_46  
GPIO_45  
GPIO_44  
GPIO_43  
W4  
V5  
3. Optional GPIO  
General purpose I/O 51: Options:  
1. Alt 0: Reserved  
2. Alt 1: DMD_PWR_EN (O)  
3. Optional GPIO  
General purpose I/O 50: Options:  
1. Alt 0: SSP0_CSZ_3 (O)  
2. Alt 1: N/A  
AC29  
AC30  
AB26  
AB28  
K27  
3. Optional GPIO  
General purpose I/O 49: Options:  
1. Alt 0: SSP0_CSZ_4 (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 48: Options:  
1. Alt 0: USB OTG External USB Switch Control (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 47: Options:  
1. Alt 0: PM_ADDR_23 (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 46: Options:  
1. Alt 0: CW_Index_2 (I) (#1)  
2. Alt 1: SSP2_BC_CSZ (O-MST/I-SLV)  
3. Optional GPIO  
General purpose I/O 45: Options:  
1. Alt 0: CW_Index_1 (I) (#1)  
2. Alt 1: SSP2_CSZ_2 (O-MST/I-SLV)  
3. Optional GPIO  
J30  
General purpose I/O 44: Options:  
1. Alt 0: OCLKC (O) (#1)  
J29  
2. Alt 1: SSP2_CSZ_1 (O-MST/I-SLV)  
3. Optional GPIO  
General purpose I/O 43: Options:  
1. Alt 0: OCLKD (O) (#1)  
J27  
2. Alt 1: SSP2_CSZ_0 (O-MST/I-SLV)  
3. Optional GPIO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-10. GPIO Peripheral Interface (continued)  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 42: Options:  
1. Alt 0: IIC2_SDA (B) (#1)  
2. Alt 1: SSP2_DO (O)  
3. Optional GPIO  
GPIO_42  
GPIO_41  
GPIO_40  
GPIO_39  
GPIO_38  
GPIO_37  
GPIO_36  
GPIO_35  
GPIO_34  
GPIO_33  
GPIO_32  
J26  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
General purpose I/O 41: Options:  
1. Alt 0: IIC2_SCL (B) (#1)  
2. Alt 1: SSP2_DI (I)  
H30  
H29  
H28  
H27  
H26  
G30  
G29  
Y1  
3. Optional GPIO  
General purpose I/O 40: Options:  
1. Alt 0: MEMAUX_1 (O) (#1)  
2. Alt 1: SSP2_SCLK (O-MST/I-SLV)  
3. Optional GPIO  
General purpose I/O 39: Options:  
1. Alt 0: UART2_RXD (I) (#1)  
2. Alt 1: HBT_CLKOUT (O)  
3. Optional GPIO  
General purpose I/O 38: Options:  
1. Alt 0: UART2_TXD (O) (#1)  
2. Alt 1: HBT_DO (O)  
3. Optional GPIO  
General purpose I/O 37: Options:  
1. Alt 0: CW_Index_2 (I) (#2)  
2. Alt 1: DAO_CLKOUT (O)  
3. Optional GPIO  
General purpose I/O 36: Options:  
1. Alt 0: CW_Index_1 (I) (#2)  
2. Alt 1: DAO_DO_1 (O)  
3. Optional GPIO  
General purpose I/O 35: Options:  
1. Alt 0: OCLKC (O) (#2)  
2. Alt 1: DAO_DO_0 (O)  
3. Optional GPIO  
General purpose I/O 34: Options:  
1. Alt 0: WRP_CAMERA_TRIG (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 33: Options:  
1. Alt 0: PAUX11 (O) {CW Spoke}  
2. Alt 1: IIC2_SDA (B) (#2)  
3. Optional GPIO  
Y2  
General purpose I/O 32: Options:  
1. Alt 0: PAUX10 (O) {CW Rev}  
2. Alt 1: IIC2_SCL (B) (#2)  
3. Optional GPIO  
Y4  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-10. GPIO Peripheral Interface (continued)  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 31: Options:  
1. Alt 0: PAUX9 (O) {XPR-Y}  
2. Alt 1: PAUX_INT3 (O)  
3. Optional GPIO  
GPIO_31  
Y5  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
General purpose I/O 30: Options:  
1. Alt 0: PAUX8 (O) {XPR-X}  
2. Alt 1: PAUX_INT2 (O)  
3. Optional GPIO  
GPIO_30  
GPIO_29  
GPIO_28  
GPIO_27  
GPIO_26  
GPIO_25  
GPIO_24  
GPIO_23  
GPIO_22  
GPIO_21  
AA1  
AA2  
AA3  
AA4  
AA5  
AB2  
AB3  
AB4  
AB5  
P3  
General purpose I/O 29: Options:  
1. Alt 0: PAUX7 (O) {SSI Subframe}  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 28: Options:  
1. Alt 0: PAUX6 (O) {UV_LED_EN}  
2. Alt 1: LEDSEL_4 (O)  
3. Optional GPIO  
General purpose I/O 27: Options:  
1. Alt 0: PAUX5 (O) {IR_LED_EN}  
2. Alt 1: LEDSEL_3 (O)  
3. Optional GPIO  
General purpose I/O 26: Options:  
1. Alt 0: PAUX4 (O) {B_LED_EN}  
2. Alt 1: LEDSEL_2 (O)  
3. Optional GPIO  
General purpose I/O 25: Options:  
1. Alt 0: PAUX3 (O) {G_LED_EN}  
2. Alt 1: LEDSEL_1 (O)  
3. Optional GPIO  
General purpose I/O 24: Options:  
1. Alt 0: PAUX2 (O) {R_LED_EN}  
2. Alt 1: LEDSEL_0 (O)  
3. Optional GPIO  
General purpose I/O 23: Options:  
1. Alt 0: PAUX1 (O) {SEQ Index}  
2. Alt 1: PAUX_INT1 (O)  
3. Optional GPIO  
General purpose I/O 22: Options:  
1. Alt 0: PAUX0 (O) {LED SENSE}  
2. Alt 1: PAUX_INT0 (O)  
3. Optional GPIO  
General purpose I/O 21: Options:  
1. Alt 0: PWM-IN1 (I)  
2. Alt 1: N/A  
3. Optional GPIO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-10. GPIO Peripheral Interface (continued)  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 20: Options:  
1. Alt 0: PWM-IN0 (I)  
2. Alt 1: N/A  
GPIO_20  
GPIO_19  
GPIO_18  
GPIO_17  
GPIO_16  
GPIO_15  
GPIO_14  
GPIO_13  
GPIO_12  
GPIO_11  
GPIO_10  
P2  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
3. Optional GPIO  
General purpose I/O 19: Options:  
1. Alt 0: IR1 (I)  
P1  
R5  
R4  
R2  
R1  
T3  
T4  
T5  
T2  
V3  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 18: Options:  
1. Alt 0: IR0 (I)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 17: Options:  
1. Alt 0: N/A  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 16: Options:  
1. Alt 0: UART1_RTSZ (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 15: Options:  
1. Alt 0: UART1_CTSZ (I)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 14: Options:  
1. Alt 0: UART1_RXD (I)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 13: Options:  
1. Alt 0: UART1_TXD (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 12: Options:  
1. Alt 0: IIC1_SDA (B)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 11: Options:  
1. Alt 0: IIC1_SCL (B)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 10: Options:  
1. Alt 0: SAS_INTGTR_EN (O)  
2. Alt 1: N/A  
3. Optional GPIO  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-10. GPIO Peripheral Interface (continued)  
PIN  
I/O  
DESCRIPTION(2) (3) (4)  
(1)  
NAME  
NO.  
General purpose I/O 09: Options:  
1. Alt 0: SAS_CSZ (O)  
2. Alt 1: N/A  
GPIO_09  
U1  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
B8  
3. Optional GPIO  
General purpose I/O 08: Options:  
1. Alt 0: SAS_DO (O)  
2. Alt 1: N/A  
GPIO_08  
GPIO_07  
GPIO_06  
GPIO_05  
GPIO_04  
GPIO_03  
GPIO_02  
GPIO_01  
GPIO_00  
U2  
U4  
3. Optional GPIO  
General purpose I/O 07: Options:  
1. Alt 0: SAS_DI (I)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 06: Options:  
1. Alt 0: SAS_CLK (O)  
2. Alt 1: N/A  
V4  
3. Optional GPIO  
General purpose I/O 05: Options:  
1. Alt 0: SSP1_CSZ_2 (O-MST/I-SLV)  
2. Alt 1: N/A  
A17  
B17  
B15  
C16  
D16  
E16  
3. Optional GPIO  
General purpose I/O 04: Options:  
1. Alt 0: SSP1_CSZ_1 (O-MST/I-SLV)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 03: Options:  
1. Alt 0: SSP1_CSZ_0 (O-MST/I-SLV)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 02: Options:  
1. Alt 0: SSP1_DO (O)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 01: Options:  
1. Alt 0: SSP1_DI (I)  
2. Alt 1: N/A  
3. Optional GPIO  
General purpose I/O 00: Options:  
1. Alt 0: SSP1_SCLK (O-MST/I-SLV)  
2. Alt 1: N/A  
3. Optional GPIO  
(1) See Table 5-13 for more information on I/O definitions.  
(2) This table defines the GPIO capabilities of the DLPC7540. Please see Section 7.3.7 for specific product configuration allocations of  
these GPIO.  
(3) Most GPIO have at least one alternate hardware functional use in addition to being available as a general purpose I/O. Depending on  
the product configuration, GPIO may be reserved specifically for use as an alternate hardware function (and would therefore not be  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
available as a general purpose I/O). More information on GPIO allocations for specific product configurations can be found in Section  
7.3.7.  
(4) All GPIO that are available as a general purpose I/O must be configured as an input, a standard output, or an open-drain output. This  
is set in the flash configuration. Configure unused GPIO as a logic zero output and leave unconnected, otherwise an external pullup or  
pulldown resistor is required to avoid a floating input. The reset default for all GPIO is as an input signal. An external pullup resistor (≤  
10 kΩ) is required for each signal configured as open-drain output.  
Table 5-11. Clock and Support  
PIN  
I/O  
DESCRIPTION  
(1)  
NAME  
NO.  
AJ18  
AK18  
B16  
REFCLKA_I  
REFCLKA_O  
REFCLKB_I  
REFCLKB_O  
I9 Crystal A Input: Reference clock crystal input. (2) (3)  
O10 Crystal A Output: Reference clock crystal output. (2)  
I14 Crystal B Input: Reference clock crystal input. (2) (3)  
O15 Crystal B Output: Reference clock crystal output. (2)  
A16  
General Purpose Output Clock A (4)  
Targeted for driving Color Wheel motor controller. Frequency is software programmable, with a  
O8 power-up default frequency of 0.77 MHz.  
OCLKA  
AD30  
Note: the output frequency is not affected by non-power-up reset operations (i.e., the system holds  
the last programmed value until system is power cycled).  
(1) See Table 5-13 for more information on I/O definitions.  
(2) For more information on this signal see Section 6.12  
(3) For applications where an external oscillator is used in place of a crystal, use an oscillator to drive this pin  
(4) For more information on this signal see Section 6.21  
Table 5-12. Power and Ground  
PIN  
I/O (1)  
DESCRIPTION  
NAME  
NO.  
VDD115_PLLMA  
VDD115_PLLMB  
VAD115_PLLS  
VAD18_PLLMA  
VAD18_PLLMB  
VAD33_OSCA  
VAD33_OSCB  
VAD115_FPD  
VDD33_FPD  
VAD115_VX1  
VAD18_VX1  
AE18  
F15  
PWR 1.15-V digital power for MCG (Master Clock Generator A) PLL  
PWR 1.15-V digital power for MCG (Master Clock Generator B) PLL  
PWR 1.15-V analog power for SCG doubler PLL  
PWR 1.8-V analog power for MCG (Master Clock Generator A) PLL  
PWR 1.8-V analog power for MCG (Master Clock Generator B) PLL  
PWR 3.3-V analog power for Crystal-OSC  
F16  
AE19  
F14  
Y18  
L17  
PWR 3.3-V analog power for Crystal-OSC  
F7,F9,F11,J6,L12  
E6,E8,E10,E12,E14,G6,L11,L13  
F24,L18  
PWR 1.15-V analog power for FPD  
PWR 3.3-V digital power for FPD  
PWR 1.15-V analog power for VX1  
E18,L19  
PWR 1.8-V analog power for VX1  
VAD33_USB  
VDD18_SCS  
VDD121_SCS  
D27,E26,F25  
PWR 3.3-V analog power for USB  
L16,R6,T25,AE16  
L15,N11,P20,U11,V20,Y16  
PWR 1.8-V digital power for SCS DRAM  
PWR 1.21-V digital power for SCS SRAM  
Y14,Y19,AF7,AF9,AF11,AF13AF21,A  
F23,AF25  
VAD115_HSSI  
PWR 1.15-V analog power for HSSI interface  
VAD115_HSSI0_PLL  
VAD115_HSSI1_PLL  
VDD33_HSSI  
AE22  
PWR 1.15-V analog power for HSSI-0 PLL  
AE10  
PWR 1.15-V analog power for HSSI-1 PLL  
Y12,Y20,AE8,AE12,AE20,AE24  
Y15,AE13,AE14  
AF16  
PWR 3.3-V digital power for HSSI interface  
VAD18_LSIF  
PWR 1.8-V analog power for DMD low-speed interface  
Manufacturing test use only - must be left open-unconnected  
LVDS_VREFTEST  
L14,L20,M11,N20,P11,R20,T11,U20,  
V11,W20,Y11,Y13,Y17  
VDD115  
VDD33  
PWR 1.15-V core power  
H25,K25,L6,M20,M25,N6,P25,R11,T2  
0,U6,V25,W6,W11,Y25,AA6,AB25,AC PWR 3.3-V digital power  
6,AD25,AE6  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
NAME  
Table 5-12. Power and Ground (continued)  
PIN  
I/O (1)  
DESCRIPTION  
NO.  
A1,A2,A3,A5,A7,A9,A11,A13,A15,A1  
8,A20,A22,A24,A26,A28,A30,B1,B2,B  
3,B5,B7,B9,B11,B13,B18,B20,B22,B2  
4,B26,B28,B30,C3,C4,C6,C8,C10,C1  
2,C14,C17,C19,C21,C23,C25,C29,D  
1,D2,D6,D8,D10,D12,D14,D17,D19,D  
21,D23,D25,D28,E3,E4,E5,E7,E9,E1  
1,E13,E15,E22,E25,E28,F1,F2,F5,F6  
,F8,F10,F12,F13,F17,F18,F20,F30,G  
3,G4,G5,G27,H1,H2,H5,H6,J3,J4,J5,  
J25.J28,K6,K30,L1,L25,L27,M3,M6,  
(M12),(M13),(M14),(M15),(M16),  
(M17),(M18),(M19),N1,(N12,(N13),  
(N14),(N15),(N16),(N17),(N18),  
(N19),N25,N28,P6,(P12),(P13),(P14),  
(P15),(P16),(P17),(P18),  
(P19),P30,R3,(R12),(R13),(R14),  
(R15),(R16),(R17),(R18),  
(R19),R25,R27,T1,T6,(T12),(T13),  
(T14),(T15),(T16),(T17),(T18),  
(T19),U3,U5,(U12),(U13),(U14),  
(U15),(U16),(U17),(U18),  
(U19),U25,U28,V6,(V12),(V13),(V14),  
(V15),(V16),(V17),(V18),  
GND for all power supplies (Ball numbers in parenthesis are  
RTN also used as thermal ball and are located within the package  
center region)  
VSS  
(V19),V30,W1,W5,(W12),(W13),  
(W14),(W15),(W16),(W17),(W18),  
(W19),W25,W27,Y3,Y6,AA25,AA28,A  
B1,AB6,AB30,AC3,AC25,AC27,AD6,  
AE1,AE5,AE7,AE9,AE11,AE15,AE17,  
AE21,AE23,AE25,AE26,AE28,AF3,A  
F5,AF6,AF8,AF10,AF12,AF14,AF15,  
AF17,AF18,AF19,AF20,AF22,AF24,A  
F26,AF28,AF30,AG4,AG6,AG8,AG10  
,AG12,AG14,AG16,AG18,AG23,AG2  
5,AG27,AG29,AH1,AH2,AH3,AH4,AH  
6,AH8,AH10,AH12,AH14,AH16,AH18  
,AH21,AH23,AH25,AH27,AH29,AH30  
,AJ1,AJ3,AJ5,AJ7,AJ9,AJ11,AJ13,AJ  
15,AJ17,AJ22,AJ24,AJ26,AJ28,AJ30,  
AK1,AK3,AK5,AK7,AK9,AK11,AK13,  
AK15,AK17,AK22,AK24,AK26,AK28,  
AK30  
VPGM  
G25  
Manufacturing use only (efuse). Must be tied to ground.  
(1) See Table 5-13 for more information on I/O definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 5-13. I/O Type Subscript Definition  
I/O  
SUPPLY REFERENCE ESD STRUCTURE  
SUBSCRIPT DESCRIPTION  
1
2
1.8 V SERDES (VX1)  
VAD18_VX1  
VAD18_LSIF  
VAD18_LSIF  
VDD33  
ESD diode to supply rail and GND  
1.8-V LVDS (LS DMD)  
ESD diode to supply rail and GND  
ESD diode to supply rail and GND  
ESD diode to supply rail and GND  
ESD diode to supply rail and GND  
ESD diode to supply rail and GND  
ESD diode to supply rail and GND  
ESD diode to supply rail and GND  
ESD diode to GND  
3
1.8-V LMCMOS (LS DMD)  
3.3-V OpenDrain (VX1)  
3.3-V LVDS (FPD)  
4
5
VDD33_FPD  
VDD33_FPD  
VAD115_HSSI  
VDD33  
6
3.3-V LVCMOS (PP)  
7
1.15-V HSSI (HS DMD)  
3.3-V LVCMOS I/O (8ma output drive - GPIO, etc. )  
3.3-V LVCMOS I/O (OSC)  
3.3-V LVCMOS I/O (OSC)  
3.3-V USB (USB)  
8
9
VAD33_OSCA  
VAD33_OSCA  
VAD33_USB  
VAD33_USB  
VDD33  
10  
11  
12  
13  
14  
15  
ESD diode to supply rail and GND  
ESD diode and LBJT to GND  
ESD diode to supply rail and GND  
ESD diode to supply rail and GND  
ESD diode to GND  
3.3-V LVCMOS (USB)  
3.3-V OpenDrain (I2C)  
3.3-V LVCMOS I/O (OSC)  
3.3-V LVCMOS I/O (OSC)  
VAD33_OSCB  
VAD33_OSCB  
ESD diode to supply rail and GND  
TYPE  
I
Input  
O
B
Output  
Bidirectional  
Power  
N/A  
PWR  
RTN  
Ground return  
Table 5-14. Internal Pullup and Pulldown Characteristics(1)  
INTERNAL PULLUP AND PULLDOWN  
RESISTOR CHARACTERISTICS  
CONDITIONS  
MIN  
MAX  
UNIT  
VIN = 0.8 V, VDD33 = 3.3 V  
VIN = 2.0 V, VDD33 = 3.3 V  
19  
12  
50  
39  
kΩ  
kΩ  
Weak pullup resistance  
(1) An external 5.7-kΩ or less pullup or pulldown resistor (if needed) is sufficient for any voltage condition to correctly override any  
associated internal pullup or pulldown resistance.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature (unless otherwise noted)(1)  
SUPPLY VOLTAGE(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.5  
–0.3  
–0.3  
–0.3  
–0.4  
–0.3  
–0.3  
–0.5  
–0.4  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.5  
1.6  
1.6  
1.6  
1.6  
2.5  
2.5  
2.5  
2.3  
2.5  
3.9  
3.9  
3.9  
3.9  
3.9  
3.9  
UNIT  
V
V(VDD115) (Core)  
V(VDD115_PLLMA) (Core)  
V(VDD115_PLLMB) (Core)  
V(VDD115_PLLS) (Core)  
V(VAD115_FPD) (Core)  
V(VAD115_VX1) (Core)  
V(VAD115_HSSI) (Core)  
V(VAD115_HSSI0_PLL) (Core)  
V(VAD115_HSSI1_PLL) (Core)  
V(VDD121_SCS) (Core)  
V(VAD18_PLLMA) (Core)  
V(VAD18_PLLMB) (Core)  
V(VAD18_VX1) (I/O)  
V
V
V
V
V
V
V
V
V
V
V
V
V(VDD18_SCS) (Core)  
V(VDD18_LVDS) (I/O)  
V(VDD33) (I/O)  
V
V
V
V(VAD33_OSCA) (I/O)  
V(VAD33_OSCB) (I/O)  
V(VDD33_FPD) (I/O)  
V
V
V
V(VAD33_USB) (I/O)  
V
V(VDD33_HSSI) (I/O)  
GENERAL  
V
TJ  
Operating junction temperature  
0
0
115  
108(3)  
100  
°C  
°C  
TC  
Ilat  
Operating case temperature  
Latch-up  
–100  
-40  
mA  
°C  
Tstg  
Storage temperature range  
125  
(1) Stresses beyond those listed under Section 6.1 can cause permanent damage to the device. These are stress ratings only, which do  
not imply functional operation of the device at these or any other conditions beyond those indicated under Section 6.3. Exposure to  
absolute-maximum-rated conditions for extended periods ca affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Value calculated using package parameters defined in Section 6.4.  
6.2 ESD Ratings  
PARAMETER  
VALUE  
±1000  
±750  
UNIT  
All pins (except  
Vx1_CM_CKREF0, 1, 2, 3)  
Human body model (HBM), per  
ANSI-ESDA-JEDEC JS-001(1)  
Vx1_CM_CKREF0, 1, 2, 3  
Electrostatic  
discharge  
V(ESD)  
All pins (except  
Vx1_CM_CKREF0, 1, 2, 3)  
V
±500  
Charged device model (CDM),  
per JEDEC specification  
JESD22-C101(2)  
+500  
-200  
Vx1_CM_CKREF0, 1, 2, 3  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TOLERANCE  
MIN  
NOM  
MAX  
UNIT  
V(VDD115) (Core)  
V(VDD115_PLLMA) (Core)  
1.15-V Power  
± 4.35% tolerance  
1.10  
1.15  
1.20  
V
1.15-V Digital Power -  
MCG-A PLL  
(Master Clock  
Generator)  
+4.35/-9.13%  
tolerance  
1.045  
1.045  
1.15  
1.15  
1.20  
1.20  
V
V
V(VDD115_PLLMB) (Core)  
1.15-V Digital Power -  
MCG-B PLL  
(Master Clock  
Generator)  
+4.35/-9.13%  
tolerance  
V(VDD115_PLLS) (Core)  
V(VAD115_FPD) (Core)  
V(VAD115_VX1) (Core)  
V(VAD115_HSSI) (Core)  
ΔV(VAD115_HSSI) (Core)  
1.15-V Analog Power +4.35/-9.13%  
- SCG Doubler PLL tolerance  
1.045  
1.045  
1.045  
1.045  
1.15  
1.15  
1.15  
1.15  
1.20  
1.20  
1.20  
1.20  
V
V
V
V
1.15-V Analog Power +4.35/-9.13%  
- FPD tolerance  
1.15-V Analog Power +4.35/-9.13%  
- VX1 tolerance  
1.15-V Analog Power +4.35/-9.13%  
- HSSI  
tolerance  
pk-pkVAD115_HSSI  
supply noise @ 10  
MHz (sine)  
20  
mV  
V
V(VAD115_HSSI0_PLL) (Core)  
ΔV(VAD115_HSSI0_PLL) (Core)  
1.15-V Analog Power +4.35/-9.13%  
1.045  
1.045  
1.15  
1.15  
1.20  
- HSSI0 PLL  
tolerance  
pk-  
pkVAD115_HSSI0_P  
LL supply noise @ 10  
MHz (sine)  
20  
1.20  
20  
mV  
V
V(VAD115_HSSI1_PLL) (Core)  
ΔV(VAD115_HSSI1_PLL) (Core)  
1.15-V Analog Power +4.35/-9.13%  
- HSSI1 PLL  
tolerance  
pk-  
pkVAD115_HSSI1_P  
LL supply noise @ 10  
MHz (sine)  
mV  
1.21V Digital Power - +7.43/-4.95%  
V(VDD121_SCS) (Core)  
V(VAD18_PLLMA) (Core)  
1.15  
1.71  
1.21  
1.80  
1.30  
1.89  
V
V
SCS DRAM  
tolerance  
1.8-V Analog Power -  
MCG-A PLL  
(Master Clock  
Generator)  
±5.0% tolerance  
V(VAD18_PLLMB) (Core)  
1.8-V Analog Power -  
MCG-B PLL  
±5.0% tolerance  
1.71  
1.80  
1.89  
V
(Master Clock  
Generator)  
V(VAD18_VX1) (I/O)  
V(VDD18_SCS) (Core)  
V(VDD18_LVDS) (I/O)  
1.8-V Analog Power -  
VX1 Interface  
±5.0% tolerance  
±5.0% tolerance  
±5.0% tolerance  
1.71  
1.71  
1.71  
1.80  
1.80  
1.80  
1.89  
1.89  
1.89  
V
V
V
1.8-V Digital Power -  
SCS DRAM  
1.8-V Analog Power -  
DMD LS Interface  
V(VDD33) (I/O)  
3.3-V Digital Power  
- (All 3.3-V I/O  
±5.0% tolerance  
3.135  
3.3  
3.465  
V
without dedicated 3.3-  
V supply - e.g. GPIO)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TOLERANCE  
MIN  
NOM  
MAX  
UNIT  
V(VAD33_OSCA) (I/O)  
3.3-V Analog Power  
- Crystal-OSCA  
Interface  
±5.0% tolerance  
±5.0% tolerance  
3.135  
3.3  
3.465  
V
V(VAD33_OSCB) (I/O)  
3.3-V Analog Power  
- Crystal-OSCB  
Interface  
3.135  
3.3  
3.465  
V
V(VDD33_FPD) (I/O)  
V(VAD33_USB) (I/O)  
V(VDD33_HSSI) (I/O)  
ΔV(VDD33_HSSI) (I/O)  
3.3-V Digital Power -  
FPD interface  
±5.0% tolerance  
±5.0% tolerance  
±5.0% tolerance  
3.135  
3.135  
3.135  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
V
V
V
3.3-V Analog Power -  
USB Interface  
3.3-V Digital Power -  
DMD HSSI Interface  
pk-pkVDD33_HSSI  
supply noise @ 10  
MHz (sine)  
60  
mV  
GENERAL  
Operating junction  
temperature  
TJ  
0
0
0
115  
108  
55  
°C  
°C  
°C  
Operating case  
temperature  
TC  
TA  
Operating ambient  
temperature (1) (2)  
(1) The operating ambient temperature range values were determined based on the board design parameters described in Section  
10.1.1 , rather than using a JEDEC JESD51 standard test card and environment, along with min and max estimated power dissipation  
across process, voltage, and temperature. Ambient thermal conditions, which impact RθJA, vary by application. Thus, maximum  
operating ambient temperature varies by application.  
a. Ta_min = Tj_min – (Pd_min × RθJA) = 0°C – (host_min_valueW × host_value°C/W) = –host_calculated_value°C  
b. Ta_max = Tj_max – (Pd_max × RθJA) = +115°C – (host_max_valueW × host_value°C/W) = +host_calculated_value°C  
(2) Operating ambient temperature is dependent on system thermal design. Operating case temperature cannot exceed its specified  
range across ambient temperature conditions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.4 Thermal Information  
ZDC  
P-HBGA676  
THERMAL METRIC (1)  
TEST CONDITIONS (2)  
UNIT  
676 PINS (576  
Populated)  
0 m/s of forced airflow, without heat-sink  
1 m/s of forced airflow, without heat-sink  
2 m/s of forced airflow, without heat-sink  
1 m/s of forced airflow, with heat-sink, 7 W  
2 m/s of forced airflow, with heat-sink, 7 W  
1 m/s of forced airflow, with heat-sink,15 W  
2 m/s of forced airflow, with heat-sink, 15 W  
7.4  
6.3  
6.0  
5.3  
4.8  
4.0  
3.5  
Junction-to-air thermal  
RθJA  
°C/W  
resistance (3)  
Junction-to-case thermal  
RJC  
2.7  
3.5  
°C/W  
°C/W  
resistance (4)  
Junction-to-board thermal  
RJB  
resistance (4)  
Temperature variance from  
junction to package top center  
temperature, per unit power  
dissipation.  
0 m/s of forced airflow, without heat-sink  
1 m/s of forced airflow, without heat-sink  
2 m/s of forced airflow, without heat-sink  
0.6  
0.6  
0.6  
(5)  
ψJT  
°C/W  
W
0 m/s of forced airflow, without heat-sink  
8.10  
9.52  
10.00  
PMAX  
Package - Maximum Power(3) (6) 1 m/s of forced airflow, without heat-sink  
2 m/s of forced airflow, without heat-sink  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) These test conditions also included a PCB sized at 101.3mm x 152.4mm incorporating the recommended PCB thermal enhancements  
specified in Section 10.1.1. In addition, airflow is parallel to the board surface directed at the device.  
(3) See Table 6-1 for thermal parameters based on the example heat-sinks listed below  
a. Heatsink-7 W: S1525-7W, Size = 25 mm x 25 mm x 7 mm, Pins = 7 x7 = 49 (Vendor: Alpha, Type S Series)  
b. Heatsink-15 W: S1530-15W, Size = 30 mm x 3 0mm x 15 mm, Pins = 8 x 8 = 64 (Vendor: Alpha, Type S Series)  
(4) Due to the complex internal construction of the DLPC7540 controller, the RJC and RJB thermal coefficients do not always produce  
an accurate junction temperature estimate. A limited set of comparison scenario data shows that the RJC and RJB modeled junction  
temperature can have a +9% to -2% error vs the actual temperature. The amount of this error varies with the use and size of an  
external heat sink as well as the amount of external air flow. Validate all thermal estimates based on RJC and RJB with an actual  
temperature measurement at the top-center of the package plus the delta-temp defined by ψJT  
(5) Example: Using the power we expect of 11.31 W  
.
11.31 W * 0.6 °C/W = 6.786 °C = > TC-max = 115 °C - ~7 °C = 108 °C  
(6) PMAX = (TJ-max - TA-max) / RθJA  
Table 6-1. Thermal Examples using Two Different Heat-sinks  
ZDC  
THERMAL METRIC (1)  
TEST CONDITIONS  
P-HBGA676  
UNIT  
°C/W  
W
676 PINS (576 Populated)  
1 m/s of forced airflow, with heat-sink, 7 W  
2 m/s of forced airflow, with heat-sink, 7 W  
1 m/s of forced airflow, with heat-sink, 15 W  
2 m/s of forced airflow, with heat-sink, 15 W  
5.3  
4.8  
4.0  
3.5  
Junction-to-air thermal  
resistance  
RθJA  
1 m/s of forced airflow, with heat-sink, 7 W  
2 m/s of forced airflow, with heat-sink, 7 W  
1 m/s of forced airflow, with heat-sink, 15 W  
2 m/s of forced airflow, with heat-sink, 15 W  
11.32  
12.50  
15.00  
17.14  
PMAX  
Package - Maximum Power  
(1) This table show examples of what is achievable based on the two example heat-sinks.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.5 Power Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX(1)  
UNIT  
V(VDD115)  
1.15-V Power  
Maximum current at VDD115 = 1.2 V  
5640  
mA  
V(VDD115_PLLMA) (Core) 1.15-V Digital Power  
MCG-A PLL  
Maximum current at VDD115_PLLMA =  
1.2 V  
6
mA  
(Master Clock Generator)  
V(VDD115_PLLMB) (Core) 1.15-V Digital Power  
MCG-B PLL  
Maximum current at VDD115_PLLMB =  
1.2 V  
6
3
mA  
mA  
mA  
(Master Clock Generator)  
V(VDD115_PLLS) (Core)  
V(VAD115_FPD) (Core) (2)  
1.15-V Analog Power  
SCG Doubler PLL  
Maximum current at VDD115_PLLS =  
1.2 V  
Maximum current at VAD115_FPD = 1.2  
V
Ports A and B Active, Port C inactive  
1.15-V Analog Power  
FPD  
99  
V(VAD115_VX1) (Core) (2)  
Maximum current at VAD115_VX1 = 1.2  
V
8 Lanes, with total BW = 3.0Gbps)  
1.15-V Analog Power  
VX1  
400  
462  
1
mA  
mA  
mA  
V(VAD115_HSSI) (Core)  
Maximum current at VDD115_HSSI =  
1.2 V  
Both ports active  
1.15-V Digital Power  
HSSI  
V(VAD115_HSSI0_PLL)  
(Core)  
Maximum current at  
VDD115_HSSI0_PLL = 1.2 V  
Both ports active  
1.15-V Digital Power  
HSSI0 PLL  
V(VAD115_HSSI1_PLL)  
(Core)  
Maximum current at  
VDD115_HSSI1_PLL = 1.2 V  
Both ports active  
1.15-V Digital Power  
HSSI1 PLL  
1
mA  
mA  
mA  
1.21V Digital Power  
SCS DRAM  
Maximum current at VDD121_SCS =  
1.30 V  
V(VDD121_SCS) (Core)  
V(VAD18_PLLMA) (Core)  
334  
10  
1.8-V Analog Power  
MCG-A PLL  
(Master Clock Generator)  
Maximum current at VAD18_PLLMA =  
1.89 V  
V(VAD18_PLLMB) (Core)  
1.8-V Analog Power  
MCG-B PLL  
(Master Clock Generator)  
Maximum current at VAD18_PLLMB =  
1.89 V  
10  
41  
mA  
mA  
V(VAD18_VX1) (I/O) (2)  
Maximum current at VAD18_VX1 = 1.89  
V
8 Lanes, with total BW = 3.0Gbps  
1.8-V Analog Power  
VX1 Interface  
V(VDD18_SCS) (Core)  
V(VDD18_LVDS) (I/O)  
V(VDD33) (I/O)  
1.8-V Digital Power  
SCS DRAM  
Maximum current at VDD18_SCS =  
1.89 V  
327  
31  
mA  
mA  
1.8-V Analog Power  
DMD LS Interface  
Maximum current at VDD18_LVDS =  
1.89 V  
3.3-V Digital Power -  
(All 3.3-V I/O without  
dedicated 3.3-V supply -  
e.g. GPIO)  
Maximum current at VDD33 = 1.3456 V  
28  
mA  
V(VAD33_OSCA) (I/O)  
V(VAD33_OSCB) (I/O)  
V(VDD33_FPD) (I/O) (2)  
3.3-V Analog Power  
Crystal/OSCA Interface  
Maximum current at VDD33_OSCA =  
1.3456 V  
5
5
mA  
mA  
3.3-V Analog Power  
Crystal-OSCB Interface  
Maximum current at VDD33_OSCB =  
1.3456 V  
Maximum current at VDD33_FPD =  
1.3456 V  
Ports A and B Active, Port C inactive  
3.3-V Digital Power  
FPD interface  
102  
78  
mA  
mA  
V(VAD33_USB) (I/O)  
3.3-V Analog Power  
USB Interface  
Maximum current at VDD33_USB =  
1.3456 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX(1)  
UNIT  
V(VDD33_HSSI) (I/O)  
Maximum current at VDD33_HSSI =  
1.3456 V  
Both ports active, with total BW =  
3.0Gbps  
3.3-V Digital Power  
DMD HSSI Interface  
194  
mA  
(1) Vendor estimate for worst case power PVT condition = corner process, high voltage, high temperature (115°C junction).  
(2) The V-by-One interface and FPD-Link receivers are never intended to be simultaneously enabled . Always disable one of these  
interfaces.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.6 Pin Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
1.05  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
N/A  
3.3 V LVCMOS  
0.8 ×  
(I/O type 6 - FPD)  
VDD33_FPD  
3.3 V LVCMOS  
(I/O type 6 - PP)  
2.0  
High-level input  
threshold voltage  
VIH  
V
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
2.0  
2.0  
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
2.0  
3.3 V OpenDrain  
(I/O type 13 - I2C)  
0.7 × VDD33  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
0.6  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
N/A  
3.3 V LVCMOS  
(I/O type 6 - FPD)  
0.2 × VDD33_FPD  
0.8  
3.3 V LVCMOS  
(I/O type 6 - PP)  
Low-level input  
threshold voltage  
VIL  
V
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
0.8  
0.8  
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
0.8  
0.3 × VDD33  
10  
3.3 V OpenDrain  
(I/O type 13 - I2C)  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
VIN = VAD18_LSIF  
–10  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
N/A  
-10  
N/A  
10  
3.3 V LVCMOS  
(I/O type 6 - PP)  
High-level input  
current  
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
IIH  
VIN = VDD33  
VIN = VDD33  
–10  
–10  
10  
µA  
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
10  
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
VIN = VDD33  
–10  
–10  
10  
10  
3.3 V OpenDrain  
(I/O type 13 - I2C)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLPC7540  
 
DLPC7540  
www.ti.com  
UNIT  
DLPS206 – MAY 2021  
6.6 Pin Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VIN = VSS  
MIN  
TYP  
MAX  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
–10  
10  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
N/A  
-10  
N/A  
10  
3.3 V LVCMOS  
(I/O type 6 - PP)  
Low-level input  
current  
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
IIL  
VIN = VSS  
VIN = VSS  
–10  
–10  
10  
µA  
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
10  
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
VIN = VSS  
–10  
–10  
10  
10  
3.3 V OpenDrain  
(I/O type 13 - I2C)  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
VDD18 - 0.6  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
N/A  
N/A  
3.3 V LVCMOS  
(I/O type 6 - PP)  
High-level output  
voltage  
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
VOH  
IOH = 8 mA  
VDD33 - 0.6  
N/A  
V
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
N/A  
N/A  
3.3 V OpenDrain  
(I/O type 13 - I2C)  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
0.4  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
IOL = 8 mA  
0.4  
N/A  
0.4  
3.3 V LVCMOS  
(I/O type 6 - PP)  
Low-level output  
voltage  
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
VOL  
IOL = 8 mA  
V
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
N/A  
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
N/A  
0.4  
3.3 V OpenDrain  
(I/O type 13 - I2C)  
3-mA sink  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.6 Pin Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
N/A  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
N/A  
N/A  
8
3.3 V LVCMOS  
(I/O type 6 - PP)  
High-level output  
current  
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
IOH  
IOL  
IOZ  
VOH = VDD33 - 0.6 V  
mA  
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
N/A  
N/A  
N/A  
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
N/A  
N/A  
N/A  
8
3.3 V OpenDrain  
(I/O type 13 - I2C)  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
VOL = 0.4 V  
VOL = 0.4 V  
3.3 V LVCMOS  
(I/O type 6 - PP)  
N/A  
Low-level output  
current  
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
8
mA  
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
N/A  
N/A  
N/A  
-
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
N/A  
6
3.3 V OpenDrain  
(I/O type 13 - I2C)  
VOL = 0.6 V  
1.8 V LVCMOS  
(I/O type 3 - LS  
DMD)  
N/A  
3.3 V OpenDrain  
(I/O type 4 - VX1)  
-10  
-10  
–10  
N/A  
10  
10  
3.3 V LVCMOS  
(I/O type 6 - PP)  
High-impedance  
leakage current  
3.3 V LVCMOS  
(I/O type 8 - GPIO)  
VOUT = VDD33  
10  
µA  
3.3 V LVCMOS  
(I/O type 9 - OSCA)  
N/A  
3.3 V LVCMOS  
(I/O type 10 -  
OSCB)  
N/A  
N/A  
N/A  
N/A  
3.3 V OpenDrain  
(I/O type 13 - I2C)  
(1) The number inside each parenthesis for the I/O refers to the type defined in Table 5-13.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.7 DMD HSSI Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
400  
590  
NOM  
MAX  
1000  
1000  
UNIT  
Output Peak-to-Peak Differential (1) (3)  
VDIFF  
Data  
mVppd  
mVppd  
(into floating load RLOAD = 100 Ω)  
Clock  
Output common mode(3)  
VCM  
200  
700  
mV  
(into floating load RLOAD = 100 Ω)  
Output differential voltage(1) (2)  
(into floating load RLOAD = 100 Ω)  
Data  
200  
295  
80  
500  
500  
120  
60  
mV  
mV  
Ω
|VOD  
|
Clock  
RDIFF  
Differential termination resistance  
Single-ended termination resistance  
100  
50  
RTERM  
40  
Ω
Differential output return loss  
(100 MHz to 0.75 × Baud)  
SDD22  
SCC22  
NCM  
-8  
-6  
dB  
dB  
Common mode return loss  
(100 MHz to 0.75 × Baud)  
(7.5% × VDIFF) +  
25 mV  
Transmitter common mode noise  
mVppd  
DJDATA  
DJCLOCK  
DCD  
Deterministic jitter data (non-DCD)  
Deterministic jitter clock (non-DCD)  
Duty cycle distortion  
0.20  
0.16  
0.05  
0.30  
UI pp  
UI pp  
UI pp  
UI pp  
TJ  
Total jitter (random + DJ)  
(1) VDIFF-pp = (Vp - Vn)cycle_N - (Vp - Vn)cycle_N+1 = 2 × |VOD  
|
See Figure 6-1.  
(2) See link to HSSI characteristics  
(3) Measured with a interconnect with insertion loss of 3dB at 1.6 GHz.|  
Vp  
|VOD/2|  
|VOD/2|  
|VOD/2|  
|VOD/2|  
VCM  
Vn  
|VOD|  
Figure 6-1. HSSI Differential Voltage Parameters  
6.8 DMD Low-Speed LVDS Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
340  
NOM  
MAX  
600  
UNIT  
mVppd  
mV  
Output peak-to-peak differential  
(into RLOAD = 100 Ω)  
VDIFF  
VCM  
VAD18_LSIF (I/O type 2)  
Steady-state common mode voltage  
VAD18_LSIF (I/O type 2)  
VAD18_LSIF (I/O type 2)  
1100  
170  
1200  
1300  
300  
Differential output voltage  
(into RLOAD = 100 Ω)  
(1)  
|VOD  
|
mV  
|VOD (Δ) |(2)  
VCM (Δ)  
VOH  
VOD change (between logic states)  
VCM change (between logic states)  
Single-ended output voltage high (3)  
Single-ended output voltage low (3)  
Internal differential termination  
VAD18_LSIF (I/O type 2)  
VAD18_LSIF (I/O type 2)  
VAD18_LSIF (I/O type 2)  
VAD18_LSIF (I/O type 2)  
25  
25  
mV  
mV  
mV  
mV  
Ω
1450  
VOL  
950  
85  
Txterm  
100  
115  
(1) VDIFF-pp = (Vp - Vn)cycle_N - (Vp - Vn)cycle_N+1 = 2 × |VOD  
|
See Figure 6-2  
(2) |VOD (Δ)| = | | VOD|cycle _N - |VOD|cycle_N+1 |  
(3) VOH = 1300 + 300/2 = 1450; VOL = 1100- 300/2 = 950  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Vp  
VCM  
Vn  
|VOD/2|  
|VOD/2|  
|VOD/2|  
|VOD/2|  
|VOD|  
Figure 6-2. DMD Low-Speed Differential Voltage Parameters  
6.9 V-by-One Interface Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
MIN  
100  
50  
NOM  
MAX  
UNIT  
mVppd  
mV  
VDIFF  
|VID|  
Input peak-to-peak differential(2)  
Differential input voltage(2)  
VAD18_VX1 (I/O type 1)  
VAD18_VX1 (I/O type 1)  
VAD18_VX1 (I/O type 1)  
Rxterm  
Internal differential termination  
80  
100  
120  
Ω
(1) See the V-by-One interface standard for more information  
(2) See link to v-by-one timinig  
6.10 FPD-Link LVDS Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER (1)  
MIN  
200  
100  
0.25  
90  
NOM  
MAX  
UNIT  
VDIFF  
|VID|  
Input peak-to-peak differential  
Differential input voltage  
VDD33_FPD (I/O type 5)  
VDD33_FPD (I/O type 5)  
1200 mVppd  
600  
2.4  
mV  
V
VCM  
Steady-state common mode voltage (2) VDD33_FPD (I/O type 5)  
Rxterm  
Internal differential termination VDD33_FPD (I/O type 5)  
110  
132  
Ω
(1) See Figure 6-14  
(2) If VCM falls below VCM(min) at the inputs to the receiver, an open input detection circuit is automatically enabled. This detection circuit  
disables the receiver until the input VCM rises above VCM(min)  
.
6.11 USB Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1) (2)  
MIN  
NOM  
MAX  
UNIT  
Low-Speed and Full Speed (Input Level)  
Single-ended input voltage high  
(driven)  
VIH  
2.0  
2.7  
V
V
Single-ended input voltage high  
(floating)  
VIHZ  
3.6  
0.8  
VIL  
Single-ended input voltage low  
Differential input sensitivity  
V
V
V
VDI  
VCM  
|(DP) - (DM)|  
0.2  
0.8  
Differential common mode voltage  
Includes VDI range  
2.5  
Low-Speed and Full Speed (Output Level)  
VOL  
Low-level output voltage  
with 1.425KΩ pullup to 3.6V  
with 14.25KΩ pulldown  
0.0  
2.8  
1.3  
0.3  
3.6  
2.0  
V
V
V
VOH  
VCRS  
High-level output voltage  
Output signal crossover voltage  
High-Speed (Input Level)  
High-speed squelch detection  
threshold  
VHSSQ  
100  
150  
mV  
(differential signal amplitude)  
High-speed disconnect detection  
threshold  
(differential signal amplitude)  
VHSDSC  
525  
-50  
626  
500  
mV  
mV  
High-speed data signal common mode  
voltage  
VHSCM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
 
 
DLPC7540  
www.ti.com  
UNIT  
DLPS206 – MAY 2021  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1) (2)  
MIN  
NOM  
MAX  
High-Speed (Output Level)  
VHSOI  
VHSOH  
VHSOL  
High-speed idle level  
–10.0  
360  
10.0  
440  
mV  
mV  
mV  
High-speed data signal - high  
High-speed data signal - low  
–10.0  
10.0  
High-speed chirp J level (differential  
voltage)  
VCHIRPJ  
VCHIRPK  
700  
1100  
-500  
mV  
mV  
High-speed chirp K level (differential  
voltage)  
-900  
Termination  
RPU  
Bus pullup resistor  
1.425  
14.25  
40.5  
1.575  
15.75  
49.5  
KΩ  
KΩ  
Ω
RPD  
Bus pulldown resistor  
ZHSDRV  
High-speed driver output impedance  
(1) Referenced to VAD33_USB (I/O type 11)  
(2) When used as a master as part of USB OTG, the DLPC7540 requires an External USB Switch to provide the USB 5-V power. The  
example shown in Figure 6-3 makes use of a TI TPS2500/2501 device. The example figure does not describe the required ancillary  
components (such as, resistors and capacitors). For this information please refer to the USB Switch logic datasheet for the selected  
device. The External USB Switch is not required for product configurations that are supporting USB slave mode only.  
1.8 V to 5.25 V  
IN  
EN  
ENUSB  
USB Power Switch  
w/ Boost  
Converter  
USB  
(TPS2500 or TPS2501)  
GPIO_48  
VBUS  
Dœ  
USB_VBUS  
USB_DAT_N  
USB_DAT_P  
USB_ID  
Micro  
AB  
Receptable  
Controller  
D+  
ID  
GND  
Figure 6-3. External USB Switch Example for DLPC7540 Controller as USB OTG Master  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.12 System Oscillator Timing Requirements  
PARAMETER  
MIN  
NOM  
40.000  
25.000  
MAX  
UNIT  
MHz  
ns  
ƒclock Clock frequency, REFCLKA(1) (2)  
tc  
Cycle time, REFCLKA(1)  
PLLA: 40 MHz  
PLLA: 40 MHz  
39.9960  
24.9975  
40.0040  
25.0025  
PLLA: 40 MHz  
50% to 50% reference points (signal)  
tw(H) Pulse duration(3), REFCLKA, high  
tw(L) Pulse duration(3), REFCLKA, low  
11.25  
11.25  
ns  
ns  
ns  
PLLA: 40 MHz  
50% to 50% reference points (signal)  
PLLA: 40 MHz  
20% to 80% reference points (signal)  
tt  
Transition time(3), REFCLKA, tt = tƒ / tr  
2.5  
18  
Long term periodic jitter(3), REFCLKA  
(that is the deviation in period from  
ideal period due solely to high  
frequency jitter)  
tjp  
PLLA: 40 MHz  
ps  
fclock Clock frequency, REFCLKB(1)  
tc  
Cycle time, REFCLKB(1)  
PLLB: 38 MHz  
PLLB: 38 MHz  
37.9962  
26.3132  
38.000  
38.0038  
MHz  
ns  
26.3157 26.3184  
PLLB: 38 MHz  
50% to 50% reference points (signal)  
tw(H) Pulse duration(3), REFCLKB, high  
tw(L) Pulse duration(3), REFCLKB, low  
11.84  
11.84  
ns  
ns  
ns  
PLLB: 38 MHz  
50% to 50% reference points (signal)  
PLLB: 38 MHz  
20% to 80% reference points (signal)  
tt  
Transition time(3), REFCLKB, tt = tƒ / tr  
2.63  
18  
Long term periodic jitter(3), REFCLKB  
(that is the deviation in period from  
ideal period due solely to high  
frequency jitter)  
tjp  
PLLB: 38 MHz  
ps  
(1) The REFCLK inputs do not support spread spectrum clock spreading.  
(2) Multi-Controller systems require that a single oscillator be used to drive the REFCLKA input for all controllers in the system.  
(3) Applies only when driven through an external digital oscillator. This is a 1 sigma RMS value.  
tt  
tt  
tc  
tw(H)  
tw(L)  
80%  
20%  
80%  
20%  
50%  
50%  
REFCLK  
50%  
Figure 6-4. System Oscillators  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLPC7540  
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.13 Power Supply and Reset Timing Requirements  
PARAMETER  
MIN  
MAX  
UNIT  
Power supply ramp for each supply  
Ramp-up time: TOV × 10% to TOV × 90%  
TOV = Typical Operational Voltage  
Power supply ramp-up time.  
(1) Figure 6-5  
tRAMP-UP  
0.01  
10  
ms  
Total time within which the 1.15-V, 1.8-V, 1.21-V,  
and 3.3-V supplies must complete their ramp-up  
from the start of the 1.15-V ramp-up.  
Ramp-up time: TOV × 10% to TOV × 90%  
TOV = Typical Operational Voltage  
Total power supply ramp-up  
time.(1)  
tRAMP-UP-TOTAL  
100  
ms  
Power supply ramp for each supply  
Ramp-down time: TOV × 90% to TOV × 10%  
TOV = Typical Operational Voltage  
Power supply ramp-down  
tRAMP-DOWN  
0
100  
100  
ms  
ms  
time. (1) Figure 6-5 Figure 6-6  
tRAMP-DOWN-TOTAL Total power supply ramp-  
down time.(1)  
Total time within which the 1.15-V, 1.8-V, 1.21-  
V, and 3.3-V supplies must complete their ramp-  
down from the start of the 3.3-V ramp-up.  
Ramp-down time: TOV × 90% to TOV × 10%  
TOV = Typical Operational Voltage  
1.8-V Supply Ramp-up Start Delay from 1.15-V supply ramp start to 1.8-V  
Delay (2) Figure 6-6  
supply ramp start.  
tRUSD18  
tRUSD33  
tRUSD12  
See (3)  
10  
ms  
ms  
ms  
ms  
3.3-V Supply Ramp-up Start Delay from 1.15-V supply ramp start to 3.3-V  
Delay (2) Figure 6-6  
supply ramp start  
50  
1.21-V Supply Ramp-up Start Delay from 1.8-V supply ramp start to 1.21-V  
See (4)  
Delay (2) Figure 6-6  
supply ramp start.  
1.8-V Supply Ramp-down  
Start Delay (2) Figure 6-6  
Delay from 1.21-V supply ramp start to 1.8-V  
supply ramp start.  
tRDSD18  
See (5)  
See(8)  
tRDSD115  
1.15-V Supply Ramp-down  
Start Delay (2) Figure 6-6  
Delay from 3.3-V supply ramp start to 1.15-V  
supply ramp start.  
PWRGOOD goes inactive low (as an early  
warning) prior to any power supply voltage going  
below the controller specification  
Early Warning Time Figure  
6-8  
tEW  
tPH  
tw1  
500  
500(9)  
4
µs  
µs  
µs  
POSENSE remains active after PWRGOOD is  
disabled  
Power Hold Time Figure 6-8  
PWRGOOD inactive time while POSENSE is  
active  
50% to 50% reference points (signal)  
Pulse duration, in-active low,  
PWRGOOD Figure 6-7  
1000 (6)  
625  
Transition time, PWRGOOD  
tt1 = tƒ1 and tr1  
Figure 6-7  
Rise and Fall time for PWRGOOD  
20% to 80% reference points (signal)  
tt1  
µs  
ms  
µs  
POSENCE inactive time while PWRGOOD is  
inactive  
50% to 50% reference points (signal)  
Pulse duration, in-active low,  
POSENSE Figure 6-8  
tw2  
100  
Transition time, POSENSE  
tt1 = tƒ1 and tr1  
Figure 6-8  
Rise and Fall time for POSENSE (7)  
20% to 80% reference points (signal)  
tt2  
25  
60  
PWRGOOD Start Delay  
Figure 6-7  
Time after rising edge of POSENSE before  
PWRGOOD effects DLPC7540 operation  
tPSD  
51.5  
10  
ms  
ms  
tPROJ_ON  
PROJ_ON fall time delay to  
PWRGOOD Figure 6-8  
Fall Delay  
PROJ_ON 80% to PWRGOOD 80% fall time  
start  
tREFCLKA  
Time to stable REFCLKA  
Figure 6-7  
Time to stable REFLCKA before POSENSE  
See (10)  
(1) It is assumed that all 1.15-V supplies come from the same source, although some can have additional filtering before entering the  
DLPC7540. As such, it is expected these supplies to ramp together (aside from differences caused by filtering). This same expectation  
is true for the 1.21-V, 1.8-V, and 3.3-V supplies.  
(2) The DLPC7540 has specific power supply sequencing requirements which are listed below, and which also include the timings  
specified in this table.  
a. Power Up Order:  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
i.  
1.15-V (Core, Analog) » 1.8-V (I/O, SCS) » 1.21-V (SCS)  
ii. 1.15-V (Core, Analog) » 3.3-V (I/O  
b. Power Down Order:  
i.  
3.3-V (I/O) » 1.15-V (Core, Analog)  
ii. 1.21-V (SCS) » 1.8-V (I/O, SCS) » 1.15-V (Core, Analog)  
(3) This delay requirement parameter is defined as the time between two events. The first event is the point where the 1.15-V power  
supply ramp-up is started, and the second event is when the 1.15-V supply ramp-up reaches 80% of TOV (at which point the 1.8-V  
supply can start its ramp-up). Because the occurrence of the second event depends on the specific design of the 1.15-V power supply,  
the designer must determine the specific delay time.  
(4) This delay requirement parameter is defined as the time between two events. The first event is the point where the 1.8-V power supply  
ramp-up is started, and the second event is when the 1.8-V supply ramp-up reaches 80% of TOV (at which point the 1.21-V supply can  
start its ramp-up). Because the occurrence of the second event depends on the specific design of the 1.8-V power supply, the designer  
must determine the specific delay time.  
(5) This delay requirement parameter is defined as the time between two events. The first event is the point where the 1.21-V power  
supply ramp-down is started, and the second event is when the 1.21-V supply ramp-down reaches 20% of TOV (at which point the  
1.8-V supply can start its ramp-down). Because the occurrence of the second event depends on the specific design of the 1.21-V  
power supply, the designer must determine the specific delay time.  
(6) This max value is only applicable if the 1.8-V power remains ON while PWRGOOD is inactive. Otherwise, there is no maximum limit.  
(7) As long as noise on this signal is below the hysteresis threshold  
(8) This delay requirement parameter is defined as the time between two events. The first event is the point where the 3.3-V power supply  
ramp-down is started, and the second event is when the 3.3-V supply ramp-down and 1.8-V supply ramp down reaches 10% of TOV  
(at which point the 1.15-V supply can start its ramp-down). Because the occurrence of the second event depends on the specific  
design of the 3.3V and 1.8-V power supply, the designer must determine the specific delay time.  
(9) If PROJ_ON is used for power down then Power Hold Time (tPH) is not required.  
(10) This delay requirement parameter is defined by design of RECLKA oscillator. Stable clock must be provided before releasing  
POSENSE.  
tRAMP-UP  
tRAMP-DOWN  
TOV  
90%  
90%  
10%  
10%  
Figure 6-5. Power Supply Ramp Time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
tRAMP-UP-TOTAL  
tRAMP-DOWN-TOTAL  
90%  
80%  
1.15V (Core/Analog)  
tRDSD115  
20%  
10%  
90%  
80%  
1.8V (I/O, SCS)  
Note 1  
tRUSD18  
10%  
10%  
Note 2  
90%  
1.21V (SCS)  
3.3V (I/O)  
tRUSD12  
20%  
tRDSD18  
10%  
90%  
90%  
tRUSD33  
10%  
(10ms t 50ms)  
10%  
Note 1: No power up or power down timing dependency between 1.8V and 3.3V  
Note 2: No power up or power down timing dependency between 1.21V and 3.3V  
Figure 6-6. Power Supply Ramp Sequencing Profiles  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
tREFCLKA  
DC Power  
Supplies  
tt2  
80%  
POSENSE  
20%  
tt1  
tt1  
80%  
50%  
80%  
50%  
PWRGOOD  
20%  
20%  
tW1  
tPSD  
Figure 6-7. Power Up Timing  
tPROJ_ON  
80%  
PROJ_ON  
(If applicable)  
20%  
tt1  
80%  
PWRGOOD  
20%  
tPH  
tt2  
tt2  
80%  
50%  
80%  
50%  
POSENSE  
20%  
20%  
tW2  
tEW  
DC Power  
Supplies  
Figure 6-8. Power Down Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.14 DMD HSSI Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
2.4  
312.5  
50  
NOM  
MAX  
3.2  
UNIT  
Gbps  
ps  
Baud  
UI  
Baud Rate  
Unit Interval, 1/Baud  
416.7  
115  
Differential output rise time (1) (2)  
(0% to 100% of minimum eye mask height)  
Data  
Clock  
Data  
ps  
tR  
50  
135  
ps  
Differential output fall time(1) (2)  
(0% to 100% of minimum eye mask height)  
50  
115  
ps  
tF  
Clock  
50  
135  
ps  
tX1  
maximum eye closure(3)  
at zero crossing  
at minimum eye height  
0.15  
0.375  
UI  
tX2  
maximum eye closure(3)  
UI  
tEYE  
Differential Data Eye(3)  
0.7  
UI  
tskln2ln  
tskM2M  
fSSCD  
fMOD  
Lane to lane skew within a macro(2)  
Lane to lane skew macro to macro(2)  
|200|  
|4UI+200|  
1
ps  
ps  
Spread Spectrum (Down Spreading Only) (4) When SSCD Enabled  
Modulation Frequency (4)  
When SSCD Enabled  
%
78.125  
KHz  
(1) Rise and Fall times are associated with VDIFF-pp as shown in Figure 6-9  
(2) Measured with an interconnect with an insertion loss of 3dB at 1.6 GHz  
(3) See Figure 6-10  
(4) When SSCD is enabled, the available modulation waveform is: Triangular  
+V  
/2  
DIFF(PP)  
100  
90  
V
OD(min)  
80  
70  
V
DIFF(PP)  
60  
(0 V) 50  
40  
30  
20  
10  
0
œV  
OD(min)  
/2  
œV  
DIFF(PP)  
tF.  
tR.  
VCM is removed when signals are viewed differentially  
Figure 6-9. HSSI Differential Timing Parameters  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
VOD(max)  
VOD(min)  
0 V  
œVOD(min)  
œVOD(max)  
tX2  
tX2  
tX1  
tX1  
tEYE  
0
1 UI  
Figure 6-10. HSSI Eye Characteristics  
6.15 DMD Low-Speed LVDS Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
119.966  
NOM  
120  
MAX  
UNIT  
fclock  
120.034  
250  
MHz  
Differential output rise time  
(10% to 90%)  
(1)  
tR  
ps  
Differential output fall time  
(10% to 90%)  
(1)  
tF  
250  
55  
ps  
%
DCD  
Duty Cycle Distortion  
45  
(1) Rise and Fall times are associated with VDIFF-pp as shown in Figure 6-11  
+V  
/2  
DIFF(PP)  
100  
90  
80  
70  
V
DIFF(PP)  
60  
(0 V) 50  
40  
30  
20  
10  
0
œV  
/2  
DIFF(PP)  
tF .  
tR.  
VCM is removed when signals are viewed differentially  
Figure 6-11. DMD Low-Speed Differential Timing Parameters  
6.16 V-by-One Interface General Timing Requirements  
PARAMETER(1)  
MIN  
MAX  
UNIT  
40 (1 lane)  
20 (1 lane with Pixel  
Repeat) (2)  
600 (8  
lanes)  
fclock  
Source clock frequency  
MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DLPC7540  
 
 
 
 
 
DLPC7540  
www.ti.com  
UNIT  
DLPS206 – MAY 2021  
PARAMETER(1)  
MIN  
MAX  
43  
43  
43  
8 lanes  
4 lanes  
2 lanes  
1 lane  
75  
85  
85  
85  
flink-ck  
Link clock frequency per lane (3)  
MHz  
43 (21.5 with Pixel  
Repeat)  
3-Byte Mode  
4-Byte Mode  
5-Byte Mode  
2
2
2.15  
2.55  
3.0  
3.0  
flink  
Link transfer rate (3)  
Unit interval  
Gbps  
3-Byte Mode  
4-Byte Mode  
5-Byte Mode  
392  
294  
294  
500  
500  
500  
ps  
ps  
ps  
tRBIT  
tA  
Jitter Margin  
0.25  
0.05  
0.5  
UI  
UI  
tB  
Rise / Fall Time  
tEYE  
Differential Data Eye  
Allowable intra-pair skew  
Allowable Inter-pair Skew  
Allowable Inter-pair frequency offset  
Total jitter  
UI  
tskew_intra  
tskew_inter  
foskew_inter  
Tj  
0.3  
5-  
5
UI  
UI  
–300  
300  
0.5  
0.2  
0.2  
0.1  
ppm  
UI  
-
-
-
-
Rj  
Random jitter  
10^12 UI  
UI  
Dj_ISI  
Sj  
Deterministic jitter (ISI)  
Sinusoidal jitter  
UI  
UI  
(1) V-by-One high-speed technology supports 1, 2, 4 or 8 lane operation, in addition to 3-Byte, 4-Byte, and 5-Byte transfer modes  
(2) Pixel repeat is a method used to support slower clock rate sources, whereby, the source come at twice the original clock rate, with  
each data pixel being repeated once, and blanking being doubled as well. This method must operate external to DLPC7540. Once  
received, the DLPC7540 discards each duplicate data pixel and blanking clock. Pixel repeat is supported only during 1- lane operation.  
(3) For V-by-One high-speed technology, both link clock rate and link transfer rate limits must be met for any source.  
VID(max)  
VID(min)  
VDIFF  
0 V  
œVID(min)  
œVID(max)  
tA  
tB  
tB  
tA  
tEYE  
0
1 UI  
Figure 6-12. V-by-One Timing  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.17 FPD-Link Interface General Timing Requirements  
PARAMETER  
MIN  
MAX  
UNIT  
ƒclock  
Clock frequency, FPDA_CLK_P/N, FPDB_CLK_P/N  
Clock period, FPDA_CLK_P/N, FPDB_CLK_P/N  
Unit Interval (Figure 6-13)  
20.0 (1  
port)  
10 (1 port  
with pixel  
repeat) (1)  
330  
(165 per  
port)  
MHz  
tclock  
3.03  
(6.06 per  
port)  
50 (1 port)  
100 (1  
ns  
port with  
pixel  
repeat) (1)  
tRBIT  
0.865 (per 7.143 (1  
ns  
port)  
port)  
tskew_ports  
tA  
Clock to clock skew margin between ports on same Controller, and between  
ports on different Controllers  
1
clocks  
Jitter Margin and Skew Margin between clock and data  
(on the same port). See Figure 6-14  
ƒclock ≤ 90 MHz  
ƒclock > 90 MHz  
ƒclock ≤ 90 MHz  
ƒclock > 90 MHz  
ƒclock ≤ 90 MHz  
ƒclock > 90 MHz  
0.25  
0.23  
333  
UI  
UI  
ps  
ps  
UI  
UI  
tB  
Rise/Fall Time. See Figure 6-14  
200  
tEYE  
Differential Data Eye (Figure 6-14)  
0.50  
0.54  
(1) Pixel repeat is a method used to support slower clock rate sources, whereby, the source come at twice the "original" clock rate, with  
each data pixel being repeated once, and blanking being doubled. Both the pixel doubling and double blanking must be done external  
to DLPC7540. The DLPC7540 discards each duplicate data pixel and blanking clock. The device supports pixel repeat only when  
using 1 port.  
T
Ideal  
T/7  
T/7  
T/7  
T/7  
T/7  
T/7  
T/7  
Reference  
Position  
Reference  
Clock  
tskew  
tskew  
Data  
D0(1)  
UI  
D0(0)  
UI  
D0(6)  
D0(5)  
UI  
D0(4)  
UI  
D0(3)  
UI  
D0(2)  
UI  
UI Definition  
UI  
Figure 6-13. FPD-Link Data Skew  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
VID(max)  
VID(min)  
0 V  
VDIFF  
œVID(min)  
œVID(max)  
tA  
tB  
tB  
tA  
tEYE  
0
1 UI  
Figure 6-14. FPD-Link Timing  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.18 Source Frame Timing Requirements  
See Figure 6-15  
PARAMETER (1)  
MIN  
MAX  
UNIT  
50% reference  
points  
tp_vsw  
tp_vbp  
tp_vƒp  
tp_tvb  
tp_hsw  
tp_hbp  
tp_hfp  
tp_thb  
VSYNC Active Pulse Width  
Vertical back porch (VBP) (2)  
Vertical front porch (VFP) (2)  
Total vertical blanking (TVB) (2)  
HSYNC Active Pulse Width  
Horizontal back porch (HBP) (5)  
Horizontal front porch (HFP) (5)  
Total horizontal blanking (THB) (5)  
1
127  
lines  
50% reference  
points  
2 (3)  
lines  
lines  
50% reference  
points  
MAX[ (TVBMIN - 65 ), 1] (3)  
50% reference  
points  
See (4)  
16  
lines  
50% reference  
points  
PCLKs  
PCLKs  
PCLKs  
PCLKs  
50% reference  
points  
5 (Digital Video Sources)  
65 (Analog Video Sources)  
50% reference  
points  
2
50% reference  
points  
20 (Digital Video Sources)  
80 (Analog Video Sources) (6)  
fline  
Horizontal line rate  
37.354  
640  
K Hz  
APPL  
Active Pixels per Line  
4096  
Pixels  
2400 (Low latency)  
2160 (Normal)  
ALPF  
Active Lines per Frame  
480  
Lines  
(1) The requirements in the table apply to all external sources  
(2) Vertical Blanking Parameter Definitions:  
a. Vertical Back Porch: Time from the leading edge of VSYNC to the leading edge of HSYNC for the first active line, and includes the  
VSYNC pulse width tp_vsw  
.
b. Vertical Front Porch: Time from the leading edge of HSYNC following the last active line in a frame to the leading edge of VSYNC  
c. Total Vertical Blanking: The sum of VBP + VFP = TVB.  
(3) The vertical blanking required (per TVB) can be allocated as desired as long as the VFP and VBP minimum values are met.  
(4) The minimum TVB can be calculated using the following:  
TVBmin = 11 + ROUNDUP(LLS_VFP_MIN × (Source_ALPF/VPS_ALPF)), where:  
a. LLS_VFP_MIN (Normal Mode) = 22  
b. Source_ALPF = Active Lines Per Frame of the incoming source  
c. VPS_ALPF = 1080 (for 1920x1080 Native products and 3840x2160 4-way XPR products)  
d. Less TVBmin blanking can be required depending on the video processing being done. The configurations that drive the worst  
case minimum value are those configurations that combine the maximum (or near maximum) capabilities of functions such as  
scaling, warping, and keystone correction.  
e. This is applicable to all sources (Section 7.4). Other sources require directed testing in the end application.  
f.  
The minimum recommended TVB with CVT 1.2 sources is 23.  
(5) Horizontal Blanking Parameter Definitions:  
a. Horizontal Back Porch: Time from the leading edge of HSYNC to the rising edge of DATEN, and includes the HSYNC pulse width  
tp_hsw  
.
b. Horizontal Front Porch: Time from the falling edge of DATEN to the leading edge of HSYNC.  
c. Total Horizontal Blanking: The sum of HBP + HFP = THB.  
(6) The horizontal blanking required (per THB) can be allocated as desired as long as the HFP and HBP minimum values are met.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
1 Frame  
tp_vsw  
VSYNC_WE  
(This diagram assumes the VSYNC  
active edge is the rising edge)  
tp_vbp  
tp_vfp  
HSYNC_CS  
DATAEN_CMD  
1 Line  
tp_hsw  
HSYNC_CS  
(This diagram assumes the HSYNC  
active edge is the rising edge)  
tp_hbp  
tp_hfp  
DATAEN_CMD  
PDATA(23/15:0)  
PCLK  
P
n-2  
P
n-1  
P0  
P1  
P2  
P3  
Pn  
Figure 6-15. Source Frame Timing  
6.19 Synchronous Serial Port Interface Timing Requirements  
For SSP0, SSP1 and SSP2(1)(2)  
PARAMETER  
MIN  
MAX  
UNIT  
SSP Master  
fclock  
tclock  
tw(L)  
tw(H)  
tdelay  
tsu  
Clock frequency, SSPx_CLK  
Clock Period, SSPx_CLK  
50% to 50% reference points  
50% to 50% reference points  
50% to 50% reference points  
50% to 50% reference points  
0.38  
25.6  
12.0  
12.0  
-2.5  
15.0  
0
39.0  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
3632  
Pulse duration low, SSPx_CLK  
Pulse duration high, SSPx_CLK  
Output Delay – SSPx_TXD (MOSI)  
Setup time – SSPx_RXD (MISO)  
hold time – SSPx_RXD (MISO)  
Transition time (tr and tf- SSPx_RXD  
Clock Jitter, SSPx_CLK  
2.5  
50% to 50% reference points  
50% to 50% reference points  
20% to 80% reference points  
th  
tt  
1.5  
300  
500  
tclkjit  
tdelay∆  
SSP Slave  
tdelay  
tsu  
Clock output delay ∆ { | tw(H) - tw(L) | }  
Output Delay – SSPx_TXD (MOSI)  
Setup time – SSPx_RXD (MISO)  
hold time – SSPx_RXD (MISO)  
0
2.5  
2.5  
15  
ns  
ns  
ns  
50% to 50% reference points  
50% to 50% reference points  
th  
(1) The DLPC7540 SPI interfaces support SPI Modes 0, 1, 2, and 3 (that is, both clock polarities and both clock phases) as shown in  
Table 6-2 and Figure 6-16. As such, each SPI interface configuration must be setup to match the SPI mode being used.  
(2) In most SPI applications, one clock edge is used by both master and slave devices for transmitting data while the other edge is use  
by both for sampling received data. This is referred to as Standard SPI Protocol. To maximize the SPI_CLK frequency potential, SPI  
masters can alternatively be designed to sample the data in (MISO) bit on the same clock edge used to transmit the next data out  
(MOSI) bit. This is referred to as Enhanced SPI Protocol. The DLPC7540 SPI master implementation supports both protocols (part  
of SPI interface configuration), however, to be able to use the "Enhanced SPI Protocol", the slave device must meet the requirement  
shown in Figure 6-17.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 6-2. SPI Clocking Modes  
SPI Clocking Mode  
SPI Clock Polarity  
SPI Clock Phase  
0
1
2
3
0
0
1
1
0
1
0
1
CSZ  
CLK  
(CPOL=0)  
(CPOL=1)  
(CPHA=0)  
MSB  
LSB  
TXD/RXD  
(CPHA=1)  
LSB  
MSB  
Figure 6-16. Timing Diagram for SPI Clocking Modes  
SPI_CSZ  
SPI_CLK  
SPI_MISO  
MSb  
LSb  
œ Data held until end of last clock cycle  
œ Supports Enhanced SPI Protocol  
Controller MISO Sampling Edges  
SPI_CSZ  
SPI_CLK  
SPI_MISO  
MSb  
LSb  
œ Data not held until end of last clock cycle  
œ Only supports Standard SPI Protocol  
Controller MISO Sampling Edges  
Figure 6-17. Requirement for Enhanced SPI Protocol  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
tclock  
tt  
tw(H)  
tw(L)  
80%  
SSPx_CLK  
(Controller output)  
50%  
50%  
50%  
50%  
20%  
tdelay(max)  
tdelay(min)  
Valid  
SSPx_TXD  
(Controller output)  
Valid  
Valid  
Valid  
tsu  
th  
SSPx_RXD  
(Controller input)  
Valid  
SSPx_RXD  
(Controller input)  
Figure 6-18. Timing Diagram for SSP Master (Modes 0/3)  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.20 Master and Slave I2C Interface Timing Requirements  
For IIC0, IIC1 and IIC2  
PARAMETER(1)  
MIN  
MAX  
UNIT  
kHz  
kHz  
pF  
fclock  
Clock frequency, IICx_SCL (2)  
(50% reference points)  
Full speed  
400  
100  
200  
Standard mode  
CL  
Capacitive Load (for each bus line)  
(1) Meets all I2C timing per the I2C Bus Specification (except for capacitive loading as specified). For reference see Version 2.1 of the  
Phillips-NXP specification.  
(2) By definition, I2C transactions operate at the speed of the slowest device on the bus. Full Speed operation requires all other I2C  
devices on the bus support Full Speed operation. The length of the line (due to its capacitance), as well as the value of the I2C pullup  
resistors can reduce the obtainable clock rate.  
6.21 Programmable Output Clock Timing Requirements  
PARAMETER  
fclock  
MIN  
0.19  
MAX  
48.75  
UNIT  
MHz  
ns  
Clock frequency, OCLKA (1)  
Clock period, OCLKA  
tclock  
20.52  
5263.15  
tw(H)  
Pulse duration high, OCLKA  
(50% reference points)  
(tclock/2) - 2  
ns  
tw(L)  
Pulse duration low, OCLKA  
(50% reference points)  
(tclock/2) - 2  
ns  
ps  
tcclkjit  
Jitter, OCLKA  
200  
fclock  
tclock  
tw(H)  
Clock frequency, OCLKB (1)  
Clock period, OCLKB  
0.19  
20.52  
48.75  
MHz  
ns  
5263.15  
Pulse duration high, OCLKB  
(50% reference points)  
(tclock/2) - 2  
ns  
tw(L)  
Pulse duration low, OCLKB  
(50% reference points)  
(tclock/2) - 2  
ns  
ps  
tcclkjit  
Jitter, OCLKB  
200  
fclock  
tclock  
tw(H)  
Clock frequency, OCLKC (1)  
Clock period, OCLKC  
0.19  
20.52  
48.75  
MHz  
ns  
5263.15  
Pulse duration high, OCLKC  
(50% reference points)  
(tclock/2) - 2  
ns  
tw(L)  
Pulse duration low, OCLKC  
(50% reference points)  
(tclock/2) - 2  
ns  
ps  
tcclkjit  
Jitter, OCLKC  
200  
fclock  
tclock  
tw(H)  
Clock frequency, OCLKD (1)  
Clock period, OCLKD  
0.19  
20.52  
48.75  
MHz  
ns  
5263.15  
Pulse duration high, OCLKD  
(50% reference points)  
(tclock/2) - 2  
ns  
tw(L)  
Pulse duration low, OCLKD  
(50% reference points)  
(tclock/2) - 2  
ns  
ps  
tcclkjit  
Jitter, OCLKD  
200  
(1)  
a. OCLKA is a dedicated pin, while OCLKB thru OCLKD are available via GPIO as alternate functions.  
b. The frequency of OCLKA thru OCLKD is programmable, with each having a power-up default frequency of 0.77 MHz. This default  
frequency is not that meaningful for OCLKB thru OCLKD since they must be configured to their alternate GPIO function before  
they can be used as a clock output.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DLPC7540  
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.22 JTAG Boundary Scan Interface Timing Requirements (Debug Only)  
See Figure 6-19  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
ƒclock  
tclock  
tw(H)  
tw(L)  
ts  
Clock frequency, TCK  
20  
Clock period, TCK  
50  
23  
Pulse duration low, TCK  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
20% to 80% reference points  
60pF load  
ns  
Pulse duration high, TCK  
27  
ns  
Setup time – TDI valid before TCK↑  
Hold time – TDI valid after TCK↑  
Setup time – TMS1 valid before TCK↑  
Hold time – TMS1 valid after TCK↑  
Transition time (tr and tf  
10  
10  
10  
10  
ns  
th  
ns  
ts  
ns  
th  
ns  
tt  
3
ns  
tdelay  
Output delay, TCK↓ to TDO1  
0
15  
ns  
tclock  
tt  
tw(H)  
tw(L)  
80%  
TCK  
(Controller input)  
50%  
50%  
50%  
20%  
tsu  
th  
TDI / TMS1  
(Controller input)  
50%  
Valid  
tdelay  
TDO1  
(Controller output)  
50%  
Valid  
Figure 6-19. Timing Diagram for JTAG Boundary Scan  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.23 JTAG ARM Multi-Ice Interface Timing Requirements (Debug Only)  
See Figure 6-20  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
ƒclock  
tclock  
tw(H)  
tw(L)  
ts  
Clock frequency, TCK  
8.33  
Clock period, TCK  
120  
50  
50  
15  
15  
15  
15  
Pulse duration low, TCK  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
20% to 80% reference points  
ns  
Pulse duration high, TCK  
ns  
Setup time – TDI valid before TCK↑  
Hold time – TDI valid after TCK↑  
Setup time – TMS2 valid before TCK↑  
Hold time – TMS2 valid after TCK↑  
Transition time (tr and tf  
ns  
th  
ns  
ts  
ns  
th  
ns  
tt  
5
ns  
tdelay  
Output delay, TCK↓ to TDO2  
0
15  
ps  
tclock  
tt  
tw(H)  
tw(L)  
80%  
TCK  
(Controller input)  
50%  
50%  
50%  
20%  
tsu  
th  
TDI / TMS2  
(Controller input)  
Valid  
50%  
tdelay  
TDO2  
(Controller output)  
50%  
Valid  
Figure 6-20. Timing Diagram for JTAG ARM Multi-Ice  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
6.24 Multi-Trace ETM Interface Timing Requirements  
See Figure 6-21  
PARAMETER(1)  
MIN  
MAX  
UNIT  
MHz  
ns  
ƒclock  
tclock  
tw(H)  
tw(L)  
Clock frequency, ETM_TRACECLK  
Clock period, ETM_TRACECLK  
Pulse duration low, ETM_TRACECLK  
41.56  
24.1  
11.2  
11.2  
3.0  
50% reference points  
ns  
Pulse duration high, ETM_TRACECLK 50% reference points  
ns  
tdelay  
Output delay, ETM_TRACECLK↑ to  
"ETM_OUTPUTS" (2)  
9.0  
9.0  
ps  
tdelay  
Output delay, ETM_TRACECLK↓ to  
"ETM_OUTPUTS" (2)  
3.0  
ps  
(1) The trace interface is a source synchronous DDR interface. TRACE_CLK has a programmable delay to provide for centering its edges  
in the center of the trace data to optimize performance.  
(2) "ETM_OUTPUTS" are: TSTPT_(7:0) and ETM_TRACECTL  
tclock  
tt  
tw(H)  
tw(L)  
80%  
20%  
TRACECLK  
(Internal / Undelayed)  
50%  
50%  
50%  
tdelay  
^9Ça_hÜÇtÜÇ{_  
(Controller outputs)  
TRACECLK  
(External / Delayed)  
Figure 6-21. Timing Diagram for Multi-Trace ETM  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The DLPC7540 is DLP Products high resolution DMD controller. When coupled with the DLP471TE DMD or  
the DLP650TE DMD and DLPA100 power and motor controller, it enables low cost, high brightness 4K UHD  
displays. The DLPC7540 supports 4K UHD video up to 60Hz, as well as 1080p video up to 240Hz and 3D at  
120Hz. Input formats include RBG, YCbCr and ICtCp (HDR10). Advanced video and color processing includes  
HDR10, improved linear light space processing, DynamicBlack, frame rate conversion, and a full parametric  
surface warping engine. It accepts 10-bit VbyOne, FPD-link. The DLPA100 has full illumination controls for LED,  
laser phosphor, RGB laser and hybrid illumination. Also, includes the memory bus for Flash storage. Control  
interfaces include SPI, I2C, UART, JTAG and USB2.0 OTG.  
7.2 Functional Block Diagram  
DLPC7540 Controller  
VbyOne  
RX  
Vby One  
DMD Data 1  
DLP Image  
Processing  
and  
Video Processing  
Warp Engine  
Frame Processing  
DMD Data 2  
HSG  
Contrast  
Scaling  
1D, 2D, Keystone  
Non-planar Surfaces  
Camera assisted  
FPD-Link 1  
FPD-Link 2  
FRC  
3D  
Splash Screen  
FPDLink  
RX (2x)  
Formatting  
Noise Reduction  
EOTF  
DMD Control  
I/F  
Micro-controller + Memory Controller + DMD Control  
Figure 7-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
7.3 Feature Description  
7.3.1 Input Sources  
Table 7-1. Supported Input Source Parameters (1)  
Source Resolution: 2D  
Source Resolution: 3D (per Eye) (2) (3)  
Bits/Pixel Accepted Bits/Pixel Processed  
(Max) (Max)  
INTERFACE  
Min  
Max  
Max  
FPD-Link  
10  
10  
10  
See (4)  
3840 × 2160  
3840 × 2160  
3840 × 2160 (FS)  
3840 × 2160 (VP)  
1024x1200(HPH)  
V-by-One  
12  
See (5)  
3840 × 2160 (FS)  
3840 × 2160 (VP)  
1024x1200(HPH)  
(1) The user must ensure that the resolution desired for a specific interface (e.g. FPD-Link) is within the bandwidth limits for that interface.  
Some resolutions at standard vertical rates (e.g. 60 Hz) may not be viable for all interfaces.  
(2) FS = Frame Sequential (Full Resolution), VP = Vertically Packed (Full Resolution), HPH = Horizontally Packed (Half Resolution).  
(3) Using the Low Latency configuration, only frame sequential 3D sources are supported, which can be supported in only one of two  
ways (since the Warp block is disabled when using the Low latency configuration). These are:  
For low frame rate 3D sources (e.g. 48 Hz, 60 Hz per eye), the sequence must be used to increase the display rate up to a  
appropriate value (e.g. 144 Hz, 120 Hz per eye).  
For high frame rate 3D sources (e.g. 120 Hz per eye), the source is treated like a 2D source and just passed through, since the  
source is providing the appropriate display rate.  
(4) The minimum clock rate for the FPD-Link interface limits the smallest resolution that can be supported by this interface.  
(5) The minimum clock rate and link rate for the V-by-One interface, as well as Byte Mode, limits the smallest resolution that can be  
supported by this interface. This interface supports 3-Byte, 4-Byte, and 5-Byte modes.  
7.3.2 Processing Delays  
The DLPC7540 introduces a variable number of field/frame delays dependent on the source type and selected  
processing steps performed on the source. For optimum audio/video synchronization this delay must be  
matched in the audio path. The following tables define the various video delay scenarios to aid in audio  
matching.  
Because the input and output rates are different when frame rate conversion (FRC) is employed, the delay  
through the FRC is variable.  
7.3.3 FPD-Link Interface  
The DLPC7540 supports two FPD-Link 5 lane ports which can be configured for single port use (Port A or Port  
B), or for dual port use (Port A and Port B). The third FPD port (Port C) is reserved for parallel port use only. FPD  
ports A and B support a limited set of remapping options within each port, but there is no remapping between  
ports. When utilizing this feature, each unique lane pair can only be mapped to one unique destination lane  
pair, and Intra-lane remapping (i.e. swapping P with N) is not supported. In addition, the A and B ports can be  
swapped. Lane and port remapping (specified in flash) can help with board layout as needed. The typical lane  
mapping is shown in Figure 7-2. An example of an alternate lane mapping is shown in Figure 7-3. The specific  
intra port remapping options available are shown in Table 7-2.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Controller  
Internal  
Intermediate  
Data Path  
Controller  
Internal  
Final  
Controller  
FPD Diff  
Input  
Controller  
Internal  
Lane Mux  
Host  
Actual  
Data  
Data Path  
Host FPD  
Diff Output  
Port A  
Even Data Path  
FPDA_DATAA_P  
FPDA_DATAA_N  
FPDA_DATAB_P  
FPDA_DATAB_N  
FPDA_DATAC_P  
FPDA_DATAC_N  
FPDA_DATAD_P  
FPDA_DATAD_N  
FPDA_DATAE_P  
FPDA_DATAE_N  
FPD_EVEN_DAT_A_P  
FPD_EVEN_DAT_A_N  
FPD_EVEN_DAT_B_P  
FPD_EVEN_DAT_B_N  
FPD_EVEN_DAT_C_P  
FPD_EVEN_DAT_C_N  
FPD_EVEN_DAT_D_P  
FPD_EVEN_DAT_D_N  
FPD_EVEN_DAT_E_P  
FPD_EVEN_DAT_E_N  
RA  
RB  
RC  
RD  
RE  
RA  
RB  
RC  
RD  
RE  
FPDA_PA  
FPDA_PB  
FPDA_PC  
FPDA_PD  
FPDA_PE  
FPD_E_PA  
FPD_E_PB  
FPD_E_PC  
FPD_E_PD  
FPD_E_PE  
FPDA_CLK_P  
FPDA_CLK_N  
FPD_EVEN_CLK_P  
FPD_EVEN_CLK_N  
CKA  
Port B  
Odd Data Path  
FPD_ODD_DAT_A_P  
FPD_ODD_DAT_A_N  
FPD_ODD_DAT_B_P  
FPD_ODD_DAT_B_N  
FPD_ODD_DAT_C_P  
FPD_ODD_DAT_C_N  
FPD_ODD_DAT_D_P  
FPD_ODD_DAT_D_N  
FPD_ODD_DAT_E_P  
FPD_ODD_DAT_E_N  
FPDB_DATAA_P  
FPDB_DATAA_N  
FPDB_DATAB_P  
FPDB_DATAB_N  
FPDB_DATAC_P  
FPDB_DATAC_N  
FPDB_DATAD_P  
FPDB_DATAD_N  
FPDB_DATAE_P  
FPDB_DATAE_N  
RA  
RB  
RC  
RD  
RE  
RA  
RB  
RC  
RD  
RE  
FPDB_PA  
FPDB_PB  
FPDB_PC  
FPDB_PD  
FPDB_PE  
FPD_O_PA  
FPD_O_PB  
FPD_O_PC  
FPD_O_PD  
FPD_O_PE  
FPDB_CLK_P  
FPDB_CLK_N  
FPD_ODD_CLK_P  
FPD_ODD_CLK_N  
CKB  
LANE MUX  
PORT MUX  
Controller  
Figure 7-2. Example of Typical FPD-Link Port Lane Mapping  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DLPC7540  
 
DLPC7540  
www.ti.com  
Controller  
Internal  
Final  
Data Path  
DLPS206 – MAY 2021  
Controller  
Internal  
Intermediate  
Data Path  
Controller  
FPD Diff  
Input  
Controller  
Internal  
Lane Mux  
Host  
Actual  
Data  
Host FPD  
Diff Output  
Port A  
Even Data Path  
FPDA_DATAA_P  
FPDA_DATAA_N  
FPDA_DATAB_P  
FPDA_DATAB_N  
FPDA_DATAC_P  
FPDA_DATAC_N  
FPDA_DATAD_P  
FPDA_DATAD_N  
FPDA_DATAE_P  
FPDA_DATAE_N  
FPD_ODD_DAT_D_P  
FPD_ODD_DAT_D_N  
FPD_ODD_DAT_E_P  
FPD_ODD_DAT_E_N  
FPD_ODD_DAT_A_P  
FPD_ODD_DAT_A_N  
FPD_ODD_DAT_B_P  
FPD_ODD_DAT_B_N  
FPD_ODD_DAT_C_P  
FPD_ODD_DAT_C_N  
RD  
RA  
RB  
RC  
RD  
RE  
FPDA_PA  
FPDA_PB  
FPDA_PC  
FPDA_PD  
FPDA_PE  
FPD_E_PA  
RE  
RA  
RB  
RC  
FPD_E_PB  
FPD_E_PC  
FPD_E_PD  
FPD_E_PE  
FPDA_CLK_P  
FPDA_CLK_N  
FPD_ODD_CLK_P  
FPD_ODD_CLK_N  
CKA  
Port B  
Odd Data Path  
FPD_EVEN_DAT_E_P  
FPD_EVEN_DAT_E_N  
FPD_EVEN_DAT_A_P  
FPD_EVEN_DAT_A_N  
FPD_EVEN_DAT_B_P  
FPD_EVEN_DAT_B_N  
FPD_EVEN_DAT_C_P  
FPD_EVEN_DAT_C_N  
FPD_EVEN_DAT_D_P  
FPD_EVEN_DAT_D_N  
FPDB_DATAA_P  
FPDB_DATAA_N  
FPDB_DATAB_P  
FPDB_DATAB_N  
FPDB_DATAC_P  
FPDB_DATAC_N  
FPDB_DATAD_P  
FPDB_DATAD_N  
FPDB_DATAE_P  
FPDB_DATAE_N  
RE  
RA  
RB  
RC  
RD  
RA  
RB  
RC  
RD  
RE  
FPDB_PA  
FPDB_PB  
FPDB_PC  
FPDB_PD  
FPDB_PE  
FPD_O_PA  
FPD_O_PB  
FPD_O_PC  
FPD_O_PD  
FPD_O_PE  
FPDB_CLK_P  
FPDB_CLK_N  
FPD_EVEN_CLK_P  
FPD_EVEN_CLK_N  
CKB  
LANE MUX  
PORT MUX  
Controller  
Figure 7-3. Example of Alternate FPD-Link Port Lane Mapping  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-2. FPD-Link Intra Port Data Mapping Options  
Mapping Options for Ports A & B  
Input Data Port  
Internal Final Data Path  
0
1
2
3
4
FPDx_DATAA_P/N  
FPD_x_PA  
FPDx_DATAB_P/N  
FPDx_DATAC_P/N  
FPDx_DATAD_P/N  
FPDx_DATAE_P/N  
FPD_x_PA  
FPD_x_PA  
FPD_x_PA  
FPD_x_PA  
4
0
1
2
3
FPDx_DATAA_P/N  
FPDx_DATAB_P/N  
FPDx_DATAC_P/N  
FPDx_DATAD_P/N  
FPDx_DATAE_P/N  
FPD_x_PB  
FPD_x_PB  
FPD_x_PB  
FPD_x_PB  
FPD_x_PB  
3
4
0
1
2
FPDx_DATAA_P/N  
FPDx_DATAB_P/N  
FPDx_DATAC_P/N  
FPDx_DATAD_P/N  
FPDx_DATAE_P/N  
FPD_x_PC  
FPD_x_PC  
FPD_x_PC  
FPD_x_PC  
FPD_x_PC  
2
3
4
0
1
FPDx_DATAA_P/N  
FPDx_DATAB_P/N  
FPDx_DATAC_P/N  
FPDx_DATAD_P/N  
FPDx_DATAE_P/N  
FPD_x_PD  
FPD_x_PD  
FPD_x_PD  
FPD_x_PD  
FPD_x_PD  
1
2
3
4
0
FPDx_DATAA_P/N  
FPDx_DATAB_P/N  
FPDx_DATAC_P/N  
FPDx_DATAD_P/N  
FPDx_DATAE_P/N  
FPD_x_PE  
FPD_x_PE  
FPD_x_PE  
FPD_x_PE  
FPD_x_PE  
Independent from the remapping of the physical FPD interface, the DLPC7540 supports a number of data  
mappings onto the actual physical interface. There are three different 30-bit data mappings, and two different  
24-bit data mappings supported. FPD sources must match at least one of these mappings These are shown in  
Table 7-3, Table 7-4, Table 7-5, Table 7-6, and Table 7-7.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-3. FPD-Link Data Mapping onto Physical Interface (30-bit Mode 0)  
Bit Mapping - 30-bit Mode 0 (1)  
(30-bits per pixel)  
Mapper Input  
PA-6  
RGB/YCbCr 4:4:4  
YCbCr 4:2:2  
Y[4]  
YCbCr 4:2:0  
Y00[4]  
Mapper Output  
G/Y[4]  
R/Cr[9]  
R/Cr[8]  
R/Cr[7]  
R/Cr[6]  
R/Cr[5]  
R/Cr[4]  
A(4)  
B(9)  
B(8)  
B(7)  
B(6)  
B(5)  
B(4)  
PA-5  
PA-4  
PA-3  
PA-2  
PA-1  
PA-0  
Cb/Cr[9]  
Cb/Cr[8]  
Cb/Cr[7]  
Cb/Cr[6]  
Cb/Cr[5]  
Cb/Cr[4]  
Cb/C00r[9]  
Cb/Cr00[8]  
Cb/Cr00[7]  
Cb/Cr00[6]  
Cb/Cr00[5]  
Cb/Cr00[4]  
PB-6  
PB-5  
PB-4  
PB-3  
PB-2  
PB-1  
PB-0  
B/Cb[5]  
B/Cb[4]  
G/Y[9]  
G/Y[8]  
G/Y[7]  
G/Y[6]  
G/Y[5]  
Unused  
Unused  
Y[9]  
Y01[5]  
Y01[4]  
Y00[9]  
Y00[8]  
Y00[7]  
Y00[6]  
Y00[5]  
C(5)  
C(4)  
A(9)  
A(8)  
A(7)  
A(6)  
A(5)  
Y[8]  
Y[7]  
Y[6]  
Y[5]  
PC-6  
PC-5  
PC-4  
PC-3  
PC-2  
PC-1  
PC-0  
Data En  
VSYNC  
HSYNC  
B/Cb[9]  
B/Cb[8]  
B/Cb[7]  
B/Cb[6]  
Data En  
VSYNC  
HSYNC  
Unused  
Unused  
Unused  
Unused  
Data En  
VSYNC  
HSYNC  
Y01[9]  
Y01[8]  
Y01[7]  
Y01[6]  
Data En  
VSYNC  
HSYNC  
C(9)  
C(8)  
C(7)  
C(6)  
PD-6  
PD-5  
PD-4  
PD-3  
PD-2  
PD-1  
PD-0  
3D_L/R_Ref  
B/Cb[3]  
B/Cb[2]  
G/Y[3]  
3D_L/R_Ref  
Unused  
Unused  
Y[3]  
3D_L/R_Ref  
Y01[3]  
3D_Ref  
C(3)  
C(2)  
A(3)  
Y01[2]  
Y00[3]  
G/Y[2]  
Y[2]  
Y00[2]  
A(2)  
R/Cr[3]  
R/Cr[2]  
Cb/Cr[3]  
Cb/Cr[2]  
Cb/Cr00[3]  
Cb/Cr00[2]  
B(3)  
B(2)  
PE-6  
PE-5  
PE-4  
PE-3  
PE-2  
PE-1  
PE-0  
Field  
Field  
Unused  
Unused  
Y[1]  
Field  
Y01[1]  
Field  
C(1)  
C(0)  
A(1)  
A(0)  
B(1)  
B(0)  
B/Cb[1]  
B/Cb[0]  
G/Y[1]  
G/Y[0]  
R/Cr[1]  
R/Cr[0]  
Y01[0]  
Y00[1]  
Y[0]  
Y00[0]  
Cb/Cr[1]  
Cb/Cr[0]  
Cb/Cr00[1]  
Cb/Cr00[0]  
(1) Input data bits are defined with bit[9] as the most significant bit, and bit[0] as the least significant bit.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-4. FPD-Link Data Mapping onto Physical Interface (30-bit Mode 1)  
Bit Mapping - 30-bit Mode 1 (1)  
(30-bits per pixel)  
Mapper Input  
PA-6  
RGB/YCbCr 4:4:4  
YCbCr 4:2:2  
Y[2]  
YCbCr 4:2:0  
Y00[2]  
Mapper Output  
G/Y[2]  
R/Cr[7]  
R/Cr[6]  
R/Cr(5]  
R/Cr[4]  
R/Cr[3]  
R/Cr[2]  
A(2)  
B(7)  
B(6)  
B(5)  
B(4)  
B(3)  
B(2)  
PA-5  
PA-4  
PA-3  
PA-2  
PA-1  
PA-0  
Cb/Cr[7]  
Cb/Cr[6]  
Cb/Cr[5]  
Cb/Cr[4]  
Cb/Cr[3]  
Cb/Cr[2]  
Cb/C00r[7]  
Cb/Cr00[6]  
Cb/Cr00[5]  
Cb/Cr00[4]  
Cb/Cr00[3]  
Cb/Cr00[2]  
PB-6  
PB-5  
PB-4  
PB-3  
PB-2  
PB-1  
PB-0  
B/Cb[3]  
B/Cb[2]  
G/Y[7]  
G/Y[6]  
G/Y[5]  
G/Y[4]  
G/Y[3]  
Unused  
Unused  
Y[7]  
Y01[3]  
Y01[2]  
Y00[7]  
Y00[6]  
Y00[5]  
Y00[4]  
Y00[3]  
C(3)  
C(2)  
A(7)  
A(6)  
A(5)  
A(4)  
A(3)  
Y[6]  
Y[5]  
Y[4]  
Y[3]  
PC-6  
PC-5  
PC-4  
PC-3  
PC-2  
PC-1  
PC-0  
Data En  
VSYNC  
HSYNC  
B/Cb[7]  
B/Cb[6]  
B/Cb[5]  
B/Cb[4]  
Data En  
VSYNC  
HSYNC  
Unused  
Unused  
Unused  
Unused  
Data En  
VSYNC  
HSYNC  
Y01[7]  
Y01[6]  
Y01[5]  
Y01[4]  
Data En  
VSYNC  
HSYNC  
C(7)  
C(6)  
C(5)  
C(4)  
PD-6  
PD-5  
PD-4  
PD-3  
PD-2  
PD-1  
PD-0  
3D_L/R_Ref  
B/Cb[9]  
B/Cb[8]  
G/Y[9]  
3D_L/R_Ref  
Unused  
Unused  
Y[9]  
3D_L/R_Ref  
Y01[9]  
3D_Ref  
C(9)  
C(8)  
A(9)  
Y01[8]  
Y00[9]  
G/Y[8]  
Y[8]  
Y00[8]  
A(8)  
R/Cr[9]  
R/Cr[8]  
Cb/Cr[9]  
Cb/Cr[8]  
Cb/Cr00[9]  
Cb/Cr00[8]  
B(9)  
B(8)  
PE-6  
PE-5  
PE-4  
PE-3  
PE-2  
PE-1  
PE-0  
Field  
Field  
Unused  
Unused  
Y[1]  
Field  
Y01[1]  
Field  
C(1)  
C(0)  
A(1)  
A(0)  
B(1)  
B(0)  
B/Cb[1]  
B/Cb[0]  
G/Y[1]  
G/Y[0]  
R/Cr[1]  
R/Cr[0]  
Y01[0]  
Y00[1]  
Y[0]  
Y00[0]  
Cb/Cr[1]  
Cb/Cr[0]  
Cb/Cr00[1]  
Cb/Cr00[0]  
(1) Input data bits are defined with bit[9] as the most significant bit, and bit[0] as the least significant bit.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-5. FPD-Link Data Mapping onto Physical Interface (30-bit Mode 2)  
Bit Mapping - 30-bit Mode 2 (1)  
(30-bits per pixel)  
Mapper Input  
PA-6  
RGB/YCbCr 4:4:4  
YCbCr 4:2:2  
Y[0]  
YCbCr 4:2:0  
Y00[0]  
Mapper Output  
G/Y[0]  
R/Cr[5]  
R/Cr[4]  
R/Cr(3]  
R/Cr[2]  
R/Cr[1]  
R/Cr[0]  
A(0)  
B(5)  
B(4)  
B(3)  
B(2)  
B(1)  
B(0)  
PA-5  
PA-4  
PA-3  
PA-2  
PA-1  
PA-0  
Cb/Cr[5]  
Cb/Cr[4]  
Cb/Cr[3]  
Cb/Cr[2]  
Cb/Cr[1]  
Cb/Cr[0]  
Cb/C00r[5]  
Cb/Cr00[4]  
Cb/Cr00[3]  
Cb/Cr00[2]  
Cb/Cr00[1]  
Cb/Cr00[0]  
PB-6  
PB-5  
PB-4  
PB-3  
PB-2  
PB-1  
PB-0  
B/Cb[1]  
B/Cb[0]  
G/Y[5]  
G/Y[4]  
G/Y[3]  
G/Y[2]  
G/Y[1]  
Unused  
Unused  
Y[5]  
Y01[1]  
Y01[0]  
Y00[5]  
Y00[4]  
Y00[3]  
Y00[2]  
Y00[1]  
C(1)  
C(0)  
A(5)  
A(4)  
A(3)  
A(2)  
A(1)  
Y[4]  
Y[3]  
Y[2]  
Y[1]  
PC-6  
PC-5  
PC-4  
PC-3  
PC-2  
PC-1  
PC-0  
Data En  
VSYNC  
HSYNC  
B/Cb[5]  
B/Cb[4]  
B/Cb[3]  
B/Cb[2]  
Data En  
VSYNC  
HSYNC  
Unused  
Unused  
Unused  
Unused  
Data En  
VSYNC  
HSYNC  
Y01[5]  
Y01[4]  
Y01[3]  
Y01[2]  
Data En  
VSYNC  
HSYNC  
C(5)  
C(4)  
C(3)  
C(2)  
PD-6  
PD-5  
PD-4  
PD-3  
PD-2  
PD-1  
PD-0  
3D_L/R_Ref  
B/Cb[7]  
B/Cb[6]  
G/Y[7]  
3D_L/R_Ref  
Unused  
Unused  
Y[7]  
3D_L/R_Ref  
Y01[7]  
3D_Ref  
C(7)  
C(6)  
A(7)  
Y01[6]  
Y00[7]  
G/Y[6]  
Y[6]  
Y00[6]  
A(6)  
R/Cr[7]  
R/Cr[6]  
Cb/Cr[7]  
Cb/Cr[6]  
Cb/Cr00[7]  
Cb/Cr00[6]  
B(7)  
B(6)  
PE-6  
PE-5  
PE-4  
PE-3  
PE-2  
PE-1  
PE-0  
Field  
Field  
Unused  
Unused  
Y[9]  
Field  
Y01[9]  
Field  
C(9)  
C(8)  
A(9)  
A(8)  
B(9)  
B(8)  
B/Cb[9]  
B/Cb[8]  
G/Y[9]  
G/Y[8]  
R/Cr[9]  
R/Cr[8]  
Y01[8]  
Y00[9]  
Y[8]  
Y00[8]  
Cb/Cr[9]  
Cb/Cr[8]  
Cb/Cr00[9]  
Cb/Cr00[8]  
(1) Input data bits are defined with bit[9] as the most significant bit, and bit[0] as the least significant bit.  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-6. FPD-Link Data Mapping onto Physical Interface (24-bit Mode 0) (1)  
Bit Mapping - 24-bit Mode 0 (2)  
(24-bits per pixel)  
Mapper Input  
PA-6  
RGB/YCbCr 4:4:4  
YCbCr 4:2:2  
Y[0]  
YCbCr 4:2:0  
Y00[0]  
Mapper Output  
G/Y[0]  
R/Cr[5]  
R/Cr[4]  
R/Cr(3]  
R/Cr[2]  
R/Cr[1]  
R/Cr[0]  
A(2)  
B(7)  
B(6)  
B(5)  
B(4)  
B(3)  
B(2)  
PA-5  
PA-4  
PA-3  
PA-2  
PA-1  
PA-0  
Cb/Cr[5]  
Cb/Cr[4]  
Cb/Cr[3]  
Cb/Cr[2]  
Cb/Cr[1]  
Cb/Cr[0]  
Cb/C00r[5]  
Cb/Cr00[4]  
Cb/Cr00[3]  
Cb/Cr00[2]  
Cb/Cr00[1]  
Cb/Cr00[0]  
PB-6  
PB-5  
PB-4  
PB-3  
PB-2  
PB-1  
PB-0  
B/Cb[1]  
B/Cb[0]  
G/Y[5]  
G/Y[4]  
G/Y[3]  
G/Y[2]  
G/Y[1]  
Unused  
Unused  
Y[5]  
Y01[1]  
Y01[0]  
Y00[5]  
Y00[4]  
Y00[3]  
Y00[2]  
Y00[1]  
C(3)  
C(2)  
A(7)  
A(6)  
A(5)  
A(4)  
A(3)  
Y[4]  
Y[3]  
Y[2]  
Y[1]  
PC-6  
PC-5  
PC-4  
PC-3  
PC-2  
PC-1  
PC-0  
Data En  
VSYNC  
HSYNC  
B/Cb[5]  
B/Cb[4]  
B/Cb[3]  
B/Cb[2]  
Data En  
VSYNC  
HSYNC  
Unused  
Unused  
Unused  
Unused  
Data En  
VSYNC  
HSYNC  
Y01[5]  
Y01[4]  
Y01[3]  
Y01[2]  
Data En  
VSYNC  
HSYNC  
C(7)  
C(6)  
C(5)  
C(4)  
PD-6  
PD-5  
PD-4  
PD-3  
PD-2  
PD-1  
PD-0  
3D_L/R_Ref or Field  
B/Cb[7]  
3D_L/R_Ref or Field  
Unused  
3D_L/R_Ref or Field  
Y01[7]  
3D_Ref or Field  
C(9)  
C(8)  
A(9)  
A(8)  
B(9)  
B(8)  
B/Cb[6]  
Unused  
Y01[6]  
G/Y[7]  
Y[7]  
Y00[7]  
G/Y[6]  
Y[6]  
Y00[6]  
R/Cr[7]  
Cb/Cr[7]  
Cb/Cr[6]  
Cb/Cr00[7]  
Cb/Cr00[6]  
R/Cr[6]  
PE-6  
PE-5  
PE-4  
PE-3  
PE-2  
PE-1  
PE-0  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
(1) To support 24 bit data, the mapper shifts each 8-bit color up by 2 bits, and forces output bits A[1], A[0], B[1], B[0], C[1], and C[0] to  
value '0'.  
(2) Input data bits are defined with bit[7] as the most significant bit, and bit[0] as the least significant bit.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-7. FPD-Link Data Mapping onto Physical Interface (24-bit Mode 1) (1)  
Bit Mapping - 24-bit Mode 1 (2)  
(24-bits per pixel)  
Mapper Input  
PA-6  
RGB/YCbCr 4:4:4  
YCbCr 4:2:2  
Y[2]  
YCbCr 4:2:0  
Y00{2}  
Mapper Output  
G/Y[2]  
R/Cr[7]  
R/Cr[6]  
R/Cr(5]  
R/Cr[4]  
R/Cr[3]  
R/Cr[2]  
A(4)  
B(9)  
B(8)  
B(7)  
B(6)  
B(5)  
B(4)  
PA-5  
PA-4  
PA-3  
PA-2  
PA-1  
PA-0  
Cb/Cr[7]  
Cb/Cr[6]  
Cb/Cr[5]  
Cb/Cr[4]  
Cb/Cr[3]  
Cb/Cr[2]  
Cb/C00r[7]  
Cb/Cr00[6]  
Cb/Cr00[5]  
Cb/Cr00[4]  
Cb/Cr00[3]  
Cb/Cr00[2]  
PB-6  
PB-5  
PB-4  
PB-3  
PB-2  
PB-1  
PB-0  
B/Cb[3]  
B/Cb[2]  
G/Y[7]  
G/Y[6]  
G/Y[5]  
G/Y[4]  
G/Y[3]  
Unused  
Unused  
Y[7]  
Y01[3]  
Y01[2]  
Y00[7]  
Y00[6]  
Y00[5]  
Y00[4]  
Y00[3]  
C(5)  
C(4)  
A(9)  
A(8)  
A(7)  
A(6)  
A(5)  
Y[6]  
Y[5]  
Y[4]  
Y[3]  
PC-6  
PC-5  
PC-4  
PC-3  
PC-2  
PC-1  
PC-0  
Data En  
VSYNC  
HSYNC  
B/Cb[7]  
B/Cb[6]  
B/Cb[5]  
B/Cb[4]  
Data En  
VSYNC  
HSYNC  
Unused  
Unused  
Unused  
Unused  
Data En  
VSYNC  
HSYNC  
Y01[7]  
Y01[6]  
Y01[5]  
Y01[4]  
Data En  
VSYNC  
HSYNC  
C(9)  
C(8)  
C(7)  
C(6)  
PD-6  
PD-5  
PD-4  
PD-3  
PD-2  
PD-1  
PD-0  
3D_L/R_Ref or Field  
B/Cb[1]  
3D_L/R_Ref or Field  
Unused  
3D_L/R_Ref or Field  
Y01[1]  
3D_Ref or Field  
C(3)  
C(2)  
A(3)  
A(2)  
B(3)  
B(2)  
B/Cb[0]  
Unused  
Y01[0]  
G/Y[1]  
Y[1]  
Y00[1]  
G/Y[0]  
Y[0]  
Y00[0]  
R/Cr[1]  
Cb/Cr[1]  
Cb/Cr[0]  
Cb/Cr00[1]  
Cb/Cr00[0]  
R/Cr[0]  
PE-6  
PE-5  
PE-4  
PE-3  
PE-2  
PE-1  
PE-0  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
(1) To support 24 bit data, the mapper shifts each 8-bit color up by 2 bits, and forces output bits A[1], A[0], B[1], B[0], C[1], and C[0] to  
value '0'.  
(2) Input data bits are defined with bit[7] as the most significant bit, and bit[0] as the least significant bit.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
7.3.4 V-by-One interface  
The DLPC7540 Controller supports a single 8 lane V-by-One port which can be configured for 1, 2, 4 or 8 lane  
use. This interface supports limited lane remapping which is shown in . Intra-lane remapping (i.e. swapping P  
with N) is not supported.  
Independent from the remapping of the physical V-by-One interface, the DLPC7540 supports a number of data  
mappings onto the actual physical interface as specified by the standard. V-by-One sources must match at least  
one of these mappings These are shown in Table 7-8, Table 7-9, Table 7-10, Table 7-11, Table 7-12, Table 7-13,  
Table 7-14, Table 7-15, Table 7-16, and Table 7-17.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-8. V-by-One Data Mapping for 36bpp/30bpp RGB/YCbCr 4:4:4  
V-by-One Data Map Mode 0  
V-by-One Input Data Bit  
D[0]  
36bpp RGB/YCbCr 4:4:4 (1)  
R/Cr[4]  
30bpp RGB/YCbCr 4:4:4  
R/Cr[2]  
R/Cr[3]  
R/Cr[4]  
R/Cr(5]  
R/Cr[6]  
R/Cr[7]  
R/Cr[8]  
R/Cr[9]  
G/Y[2]  
Mapper Output  
B(2)  
D[1]  
R/Cr[5]  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
D[2]  
R/Cr[6]  
D[3]  
R/Cr[7]  
D[4]  
R/Cr[8]  
D[5]  
R/Cr[9]  
D[6]  
R/Cr[10]  
R/Cr[11]  
G/Y[4]  
D[7]  
D[8]  
D[9]  
G/Y[5]  
G/Y[3]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
D[16]  
D[17]  
D[18]  
D[19]  
D[20]  
D[21]  
D[22]  
D[23]  
D[24]  
D[25]  
D[26]  
D[27]  
D[28]  
D[29]  
D[30]  
D[31]  
G/Y[6]  
G/Y[4]  
G/Y[7]  
G/Y[5]  
G/Y[8]  
G/Y[6]  
G/Y[9]  
G/Y[7]  
G/Y[10]  
G/Y[11]  
B/Cb[4]  
B/Cb[5]  
B/Cb[6]  
B/Cb[7]  
B/Cb[8]  
B/Cb[9]  
B/Cb[10]  
B/Cb[11]  
G/Y[8]  
G/Y[9]  
B/Cb[2]  
B/Cb[3]  
B/Cb[4]  
B/Cb[5]  
B/Cb[6]  
B/Cb[7]  
B/Cb[8]  
B/Cb[9]  
B/Cb[2]  
B/Cb[3]  
G/Y[2]  
G/Y[3]  
R/Cr[2]  
R/Cr[3]  
B/Cb[1]  
B/Cb[0]  
G/Y[1]  
G/Y[0]  
R/Cr[1]  
R/Cr[0]  
C[0]  
C[1]  
A[0]  
A[1]  
B[0]  
B[1]  
(1) For 36-bit inputs, the 12-bits per color truncates to 10-bits per color with the two least significant-bits per color being discarded.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-9. V-by-One Data Mapping for 27bpp RGB/YCbCr 4:4:4  
V-by-One Data Map Mode 1  
V-by-One Input Data Bit  
27bpp RGB/YCbCr 4:4:4 (1)  
R/Cr[1]  
Mapper Output  
D[0]  
D[1]  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
R/Cr[2]  
D[2]  
R/Cr[3]  
D[3]  
R/Cr[4]  
D[4]  
R/Cr[5]  
D[5]  
R/Cr[6]  
D[6]  
R/Cr[7]  
D[7]  
R/Cr[8]  
D[8]  
G/Y[1]  
D[9]  
G/Y[2]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
D[16]  
D[17]  
D[18]  
D[19]  
D[20]  
D[21]  
D[22]  
D[23]  
D[24]  
D[25]  
'0'  
G/Y[3]  
G/Y[4]  
G/Y[5]  
G/Y[6]  
G/Y[7]  
G/Y[8]  
B/Cb[1]  
B/Cb[2]  
B/Cb[3]  
B/Cb[4]  
B/Cb[5]  
B/Cb[6]  
B/Cb[7]  
B/Cb[8]  
-
B/Cb[0]  
-
C[0]  
C[1]  
A[0]  
A[1]  
B[0]  
B[1]  
D[27]  
'0'  
D[29]  
'0'  
G/Y[0]  
-
D[31]  
R/Cr[0]  
(1) For 27-bit inputs, the 9-bits for each color shifts up one bit, and the least significant bit of each color is set to '0'.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-10. V-by-One Data Mapping for 24bpp RGB/YCbCr 4:4:4  
V-by-One Data Map Mode 2  
V-by-One Input Data Bit  
24bpp RGB/YCbCr 4:4:4 (1)  
R/Cr[0]  
Mapper Output  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
D[8]  
D[9]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
D[16]  
D[17]  
D[18]  
D[19]  
D[20]  
D[21]  
D[22]  
D[23]  
D[24]  
D[25]  
'0'  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
R/Cr[1]  
R/Cr[2]  
R/Cr[3]  
R/Cr[4]  
R/Cr[5]  
R/Cr[6]  
R/Cr[7]  
G/Y[0]  
G/Y[1]  
G/Y[2]  
G/Y[3]  
G/Y[4]  
G/Y[5]  
G/Y[6]  
G/Y[7]  
B/Cb[0]  
B/Cb[1]  
B/Cb[2]  
B/Cb[3]  
B/Cb[4]  
B/Cb[5]  
B/Cb[6]  
B/Cb[7]  
-
-
-
-
-
-
C[0]  
C[1]  
A[0]  
A[1]  
B[0]  
B[1]  
'0'  
'0'  
'0'  
'0'  
'0'  
(1) For 24-bit inputs, the 8-bits for each color shifts up two bits, and the two least significant bits of each color are set to '0'.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-11. V-by-One Data Mapping for 32bpp/24bpp/20bpp YCbCr 4:2:2 (1)  
V-by-One Data Map Mode 3  
V-by-One Input Data Bit  
32bpp YCbCr 4:2:2 (2)  
24bpp YCbCr 4:2:2 (3)  
20bpp YCbCr 4:2:2  
Mapper Output  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
D[8]  
D[9]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
'0'  
CbCr[8]  
CbCr[4]  
CbCr[2]  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
CbCr[9]  
CbCr[5]  
CbCr[3]  
CbCr[10]  
CbCr[6]  
CbCr[4]  
CbCr[11]  
CbCr[7]  
CbCr[5]  
CbCr[12]  
CbCr[8]  
CbCr[6]  
CbCr[13]  
CbCr[8]  
CbCr[7]  
CbCr[14]  
CbCr[10]  
CbCr[8]  
CbCr[15]  
CbCr[11]  
CbCr[9]  
Y[8]  
Y[4]  
Y[2]  
Y[9]  
Y[5]  
Y[3]  
Y[10]  
Y[6]  
Y[4]  
Y[11]  
Y[7]  
Y[5]  
Y[12]  
Y[8]  
Y[6]  
Y[13]  
Y[9]  
Y[7]  
Y[14]  
Y[10]  
Y[8]  
Y[15]  
Y[11]  
Y[9]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
'0'  
'0'  
'0'  
'0'  
'0'  
'0'  
'0'  
D[24]  
D[25]  
'0'  
-
-
-
C[0]  
C[1]  
A[0]  
A[1]  
B[0]  
B[1]  
'0'  
-
-
-
D[28]  
D[29]  
D[30]  
D[31]  
Y[6]  
Y[2]  
Y[2]  
Y[7]  
Y[3]  
Y[3]  
CbCr[6]  
CbCr[7]  
CbCr[2]  
CbCr[3]  
CbCr[2]  
CbCr[3]  
(1) For all YCbCr 4:2:2 formats, data channel C is forced to "0".  
(2) For 32-bit inputs, the 16-bits per color truncates to 10-bit per color, with the six least significant-bits per color discarded.  
(3) For 24-bit inputs, the 12-bits per color truncates to 10-bit per color, with the two least significant-bits per color discarded.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DLPC7540  
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-12. V-by-One Data Mapping for 18bpp YCbCr 4:2:2(1)  
V-by-One Data Map Mode 4  
V-by-One Input Data Bit  
18bpp YCbCr 4:2:2 (2)  
CbCr[1]  
Mapper Output  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
D[8]  
D[9]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
'0'  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
CbCr[2]  
CbCr[3]  
CbCr[4]  
CbCr[5]  
CbCr[6]  
CbCr[7]  
CbCr[8]  
Y[1]  
Y[2]  
Y[3]  
Y[4]  
Y[5]  
Y[6]  
Y[7]  
Y[8]  
-
-
-
-
-
-
-
-
'0'  
'0'  
'0'  
'0'  
'0'  
'0'  
'0'  
D[24]  
D[25]  
'0'  
-
C[0]  
C[1]  
A[0]  
A[1]  
B[0]  
B[1]  
'0'  
-
'0'  
-
Y[0]  
-
D[29]  
'0'  
D[31]  
CbCr[0]  
(1) For all YCbCr 4:2:2 formats, data channel C is forced to "0".  
(2) For 18-bit inputs, the 9-bits for each color shifts up one bit, and the least significant bits of each color is set to '0'.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-13. V-by-One Data Mapping for 16bpp YCbCr 4:2:2(1)  
V-by-One Data Map Mode 5  
V-by-One Input Data Bit  
16bpp YCbCr 4:2:2 (2)  
CbCr[0]  
Mapper Output  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
D[8]  
D[9]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
'0'  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
CbCr[1]  
CbCr[2]  
CbCr[3]  
CbCr[4]  
CbCr[5]  
CbCr[6]  
CbCr[7]  
Y[0]  
Y[1]  
Y[2]  
Y[3]  
Y[4]  
Y[5]  
Y[6]  
Y[7]  
-
-
-
-
-
-
-
-
'0'  
'0'  
'0'  
'0'  
'0'  
'0'  
'0'  
D[24]  
D[25]  
'0'  
-
-
-
-
-
-
C[0]  
C[1]  
A[0]  
A[1]  
B[0]  
B[1]  
'0'  
'0'  
'0'  
'0'  
'0'  
(1) For all YCbCr 4:2:2 formats, data channel C is forced to "0".  
(2) For 16-bit inputs, the 8-bits for each color shifts up one bit, and the least significant bit of each color is set to '0'.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-14. V-by-One Data Mapping Example for 12bpp/10bpp YCbCr 4:2:0(1)  
V-by-One Data Map Mode 6  
V-by-One Input Data 12bpp YCbCr 4:2:0  
Bit  
12bpp YCbCr 4:2:0 10bpp YCbCr 4:2:0  
Odd Line (2)  
Even Line  
10bpp YCbCr 4:2:0 Mapper Output  
Odd Line  
Even Line(2)  
D[0]  
D[1]  
Y01[4]  
Y01[4] Y01[2]  
Y11[2]  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
Y01[5]  
Y01[6]  
Y01[5]  
Y01[6]  
Y01[3]  
Y01[4]  
Y01[5]  
Y01[6]  
Y01[7]  
Y01[8]  
Y01[9]  
Y00[2]  
Y00[3]  
Y00[4]  
Y00[5]  
Y00[6]  
Y00[7]  
Y00[8]  
Y00[9]  
Cb00[2]  
Cb00[3]  
Cb00[4]  
Cb00[5]  
Cb00[6]  
Cb00[7]  
Cb00[8]  
Cb00[9]  
Y11[3]  
Y11[4]  
Y11[5]  
Y11[6]  
Y11[7]  
Y11[8]  
Y11[9]  
Y10[2]  
Y10[3]  
Y10[4]  
Y10[5]  
Y10[6]  
Y10[7]  
Y10[8]  
Y10[9]  
Cr00[2]  
Cr00[3]  
Cr00[4]  
Cr00[5]  
Cr00[6]  
Cr00[7]  
Cr00[8]  
Cr00[9]  
D[2]  
D[3]  
Y01[7]  
Y01[7]  
D[4]  
Y01[8]  
Y01[8]  
D[5]  
Y01[9]  
Y01[9]  
D[6]  
Y01[10]  
Y01[11]  
Y00[4]  
Y01[10]  
Y01[11]  
Y00[4]  
D[7]  
D[8]  
D[9]  
Y00[5]  
Y00[5]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
D[16]  
D[17]  
D[18]  
D[19]  
D[20]  
D[21]  
D[22]  
D[23]  
D[24]  
D[25]  
D[26]  
D[27]  
D[28]  
D[29]  
D[30]  
D[31]  
Y00[6]  
Y00[6]  
Y00[7]  
Y00[7]  
Y00[8]  
Y00[8]  
Y00[9]  
Y00[9]  
Y00[10]  
Y00[11]  
Cb00[4]  
Cb00[5]  
Cb00[6]  
Cb00[7]  
Cb00[8]  
Cb00[9]  
Cb00[10]  
Cb00[11]  
Y00[10]  
Y00[11]  
Cr00[4]  
Cr00[5]  
Cr00[6]  
Cr00[7]  
Cr00[8]  
Cr00[9]  
Cr00[10]  
Cr00[11]  
Cb00[2]  
Cb00[3]  
Y00[2]  
Y00[3]  
Y01[2]  
Y01[3]  
Cr00[2]  
Cr00[3]  
Y10[2]  
Y10[3]  
Y11[2]  
Y11[3]  
Cb00[0]  
Cb00[1]  
Y00[0]  
Y00[1]  
Y01[0]  
Y01[1]  
Cr00[0]  
Cr00[1]  
Y10[0]  
Y10[1]  
Y11[0]  
Y11[1]  
B[0]  
B[1]  
A[0]  
A[1]  
C[0]  
C[1]  
(1) For all YCbCr 4:2:0 inputs, two consecutive pixel Luma values are brought in on each clock. Even lines carry the Cb values, and odd  
lines carry the Cr values.  
(2) For 12bpp YCbCr 4:2:0 inputs, the 12-bits per color truncates to 10-bits per color with the two least significant-bits per color discarded.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-15. V-by-One Data Mapping Example for 8bpp YCbCr 4:2:0(1)  
V-by-One Data Map Mode 7  
V-by-One Input Data Bit  
8bpp YCbCr 4:2:0  
Even Line (2)  
8bpp YCbCr 4:2:0  
Odd Line (2)  
Mapper Output  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
D[8]  
D[9]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
D[16]  
D[17]  
D[18]  
D[19]  
D[20]  
D[21]  
D[22]  
D[23]  
D[24]  
D[25]  
'0'  
Y01[0]  
Y11[0]  
Y11[1]  
Y11[2]  
Y11[3]  
Y11[4]  
Y11[5]  
Y11[6]  
Y11[7]  
Y10[0]  
Y10[1]  
Y10[2]  
Y10[3]  
Y10[4]  
Y10[5]  
Y10[6]  
Y10[7]  
Cr00[0]  
Cr00[1]  
Cr00[2]  
Cr00[3]  
Cr00[4]  
Cr00[5]  
Cr00[6]  
Cr00[7]  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
Y01[1]  
Y01[2]  
Y01[3]  
Y01[4]  
Y01[5]  
Y01[6]  
Y01[7]  
Y00[0]  
Y00[1]  
Y00[2]  
Y00[3]  
Y00[4]  
Y00[5]  
Y00[6]  
Y00[7]  
Cb00[0]  
Cb00[1]  
Cb00[2]  
Cb00[3]  
Cb00[4]  
Cb00[5]  
Cb00[6]  
Cb00[7]  
-
-
-
-
-
-
-
-
-
-
-
-
B[0]  
B[1]  
A[0]  
A[1]  
C[0]  
C[1]  
'0'  
'0'  
'0'  
'0'  
'0'  
(1) For all YCbCr 4:2:0 inputs, two consecutive pixel Luma values are brought in on each clock. Even lines carry the Cb values, and odd  
lines carry the Cr values.  
(2) For 8bpp YCbCr 4:2:0 inputs, the 8-bits for each color shifts up two bits, and the two least significant bits of each color are set to '0'.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-16. V-by-One Data Mapping Example for 10bpp YCbCr 4:2:0 (1)  
V-by-One Data Map Mode 8  
V-by-One Input Data Bit  
10bpp YCbCr 4:2:0  
Even Line  
10bpp YCbCr 4:2:0  
Odd Line  
Mapper Output  
D[0]  
D[1]  
Y00[2]  
Y003]  
Y10[2]  
Y10[3]  
Y10[4]  
Y10[5]  
Y10[6]  
Y10[7]  
Y10[8]  
Y10[9]  
Cr00[2]  
Cr00[3]  
Cr00[4]  
Cr00[5]  
Cr00[6]  
Cr00[7]  
Cr00[8]  
Cr00[9]  
Y11[2]  
Y11[3]  
Y11[4]  
Y11[5]  
Y11[6]  
Y11[7]  
Y11[8]  
Y11[9]  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
D[2]  
Y00[4]  
Y00[5]  
Y00[6]  
Y00[7]  
Y00[8]  
Y00[9]  
Cb00[2]  
Cb00[3]  
Cb00[4]  
Cb00[5]  
Cb00[6]  
Cb00[7]  
Cb00[8]  
Cb00[9]  
Y01[2]  
Y01[3]  
Y01[4]  
Y01[5]  
Y01[6]  
Y01[7]  
Y01[8]  
Y01[9]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
D[8]  
D[9]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
D[16]  
D[17]  
D[18]  
D[19]  
D[20]  
D[21]  
D[22]  
D[23]  
D[24]  
D[25]  
D[26]  
D[27]  
D[28]  
D[29]  
D[30]  
D[31]  
Y01[0]  
Y01[1]  
Cb00[0]  
Cb00[1]  
Y00[0]  
Y00[1]  
Y11[0]  
Y11[1]  
Cr00[0]  
Cr00[1]  
Y10[0]  
Y10[1]  
C[0]  
C[1]  
B[0]  
B[1]  
A[0]  
A[1]  
(1) For all YCbCr 4:2:0 inputs, two consecutive pixel Luma values are brought in on each clock. Even lines carry Cb values, and odd lines  
carry the Cr values.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-17. V-by-One Data Mapping Example for 8bpp YCbCr 4:2:0 (1)  
V-by-One Data Map Mode 9  
V-by-One Input Data Bit  
8bpp YCbCr 4:2:0  
Even Line (2)  
8bpp YCbCr 4:2:0  
Odd Line (2)  
Mapper Output  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
D[8]  
D[9]  
D[10]  
D[11]  
D[12]  
D[13]  
D[14]  
D[15]  
D[16]  
D[17]  
D[18]  
D[19]  
D[20]  
D[21]  
D[22]  
D[23]  
D[24]  
D[25]  
'0'  
Y00[0]  
Y10[0]  
Y10[1]  
Y10[2]  
Y10[3]  
Y10[4]  
Y10[5]  
Y10[6]  
Y10[7]  
Cr00[0]  
Cr00[1]  
Cr00[2]  
Cr00[3]  
Cr00[4]  
Cr00[5]  
Cr00[6]  
Cr00[7]  
Y11[0]  
Y11[1]  
Y11[2]  
Y11[3]  
Y11[4]  
Y11[5]  
Y11[6]  
Y11[7]  
A(2)  
A(3)  
A(4)  
A(5)  
A(6)  
A(7)  
A(8)  
A(9)  
B(2)  
B(3)  
B(4)  
B(5)  
B(6)  
B(7)  
B(8)  
B(9)  
C(2)  
C(3)  
C(4)  
C(5)  
C(6)  
C(7)  
C(8)  
C(9)  
Y00[1]  
Y00[2]  
Y003]  
Y00[4]  
Y00[5]  
Y00[6]  
Y00[7]  
Cb00[0]  
Cb00[1]  
Cb00[2]  
Cb00[3]  
Cb00[4]  
Cb00[5]  
Cb00[6]  
Cb00[7]  
Y01[0]  
Y01[1]  
Y01[2]  
Y01[3]  
Y01[4]  
Y01[5]  
Y01[6]  
Y01[7]  
-
-
-
-
-
-
-
-
-
-
-
-
C[0]  
C[1]  
B[0]  
B[1]  
A[0]  
A[1]  
'0'  
'0'  
'0'  
'0'  
'0'  
(1) For all YCbCr 4:2:0 inputs, two consecutive pixel Luma values are brought in on each clock. Even lines carry the Cb values, and odd  
lines carry the Cr values.  
(2) For 8bpp YCbCr 4:2:0 inputs, the 8-bits for each color shifts up two bits, and the two least significant bits of each color are set to '0'.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
7.3.5 DMD (HSSI) Interface  
The DLPC7540 Controller DMD interface supports two High Speed Serial Interface (HSSI) output-only interfaces  
for data transmission, a single low speed LVDS output-only interface for command write transactions, as well  
as a low speed single-ended input interface used for command read transactions. Each HSSI port supports full  
data-only inter-lane remapping within the port, but not between ports. When utilizing this feature, each unique  
data lane pair can only be mapped to one unique destination data lane pair, and Intra-lane remapping (i.e.  
swapping P with N) is not supported. In addition, the two HSSI ports can also be swapped. Lane and port  
remapping (specified in flash) can help with board layout as needed. The number of HSSI ports and number of  
HSSI lanes/per HSSI port required are based on DMD type and DMD display resolution. Table 7-18 shows some  
remapping examples. When both ports are used, they do not need to have the same pin mapping.  
Table 7-18. Controller to DMD Pin Mapping Examples  
DLPC7540 Controller PINS - REMAPPING EXAMPLES TO DMD PINS  
SWAP HSSI0 PORT  
WITH HSSI1 PORT AND  
MIXED REMAPPING  
DMD PINS  
FLIP HSSI0 180  
No FLIP HSSI1  
SWAP HSSI0 PORT  
WITH HSSI1 PORT  
BASELINE  
DMD_HSSI0_D0_P  
DMD_HSSI0_D0_N  
DMD_HSSI0_D7_P  
DMD_HSSI0_D7_N  
DMD_HSSI1_D0_P  
DMD_HSSI1_D0_N  
DMD_HSSI1_D2_P  
DMD_HSSI1_D2_N  
DMD_HSSI0_D0_P  
DMD_HSSI0_D0_N  
DMD_HSSI0_D1_P  
DMD_HSSI0_D1_N  
DMD_HSSI0_D6_P  
DMD_HSSI0_D6_N  
DMD_HSSI1_D1_P  
DMD_HSSI1_D1_N  
DMD_HSSI1_D3_P  
DMD_HSSI1_D3_N  
DMD_HSSI0_D1_P  
DMD_HSSI0_D1_N  
DMD_HSSI0_D2_P  
DMD_HSSI0_D2_N  
DMD_HSSI0_D5_P  
DMD_HSSI0_D5_N  
DMD_HSSI1_D2_P  
DMD_HSSI1_D2_N  
DMD_HSSI1_D0_P  
DMD_HSSI1_D0_N  
DMD_HSSI0_D2_P  
DMD_HSSI0_D2_N  
DMD_HSSI0_D3_P  
DMD_HSSI0_D3_N  
DMD_HSSI0_D4_P  
DMD_HSSI0_D4_N  
DMD_HSSI1_D3_P  
DMD_HSSI1_D3_N  
DMD_HSSI1_D1_P  
DMD_HSSI1_D1_N  
DMD_HSSI0_D3_P  
DMD_HSSI0_D3_N  
DMD_HSSI0_D4_P  
DMD_HSSI0_D4_N  
DMD_HSSI0_D3_P  
DMD_HSSI0_D3_N  
DMD_HSSI1_D4_P  
DMD_HSSI1_D4_N  
DMD_HSSI1_D6_P  
DMD_HSSI1_D6_N  
DMD_HSSI0_D4_P  
DMD_HSSI0_D4_N  
DMD_HSSI0_D5_P  
DMD_HSSI0_D5_N  
DMD_HSSI0_D2_P  
DMD_HSSI0_D2_N  
DMD_HSSI1_D5_P  
DMD_HSSI1_D5_N  
DMD_HSSI1_D7_P  
DMD_HSSI1_D7_N  
DMD_HSSI0_D5_P  
DMD_HSSI0_D5_N  
DMD_HSSI0_D6_P  
DMD_HSSI0_D6_N  
DMD_HSSI0_D1_P  
DMD_HSSI0_D1_N  
DMD_HSSI1_D6_P  
DMD_HSSI1_D6_N  
DMD_HSSI1_D4_P  
DMD_HSSI1_D4_N  
DMD_HSSI0_D6_P  
DMD_HSSI0_D6_N  
DMD_HSSI0_D7_P  
DMD_HSSI0_D7_N  
DMD_HSSI0_D0_P  
DMD_HSSI0_D0_N  
DMD_HSSI1_D7_P  
DMD_HSSI1_D7_N  
DMD_HSSI1_D5_P  
DMD_HSSI1_D5_N  
DMD_HSSI0_D7_P  
DMD_HSSI0_D7_N  
DMD_HSSI1_D0_P  
DMD_HSSI1_D0_N  
DMD_HSSI1_D0_P  
DMD_HSSI1_D0_N  
DMD_HSSI0_D0_P  
DMD_HSSI0_D0_N  
DMD_HSSI0_D6_P  
DMD_HSSI0_D6_N  
DMD_HSSI1_D0_P  
DMD_HSSI1_D0_N  
DMD_HSSI1_D1_P  
DMD_HSSI1_D1_N  
DMD_HSSI1_D1_P  
DMD_HSSI1_D1_N  
DMD_HSSI0_D1_P  
DMD_HSSI0_D1_N  
DMD_HSSI0_D7_P  
DMD_HSSI0_D7_N  
DMD_HSSI1_D1_P  
DMD_HSSI1_D1_N  
DMD_HSSI1_D2_P  
DMD_HSSI1_D2_N  
DMD_HSSI1_D2_P  
DMD_HSSI1_D2_N  
DMD_HSSI0_D2_P  
DMD_HSSI0_D2_N  
DMD_HSSI0_D4_P  
DMD_HSSI0_D4_N  
DMD_HSSI1_D2_P  
DMD_HSSI1_D2_N  
DMD_HSSI1_D3_P  
DMD_HSSI1_D3_N  
DMD_HSSI1_D3_P  
DMD_HSSI1_D3_N  
DMD_HSSI0_D3_P  
DMD_HSSI0_D3_N  
DMD_HSSI0_D5_P  
DMD_HSSI0_D5_N  
DMD_HSSI1_D3_P  
DMD_HSSI1_D3_N  
DMD_HSSI1_D4_P  
DMD_HSSI1_D4_N  
DMD_HSSI1_D4_P  
DMD_HSSI1_D4_N  
DMD_HSSI0_D4_P  
DMD_HSSI0_D4_N  
DMD_HSSI0_D2_P  
DMD_HSSI0_D2_N  
DMD_HSSI1_D4_P  
DMD_HSSI1_D4_N  
DMD_HSSI1_D5_P  
DMD_HSSI1_D5_N  
DMD_HSSI1_D5_P  
DMD_HSSI1_D5_N  
DMD_HSSI0_D5_P  
DMD_HSSI0_D5_N  
DMD_HSSI0_D3_P  
DMD_HSSI0_D3_N  
DMD_HSSI1_D5_P  
DMD_HSSI1_D5_N  
DMD_HSSI1_D6_P  
DMD_HSSI1_D6_N  
DMD_HSSI1_D6_P  
DMD_HSSI1_D6_N  
DMD_HSSI0_D6_P  
DMD_HSSI0_D6_N  
DMD_HSSI0_D0_P  
DMD_HSSI0_D0_N  
DMD_HSSI1_D6_P  
DMD_HSSI1_D6_N  
DMD_HSSI1_D7_P  
DMD_HSSI1_D7_N  
DMD_HSSI1_D7_P  
DMD_HSSI1_D7_N  
DMD_HSSI0_D7_P  
DMD_HSSI0_D7_N  
DMD_HSSI0_D1_P  
DMD_HSSI0_D1_N  
DMD_HSSI1_D7_P  
DMD_HSSI1_D7_N  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
7.3.6 Program Memory Flash Interface  
The DLPC7540 provides three external program memory chip selects for devices to access the program  
memory interface. These are detailed in Table 7-19.  
Table 7-19. Program Memory Interface Chip Selects  
CHIP SELECT  
NAME  
MAXIMUM SIZE  
SUPPORTED (1)  
CHIP SELECT USE  
DATA BUS WIDTH  
ACCESS TIME  
PM_CSZ_0  
PM_CSZ_1  
PM_CSZ_2  
Boot FLASH only - Required (2)  
(or additional FLASH) - Optional  
Additional Peripheral Device - Optional  
16 bits  
16 bits  
16 bits  
< = 120ns  
< = 120ns  
< = 120ns  
256Mb  
256Mb  
256Mb  
(1) Using GPIO_47 as additional address bit  
(2) Boot FLASH type supported is Standard NOR parallel FLASH, single or multi-bank.  
FLASH access timing is software programmable with up to 31 wait states. Additional information about read and  
write wait state timing is provided in Table 7-20 and Figure 7-4.  
Table 7-20. Program Memory Wait State Timing  
PARAMETER  
EQUATION (1)  
TWSR: Wait State Resolution  
6ns  
(2) (3)  
Read Wait States  
ROUNDUP(MAX(TACC, TCE,TOE)/TWSR-N)  
(Number of Read Wait States for each CSz read access)  
(2)  
(2)  
(2)  
Write Wait States for TCSand TAS  
(Time from CS/Address activation to WRZ assertion)  
ROUNDUP(MAX(TCS+5ns, TAS+5ns)/TWSR-N  
ROUNDUP(MAX(TWP+5ns, TDS+5ns)/TWSR-N  
ROUNDUP(MAX(TCH+5ns, TDH+5ns)/TWSR-N  
)
Write Wait States for TWP and TDS  
(Time from WRZ assertion to WEZ de-assertion)  
)
Write Wait States for TCHand TDH  
)
(Time from CS/Address activation to WRZ assertion)  
(1)  
a. TACC: Read Access Time (ADDR to DATA valid) – (address valid to DATA valid)  
b. TCE: Read Access Time (CSZ to DATA valid) – (chip select active to DATA valid)  
c. TOE: Read Access Time (OEZ to DATA valid) – (output enable active to DATA valid)  
d. TCS: CSZ Setup Time (Writes) – (chip select active before negedge(WEZ)  
e. TCS: Address Setup Time (Writes) – (address valid before negedge(WEZ)  
f.  
TAS: Address Setup Time (Writes) – (address valid before negedge(WEZ)  
g. TWP: Write Pulse Width (Writes) – (WEZ active low time)  
h. TDS: Data Setup Time (Writes) – (DATA valid before posedge(WEZ)  
i.  
j.  
TCH: CSZ Hold Time (Writes) – (CSZ held active after posedge(WEZ)  
TDH: Data Hold Time (Writes) – (DATA held valid after posedge(WEZ)  
(2) Requires a minimum of at least 1 wait state  
(3) Assumes a maximum single direction trace length of 90 mm (3.5 inches)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
At least one turnaround cycle guaranteed  
(to prevent data bus contention)  
32-bit write  
32-bit write  
WRITE WS  
READ WS  
TH  
TH  
TWP  
TWP  
TS  
TS  
HW  
HW  
TRD  
TRD  
TWC  
TWC  
TRC  
TWRC  
CSZ  
AR0  
AR1  
AW0  
WD15:0  
AW1  
WD31:16  
ADDR  
DATA  
TDH  
RD15:0  
RD31:16  
TDS  
TAH  
TDF  
TACC, TCE, TOE  
WEZ  
TWPH  
TOEH  
TAS, TCS  
OEZ  
TCH  
TWP  
UBZ (for SRAM)  
LBZ (for SRAM)  
Figure 7-4. Program Memory Interface Timing Diagram  
7.3.7 GPIO Supported Functionality  
The DLPC7540 provides 88 general purpose I/O that are available to support a variety of functions for many  
different product configurations. In general, most of these I/O pins support only one specific function based on a  
specific product configuration, although that function can be different for a different product configuration. Most  
of these I/O can also be made available for TI test and debug use. Each of the following GPIO tables provide  
product specific details on the allocated use of each of the GPIO for a specific supported product configuration.  
7.3.8 Debug Support  
The DLPC7540 contains a test point output port, TSTPT_(7:0), which provides the Host with the ability to provide  
for Controller debug support. For initial debug operation, the four signals (TSTPT(3:0)) are sampled as inputs  
approximately 1.5 µs after PWRGOOD goes high (or after a system reset). Once their input state has been  
sampled and captured, this information is used to setup the initial test mode output state of the TSTPT_(7:0)  
bus. Table 7-21 defines the test mode selection for a few programmable output states for TSTPT_(7:0). Use the  
default state of 0000 (defined by the required external pulldown resistors) for normal operation (that is, no debug  
required).  
To allow TI to make use of this debug capability, providing for the option of a jumper to an external pullup is  
recommended for TSTPT(3:0), as well as providing access to allow observation of the TSTPT bus outputs.  
Table 7-21. Examples of Test Mode Selection Outputs Defined by TSTPT(3:0)(1)  
TSTPT(3:0) CAPTURED VALUES  
TSTPT_(7:0)  
OUTPUT  
0000 (DEFAULT)  
(NO SWITCHING  
ACTIVITY)  
0101  
1000  
CLOCK DEBUG SYSTEM CALIBRATION  
TSTPT(0)  
TSTPT(1)  
0
0
HIGH  
Vertical Sync  
166.25 MHz  
Delayed CW Index  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 7-21. Examples of Test Mode Selection Outputs Defined by TSTPT(3:0)(1)  
(continued)  
TSTPT(3:0) CAPTURED VALUES  
TSTPT_(7:0)  
OUTPUT  
0000 (DEFAULT)  
(NO SWITCHING  
ACTIVITY)  
0101  
1000  
CLOCK DEBUG SYSTEM CALIBRATION  
TSTPT(2)  
TSTPT(3)  
TSTPT(4)  
TSTPT(5)  
TSTPT(6)  
TSTPT(7)  
0
0
0
0
0
0
83.13 MHz  
41.56 MHz  
10.39 MHz  
25.16 MHz  
133.00 MHz  
HIGH  
Sequence Index  
CW Spoke Test Point  
CW Revolution Test Point  
Reset Sequence Aux Bit 0  
Reset Sequence Aux Bit 1  
Reset Sequence Aux Bit 2  
(1) These are only the default output selections. Software can reprogram the selection at any time.  
7.4 Device Operational Modes  
The DLPC7540 has two operational modes which are enabled via software command via the Host control  
interface. These modes are Standby and Active.  
7.4.1 Standby Mode  
The system is powered up and active, however, most blocks within the Controller have been shut down to  
conserve power. Only the µProcessor and its peripherals are active (supporting a dormant projector waiting to be  
woken up). In this mode the DMD is parked and no image can be displayed.  
7.4.2 Active Mode  
The system is powered up and fully operational, capable of projecting internal or external source images.  
7.4.2.1 Normal Configuration  
This configuration enables the full functionality of the DLPC7540.  
7.4.2.2 Low Latency Configuration  
This configuration disables some of the capabilities of the DLPC7540 to reduce the overall system latency for  
certain applications which are sensitive to system latency. The key function that is disabled for this configuration  
is the Warping block, which removes a full frame of latency from the processing path.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DLPC7540 is the next generation high resolution display controller. It is part of the DLP471TE, DLP471NE,  
DLP650TE or DLP651NE chipsets. The controller integrates all system image processing and DMD control  
and data formatting onto a single integrated circuit (IC). It supports laser-phosphor, RGB-laser, LED and  
hybrid illumination systems. Standard image processing algorithms such as DynamicBlack or BrilliantColor™  
are included. The DLPC7540 also includes a full featured image warping engine which can warp images on to  
arbitrary surfaces, as well as support image blending, and projector stacking. The warp engine gives true 3D  
keystone correction. Applications of interest include 4K UHD Enterprise Projectors, Laser TV, Smart Projectors,  
and Digital Signage.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
8.2 Typical Application  
The DLPC7540 controller is ideal for applications requiring high-performance, high-resolution displays. When  
the DLPC7540 display controller is combined with the DLP471TE, DLP471NE, DLP650TE or DLP651NE  
DMD, a power management and motor driver device (DLPA100), and other electrical, optical and mechanical  
components the chipset enables bright, affordable, full 4K UHD display solutions. A typical 4K UHD system  
application using the DLPC7540 controller and DLP471TE, DLP471NE, DLP650TE or DLP651NE DMD is  
shown in the figure below Figure 8-1  
Flash (2)  
PWM Driver  
ADDR  
(24) (18)  
DATA  
RGB_EN  
RGB_PWM  
(3)  
SYSPWR (14.5V-20 V)  
(3)  
PROJ_ON  
I2C  
I2C_BUSY  
Vx1  
V
BIAS, VOFFSET, VRESET  
(3)  
TPS65145  
Voltage  
Regulator  
3.3 V  
Front End  
Device  
SPI (4)  
3D L/R  
DLP471TE  
DLPC7540  
Controller  
2-Port HSSI  
LS Interface  
Vx1:  
3840 × 2160  
@ 60Hz  
EEPROM  
I2C  
.47 4K UHD DMD  
1.8 V  
1.21 V  
1.8 V  
3.3 V  
TPS56121  
Voltage  
Regulator  
1.15 V  
12 V  
USB Mux  
OTG  
GPIO  
TI DLP chipset  
USB 2.0  
Actuator  
Driver  
4-Position  
Actuator  
Third party component  
USB Camera  
Figure 8-1. Typical 4K UHD LED System  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
12V  
12V  
1.21V  
1.21V  
1.8V  
3.3V  
5V  
Flash (2)  
DLPA1000  
Voltage  
Controller  
DLPA1000  
Voltage  
Controller  
1.8V  
3.3V  
5V  
ADDR  
DATA  
(24) (18)  
Wheel Motor #2  
Wheel Motor #1  
CTRL Signals  
SYSPWR (14.5V-20 V)  
PROJ_ON  
V
BIAS, VOFFSET, VRESET  
TPS65145  
Voltage  
Regulator  
I2C  
I2C_BUSY  
Vx1  
(3)  
3.3 V  
Front End  
Device  
SPI (4)  
3D L/R  
DLP471TE  
DLPC7540  
Controller  
2-Port HSSI  
LS Interface  
Vx1:  
3840 × 2160  
@ 60Hz  
EEPROM  
I2C  
.47 4K UHD DMD  
1.8 V  
CW_INDEX1  
CW_INDEX1  
1.21 V  
1.8 V  
3.3 V  
TPS56121  
Voltage  
Regulator  
1.15 V  
12 V  
USB Mux  
OTG  
GPIO  
TI DLP chipset  
Third party component  
USB 2.0  
Actuator  
Driver  
4-Position  
Actuator  
USB Camera  
Figure 8-2. Typical 4K UHD LPCW System  
8.2.1 Design Requirements  
The display controller is the digital interface between the DMD and the rest of the system. The display controller  
takes digital V-by-One, FPD-Link input from front end receiver and drives the DMD over a high speed interface.  
The display controller also generates the necessary signals (data, protocols, timings) required to display images  
on the DMD. Reliable operation of the DMD is only ensured when the DMD and the controller are used together  
in a system. In addition, other devices might be needed. Typically, a Flash part is needed to store the software  
and firmware and power supply management part required to power the DMD and the controller.  
8.2.2 Detailed Design Procedure  
For connecting the DLPC7540 controller and the DLP471TE, DLP471NE, DLP650TE or DLP651NE DMD  
together, see the reference design schematic. It is essential to follow these layout guidelines for high-speed  
interfaces, V-by-One and the DMD HSSI in order to design a reliable projector. To complete the DLP system,  
an optical module or light engine is required that contains the DLP471TE, DLP471NE, DLP650TE or DLP651NE  
DMD, associated illumination sources, optical elements, and necessary mechanical components.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
9 Power Supply Recommendations  
9.1 Power Supply Management  
The DLPA100 manages power for the DLPC7540 and DMD. See Section 6.13 for all power sequencing and  
timing requirements.  
9.2 Hot Plug Usage  
While the V-by-One, FPD-Link, and USB interfaces support hot plug usage (i.e. these interfaces can be  
connected and disconnected while the DLPC7540 is powered), the controller itself (and any DMD connected  
to the system) do not support Hot Plug use. As such, power down the system prior to removing the controller or  
DMD from any system.  
9.3 Power Supplies for Unused Input Source Interfaces  
While certain product configurations cannot offer or make use of all of the available input source interfaces (e.g.  
V-by-One, FPD-Link), the power supplies that are associated with these unused input source interfaces must still  
be provided as if the interface was actually being used. The only concession is that the ferrite based isolation  
filters for these supplies can be simplified down to simple de-coupling caps.  
9.4 Power Supplies  
9.4.1 1.15-V Power Supplies  
The DLPC7540 can support a low cost power delivery system with a single 1.15-V power source derived from  
a switching regulator. To enable this approach, provide typical bulk (e.g. 10 µF, 22 µF) and high frequency (e.g.  
0.1 µF) filtering for the core 1.15-V power rail (VDD115). Ensure that the the high-frequency capacitors are  
evenly distributed amongst the power balls and that they are placed as close to the power balls as possible.  
Additional filtering must be provided for each of the uniquely defined 1.15-V power pins (e.g. VDD115_PLLMA,  
VAD115VX1). Filtering for the unique power pins is discussed further in Section 10.1 of this document.  
9.4.2 1.21V Power Supply  
The DLPC7540 can support a low cost power delivery system with a single 1.21V power source derived from a  
switching regulator. To enable this approach, provide typical bulk (e.g. 10 µF, 22 µF) and high frequency (e.g. 0.1  
µF) filtering for the 1.21-V power rail (VDD121_SCS). Place the high-frequency filtering capacitors as close as  
possible to the VDD121_SCS power balls.  
9.4.3 1.8-V Power Supplies  
The DLPC7540 can support a low cost power delivery system with a single 1.8-V power source derived from  
a switching regulator. To enable this approach, appropriate filtering must be provided for each of the uniquely  
defined 1.8-V power pins (e.g. VDD18_PLLMA, VAD18_VX1). See Section 10.1 for more information.  
9.4.4 3.3-V Power Supplies  
The DLPC7540 can support a low cost power delivery system with a single 3.3-V power source derived from a  
switching regulator. To enable this approach, provide typical bulk (e.g. 10 µF, 22 µF) and high frequency (e.g. 0.1  
µF) filtering for the main 3.3-V I/O power rail (VDD33). Ensure that the the high-frequency capacitors are evenly  
distributed amongst the power balls and that they are placed as close to the power balls as possible. Additional  
filtering must be provided for each of the uniquely defined 3.3-V power pins (e.g. VAD33_USB, VDD33_FPD).  
This is discussed further in Section 10.1 of the document.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: DLPC7540  
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
10.1.1 General Layout Guidelines  
In order to meet the thermal loads associated with the DLPC7540, TI recommends the following enhanced PCB  
design parameters.  
A minimum of 4 power and ground planes  
– Power layers: 1-oz. copper; Ground layers: 2-oz. copper  
Copper coverage: 90%  
Top and bottom signal layers: minimum 0.5-oz copper  
– Internal signal layers: 1-oz copper  
Thermal copper ground planes beneath the thermal ball array of package containing a via farm with the  
following attributes  
– Thermal via quantity to ground plane = 64 (as 8x8 array)  
– Thermal via size = 0.229mm - 0.25 mm (9mils - 10 mils)  
– Thermal via plating thickness = 0.025 mm (1 mil) wall thickness  
For signal integrity reasons, FR370HR or equivalent high performance epoxy laminate and repreg is also  
recommended.  
10.1.2 Power Supply Layout Guidelines  
The following filtering circuits are recommended for the power supply inputs listed below.  
VAD115_VX1  
VAD18_VX1  
VAD115_FPD  
VDD33_FPD  
VAD33_USB  
VDD18_SCS  
Since the PBC layout is critical to the performance of the interfaces associated with these power supplies, it is  
vital that these power supplies be treated like an analog signal. Specifically:  
Place high-frequency components (such as ferrites and capacitors) as close to the power ball(s) as possible.  
Choose high-frequency ceramic capacitors (such as those with a valua of 0.1 µF, 0.01 µF, and 100 nF) that  
have low ESR and ESL values. Design the leads as short as possible, and as such, it is recommended that  
these capacitors be placed under the package on the opposite side of the board..  
For each power pin, a single trace (as wide as possible) must be used from the controller to the capacitor and  
then through the series ferrite to the power source.  
For each power pin, add a 100-nF decoupling capacitor placed near the escape via. Add this decoupling  
capacitance to the capacitance recommended for filters. These are minimum recommendations, so different  
layouts could require additional capacitance.  
See Table 10-1 for the recommended series ferrite component for these supplies.  
Controller  
1.15 V  
FB  
VAD115_VX1  
100 mF  
10 mF  
200 mF 100 mF  
22 mF  
Figure 10-1. VAD115_VX1 (V-by-One) Recommended Filter  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Controller  
1.8 V  
FB  
VAD18_VX1  
100 mF  
10 mF  
200 mF 100 mF  
22 mF  
Figure 10-2. VAD18_VX1 (V-by-One) Recommended Filter  
Controller  
1.15 V  
FB  
VDD115_FPD  
100 mF  
10 mF  
200 mF 100 mF  
22 mF  
Figure 10-3. VAD115_FPD (FPD-Link) Recommended Filter  
Controller  
3.3 V  
FB  
VDD33_FPD  
100 mF  
10 mF  
200 mF 100 mF  
22 mF  
Figure 10-4. VDD33_FPD (FPD-Link) Recommended Filter  
Controller  
3.3 V  
FB  
10 mF  
VAD33_USB  
100 mF  
0.1 mF 0.01 mF  
10 mF  
Figure 10-5. VAD33_USB (USB) Recommended Filter  
Controller  
1.18 V  
FB  
VDD18_SCS  
100 mF  
10 mF  
200 mF 100 mF  
22 mF  
Figure 10-6. VDD18_SCS (SCS DRAM) Recommended Filter  
10.1.3 Layout Guidelines for Internal Controller PLL Power  
The following guidelines are recommended to achieve the desired Controller performance relative to the internal  
PLLs. The DLPC7540 contains multiple internal PLLs which have dedicated 1.15-V supply pins and 1.8-V supply  
pins which are listed below:  
VDD115_PLLMA  
VDD115_PLLMB  
VAD115_PLLS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
VAD115_HSSI0_PLL  
VAD115_HSSI1_PLL  
and  
VAD18_PLLMA  
VAD18_PLLMB  
It is important that each of these 1.15-V and 1.8-V supply pins have individual high frequency filtering in the form  
of a ferrite bead and a 0.1-µF ceramic capacitor. Ensure that the impedance of the ferrite bead is much greater  
than that of the capacitor at frequencies above 10 MHz. Locate these components very close to the individual  
PLL power supply balls. Recommended values, topology, and layout examples are shown in Table 10-1, Figure  
10-7 and Figure 10-8, and Figure 10-9 respectively.  
Table 10-1. Recommended PLL and Crystal Power Supply Filter Components  
COMPONENT  
PARAMETER  
RECOMMENDED VALUE UNIT  
Shunt capacitor  
Capacitance  
0.1  
µF  
Ω
Impedance at 100 MHz  
DC Resistance  
> 100  
< 0.40  
Series ferrite  
Ω
Controller  
1.15 V  
FB  
VDD115_PLLMA  
0.1 mF  
FB  
VDD115_PLLMB  
VAD115_PLLS  
0.1 mF  
FB  
0.1 mF  
FB  
VAD115_HSSI0_PLL  
VAD115_HSSI1_PLL  
0.1 mF  
FB  
0.1 mF  
Figure 10-7. 1.15-V PLL Power Supply Filter Topology  
Controller  
1.8 V  
FB  
FB  
VAD18_PLLMA  
VAD115_PLLMB  
0.1 mF  
0.1 mF  
Figure 10-8. 1.8-V PLL Power Supply Filter Topology  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Signal Via  
PCB Pad  
ASIC Pad  
Via to Common Analog /  
Digital Board Power Plane  
Via to Common Analog /  
Digital Board Ground Plane  
F
A
B
C
D
E
30  
GND  
REF  
CLKB_O  
REF  
CLKB_I  
Crystal  
Circuit  
VAD115  
_PLLS  
16  
15  
14  
FB  
1.15 V  
1.15 V  
GND  
VDD115  
_PLLMB  
VSS  
FB  
GND  
VAD18  
_PLLMB  
FB  
1.8 V  
Local Decoupling  
for PLL Supplies  
(view from top of  
board)  
Figure 10-9. PLL Power Supply Filter Layout Examples  
Since the PCB layout is critical to PLL performance, it is vital that the PLL power is treated like an analog signal.  
Additional design guidelines are as follows:  
Place all filter components as close to possible to each of the PLL supply package pins.  
Keep the leads of the high-frequency capacitors as short as possible, and as such, it is recommended that  
these capacitors be placed under the package on the opposite side of the board.  
Use a surface mount capacitor that is of high quality, low ESR, and monolithic.  
For each PLL power pin, a single trace (as wide as possible) must be used from the DLPC7540 to the  
capacitor and then through the series ferrite to the power source.  
10.1.4 Layout Guideline for DLPC7540 Reference Clock  
The DLPC7540 requires two external reference clocks to feed its internal PLLs. A crystal or oscillator can supply  
these references. The recommended crystal configurations and reference clock frequencies are listed in Table  
10-2, with additional required discrete components shown in Figure 10-10 and defined in Table 10-2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
PLL_REFCLK_I  
PLL_REFCLK_O  
RFB  
RS  
Crystal  
CL1  
CL2  
CL = Crystal load capacitance  
RFB = Feedback Resistor  
Figure 10-10. Discrete Components Required for Crystal  
10.1.4.1 Recommended Crystal Oscillator Configuration  
Table 10-2. Recommended Crystal Configurations  
PARAMETER  
CRYSTAL A  
CRYSTAL B  
UNIT  
Crystal circuit configuration  
Crystal type  
Parallel resonant  
Fundamental (first harmonic)  
40  
Parallel resonant  
Fundamental (first harmonic)  
38  
Crystal nominal frequency  
Crystal frequency tolerance (1)  
Crystal equivalent series resistance (ESR)  
Crystal load capacitance  
Crystal Shunt Load capacitance  
Temperature range  
MHz  
PPM  
Ω
±100 (200 p-p max)  
60 (Max)  
±100 (200 p-p max)  
60 (Max)  
20 (Max)  
20 (Max)  
pF  
7 (Max)  
7 (Max)  
pF  
-40°C to +85°C  
100 (Nominal)  
-40°C to +85°C  
100 (Nominal)  
°C  
Drive level  
µW  
RFB feedback resistor (nominal)  
CL1 external crystal load capacitor  
CL2 external crystal load capacitor  
1Meg (Nominal)  
See equation in (2)  
See equation in (3)  
1Meg (Nominal)  
Ω
See equation in (2)  
See equation in (3) (3)  
pF  
pF  
A ground isolation ring around the  
crystal is recommended  
A ground isolation ring around the  
crystal is recommended  
PCB layout  
(1) Crystal frequency tolerance to include accuracy, temperature, aging, and trim sensitivity. These are typically specified separately and  
the sum of all required to meet this requirement.  
(2) CL1 = 2 × (CL – Cstray_pll_refclk_i), where: Cstray_pll_refclk_i = Sum of package and PCB stray capacitance at the crystal pin  
associated with the Controller pin REFCLKx_I. See Table 10-3.  
(3) CL2 = 2 × (CL – Cstray_pll_refclk_o), where: Cstray_pll_refclk_o = Sum of package and PCB stray capacitance at the crystal pin  
associated with the Controller pin REFCLKx_O. See Table 10-3.  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 10-3. Crystal Pin Capacitance  
PARAMETER  
MIN  
NOM  
MAX  
Units  
Cstray_pll_refclkA Sum of package and PCB stray capacitance at  
4.5  
4.5  
4.5  
4.5  
pF  
_i  
Cstray_pll_refclkA Sum of package and PCB stray capacitance at  
_o REFCLKA_O  
Cstray_pll_refclkB Sum of package and PCB stray capacitance at  
_i REFCLKB_I  
Cstray_pll_refclkB Sum of package and PCB stray capacitance at  
_o REFCLKB_O  
REFCLKA_I  
pF  
pF  
pF  
The crystal circuits in the DLPC7540 have dedicated power (VAD33_OSCA and VAD33_OSCB) pins, with the  
recommended filtering for each shown in Figure 10-11, and recommended values shown in Table 10-1  
Controller  
FB  
VAD33_OSCA  
VAD33_OSCB  
3.3V  
0.1 F  
GND  
FB  
0.1 F  
GND  
Figure 10-11. Crystal Power Supply Filtering  
Table 10-4. DLPC7540 Recommended Crystal Parts  
FREQUENCY  
TOLERANCE,  
FREQUENCY  
STABILITY,  
LOAD  
CAPACITANC  
E
NOMINAL  
FREQUENCY  
OPERATING  
TEMPERATURE Level  
Drive  
MANUFACTURER PART NUMBER  
ESR  
AGING/YEAR  
Freq Tolerance:  
±20 ppm  
TXC  
TXC  
7M38070001 (1)  
7M40070041 (2)  
38 MHz  
40 MHz  
Freq Stability:  
±20 ppm  
30Ω max  
12 pF  
12 pF  
–40°C to +85°C  
–40°C to +85°C  
100µW  
Aging/Year: ±3 ppm  
Freq Tolerance:  
±20 ppm  
Freq Stability:  
±20 ppm  
30Ω max  
100µW  
Aging/Year: ±3 ppm  
(1) This device requires an RS resistor with value = 0.  
(2) This device requires an RS resistor with value = 0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: DLPC7540  
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
10.1.5 V-by-One Interface Layout Considerations  
The DLPC7540 V-by-One SERDES differential interface waveform quality and timing is dependent on the total  
length of the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and  
how well matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention  
to many factors.  
DLPC7540 I/O timing parameters, V-by-One transmitter timing parameters, as well as Thine specific timing  
requirements can be found in their corresponding data sheets. PCB routing mismatch can be budgeted and met  
through controlled PCB routing. PCB related requirements for V-by-One are provided in Table 10-5 as a starting  
point for the customer.  
Table 10-5. V-by-One Interface PBC Related Requirements (1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Intra-lane cross-talk  
(between VX1_DATAx_P and VX1_DATAx_N)  
< 1.5  
mVpp  
mVpp  
Inter-lane cross-talk  
(between data lane pairs)  
< 1.5  
Cross-talk between data lanes and other signals  
Intra-lane skew  
< 1.5  
< 40  
< 800  
110  
mVpp  
ps  
Inter-lane skew  
ps  
Differential Impedance  
90  
100  
Ω
(1) If using the minimum trace width and spacing to escape the Controller ball field, widening these out after escape is desirable if practical  
to achieve the target 100 Ω impedance (e.g. to reduce transmission line losses).  
Additional V-by-One layout guidelines:  
Route the differential signal pairs on the top layer of the PBC to minimize the number of vias. Limit the  
number of necessary vias to two.  
Route differential signal pairs over a single ground or power plane using a Micro-strip line configuration.  
Ground guard traces are also recommended.  
Do not route the differential signal pairs over the slit of power or ground planes.  
Minimize the trace length mismatch for each pair, and between each pair, in order to meet the skew  
requirements.  
Ensure that the bend angles associated with the differential signal pairs are between 135o and 225o(See  
Figure 10-12).  
Differential Pair  
Shield  
135o < Angle < 225o  
Shield  
Figure 10-12. V-by-One Routing Example  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
10.1.6 FPD-Link Interface Layout Considerations  
The DLPC7540 FPD-Link differential interface waveform quality and timing is dependent on the total length of  
the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and how well  
matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention to many  
factors.  
DLPC7540 I/O timing parameters as well as the FPD-Link transmitter timing parameters can be found in their  
corresponding data sheets. PCB routing mismatch can be budgeted and met through controlled PCB routing.  
PCB related requirements for FPD-Link are provided in Table 10-6 as a starting point for the customer.  
Table 10-6. FPD-Link Interface PBC Related Requirements  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Intra-lane Cross-talk  
(between FPDz_DATAx_P and FPDz_DATAx_N)  
< 2.0  
mVpp  
mVpp  
Inter-lane Cross-talk  
(between data lane pairs)  
< 2.0  
Cross-talk between data lanes and other signals  
Intra-lane skew  
< 2.0  
< 40  
± 40  
110  
mVpp  
ps  
Inter-lane skew  
ps  
Differential Impedance  
90  
100  
Ω
Additional FPD-Link layout guidelines:  
Route the differential signal pairs on the top layer of the PBC to minimize the number of vias. Limit the  
number of necessary vias to two.  
Route differential signal pairs over a single ground or power plane using a Micro-strip line configuration.  
Ground guard traces are also recommended.  
Do not route the differential signal pairs over the slit of power or ground planes.  
Minimize the trace length mismatch for each pair, and between each pair, in order to meet the skew  
requirements.  
Ensure that the bend angles associated with the differential signal pairs are between 135o and 225o (See  
Figure 10-13).  
Differential Pair  
Shield  
135o < Angle < 225o  
Shield  
Figure 10-13. FPD-Link Routing Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
10.1.7 USB Interface Layout Considerations  
The DLPC7540 USB differential interface waveform quality and timing is dependent on the total length of the  
interconnect system, the spacing between traces, the characteristic impedance, etch losses, and how well  
matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention to many  
factors.  
DLPC7540 I/O timing parameters, USB transmitter and receiver timing parameters, as well as USB specific  
timing requirements can be found in their corresponding data sheets. PCB routing mismatch can be budgeted  
and met through controlled PCB routing. PCB related requirements for USB are provided in Table 10-7 as a  
starting point for the customer.  
Table 10-7. USB Interface PBC Related Requirements (1)(2)  
PARAMETER  
MIN  
TYP  
MAX  
< 1.5  
< 20  
UNIT  
mVpp  
Cross-talk between data lane (USB_DAT_P, USB_DAT_N) and other signals  
Intra-lane skew (USB_DAT_P, USB_DAT_N)  
Differential Impedance (USB_DAT_P, USB_DAT_N)  
Single Mode impedance (USB_DAT_P, USB_DAT_N)  
Common Mode Impedance (USB_DAT_P, USB_DAT_N)  
Parasitic resistance (USB_DAT_P, USB_DAT_N)  
Total capacitance (USB_DAT_P, USB_DAT_N)  
Differences of trace capacitance between USB_DAT_P, USB_DAT_N  
TXRTUNE resistor  
ps  
Ω
76.5  
21  
90  
45  
30  
103.5  
Ω
39  
≤ 0.5  
< 4  
Ω
Ω
pF  
pF  
Ω
< 1  
172.26  
174  
175.74  
(1) If using the minimum trace width and spacing to escape the Controller ball field, widening these out after escape is desirable if practical  
to achieve the target 100 Ω impedance (e.g. to reduce transmission line losses).  
(2) One pcb layout example for the differential pair is shown in Figure 10-14  
Additional layout guidelines for USB_DAT_P/USB_DAT_N:  
Route the differential signal pairs on the top layer of the PBC to minimize the number of vias. Limit the  
number of necessary vias to two.  
Route differential signal pairs over a single ground or power plane using a Micro-strip line configuration.  
Ground guard traces are also recommended.  
Do not route the differential signal pairs over the slit of power or ground planes.  
Minimize the trace length mismatch for each pair, and between each pair, in order to meet the skew  
requirements.  
Ensure that the bend angles associated with the differential signal pair are between 135o and 225o. (See  
Figure 10-15).  
Minimize the length where the differential signal pair are parallel to clocks or digital signals.  
Do not route the differential signal pair under an IC that uses a quartz crystal, oscillator, clock synchronization  
circuit, magnetic device, or clock.  
Ground  
guard trace  
Ground  
guard trace  
3 × 0.35 mm  
USB_DAT_P  
0.35 mm  
0.25 mm  
0.35 mm  
3 × 0.35 mm  
USB_DAT_N  
0.04 mm  
FR4 Dielectric  
Ground Layer  
0.02 mm  
Figure 10-14. USB Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Differential Pair  
Shield  
135o < Angle < 225o  
Shield  
Figure 10-15. USB Routing Example  
Additional USB layout guidelines for TXRTUNE  
Use the shortest possible connection lengths for the resistor between TXRTUNE and ground.  
Use ground layer and ground guard traces to shield the wires and resistor.  
10.1.8 DMD Interface Layout Considerations  
The DLPC7540 controller HSSI differential interface waveform quality and timing is dependent on the total length  
of the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and how well  
matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention to many  
factors.  
DLPC7540 I/O timing parameters as well as DMD I/O timing parameters can be found in their corresponding  
data sheets. Similarly, PCB routing mismatch can be budgeted and met through controlled PCB routing. PCB  
design recommendations are provided in Table 10-8 , Figure 10-16,and the paragraph below as a starting point  
for the customer.  
Table 10-8. PCB Recommendations for DMD Interface (1)(2)  
PARAMETER  
MIN  
MAX  
UNIT  
TW  
Trace Width  
5.7  
mils  
mils  
mils  
TS  
Intra-lane Trace Spacing  
Inter-lane trace spacing (3)  
5.3  
TSPP  
48.3  
(1) Recommendations to achieve the desired nominal differential impedance as specified by RDIFF in Section 6.7.  
(2) These parameters show recommendations based on the micro-strip design shown in Figure 10-16. This design minimizes signal loss  
to support longer trace lengths at the expense of electromagnetic interference (EMI). The designer has the option to use of a stripline  
design for shorter trace lengths and to target minimizing EMI at the expense of signal loss.  
(3) A reduced inter-lane spacing can be used to escape the Controller ball field, however, widen this spacing to at least the stated  
minimum after escape.  
Tw  
Ts  
Tw  
Tw  
Ts  
Tw  
Tspp  
Signal Traces  
Differential Pair #1  
Differential Pair #2  
Ground Plane  
Figure 10-16. DMD Differential Layout Recommendations  
Additional DMD interface layout guidelines:  
Route the differential signal pairs on the top layer of the PBC to minimize the number of vias. Limit the  
number of necessary vias to two. If two are required, place one at each end of the line (one at the controller  
and one at the DMD).  
Route the differential signal pairs over a single ground or power plane using a Micro-strip line configuration.  
Do not route the differential signal pairs over the slit of power or ground planes.  
Ensure the bend angles associated with the differential signal pairs are between 135o and 225o.  
Route the single-ended signal in a way that to minimizes the number of vias required. Limit the number of  
necessary vias to two. If two are required, place one at each end of the line (one at the controller and one at  
the DMD).  
Avoid stubs.  
No external termination resistors are required on the DMD_HSSI or DMD_LS differential signals.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: DLPC7540  
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Include a series termination resistor (with a value of 30.1 Ω, for example) to the DMD_LS0_RDATA and  
DMD_LS1_RDATA single-ended signal paths. Place the resistor as close as possible to the corresponding  
DMD pin.  
The DMD_DEN_ARSTZ does not typically require a series resistor, however, for a long trace, one might be  
needed to reduce undershoot or overshoot.  
10.1.9 General Handling Guidelines for Unused CMOS-Type Pins  
To avoid potential damage to unused video source inputs and unused GPIO, the instructions specifically noted in  
the associated Section 5 must be followed. For those unused inputs without specific instructions, TI recommends  
that these input pins be tied through a pullup resistor to its associated power supply or a pulldown to ground.  
Unused output-only pins can remain open. Never tie unused output-only pins directly to power or ground.  
For controller inputs with an internal pullup or pulldown resistor, it is unnecessary to add an external pullup  
or pulldown unless specifically recommended. Internal pullup and pulldown resistors are weak and cannot be  
expected to drive the external line. When external pullup or pulldown resistors are needed for pins that have  
built-in weak pullups or pulldowns, use the value specified in Table 5-14.  
There are also power supply considerations that must be followed for any unused video sources. These are  
detailed in Section 9.3.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
10.1.10 Maximum Pin-to-Pin, PCB Interconnects Etch Lengths  
Table 10-9. Max Pin-to-Pin PCB Interconnect Recommendations - DMD  
Controller INTERFACE  
SIGNAL INTERCONNECT TOPOLOGY (1) (2) (3)  
UNIT  
SINGLE BOARD SIGNAL ROUTING MULTI-BOARD SIGNAL ROUTING  
DMD  
LENGTH  
LENGTH  
Controller PCB: 2 (50.8)  
DMD PCB: 4 (101.6)  
Flex: 10 (254)  
DMD_HSSI0_CLK_P  
DMD_HSSI0_CLK_N  
10 (254)  
inch (mm)  
DMD_HSSI0_D0_P  
DMD_HSSI0_D0_N  
DMD_HSSI0_D1_P  
DMD_HSSI0_D1_N  
DMD_HSSI0_D2_P  
DMD_HSSI0_D2_N  
DMD_HSSI0_D3_P  
DMD_HSSI0_D3_N  
Controller PCB: 2 (50.8)  
DMD PCB: 4 (101.6)  
Flex: 10 (254)  
10 (254)  
10 (254)  
10 (254)  
inch (mm)  
inch (mm)  
inch (mm)  
DMD_HSSI0_D4_P  
DMD_HSSI0_D4_N  
DMD_HSSI0_D5_P  
DMD_HSSI0_D5_N  
DMD_HSSI0_D6_P  
DMD_HSSI0_D6_N  
DMD_HSSI0_D7_P  
DMD_HSSI0_D7_N  
Controller PCB: 2 (50.8)  
DMD PCB: 4 (101.6)  
Flex: 10 (254)  
DMD_HSSI1_CLK_P  
DMD_HSSI1_CLK_N  
DMD_HSSI1_D0_P  
DMD_HSSI1_D0_N  
DMD_HSSI1_D1_P  
DMD_HSSI1_D1_N  
DMD_HSSI1_D2_P  
DMD_HSSI1_D2_N  
DMD_HSSI1_D3_P  
DMD_HSSI1_D3_N  
Controller PCB: 2 (50.8)  
DMD PCB: 4 (101.6)  
Flex: 10 (254)  
DMD_HSSI1_D4_P  
DMD_HSSI1_D4_N  
DMD_HSSI1_D5_P  
DMD_HSSI1_D5_N  
DMD_HSSI1_D6_P  
DMD_HSSI1_D6_N  
DMD_HSSI1_D7_P  
DMD_HSSI1_D7_N  
DMD_LS0_CLK_P  
DMD_LS0_CLK_N  
18  
(457.2)  
18  
(457.2)  
inch  
(mm)  
DMD_LS0_WDATA_P  
DMD_LS0_WDATA_N  
18  
(457.2)  
18  
(457.2)  
inch  
(mm)  
DMD_LS1_CLK_P  
DMD_LS1_CLK_N  
18  
(457.2)  
18  
(457.2)  
inch  
(mm)  
DMD_LS1_WDATA_P  
DMD_LS1_WDATA_N  
18  
(457.2)  
18  
(457.2)  
inch  
(mm)  
18  
(457.2)  
18  
(457.2)  
inch  
(mm)  
DMD_LS0_RDATA  
DMD_LS1_RDATA  
18  
(457.2)  
18  
(457.2)  
inch  
(mm)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: DLPC7540  
DLPC7540  
www.ti.com  
UNIT  
DLPS206 – MAY 2021  
Table 10-9. Max Pin-to-Pin PCB Interconnect Recommendations - DMD (continued)  
Controller INTERFACE  
SIGNAL INTERCONNECT TOPOLOGY (1) (2) (3)  
SINGLE BOARD SIGNAL ROUTING MULTI-BOARD SIGNAL ROUTING  
DMD  
LENGTH  
LENGTH  
inch  
(mm)  
DMD_DEN_ARSTZ  
N/A  
N/A  
(1) Max signal routing length includes escape routing.  
(2) Multi-board DMD routing lengths shown are the combination that was analyzed by TI.  
(3) Due to board variations, create a SPICE simulation for all board designs with the Controller IBIS models to ensure signal routing  
lengths do not exceed signal requirements.  
Table 10-10. High Speed PCB Signal Routing Matching Requirements  
SIGNAL GROUP LENGTH MATCHING (1) (2)  
INTERFACE  
SIGNAL GROUP  
REFERENCE SIGNAL  
MAX MISMATCH (3)  
UNIT  
DMD_HSSI0_D0_P  
DMD_HSSI0_D0_N  
DMD_HSSI0_D1_P  
DMD_HSSI0_D1_N  
DMD_HSSI0_D2_P  
DMD_HSSI0_D2_N  
DMD_HSSI0_D3_P  
DMD_HSSI0_D3_N  
DMD_HSSI0_CLK_P  
DMD_HSSI0_CLK_N  
±1.0  
(±25.4)  
inch  
(mm)  
DMD (4)  
DMD_HSSI0_D4_P  
DMD_HSSI0_D4_N  
DMD_HSSI0_D5_P  
DMD_HSSI0_D5_N  
DMD_HSSI0_D6_P  
DMD_HSSI0_D6_N  
DMD_HSSI0_D7_P  
DMD_HSSI0_D7_N  
±0.01  
(±0.254)  
inch  
(mm)  
DMD (5)  
DMD_HSSI0_x_P  
DMD_HSSI0_x_N  
DMD_HSSI1_D0_P  
DMD_HSSI1_D0_N  
DMD_HSSI1_D1_P  
DMD_HSSI1_D1_N  
DMD_HSSI1_D2_P  
DMD_HSSI1_D2_N  
DMD_HSSI1_D3_P  
DMD_HSSI1_D3_N  
DMD_HSSI1_CLK_P  
DMD_HSSI1_CLK_N  
±1.0  
(±25.4)  
inch  
(mm)  
DMD (4)  
DMD_HSSI1_D4_P  
DMD_HSSI1_D4_N  
DMD_HSSI1_D5_P  
DMD_HSSI1_D5_N  
DMD_HSSI1_D6_P  
DMD_HSSI1_D6_N  
DMD_HSSI1_D7_P  
DMD_HSSI1_D7_N  
±0.01  
(±0.254)  
inch  
(mm)  
DMD (5)  
DMD (6)  
DMD (6)  
DMD (4)  
DMD_HSSI1_x_P  
DMD_HSSI0_CLK_P  
DMD_HSSI0_CLK_N  
DMD_HSSI1_x_N  
DMD_HSSI1_CLK_P  
DMD_HSSI1_CLK_N  
±0.05  
(±1.27)  
inch  
(mm)  
±0.05  
(±1.27)  
inch  
(mm)  
DMD_LS0_WDATA_P  
DMD_LS0_WDATA_N  
DMD_LS0_CLK_P  
DMD_LS0_CLK_N  
±1.0  
(±25.4)  
inch  
(mm)  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 10-10. High Speed PCB Signal Routing Matching Requirements (continued)  
SIGNAL GROUP LENGTH MATCHING (1) (2)  
INTERFACE  
DMD (5)  
SIGNAL GROUP  
REFERENCE SIGNAL  
MAX MISMATCH (3)  
UNIT  
±0.025  
(±0.635)  
inch  
DMD_LS0_x_P  
DMD_LS0_x_N  
(mm)  
DMD_LS1_WDATA_P  
DMD_LS1_WDATA_N  
DMD_LS1_CLK_P  
DMD_LS1_CLK_N  
±1.0  
(±25.4)  
inch  
(mm)  
DMD (4)  
DMD (5)  
DMD  
±0.025  
(±0.635)  
inch  
(mm)  
DMD_LS1_x_P  
DMD_LS1_x_N  
DMD_LS0_RDATA  
DMD_LS1_RDATA  
inch  
(mm)  
N/A  
N/A  
N/A (7)  
inch  
(mm)  
DMD  
DMD_DEN_ARSTZ  
N/A  
(1) These routing requirements are specific to the PCB routing. Internal package routing mismatches in the DLPC7540 and DLP471TE,  
DLP471NE, DLP650TE or DLP651NE have already been accounted for in these requirements.  
(2) Training is applied to DMD HS data lines, so defined matching requirements are slightly relaxed.  
(3) This requirement must be maintained from the Controller to the DMD, even if the signals traverse multiple boards.  
(4) This is an inter-pair specification (that is, differential pair to differential pair within the group).  
(5) This is an intra-pair specification (that is, length mismatch between P and N for the same pair). This is applicable to both clock and  
data.  
(6) This is a channel to channel skew specification.  
(7) The low speed read control interface from the DMD is single ended, and makes use of the differential write clock. As such, a routing  
mismatch between these is not applicable.  
10.2 Thermal Considerations  
The underlying thermal requirement for the DLPC7540 is that the maximum operating junction temperature (TJ)  
not be exceeded (defined in the Section 6.3). This temperature is dependent on operating ambient temperature,  
heatsink, airflow, PCB design (including the component layout density and the amount of copper used), power  
dissipation of the DLPC7540, and power dissipation of surrounding components. The DLPC7540’s package is  
designed to extract heat via the package heat slug to the heatsink, via the thermal balls, and through the power  
and ground planes of the PCB. Thus, heatsink, copper content, and airflow over the PCB are important factors.  
The recommended maximum operating ambient temperature (TA) is provided primarily as a design target and is  
based on maximum DLPC7540 power dissipation and RθJA at 0 m/s,1 m/s, and 2 m/s of forced airflow, where  
RθJA is the thermal resistance of the package as measured using the test board described in Section 10.1.1.  
This test PCB is not necessarily representative of the customers PCB and thus the reported thermal resistance  
can differ from the actual product application. Although the actual thermal resistance can be different, it is the  
best information available during the design phase to estimate thermal performance. TI highly recommends that  
once the host PCB is designed and built that the thermal performance be measured and validated.  
To do this, measure the top center case temperature under the worse case product scenario (max power  
dissipation, max voltage, max ambient temperature) and validate that the maximum recommended case  
temperature (TC) is not exceeded. This specification is based on the measured φJT for the DLPC7540 package  
and provides a relatively accurate correlation to junction temperature. Take care when measuring this case  
temperature to prevent accidental cooling of the package surface. TI recommends a small (approximately 40  
gauge) thermocouple. Ensure that the bead and thermocouple wire contact the top of the package. Cover the  
bead and thermocouple wire with a minimal amount of thermally conductive epoxy. Route the wires closely along  
the package and the board surface to avoid cooling the bead through the wires.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: DLPC7540  
 
 
 
 
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 Device Nomenclature  
11.1.2.1 Device Markings  
DLP®  
XDLPC7540ZDC  
XXXXXXXX-XXXXXX  
TEXAS INSTRUMENTS  
1
2
3
CCCCCC YYWW  
4
LLLLL  
TTTT  
G1  
Terminal A1 corner  
Marking Definitions:  
Line 1:  
TI Part Number: Engineering  
Samples  
X = Engineering Samples  
DLPC7540 = Device ID  
blank or A, B, C ... = Part Revision  
ZDC = Package designator  
TI Part Number: Production  
Vendor Information  
DLPC7540 = Device ID  
blank or A, B, C ... = Part Revision  
ZDC = Package designator  
Line 2:  
Line 3:  
XXXXXXX-XXXXXX  
Vendor Country Year and Week  
code  
CCCCCC = Country  
YY = Year  
WW = Week  
May also include 3 character Site Code after WW  
ZZZ=Site Code  
Vendor Lot and Trace Code  
LLLLL = Lot code  
TTTT = Trace code (may be blank)  
Line 4:  
11.1.2.2 Package Data  
Table 11-1. Package Information  
PARAMETER  
Number of balls (signal/thermal)  
Ball pitch  
VALUE  
UNITS  
612 / 64  
1.00  
mm  
mm  
mm  
mm  
mm  
mm3  
g
UBM (under bump metallurgy)  
BPD (ball pad diameter)  
Body dimension  
0.48 (See Figure 11-1)  
0.58 (See Figure 11-1)  
See Mechanical Drawing  
See Mechanical Drawing  
350 - 2000 (J-STD-20D)  
5.64  
Mold compound dimensions  
Package volume class  
Approximate weight  
Substrate circuit  
Pb-free  
Package balls  
Pb-free  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Table 11-1. Package Information (continued)  
PARAMETER  
VALUE  
UNITS  
Solder paste  
Solder profile  
Pb-free  
TC =250°C, TP = 253°C (J-STD-20D)  
MSL Level 3 (J-STD-20D)  
SAC305  
Moisture sensitivity level  
Solder ball composition  
WIrebond  
Cu  
a) Hot air reflow (including the combination of long and/or medium  
infrared ray reflow)  
Mounting technique  
b) Long or medium infrared ray reflow  
Package side  
Ball pad  
UBM.  
Solder mask  
BPD.  
Figure 11-1. Package Ball Parameters  
11.2 Trademarks  
BrilliantColoris a trademark of Texas Instruments Inc.  
V-by-One® and DLP® are registered trademarks of THine Electronics, Inc.  
All trademarks are the property of their respective owners.  
11.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.4 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
11.4.1 Video Timing Parameter Definitions  
Active Lines Per Frame Defines the number of lines in a frame containing displayable data: ALPF is a subset  
(ALPF)  
Active Pixels Per Line Defines the number of pixel clocks in a line containing displayable data: APPL is a  
(APPL) subset of the TPPL.  
Horizontal Back Porch Number of blank pixel clocks after horizontal sync but before the first active pixel.  
of the TLPF.  
(HBP) Blanking  
Note: HBP times are reference to the leading (active) edge of the respective sync  
signal.  
Horizontal Front Porch Number of blank pixel clocks after the last active pixel but before Horizontal Sync.  
(HFP) Blanking  
Horizontal Sync (HS)  
Timing reference point that defines the start of each horizontal interval (line). The  
absolute reference point is defined by the active edge of the HS signal. The active  
edge (either rising or falling edge as defined by the source) is the reference from  
which all horizontal blanking parameters are measured.  
Total Lines Per Frame Defines the vertical period (or frame time) in lines: TLPF = Total number of lines per  
(TLPF) frame (active and inactive).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: DLPC7540  
 
 
 
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
Total Pixel Per Line  
(TPPL)  
Defines the horizontal line period in pixel clocks: TPPL = Total number of pixel clocks  
per line (active and inactive).  
Vertical Sync (VS)  
Timing reference point that defines the start of the vertical interval (frame). The  
absolute reference point is defined by the active edge of the VS signal. The active  
edge (either rising or falling edge as defined by the source) is the reference from  
which all vertical blanking parameters are measured.  
Vertical Back Porch  
(VBP) Blanking  
Number of blank lines after vertical sync but before the first active line.  
Number of blank lines after the last active line but before vertical sync.  
TPPL  
Vertical Front Porch  
(VFP) Blanking  
Vertical Back Porch (VBP)  
APPL  
Horizontal  
Back  
Porch  
Horizontal  
Front  
Porch  
TLPF  
ALPF  
(HBP)  
(HFP)  
Vertical Front Porch (VFP)  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: DLPC7540  
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: DLPC7540  
 
DLPC7540  
DLPS206 – MAY 2021  
www.ti.com  
12.1 Package Option Addendum  
Copyright © 2021 Texas Instruments Incorporated  
100  
Submit Document Feedback  
Product Folder Links: DLPC7540  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPC7540ZDC  
ACTIVE  
BGA  
ZDC  
676  
40  
TBD  
Call TI  
Call TI  
0 to 55  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
ZDC0676A  
PBGA - 2.4 mm max height  
SCALE 0.500  
PLASTIC BALL GRID ARRAY  
31.1  
30.9  
B
A
BALL A1 CORNER  
31.1  
30.9  
(
29)  
4X (45 X 0.2)  
C
(
23)  
HEAT SLUG  
(1.17)  
0.35 C  
2.40 MAX  
0.6  
SEATING PLANE  
BALL TYP  
TYP  
0.2 C  
0.4  
29 TYP  
SYMM  
(1) TYP  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
(1) TYP  
W
V
U
SYMM  
676X  
T
29  
TYP  
R
P
N
M
L
K
J
0.7  
0.5  
H
G
F
0.25  
0.1  
C A B  
E
D
C
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25 27 29  
1
TYP  
2
4
6
8
10 20  
12 14 16 18  
22 24 26 28 30  
1
TYP  
4224809/A 02/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZDC0676A  
PBGA - 2.4 mm max height  
PLASTIC BALL GRID ARRAY  
(1) TYP  
(1) TYP  
SYMM  
676X ( 0.5)  
1
21  
22 23  
2 3  
4
5
6
8
10 11 12 13 14 15 16 17 18 19  
20  
24  
25  
26 27 28  
29 30  
7
9
A
B
C
D
E
F
G
H
J
K
L
M
N
P
SYMM  
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:4X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.5)  
METAL  
EXPOSED  
(
0.5)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224809/A 02/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SSZA002 (www.ti.com/lit/ssza002).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZDC0676A  
PBGA - 2.4 mm max height  
PLASTIC BALL GRID ARRAY  
(1) TYP  
(1) TYP  
676X ( 0.5)  
1
21  
22 23  
2 3  
4
5
6
8
10 11 12 13 14 15 16 17 18 19  
20  
24  
25  
26 27 28  
29 30  
7
9
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 4X  
4224809/A 02/2019  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

DLPC7540ZDC

DLP® display controller for 4K UHD and 1080p DMD | ZDC | 676 | 0 to 55
TI

DLPC900

适用于 DLP6500、DLP670S、DLP500YX 和 DLP9000 数字微镜器件的数字控制器
TI

DLPC900AZPC

Digital controller for DLP6500, DLP670S, DLP500YX & DLP9000 digital micromirror devices | ZPC | 516 | 0 to 55
TI

DLPC910

适用于 DLP6500FLQ、DLP6500FYE 和 DLP9000X/9000XUV 数字微镜器件的数字控制器
TI

DLPC910ZYR

Digital controller for DLP6500FLQ, DLP6500FYE & DLP9000X/9000XUV digital micromirror devices | ZYR | 676 | 0 to 85
TI

DLPD3V3LC

3.3V LOW CAPACITANCE BIDIRECTIONAL TVS
DIODES

DLPD3V3LC-7

Trans Voltage Suppressor Diode, 330W, 3.3V V(RWM), Bidirectional, 2 Element, Silicon, GREEN, PLASTIC PACKAGE-6
DIODES

DLPR100

DLP® Configuration PROM for DLPC100
TI

DLPR100DWC

DLP® Configuration PROM for DLPC100
TI

DLPR410BYVA

DLPR410 Configuration PROM
TI

DLPR410_V01

DLPR410 Configuration PROM
TI

DLPS015

DLPR410 Configuration PROM
TI