DRV10974 [TI]

12V 标称电压、2.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器;
DRV10974
型号: DRV10974
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12V 标称电压、2.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器

电机 驱动 传感器 驱动器
文件: 总41页 (文件大小:2302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV10974  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
DRV10974 12V、三相无传感BLDC 电机驱动器  
器件信息(1)  
1 特性  
封装尺寸标称值)  
5.00mm x 4.40mm  
4.00mm × 4.00mm  
器件型号  
DRV10974  
封装  
• 输入电压范围4.4 V 18 V  
• 总驱动H + L rDS(on)750mΩ典型值),  
TA = 25°C 时  
HTSSOP (16)  
WQFN (16  
(1) 如需了解所有可用封装请参阅产品说明书末尾的可订购产品  
附录。  
• 相位驱动电流1A 连续1.5A)  
180° 正弦换向可实现最优声学性能  
• 可利用电阻器配置超前角  
DRV10974  
PWM  
• 可利用电阻器配置电流限制  
FR  
FG  
• 软启动和可通过电阻器配置的加速曲线  
• 提供内置电流感应无需使用外部电流感应电阻器  
• 专有无传感器控制无需电机中心抽头  
• 简单的用户接口:  
– 用于启动的单引脚配置  
PWM 输入指定施加到电机的电压幅度  
– 开FG 输出提供速度反馈  
– 用于正向/反向控制的引脚  
• 全方位保护:  
V
M
180° Sensorless  
Sinusoidal  
Lead Angle  
Accel Profile  
Current Limit  
4.4 V to 18 V  
VCP  
Copyright © 2017, Texas Instruments Incorporated  
– 电机锁定检测和重启  
– 过流、短路、过热和欠压保护  
应用原理图  
2 应用  
• 白色家电  
• 风扇、风机和泵  
BLDC 电机模块  
3 说明  
DRV10974 器件是一款具有集成功率 MOSFET 的三相  
无传感器电机驱动器可提供高达 1A (rms) 的持续驱  
动电流。该器件专为成本敏感型、低噪声和低外部组件  
数量的应用而设计。  
DRV10974 器件使用一个专有无传感器控制方案提供  
可靠换向。180° 正弦换向显著减少了 120°梯形换  
向中较为典型的纯音。DRV10974 旋转使用一个外部  
低功耗电阻器进行配置。电流限制可使用外部低功耗电  
阻器进行设置。  
通过施加一个用于控制驱动电压幅度的 PWM 输入或  
者使用模拟电压驱动 PWM 引脚然后监FG 引脚上  
的速度反馈DRV10974 器件可以轻松控制电机的转  
速。  
DRV10974 器件包含许多可提高效率的特性。由于该  
器件支持借助电阻器配置超前角因此用户可通过调整  
相电流和相 BEMF 来优化驱动器效率。此外该器件  
使用MOSFET rDS(on) 较低有助于在驱动电机时  
节省电力。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDN2  
 
 
 
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
Table of Contents  
8 Application and Implementation..................................24  
8.1 Application Information............................................. 24  
8.2 Typical Application.................................................... 24  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Device Support........................................................28  
11.2 接收文档更新通知................................................... 28  
11.3 支持资源..................................................................28  
11.4 Trademarks............................................................. 28  
11.5 静电放电警告...........................................................28  
11.6 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics..............................................10  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................19  
Information.................................................................... 28  
4 Revision History  
Changes from Revision D (June 2020) to Revision E (March 2021)  
Page  
Updated Human-body model (HBM).................................................................................................................. 5  
Changes from Revision B (June 2018) to Revision C (September 2018)  
Page  
• 将文档状态从“混合状态”更改为“量产数据”................................................................................................ 1  
• 删除了器件信WQFN 条目中的“高级信息”标识......................................................................................1  
Deleted the "Advance informatoin" note from the WQFN pinout drawing.......................................................... 3  
Deleted the "Advance Information" note from the Thermal Information table.....................................................5  
Added description of Analog Mode Speed Control...........................................................................................12  
Added Kt High and Kt Low descriptions in abnormal Kt lock detect figure.......................................................16  
Added layout example for QFN package type..................................................................................................27  
Changes from Revision A (April 2018) to Revision B (June 2018)  
Page  
• 向器件信表中添加WQFN 封装...................................................................................................................1  
Added pinout drawing for the WQFN package................................................................................................... 3  
Added a column to the Pin Functions table for the WQFN package, and added the TYPE column.................. 3  
Added a column to the Thermal Information table for the VQFN package.........................................................5  
Changed rDS(on) vs. Temperature graph to include VCC condition.................................................................... 10  
Changed Speed-Control Transfer Function figure to clearly show when the device enters and exits low power  
mode ................................................................................................................................................................12  
Updated Lock BEMF Abnormal text for clarity..................................................................................................16  
Changed Detailed Design Procedure to cover the high level tuning process of the RMP, ADV, and CS  
settings............................................................................................................................................................. 25  
Changes from Revision * (January 2018) to Revision A (April 2018)  
Page  
• 添加或更改了1 列表中的项目.........................................................................................................................1  
• 更改了3 部分第三段的内容.............................................................................................................................1  
Added parameter symbol (fPWM_OUT) to the 25-kHz PWM signal.....................................................................12  
Added parameter symbol (fPWM_OUT) to the 25-kHz PWM signal.....................................................................12  
Added parameter symbol (DCSTEP) for the control resolution.......................................................................... 12  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DRV10974  
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
Added parameter symbol (DCON_MIN) for the minimum-operation duty cycle...................................................12  
Changed "pulse durations" to "duty cycles"......................................................................................................12  
Changed PWMDC to PWMdc ............................................................................................................................12  
Added parameter symbol (fFG_MIN) for the motor speed...................................................................................15  
Changed the number of lock-detect schemes from five to six..........................................................................15  
Added a table note stating the required resistor tolerance............................................................................... 18  
Added a new 7.4.1.2 section........................................................................................................................19  
Added a parameter symbol (tALIGN) in the 7.4.1.3 section, and reworded the last sentence thereof...........20  
Changed the column headings of the two rightmost columns in 7-2 ...........................................................20  
Added three table notes following 7-2 .........................................................................................................20  
Changed "programmed resistor" to "selected resistor".....................................................................................21  
Added a table note stating the required resistor tolerance............................................................................... 21  
Added a table note stating the required resistor tolerance............................................................................... 22  
Added a ±30% tolerance to the V1P8 capacitor in 8-1 ............................................................................... 24  
Changed content of Row 4 in 8-2 to "Motor electrical constant"..................................................................25  
Deleted all previous content from the 8.2.2 section and replaced it with a reference to the DRV10974  
Tuning Guide ....................................................................................................................................................25  
Changed 8-3 ............................................................................................................................................... 25  
Added location information for the capacitor in the 9 section.......................................................................26  
5 Pin Configuration and Functions  
ADV  
FR  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VCP  
FG  
V
CC  
PWM  
V1P8  
RMP  
GND  
CS  
W
Thermal  
Pad  
V
U
PGND  
NC  
Not to scale  
NC No internal connection  
5-1. PWP PowerPAD™ Package 16-Pin HTSSOP With Exposed Thermal Pad Top View  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DRV10974  
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
FG  
PWM  
V1P8  
RMP  
1
2
3
4
12  
11  
10  
9
VCC  
W
Thermal  
Pad  
V
U
Not to scale  
NC No internal connection  
5-2. RUM Package 16-Pin WQFN With Exposed Thermal Pad Top View  
5-1. Pin Functions  
PIN  
NO.  
HTSSOP WQFN  
I/O  
TYPE(1)  
DESCRIPTION  
NAME.  
Selects the applied lead angle by 1/8-W resistor; not to be driven externally with a  
source; leaving the pin open results in the longest lead angle; the lead angle is  
determined by the ADV pin voltage at power up.  
ADV  
1
8
15  
6
I
I
D
D
Selects current limit by 1/8-W resistor; not to be driven externally with a source; leaving  
the pin open results in the highest current limit; the current limit is determined by the CS  
pin voltage at power up.  
CS  
Provides motor speed feedback; open-drain output with internal pullup to V3P3; needs  
a pullup resistor to limit current if pullup voltage is higher than V3P3  
FG  
FR  
3
2
1
O
I
D
D
Direction control. FR = 0: UVW; FR = 1: UWV; value is determined by the FR  
pin state on exit of low-power mode; internal pulldown  
16  
GND  
NC  
7, 16  
9
5, 14  
Digital and analog ground  
NC  
P
8
7
No internal connection  
PGND  
10  
Power ground connection for motor power  
Motor speed-control input; auto detect for analog or digital mode; internal pullup to  
2.2 V  
PWM  
RMP  
4
6
2
4
I
I
D
D
Acceleration ramp-rate control; 1/8-W resistor to GND to set acceleration rate; leaving  
the pin open results in the slowest acceleration rate; the acceleration rate is determined  
by the RMP pin voltage at power up.  
U
V
11  
12  
9
I/O  
I/O  
A
A
Motor phase U  
Motor phase V  
10  
LDO regulator for internal operation; 1-µF, 6.3-V ceramic capacitor tied to GND. Can  
supply a maximum of 3 mA to an extenal load.  
V1P8  
5
3
O
P
VCC  
VCP  
W
14  
15  
13  
12  
13  
11  
I
P
A
A
Power-supply connection; 10-µF, 25-V ceramic capacitor tied to GND  
Charge-pump output; 100-nF, 10-V ceramic capacitor tied to VCC  
Motor phase W  
O
I/O  
The exposed thermal pad must be electrically connected to the ground plane by  
soldering to the PCB for proper operation, and connected to the bottom side of the PCB  
through vias for better thermal spreading.  
Thermal  
pad  
(1) I = Input, O = Output, I/O = Input/output, P = Power, D = Digital, A = Analog, NC = No connection  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DRV10974  
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
1  
MAX  
UNIT  
VCC  
20  
PWM, FR  
CS, RMP, ADV  
5.5  
2
GND, PGND  
0.3  
Pin voltage  
V
U, V, W  
20  
V1P8  
2
20  
0.3  
0.3  
0.3  
40  
55  
FG  
VCP  
VCC + 5.5  
150  
Maximum junction temperature, TJmax  
Storage temperature, Tstg  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
4.4  
NOM  
MAX  
18  
UNIT  
Supply voltage  
VCC  
V
U, V, W  
18  
0.7  
0.1  
0.5  
PWM, FR  
5.5  
18  
FG  
Voltage  
V
CS  
1.8  
0.1  
1.8  
3
0.1  
0.1  
0.1  
0
PGND, GND  
RMP, ADV  
Current  
V1P8 regulator-output current; external load  
mA  
°C  
Operating ambient temperature, TA  
Operating junction temperature, TJ  
85  
40  
40  
125  
°C  
6.4 Thermal Information  
DRV10974  
THERMAL METRIC(1)  
PWP (HTSSOP)  
16 PINS  
37.8  
RUM (VQFN)  
UNIT  
16 PINS  
34.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
25.2  
27  
20.7  
13.3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DRV10974  
 
 
 
 
 
 
 
 
 
DRV10974  
www.ti.com.cn  
UNIT  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
DRV10974  
THERMAL METRIC(1)  
PWP (HTSSOP)  
RUM (VQFN)  
16 PINS  
0.7  
16 PINS  
0.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
°C/W  
ψJT  
20.5  
1.9  
13.3  
4
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
6.5 Electrical Characteristics  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
ICC  
Supply current  
TA = 25°C, VCC = 12 V, no motor load  
TA = 25°C, VCC = 12 V  
5
7
mA  
µA  
ICC(LP)  
Low power mode  
380  
UVLO  
V(UVLO_F)  
V(UVLO_R)  
Vhys(UVLO)  
VCC UVLO falling  
VCC UVLO rising  
4.2  
4.5  
4.3  
4.7  
400  
3.7  
4.0  
330  
1.4  
1.5  
100  
4.4  
V
V
4.85  
VCC UVLO hysteresis  
mV  
V
VVCP(UVLO_F) Charge pump UVLO falling  
VVCP(UVLO_R) Charge pump UVLO rising  
3.35  
3.65  
4.05  
4.37  
V
V
VCP VCC  
VCP VCC  
V
Vhys(VCP)  
V(V1P8_F)  
V(V1P8_R)  
Vhys(V1P8)  
Charge pump UVLO hysteresis  
V1P8 UVLO falling  
mV  
V
1.25  
1.35  
1.55  
1.65  
V1P8 UVLO rising  
V
V1P8 UVLO hysteresis  
mV  
VOLTAGE REGULATORS  
VV1P8  
IV1P8  
V1P8 voltage  
1.7  
1.8  
1.9  
3
V
TA = 25°C, C(V1P8) = 1 μF  
TA = 25°C, C(V1P8) = 1 μF  
Maximum external load from V1P8  
mA  
INTEGRATED MOSFET  
rds(on)_HS High-side FET on-resistance  
rds(on)_LS Low-side FET on-resistance  
PHASE DRIVER  
TA = 25°C, VCC = 12 V, IO = 100 mA  
TA = 25°C, VCC = 12 V, IO = 100 mA  
0.375  
0.375  
0.425  
0.425  
Ω
Ω
SlewRate = 0; measure 20% to 80%;  
VCC = 12 V; phase current > 20 mA  
SLPH_LH  
SLPH_HL  
Phase slew rate switching low to high  
70  
70  
120  
170  
170  
V/μs  
V/μs  
SlewRate = 0; measure 80% to 20%;  
VCC = 12 V; phase current > 20 mA  
Phase slew rate switching high to low  
120  
25  
fPWM_OUT  
tdead_time  
CHARGE PUMP  
Phase output PWM frequency  
kHz  
ns  
Recommended dead time  
440  
VVCP  
VCP voltage  
VCC = 4.4 V to 18 V  
VCC + 4 VCC + 5 VCC + 5.5  
V
CURRENT LIMIT  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.2  
0.4  
0.6  
0.8  
1
MAX UNIT  
VCC = 12 V, R(CS) = 7.32 kΩ±1%  
VCC = 12 V, R(CS) = 16.2 kΩ±1%  
VCC = 12 V, R(CS) = 25.5 kΩ±1%  
VCC = 12 V, R(CS) = 38.3 kΩ±1%  
VCC = 12 V, R(CS) = 54.9 kΩ±1%  
VCC = 12 V, R(CS) = 80.6 kΩ±1%  
VCC = 12 V, R(CS) = 115 kΩ±1%  
ILIMIT  
Current-limit threshold  
A
1.2  
1.4  
VCC = 12 V, R(CS) = 182 kΩ±1%,  
open loop and closed loop current  
limit  
1.6  
1.5  
VCC = 12 V, R(CS) = 182 kΩ±1%,  
align current limit  
RANGE OF MOTORS SUPPORTED  
Rm  
Motor resistance measurement  
Phase to center tap  
Phase to center tap  
1
5
20  
Ω
Kt  
Motor BEMF constant measurement  
Motor align time  
150 mV/Hz  
s
tALIGN  
0.67  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DRV10974  
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.2  
TYP  
MAX UNIT  
PWM - DIGITAL MODE  
VIH(DIG)  
VIL(DIG)  
ƒPWM  
PWM input high voltage  
PWM input low voltage  
PWM input frequency  
V
0.6  
V
0.1  
100  
kHz  
VVCC < 14 V  
VCC 14 V  
100 %  
[(14 /  
VVCC) ×  
100] %  
DCMAX  
Maximum output PWM duty cycle  
V
Minimum output PWM duty cycle device  
DCMIN  
needs to guarantee (irrespective of input Lower duty cycle from 15% down  
PWM DC)  
15%  
Minimum input duty cycle that device  
uses to drive motor  
DCON_MIN  
1.5 %  
DCSTEP  
Duty cycle step size/resolution  
0.2 %  
1.695  
VIH(AUTO)  
PWM input high voltage for auto detection  
1.62  
1.77  
V
V
PWM input low voltage for exiting PWM  
mode  
VIL(AUTO)  
Rpu(PWM)  
1.315  
1.39  
120  
1.465  
Internal PWM pullup resistor to V3P3  
kΩ  
LOW-POWER MODE  
PWM pulse duration to exit low-power  
mode  
t(EX_LPM)  
PWM > VIH(DIG)  
1
µs  
V(EX_LPM)  
t(EN_LPM)  
PWM voltage to exit low-power mode  
PWM low time to enter low-power mode  
1.5  
25  
V
PWM < VIL(DIG);motor stationary  
ms  
PWM - ANALOG MODE  
VANA_FS  
VANA_ZS  
Rout(PWM)  
tSAM  
Analog full-speed voltage  
1.8  
V
Analog zero-speed voltage  
20  
mV  
kΩ  
µs  
External analog driver output impedance  
Analog speed sample period  
Analog voltage resolution  
50  
320  
3.5  
VANA_RES  
mV  
DIGITAL I/O (FG OUTPUT, FR INPUT)  
Minimum FG output frequency during  
coast  
fFG_MIN  
10  
Hz  
VIH(FR)  
VIL(FR)  
Input high  
2.2  
5
V
Input low  
0.6  
V
I(FG_SINK)  
Rpu(FG)  
Rpd(FR)  
Output sink current, FG  
Internal FG pullup resistor to 3.3V  
Internal FR pulldown resistor to ground  
VO = 0.3 V  
mA  
kΩ  
kΩ  
20  
100  
LOCK DETECTION RELEASE TIME  
t(LOCK_OFF) Lock release time  
OVERCURRENT PROTECTION  
5
5
s
IOC_limit  
tOC_retry  
Overcurrent protection  
TA = 25°C  
2.5  
A
s
Overcurrent protection retry time  
THERMAL SHUTDOWN  
TSD  
Shutdown temperature threshold  
140  
150  
15  
°C  
°C  
Shutdown temperature threshold  
hysteresis  
TSD(hys)  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DRV10974  
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LEAD ANGLE  
10  
25  
VCC = 12 V, R(ADV) = 10.7 kΩ±1%  
VCC = 12 V, R(ADV) = 14.3 kΩ±1%  
VCC = 12 V, R(ADV) = 17.8 kΩ±1%  
VCC = 12 V, R(ADV) = 22.1 kΩ±1%  
VCC = 12 V, R(ADV) = 28 kΩ±1%  
VCC = 12 V, R(ADV) = 34 kΩ±1%  
VCC = 12 V, R(ADV) = 41.2 kΩ±1%  
VCC = 12 V, R(ADV) = 49.9 kΩ±1%  
VCC = 12 V, R(ADV) = 59 kΩ±1%  
VCC = 12 V, R(ADV) = 71.5 kΩ±1%  
VCC = 12 V, R(ADV) = 86.6 kΩ±1%  
VCC = 12 V, R(ADV) = 105 kΩ±1%  
VCC = 12 V, R(ADV) = 124 kΩ±1%  
VCC = 12 V, R(ADV) = 150 kΩ±1%  
VCC = 12 V, R(ADV) = 182 kΩ±1%  
50  
100  
150  
200  
250  
300  
400  
500  
600  
700  
800  
900  
1000  
ADVselect  
Lead angle selection  
µs  
ACCELERATION RAMP RATE  
0
1
VCC = 12 V, R(RMP) = 7.32 kΩ±1%  
VCC = 12 V, R(RMP) = 10.7 kΩ±1%  
VCC = 12 V, R(RMP) = 14.3 kΩ±1%  
VCC = 12 V, R(RMP) = 17.8 kΩ±1%  
VCC = 12 V, R(RMP) = 22.1 kΩ±1%  
VCC = 12 V, R(RMP) = 28 kΩ±1%  
VCC = 12 V, R(RMP) = 34 kΩ±1%  
VCC = 12 V, R(RMP) = 41.2 kΩ±1%  
VCC = 12 V, R(RMP) = 49.9 kΩ±1%  
VCC = 12 V, R(RMP) = 59 kΩ±1%  
VCC = 12 V, R(RMP) = 71.5 kΩ±1%  
VCC = 12 V, R(RMP) = 86.6 kΩ±1%  
VCC = 12 V, R(RMP) = 105 kΩ±1%  
VCC = 12 V, R(RMP) = 124 kΩ±1%  
VCC = 12 V, R(RMP) = 150 kΩ±1%  
VCC = 12 V, R(RMP) = 182 kΩ±1%  
2
3
4
5
6
7
RMPselect  
RMP selection for acceleration profile  
code  
8
9
10  
11  
12  
13  
14  
15  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DRV10974  
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
6.6 Typical Characteristics  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
4.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.89  
4.88  
4.87  
0
5
10  
VCC (V)  
15  
20  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D001  
D002  
6-1. Supply Current vs Power Supply  
VCC = 12 V  
6-2. rDS(on) vs Temperature When VCC = 12 V  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
7 Detailed Description  
7.1 Overview  
The DRV10974 device is a three-phase sensorless motor driver with integrated power MOSFETs, which provide  
drive-current capability up to 1 A continuous (rms). The device is specifically designed for low-noise, low  
external-component count, 12-V motor-drive applications. The 180° commutation requires no configuration  
beyond setting the peak current, the lead angle, and the acceleration profile, each of which is configured by an  
external resistor.  
The 180° sensorless-control scheme provides sinusoidal output voltages to the motor phases as shown in 图  
7-1.  
7-1. 180° Sensorless-Control Scheme  
Interfacing to the DRV10974 device is simple and intuitive. The DRV10974 device receives a PWM input that it  
uses to control the speed of the motor. The duty cycle of the PWM input is used to determine the magnitude of  
the voltage applied to the motor. The resulting motor speed can be monitored on the FG pin. The FR pin is used  
to control the direction of rotation for the motor. The acceleration ramp rate is controlled by the RMP pin. The  
current limit is controlled by a resistor on the CS pin. The lead angle is controlled by a resistor on the ADV pin.  
When the motor is not spinning, a low-power mode turns off unused circuits to conserve power.  
The DRV10974 device features extensive protection and fault-detect mechanisms to ensure reliable operation.  
The device provides overcurrent protection without the requirement for an external current-sense resistor. Rotor-  
lock detect uses several methods to reliably determine when the rotor stops spinning unexpectedly. The device  
provides additional protection for undervoltage lockout (UVLO), for thermal shutdown, and for phase short circuit  
(phase to phase, phase to ground, phase to supply).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DRV10974  
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
7.2 Functional Block Diagram  
VCC  
VCP  
VCC  
VCC  
VCC  
VCP  
VCC  
Charge  
Pump  
Linear Reg  
Linear Reg  
U
V1P8  
Phase U  
predriver  
VCC  
V3P3  
V3P3  
VCC  
PWM  
FR  
VCC  
VCP  
V
Phase V  
predriver  
RMP  
ADC  
(4 bit)  
Core  
Logic  
VCC  
VCC  
VCP  
CS  
W
ADC  
(3 bit)  
Phase W  
predriver  
ADV  
ADC  
(4 bit)  
V3P3  
Lock  
FG  
Overcurrent  
Thermal  
GND  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Speed Input and Control  
The DRV10974 device has a three-phase 25-kHz PWM (fPWM_OUT) output that has an average value of  
sinusoidal waveforms from phase to phase as shown in 7-2. When any phase is measured with reference to  
ground, the waveform observed is a PWM-encoded sinusoid coupled with third-order harmonics as shown in 图  
7-3. This encoding scheme simplifies the driver requirements because one phase output is always equal to zero.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
U
V
U-V  
V-W  
W-U  
W
Sinusoidal Voltage from Phase to GND  
With 3rd-Order Harmonics  
Sinusoidal Voltage from Phase to Phase  
7-2. Sinusoidal Voltage  
PWM output  
Average value  
7-3. PWM Encoded Phase Output and the Average Value  
The output amplitude is determined by the supply voltage (VCC) and the PWM-commanded duty cycle (PWM) as  
calculated in 方程1 and shown in 7-4. The maximum amplitude is applied when the commanded PWM duty  
cycle is slightly less than 100% in order to keep the 25-kHz PWM rate (fPWM_OUT).  
V
= PWMdc ì VCC  
phpk  
(1)  
100% PWM input  
100% peak output  
VM  
50% PWM input  
50% peak output  
VM/2  
7-4. Output Voltage Amplitude Adjustment  
The motor speed is controlled indirectly by using the PWM command to control the amplitude of the phase  
voltages which are applied to the motor. The PWM pin can be driven by either a digital duty cycle or an analog  
voltage.  
The duty cycle of the PWM input (PWM) is passed through a low-pass filter that ramps from 0% to 100% duty  
cycle in 120 ms. The control resolution is approximately 0.2% (DCSTEP). The signal path from PWM input to  
PWM motor is shown in 7-5.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DRV10974  
 
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
Amplitude of Output  
Sine Wave  
PWM Output  
PWM Input  
LPF  
7-5. PWM Command Input Control Diagram  
The output peak amplitude is described by 方程式 1 when PWMdc > 15% (the minimum-operation duty cycle).  
When the PWM-commanded duty cycle is lower than the minimum-operation duty cycle and higher than 1.5%  
(DCON_MIN), the output is controlled the by the minimum-operation duty cycle (DCMIN). This is shown in 7-6 for  
analog input, and for duty cycles greater than 1.5% (DCON_MIN) for digital input. If the supply voltage (VVCC) > 14  
V, the maximum PWMdc is limited to 14 V / VVCC  
.
511 100%  
PWM Mode  
15%  
76  
15%  
76  
100%  
511  
0
0
PWM duty  
7-6. PWM-Mode Speed-Control Transfer Function  
When the PWM pin is driven with an analog voltage, the output peak amplitude depends on the supply voltage,  
the analog voltage on the PWM pin (VANA), and the voltage of V1P8 (VV1P8). This is shown in 方程2:  
VANA  
V
=
ì VCC  
phpk  
V1P8  
(2)  
Note the output peak amplitude is described by 方程式 2 when the VANA > 0.27 V or 15% of 1.8 V. This is the  
equivalent of the minimum-operation duty cycle percentage of 15% (DCMIN). When the analog voltage on the  
PWM pin is lower than the minimum-operation duty-cycle percentage but higher than the zero-speed analog  
voltage (VANA_ZS), the output is controlled by the minimum-operation duty cycle. When the analog voltage on the  
PWM pin is below zero-speed analog voltage, the DRV10974 enters low-power mode. This is shown in 7-7.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
511 100%  
Analog Mode  
15%  
76  
15%  
0.27 V  
100%  
1.8 V  
0
0
Analog Voltage (VANA)  
VANA_ZS  
7-7. Analog-Mode Speed-Control Transfer Function  
7.3.2 Motor Direction Change  
The DRV10974 device can be easily configured to drive the motor in either direction by setting the input on the  
FR (forward-reverse) pin to a logic 1 or logic 0 state. The direction of commutation as described by the  
commutation sequence is defined as follows:  
FR = 0  
FR = 1  
UVW  
UWV  
7.3.3 Motor-Frequency Feedback (FG)  
During operation of the DRV10974 device, the FG pin provides an indication of the speed of the motor. The FG  
pin toggles at a rate of one time during an electrical cycle. Using this information and the number of pole pairs in  
the motor, use 方程3 to calculate the mechanical speed of the motor.  
ƒ(FG) ì 60  
RPM =  
pole _pairs  
(3)  
During open-loop acceleration the FG pin indicates the frequency of the signal that is driving the motor. The lock  
condition of the motor is unknown during open-loop acceleration and therefore the FG pin could toggle during  
this time even though the motor is not moving.  
During spin down, the DRV10974 device continues to provide speed feedback on the FG pin. The DRV10974  
device provides the output of the U-phase comparator on the FG pin until the motor speed drops below 10 Hz  
(fFG_MIN). When the motor speed falls below 10 Hz, the device enters into the low-power mode and the FG  
output is held at a logic high.  
7.3.4 Lock Detection  
When the motor is locked by some external condition, the DRV10974 device detects the lock condition and acts  
to protect the motor and the device. The lock condition must be properly detected whether the condition occurs  
as a result of a slowly increasing load or a sudden shock.  
The DRV10974 device reacts to the lock condition by stopping the motor drive. To stop driving the motor, the  
phase outputs are placed into a high-impedance state. After successfully transitioning into a high-impedance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DRV10974  
 
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
state as the result of a lock condition, the DRV10974 device attempts to restart the motor after t(LOCK_OFF)  
seconds.  
The DRV10974 device has a comprehensive lock-detect function that includes six different lock-detect schemes.  
Each of these schemes detects a particular condition of the lock as shown in 7-8.  
Kt Measure  
No Motor  
High-  
Impedance and  
Restart Logic  
Open Loop Abnormal  
BEMF Abnormal  
Closed Loop Abnormal  
Speed Abnormal  
7-8. Lock Detect  
The following sections describe each lock-detect scheme.  
7.3.4.1 Lock Kt Measure  
The DRV10974 device measures the actual Kt of the motor when transitioning from open-loop acceleration to  
closed-loop acceleration. If the measured Kt is less than 200 mV, the device indicates that the handoff Kt level  
was not properly reached and the lock is triggered.  
7.3.4.2 Lock No Motor  
The phase-U current is checked at the end of the align state. If the phase-U current is not greater than 50 mA,  
then the motor is not connected. This condition is reported as a lock condition.  
7.3.4.3 Lock Open Loop Abnormal  
Transition from open loop to closed loop is based on the estimated value of BEMF. If during open-loop  
acceleration the electrical commutation rate exceeds 200 Hz without reaching the handoff threshold, this lock is  
triggered.  
7.3.4.4 Lock BEMF Abnormal  
For any specific motor, the integrated value of BEMF during half of an electrical cycle is a constant as shown by  
the shaded gray area in 7-9. This value is constant regardless of whether the motor runs fast or slow. The  
DRV10974 device monitors this value and uses it as a criterion to determine if the motor is in a lock condition.  
The DRV10974 device uses the integrated BEMF to determine the Kt value of the motor during the initial motor  
start. Based on this measurement, a range of acceptable Kt values is established. Then, during closed-loop  
motor operation the Ktc (Kt calculated) value is continuously updated. Finally, the Ktc value is checked to see if it  
is within the range between ½ Kt and 2Kt. If the Ktc value goes beyond the acceptable range, a lock condition is  
triggered as shown in 7-10. Note, there is a blanking period of 0.3 s after the transition from open loop to  
closed loop where the abnormal BEMF lock is momentarily disabled. The device uses this time to finalize the Kt  
value that Ktc is compared against.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
7-9. BEMF Integration  
Kt  
Kt_high = 2 Kt  
Ktc  
Kt  
Kt_low = 0.5 Kt  
time  
Lock detect  
7-10. Abnormal Kt Lock Detect  
7.3.4.5 Lock Closed Loop Abnormal  
This lock condition is active when the DRV10974 device is operating in the closed-loop mode. The motor is  
indicated as not moving when the closed-loop commutation period becomes lower than half the previous  
commutation period. This condition triggers the closed-loop abnormal-lock condition.  
7.3.4.6 Lock Speed Abnormal  
If the motor is in normal operation, the motor BEMF is always less than the voltage applied to the phase. The  
sensorless-control algorithm of the DRV10974 device is continuously updating the value of the motor BEMF  
based on the speed of the motor and the motor Kt as shown in 7-11. If the calculated value for motor BEMF is  
1.5 times higher than the applied voltage on phase U (VU) for an electrical period then an error is present in the  
system, and the calculated value for motor BEMF is wrong or the motor is out of phase with the commutation  
logic. When this condition is detected, a lock is triggered.  
Rm  
VU  
M
BEMF = Kt × speed  
V
U
If speed >  
Kt  
Lock is triggered  
7-11. BEMF Monitoring  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DRV10974  
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
7.3.5 Soft Current-Limit  
The current-limit function provides active protection for preventing damage as a result of high current. The soft  
current-limit does not use direct-current measurement for protection, but rather, uses the measured motor  
resistance (Rm) and motor velocity constant (Kt) to limit the voltage applied to the phase (U) such that the  
current does not exceed the limit value (I(LIMIT)). The soft current-limit scheme is shown in 7-12 based on the  
calculation in 方程4.  
The soft current-limit is only active when in normal closed-loop mode and does not result in a fault condition nor  
does it result in the motor being stopped. The soft current-limit is typically useful for limiting the current that  
results from heavy loading during motor acceleration. The I(LIMIT) current is configured by an external resistor  
(R(CS)) as shown in 7-1.  
Rm  
VU = BEMF + I × Rm  
M
BEMF = Kt × speed  
If VU < BEMF + I(LIMIT) × Rm  
I < I(LIMIT)  
Current Limit:  
VUmax = BEMF + I(LIMIT) × Rm  
7-12. Current Limit  
Use 方程4 to calculate the I(LIMIT) value.  
V
- Speed´Kt  
(U)LIMIT  
I(LIMIT)  
=
Rm  
(4)  
7-1 can be used to determine the I(LIMIT) value.  
7-1. Soft Current-Limit Selections  
R(CS) [kΩ](1)  
I(LIMIT) [mA]  
7.32  
200  
16.2  
400  
25.5  
600  
38.3  
800  
54.9  
1000  
80.6  
1200  
1400  
115  
182  
1600 (1500 during align)  
(1) All resistors are ±1 %.  
Spacer  
备注  
The soft current-limit is not correct if the motor is out of phase with the commutation control logic  
(locked rotor). The soft current-limit is not effective under this condition.  
7.3.6 Short-Circuit Current Protection  
The short-circuit current protection function shuts off drive to the motor by placing the motor phases into a high-  
impedance state if the current in any motor phase exceeds the short-circuit protection limit I(OC_LIMIT). The  
DRV10974 device goes through the initialization sequence and attempts to restart the motor after the short-  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
circuit condition is improved. This function is intended to protect the device and the motor from catastrophic  
failure when subjected to a short-circuit condition.  
7.3.7 Overtemperature Protection  
The DRV10974 device has a thermal shutdown function which disables the motor operation when the device  
junction temperature has exceeded the TSD temperature. Motor operation resumes when the junction  
temperature becomes lower than TSD TSD(hys)  
.
7.3.8 Undervoltage Protection  
The DRV10974 device has an undervoltage lockout feature, which prevents motor operation whenever the  
supply voltage (VCC) becomes too low. Upon power up, the DRV10974 device operates when VCC rises above  
V(UVLO_F) + Vhys(UVLO). The DRV10974 device continues to operate until VCC falls below V(UVLO_F)  
.
7.4 Device Functional Modes  
7.4.1 Spin-Up Settings  
7.4.1.1 Motor Start  
The DRV10974 device starts the motor using a procedure which is shown in 7-13.  
Power On (low  
power mode)  
PWM > 1 us  
Initial Speed  
Detection / Coast  
FR Pin Change  
Y
N
f < 10Hz or  
t > 5 s  
Temp <  
threshold-hys  
Y
N
Y
t = 5 s  
Y
Align  
N
UVLO  
Sleep  
Over temp  
Over current  
Lock  
t = 5 s  
N
Measure Motor  
Resistance  
Acceleration profile from  
RMP pin  
Open Loop  
Acceleration  
Coast / Measure Kt  
Acceleration profile from  
RMP pin  
Closed Loop  
Acceleration / Run  
7-13. DRV10974 Initialization and Motor Start-Up Sequence  
7.4.1.2 Initial Speed Detect  
Every time the DRV10974 device exits low-power mode, it determines if the motor is spinning using a function  
called initial speed detect. If the frequency on the FG pin is less than 10 Hz, the motor is considered stationary. If  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DRV10974  
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
the frequency is greater than 10 Hz the motor is decelerated until it is below 10 Hz or a 5-second time-out has  
occurred.  
7.4.1.3 Align  
To align the rotor to the commutation logic, the DRV10974 device applies a current equivalent to the closed-loop  
run current to phase U by driving phases V and W equally. This condition is maintained for a maximum of 0.67 s  
(tALIGN). To avoid a sudden change in current that could result in undesirable acoustics, the voltage applied to  
the motor is changed gradually to obtain a current change of 12 A/s.  
7.4.2 Open-Loop Acceleration  
After the motor is confirmed to be stationary and after completing the motor initialization, the DRV10974 device  
begins to accelerate the motor. This acceleration is accomplished by applying a voltage to the motor at the  
appropriate drive state and increasing the rate of commutation without regard to the actual position of the motor  
(referred to as open-loop operation). The function of the open-loop operation is to drive the motor to a minimum  
speed so that the motor generates sufficient BEMF to allow the commutation control logic to drive the motor  
accurately.  
The motor start-up profile can be configured using an external resistor to set the acceleration profile before  
transitioning to closed-loop operation. 7-14 shows this acceleration profile. During closed-loop operation the  
RMP pin controls the closed-loop acceleration and deceleration. 7-2 lists the selectable acceleration  
parameters.  
7-2. Acceleration Profile Settings  
CLOSED-LOOP-  
ACCELERATION  
TRANSITION TIME  
[s](2)  
CLOSED-LOOP-  
DECELERATION  
TRANSITION TIME  
[s](3)  
RRMP [kΩ](1)  
RMP SELECTION  
Accel2 [Hz/s2]  
Accel1 [Hz/s]  
0
1
7.32  
10.7  
14.3  
17.8  
22.1  
28  
0.22  
1.65  
1.65  
3.3  
7
4.6  
9.2  
15  
25  
25  
35  
50  
75  
75  
50  
35  
25  
25  
15  
9.2  
4.6  
2.7  
2.7  
1
44  
22  
22  
11  
44  
22  
22  
11  
11  
22  
22  
44  
11  
22  
22  
44  
2
3
1
4
0.2  
0.2  
0.2  
0.2  
5.4  
8
5
7
6
34  
14  
7
41.2  
49.9  
59  
27  
8
27  
9
14  
10  
11  
12  
13  
14  
15  
71.5  
86.6  
105  
124  
150  
182  
7
11  
22  
5.4  
8
7
3.3  
1.65  
1.65  
0.22  
11  
22  
(1) All resistors are ±1%  
(2) Time to transition from 0 to 100% duty cycle.  
(3) Time to transition from 100% to 0% duty cycle.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
 
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
Speed = Accel1 x t + 0.5 x Accel2 x t2  
Speed  
Closed Loop  
Align Time  
Time  
Open Loop Acceleration  
7-14. Start-Up Profile  
7.4.3 Start-Up Current Sensing  
The start-up peak current is controlled by the current-sense limit resistor, R(CS). The start current is set by  
selecting the R(CS) resistor based on 7-3. The current should be selected to allow the motor to accelerate  
reliably to the handoff threshold. Heavier loads may require a higher current setting, but the rate of acceleration  
is limited by the selected resistor, R(RMP)  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DRV10974  
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
7-3. Start-Up Current Limit  
R(CS) [kΩ](1)  
I(LIMIT) [mA]  
7.32  
200  
16.2  
25.5  
38.3  
54.9  
80.6  
115  
400  
600  
800  
1000  
1200  
1400  
182  
1600 (1500 for align)  
(1) All resistors are ±1%.  
7.4.4 Closed Loop  
When the motor accelerates to the target BEMF threshold, commutation control transitions from open-loop mode  
to closed-loop mode. During this transition, the motor is allowed to coast for one electrical cycle to measure Kt.  
The commutation drive sequence and timing are determined by the internal control algorithm, and the applied  
voltage is determined by the PWM-commanded duty-cycle input. The closed-loop acceleration and deceleration  
values are provided in 7-2.  
7.4.5 Control Advance Angle  
To achieve the best efficiency, the drive state of the motor must be controlled such that the current is aligned with  
the BEMF voltage of the motor. 7-15 illustrates the operation when the drive angle has been optimized. For  
complete flexibility, the DRV10974 device offers a wide range of fixed lead times. The options for lead time are  
controlled by a resistor on the ADV pin. The values available are shown in 7-4.  
U phase voltage  
U phase BEMF  
U phase current  
û§  
7-15. Drive Angle Adjustment  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
7-4. Lead Time Selection  
RADV [kΩ](1)  
LEAD TIME [µs]  
10.7  
14.3  
17.8  
22.1  
28  
10  
25  
50  
100  
150  
200  
250  
300  
400  
500  
600  
700  
800  
900  
1000  
34  
41.2  
49.9  
59  
71.5  
86.6  
105  
124  
150  
182  
(1) All resistors are ±1%.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DRV10974  
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DRV10974 device is used in sensorless 3-phase BLDC motor control. The driver provides a high-  
performance, high-reliability, flexible, and simple solution for appliance fan, pump, and blower applications. The  
following design shows a common application of the DRV10974 device.  
8.2 Typical Application  
ADV  
FR  
GND  
VCP  
1
2
16  
15  
59k  
FR  
FG  
10uF  
100nF  
FG  
VCC  
W
3
4
5
6
7
8
14  
13  
12  
11  
10  
9
VCC  
PWM  
V1P8  
RMP  
GND  
CS  
PWM IN  
V
1 µF  
U
7.32k  
115k  
PGND  
NC  
8-1. Typical Application Schematic  
8-1. Recommended External Components  
NODE 1  
NODE 2  
GND  
VCC  
COMPONENT  
VCC  
VCP  
V1P8  
RMP  
CS  
10-μF, 25-V ceramic capacitor tied from VCC to ground  
100-nF, 10-V ceramic capacitor tied from VCP to VCC  
1-μF ±30%, 6.3-V ceramic capacitor tied from V1P8 to ground  
GND  
GND  
GND  
GND  
1%, 1/8 watt resistor tied from RMP to ground to set the desired acceleration profile  
1%, 1/8-watt resistor tied from CS to ground to set the desired current limit  
1%, 1/8-watt resistor tied from ADV to ground to set the desired lead angle (time)  
ADV  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
8.2.1 Design Requirements  
8-2 provides design input parameters and motor parameters for system design.  
8-2. Recommended Application Range  
MIN  
NOM  
MAX  
18  
UNIT  
V
Motor voltage  
4.4  
5
12  
BEMF constant  
Phase to center tap, measured while motor is coasting  
150  
20  
mV/Hz  
Ω
Motor phase resistance Phase to center tap  
1
Motor electrical  
constant  
1 phase; inductance divided by resistance, measured phase to  
phase, yields the electrical constant for 1 phase.  
100  
5000  
1
μs  
A
Motor winding current  
(rms)  
Absolute maximum  
current  
During locked condition  
2.5  
A
8.2.2 Detailed Design Procedure  
Assuming the motor used in the application falls within the recommended application range shown in 8-2, the  
DRV10974 device is simple and intuitive to interface with. The DRV10974 device receives a PWM input that it  
uses to control the speed of the motor. The duty cycle of the PWM input is used to determine the magnitude of  
the voltage applied to the motor. The resulting motor speed can be monitored on the FG pin. The FR pin is used  
to control the direction of rotation for the motor. As a result, the only configuration and customization is dictated  
by the RMP, ADV, and CS pins.  
The resistor on the CS pin is usually determined by the application specifications. Because the CS pin  
determines the current limit, specifications such as motor current or input power can determine what value the  
current limit can be set to. Then, the RMP and ADV resistors must be set experimentally through tuning. The  
RMP pin sets the acceleration profile of the motor. If the RMP pin is set to faster acceleration, the motor starts up  
faster but may be more likely to fail start-up. In addition, the ADV resistor controls the lead time so the applied  
current is aligned with the BEMF of the motor. If the ADV resistor is incorrectly selected, the motor may not run  
efficiently or at all.  
As a result, the RMP pin is usually set to the slowest profile while ADV is correctly tuned. Then, the RMP can be  
set to a different value that allows for a faster acceleration with no impact to start-up reliability. This process, and  
other design considerations, are documented extensively in the DRV10974 Technical Documents tab on the  
DRV10974 product page.  
8.2.3 Application Curves  
8-2. DRV10974 Operation Current Waveform  
8-3. DRV10974 Start-Up Waveform  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DRV10974  
 
 
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
9 Power Supply Recommendations  
The DRV10974 device is designed to operate from an input voltage supply, VCC , range between 4.4 V and 18 V.  
The user must place a minimum of a 10-µF capacitor rated for VCC between the VCC and GND pins and as close  
as possible to the VCC and GND pins.  
If the power supply ripple is more than 200 mV, in addition to the local decoupling capacitors, a bulk capacitance  
is required and must be sized according to the application requirements.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
10 Layout  
10.1 Layout Guidelines  
Use thick traces when routing to the VCC, GND, U, V, and W pins, because high current passes through these  
traces.  
Place the 10-µF capacitor between VCC and GND, and as close to the VCC and GND pins as possible.  
Place the 100-nF capacitor between VCP and VCC, and as close to the VCP and VCC pins as possible.  
Connect GND and PGND under the thermal pad.  
Keep the thermal pad connection as large as possible. It should be one piece of copper without any gaps.  
10.2 Layout Example  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VCP  
VCC  
W
ADV  
FR  
10 mF  
100 nF  
FG  
GND  
PWM  
V1P8  
RMP  
GND  
CS  
(Thermal pad)  
59 kW  
1 mF  
V
U
7.32 kW  
PGND  
NC  
115 kW  
GND  
10-1. HTSSOP Layout Example  
1
2
3
4
12  
11  
10  
9
FG  
PWM  
V1P8  
RMP  
VCC  
W
V
GND  
(PPAD)  
1uF  
U
7.32k  
GND  
10-2. QFN Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DRV10974  
 
 
 
DRV10974  
www.ti.com.cn  
ZHCSHA0E JANUARY 2018 REVISED MARCH 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated device. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DRV10974  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV10974PWPR  
DRV10974RUMR  
ACTIVE  
ACTIVE  
HTSSOP  
WQFN  
PWP  
RUM  
16  
16  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
10974  
Samples  
Samples  
NIPDAU  
DRV  
10974  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Feb-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV10974PWPR  
DRV10974RUMR  
HTSSOP PWP  
WQFN RUM  
16  
16  
2000  
3000  
330.0  
330.0  
12.4  
12.4  
6.9  
5.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q2  
4.25  
4.25  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV10974PWPR  
DRV10974RUMR  
HTSSOP  
WQFN  
PWP  
RUM  
16  
16  
2000  
3000  
350.0  
367.0  
350.0  
367.0  
43.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016J  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
C
SEATING  
PLANE  
6.6  
6.2  
TYP  
0.1 C  
A
PIN 1 INDEX  
AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
B
0.19  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
9
8
0.25  
1.2 MAX  
GAGE PLANE  
3.55  
2.68  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
16  
1
DETAIL A  
TYPICAL  
2.46  
1.75  
THERMAL  
PAD  
4223595/A 03/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016J  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 8  
METAL COVERED  
BY SOLDER MASK  
(2.46)  
16X (1.5)  
SEE DETAILS  
SYMM  
16X (0.45)  
1
16  
(1.3) TYP  
(R0.05) TYP  
SYMM  
(0.65)  
(3.55)  
(5)  
NOTE 8  
14X (0.65)  
(
0.2) TYP  
VIA  
8
9
(1.35) TYP  
SOLDER MASK  
DEFINED PAD  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4223595/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
8. Size of metal pad may vary due to creepage requirement.  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016J  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.46)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
16X (0.45)  
1
16  
(R0.05) TYP  
SYMM  
(3.55)  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.75 X 3.97  
2.46 X 3.55 (SHOWN)  
2.25 X 3.24  
0.125  
0.15  
0.175  
2.08 X 3.00  
4223595/A 03/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RUM 16  
4 x 4, 0.65 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224843/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV10974PWPR

12V 标称电压、2.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 16 | -40 to 125
TI

DRV10974RUMR

12V 标称电压、2.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | RUM | 16 | -40 to 125
TI

DRV10975

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器
TI

DRV10975PWP

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10975PWPR

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10975RHFR

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | RHF | 24 | -40 to 125
TI

DRV10975ZPWP

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10975ZPWPR

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10975ZRHFR

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | RHF | 24 | -40 to 125
TI

DRV10982-Q1

汽车类 12V 电池、无传感器正弦控制三相 BLDC 电机驱动器
TI

DRV10982QPWPRQ1

汽车类 12V 电池、无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10982SQPWPRQ1

汽车类 12V 电池、无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI