DLPC910ZYR [TI]

Digital controller for DLP6500FLQ, DLP6500FYE & DLP9000X/9000XUV digital micromirror devices | ZYR | 676 | 0 to 85;
DLPC910ZYR
型号: DLPC910ZYR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Digital controller for DLP6500FLQ, DLP6500FYE & DLP9000X/9000XUV digital micromirror devices | ZYR | 676 | 0 to 85

外围集成电路
文件: 总63页 (文件大小:2955K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLPC910  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
DLPC910 DMD 控制器  
1 特性  
3 说明  
• 运行以DLP® DMD 芯片  
DLPC910 适用于 DLP9000XDLP9000XUV 和  
DLP6500 三个 DMD 器件的数字控制器。DLPC910 为  
客户提供用于 DMD 的高速数据和控制接口从而使  
DLP9000X/DLP9000XUV DMD 的二进制图形速率高  
15kHz使 DLP6500 DMD 的二进制图形速率高达  
11.5kHz。如此快速的模式速率使得 DLP 技术力压同  
类其他空间照明调制器脱颖而出并且可满足客户设备  
对于快速、精确和可编程光源控制功能的需求从而使  
客户获得战略性优势。DLPC910 DMD 提供所需的  
镜时钟脉冲和时序信息。DLPC910 器件具备独特的功  
能和价值非常适合为各种平版印刷、工业和高级显示  
应用提供支持。  
DLP9000X DMD  
DLP9000XUV DMD  
DLP6500 DMD  
• 用户可选择的输入时钟速率  
DLP9000X DLP9000XUV 400MHz 或  
480MHz  
DLP6500 400MHz  
• 连续流式输入数据  
DLP9000X DLP9000XUV 61Gb/s  
DLP6500 24Gb/s  
• 启用高速图形速率  
DLP9000X DLP9000XUV 每秒高15kHz  
二进制图形  
DLP6500 每秒高11.5kHz 二进制图形  
8 位灰度图形速率  
在基于 DLP 的电子解决方案中DLPC910 输入端  
口到被投影图像的图像数据是 100% 数字化的数据。  
图像始终保持数字格式永远不会转换为模拟信号。  
DLPC910 会处理数字输入图像并将数据转换为 DMD  
所需的图像格式以确保正确显示。DMD 随后会将光  
线导向载DMD 中的像素数据所确定的位置。  
DLP9000X DLP9000XUV 采用调制照明时高  
1.8kHz  
DLP6500 采用调制照明时高1.4kHz  
64 2x LVDS 数据总线接口  
• 随DMD 行寻址Load4 加载  
• 与多种用户定义的应用处理器FPGA 兼容  
• 用于控制和状态查询I2C 接口  
有关 DLPC910 完整电气和机械规格参阅  
Virtex®-5 产品规格网址www.xilinx.com。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
DLPC910  
封装  
FCBGA (676)  
27.00mm × 27.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 平版印刷  
– 直接成像  
– 平板显示器  
– 印刷电路板制造  
• 工业类  
3D 打印  
– 用于机器视觉3D 扫描仪  
– 质量控制  
• 显示器  
3D 成像  
– 增强现实和信息覆盖  
典型应用图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS064  
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Table of Contents  
8 Application and Implementation..................................47  
8.1 Application Information............................................. 47  
8.2 Typical Application.................................................... 47  
9 Power Supply Recommendations................................52  
9.1 Power Supply Distribution and Requirements.......... 52  
9.2 Power Down Requirements...................................... 52  
10 Layout...........................................................................53  
10.1 Layout Guidelines................................................... 53  
10.2 Layout Example...................................................... 57  
11 Device and Documentation Support..........................59  
11.1 Device Support........................................................59  
11.2 Documentation Support.......................................... 59  
11.3 支持资源..................................................................59  
11.4 Trademarks............................................................. 59  
11.5 静电放电警告...........................................................60  
11.6 术语表..................................................................... 60  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
Pin Functions.................................................................... 5  
6 Specifications................................................................ 15  
6.1 Absolute Maximum Ratings...................................... 15  
6.2 ESD Ratings............................................................. 15  
6.3 Recommended Operating Conditions.......................15  
6.4 Thermal Information..................................................16  
6.5 Electrical Characteristics...........................................16  
6.6 Timing Requirements................................................16  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
7.2 Functional Block Diagram.........................................18  
7.3 Feature Description...................................................18  
7.4 Device Functional Modes..........................................26  
7.5 Register Map.............................................................40  
Information.................................................................... 60  
4 Revision History  
Changes from Revision C (March 2020) to Revision D (September 2020)  
Page  
Updated Description section for DDC_DCLK_(A,B,C,D)_DP(N,P), DDC_DIN_(A,B,C,D)(1-15)_DP(N,P), and  
DVALID_(A,B,C,D)_DP(N,P) from "100-Ωinternal LVDS termination." to "100-Ωexternal LVDS termination  
required...............................................................................................................................................................5  
Updated I/O Type section for LOAD4_ENZ from LVCMOS33_I to LVCMOS25_I..............................................5  
Updated I/O Type section for DMD_IRQ from LVCMOS33_O to LVCMOS25_O...............................................5  
Corrected HBM and CDM values. ................................................................................................................... 15  
Corrected "...during which time RST_ACTIVE is asserted." to "...during which time RST_ACTIVE is NOT  
asserted."..........................................................................................................................................................21  
Updated section name from "DMD Power Down" to "DMD Mirror Float". Removed outdated information about  
power down...................................................................................................................................................... 21  
Removed "After PWR_FLOAT is asserted, a Mirror Clocking Pulse is issued, or a mirror Float operation is  
requested" ........................................................................................................................................................23  
Updated I2C terminology to "primary" and "secondary" throughout section. ................................................... 24  
Updated performance plot for DLP6500 DMD (8-4) ....................................................................................50  
Updated performance plot for DLP9000X/DLP9000XUV DMD (8-3)...........................................................50  
Changes from Revision B (November 2016) to Revision C (March 2020)  
Page  
• 将标题DLPC910 数字控制器更改DLPC910 DMD 控制器................................................................. 1  
• 添加了新DLP9000XUV DMD DLPC910 支持DMD多个位置......................................................1  
Updated "DDC_IIC_x" signal names to "DDC_I2C_x" in multiple locations....................................................... 5  
Added missing DLPC_DOUTBUSY pin to complete the listing of all 676 pins of DLPC910.............................. 5  
Added missing unconnected pins to complete the listing of all 676 pins of DLPC910....................................... 5  
Corrected signal name RESETZ to RESET_RSTZ .........................................................................................18  
Deleted package code FLS from DMD callout for readability ..........................................................................18  
Added section describing DDC_Version output pins ....................................................................................... 23  
Corrected I2C version from 1.0-1995 to 1.0-1992. ...........................................................................................24  
Combined Figure 8 and Figure 9 into new 7-6 to incorporate Application Note/Tech Advisory dlpa092  
(DLPC910 / DLPR910A - Continuous Row Command Operation). .................................................................34  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Added DLP9000XUV to DMD Characteristics Table ....................................................................................... 35  
Changed "Connected DMD ID" to "Connected DMD TYPE" to match nomenclature of DMD_TYPE_[3:0] input  
pins .................................................................................................................................................................. 40  
Added explanation that DDC_VERSION_(2:0) output values are mirrored in DESTOP_VERSION register... 43  
Corrected signal name RESETZ to RESET_RSTZ in DLP9000X block diagram ........................................... 47  
Corrected signal name RESETZ to RESET_RSTZ in DLP6500 block diagram ..............................................47  
Added DLP9000XUV to 9-1 - changed previous sentence to clarify one DMD per DLPC910/DLPR910....52  
Added DLP9000XUV link to Related Documentation section ..........................................................................59  
Changes from Revision A (October 2015) to Revision B (November 2016)  
Page  
• 简化了数据表标题...............................................................................................................................................1  
• 在1 中添加了支持DMD 系列......................................................................................................................1  
Updated supply current values in 6.5. .........................................................................................................16  
Indicated how SPEED_SEL should be set when DLP6500 is used in 7.3.2 ...............................................18  
Added reference to the 9.2 in 7.3.6.4 ..................................................................................................... 21  
Replaced DMD part number and row count with variable VRes in 7.3.6.5.1 .............................................. 22  
Indicated how SPEED_SEL should be set when DLP6500 is used in 7.3.10.3 ..........................................25  
Added cross reference to 7-11 in 7.4 ......................................................................................................26  
Added cross reference to 7-11 in 7.4.1 ...................................................................................................26  
Added pixel mapping tables for both DMDs in 7.4.1 ...................................................................................26  
Added single row write example for the DLP6500 in 7.4.1.1 ...................................................................... 34  
Added DLP6500 to 7-11 ..............................................................................................................................35  
Added the number of row cycles required to clear the entire DMD for the DLP6500 in 7.4.3 .....................37  
Added DLP6500 to 7-13 ..............................................................................................................................37  
Added cross reference to 7-11 in 7.4.4 ...................................................................................................37  
Added additional description for activating buses in 7.5.1.9 ....................................................................... 45  
Added DLP6500 DMD to application details to 8.2 .....................................................................................47  
Added cross reference to 7-11 in 8.2.1.1 ................................................................................................49  
Replaced references to part numbers with DMD in 8.2.1.2 ........................................................................ 49  
Associated performance plot with appropriate DMD (8-3)........................................................................... 50  
Added performance plot for DLP6500 DMD (8-4)........................................................................................50  
Added power down requirements and increased the minimum 300 µs to 500 µs for maintaining power levels  
in 9.2 ........................................................................................................................................................... 52  
Added 9-1, 9-2, 9-3 ............................................................................................................................52  
Changes from Revision * (September 2015) to Revision A (October 2015)  
Page  
• 将器件状态从“产品预发布”更改为“量产数据”.............................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
5 Pin Configuration and Functions  
5-1. ZYR Package 676-Pin FCBGA Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
I/O Type Descriptions  
I/O TYPE  
DESCRIPTION  
PWR  
Power  
GND  
Ground  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NO  
LVDS_25_PO  
LVCMOS25_I  
LVCMOS25_O  
LVCMOS25_B  
LVCMOS33_I  
LVCMOS33_O  
LVCMOS33_B  
LVDCI_33_O  
NC  
LVDS 2.5-V negative input  
LVDS 2.5-V positive input  
LVDS 2.5-V negative output  
LVDS 2.5-V positive output  
LVCMOS 2.5-V input  
LVCMOS 2.5-V output  
LVCMOS 2.5-V bidirectional  
LVCMOS 3.3-V input  
LVCMOS 3.3-V output  
LVCMOS 3.3-V bidirectional  
Low-voltage digitally controlled impedance 3.3-V output  
No connection  
Pin Functions  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
CTRL_RSTZ  
F9  
LVCMOS25_I  
LVCMOS33_I  
Lo = 0  
-
-
DLPC910 Reset.  
DLPC910 Secondary I2C Address Lo =  
0x34, Hi = 0x36. Includes Internal pull-up.  
DDC_I2C_ADDR_SEL  
DDC_I2C_SCL  
AA10  
Y8  
Hi = 1  
DLPC910 Secondary I2C Clock.  
Requires an external 1-kpull-up  
resistor.  
LVCMOS33_B  
LVCMOS33_B  
-
-
-
DLPC910 Secondary I2C Data. Requires  
an external 1-kpull-up resistor.  
DDC_I2C_SDA  
AA8  
DDC_I2C_SCL  
CLKIN_R  
E10  
LVCMOS25_I  
LVDCI_33_O  
LVDCI_33_O  
LVDCI_33_O  
LVDCI_33_O  
LVDCI_33_O  
LVDCI_33_O  
LVDCI_33_O  
LVDCI_33_O  
LVDCI_33_O  
LVDCI_33_O  
LVCMOS33_I  
-
Reference clock  
50-MHz Reference Clock  
Connect to DMD RESET_ADDR0  
Connect to DMD RESET_ADDR1  
Connect to DMD RESET_ADDR2  
Connect to DMD RESET_ADDR3  
Connect to DMD RESET_MODE0  
Connect to DMD RESET_MODE1  
Connect to DMD RESET_SEL0  
Connect to DMD RESET_SEL1  
Connect to DMD RESET_STROBE  
Connect to DMD RESET_OEZ  
Connect to DMD RESET_IRQZ  
RESET_ADDR0  
RESET_ADDR1  
RESET_ADDR2  
RESET_ADDR3  
RESET_MODE0  
RESET_MODE1  
RESET_SEL0  
RESET_SEL1  
RESET_STROBE  
RESET_OEZ  
AD18  
AC18  
AC17  
AC16  
AC13  
AD13  
AD15  
AC14  
AD10  
AD14  
AD8  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Lo  
Lo  
-
-
-
-
-
-
-
-
-
-
-
RESET_IRQZ  
Connect to DMD PWRDNZ and RESETZ  
inputs  
RESET_RSTZ  
AB10  
LVDCI_33_O  
Lo  
-
SCPCLK  
AC7  
AC8  
AC9  
AB9  
G11  
G12  
H11  
H12  
E12  
D13  
E13  
F13  
H13  
LVDCI_33_O  
LVCMOS33_I  
LVDCI_33_O  
LVDCI_33_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
-
-
Connect to DMD SCP_CLK  
Connect to DMD SCP_DO  
Connect to DMD SCP_DI  
Connect to DMD SCP_ENZ  
Attached DMD Type bit 0  
Attached DMD Type bit 1  
Attached DMD Type bit 2  
Attached DMD Type bit 3  
Block Address bit 0  
SCPDI  
-
SCPCLK  
SCPDO  
-
SCPCLK  
DMD_SCPENZ  
DMD_TYPE_0  
DMD_TYPE_1  
DMD_TYPE_2  
DMD_TYPE_3  
BLKAD_0  
Lo  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
SCPCLK  
-
-
-
-
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
BLKAD_1  
Block Address bit 1  
BLKAD_2  
Block Address bit 2  
BLKAD_3  
Block Address bit 3  
BLKMD_0  
Block Mode Bit 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
H14  
D14  
D15  
E15  
F14  
G14  
E16  
F15  
G15  
E17  
F17  
G16  
H17  
H16  
B21  
C21  
A7  
BLKMD_1  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NI  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
-
DDC_DCLK_[A,B,C,D]  
Block Mode Bit 1  
ROWAD_0  
-
DMD Row Address bit 0  
DMD Row Address bit 1  
DMD Row Address bit 2  
DMD Row Address bit 3  
DMD Row Address bit 4  
DMD Row Address bit 5  
DMD Row Address bit 6  
DMD Row Address bit 7  
DMD Row Address bit 8  
DMD Row Address bit 9  
DMD Row Address bit 10  
DMD Row Mode bit 0  
DMD Row Mode bit 1  
ROWAD_1  
-
ROWAD_2  
-
ROWAD_3  
-
ROWAD_4  
-
ROWAD_5  
-
ROWAD_6  
-
ROWAD_7  
-
ROWAD_8  
-
ROWAD_9  
-
ROWAD_10  
-
ROWMD_0  
-
ROWMD_1  
-
DDC_DCLK_A_DPN  
DDC_DCLK_A_DPP  
DDC_DCLK_B_DPN  
DDC_DCLK_B_DPP  
DDC_DCLK_C_DPN  
DDC_DCLK_C_DPP  
DDC_DCLK_D_DPN  
DDC_DCLK_D_DPP  
DDC_DCLKOUT_A_DPN  
DDC_DCLKOUT_A_DPP  
DDC_DCLKOUT_B_DPN  
DDC_DCLKOUT_B_DPP  
DDC_DCLKOUT_C_DPN  
DDC_DCLKOUT_C_DPP  
DDC_DCLKOUT_D_DPN  
DDC_DCLKOUT_D_DPP  
DDC_DIN_A0_DPN  
-
Input Bus A Clock. 100-Ωexternal LVDS  
termination required.  
-
-
-
-
Input Bus B Clock. 100-Ωexternal LVDS  
termination required.  
B7  
-
-
K20  
K21  
L5  
-
-
Input Bus C Clock. 100-Ωexternal LVDS  
termination required.  
-
-
-
-
Input Bus D Clock. 100-Ωexternal LVDS  
termination required.  
K5  
-
-
N1  
-
-
Output Bus A Clock to DMD.  
Output Bus B Clock to DMD.  
Output Bus C Clock to DMD.  
Output Bus D Clock to DMD.  
M1  
-
-
Y5  
-
-
Y6  
-
-
AA22  
AB22  
M26  
M25  
A15  
-
-
-
-
-
-
-
-
-
DDC_DCLK_A  
Input Bus A Data bit 0.  
100-Ωexternal LVDS termination  
required.  
DDC_DIN_A0_DPP  
DDC_DIN_A1_DPN  
DDC_DIN_A1_DPP  
DDC_DIN_A2_DPN  
DDC_DIN_A2_DPP  
DDC_DIN_A3_DPN  
DDC_DIN_A3_DPP  
DDC_DIN_A4_DPN  
DDC_DIN_A4_DPP  
DDC_DIN_A5_DPN  
DDC_DIN_A5_DPP  
DDC_DIN_A6_DPN  
DDC_DIN_A6_DPP  
DDC_DIN_A7_DPN  
DDC_DIN_A7_DPP  
DDC_DIN_A8_DPN  
DDC_DIN_A8_DPP  
DDC_DIN_A9_DPN  
DDC_DIN_A9_DPP  
DDC_DIN_A10_DPN  
DDC_DIN_A10_DPP  
A14  
B14  
C14  
B16  
B15  
C16  
D16  
A17  
B17  
C17  
D18  
A19  
A18  
C18  
B19  
D19  
C19  
B20  
A20  
A22  
B22  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
Input Bus A Data bit 1.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 2.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 3.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 4.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 5.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 6.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 7.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 8.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 9.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 10.  
100-Ωexternal LVDS termination  
required.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
DDC_DIN_A11_DPN  
A24  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
Input Bus A Data bit 11.  
100-Ωexternal LVDS termination  
required.  
DDC_DIN_A11_DPP  
DDC_DIN_A12_DPN  
DDC_DIN_A12_DPP  
DDC_DIN_A13_DPN  
DDC_DIN_A13_DPP  
DDC_DIN_A14_DPN  
DDC_DIN_A14_DPP  
DDC_DIN_A15_DPN  
DDC_DIN_A15_DPP  
DDC_DIN_B0_DPN  
DDC_DIN_B0_DPP  
DDC_DIN_B1_DPN  
DDC_DIN_B1_DPP  
DDC_DIN_B2_DPN  
DDC_DIN_B2_DPP  
DDC_DIN_B3_DPN  
DDC_DIN_B3_DPP  
DDC_DIN_B4_DPN  
DDC_DIN_B4_DPP  
DDC_DIN_B5_DPN  
DDC_DIN_B5_DPP  
DDC_DIN_B6_DPN  
DDC_DIN_B6_DPP  
DDC_DIN_B7_DPN  
DDC_DIN_B7_DPP  
DDC_DIN_B8_DPN  
DDC_DIN_B8_DPP  
DDC_DIN_B9_DPN  
DDC_DIN_B9_DPP  
DDC_DIN_B10_DPN  
DDC_DIN_B10_DPP  
DDC_DIN_B11_DPN  
DDC_DIN_B11_DPP  
DDC_DIN_B12_DPN  
DDC_DIN_B12_DPP  
DDC_DIN_B13_DPN  
DDC_DIN_B13_DPP  
DDC_DIN_B14_DPN  
DDC_DIN_B14_DPP  
DDC_DIN_B15_DPN  
DDC_DIN_B15_DPP  
DDC_DIN_C0_DPN  
DDC_DIN_C0_DPP  
DDC_DIN_C1_DPN  
DDC_DIN_C1_DPP  
DDC_DIN_C2_DPN  
DDC_DIN_C2_DPP  
A23  
C23  
B24  
C24  
D24  
A25  
B25  
C26  
B26  
A12  
A13  
B12  
C13  
D10  
D11  
C12  
C11  
A10  
B11  
D9  
Input Bus A Data bit 12.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 13.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 14.  
100-Ωexternal LVDS termination  
required.  
Input Bus A Data bit 15.  
100-Ωexternal LVDS termination  
required.  
Input Bus B Data bit 0.  
100-Ωexternal LVDS termination  
required.  
Input Bus B Data bit 1.  
100-Ωexternal LVDS termination  
required.  
Input Bus B Data bit 2.  
100-Ωexternal LVDS termination  
required.  
Input Bus B Data bit 3.  
100-Ωexternal LVDS termination  
required.  
Input Bus B Data bit 4.  
100-Ωexternal LVDS termination  
required.  
Input Bus B Data bit 5.  
100-Ωexternal LVDS termination  
required.  
C9  
B10  
B9  
Input Bus B Data bit 6.  
100-Ωexternal LVDS termination  
required.  
A8  
Input Bus B Data bit 7.  
100-Ωexternal LVDS termination  
required.  
A9  
D6  
Input Bus B Data bit 8.  
100-Ωexternal LVDS termination  
required.  
D5  
C7  
Input Bus B Data bit 9.  
100-Ωexternal LVDS termination  
required.  
C6  
B6  
Input Bus B Data bit 10.  
100-Ωexternal LVDS termination  
required.  
B5  
D4  
Input Bus B Data bit 11.  
100-Ωexternal LVDS termination  
required.  
D3  
B4  
Input Bus B Data bit 12.  
100-Ωexternal LVDS termination  
required.  
C4  
C3  
Input Bus B Data bit 13.  
100-Ωexternal LVDS termination  
required.  
C2  
A3  
Input Bus B Data bit 14.  
100-Ωexternal LVDS termination  
required.  
A2  
B2  
Input Bus B Data bit 15.  
100-Ωexternal LVDS termination  
required.  
B1  
E20  
E21  
F20  
G20  
H19  
J19  
Input Bus C Data bit 0.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 1.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 2.  
100-Ωexternal LVDS termination  
required.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
DDC_DIN_C3_DPN  
E23  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
Input Bus C Data bit 3.  
100-Ωexternal LVDS termination  
required.  
DDC_DIN_C3_DPP  
DDC_DIN_C4_DPN  
DDC_DIN_C4_DPP  
DDC_DIN_C5_DPN  
DDC_DIN_C5_DPP  
DDC_DIN_C6_DPN  
DDC_DIN_C6_DPP  
DDC_DIN_C7_DPN  
DDC_DIN_C7_DPP  
DDC_DIN_C8_DPN  
DDC_DIN_C8_DPP  
DDC_DIN_C9_DPN  
DDC_DIN_C9_DPP  
DDC_DIN_C10_DPN  
DDC_DIN_C10_DPP  
DDC_DIN_C11_DPN  
DDC_DIN_C11_DPP  
DDC_DIN_C12_DPN  
DDC_DIN_C12_DPP  
DDC_DIN_C13_DPN  
DDC_DIN_C13_DPP  
DDC_DIN_C14_DPN  
DDC_DIN_C14_DPP  
DDC_DIN_C15_DPN  
DDC_DIN_C15_DPP  
DDC_DIN_D0_DPN  
DDC_DIN_D0_DPP  
DDC_DIN_D1_DPN  
DDC_DIN_D1_DPP  
DDC_DIN_D2_DPN  
DDC_DIN_D2_DPP  
DDC_DIN_D3_DPN  
DDC_DIN_D3_DPP  
DDC_DIN_D4_DPN  
DDC_DIN_D4_DPP  
DDC_DIN_D5_DPN  
DDC_DIN_D5_DPP  
DDC_DIN_D6_DPN  
DDC_DIN_D6_DPP  
DDC_DIN_D7_DPN  
DDC_DIN_D7_DPP  
DDC_DIN_D8_DPN  
DDC_DIN_D8_DPP  
DDC_DIN_D9_DPN  
DDC_DIN_D9_DPP  
DDC_DIN_D10_DPN  
DDC_DIN_D10_DPP  
E22  
F23  
F22  
G22  
G21  
J20  
J21  
H22  
H21  
J23  
H23  
K22  
K23  
M19  
M20  
M21  
M22  
N19  
P19  
N21  
N22  
P20  
P21  
N23  
P23  
T3  
Input Bus C Data bit 4.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 5.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 6.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 7.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 8.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 9.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 10.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 11.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 12.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 13.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 14.  
100-Ωexternal LVDS termination  
required.  
Input Bus C Data bit 15.  
100-Ωexternal LVDS termination  
required.  
Input Bus D Data bit 0.  
100-Ωexternal LVDS termination  
required.  
R3  
R5  
Input Bus D Data bit 1.  
100-Ωexternal LVDS termination  
required.  
R6  
R7  
Input Bus D Data bit 2.  
100-Ωexternal LVDS termination  
required.  
P6  
N3  
Input Bus D Data bit 3.  
100-Ωexternal LVDS termination  
required.  
P3  
P4  
Input Bus D Data bit 4.  
100-Ωexternal LVDS termination  
required.  
P5  
N6  
Input Bus D Data bit 5.  
100-Ωexternal LVDS termination  
required.  
N7  
N4  
Input Bus D Data bit 6.  
100-Ωexternal LVDS termination  
required.  
M4  
M7  
Input Bus D Data bit 7.  
100-Ωexternal LVDS termination  
required.  
L7  
K7  
Input Bus D Data bit 8.  
100-Ωexternal LVDS termination  
required.  
K6  
J4  
Input Bus D Data bit 9.  
100-Ωexternal LVDS termination  
required.  
J5  
H7  
Input Bus D Data bit 10.  
100-Ωexternal LVDS termination  
required.  
J6  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
DDC_DIN_D11_DPN  
G4  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
-
-
-
-
-
-
-
-
-
-
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
Input Bus D Data bit 11.  
100-Ωexternal LVDS termination  
required.  
DDC_DIN_D11_DPP  
DDC_DIN_D12_DPN  
DDC_DIN_D12_DPP  
DDC_DIN_D13_DPN  
DDC_DIN_D13_DPP  
DDC_DIN_D14_DPN  
DDC_DIN_D14_DPP  
DDC_DIN_D15_DPN  
DDC_DIN_D15_DPP  
H4  
G5  
H6  
G7  
G6  
F4  
F5  
E5  
E6  
Input Bus D Data bit 12.  
100-Ωexternal LVDS termination  
required.  
Input Bus D Data bit 13.  
100-Ωexternal LVDS termination  
required.  
Input Bus D Data bit 14.  
100-Ωexternal LVDS termination  
required.  
Input Bus D Data bit 15.  
100-Ωexternal LVDS termination  
required.  
DDC_DOUT_A0_DPN  
DDC_DOUT_A0_DPP  
DDC_DOUT_A1_DPN  
DDC_DOUT_A1_DPP  
DDC_DOUT_A2_DPN  
DDC_DOUT_A2_DPP  
DDC_DOUT_A3_DPN  
DDC_DOUT_A3_DPP  
DDC_DOUT_A4_DPN  
DDC_DOUT_A4_DPP  
DDC_DOUT_A5_DPN  
DDC_DOUT_A5_DPP  
DDC_DOUT_A6_DPN  
DDC_DOUT_A6_DPP  
DDC_DOUT_A7_DPN  
DDC_DOUT_A7_DPP  
DDC_DOUT_A8_DPN  
DDC_DOUT_A8_DPP  
DDC_DOUT_A9_DPN  
DDC_DOUT_A9_DPP  
DDC_DOUT_A10_DPN  
DDC_DOUT_A10_DPP  
DDC_DOUT_A11_DPN  
DDC_DOUT_A11_DPP  
DDC_DOUT_A12_DPN  
DDC_DOUT_A12_DPP  
DDC_DOUT_A13_DPN  
DDC_DOUT_A13_DPP  
DDC_DOUT_A14_DPN  
DDC_DOUT_A14_DPP  
DDC_DOUT_A15_DPN  
DDC_DOUT_A15_DPP  
DDC_DOUT_B0_DPN  
DDC_DOUT_B0_DPP  
DDC_DOUT_B1_DPN  
DDC_DOUT_B1_DPP  
DDC_DOUT_B2_DPN  
DDC_DOUT_B2_DPP  
DDC_DOUT_B3_DPN  
DDC_DOUT_B3_DPP  
DDC_DOUT_B4_DPN  
DDC_DOUT_B4_DPP  
DDC_DOUT_B5_DPN  
DDC_DOUT_B5_DPP  
AE2  
AF2  
AD1  
AE1  
AC1  
AC2  
AB1  
AB2  
Y2  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
Output Bus A Data bit 0 to DMD.  
Output Bus A Data bit 1 to DMD.  
Output Bus A Data bit 2 to DMD.  
Output Bus A Data bit 3 to DMD.  
Output Bus A Data bit 4 to DMD.  
Output Bus A Data bit 5 to DMD.  
Output Bus A Data bit 6 to DMD.  
Output Bus A Data bit 7 to DMD.  
Output Bus A Data bit 8 to DMD.  
Output Bus A Data bit 9 to DMD.  
Output Bus A Data bit 10 to DMD.  
Output Bus A Data bit 11 to DMD.  
Output Bus A Data bit 12 to DMD.  
Output Bus A Data bit 13 to DMD.  
Output Bus A Data bit 14 to DMD.  
Output Bus A Data bit 15 to DMD.  
Output Bus B Data bit 0 to DMD.  
Output Bus B Data bit 1 to DMD.  
Output Bus B Data bit 2 to DMD.  
Output Bus B Data bit 3 to DMD.  
Output Bus B Data bit 4 to DMD.  
Output Bus B Data bit 5 to DMD.  
AA2  
W1  
Y1  
V1  
V2  
U1  
U2  
R2  
T2  
N2  
M2  
K1  
L2  
K2  
K3  
J3  
H3  
H2  
J1  
H1  
G1  
G2  
F2  
AE5  
AE6  
AD3  
AD4  
AD5  
AD6  
AC3  
AC4  
AB5  
AB6  
AB7  
AC6  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
AA5  
AA4  
AA7  
Y7  
DDC_DOUT_B6_DPN  
DDC_DOUT_B6_DPP  
DDC_DOUT_B7_DPN  
DDC_DOUT_B7_DPP  
DDC_DOUT_B8_DPN  
DDC_DOUT_B8_DPP  
DDC_DOUT_B9_DPN  
DDC_DOUT_B9_DPP  
DDC_DOUT_B10_DPN  
DDC_DOUT_B10_DPP  
DDC_DOUT_B11_DPN  
DDC_DOUT_B11_DPP  
DDC_DOUT_B12_DPN  
DDC_DOUT_B12_DPP  
DDC_DOUT_B13_DPN  
DDC_DOUT_B13_DPP  
DDC_DOUT_B14_DPN  
DDC_DOUT_B14_DPP  
DDC_DOUT_B15_DPN  
DDC_DOUT_B15_DPP  
DDC_DOUT_C0_DPN  
DDC_DOUT_C0_DPP  
DDC_DOUT_C1_DPN  
DDC_DOUT_C1_DPP  
DDC_DOUT_C2_DPN  
DDC_DOUT_C2_DPP  
DDC_DOUT_C3_DPN  
DDC_DOUT_C3_DPP  
DDC_DOUT_C4_DPN  
DDC_DOUT_C4_DPP  
DDC_DOUT_C5_DPN  
DDC_DOUT_C5_DPP  
DDC_DOUT_C6_DPN  
DDC_DOUT_C6_DPP  
DDC_DOUT_C7_DPN  
DDC_DOUT_C7_DPP  
DDC_DOUT_C8_DPN  
DDC_DOUT_C8_DPP  
DDC_DOUT_C9_DPN  
DDC_DOUT_C9_DPP  
DDC_DOUT_C10_DPN  
DDC_DOUT_C10_DPP  
DDC_DOUT_C11_DPN  
DDC_DOUT_C11_DPP  
DDC_DOUT_C12_DPN  
DDC_DOUT_C12_DPP  
DDC_DOUT_C13_DPN  
DDC_DOUT_C13_DPP  
DDC_DOUT_C14_DPN  
DDC_DOUT_C14_DPP  
DDC_DOUT_C15_DPN  
DDC_DOUT_C15_DPP  
DDC_DOUT_D0_DPN  
DDC_DOUT_D0_DPP  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
Output Bus B Data bit 6 to DMD.  
Output Bus B Data bit 7 to DMD.  
Output Bus B Data bit 8 to DMD.  
Output Bus B Data bit 9 to DMD.  
Output Bus B Data bit 10 to DMD.  
Output Bus B Data bit 11 to DMD.  
Output Bus B Data bit 12 to DMD.  
Output Bus B Data bit 13 to DMD.  
Output Bus B Data bit 14 to DMD.  
Output Bus B Data bit 15 to DMD.  
Output Bus C Data bit 0 to DMD.  
Output Bus C Data bit 1 to DMD.  
Output Bus C Data bit 2 to DMD.  
Output Bus C Data bit 3 to DMD.  
Output Bus C Data bit 4 to DMD.  
Output Bus C Data bit 5 to DMD.  
Output Bus C Data bit 6 to DMD.  
Output Bus C Data bit 7 to DMD.  
Output Bus C Data bit 8 to DMD.  
Output Bus C Data bit 9 to DMD.  
Output Bus C Data bit 10 to DMD.  
Output Bus C Data bit 11 to DMD.  
Output Bus C Data bit 12 to DMD.  
Output Bus C Data bit 13 to DMD.  
Output Bus C Data bit 14 to DMD.  
Output Bus C Data bit 15 to DMD.  
Output Bus D Data bit 0 to DMD.  
Y3  
W3  
W4  
V4  
W6  
W5  
V7  
V6  
U4  
V3  
T4  
T5  
U6  
U5  
U7  
T7  
T22  
T23  
R20  
R21  
T19  
T20  
U21  
U22  
U20  
U19  
V23  
V24  
V22  
V21  
W19  
V19  
W23  
W24  
Y22  
Y23  
Y20  
Y21  
AA24  
AA23  
AA19  
AA20  
AC24  
AB24  
AC19  
AD19  
AC22  
AC23  
AB26  
AC26  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
AA25  
AB25  
Y26  
Y25  
W26  
W25  
U26  
V26  
U25  
U24  
T25  
T24  
R26  
R25  
P24  
P25  
N24  
M24  
L25  
L24  
K26  
K25  
J26  
DDC_DOUT_D1_DPN  
DDC_DOUT_D1_DPP  
DDC_DOUT_D2_DPN  
DDC_DOUT_D2_DPP  
DDC_DOUT_D3_DPN  
DDC_DOUT_D3_DPP  
DDC_DOUT_D4_DPN  
DDC_DOUT_D4_DPP  
DDC_DOUT_D5_DPN  
DDC_DOUT_D5_DPP  
DDC_DOUT_D6_DPN  
DDC_DOUT_D6_DPP  
DDC_DOUT_D7_DPN  
DDC_DOUT_D7_DPP  
DDC_DOUT_D8_DPN  
DDC_DOUT_D8_DPP  
DDC_DOUT_D9_DPN  
DDC_DOUT_D9_DPP  
DDC_DOUT_D10_DPN  
DDC_DOUT_D10_DPP  
DDC_DOUT_D11_DPN  
DDC_DOUT_D11_DPP  
DDC_DOUT_D12_DPN  
DDC_DOUT_D12_DPP  
DDC_DOUT_D13_DPN  
DDC_DOUT_D13_DPP  
DDC_DOUT_D14_DPN  
DDC_DOUT_D14_DPP  
DDC_DOUT_D15_DPN  
DDC_DOUT_D15_DPP  
DDC_SCTRL_AN  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NO  
LVDS_25_PO  
LVDS_25_NI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDC_DCLK_A  
Output Bus D Data bit 1 to DMD.  
Output Bus D Data bit 2 to DMD.  
Output Bus D Data bit 3 to DMD.  
Output Bus D Data bit 4 to DMD.  
Output Bus D Data bit 5 to DMD.  
Output Bus D Data bit 6 to DMD.  
Output Bus D Data bit 7 to DMD.  
Output Bus D Data bit 8 to DMD.  
Output Bus D Data bit 9 to DMD.  
Output Bus D Data bit 10 to DMD.  
Output Bus D Data bit 11 to DMD.  
Output Bus D Data bit 12 to DMD.  
Output Bus D Data bit 13 to DMD.  
Output Bus D Data bit 14 to DMD.  
Output Bus D Data bit 15 to DMD.  
Output Bus A Serial Control to DMD.  
Output Bus B Serial Control to DMD.  
Output Bus C Serial Control to DMD.  
Output Bus D Serial Control to DMD.  
J25  
J24  
H24  
H26  
G26  
G25  
G24  
R1  
DDC_SCTRL_AP  
P1  
DDC_SCTRL_BN  
AA3  
AB4  
W20  
W21  
N26  
P26  
D20  
DDC_SCTRL_BP  
DDC_SCTRL_CN  
DDC_SCTRL_CP  
DDC_SCTRL_DN  
DDC_SCTRL_DP  
DVALID_A_DPN  
Input Bus A Data Valid Signal.  
100-Ωexternal LVDS termination  
required.  
DVALID_A_DPP  
DVALID_B_DPN  
DVALID_B_DPP  
DVALID_C_DPN  
DVALID_C_DPP  
DVALID_D_DPN  
DVALID_D_DPP  
D21  
C8  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
LVDS_25_NI  
LVDS_25_PI  
-
-
-
-
-
-
-
DDC_DCLK_A  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_D  
DDC_DCLK_D  
Input Bus B Data Valid Signal.  
100-Ωexternal LVDS termination  
required.  
D8  
L19  
L20  
L3  
Input Bus C Data Valid Signal.  
100-Ωexternal LVDS termination  
required.  
Input Bus D Data Valid Signal.  
100-Ωexternal LVDS termination  
required.  
L4  
DDC_VERSION_0  
DDC_VERSION_1  
DDC_VERSION_2  
SPEED_SEL_0  
F18  
G17  
H18  
H8  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_I  
Hi  
Hi  
Hi  
Hi  
-
-
-
-
DLPC910 Firmware Rev Number bit 0  
DLPC910 Firmware Rev Number bit 1  
DLPC910 Firmware Rev Number bit 2  
SPEED_SEL[1:0]  
= 00 400MHz  
= 01 480MHz  
= 10, 11 Reserved Includes internal pull-  
ups. SPEED_SEL[1:0] must be set to 00  
when connecting the DLPC910 with a  
DLP6500.  
SPEED_SEL_1  
H9  
LVCMOS25_I  
Hi  
-
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
Reserved. Do not connect. Includes  
internal pull-up.  
VSP_ENABLE  
E8  
LVCMOS25_I  
LVCMOS25_O  
Hi  
Hi  
-
-
DLPR910 Initialization complete.  
Connected to LED.  
ECP2_FINISHED  
E25  
VLED0  
VLED1  
AA17  
AB17  
LVCMOS25_O  
LVCMOS25_O  
Hi = On  
Hi = On  
-
-
Power Indicator LED Output.  
Heartbeat Indicator LED Output.  
DMD Reset Pulse Watchdog Timer  
Enable  
WDT_ENBLZ  
F25  
LVCMOS25_I  
Lo  
-
PWR_FLOAT  
NS_FLIP  
G9  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_I  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
-
Park DMD mirrors.  
F19  
G19  
E26  
G10  
E18  
-
Top/Bottom image flip on DMD  
Compliment Data (0 <--> 1)  
COMP_DATA  
INIT_ACTIVE  
RST_ACTIVE  
RST2BLKZ  
DDC_DCLK_[A,B,C,D]  
-
-
-
DLPC910 Initialization Routine Active  
DMD Mirror Clocking Pulse in progress  
Dual and Quad Block control  
No connect. For access to test point  
output route to test via.  
TST_PT_0  
Y12  
AA12  
Y13  
AA13  
AA14  
AB14  
AA15  
AB15  
C1  
LVCMOS33_O  
LVCMOS33_O  
LVCMOS33_O  
LVCMOS33_O  
LVCMOS33_O  
LVCMOS33_O  
LVCMOS33_O  
LVCMOS33_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
LVCMOS25_O  
DCI Reference Voltage  
DCI Reference Voltage  
LVCMOS25_I  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
No connect. For access to test point  
output route to test via.  
TST_PT_1  
No connect. For access to test point  
output route to test via.  
TST_PT_2  
-
No connect. For access to test point  
output route to test via.  
TST_PT_3  
-
No connect. For access to test point  
output route to test via.  
TST_PT_4  
-
No connect. For access to test point  
output route to test via.  
TST_PT_5  
-
No connect. For access to test point  
output route to test via.  
TST_PT_6  
-
No connect. For access to test point  
output route to test via.  
TST_PT_7  
-
No connect. For access to test point  
output route to test via.  
TST_PT_8  
-
No connect. For access to test point  
output route to test via.  
TST_PT_9  
D1  
-
No connect. For access to test point  
output route to test via.  
TST_PT_10  
TST_PT_11  
TST_PT_12  
TST_PT_13  
TST_PT_14  
TST_PT_15  
DLPC_VRN_BANK4  
DLPC_VRP_BANK4  
LOAD4_ENZ  
DMD_IRQ  
E1  
-
No connect. For access to test point  
output route to test via.  
E2  
-
No connect. For access to test point  
output route to test via.  
E3  
-
No connect. For access to test point  
output route to test via.  
F3  
-
No connect. For access to test point  
output route to test via.  
E7  
-
No connect. For access to test point  
output route to test via.  
F7  
-
Requires an external 49.9-Ωpull-up  
resistor to 3.3 V.  
AB12  
AC11  
D25  
D26  
K18  
-
Requires an external 49.9-Ωpull-down  
resistor to GND.  
-
Signal enables the Load-4 functionality of  
the DMD. Includes internal pull-up.  
Lo  
Hi  
-
Signal indicates a DMD voltage is  
inactive. Includes internal pull-up  
LVCMOS25_O  
LVCMOS33_I  
DLPC910 VBATT reference. Connect to  
GND.  
DLPC_VBATT  
DLPC910 Initialization configuration  
complete. Connect to DLPR910 CEZ pin.  
Requires 4.7-kΩpull-up to 3.3 V.  
DLPC_DONE  
K10  
L18  
LVCOMS33_O  
LVCMOS33_I  
-
-
-
-
DLPC910 Configuration. Requires 4.7-  
kΩpull-up to 3.3 V.  
DLPC_HSWAPEN  
DDC_M0  
DDC_M1  
DDC_M2  
W18  
Y17  
V18  
LVCMOS33_I  
LVCMOS33_I  
LVCMOS33_I  
-
-
-
-
-
-
DLPC910 Configuration. Connect to GND  
DLPC910 Configuration. Connect to GND  
DLPC910 Configuration. Connect to GND  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
DLPC910 Configuration. Connect to  
DLPR910 OE/RESET. Requires 4.7-kΩ  
pull-up to 3.3 V.  
INTB_DDC  
J11  
LVCMOS25_O  
Hi  
Hi  
-
DLPC910 Configuration. Connect to  
DLPR910 CF. Requires 4.7-kΩpull-up  
to 3.3 V.  
PROGB_DDC  
J18  
J10  
LVCMOS25_O  
LVCMOS25_O  
-
Configuration PROM Clock. Connect to  
DLPR910 CLK. Connects to center of  
voltage divider (100/100-Ω3.3 V and  
GND).  
PROM_CCK_DDC  
-
PROM_CCK_DDC  
Configuration PROM Data in. Connected  
to DLPR910 Data 0 (D0)  
PROM_D0_DDC  
DLPC_DOUTBUSY  
RDWR_B  
K11  
W11  
P18  
LVCMOS25_I  
LVCMOS25_I  
LVCMOS25_I  
-
-
-
PROM_CCK_DDC  
Configuration PROM Busy. Connect to  
test via for debug only.  
-
-
DLPC910 Configuration. Requires 1-kΩ  
pull-down to ground.  
JTAG Clock. Connects to DLPC910,  
DLPR910, and JTAG header TCK (if user  
has JTAG they must build their chain  
accordingly)  
TCK_JTAG  
U11  
LVCMOS33_I  
-
TCK_JTAG  
JTAG Data out of DLPC910. Connects to  
JTAG return TDO on JTAG header  
TDO_DDC  
W10  
V11  
LVCMOS33_O  
LVCMOS33_I  
-
-
TCK_JTAG  
TCK_JTAG  
JTAG Data out of DLPR910 to DLPC910.  
Connects to DLPR910 TDO (DLPC910  
internal signal TDI_0)  
TDO_XCF16DDC  
JTAG. Connects to DLPC910, DLPR910,  
and JTAG  
TMS_JTAG  
VCCAUX  
V12  
LVCMOS33_I  
PWR  
Hi  
-
TCK_JTAG  
-
header TMS  
J8, K17, L8, M17, N8, P17,  
R8, T17, U8, V17, W8, W16  
Aux Power. VCC_2P5V  
H15, J12, J14, J16, K9, K13,  
K15, L10, L12, L14, L16, M9,  
M11, M15, N10, N12, N16,  
P9, P11, P15, R10, R12,  
R16, T9, T11, T13, T15, U10,  
U12, U14, U16, V9, V13,  
V15, W14, Y15  
VCCINT  
PWR  
-
-
-
-
Power. VCC_1P0V  
Power. VCC_3P3V  
VCCO_0  
VCCO_2  
VCCO_4  
VCCO_1  
VCCO_3  
VCCO_11  
VCCO_12  
VCCO_13  
VCCO_14  
VCCO_15  
VCCO_16  
VCCO_17  
VCCO_18  
VCCO_21  
Y9, W12  
AA16, AD17  
AB13, AC10  
C10, F11  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D17, E14  
F21, H25, J22  
H5, J2, L6  
M23, N20, R24  
R4, V5, W2  
Power. VCC_2P5V  
B23,C20, E24  
D7, E4, G8  
T21, V25, W22  
AA6, AB3, AD7  
AC20, AB23, AE24  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
PIN  
ACTIVE  
(HI OR LO)  
I/O TYPE  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
A1, A6, A11, A16, A21, A26,  
AA1, AA11, AA21, AA26,  
AB8, AB18, AC5, AC15,  
AC25, AD2, AD12, AD22,  
AE4, AE9, AE14, AE19, AF1,  
AF6, AF11, AF16, AF21,  
AF26, B3, B8, B13, B18, C5,  
C15, C25, D2, D12, D22, E9,  
E19, F1, F6, F16, F26, G3,  
G13, G18, G23, H10, H20,  
J7, J9, J13, J15, J17, K4, K8,  
K12, K14, K16, K19, K24,  
L1, L9, L11, L13, L15, L17,  
L21, L26, M3, M8, M10,  
GND  
GND  
-
-
M12, M16, M18, N5, N9,  
N11, N15, N17, N25, P2, P7,  
P8, P10, P12, P16, P22, R9,  
R11, R15, R17, R19, T1, T6,  
T8, T10, T12, T14, T16, T26,  
U3, U9, U13, U15, U17, U18,  
U23, V8, V10, V14, V16,  
V20, W7, W9, W13, W15,  
W17, Y4, Y14, Y16, Y19,  
Y24, M13, M14, N13, N14,  
P13, P14, R13, R14, N18,  
R18, T18  
RESERVED_AC12  
RESERVED_AD11  
RESERVED_AA9  
RESERVED_Y10  
RESERVED_Y11  
RESERVED_AB11  
RESERVED_F10  
RESERVED_F8  
AC12  
AD11  
AA9  
Y10  
Y11  
LVCMOS33_O  
LVCMOS33_O  
LVCMOS33_I  
LVCMOS33_I  
LVCMOS33_I  
LVCMOS33_I  
LVCMOS33_I  
LVCMOS33_I  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Route to via for access to pin output.  
Route to via for access to pin output.  
Includes internal pull-up  
Includes internal pull-up  
Includes internal pull-up  
AB11  
F10  
Includes internal pull-up  
Includes internal pull-up  
F8  
Includes internal pull-up  
A4, A5, AA18, AB16, AB19,  
AB20, AB21, AC21, AD9,  
AD16, AD20, AD21, AD23,  
AD24, AD25, AD26, AE3,  
AE7, AE8, AE10, AE11,  
AE12, AE13, AE15, AE16,  
AE17, AE18, AE20, AE21,  
AE22, AE23, AE25, AE26,  
AF3, AF4, AF5, AF7, AF8,  
AF9, AF10, AF12, AF13,  
AF14, AF15, AF17, AF18,  
AF19, AF20, AF22, AF23,  
AF24, AF25, C22, D23, E11,  
F12, F24, L22, L23, M5, M6,  
R22, R23, Y18  
No Connection.  
Unused Pins.  
UNUSED  
NC  
-
-
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
See (1)  
MIN  
MAX  
UNIT  
ELECTRICAL  
VCCINT  
1.1  
3.75  
0.50  
0.50  
0.50  
0.95  
0.75  
0.30  
0.30  
VCCO  
Supply voltage range (2)  
V
VCCAUX  
3.0  
3.3 V  
2.5 V  
3.3 V  
2.5 V  
4.05  
VI  
Input voltage range (3)  
Output voltage range (4)  
V
V
VCCO + 0.50  
V
CCO 0.40  
CCO 0.40  
VO  
V
ENVIRONMENTAL  
TJ  
Junction temperature  
Storage temperature (ambient)  
125  
150  
°C  
°C  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to GND.  
(3) Applies to external input and bidirectional buffers.  
(4) Applies to external output and bidirectional buffers.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001-2010, all pins (1)  
+ 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins (2)  
+ 400  
(1) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM  
allows safe manufacturing with a standard ESD control process.  
(2) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
ELECTRICAL  
VCCINT 1-V supply voltage, core logic  
0.95  
1.14  
3.0  
1.00  
2.50  
1.05  
3.45  
V
V
V
V
VCCO  
VCCO  
2.5-V supply voltage, I/O for VCCO_1,3,11,12,13,14,15,16,17,18,21  
3.3-V supply voltage, I/O for VCCO_0,2,4  
3.30  
3.45  
VCCAUX 2.5-V supply voltage, I/O  
3.3-V DCI and CMOS for VCCO_0,2,4  
2.375  
0
2.500  
2.625  
VCCO  
2. 5-V CMOS for  
VCCO_1,3,11,12,13,14,15,16,17,18,21  
VI  
Input voltage  
0
VCCO  
V
V
2.5-V LVDS  
0.3  
0
2.2  
3.3-V DCI and CMOS for VCCO_0,2,4  
VCCO  
2.5-V CMOS for  
VCCO_1,3,11,12,13,14,15,16,17,18,21  
VO  
Output voltage  
0
VCCO  
1.675  
2.5-V LVDS  
0.825  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
 
 
 
 
 
 
 
 
 
 
DLPC910  
www.ti.com.cn  
MAX UNIT  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
TA  
Operating ambient temperature  
0
85  
°C  
ENVIRONMENTAL  
PD  
Continuous total power dissipation  
6
W
6.4 Thermal Information  
DLPC910  
ZYR (FCBGA)  
676 PINS  
12.1  
THERMAL METRIC (1)  
UNIT  
RθJA  
RθJC  
RθJB  
Junction-to-ambient thermal resistance (2)  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
3.2  
0.19  
(1) Refer to the XC5VLX30 product specifications at www.xilinx.com for complete thermal specifications.  
(2) In still air.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
3.3-V CMOS  
2.0  
V
3.3-V CMOS  
0.8  
0.4  
0.7  
V
V
V
V
V
VOH  
VOL  
VIH  
VIL  
3.3-V DCI and CMOS  
3.3-V DCI and CMOS  
2.5-V CMOS  
2.9  
1.7  
2.5-V CMOS  
VCCO  
2.5-V interface  
0.4  
VOH  
High-level output voltage  
V
2.5-V LVDS  
2.5-V interface  
2.5-V LVDS  
2.5-V interface  
2.5-V LVDS  
1.38  
0.4  
VOL  
Low-level output voltage  
Input capacitance  
V
1.03  
8
CI  
pF  
8
ICCINT  
1V Supply voltage range, core supply  
2.5V Supply voltage range, I/O supply  
3.3V Supply voltage range, I/O supply  
1430  
2100  
2300  
180  
mA  
mA  
mA  
ICCO  
+
1650  
ICCAUX  
ICCO  
6.6 Timing Requirements  
(see (1)  
)
MIN  
NOM  
MAX  
UNIT  
fcd  
Clock frequency, DCLKIN_n (2)  
400  
480  
MHz  
fcr  
tc  
Clock frequency, CLK_R  
Cycle time, DCLKIN_n  
50  
MHz  
ns  
fcd = 400 MHz  
fcd = 480 MHz  
fcd = 400 MHz  
fcd = 480 MHz  
2.5  
2.083  
1.25  
tw(H)  
Pulse duration, high  
50% to 50% reference  
points (signal)  
ns  
1.042  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
 
 
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
(see (1)  
)
MIN  
NOM  
MAX  
1.25  
1.042  
0.6  
UNIT  
tw(L)  
Pulse duration, low  
50% to 50% reference  
points (signal)  
fcd = 400 MHz  
fcd = 480 MHz  
fcd = 400 MHz  
fcd = 480 MHz  
ns  
tt  
Transition time, tt = tf /tr  
20% to 80% reference  
points (signal)  
ns  
ps  
0.5  
tjp  
Period Jitter DCLKIN_n (3)  
100  
Skew, DIN_A(15-0) to DCLKIN_A  
Skew, DIN_B(15-0) to DCLKIN_B  
Skew, DIN_C(15-0) to DCLKIN_C  
Skew, DIN_D(15-0) to DCLKIN_D  
Skew, DVALID_n to DCLKIN_n↑  
-100  
-100  
-100  
-100  
-100  
-100  
100  
100  
100  
100  
100  
100  
tsk  
ps  
Skew, BLKMD BLKAD to  
DCLKIN_n(4)  
Skew, ROWMD or ROWAD to  
-100  
-100  
100  
100  
DCLKIN_n(4)  
Skew, STEPVCC to DCLKIN(4)  
(1) It is recommended that the COMP_DATA, NS_FLIP and RST2BLK flags be set to one value and not adjusted during normal system  
operation.  
(2) Preferred DDC_DCLK _n duty cycle = 50%  
(3) This is the deviation in period from ideal period due solely to high frequency jitter.  
(4) First edge of DDC_DIN*, ROW*, and BLK* should be synchronous to DVALID rising edge.  
tsk  
tsk  
tt  
tc  
tw(H)  
50%  
tw(L)  
50%  
Cycle 1  
80%  
20%  
DCLKIN  
DVALID  
50%  
50%  
Cycle#CLKS/  
ROW  
DDR Data  
Control  
6-1. Input Interface Timing  
备注  
Dynamic changes to RST2BLK, NS_FLIP and COMP_DATA during normal operation are not  
recommended.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7 Detailed Description  
7.1 Overview  
The DLPC910 digital controller provides a reliable high speed data pipe to the DMD, where the digital input on  
the LVDS interface is configured for the required timing requirements of the DMD. The DMD reflects light by  
using 1-bit binary encoded patterns, where each mirror is a pixel-to-mirror mapping of the pattern.  
7.2 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Input LVDS Interface  
The data input interface consists of four input data buses: DDC_DIN_A, DDC_DIN_B, DDC_DIN_C, and  
DDC_DIN_D. Each bus contains 16 differential pairs which are synchronous to the rising and falling edges of its  
associated DDC_DCLK signal.  
7.3.2 Data Clock  
The data clock interface consists of four differential pairs: DDC_DCLK_A, DDC_DCLK_B, DDC_DCLK_C, and  
DDC_DCLK_D. Each must operate continuously. All signals associated with the data clock should be  
synchronous to these signals. For example, DDC_DIN_A and DVALID_A should be synchronous to the rising  
edge of DDC_DCLK_A. This clock should be valid prior to releasing CTRL_RSTZ. DDC_DCLK is a DDR clock  
with data loaded on both rising and falling edges of DDC_DCLK. The jitter on this clock is specified in Timing  
Requirements. When connecting the DLPC910 with a DLP6500, SPEED_SEL[1:0] inputs must be set to  
"00".  
7.3.3 Data Valid  
The data valid interface consists of four differential pairs: DVALID_A, DVALID _B, DVALID _C, and DVALID _D.  
The DVALID signal should be asserted synchronous to the data it is meant to frame. DVALID can be asserted  
as:  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
 
 
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Framing individual row loads with breaks between rows, or  
Framing block loads - for example, the DLP9000X/DLP9000XUV with 16 blocks allows framing 100  
contiguous row loads, or  
Framing the entire DMD load where the DVALID stays active for all DMD row loads with zero invalid data  
between rows.  
If the DVALID frames DMD blocks or the entire DMD, assure that the block and row control signals are adjusted  
at the proper locations in the data stream. Refer to Block Mode Operation for further information.  
7.3.4 Interface Training  
The DLPC910 detects the phase differences between the ½ speed clock (used in the device driving the LVDS  
data) and the internally generated ½ speed data clocks to select a clock phase for data capture. This is done by  
supplying a simple repeating pattern on all of the data inputs while the INIT_ACTIVE output of the DLPC910 is  
high/active. The details of the training pattern are described below.  
7-1 shows a simple block diagram of the training pattern insertion logic.  
Sys Clk  
IO Clk  
System Data  
0
1
4:1 Serdes  
Dout  
Training Data  
(0100)  
Din 3:0  
INIT_ACTIVE  
7-1. Block Diagram of Training Pattern Logic  
The expected training pattern is 0100. In 7-2, the data input to the 4:1 SERDES cells is captured on the rising  
edge of the ½ speed system clock. The output latency shown is based on the documentation for the Xilinx  
SERDES cells. Individual implementation may vary depending on the type of cells, technology, and design  
technique used.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
½ Speed  
System CLK  
Full Speed  
IO CLK  
4:1  
SERDES Data  
(at the interface)  
0100  
0100  
0100  
0100  
0100  
Output Data  
7-2. Training Pattern Alignment  
备注  
In Xilinx FPGAs (due to the construction of the ISERDES and OSERDES cells) a pattern of 0010  
needs to be applied to the output/transmitting SERDES cells data pins (D1 = 0, D2 = 0, D3 = 1, D4 =  
0) in order to receive a result of 0100 (Q1 = 0, Q2 = 1, Q3 = 0, Q4 = 0) at the input/receiving SERDES  
cell.  
The patterns should be applied on all of the data and DVALID pins. In this respect, the interface is treated as a  
17 bit interface with DVALID being the 17th data bit. The receiving logic in the DLPC910 adjusts the clock phase  
until the correct pattern is seen at the inputs. This allows DLPC910 to correctly select a clock phase for data  
capture and will contribute to a more robust interface. It is important that the training pattern is applied to the  
DVALID and data inputs of the DLPC910 before reset to the device is de-asserted, as training commences  
immediately on the de-assertion of reset. The INIT_ACTIVE signal is asserted while the device is held in reset in  
order to help facilitate this behavior.  
7.3.5 Row and Block Interface  
7.3.5.1 Row Mode  
The DMD incorporates single row write operations using a row address counter that is randomly addressable.  
ROWMD(1:0) determines the single row write count mode and ROWAD(10:0) determines the single row write  
address. ROWMD and ROWAD must be asserted and de-asserted synchronously with DVALID. Row address  
orientation depends on the North or South Flip Flag (NS_FLIP) input to the DLPC910. Refer to Related  
Documentation for the DMD datasheet regarding orientation of rows, columns, and Mirror Clocking Pulse (MCP)  
blocks. The row address counter does not automatically wrap-around when using the increment row address  
pointer instruction. After the final row is addressed, the row address pointer must be cleared to 0.  
7.3.5.2 Block Mode  
The signals RST2BLKZ, BLKMD and BLKAD are used to designate which mirror block(s) is to be issued a MCP  
or a Block Clear.  
7.3.6 Control Interface  
7.3.6.1 Complement Data  
By setting the COMP_DATA input high (logic 1), the user is able to command the DMD to internally complement  
its data inputs prior to loading the data into the mirror array. At least 0.6 ms is needed for the signal to be loaded.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
This signal should not be used to invert data on a row basis. When used with the Clear command, the mirrors  
are still set to zero regardless of the COMP_DATA bit. The COMP_DATA signal should be kept low during  
initialization to ensure proper setup of the system.  
7.3.6.2 North South Flip  
The NS_FLIP signal allows the user to specify the loading direction of rows in the DMD when used with ROWMD  
= 01. This control has no effect if ROWMD = 10. 7-1 and 7-2 describe the effect of N/S flip. If NS_FLIP is  
set, this does not reverse the direction of MCP groups. For example, the normal case is to MCP blocks 0 15  
in order. When NS_FLIP is set, the order of block MCPs must be reversed to 15 0. The NS_FLIP signal  
should be kept low during initialization to ensure proper setup of the system.  
7-1. Row Write Modes - N/S Flip Flag = 0  
ROWM  
ROWAD  
D
ACTION  
1
0
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
None  
Increment row address pointer and write  
the concurrent data into that row  
0
1
1
0
0
0
0
Set row address pointer to R and write the  
concurrent data into that row.  
R
R
0
R
0
R
0
R
R
0
R
0
R
0
R
R
0
R
0
Clear row address pointer to 0 and write  
concurrent data into first row  
(that is, row 0).  
1
1
0
0
0
7-2. Row Write Modes - N/S Flip Flag = 1  
ROWM  
D
ROWAD  
ACTION  
1
0
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
None  
Decrement the row address pointer and  
write the concurrent data into that row  
0
1
1
0
0
0
0
Set the row address pointer to R and write  
the concurrent data into that row.  
R
R
0
R
0
R
0
R
R
0
R
0
R
0
R
R
0
R
0
Set row address pointer to row = last row  
and write concurrent data into last row  
(that is, the last row = 1599 or 1079).  
1
1
0
0
0
7.3.6.3 Watchdog  
The DLPC910 contains a watchdog timer that initiates a global DMD MCP in the event that any DMD reset block  
has not received a MCP within 10 seconds. This auto-MCP function can be disabled by asserting WDT_ENBLZ  
high. Disabling the watchdog is not recommended unless the user ensures that a MCP to the entire DMD occurs  
within 10 seconds. During the time when the DLPC910 is in idle mode or is not operating, it is recommended to  
exercise the DMD mirrors by continuously loading alternating all-on/all-off patterns.  
7.3.6.4 DMD Mirror Float  
To avoid leaving a static image on the DMD without removing power, a mirror FLOAT operation can be issued to  
the DMD. A mirror FLOAT sequence begins by asserting the proper BLKMD and BLKAD as described in 表  
7-12. During the following row cycle, the DMD releases the tension under each mirror so that all mirrors are in a  
relatively flat position. The FLOAT operation takes approximately 500 μs to complete, during which time  
RST_ACTIVE is NOT asserted. Normal operation may then continue without resetting or cycling power to the  
DLPC910 or the DMD.  
7.3.6.5 Load4  
Load4 functionality provides improved global binary pattern rates for applications that can trade diminished  
vertical resolution for higher pattern rates. Examples of these types of applications are shutter or chopper  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
applications and vertical structured light patterns. Asserting LOAD4_ENZ causes the attached DMD to load 4  
rows for every row of data sent, reducing the pattern load time to ¼ of a full DMD load. It does not reduce the  
MCP timing.  
7.3.6.5.1 Load4 Row Addressing  
In Load4 mode, automatic increment mode and row address mode can still be used as before, however the  
largest addressable row is (VRes/4) - 1, where VRes = the vertical resolution of the DMD. The addressable  
vertical resolution is reduced by four, although the physical resolution is unchanged.  
Automatic increment address mode will automatically increment the row address input by one (or decrement by  
one for N/S flip). The row address input will be re-mapped as shown in 7-3.  
7-3. Load4 Row Address Mapping  
ROW ADDRESS INPUT  
PHYSICAL ROWS LOADED ON DMD  
0
0, 1, 2, 3  
1
4, 5, 6, 7  
2
8, 9, 10, 11  
3
N
12, 13, 14, 15  
4N, 4N+1, 4N+2, 4N+3  
VRes-4, VRes-3, VRes-2, VRes-1  
(VRes/4) -1  
Data Sent  
Data Loaded  
0
1
2
3
4
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
7-3. Example Load4 Row Address Mapping  
7.3.6.5.2 Load4 Block Clears  
While Load4 is enabled, Block Clear requests will be ignored. To load using Load4 followed by Block Clear  
request(s), simply de-assert LOAD4_ENZ at the beginning of the MCP request(s) preceding the Block Clear  
request(s). Re-assert LOAD4_ENZ at the beginning of the MCP request(s) preceding the next desired Load4  
operation. This will ensure that the DLPC910 controller has sufficient time to disable or enable LOAD4_ENZ  
before data is loaded or Block Clear(s) are requested. Refer to Block Clear regarding block clear operation.  
7.3.7 Status Interface  
7.3.7.1 ECP2 Finished  
When power is applied, the ECP2_FINISHED signal goes high to indicate the DLPC910 has completed loading  
the configuration from the DLPR910 PROM.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.3.7.2 Initialization Active  
The initialization active signal INIT_ACTIVE indicates that the DMD and the DLPC910 digital controller are in an  
initialization state after power is applied. During this initialization period, the DLPC910 is calibrating the data  
interface, and initializing the DMD by setting all internal registers to their correct states. Monitoring the  
INIT_ACTIVE signal should not begin until ECP2_FINISHED goes high. When this signal goes low, the system  
has completed initialization. System initialization takes approximately 4 ms to complete. Data and command  
write cycles must not be asserted during the initialization. This signal is driven by a CLK_R register and should  
be considered an asynchronous signal. Standard synchronization techniques should be applied if monitoring this  
signal with a synchronous circuit clocked by a clock other than CLK_R. After initialization is complete, a delay of  
at least 64 clocks should be observed before the first DVALID is asserted (to ensure a clean start up process).  
备注  
The RST2BLKZ, COMP_DATA, and NS_FLIP signals should be kept low during initialization to ensure  
proper setup of the system.  
7.3.7.3 Reset Active  
The reset active signal RST_ACTIVE goes high for approximately 4 µs, indicating a MCP operation is in  
progress. During this time, no additional MCPs will be accepted by the DLPC910 until RST_ACTIVE returns low.  
RST_ACTIVE does not return to low unless continuous no-op or data loading row cycles are issued.  
RST_ACTIVE is asserted to indicate that the operation is in progress. Each RST_ACTIVE pulse applies to one  
or more MCPs depending on the reset block operation chosen from 7-12. RST_ACTIVE is synchronized to an  
internal version of DDC_DCLK. As such, circuits in the application FPGA should consider this signal  
asynchronous and use standard synchronization techniques to assure reliable registering of this signal.  
7.3.7.4 DMD_TYPE  
During initialization, the DLPC910 queries the attached DMD for its DMD Type information. This information can  
then be monitored by an external processor via the status output pins DMD_TYPE_[3:0], or can be read via  
software over the I2C interface from the 7.5.1.4. The DMD types supported by the DLPC910 are listed in 表  
7-4.  
7-4. DMD Type Information  
DMD_TYPE_[3:0] output  
DESTOP_DMD_ID_REG value  
Type of DMD identified by DLPC410  
pins  
Value upon reset condition. Once read = unsupported  
DMD or DMD not connected  
'0000'  
0x00000000  
'1110'  
'1111'  
0x0000000E  
0x0000000F  
invalid  
DLP6500  
DLP9000X or DLP9000XUV  
invalid  
all other values  
备注  
If the DMD type is unsupported by the DLPC910 or the DMD type is unable to be read from the DMD,  
then the DLPC910 will not allow bit plane images to be displayed on the DMD.  
7.3.7.5 DDC_Version(2:0)  
These three output pins of the DLPC910 identify the version of the DLPC910 firmware as determined by the  
contents of DLPR910 PROM. If a problem is encountered which encourages you to contact a Texas Instruments  
representative, please provide the version number along with the detailed information of the issue. The current  
state of these output pins can also be acquired over the I2C bus by reading the DESTOP_VERSION Register.  
See the DLPR910 datasheet link located in 11.2.1 for the expected version numbers related to DLPR910  
revisions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.3.7.6 DMD_IRQ  
The DMD_IRQ signal indicates a DMD power fault of one of the bias, offset, or reset power supplies. If the  
customer interface wishes to monitor this signal, it must first be enabled in the DESTOP_INTERRUPT Register.  
The cause of the fault should be determined and resolved prior to a system reset to continue operation. The  
customer interface can also monitor this event by polling the DESTOP_INTERRUPT Register via the I2C  
interface.  
7.3.7.7 LED Indicators  
7.3.7.7.1 VLED0  
The VLED0 signal is typically connected to an LED to show that the DLPC910 is operating normally. The signal  
is 1 Hz with 50% duty cycle, otherwise known as the heartbeat.  
7.3.7.7.2 VLED1  
The VLED1 signal is typically connected to an LED indicator to show the status of system initialization and the  
status of the clock circuits. The VLED1 signal is asserted only when system initialization is complete and clock  
circuits are initialized. Logically, these signals are ANDed together to show an indication of the health of the  
system. If the Phase Locked Loop (PLL) connected to the data clock and the DMD clock are functioning correctly  
after system initialization, the LED will be illuminated.  
7.3.8 Reset and System Clock  
7.3.8.1 Controller Reset  
The controller reset input CTRL_RSTZ is an active low, asynchronous reset. This reset can be sourced from a  
voltage supervisor or from the customer interface. Users should note that the chipset will not operate correctly if  
all DLPC910 power supplies are not in range at the time this reset is released.  
7.3.8.2 Main Oscillator Clock  
The reference clock, CLKIN_R, supplied from an oscillator must be 50 MHz. This is required for the precise  
timing used to perform the DMD MCP. This clock should be valid prior to releasing CTRL_RSTZ.  
7.3.9 I2C Interface  
The I2C interface is compliant to I2C specification version 1.0 1992, and operates between 100 kHz and 400  
kHz clock rate. The interface allows the user to set controller configuration and provides status information such  
as:  
Controller and DMD identification  
DMD Type  
Versions  
Controller operating status  
Controller operating modes  
Each I2C clock and data I/O requires an external 1K-pull-up resistor to 3.3 V. Depending on the speed that is  
selected and the loading of the interface, a different pull-up resistor may be required.  
7.3.9.1 Configuration Pins  
The DDC_I2C_ADDR_SEL input signal allows the user to select the DLPC910 I2C slave address. When this pin  
is low, the slave address is 0x34 and when high the slave address is 0x36. If pin is left unconnected, the default  
slave address is 0x36.  
The DDC_I2C_SCL is the master controller input clock. The DDC_I2C_SDA is the bidirectional data signal. Both  
these signals require a 1-kpull-up resistor.  
7.3.9.2 Communications Interface  
Communications is performed over the I2C interface where the DLPC910 is the slave device. The DLPC910  
slave address consists of a 7-bit address plus 1 R/W bit. Communicating with the DLPC910 involves writing to or  
reading from the registers listed in Register Map.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.3.9.2.1 Command Format  
All register addresses are 32-bit in size, where each register contains a 32-bit value. The actual valid bits are  
shown in each respective register. Most registers contain spare or unused bits. These bits should be treated as  
don't-care during a read operation unless otherwise specified. When writing to spare or unused bits, these bits  
MUST be set to 0. Both the register address and the data require the least-significant byte to be first and most-  
significant byte last. A SUB CMD must precede the register address to indicate the type of operation, where a  
0xF1 indicates a write operation and a 0xF2 indicates a read operation. The following figures show examples of  
writing and reading to the DESTOP_BUS_SWAP register.  
7-4 shows an I2C master writing data to the DLPC910, where 0xF1 is required as the SUB CMD followed by  
the register address and finally the register data.  
7-4. Example I2C Master Writing DLPC910 Register Data  
7-5 shows an I2C master reading data from the DLPC910, where 0xF2 is required as the SUB CMD followed  
by the register address. Then the master performs STOP followed by a START to read the register data.  
7-5. Example I2C Master Reading DLPC910 Register Data  
7.3.10 DMD Interface  
Refer to 7-11 to obtain the required LVDS buses needed for each supported DMD.  
7.3.10.1 DDC_DOUT  
The controller provides four (A, B, C, D) 16-bit wide 2x LVDS output data buses to the DMD with a user  
selectable bus frequency of 400 or 480 MHz.  
7.3.10.2 DDC_SCTRL  
The controller provides four (A, B, C, D) control output buses to the DMD. Each bus provides the necessary  
control data for the different operating modes of the DMD.  
7.3.10.3 DDC_DCLKOUT  
The controller provides four (A, B, C, D) clock outputs to the DMD with a clock frequency of 400 or 480 MHz  
(user selectable). Both DDC_DOUT and DDC_SCTRL are clocked into the DMD on both the rising and falling  
edges of the DDC_DCLKOUT. When connecting the DLPC910 with a DLP6500, SPEED_SEL[1:0] inputs  
must be set to "00".  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.3.10.4 DMD Reset Interface  
7.3.10.4.1 Mirror Reset Control  
The controller provides the necessary mirror reset control signals to the DMD, which are:  
RESET_ADDR(3:0) Reset Driver Address Select.  
RESET_MODE(3:0) Reset Driver Mode Select.  
RESET_SEL(1:0) Reset Driver Level Select.  
RESET_STRB Reset Address, Mode, and Level Select latched on rising-edge.  
7.3.10.5 Enable and Interrupt Signals  
The controller provides the necessary outputs for DMD enables and an input interrupt from the DMD, which are:  
RESET_RSTZ Active-low reset output to the DMD PWRDNZ and RESETZ inputs.  
RESET_OEZ Active-low output enable for the DMD reset driver circuits.  
RESET_IRQZ Active-low input interrupt from the DMD.  
7.3.10.6 Serial Control Port  
The DLPC910 communicates with the DMD over the SCP bus to perform initialization, set configuration, and  
retrieve identification information.  
7.3.11 Flash PROM Interface  
7.3.11.1 JTAG Interface  
The JTAG interface has multiple purposes that can be used in the following manner:  
Program the configuration bit stream directly into the DLPC910  
Perform boundary test and debug of the DLPC910  
Program the configuration bit stream directly into the DLPR910 Flash PROM (not user configurable)  
7.3.11.2 PGM Interface  
The PGM(4:0) interface is used by the DLPC910 to read in the configuration bit stream from the attached  
DLPR910 PROM.  
7.4 Device Functional Modes  
The following section focuses on the operation of the DLP9000X/DLP9000XUV DMDs. The DLP6500 operates  
similar to the DLP9000X/DLP9000XUV. Refer to 7-11 for the differences between the supported DMDs.  
7.4.1 DMD Row Operation  
The DMD data is loaded one row at a time with the LVDS buses into the DMD SRAM array. All DMD data buses  
are required for correct operation. Refer to 7-11 to obtain the required LVDS buses for each DMD supported.  
Each bus consists of a differential clock (DDC_DCLKOUT), a differential control signal (DDC_SCTRL), and 16  
differential pairs of LVDS signals (DDC_DOUT[15:0]) that are output from the DLPC910. Data and control are  
clocked into the DMD on both the rising and falling edges of the DDC_DCLKOUT clocks. Data loading does not  
cause mirror switching until a MCP operation is completed.  
The number of clocks to load a row can be calculated as:  
C = P / (D × E)  
(1)  
where  
C = number of clocks per row  
P = number of pixels per row  
D = data bus bit width  
E = 2. (Data is clocked on both the rising and falling edge of DCLK.)  
Example:  
C = 2560 / (64 × 2) = 20 clocks per row  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Row address orientation depends on the North or South Flip Flag (NS_FLIP) input to the DLPC910. Refer to  
Related Documentation for the DMD datasheet regarding orientation of rows, columns, and MCP blocks. The  
row address counter does not automatically wrap-around when using the increment row address pointer  
instruction. After the final row is addressed, the row address pointer must be cleared to 0.  
备注  
The pin names in the following Pixel Mapping tables have been shortened to allow the tables to fit on  
the page. For example: D_A(0) = DDC_DIN_A0, D_A(1) = DDC_DIN_A1, and so on.  
7-5. DLP9000X/DLP9000XUV Pixel Mapping for D_A(x)  
DCLK  
EDGE  
D_A(0) D_A(1)  
D_A(2)  
D_A(3)  
D_A(4)  
D_A(5) D_A(6)  
D_A(7)  
D_A(8)  
D_A(9)  
D_A(10) D_A(11) D_A(12) D_A(12) D_A(14) D_A(15)  
0
0
1
2
3
4
5
6
7
8
9
10  
42  
11  
43  
12  
44  
13  
14  
15  
1
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
45  
46  
47  
2
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
3
96  
97  
98  
99  
100  
132  
164  
196  
228  
260  
292  
324  
356  
388  
420  
452  
484  
516  
548  
580  
612  
644  
676  
708  
740  
772  
804  
836  
868  
900  
932  
964  
996  
1028  
1060  
1092  
1124  
1156  
1188  
1220  
1252  
101  
133  
165  
197  
229  
261  
293  
325  
357  
389  
421  
453  
485  
517  
549  
581  
613  
645  
677  
709  
741  
773  
805  
837  
869  
901  
933  
965  
997  
1029  
1061  
1093  
1125  
1157  
1189  
1221  
1253  
102  
134  
166  
198  
230  
262  
294  
326  
358  
390  
422  
454  
486  
518  
550  
582  
614  
646  
678  
710  
742  
774  
806  
838  
870  
902  
934  
966  
998  
1030  
1062  
1094  
1126  
1158  
1190  
1222  
1254  
103  
135  
167  
199  
231  
263  
295  
327  
359  
391  
423  
455  
487  
519  
551  
583  
615  
647  
679  
711  
743  
775  
807  
839  
871  
903  
935  
967  
999  
1031  
1063  
1095  
1127  
1159  
1191  
1223  
1255  
104  
136  
168  
200  
232  
264  
296  
328  
360  
392  
424  
456  
488  
520  
552  
584  
616  
648  
680  
712  
744  
776  
808  
840  
872  
904  
936  
968  
1000  
1032  
1064  
1096  
1128  
1160  
1192  
1224  
1256  
105  
137  
169  
201  
233  
265  
297  
329  
361  
393  
425  
457  
489  
521  
553  
585  
617  
649  
681  
713  
745  
777  
809  
841  
873  
905  
937  
969  
1001  
1033  
1065  
1097  
1129  
1161  
1193  
1225  
1257  
106  
138  
170  
202  
234  
266  
298  
330  
362  
394  
426  
458  
490  
522  
554  
586  
618  
650  
682  
714  
746  
778  
810  
842  
874  
906  
938  
970  
1002  
1034  
1066  
1098  
1130  
1162  
1194  
1226  
1258  
107  
139  
171  
203  
235  
267  
299  
331  
363  
395  
427  
459  
491  
523  
555  
587  
619  
651  
683  
715  
747  
779  
811  
108  
140  
172  
204  
236  
268  
300  
332  
364  
396  
428  
460  
492  
524  
556  
588  
620  
652  
684  
716  
748  
780  
812  
844  
876  
908  
940  
972  
1004  
1036  
1068  
1100  
1132  
1164  
1196  
1228  
1260  
109  
141  
173  
205  
237  
269  
301  
333  
365  
397  
429  
461  
493  
525  
557  
589  
621  
653  
685  
717  
749  
781  
813  
845  
877  
909  
941  
973  
1005  
1037  
1069  
1101  
1133  
1165  
1197  
1229  
1261  
110  
142  
174  
206  
238  
270  
302  
334  
366  
398  
430  
462  
494  
526  
558  
590  
622  
654  
686  
718  
750  
782  
814  
846  
878  
910  
942  
974  
1006  
1038  
1070  
1102  
1134  
1166  
1198  
1230  
1262  
111  
4
128  
160  
192  
224  
256  
288  
320  
352  
384  
416  
448  
480  
512  
544  
576  
608  
640  
672  
704  
736  
768  
800  
832  
864  
896  
928  
960  
992  
1024  
1056  
1088  
1120  
1152  
1184  
1216  
1248  
129  
161  
193  
225  
257  
289  
321  
353  
385  
417  
449  
481  
513  
545  
577  
609  
641  
673  
705  
737  
769  
801  
833  
865  
897  
929  
961  
993  
1025  
1057  
1089  
1121  
1153  
1185  
1217  
1249  
130  
162  
194  
226  
258  
290  
322  
354  
386  
418  
450  
482  
514  
546  
578  
610  
642  
674  
706  
738  
770  
802  
834  
866  
898  
930  
962  
994  
1026  
1058  
1090  
1122  
1154  
1186  
1218  
1250  
131  
163  
195  
227  
259  
291  
323  
355  
387  
419  
451  
483  
515  
547  
579  
611  
643  
675  
707  
739  
771  
803  
835  
867  
899  
931  
963  
995  
1027  
1059  
1091  
1123  
1155  
1187  
1219  
1251  
143  
175  
207  
239  
271  
303  
335  
367  
399  
431  
463  
495  
527  
559  
591  
623  
655  
687  
719  
751  
783  
815  
847  
879  
911  
943  
975  
1007  
1039  
1071  
1103  
1135  
1167  
1199  
1231  
1263  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
843  
875  
907  
939  
971  
1003  
1035  
1067  
1099  
1131  
1163  
1195  
1227  
1259  
7-6. DLP9000X/DLP9000XUV Pixel Mapping for D_B(x)  
DCLK  
EDGE  
D_B(0) D_B(1)  
16 17  
D_B(2)  
D_B(3)  
D_B(4)  
D_B(5) D_B(6)  
D_B(7)  
D_B(8)  
D_B(9)  
D_B(10) D_B(11) D_B(12) D_B(12) D_B(14) D_B(15)  
0
18  
19  
20  
21 22  
23  
24  
25  
26 27 28 29 30 31  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-6. DLP9000X/DLP9000XUV Pixel Mapping for D_B(x) (continued)  
DCLK  
EDGE  
D_B(0) D_B(1)  
D_B(2)  
D_B(3)  
D_B(4)  
D_B(5) D_B(6)  
D_B(7)  
D_B(8)  
D_B(9)  
D_B(10) D_B(11) D_B(12) D_B(12) D_B(14) D_B(15)  
1
48  
80  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
90  
59  
91  
60  
92  
61  
62  
63  
2
81  
82  
83  
84  
85  
86  
87  
88  
89  
93  
94  
95  
3
112  
113  
114  
115  
116  
117  
118  
119  
120  
152  
184  
216  
248  
280  
312  
344  
376  
408  
440  
472  
504  
536  
568  
600  
632  
664  
696  
728  
760  
792  
824  
856  
888  
920  
952  
984  
1016  
1048  
1080  
1112  
1144  
1176  
1208  
1240  
1272  
121  
153  
185  
217  
249  
281  
313  
345  
377  
409  
441  
473  
505  
537  
569  
601  
633  
665  
697  
729  
761  
793  
825  
857  
889  
921  
953  
985  
1017  
1049  
1081  
1113  
1145  
1177  
1209  
1241  
1273  
122  
154  
186  
218  
250  
282  
314  
346  
378  
410  
442  
474  
506  
538  
570  
602  
634  
666  
698  
730  
762  
794  
826  
858  
890  
922  
954  
986  
1018  
1050  
1082  
1114  
1146  
1178  
1210  
1242  
1274  
123  
155  
187  
219  
251  
283  
315  
347  
379  
411  
124  
156  
188  
220  
252  
284  
316  
348  
380  
412  
444  
476  
508  
540  
572  
604  
636  
668  
700  
732  
764  
796  
828  
860  
892  
924  
956  
988  
1020  
1052  
1084  
1116  
1148  
1180  
1212  
1244  
1276  
125  
157  
189  
221  
253  
285  
317  
349  
381  
413  
445  
477  
509  
541  
573  
605  
637  
669  
701  
733  
765  
797  
829  
861  
893  
925  
957  
989  
1021  
1053  
1085  
1117  
1149  
1181  
1213  
1245  
1277  
126  
158  
190  
222  
254  
286  
318  
350  
382  
414  
446  
478  
510  
542  
574  
606  
638  
670  
702  
734  
766  
798  
830  
862  
894  
926  
958  
990  
1022  
1054  
1086  
1118  
1150  
1182  
1214  
1246  
1278  
127  
159  
191  
223  
255  
287  
319  
351  
383  
415  
447  
479  
511  
4
144  
176  
208  
240  
272  
304  
336  
368  
400  
432  
464  
496  
528  
560  
592  
624  
656  
688  
720  
752  
784  
816  
848  
880  
912  
944  
976  
1008  
1040  
1072  
1104  
1136  
1168  
1200  
1232  
1264  
145  
177  
209  
241  
273  
305  
337  
369  
401  
433  
465  
497  
529  
561  
593  
625  
657  
689  
721  
753  
785  
817  
849  
881  
913  
945  
977  
1009  
1041  
1073  
1105  
1137  
1169  
1201  
1233  
1265  
146  
178  
210  
242  
274  
306  
338  
370  
402  
434  
466  
498  
530  
562  
594  
626  
658  
690  
722  
754  
786  
818  
850  
882  
914  
946  
978  
1010  
1042  
1074  
1106  
1138  
1170  
1202  
1234  
1266  
147  
179  
211  
148  
180  
212  
244  
276  
308  
340  
372  
404  
436  
468  
500  
532  
564  
596  
628  
660  
692  
724  
756  
788  
820  
852  
884  
916  
948  
980  
1012  
1044  
1076  
1108  
1140  
1172  
1204  
1236  
1268  
149  
181  
213  
245  
277  
309  
341  
373  
405  
437  
469  
501  
533  
565  
597  
629  
661  
693  
725  
757  
789  
821  
853  
885  
917  
949  
981  
1013  
1045  
1077  
1109  
1141  
1173  
1205  
1237  
1269  
150  
182  
214  
246  
278  
310  
342  
374  
406  
438  
470  
502  
534  
566  
598  
630  
662  
694  
726  
758  
790  
822  
854  
886  
918  
950  
982  
1014  
1046  
1078  
1110  
1142  
1174  
1206  
1238  
1270  
151  
183  
215  
247  
279  
311  
5
6
7
243  
275  
307  
339  
371  
403  
435  
467  
499  
531  
563  
595  
627  
659  
691  
723  
755  
787  
819  
851  
883  
915  
947  
979  
1011  
1043  
1075  
1107  
1139  
1171  
1203  
1235  
1267  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
343  
375  
407  
439  
471  
503  
535  
567  
599  
631  
663  
695  
727  
759  
791  
823  
855  
887  
919  
951  
983  
1015  
1047  
1079  
1111  
1143  
1175  
1207  
1239  
1271  
443  
475  
507  
539  
571  
603  
635  
667  
699  
731  
763  
795  
827  
859  
891  
923  
955  
987  
1019  
1051  
1083  
1115  
1147  
1179  
1211  
1243  
1275  
543  
575  
607  
639  
671  
703  
735  
767  
799  
831  
863  
895  
927  
959  
991  
1023  
1055  
1087  
1119  
1151  
1183  
1215  
1247  
1279  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-7. DLP9000X/DLP9000XUV Pixel Mapping for D_C(x)  
DCLK  
EDGE  
D_C(0) D_C(1)  
D_C(2)  
D_C(3)  
D_C(4)  
D_C(5) D_C(6)  
D_C(7)  
D_C(8)  
D_C(9)  
D_C(10) D_C(11) D_C(12) D_C(12) D_C(14) D_C(15)  
0
1280  
1312  
1344  
1376  
1408  
1440  
1472  
1504  
1536  
1568  
1600  
1632  
1664  
1696  
1728  
1760  
1792  
1824  
1856  
1888  
1920  
1952  
1984  
2016  
2048  
2080  
2112  
2144  
2176  
2208  
2240  
2272  
2304  
2336  
2368  
2400  
2432  
2464  
2496  
2528  
1281  
1313  
1345  
1377  
1409  
1441  
1473  
1505  
1537  
1569  
1601  
1633  
1665  
1697  
1729  
1761  
1793  
1825  
1857  
1889  
1921  
1953  
1985  
2017  
2049  
2081  
2113  
2145  
2177  
2209  
2241  
2273  
2305  
2337  
2369  
2401  
2433  
2465  
2497  
2529  
1282  
1314  
1346  
1378  
1410  
1442  
1474  
1506  
1538  
1570  
1602  
1634  
1666  
1698  
1730  
1762  
1794  
1826  
1858  
1890  
1922  
1954  
1986  
2018  
2050  
2082  
2114  
2146  
2178  
2210  
2242  
2274  
2306  
2338  
2370  
2402  
2434  
2466  
2498  
2530  
1283  
1315  
1347  
1379  
1411  
1443  
1475  
1507  
1539  
1571  
1603  
1635  
1667  
1699  
1731  
1763  
1795  
1827  
1859  
1891  
1923  
1955  
1987  
2019  
2051  
2083  
2115  
2147  
2179  
2211  
2243  
2275  
2307  
2339  
2371  
2403  
2435  
2467  
2499  
2531  
1284  
1316  
1348  
1380  
1412  
1444  
1476  
1508  
1540  
1572  
1604  
1636  
1668  
1700  
1732  
1764  
1796  
1828  
1860  
1892  
1924  
1956  
1988  
2020  
2052  
2084  
2116  
2148  
2180  
2212  
2244  
2276  
2308  
2340  
2372  
2404  
2436  
2468  
2500  
2532  
1285  
1317  
1349  
1381  
1413  
1445  
1477  
1509  
1541  
1573  
1605  
1637  
1669  
1701  
1733  
1765  
1797  
1829  
1861  
1893  
1925  
1957  
1989  
2021  
2053  
2085  
2117  
2149  
2181  
2213  
2245  
2277  
2309  
2341  
2373  
2405  
2437  
2469  
2501  
2533  
1286  
1318  
1350  
1382  
1414  
1446  
1478  
1510  
1542  
1574  
1606  
1638  
1670  
1702  
1734  
1766  
1798  
1830  
1862  
1894  
1926  
1958  
1990  
2022  
2054  
2086  
2118  
2150  
2182  
2214  
2246  
2278  
2310  
2342  
2374  
2406  
2438  
2470  
2502  
2534  
1287  
1319  
1351  
1383  
1415  
1447  
1479  
1511  
1543  
1575  
1607  
1639  
1671  
1703  
1735  
1767  
1799  
1831  
1863  
1895  
1927  
1959  
1991  
2023  
2055  
2087  
2119  
2151  
2183  
2215  
2247  
2279  
2311  
2343  
2375  
2407  
2439  
2471  
2503  
2535  
1288  
1320  
1352  
1384  
1416  
1448  
1480  
1512  
1544  
1576  
1608  
1640  
1672  
1704  
1736  
1768  
1800  
1832  
1864  
1896  
1928  
1960  
1992  
2024  
2056  
2088  
2120  
2152  
2184  
2216  
2248  
2280  
2312  
2344  
2376  
2408  
2440  
2472  
2504  
2536  
1289  
1321  
1353  
1385  
1417  
1449  
1481  
1513  
1545  
1577  
1609  
1641  
1673  
1705  
1737  
1769  
1801  
1833  
1865  
1897  
1929  
1961  
1993  
2025  
2057  
2089  
2121  
2153  
2185  
2217  
2249  
2281  
2313  
2345  
2377  
2409  
2441  
2473  
2505  
2537  
1290  
1322  
1354  
1386  
1418  
1450  
1482  
1514  
1546  
1578  
1610  
1642  
1674  
1706  
1738  
1770  
1802  
1834  
1866  
1898  
1930  
1962  
1994  
2026  
2058  
2090  
2122  
2154  
2186  
2218  
2250  
2282  
2314  
2346  
2378  
2410  
2442  
2474  
2506  
2538  
1291  
1323  
1355  
1387  
1419  
1451  
1483  
1515  
1547  
1579  
1611  
1643  
1675  
1707  
1739  
1771  
1803  
1835  
1867  
1899  
1931  
1963  
1995  
2027  
2059  
2091  
2123  
2155  
2187  
2219  
2251  
2283  
2315  
2347  
2379  
2411  
2443  
2475  
2507  
2539  
1292  
1324  
1356  
1388  
1420  
1452  
1484  
1516  
1548  
1580  
1612  
1644  
1676  
1708  
1740  
1772  
1804  
1836  
1868  
1900  
1932  
1964  
1996  
2028  
2060  
2092  
2124  
2156  
2188  
2220  
2252  
2284  
2316  
2348  
2380  
2412  
2444  
2476  
2508  
2540  
1293  
1325  
1357  
1389  
1421  
1453  
1485  
1517  
1549  
1581  
1613  
1645  
1677  
1709  
1741  
1773  
1805  
1837  
1869  
1901  
1933  
1965  
1997  
2029  
2061  
2093  
2125  
2157  
2189  
2221  
2253  
2285  
2317  
2349  
2381  
2413  
2445  
2477  
2509  
2541  
1294  
1326  
1358  
1390  
1422  
1454  
1486  
1518  
1550  
1582  
1614  
1646  
1678  
1710  
1742  
1774  
1806  
1838  
1870  
1902  
1934  
1966  
1998  
2030  
2062  
2094  
2126  
2158  
2190  
2222  
2254  
2286  
2318  
2350  
2382  
2414  
2446  
2478  
2510  
2542  
1295  
1327  
1359  
1391  
1423  
1455  
1487  
1519  
1551  
1583  
1615  
1647  
1679  
1711  
1743  
1775  
1807  
1839  
1871  
1903  
1935  
1967  
1999  
2031  
2063  
2095  
2127  
2159  
2191  
2223  
2255  
2287  
2319  
2351  
2383  
2415  
2447  
2479  
2511  
2543  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-8. DLP9000X/DLP9000XUV Pixel Mapping for D_D(x)  
DCLK  
EDGE  
D_D(0) D_D(1)  
D_D(2)  
D_D(3)  
D_D(4)  
D_D(5) D_D(6)  
D_D(7)  
D_D(8)  
D_D(9)  
D_D(10) D_D(11) D_D(12) D_D(12) D_D(14) D_D(15)  
0
1296  
1328  
1360  
1392  
1424  
1456  
1488  
1520  
1552  
1584  
1616  
1648  
1680  
1712  
1744  
1776  
1808  
1840  
1872  
1904  
1936  
1968  
2000  
2032  
2064  
2096  
2128  
2160  
2192  
2224  
2256  
2288  
2320  
2352  
2384  
2416  
2448  
2480  
2512  
2544  
1297  
1329  
1361  
1393  
1425  
1457  
1489  
1521  
1553  
1585  
1617  
1649  
1681  
1713  
1745  
1777  
1809  
1841  
1873  
1905  
1937  
1969  
2001  
2033  
2065  
2097  
2129  
2161  
2193  
2225  
2257  
2289  
2321  
2353  
2385  
2417  
2449  
2481  
2513  
2545  
1298  
1330  
1362  
1394  
1426  
1458  
1490  
1522  
1554  
1586  
1618  
1650  
1682  
1714  
1746  
1778  
1810  
1842  
1874  
1906  
1938  
1970  
2002  
2034  
2066  
2098  
2130  
2162  
2194  
2226  
2258  
2290  
2322  
2354  
2386  
2418  
2450  
2482  
2514  
2546  
1299  
1331  
1363  
1395  
1427  
1459  
1491  
1523  
1555  
1587  
1619  
1651  
1683  
1715  
1747  
1779  
1811  
1843  
1875  
1907  
1939  
1971  
2003  
2035  
2067  
2099  
2131  
2163  
2195  
2227  
2259  
2291  
2323  
2355  
2387  
2419  
2451  
2483  
2515  
2547  
1300  
1332  
1364  
1396  
1428  
1460  
1492  
1524  
1556  
1588  
1620  
1652  
1684  
1716  
1748  
1780  
1812  
1844  
1876  
1908  
1940  
1972  
2004  
2036  
2068  
2100  
2132  
2164  
2196  
2228  
2260  
2292  
2324  
2356  
2388  
2420  
2452  
2484  
2516  
2548  
1301  
1333  
1365  
1397  
1429  
1461  
1493  
1525  
1557  
1589  
1621  
1653  
1685  
1717  
1749  
1781  
1813  
1845  
1877  
1909  
1941  
1973  
2005  
2037  
2069  
2101  
2133  
2165  
2197  
2229  
2261  
2293  
2325  
2357  
2389  
2421  
2453  
2485  
2517  
2549  
1302  
1334  
1366  
1398  
1430  
1462  
1494  
1526  
1558  
1590  
1622  
1654  
1686  
1718  
1750  
1782  
1814  
1846  
1878  
1910  
1942  
1974  
2006  
2038  
2070  
2102  
2134  
2166  
2198  
2230  
2262  
2294  
2326  
2358  
2390  
2422  
2454  
2486  
2518  
2550  
1303  
1335  
1367  
1399  
1431  
1463  
1495  
1527  
1559  
1591  
1623  
1655  
1687  
1719  
1751  
1783  
1815  
1847  
1879  
1911  
1943  
1975  
2007  
2039  
2071  
2103  
2135  
2167  
2199  
2231  
2263  
2295  
2327  
2359  
2391  
2423  
2455  
2487  
2519  
2551  
1304  
1336  
1368  
1400  
1432  
1464  
1496  
1528  
1560  
1592  
1624  
1656  
1688  
1720  
1752  
1784  
1816  
1848  
1880  
1912  
1944  
1976  
2008  
2040  
2072  
2104  
2136  
2168  
2200  
2232  
2264  
2296  
2328  
2360  
2392  
2424  
2456  
2488  
2520  
2552  
1305  
1337  
1369  
1401  
1433  
1465  
1497  
1529  
1561  
1593  
1625  
1657  
1689  
1721  
1753  
1785  
1817  
1849  
1881  
1913  
1945  
1977  
2009  
2041  
2073  
2105  
2137  
2169  
2201  
2233  
2265  
2297  
2329  
2361  
2393  
2425  
2457  
2489  
2521  
2553  
1306  
1338  
1370  
1402  
1434  
1466  
1498  
1530  
1562  
1594  
1626  
1658  
1690  
1722  
1754  
1786  
1818  
1850  
1882  
1914  
1946  
1978  
2010  
2042  
2074  
2106  
2138  
2170  
2202  
2234  
2266  
2298  
2330  
2362  
2394  
2426  
2458  
2490  
2522  
2554  
1307  
1339  
1371  
1403  
1435  
1467  
1499  
1531  
1563  
1595  
1627  
1659  
1691  
1723  
1755  
1787  
1819  
1851  
1883  
1915  
1947  
1979  
2011  
2043  
2075  
2107  
2139  
2171  
2203  
2235  
2267  
2299  
2331  
2363  
2395  
2427  
2459  
2491  
2523  
2555  
1308  
1340  
1372  
1404  
1436  
1468  
1500  
1532  
1564  
1596  
1628  
1660  
1692  
1724  
1756  
1788  
1820  
1852  
1884  
1916  
1948  
1980  
2012  
2044  
2076  
2108  
2140  
2172  
2204  
2236  
2268  
2300  
2332  
2364  
2396  
2428  
2460  
2492  
2524  
2556  
1309  
1341  
1373  
1405  
1437  
1469  
1501  
1533  
1565  
1597  
1629  
1661  
1693  
1725  
1757  
1789  
1821  
1853  
1885  
1917  
1949  
1981  
2013  
2045  
2077  
2109  
2141  
2173  
2205  
2237  
2269  
2301  
2333  
2365  
2397  
2429  
2461  
2493  
2525  
2557  
1310  
1342  
1374  
1406  
1438  
1470  
1502  
1534  
1566  
1598  
1630  
1662  
1694  
1726  
1758  
1790  
1822  
1854  
1886  
1918  
1950  
1982  
2014  
2046  
2078  
2110  
2142  
2174  
2206  
2238  
2270  
2302  
2334  
2366  
2398  
2430  
2462  
2494  
2526  
2558  
1311  
1343  
1375  
1407  
1439  
1471  
1503  
1535  
1567  
1599  
1631  
1663  
1695  
1727  
1759  
1791  
1823  
1855  
1887  
1919  
1951  
1983  
2015  
2047  
2079  
2111  
2143  
2175  
2207  
2239  
2271  
2303  
2335  
2367  
2399  
2431  
2463  
2495  
2527  
2559  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-9. DLP6500 Pixel Mapping for D_A(x)  
DCLK  
EDGE  
D_A(0) D_A(1)  
D_A(2)  
D_A(3)  
D_A(4)  
D_A(5) D_A(6)  
D_A(7)  
D_A(8)  
D_A(9)  
D_A(10) D_A(11) D_A(12) D_A(12) D_A(14) D_A(15)  
0
Not visible  
1
2
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
3
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
4
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
5
96  
97  
98  
99  
100  
101  
102  
103  
135  
167  
199  
231  
263  
295  
327  
359  
391  
423  
455  
487  
519  
551  
583  
615  
647  
679  
711  
104  
105  
106  
107  
108  
109  
110  
111  
6
128  
129  
161  
193  
225  
257  
289  
321  
353  
385  
417  
449  
481  
513  
545  
577  
609  
641  
673  
705  
737  
769  
801  
833  
865  
897  
929  
961  
993  
1025  
1057  
1089  
1121  
1153  
1185  
1217  
1249  
1281  
1313  
1345  
1377  
1409  
1441  
1473  
1505  
1537  
1569  
1601  
1633  
130  
162  
194  
226  
258  
290  
322  
354  
386  
418  
450  
482  
514  
546  
578  
610  
642  
674  
706  
738  
770  
802  
834  
866  
898  
930  
962  
994  
1026  
1058  
1090  
1122  
1154  
1186  
1218  
1250  
1282  
1314  
1346  
1378  
1410  
1442  
1474  
1506  
1538  
1570  
1602  
1634  
131  
163  
195  
227  
259  
291  
323  
355  
387  
419  
451  
483  
515  
547  
579  
611  
132  
133  
134  
136  
137  
138  
139  
140  
141  
142  
143  
7
160  
164  
165  
166  
168  
169  
170  
171  
172  
173  
174  
175  
8
192  
196  
197  
198  
200  
201  
202  
203  
204  
205  
206  
207  
9
224  
228  
229  
230  
232  
233  
234  
235  
236  
237  
238  
239  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
256  
260  
261  
262  
264  
265  
266  
267  
268  
269  
270  
271  
288  
292  
293  
294  
296  
297  
298  
299  
300  
301  
302  
303  
320  
324  
325  
326  
328  
329  
330  
331  
332  
333  
334  
335  
352  
356  
357  
358  
360  
361  
362  
363  
364  
365  
366  
367  
384  
388  
389  
390  
392  
393  
394  
395  
396  
397  
398  
399  
416  
420  
421  
422  
424  
425  
426  
427  
428  
429  
430  
431  
448  
452  
453  
454  
456  
457  
458  
459  
460  
461  
462  
463  
480  
484  
485  
486  
488  
489  
490  
491  
492  
493  
494  
495  
512  
516  
517  
518  
520  
521  
522  
523  
524  
525  
526  
527  
544  
548  
549  
550  
552  
553  
554  
555  
556  
557  
558  
559  
576  
580  
581  
582  
584  
585  
586  
587  
588  
589  
590  
591  
608  
612  
613  
614  
616  
617  
618  
619  
620  
621  
622  
623  
640  
643  
675  
707  
739  
771  
803  
835  
867  
899  
931  
963  
995  
1027  
1059  
1091  
1123  
1155  
1187  
1219  
1251  
1283  
1315  
1347  
1379  
1411  
1443  
1475  
1507  
1539  
1571  
1603  
1635  
644  
645  
646  
648  
649  
650  
651  
652  
653  
654  
655  
672  
676  
677  
678  
680  
681  
682  
683  
684  
685  
686  
687  
704  
708  
709  
710  
712  
713  
714  
715  
716  
717  
718  
719  
736  
740  
741  
742  
743  
775  
807  
839  
871  
903  
935  
967  
999  
1031  
1063  
1095  
1127  
1159  
1191  
1223  
1255  
1287  
1319  
1351  
1383  
1415  
1447  
1479  
1511  
1543  
1575  
1607  
1639  
744  
745  
746  
747  
748  
749  
750  
751  
768  
772  
773  
774  
776  
777  
778  
779  
780  
781  
782  
783  
800  
804  
805  
806  
808  
809  
810  
811  
812  
813  
814  
815  
832  
836  
837  
838  
840  
841  
842  
843  
844  
845  
846  
847  
864  
868  
869  
870  
872  
873  
874  
875  
876  
877  
878  
879  
896  
900  
901  
902  
904  
905  
906  
907  
908  
909  
910  
911  
928  
932  
933  
934  
936  
937  
938  
939  
940  
941  
942  
943  
960  
964  
965  
966  
968  
969  
970  
971  
972  
973  
974  
975  
992  
996  
997  
998  
1000  
1032  
1064  
1096  
1128  
1160  
1192  
1224  
1256  
1288  
1320  
1352  
1384  
1416  
1448  
1480  
1512  
1544  
1576  
1608  
1640  
1001  
1033  
1065  
1097  
1129  
1161  
1193  
1225  
1257  
1289  
1321  
1353  
1385  
1417  
1449  
1481  
1513  
1545  
1577  
1609  
1641  
1002  
1034  
1066  
1098  
1130  
1162  
1194  
1226  
1258  
1290  
1322  
1354  
1386  
1418  
1450  
1482  
1514  
1546  
1578  
1610  
1642  
1003  
1035  
1067  
1099  
1131  
1163  
1195  
1227  
1259  
1291  
1323  
1355  
1387  
1419  
1451  
1483  
1515  
1547  
1579  
1611  
1643  
1004  
1036  
1068  
1100  
1132  
1164  
1196  
1228  
1260  
1292  
1324  
1356  
1388  
1420  
1452  
1484  
1516  
1548  
1580  
1612  
1644  
1005  
1037  
1069  
1101  
1133  
1165  
1197  
1229  
1261  
1293  
1325  
1357  
1389  
1421  
1453  
1485  
1517  
1549  
1581  
1613  
1645  
1006  
1038  
1070  
1102  
1134  
1166  
1198  
1230  
1262  
1294  
1326  
1358  
1390  
1422  
1454  
1486  
1518  
1550  
1582  
1614  
1646  
1007  
1039  
1071  
1103  
1135  
1167  
1199  
1231  
1263  
1295  
1327  
1359  
1391  
1423  
1455  
1487  
1519  
1551  
1583  
1615  
1647  
1024  
1056  
1088  
1120  
1152  
1184  
1216  
1248  
1280  
1312  
1344  
1376  
1408  
1440  
1472  
1504  
1536  
1568  
1600  
1632  
1028  
1060  
1092  
1124  
1156  
1188  
1220  
1252  
1284  
1316  
1348  
1380  
1412  
1444  
1476  
1508  
1540  
1572  
1604  
1636  
1029  
1061  
1093  
1125  
1157  
1189  
1221  
1253  
1285  
1317  
1349  
1381  
1413  
1445  
1477  
1509  
1541  
1573  
1605  
1637  
1030  
1062  
1094  
1126  
1158  
1190  
1222  
1254  
1286  
1318  
1350  
1382  
1414  
1446  
1478  
1510  
1542  
1574  
1606  
1638  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-9. DLP6500 Pixel Mapping for D_A(x) (continued)  
DCLK  
EDGE  
D_A(0) D_A(1)  
D_A(2)  
D_A(3)  
D_A(4)  
D_A(5) D_A(6)  
D_A(7)  
D_A(8)  
D_A(9)  
D_A(10) D_A(11) D_A(12) D_A(12) D_A(14) D_A(15)  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
1664  
1696  
1728  
1760  
1792  
1824  
1856  
1888  
1665  
1697  
1729  
1761  
1793  
1825  
1857  
1889  
1666  
1698  
1730  
1762  
1794  
1826  
1858  
1890  
1667  
1699  
1731  
1763  
1795  
1827  
1859  
1891  
1668  
1700  
1732  
1764  
1796  
1828  
1860  
1892  
1669  
1701  
1733  
1765  
1797  
1829  
1861  
1893  
1670  
1702  
1734  
1766  
1798  
1830  
1862  
1894  
1671  
1703  
1735  
1767  
1799  
1831  
1863  
1895  
1672  
1704  
1736  
1768  
1800  
1832  
1864  
1896  
1673  
1705  
1737  
1769  
1801  
1833  
1865  
1897  
1674  
1706  
1738  
1770  
1802  
1834  
1866  
1898  
1675  
1707  
1739  
1771  
1803  
1835  
1867  
1899  
1676  
1708  
1740  
1772  
1804  
1836  
1868  
1900  
1677  
1709  
1741  
1773  
1805  
1837  
1869  
1901  
1678  
1710  
1742  
1774  
1806  
1838  
1870  
1902  
1679  
1711  
1743  
1775  
1807  
1839  
1871  
1903  
Not visible  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-10. DLP6500 Pixel Mapping for D_B(x)  
DCLK  
EDGE  
D_B(0) D_B(1)  
D_B(2)  
D_B(3)  
D_B(4)  
D_B(5) D_B(6)  
D_B(7)  
D_B(8)  
D_B(9)  
D_B(10) D_B(11) D_B(12) D_B(12) D_B(14) D_B(15)  
0
Not visible  
1
2
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
3
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
4
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
5
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
6
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
7
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
8
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
9
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
1008  
1040  
1072  
1104  
1136  
1168  
1200  
1232  
1264  
1296  
1328  
1360  
1392  
1424  
1456  
1488  
1520  
1552  
1584  
1616  
1648  
1009  
1041  
1073  
1105  
1137  
1169  
1201  
1233  
1265  
1297  
1329  
1361  
1393  
1425  
1457  
1489  
1521  
1553  
1585  
1617  
1649  
1010  
1042  
1074  
1106  
1138  
1170  
1202  
1234  
1266  
1298  
1330  
1362  
1394  
1426  
1458  
1490  
1522  
1554  
1586  
1618  
1650  
1011  
1043  
1075  
1107  
1139  
1171  
1203  
1235  
1267  
1299  
1331  
1363  
1395  
1427  
1459  
1491  
1523  
1555  
1587  
1619  
1651  
1012  
1044  
1076  
1108  
1140  
1172  
1204  
1236  
1268  
1300  
1332  
1364  
1396  
1428  
1460  
1492  
1524  
1556  
1588  
1620  
1652  
1013  
1045  
1077  
1109  
1141  
1173  
1205  
1237  
1269  
1301  
1333  
1365  
1397  
1429  
1461  
1493  
1525  
1557  
1589  
1621  
1653  
1014  
1046  
1078  
1110  
1142  
1174  
1206  
1238  
1270  
1302  
1334  
1366  
1398  
1430  
1462  
1494  
1526  
1558  
1590  
1622  
1654  
1015  
1047  
1079  
1111  
1143  
1175  
1207  
1239  
1271  
1303  
1335  
1367  
1399  
1431  
1463  
1495  
1527  
1559  
1591  
1623  
1655  
1016  
1048  
1080  
1112  
1144  
1176  
1208  
1240  
1272  
1304  
1336  
1368  
1400  
1432  
1464  
1496  
1528  
1560  
1592  
1624  
1656  
1017  
1049  
1081  
1113  
1145  
1177  
1209  
1241  
1273  
1305  
1337  
1369  
1401  
1433  
1465  
1497  
1529  
1561  
1593  
1625  
1657  
1018  
1050  
1082  
1114  
1146  
1178  
1210  
1242  
1274  
1306  
1338  
1370  
1402  
1434  
1466  
1498  
1530  
1562  
1594  
1626  
1658  
1019  
1051  
1083  
1115  
1147  
1179  
1211  
1243  
1275  
1307  
1339  
1371  
1403  
1435  
1467  
1499  
1531  
1563  
1595  
1627  
1659  
1020  
1052  
1084  
1116  
1148  
1180  
1212  
1244  
1276  
1308  
1340  
1372  
1404  
1436  
1468  
1500  
1532  
1564  
1596  
1628  
1660  
1021  
1053  
1085  
1117  
1149  
1181  
1213  
1245  
1277  
1309  
1341  
1373  
1405  
1437  
1469  
1501  
1533  
1565  
1597  
1629  
1661  
1022  
1054  
1086  
1118  
1150  
1182  
1214  
1246  
1278  
1310  
1342  
1374  
1406  
1438  
1470  
1502  
1534  
1566  
1598  
1630  
1662  
1023  
1055  
1087  
1119  
1151  
1183  
1215  
1247  
1279  
1311  
1343  
1375  
1407  
1439  
1471  
1503  
1535  
1567  
1599  
1631  
1663  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-10. DLP6500 Pixel Mapping for D_B(x) (continued)  
DCLK  
EDGE  
D_B(0) D_B(1)  
D_B(2)  
D_B(3)  
D_B(4)  
D_B(5) D_B(6)  
D_B(7)  
D_B(8)  
D_B(9)  
D_B(10) D_B(11) D_B(12) D_B(12) D_B(14) D_B(15)  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
1680  
1712  
1744  
1776  
1808  
1840  
1872  
1904  
1681  
1713  
1745  
1777  
1809  
1841  
1873  
1905  
1682  
1714  
1746  
1778  
1810  
1842  
1874  
1906  
1683  
1715  
1747  
1779  
1811  
1843  
1875  
1907  
1684  
1716  
1748  
1780  
1812  
1844  
1876  
1908  
1685  
1717  
1749  
1781  
1813  
1845  
1877  
1909  
1686  
1718  
1750  
1782  
1814  
1846  
1878  
1910  
1687  
1719  
1751  
1783  
1815  
1847  
1879  
1911  
1688  
1720  
1752  
1784  
1816  
1848  
1880  
1912  
1689  
1721  
1753  
1785  
1817  
1849  
1881  
1913  
1690  
1722  
1754  
1786  
1818  
1850  
1882  
1914  
1691  
1723  
1755  
1787  
1819  
1851  
1883  
1915  
1692  
1724  
1756  
1788  
1820  
1852  
1884  
1916  
1693  
1725  
1757  
1789  
1821  
1853  
1885  
1917  
1694  
1726  
1758  
1790  
1822  
1854  
1886  
1918  
1695  
1727  
1759  
1791  
1823  
1855  
1887  
1919  
Not visible  
7.4.1.1 Data and Command Write Cycle  
Once initialization completes (INIT_ACTIVE = 0), the user is free to send bit plane data and control information  
to the DLPC910. The row write cycle begins with the assertion of DVALID. DVALID, all bit plane data, and all  
DMD control information must be presented to the DLPC910 synchronous to the input clock DCLKIN. When the  
user asserts a DVALID signal, the DLPC910 begins sampling the LVDS data inputs and control inputs and  
synchronously sends this information to the DMD along with row address control information.  
The DMD incorporates single row write operations using a row address counter that is randomly addressable.  
The Row Mode and Row address must be presented synchronous to the DCLKIN at this beginning of each row  
cycle. As shown in 7-1 and 7-2, ROWMD(1:0) determines the single row write count mode and  
ROWAD(10:0) determines the single row write address. ROWMD and ROWAD must be asserted synchronously  
with DVALID and must be valid synchronous to the beginning of the bit plane data as shown in 7-6.  
7-6 shows an example of data written to the DLPC910 for two consecutive row cycles. This diagram applies  
to the DLPC910 for all compatible DMDs with a difference between DMD bus widths and number of clock cycles  
per row. For the DLP9000X/DLP9000XUV DMDs, data is written to the DLPC910 64 bits on each clock edge (16  
Bus A bits + 16 Bus B bits + 16 Bus C bits + 16 Bus D bits) for 20 clock cycles (N=40) to complete one row  
cycle. For the DLP6500 DMD, only Bus A and Bus B are used (32 bits total) for 32 clock cycles (N=64) to  
complete one row cycle. An entire row of data must be written for data to be properly latched into the DMD  
memory. To complete the first row cycle (k), DVALID should be de-asserted (logic '0') two full clock cycles prior to  
the completion of the row cycle. The assertion of DVALID back high ('1') indicates the beginning of the next row  
cycle (k+1). For non-consecutive row cycles, keep DVALID low until the next row cycles is to begin, at which  
point DVALID should be taken high to start the next row cycle. This is for all row cycle operations including No-  
Op row cycles.  
备注  
Setting DVALID to LOW for the last clock cycle does not affect data read in the last two clock  
transitions. The firmware will finish the correct number data reads from DIN_(A/B/C/D) for the specific  
DMD, started by the rising edge of DVALID at the beginning of the row cycle.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Row cycle k  
Row cycle k+1  
DCLKIN  
DVALID  
Low for last two  
full clocks in row  
ROWMD/ROWAD  
BLK_MD/BLK_AD  
NS_FLIP/COMP_DATA  
4
0
1
2
3
N-6  
N-5  
0
N-4  
N-3  
N-2  
N-1  
1
DIN_A/B/C/D  
7-6. DLPC910 Input Consecutive Single Row Write Cycles  
7.4.2 Block Mode Operation  
The DMD mirrors and corresponding SRAM pixels are organized into blocks and each block is broken into rows  
per BLK as described in 7-11. Mirror blocks are addressed for either the Mirror Clocking Pulse or Block Clear  
functions by asserting block control signals at the start of each row data load. RST2BLKZ, BLKMD and BLKAD  
are used as shown in 7-12 to designate which mirror block(s) is to be issued a MCP or a Block Clear. Refer to  
Related Documentation for the DMD datasheet regarding block location information.  
The clear operation sets all of the SRAM pixels in the designated block to logic zero during the current row  
cycle.  
It is possible to issue a MCP to a block while loading a different block.  
It is not possible to clear a block while writing to a different block.  
It is not necessary to clear a block if it is going to be reloaded with new data (just like a normal memory cell).  
It is recommended that RST2BLKZ, COMP, and NS_FLIP be set to one value and not adjusted during normal  
system operation.  
A change in RST2BLKZ is not immediately effective and will require more than one row load cycle to  
complete.  
备注  
RST2BLK needs to be kept low during initialization for proper setup of the system. Dynamic changes  
to RST2BLK during normal operation are not recommended.  
7-11. DMD Characteristics  
ROWS PER CLKS PER  
Required Output  
LVDS Buses  
Required Input  
LVDS Buses  
TYPE  
COLS ROWS BLKS  
#DATA IN  
BLK  
ROW  
DLP9000X - 0.9 WQXGA  
Type A  
2560  
2560  
1600  
1600  
16  
16  
100  
20  
64  
64  
A, B, C, and D  
A, B, C, and D  
A, B, C, and D  
A, B, C, and D  
DLP9000XUV - 0.9  
WQXGA Type A  
100  
20  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-11. DMD Characteristics (continued)  
ROWS PER CLKS PER  
Required Output  
LVDS Buses  
Required Input  
LVDS Buses  
TYPE  
COLS ROWS BLKS  
1920 1080 15  
#DATA IN  
BLK  
ROW  
DLP6500 - 0.65 1080p  
Type A and S600  
72  
32  
32  
A and B(1)  
or  
A and B  
C and D  
(1) By default data and serial control outputs are active on buses A and B. Refer to 7.5.1.9 to activate data and serial control outputs on  
buses C and D.  
7-12. Block Operations  
RST2BKLZ  
BLKMD_1  
BLKMD_2  
BLKAD_3  
BLKAD_2  
BLKAD_1  
BLKAD_0  
OPERATION  
None  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Clear block 00  
Clear block 01  
Clear block 02  
Clear block 03  
Clear block 04  
Clear block 05  
Clear block 06  
Clear block 07  
Clear block 08  
Clear block 09  
Clear block 10  
Clear block 11  
Clear block 12  
Clear block 13  
Clear block 14  
Clear block 15 (1)  
Reset block 00  
Reset block 01  
Reset block 02  
Reset block 03  
Reset block 04  
Reset block 05  
Reset block 06  
Reset block 07  
Reset block 08  
Reset block 09  
Reset block 10  
Reset block 11  
Reset block 12  
Reset block 13  
Reset block 14  
Reset block 15 (1)  
Reset blocks 00-01  
Reset blocks 02-03  
Reset blocks 04-05  
Reset blocks 06-07  
Reset blocks 08-09  
Reset blocks 10-11  
Reset blocks 12-13  
Reset blocks 14-15  
0
0
0
0
0
0
0
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-12. Block Operations (continued)  
RST2BKLZ  
BLKMD_1  
BLKMD_2  
BLKAD_3  
BLKAD_2  
BLKAD_1  
BLKAD_0  
OPERATION  
1
1
1
1
X
X
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
Reset blocks 00-03  
Reset blocks 04-07  
Reset blocks 08-11  
Reset blocks 12-15  
Reset blocks 00-15  
Float blocks 00-15  
(1) Not applicable on DLP6500.  
7.4.3 Block Clear  
The DMD incorporates block clear operations using the BLKMD and BLKAD signals as shown in 7-12. The  
block address does not automatically increment and must be set to the desired block to be cleared. The Block  
clear operation writes logic zero data to all the SRAM cells in one DMD block regardless of the COMP_DATA  
input state. It is not possible to clear a DMD block while writing to a different block. BLKMD and BLKAD are  
asserted to perform a MCP on the block(s) that have been cleared. The customer interface should introduce a  
delay on the last block(s) that were issued a MCP to allow the mirrors to become stable. Each Block Clear  
operation must be followed by two no-op row load cycles. For the DLP9000X/DLP9000XUV there are 16  
total Block Clear commands and 32 total no-op row cycles that are required to clear the entire DMD array. For  
the DLP6500 there are 15 total Block Clear commands and 30 total no-op row cycles that are required to clear  
the entire DMD array.  
7.4.4 Mirror Clocking Pulse  
A Mirror Clocking Pulse (MCP) sequence begins by asserting BLKMD and BLKAD for a single, dual, quad, or  
global block operation as defined in 7-12. A MCP causes a reset on the block(s), and the data stored in the  
block(s) takes effect on the mirrors of the DMD. Shortly after a MCP has been issued, RST_ACTIVE goes high  
for approximately 4 μs, indicating a MCP operation is in progress. During this time, no additional MCPs may be  
initiated until RST_ACTIVE returns low. RST_ACTIVE does not return to low unless continuous no-op or data  
loading row cycles are issued. A typical single block load phased sequence in which consecutive DMD blocks  
are loaded is illustrated in 7-8. A MCP time is identical for single, dual, quad or global block operations.  
Note that it may take longer to complete a MCP on a block than it does to load a block. The block load time may  
be calculated as:  
Block Load Time = Clock Period × number CLKS per ROW × number ROWS per BLK  
7-13. DMD Block Load Time  
DMD  
MINIMUM BLOCK LOAD TIME  
DCLKIN (MHz)  
DLP9000X  
DLP9000XUV  
DLP6500  
4.167 µsec  
480  
480  
400  
4.167 µsec  
5.76 µsec  
For any case which involves sending a MCP or a Block Clear without data loading, the customer interface must  
send no-op row cycles. This can be accomplished by asserting DVALID, while holding ROWMD at 00 and  
BLKMD at 00 for the number of clocks per row in the DMD, as in 7-7. Refer to 7-11 to obtain the number of  
clocks per row. Following the loading of all rows in a block or the entire DMD, at least one no-op row cycle must  
be completed to initiate the MCP. If the MCP is asserted prior to loading all rows in a block or the entire DMD,  
rows which were not updated will show old data. Additional MCP operations may not be initiated until  
RST_ACTIVE is low. Block Clear operations for the DMD must be followed by two consecutive no-op row cycle  
commands.  
To obtain full utilization of the DMD bandwidth, load four blocks and then issue a MCP to the four blocks  
concurrently by setting RST2BLKZ to 1 and BLKMD to 11 with the appropriate address in BLKAD. This is  
illustrated in 7-10.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
It is possible to load other blocks while the block(s) previously issued a MCP is settling. This is illustrated in 图  
7-9 and 7-10, where blocks are reloaded while the mirror setting time is occurring. It is also possible to load  
other blocks while previously loaded block(s) have an outstanding RST_ACTIVE. This is illustrated in 7-10,  
where block 0 is loaded while RST_ACTIVE is asserted for blocks 12-15.  
备注  
While RST_ACTIVE is high for 4 μs, the data for the block(s) being issued a MCP should not be  
changed to allow the mirrors to become stable. The RST_ACTIVE does not include the mirror settling  
period. A short delay of 6 μs should be introduced during the last block(s) that is issued a MCP. The  
mirror settling time is illustrated in 7-8, 7-9, 7-10, and 7-11, where the customer interface  
introduces a delay on the last block(s) that were issued a MCP to allow the mirrors to become stable.  
7-8, 7-9, 7-10, and 7-11 all show an exposure period. Once the customer interface has issued all  
required MCPs and the proper mirror settling time has been applied, the customer interface may pulse an  
illumination source onto the DMD during this period. The exposure period is user adjustable; however, increasing  
the exposure period decreases the pattern rate. Refer to Application Curves regarding exposure period.  
7-7, 7-8, 7-9, 7-10, and 7-11 show timing for the DLP9000X/DLP9000XUV. Refer to 7-11 to  
obtain the number of reset blocks and clocks per row for the DLP6500 DMD.  
0
1
37  
38  
39  
DCLKIN  
DVALID  
00  
00  
00  
ROWMD  
BLK_MD  
00  
XXXX  
BLK_AD  
XXXX  
7-7. DMD No-op Row Cycle  
Mirror  
Settling Time  
for Block 15  
Exposure Period  
Load Block 0  
Load Block 15  
Reset Block 14  
Block 13  
Block 12  
Load Block 14  
Reset Block 13  
Load Block 1  
Reset Block 0  
DIN_A/B/C/D  
Reset Block 15  
BLK_MD/BLK_AD  
RST_ACTIVE  
7-8. Single Block Load Phased Sequence  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Mirror Settling  
Time for Blocks  
14 and 15  
Exposure Period  
Load Block 1  
Load Block 2  
DIN_A/B/C/D  
Load Block 15  
Load Block 0  
Reset Blocks 0-1  
Reset Blocks 14-15  
BLK_MD/BLK_AD  
RST_ACTIVE  
7-9. Dual Block Load Phased Sequence  
Mirror Settling  
Time for Blocks  
12 - 15  
Exposure Period  
Load Block 15  
Load Block 2  
Load Block 3  
Load Block 4  
DIN_A/B/C/D  
Load Block 0  
Load Block 1  
Reset Blocks 12-15  
BLK_MD/BLK_AD  
RST_ACTIVE  
Reset Blocks 0-3  
7-10. Quad Block Load Phased Sequence  
Mirror Settling  
Time for All  
Blocks  
Exposure Period  
Load Block 1  
Load Block 1  
Load Block 15  
DIN_A/B/C/D  
Load Block 0  
Load Block 15  
Load Block 0  
Reset All  
BLK_MD/BLK_AD  
RST_ACTIVE  
Reset All  
7-11. Full DMD Global Load Sequence  
Note: After a MCP or Block Clear command is given, RST_ACTIVE may not be asserted until up to 60 ns  
(depending on the clock frequency) after the command. While RST_ACTIVE is asserted, no other command  
should be given.  
7.4.5 DMD Array Subset  
It is possible to use a subset of the DMD array including individual MCP blocks. The driving software/hardware  
MUST ensure that the MCP rate for the number of blocks in the subset plus the mirror settling time does not  
exceed 50 kHz.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Load4 functionality is primarily intended to be used with global MCPs. However, it is possible to use a subset of  
the DMD array including individual MCP blocks. The driving software/hardware MUST ensure that the MCP rate  
for the number of blocks in the Load4 subset plus the mirror settling time does not exceed 50 kHz.  
7.4.6 Global Mirror Clocking Pulse Consideration  
A Global MCP (BLKMD = 11 and BLKAD = 10XX), takes the same amount of time as the single, dual, and quad  
block MCP. In addition to requiring a no-op row cycle to initiate a global MCP, a row cycle (either no-op or data  
loading) is also required to complete the operation. If the customer interface is monitoring RST_ACTIVE to  
determine when to send a subsequent row cycle, it will never see RST_ACTIVE transition low. One method of  
operation would be to continue sending no-op row cycles until RST_ACTIVE goes low then continue loading  
data with real row cycles. Another method of operation is to delay greater than 10 μs, then start loading new  
data to DMD.  
7.5 Register Map  
7.5.1 Register Table Overview  
7-14 lists the I2C accessible memory mapped registers for the DLPC910. Access to the I2C registers should  
not begin until INIT_ACTIVE has transitioned low (logic 0).  
7-14. Communication Registers  
ADDRESS  
0x0000  
0x0004  
0x0008  
0x000C  
0x0010  
0x0014  
0x0018  
0x001C  
0x0020  
0x0024  
0x0028  
0x002C  
0x0030  
REGISTER NAME  
DESCRIPTION  
SIZE  
DESTOP_INTERRUPT  
DESTOP Interrupt Status  
32  
MAIN_STATUS  
DESTOP_CAL  
Main Status  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
DESTOP input calibration status  
Connected DMD Type  
DESTOP_DMD_ID_REG  
DESTOP_CATBITS_REG  
DESTOP_910VERSION_REG  
DESTOP_RESET_REG  
DESTOP_INFIFO_STATUS  
DESTOP_BUS_SWAP  
DESTOP_DMDCTRL  
DESTOP_BIT_FLIP  
Connected DMD fuse catalog bits  
DLPC910 Version Number  
Reset status signals  
Input interface FIFO status  
Output bus swap  
DMD Control Register  
Output data bus bit reversal/flip  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.5.1.1 DESTOP_INTERRUPT Register  
The DESTOP_INTERRUPT register is used for controlling the interrupt source. Interrupts can be enabled,  
disabled, cleared and read independently.  
7-15. DESTOP_INTERRUPT Register  
ADDRESS (1) (2) (3) (4)  
BITS  
DESCRIPTION  
RESET  
0x0  
TYPE  
R/W  
R
0
1
SPARE  
SPARE  
0x0  
A DMD IRQZ event occurred. The only existing source for this event is a  
DMD power fault indicating bias, offset, or reset power supplies have  
become inactive. The cause of the fault should be determined and  
resolved prior to a system reset to continue operation. (5)  
0x0000  
0x0004  
0x0008  
2
0x0  
R/W  
3
SPARE  
0x0  
0x0  
R
R
31:4  
UNUSED  
(1) Interrupt status can be obtained by reading 0x0000 or 0x0004 address.  
(2) Interrupt bits are asserted either by the corresponding H/W events or by S/W writing a 1 to the target bit of 0x0004 address.  
(3) Interrupt bits are cleared by S/W writing a 1 to the target bit in 0x0000 address.  
(4) Interrupts are enabled by setting the appropriate bits in register 0x0008.  
(5) This bit must be cleared after a power cycle or a reset to the DLPC910.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
 
 
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.5.1.2 MAIN_STATUS Register  
The MAIN_STATUS register is used for reading the status of the DLPC910. The register can be polled during  
operation to obtain the current state of the DLPC910.  
7-16. MAIN_STATUS Register  
ADDRESS  
BITS  
DESCRIPTION  
DMD initialization in progress flag  
0 - No DMD initialization activity  
RESET  
TYPE  
0
0x0  
R
1 - DMD initialization in progress  
DMD initialization in progress flag 1  
0 - No DMD stage 1 initialization activity  
1 - DMD stage 1 initialization activity in progress  
DMD initialization in progress flag 2  
0 - No DMD stage 2 initialization activity  
1 - DMD stage 2 initialization activity in progress  
DMD supports AB channels  
1
2
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
R
R
R
R
3
0 - Operation of DMD AB buses not enabled  
1 - Operation of DMD AB buses enabled  
DMD supports CD channels  
4
0 - Operation of DMD CD buses not enabled  
1 - Operation of DMD CD buses enabled  
Input interface calibration in progress  
0 - Input interface calibration inactive  
1 - Input interface calibration in progress  
DVALID alignment on interface A ok  
0 - DVALID alignment invalid on channel A  
1 - DVALID alignment correct on channel A  
DVALID alignment on interface B ok  
0 - DVALID alignment invalid on channel B  
1 - DVALID alignment correct on channel B  
DVALID alignment on interface C ok  
0 - DVALID alignment invalid on channel C  
1 - DVALID alignment correct on channel C  
DVALID alignment on interface D ok  
0 - DVALID alignment invalid on channel D  
1 - DVALID alignment correct on channel D  
System PLL locked flag  
5
0x000C  
6
7
8
9
10  
0 - PLL not locked  
1 - PLL locked  
Reference PLL locked flag  
11  
0 - PLL not locked  
0x0  
0x0  
R
R
1 - PLL locked  
31:12  
UNUSED  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.5.1.3 DESTOP_CAL Register  
The DESTOP_CAL register is used for reading the calibration state of the LVDS input buses of the DLPC910.  
The calibration occurs during the initialization after power is applied to the DLPC910.  
7-17. DESTOP_CAL Register  
ADDRESS  
BITS  
DESCRIPTION  
Input Channel A Calibration complete:  
0 - Channel A Calibration in progress  
1 - Channel A Calibration complete  
Input Channel B Calibration complete:  
0 - Channel B Calibration in progress  
1 - Channel B Calibration complete  
Input Channel C Calibration complete:  
0 - Channel C Calibration in progress  
1 - Channel C Calibration complete  
Input Channel D Calibration complete:  
0 - Channel D Calibration in progress  
1 - Channel D Calibration complete  
UNUSED  
RESET  
TYPE  
0
0x0  
R
1
2
0x0  
0x0  
R
R
0x0010  
3
0x0  
0x0  
R
R
31:04:00  
7.5.1.4 DESTOP_DMD_ID_REG Register  
The DESTOP_DMD_ID_REG register is used for reading the identification of the DMD Type connected to the  
DLPC910. If the DLPC910 determines the DMD is not supported, the DLPC910 will halt all operations. See 表  
7-4 for more information on valid DMD types.  
7-18. DESTOP_DMD_ID_REG Register  
ADDRESS  
BITS  
DESCRIPTION  
RESET  
0x0  
TYPE  
Read-only register containing the DMD Type as provided  
on input pins DMD_TYPE_[3:0]  
3:0  
R
R
0x0014  
31:4  
UNUSED  
0x0  
7.5.1.5 DESTOP_CATBITS_REG Register  
The DESTOP_CATBITS_REG register is used for reading the remainder of identification of the DMD connected  
to the DLPC910. If the DLPC910 determines the DMD is not supported, the DLPC910 will halt all operations.  
7-19. DESTOP_CATBITS_REG Register  
ADDRESS  
BITS  
DESCRIPTION  
RESET  
0x0  
TYPE  
Read-only register containing the 4 remaining ID bits of  
the connected DMD.  
3:0  
R
R
0x0018  
31:4  
UNUSED  
0x0  
7.5.1.6 DESTOP_VERSION Register  
The DESTOP_VERSION is used for obtaining the DLPR910 PROM configuration program version.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
 
 
DLPC910  
www.ti.com.cn  
TYPE  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7-20. DESTOP_VERSION Register  
DESCRIPTION  
(Read-only register of the DLPC910 version number)  
ADDRESS  
BITS  
RESET  
3:0  
7:4  
Major  
0x1  
0x0  
0x0  
0x0  
R
R
R
R
Minor  
0x001C  
15:8  
31:16  
Revision  
UNUSED  
The Major version identifier bits "DESTOP_VERSION(2:0)" are also mirrored on the hardware output bits  
DDC_Version(2:0). Since the DLPC910 firmware is configured by the binary data from the DLPR910 PROM at  
power up/initialization, the version identifiers for each revision are found in the DLPR910 datasheet. See the  
DLPR910 datasheet for more information on the DDC_VERSION and DESTOP_VERSION expected values.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.5.1.7 DESTOP_RESET_REG Register  
The DESTOP_RESET_REG register is used for reading the current state of the MCP. Reading this register while  
the DLPC910 is loading data to the DMD may always indicate a 1. It is best to monitor the actual  
RST_ACTIVE output signal of the DLPC910 to obtain the real state of the MCP.  
7-21. DESTOP_RESET_REG Register  
ADDRESS  
BITS  
0
DESCRIPTION  
RESET  
0x0  
TYPE  
RESET Operation in progress bit: (Mirror clocking pulse)  
0 - Reset inactive  
R
R
0x0020  
1 - Reset active  
31:1  
UNUSED  
0x0  
7.5.1.8 DESTOP_INFIFO_STATUS Register  
The DESTOP_INFIFO_STATUS register is used for validating there is data in the input bus FIFO buffers. An  
empty FIFO buffer may indicate that the DVALID is not properly set for the data on the input data bus.  
7-22. DESTOP_INFIFO_STATUS Register  
ADDRESS  
BITS  
DESCRIPTION  
RESET  
TYPE  
Channel A input FIFO status:  
0
0 - Channel A FIFO has data  
1 - Channel A FIFO is empty  
0x0  
R
Channel B input FIFO status:  
0 - Channel B FIFO has data  
1 - Channel B FIFO is empty  
1
2
0x0  
0x0  
R
R
0x0024  
Channel C input FIFO status:  
0 - Channel C FIFO has data  
1 - Channel C FIFO is empty  
Channel D input FIFO status:  
0 - Channel D FIFO has data  
1 - Channel D FIFO Is empty  
3
0x0  
0x0  
R
R
31:4  
UNUSED  
7.5.1.9 DESTOP_BUS_SWAP Register  
The DESTOP_BUS_SWAP register is used for configuring the DLPC910 output LVDS buses to the DMD. To  
simplify board layout design, swapping the buses may reduce routing constraints. If the buses are swapped in  
hardware, then the appropriate setting that matches the hardware must be set after a power cycle or a reset to  
the DLPC910.  
7-23. DESTOP_BUS_SWAP Register  
ADDRESS  
BITS  
DESCRIPTION  
RESET  
TYPE  
Enables Bus swap for A and B output DMD buses. SCTRLs  
for A and B output buses are also swapped.  
0 = un-swapped (default)  
0
0x0  
R/W  
1 = swapped  
Enables Bus swap for C and D output DMD buses. SCTRLs  
for C and D output buses are also swapped.  
0 = un-swapped (default)  
1
0x0  
R/W  
1 = swapped  
0x0028  
3:2  
7-4  
UNUSED  
UNUSED  
0x0  
0x0  
R
R
Enable data and serial control output on buses. Valid only  
when DLPC910 is connected to a DLP6500 DMD.  
0 = A and B active (default). C and D are deactivated.  
1 = C and D active. A and B are deactivated.  
8
0x0  
0x0  
R/W  
R
31:9  
UNUSED  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
7.5.1.10 DESTOP_DMDCTRL Register  
The DESTOP_DMDCTRL register can be used in place of the external DLPC910 control inputs to control the  
functions described. Bit-0 must be set to 1to gain control of the functions. Bit-5 is available regardless of the  
state of bit-0.  
7-24. DESTOP_DMDCTRL Register  
ADDRESS  
BITS  
DESCRIPTION (1)  
RESET  
TYPE  
Enables DMD control of the functions that are normally  
controlled on external pins.  
0
0x0  
R/W  
0 = Controlled from external pins (default)  
1 = Controlled from the I2C interface  
NS_FLIP. Sets the orientation of the top and bottom of the  
DMD.  
1
2
0x0  
0x0  
R/W  
R/W  
0 = Un-flipped (default)  
1 = Flipped  
DATA_COMP. Sets a DMD mode that inverts all of the  
incoming data.  
0x002C  
0 = Normal (default)  
1 = Data is inverted at the DMD  
LOAD_FOUR. Activates the Load4 function of the DMD.  
Each row written is loaded to 4 consecutive locations.  
3
4
0x1  
0x1  
R/W  
R/W  
0 = Load4 mode is active  
1 = Normal (default)  
RST2BLKZ. Activates the RST2BLKZ function of the DMD.  
Refer to 7-12 for setting RST2BLKZ.  
(1) When bit 0 is set to 1, bits 1, 2, 3, and 4 override their respective external control inputs.  
7.5.1.11 DESTOP_BIT_FLIP Register  
The DESTOP_BIT_FLIP register is used for configuring the DLPC910 output LVDS buses to the DMD. To  
simplify board layout design, flipping individual buses may reduce routing constraints. If the buses are flipped in  
hardware, then the appropriate setting that matches the hardware must be set after a power cycle or a reset to  
the DLPC910.  
7-25. DESTOP_BIT_FLIP Register  
ADDRESS  
BITS  
DESCRIPTION  
Reverses the Data bits for bus A (b'15 = b'0, b'0 = b'15)  
0 = un-flipped (default)  
RESET  
TYPE  
0
0x0  
R/W  
1 = flipped  
Reverses the Data bits for bus B (b'15 = b'0, b'0 = b'15)  
0 = un-flipped (default)  
1
2
0x0  
0x0  
R/W  
R/W  
1 = flipped  
0x0030  
Reverses the Data bits for bus C (b'15 = b'0, b'0 = b'15)  
0 = un-flipped (default)  
1 = flipped  
Reverses the Data bits for bus D (b'15 = b'0, b'0 = b'15)  
0 = un-flipped (default)  
3
0x0  
0x0  
R/W  
R
1 = flipped  
31:4  
UNUSED  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component specification, and TI does not  
warrant its accuracy or completeness. TIs customers are responsible for determining suitability of components  
for their purposes. Customers should validate and test their design implementation to confirm system  
functionality.  
8.1 Application Information  
The DLPC910 controller verifies the DMD connected in the application system, uses that information to select  
appropriate configuration data for the DMD, and then initializes the DMD to ready it for operation.  
The DLPC910 controller receives streaming parallel input data and associated syncs from an external  
applications processor and passes the data on to the DMD with the appropriate DMD timing and control  
information. It also receives embedded instructions from the applications processor to assist in determination of  
which DMD rows to load and which DMD mirror blocks to activate at any given moment in time.  
8.2 Typical Application  
Direct-write digital imaging is regularly used in high-end lithography printing. This mask-less technology offers  
continuous run of printing by changing the digitally created patterns without stopping the imaging head. The  
DLPR910 PROM configures the DLPC910 digital controller to reliably operate with the DLP9000X, the  
DLP9000XUV, or the DLP6500 DMD. These chipset combinations provide an ideal back-end imager that takes  
in digital images at [2560 × 1600] or [1920 x 1080] resolution to achieve speeds greater than 61 Gigabits per  
second (Gbps) and 24 Gbps respectively.  
8.2.1 High Speed Lithography Application  
As high-end lithography pushes the high speed printing envelope, providing a higher resolution imager is a must  
to achieve the demanding through-put of present and future printing technology. 8-1 and 8-2 show two  
systems that offer both a speed boost and a four million and two million pixel DMDs. The main chipset  
components that make up these systems are the DLPC910ZYR, the DLPR910, and one of the DLP9000X,  
DLP9000XUV, or DLP6500 DMDs. With a few additional discrete components for power regulation and clock  
circuitry, a compact, and yet high performance design can be achieved.  
8-1. Typical DLP9000X/DLP9000XUV High Speed Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
 
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
8-2. Typical DLP6500 High Speed Application  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
8.2.1.1 Design Requirements  
The DLPC910 interface is made up of several buses and controls signals as shown in the following list. The  
LVDS input buses provide the means of loading data to the DLPC910. The LVDS output buses provide the data  
to the DMD. Each input and output LVDS bus has an associated clock which clocks the data into the DLPC910  
or into the DMD. Row and Block control signals define the type of mirror clock pulse to use after all the data is  
loaded into the DMD. Refer to 7-11 to obtain the required LVDS buses for each DMD supported.  
LVDS differential inputs  
DDC_DCLK 4 buses  
DVALID 4 buses  
DDC_DIN 4 buses  
LVDS differential outputs. Refer to LVDS Output Bus Skew for recommendations on trace lengths.  
DDC_DOUT 4 buses  
DDC_DCLKOUT 4 buses  
DDC_SCTRL 4 buses  
Control output signals  
DMD RESET  
DMD SCP  
Row and Block control input signals  
ROWMD  
ROWAD  
BLKMD  
BLKAD  
RST2BLKZ  
Control input signals  
COMP_DATA  
NS_FLIP  
WDT_ENBLZ  
PWR_FLOAT  
LOAD4_ENZ  
Status output signals  
RST_ACTIVE  
INIT_ACTIVE  
ECP2_FINISHED  
DMD_IRQ  
Controller reset  
CTRL_RSTZ  
DLPR910 interface  
PGM(4:0)  
JTAG(3:0)  
8.2.1.2 Detailed Design Procedure  
After power is applied to the DLPC910, the APPS FPGA should monitor the ECP2_FINISHED signal to  
determine when the DLPC910 has completed loading the configuration from the DLPR910. The APPS FPGA  
next monitors the INIT_ACTIVE signal to determine when the DLPC910 has completed its internal initialization  
routines and has configured the DMD for normal operation. An alternate method is to request the initialization  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
status using the I2C interface. Information regarding initialization, versions, and IDs can be requested through  
this interface.  
Prior to activating the DVALID signals to the DLPC910, the ROWMD, ROWAD, BLKMD, BLKAD, and  
RST2BLKZ control input signals must be in the desired state for the desired operation to take effect on the DMD.  
Once the control signals are set, the Apps FPGA activates DVALID and starts loading data using the DDC_DIN  
and DDC_DCLK buses. After all data is loaded for the desired DMD operation, the DVALID signal is de-  
asserted, and the BLKMD, BLKAD, and RST2BLKZ control signals are set prior to the assertion of the next  
DVALID. When DVALID is activated, the MCP causes the prior data to take effect on the mirrors of the DMD.  
The Apps FPGA should then monitor the RST_ACTIVE pin to determine when the mirror clock pulse has  
completed in order to perform the next MCP. During the time that the RST_ACTIVE is asserted, the Apps FPGA  
could be loading data into DMD rows that do not belong to the same block of rows that currently has an  
outstanding MCP.  
8.2.1.3 Application Curves  
In these particular applications, the performance plots shown in 8-3 and 8-4 show the maximum loaded  
and displayed pixels per second when the exposure period is set to its minimum for the different reset modes.  
When the exposure period is increased, the pixels per second will decrease. Refer to Mirror Clocking Pulse for  
more information regarding exposure period.  
8-3. DLP9000X/DLP9000XUV Performance Plot at 480 MHz DDC_DCLK  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
8-4. DLP6500 Performance Plot at 400 MHz DDC_DCLK  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
9 Power Supply Recommendations  
9.1 Power Supply Distribution and Requirements  
The DLPC910, the DLPR910, and one of the DLP9000X, DLP9000XUV, or DLP6500 DMDs are powered by a  
power distribution method as shown in 9-1. The DMD power inputs will depend on which DMD is being used  
in the application.  
Power Management  
12V  
AC/DC  
3.3V  
3.45V  
2.5V  
1.0V  
3.3V  
1.8V  
DLP9000X  
DLP9000XUV  
VCCO  
VCC_AUX  
VCC  
VCC0  
VCCINT  
DLP6500  
DLPR910  
DLPC910  
9-1. Power Distribution  
9.2 Power Down Requirements  
For correct power down operation of the DMD, the following power down procedure must be executed.  
Prior to an anticipated power removal, assert PWR_FLOAT for a minimum of 500 μs to allow the DLPC910 to  
complete the power down procedure. This procedure will assure the DMD mirrors are in a flat state. Following  
this 500 μs time delay, power can be safely removed from the DLP chipset as shown in 9-2.  
In the event of an unanticipated power loss, the power management system must detect the input power loss,  
assert PWR_FLOAT to the DLPC910, and maintain all operating power levels to the DLPC910 and the DMD for  
a minimum of 500 μs to allow the DLPC910 to complete the power down procedure.  
To restart after assertion of PWR_FLOAT without removing power, the DLPC910 must be reset by setting  
CTRL_RSTZ low (logic 0) for 50 ms, and then back to high (logic 1) as shown in 9-3, or power to the  
DLPC910 must be cycled.  
9-1. Power Down Timing Requirements  
PARAMETER  
MIN  
500  
50  
MAX  
UNIT  
µs  
tpf  
tcr  
PWR_FLOAT high time.  
CTRL_RSTZ low time.  
ms  
Minimum delay from PWR_FLOAT inactive  
to CTRL_RSTZ active.  
tpc  
0
ms  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
 
 
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
tpf  
PWR_FLOAT  
CTRL_RSTZ  
¸ ¸  
¸ ¸  
¸ ¸  
DC Power Supplies  
9-2. Removing Power After Asserting PWR_FLOAT  
tpc  
tpf  
PWR_FLOAT  
CTRL_RSTZ  
¸ ¸  
¸ ¸  
¸ ¸  
tcr  
¸ ¸  
¸ ¸  
¸ ¸  
DC Power Supplies  
9-3. Restart Without Removing Power  
10 Layout  
10.1 Layout Guidelines  
One of the most important factors to gain good performance is designing the PCB with the highest quality signal  
integrity possible. The following PCB design guidelines provide a reference of an interconnect system.  
10.1.1 PCB Design Standards  
PCBs should be designed and built in accordance with the industry specifications shown in 10-1.  
10-1. Industry Design Specifications  
INDUSTRY SPECIFICATION  
IPC-2221 and IPC2222, Type 3, Class X, at Level B producibility  
IPC-6011 and IPC-6012, Class 2  
APPLICABLE TO  
Board design  
PWB fabrication  
IPC-SM-840, Class 3, Color Green  
Finished PWB solder mask  
Finished PWB  
UL94V-0 Flammability Rating and Marking  
UL796 Rating and Marking  
Finished PWB  
PCB Fabrication:  
Configuration: Asymmetric dual strip-line  
Etch thickness : 1.0-oz copper (1.2 mil)  
Flex etch thickness: 0.5-oz copper (0.6 mil)  
Single-ended signal impedance: 50 Ω(±10%)  
Differential signal impedance: 100 Ω(±10%)  
PCB Stack-up:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
 
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Ground planes for proper return path.  
Power planes for proper supply to circuits.  
Dielectric material with a low Loss-Tangent, for example: Hitachi 679gs or equivalent, (Er): 3.8 (nominal).  
10.1.2 Signal Layers  
The PCB signal layers should follow typical good practice guidelines including:  
Layer changes should be minimized for single-ended signals.  
Individual differential pairs can be routed on different layers, but the signals of a given pair should not change  
layers.  
Stubs should be avoided.  
Low-frequency signals should be routed on the outer layers.  
Differential pair signals should be routed first.  
Pin swapping on components is not allowed.  
Polarized capacitors should have the same orientation.  
The PCB should have a solder mask on the top and bottom layers.  
The mask should not cover the vias.  
Except for fine pitch devices (pitch 0.032 inches). The copper pads and the solder mask cutout should be  
of the same size.  
Solder mask between pads of fine pitch devices should be removed.  
In the BGA package, the copper pads and the solder mask cutout should be of the same size.  
High-speed connectors that meet the following requirements should be used:  
Differential crosstalk: < 5%  
Differential impedance: 90 to 110 Ωfor all LVDS signal pairs  
Routing requirements for right-angle connectors:  
When using right-angle connectors, LVDS signal P-N pairs should be routed in the same row to minimize  
delay mismatch.  
When using right-angle connectors, propagation delay difference for each row should be accounted for on  
associated PCB etch lengths.  
10.1.3 General PCB Routing  
Fiducials for automatic component insertion should be 0.05-inch copper with a 0.1-inch cutout (antipad).  
Fiducials for optical auto insertion are placed on three corners of both sides of the PCB.  
10.1.3.1 Trace Minimum Spacing  
BGA escape routing can be routed with 3.7-mils width and 4.3-mils spacing, as long as the escape nets are less  
than 1-inch long, to allow two traces to fit between vias. After signals escape the BGA field, trace width should  
be widened to achieve the desired impedance and spacing.  
All single-ended 50-Ω signals must have a minimum spacing of 10 mils relative to other signals. Other special  
trace spacing requirements are listed in 10-2.  
10-2. Trace Minimum Spending  
DIFFERENTIAL  
SIGNAL  
PWR  
GND  
SINGLE-ENDED (1)  
UNIT  
PAIRS  
Pair-to-Pair (2)  
PWR  
20 (3)  
10  
10  
15  
5
15  
5
mils  
mils  
mils  
mils  
GND  
CLKIN_R  
15  
5
5
30  
30  
30  
30  
DDC_DCLK_[A,B,C,D]_DP[N,P]  
15  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
10-2. Trace Minimum Spending (continued)  
DIFFERENTIAL  
PAIRS  
SIGNAL  
PWR  
GND  
SINGLE-ENDED (1)  
UNIT  
mils  
mils  
mils  
DDC_DCLKOUT_[A,B,C,D]_DP[N  
,P]  
15  
5
5
5
30  
30  
30  
30  
30  
30  
DDC_DIN_[A,B,C,D]  
[0:15]_DP[N,P]  
15  
DDC_DOUT_[A,B,C,D]  
[0:15]_DP[N,P]  
15  
DDC_SCTRL_[A,B,C,D][N,P]  
DVALID_[A,B,C,D]_DP[N,P]  
Escape routing in ball field  
All other signals  
15  
15  
15  
15  
5
5
5
5
30  
30  
4.3  
30  
30  
30  
4.3  
30  
mils  
mils  
mils  
mils  
(1) Signal spacing relative to other single-end signals.  
(2) Signal spacing relative to other differential pairs.  
(3) PWR relative to other power sources. Not same power source.  
10.1.3.2 Trace Widths and Lengths  
10-3. Trace Widths and Lengths  
MAXIMUM TRACE MISMATCH  
SIGNAL  
MIN WIDTHS  
MAX LENGTHS (2)  
UNIT  
N-to-P  
Pair-to-pair  
PWR  
25  
15 (1)  
7
mils  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
GND  
CLKIN_R  
350  
DDC_DCLK_[A,B,C,D]_DP[N,P]  
DDC_DIN_[A,B,C,D][0:15]_DP[N,P]  
DVALID_[A,B,C,D]_DP[N,P]  
10  
10  
10  
10  
10  
10  
50 (3)  
50 (3)  
Layout specific (4)  
Layout specific (5)  
DDC_DCLKOUT_[A,B,C,D]_DP[N,P]  
DDC_DOUT_[A,B,C,D][0:15]_DP[N,P]  
DDC_SCTRL_[A,B,C,D][N,P]  
All other signals  
50 (3)  
50 (3)  
7
(1) Make width of GND trace as wide as the pin it is connected to, when possible.  
(2) Signal routing length includes escape routing.  
(3) Relative to its clock system. Refer to the Pin Functions Table to identify the clock system associated with the signals.  
(4) Minimum widths to achieve impedance matching.  
(5) Keep lengths as short as possible.  
10.1.3.2.1 LVDS Output Bus Skew  
To minimize instantaneous AC current switching in the DMD, the LVDS output bus trace lengths should differ to  
produce a recommended 100-200 ps skew from one bus to another. 10-4shows two examples how buses can  
be skewed assuming 180-200 ps per 1000 mils. Keep in mind the total skew from one bus to another should be  
kept below the maximum skew for the DMD. Refer to Related Documentation for the DMD datasheet regarding  
maximum DMD LVDS input bus skew.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
 
 
 
 
 
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
10-4. Example LVDS Output Bus Skew  
Example 1  
Example 2  
Bus Group  
DDC_DCLKOUT_A  
UNIT  
Bus Group Trace Lengths  
Bus Group Trace Lengths  
DDC_DOUT_A  
DDC_SCTRL_A  
7454  
5257  
6936  
5886  
7454  
7454  
5257  
5257  
mils  
mils  
mils  
mils  
DDC_DCLKOUT_B  
DDC_DOUT_B  
DDC_SCTRL_B  
DDC_DCLKOUT_C  
DDC_DOUT_C  
DDC_SCTRL_C  
DDC_DCLKOUT_D  
DDC_DOUT_D  
DDC_SCTRL_D  
10.1.3.3 Trace Impedance and Routing Priority  
For best performance, it is recommended that the trace impedance for differential signals as in 10-5.  
All signals should be 50-Ωcontrolled impedance unless otherwise noted in 10-5.  
10-5. Trace Impedance  
SIGNALS  
DIFFERENTIAL IMPEDANCE  
DDC_DCLK_[A,B,C,D]_DP[N,P]  
100 ± 10%  
100 ± 10%  
100 ± 10%  
100 ± 10%  
100 ± 10%  
100 ± 10%  
DDC_DCLKOUT_[A,B,C,D]_DP[N,P]  
DDC_DIN_[A,B,C,D][0:15]_DP[N,P]  
DDC_DOUT_[A,B,C,D][0:15]_DP[N,P]  
DDC_SCTRL_[A,B,C,D][N,P]  
DVALID_[A,B,C,D]_DP[N,P]  
10-6 lists the routing priority and layer assignments of the signals.  
10-6. Routing Priority  
SIGNALS  
PRIORITY  
DDC_DCLKOUT_[A,B,C,D]_DP[N,P]  
DDC_DOUT_[A,B,C,D][0:15]_DP[N,P]  
DDC_SCTRL_[A,B,C,D][N,P]  
1
1
2
2
3
3
4
DDC_DCLK_[A,B,C,D]_DP[N,P]  
DDC_DIN_[A,B,C,D][0:15]_DP[N,P]  
DVALID_[A,B,C,D]_DP[N,P]  
BLKAD_[0:3], BLKMD_[0:1], ROWAD_[0:10], ROWMD_[0:1]  
RESET_ADDR[0:3], RESET_MODE[0:1], RESET_SEL[0:1],  
RESET_STROBE, RESET_OEZ, RESET_IRQZ, RESET_RSTZ  
5
SCPCLK, SCPDI, SCPDO, DMD_SCPENZ  
CLKIN_R  
6
7
8
All other single-ended signals  
10.1.4 Power and Ground Planes  
The following are recommendations for best performance:  
Solid ground planes between each signal routing layer.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Solid power planes for voltages.  
Power and ground pins should be connected to these planes through a via for each pin.  
Trace lengths for the component power and ground pins should be minimized to 0.100 inches or less.  
Vias should be spaced out to avoid forming slots on the power planes.  
High speed signals should not cross over a slot in the adjacent power planes.  
Placing extra vias is not required if there are sufficient ground vias due to normal ground connections of  
devices.  
10.1.5 Power Vias  
Power and Ground pins of each component shall be connected to the power and ground planes with a via for  
each pin. Avoid sharing vias to the power plane among multiple power pins, where possible. Trace lengths for  
component power and ground pins should be minimized (ideally, less than 0.100 inch). Unused or spare device  
pins that are connected to power or ground may be connected together with a single via to power or ground. The  
minimum spacing between vias shall be 0.050 inch to prevent slots from being developed on the ground plane.  
10.1.6 Decoupling  
Decoupling capacitors must be located as near as possible to the DLPC910 voltage supply pins. Capacitors  
should not share vias. The DLPC910 power pins can be connected directly to the decoupling capacitor (no via) if  
the trace is less than 0.03 inches. Otherwise the component should be tied to the voltage or ground plane  
through a separate via. All capacitors should be connected to the power planes with trace lengths less than 0.05  
inches.  
10.1.7 Flex Connector Plating  
For designs using the Texas Instruments designed reference flex cable, plate all the pad area on the top layer of  
flex connection with a minimum of 35 and maximum 50 micro-inches of electrolytic hard gold over a minimum of  
100 micro-inches of electrolytic nickel.  
10.2 Layout Example  
The PCB layer design may vary depending on system design. However, careful attention is required to meet  
design considerations. 10-7 shows a layer signal definition and 10-1 shows a PCB stack-up. The PCB  
stack-up uses Hitachi 679gs as the dielectric material to improve the signal slew rate. Although the material  
shown is Rogers Theta, it is the same material as the Hitachi 679gs.  
10-7. Layer Definition  
Top:  
2:  
Signal  
GND  
3:  
Signal  
GND  
4:  
5:  
Signal  
GND  
6:  
7:  
Signal  
GND  
8:  
9:  
Split Power  
Split Power  
GND  
10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
Signal  
GND  
Signal  
GND  
Signal  
GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
10-7. Layer Definition (continued)  
Top:  
Signal  
Bottom:  
Signal  
Calc  
Thickness  
Description  
Primary Stack  
Layer  
Dk / Df  
Taiyo 4000-BN  
½ oz Sig (std Plt)  
Theta  
½ oz P/G  
Theta  
2.70 / 0.0330  
3.90 / 0.0097  
3.97 / 0.0095  
3.90 / 0.097  
0.0005  
0.0020  
0.0030  
Layer - 1  
1078  
0.0006  
0.0050  
0.0050  
(2-1080)  
Layer - 2  
Layer - 3  
0.0006  
0.0057  
½ oz P/G  
Theta  
1078  
1078  
0.0006  
0.0050  
Layer - 4  
Layer - 5  
½ oz P/G  
Theta  
0.0050  
(2-1080)  
3.97 / 0.0095  
3.90 / 0.0097  
3.97 / 0.0095  
0.0006  
0.0057  
½ oz P/G  
Theta  
1078  
1078  
½ oz P/G  
Theta  
0.0006  
0.0050  
0.0006  
0.0050  
(2-1080)  
Layer - 6  
Layer - 7  
½ oz P/G  
Theta  
1078  
1078  
0.0057  
3.90 / 0.0097  
0.0006  
0.0035  
Layer - 8  
Layer - 9  
½ oz P/G  
Theta  
0.0035  
(1-3313)  
3.98 / 0.0094  
3.85 / 0.0100  
0.0006  
½ oz P/G  
Theta  
1037  
1037  
0.0039  
0.0006  
0.0035  
Layer - 10  
Layer - 11  
½ oz P/G  
Theta  
0.0035  
(1-3313)  
3.98 / 0.0094  
3.90 / 0.0097  
0.0006  
½ oz P/G  
Theta  
1078  
1078  
0.0057  
0.0006  
0.0050  
Layer - 12  
Layer - 13  
½ oz P/G  
Theta  
0.0050  
(2-1080)  
3.97 / 0.0095  
3.90 / 0.0097  
0.0006  
½ oz P/G  
Theta  
1078  
1078  
0.0057  
½ oz P/G  
Theta  
0.0006  
0.0050  
Layer - 14  
Layer - 15  
0.0050  
(2-1080)  
3.97 / 0.0095  
3.90 / 0.0097  
0.0006  
½ oz P/G  
Theta  
1078  
1078  
0.0057  
½ oz P/G  
Theta  
0.0006  
0.0050  
Layer - 16  
Layer - 17  
0.0050  
(2-1080)  
3.97 / 0.0095  
3.90 / 0.0097  
0.0006  
0.0030  
½ oz P/G  
Theta  
1078  
0.0020  
0.0005  
½ oz Sig (std Plt)  
Taiyo 4000-BN  
Layer - 18  
2.70 / 0.0330  
10-1. PCB Stack-Up  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
11-1. Part Number Description  
TI PART NUMBER  
DESCRIPTION  
DLPC910ZYR  
DLPC910 digital controller  
11.1.2 Device Markings  
Device markings are controlled by TI's supplier. TI packaging includes TI part number designation.  
Pin 1  
Logo  
Family Brand  
Device Type  
Package Type  
Speed Grade  
Data Code  
Lot Code  
Operating Range  
11-1. DLPC910 Device Markings  
11.2 Documentation Support  
11.2.1 Related Documentation  
The following documents contain additional information related to the chipset components used with the  
DLPC910:  
DLPR910 PROM Data Sheet (DLPS065)  
DLP9000(X) DMD Data Sheet (DLPS036)  
DLP9000XUV DMD Data Sheet (DLPS036)  
DLP6500 Type A DMD Data Sheet (DLPS040)  
DLP6500 S600 DMD Data Sheet (DLPS053)  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
® is a registered trademark of Texas Instruments.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
 
 
 
 
 
 
DLPC910  
www.ti.com.cn  
ZHCSE90D SEPTEMBER 2015 REVISED SEPTEMBER 2020  
Virtex® is a registered trademark of Xilinx, Inc.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPC910ZYR  
ACTIVE  
FCBGA  
ZYR  
676  
1
TBD  
Call TI  
Call TI  
0 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLPD3V3LC

3.3V LOW CAPACITANCE BIDIRECTIONAL TVS
DIODES

DLPD3V3LC-7

Trans Voltage Suppressor Diode, 330W, 3.3V V(RWM), Bidirectional, 2 Element, Silicon, GREEN, PLASTIC PACKAGE-6
DIODES

DLPR100

DLP® Configuration PROM for DLPC100
TI

DLPR100DWC

DLP® Configuration PROM for DLPC100
TI

DLPR410BYVA

DLPR410 Configuration PROM
TI

DLPR410_V01

DLPR410 Configuration PROM
TI

DLPS015

DLPR410 Configuration PROM
TI

DLPS024

DLPR410 Configuration PROM
TI

DLPS025

DLPR410 Configuration PROM
TI

DLPS026

DLPR410 Configuration PROM
TI

DLPS033

DLPR410 Configuration PROM
TI

DLPS061

DLPR410 Configuration PROM
TI