DRV425-Q1 [TI]

汽车类全集成型磁通门磁场传感器;
DRV425-Q1
型号: DRV425-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类全集成型磁通门磁场传感器

传感器 磁场传感器
文件: 总41页 (文件大小:1999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
DRV425-Q1 汽车类集成式磁通门磁场传感器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准:  
温度等级 1–40°C +125°CTA  
提供功能安全  
可帮助进行功能安全系统设计的文档  
高精度集成式磁通门传感器:  
DRV425-Q1 汽车类器件专为单轴磁场检测 应用设  
计,可实现具有电气隔离功能和高灵敏度的直流和交流  
磁场精确测量。该器件能向独特且专有的集成磁通门传  
感器 (IFG) 提供内置补偿线圈,以支持 ±2mT 的高精  
度检测范围和高达 47kHz 的测量带宽。该传感器具有  
低失调电压、低漂移和低噪声,再加上内置补偿线圈提  
供的精确增益、低增益漂移和极低的非线性度,可提供  
无与伦比的磁场测量精度。高灵敏度和高精度在高电流  
汇流条 应用中(如牵引逆变器或电池管理系统)实现  
了更广泛的电流测量。扭矩传感器或电机诊断系统受益  
于精确测量磁场位置或位移的能力。 DRV425-Q1 的  
输出是与被检测磁场成比例的模拟信号。  
失调电压:±8µT(最大值)  
温漂:±5nT/°C(典型值)  
增益误差:0.04%(典型值)  
增益漂移:±7ppm/°C(典型值)  
线性度:±0.1%  
噪声:1.5nT/Hz(典型值)  
传感器范围:±2mT(最大值)  
通过外部电阻器可调节范围和增益  
该器件提供完整的 功能,包括内部差分放大器、片上  
精密基准以及诊断功能,能够最大限度地减少组件数量  
并削减系统级成本。  
可选带宽:47kHz 32kHz  
精度基准:  
精度:2%(最大值),漂移:50ppm/°C(最大  
值)  
该器件采用热增强型、非磁性、薄型 WQFN 封装,具  
有热耗散性能经优化的散热焊盘,其额定汽车工作温度  
范围为 –40°C +125°C。  
引脚可选电压:2.5V 1.65V  
可选的比例模式:VDD/2  
器件信息 (1)  
诊断 功能:超范围和错误标志  
电源电压范围:3.0V 5.5V  
器件型号  
DRV425-Q1  
封装  
WQFN (20)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
电池管理系统 (BMS)  
逆变器和电机控制  
直流/直流转换器  
动力系统电流传感器  
动力系统扭矩传感器  
电机诊断和监控  
简化原理图  
RSHUNT  
COMP1  
COMP2  
DRV2  
DRV1 AINP  
AINN  
DRV425-Q1  
Shunt  
Sense  
Amplifier  
Differential  
Driver  
Fluxgate  
Sensor  
and  
Integrator  
Compensation  
Coil  
VOUT  
REFIN  
ADC  
Fluxgate Sensor Front-End  
Device Control and Diagnostic  
Reference  
REFOUT  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS988  
 
 
 
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 23  
8
9
Application and Implementation ........................ 24  
8.1 Application Information............................................ 24  
8.2 Typical Applications ................................................ 24  
Power Supply Recommendations...................... 29  
9.1 Power Supply Decoupling....................................... 29  
9.2 Power-On Start-Up and Brownout .......................... 29  
9.3 Power Dissipation ................................................... 29  
10 Layout................................................................... 30  
10.1 Layout Guidelines ................................................. 30  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 32  
11.1 文档支持 ............................................................... 32  
11.2 接收文档更新通知 ................................................. 32  
11.3 支持资源................................................................ 32  
11.4 ....................................................................... 32  
11.5 静电放电警告......................................................... 32  
11.6 Glossary................................................................ 32  
12 机械、封装和可订购信息....................................... 33  
7
4 修订历史记录  
Changes from Original (August 2019) to Revision A  
Page  
添加了提供功能安全...................................................................................................................................................... 1  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
5 Pin Configuration and Functions  
RTJ Package  
20-Pin WQFN  
Top View  
BSEL  
RSEL1  
1
2
3
4
5
15  
14  
13  
12  
11  
OR  
AINN  
AINP  
DRV1  
DRV2  
Thermal Pad  
RSEL0  
REFOUT  
REFIN  
Not to scale  
Pin Functions  
PIN  
NAME  
AINN  
NO.  
I/O  
I
DESCRIPTION  
14  
Inverting input of the shunt-sense amplifier  
Noninverting input of the shunt-sense amplifier  
Filter bandwidth select input  
AINP  
13  
I
BSEL  
1
I
COMP1  
COMP2  
DRV1  
DRV2  
ERROR  
GND  
16  
I
Internal compensation coil input 1  
17  
I
Internal compensation coil input 2  
12  
O
O
O
O
I
Compensation coil driver output 1  
11  
Compensation coil driver output 2  
19  
Error flag: open-drain, active-low output  
Ground reference  
7, 10, 18, 20  
OR  
15  
5
Shunt-sense amplifier overrange indicator: open-drain, active-low output  
Common-mode reference input for the shunt-sense amplifier  
Voltage reference output  
REFIN  
REFOUT  
RSEL0  
RSEL1  
4
O
I
3
Voltage reference mode selection input 0  
Voltage reference mode selection input 1  
2
I
Supply voltage, 3.0 V to 5.5 V. Decouple both pins using 1-µF ceramic capacitors placed as  
close as possible to the device. See the Power Supply Decoupling and Layout sections for  
further details.  
VDD  
8, 9  
VOUT  
6
O
Shunt-sense amplifier output  
Thermal Pad  
Thermal Pad  
Connect the thermal pad to GND  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
Supply voltage (VDD to GND)  
Input voltage, except AINP and AINN pins(2)  
Shunt-sense amplifier inputs (AINP and AINN pins)(3)  
6.5  
VDD + 0.5  
VDD + 6.0  
300  
Voltage  
GND – 0.5  
GND – 6.0  
–300  
V
(4)  
DRV1 and DRV2 pins (short-circuit current, IOS  
)
Current  
Shunt-sense amplifier input pins AINP and AINN  
–5  
5
mA  
°C  
All remaining pins  
Junction, TJ  
–25  
25  
–50  
150  
Temperature  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited, except for the differential amplifier input pins.  
(3) These inputs are not diode-clamped to the power-supply rails.  
(4) Power-limited; observe maximum junction temperature.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD classification level C6  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.0  
NOM  
MAX  
5.5  
UNIT  
VDD  
TA  
Supply voltage range (VDD to GND)  
Specified ambient temperature  
5.0  
V
–40  
125  
°C  
6.4 Thermal Information  
DRV425-Q1  
THERMAL METRIC(1)  
RTJ (WQFN)  
UNIT  
20 PINS  
34.1  
33.1  
11  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
11  
RθJC(bot)  
2.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
6.5 Electrical Characteristics  
all minimum and maximum specifications are at TA = 25°C, VDD = 3.0 V to 5.5 V, and IDRV1 = IDRV2 = 0 mA (unless otherwise  
noted); typical values are at VDD = 5.0 V.  
PARAMETER  
FLUXGATE SENSOR FRONT-END  
Offset  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
No magnetic field  
–8  
±2  
±5  
8
µT  
Offset drift  
No magnetic field  
nT/°C  
mA/mT  
G
Gain  
Current at DRV1 and DRV2 outputs  
12.2  
±0.04%  
±7  
Gain error  
Gain drift  
Best-fit line method  
ppm/°C  
Linearity error  
Hysteresis  
Noise  
0.1%  
1.4  
Magnetic field sweep from –10 mT to 10 mT  
f = 0.1 Hz to 10 Hz  
µT  
17  
nTrms  
nT/Hz  
mT  
Noise density  
Compensation range  
f = 1 kHz  
1.5  
–2  
2
Saturation trip level for the  
ERROR pin(1)  
Open-loop, uncompensated field  
1.6  
mT  
µs  
ERROR delay  
Open-loop at B > 1.6 mT  
BSEL = 0, RSHUNT = 22 Ω  
BSEL = 1, RSHUNT = 22 Ω  
VDD = 5 V  
4 to 6  
32  
BW  
IOS  
Bandwidth  
kHz  
mA  
47  
250  
150  
Short-circuit current  
VDD = 3.3 V  
Common-mode output voltage at the  
DRV1 and DRV2 pins  
VREFOUT  
100  
V
Compensation coil resistance  
Ω
SHUNT-SENSE AMPLIFIER  
VOO  
Output offset voltage  
Output offset voltage drift  
Common-mode rejection ratio, RTO(2) VCM = –1 V to VDD + 1 V, VREFIN = VDD / 2  
VAINP = VAINN = VREFIN, VDD = 3.0 V  
–0.075  
–2  
±0.01  
±0.4  
±50  
±4  
0.075  
2
mV  
µV/°C  
µV/V  
µV/V  
V
CMRR  
PSRRAMP  
VICR  
–250  
–86  
–1  
250  
Power-supply rejection ratio, RTO(2)  
Common-mode input voltage range  
Differential input impedance  
Common-mode input impedance  
Nominal gain  
VDD = 3.0 V to 5.5 V, VCM = VREFIN  
86  
VDD + 1  
23.5  
60  
zid  
16.5  
40  
20  
kΩ  
zic  
50  
kΩ  
Gnom  
EG  
VVOUT / (VAINP – VAINN  
)
4
±0.02%  
±1  
V/V  
Gain error  
–0.3%  
–5  
0.3%  
5
Gain error drift  
ppm/°C  
ppm  
Linearity error  
12  
VDD = 5.5 V, IVOUT = 2.5 mA  
VDD = 3.0 V, IVOUT = 2.5 mA  
VDD = 5.5 V, IVOUT = –2.5 mA  
VDD = 3.0 V, IVOUT = –2.5 mA  
48  
85  
Voltage output swing from negative  
rail (OR pin trip level)(1)  
mV  
56  
100  
VDD – 85  
VDD – 48  
VDD – 56  
Voltage output swing from positive rail  
(OR pin trip level)(1)  
mV  
µs  
VDD – 100  
Signal overrange indication delay  
(OR pin)(1)  
VIN = 1-V step  
2.5 to 3.5  
VOUT connected to GND  
VOUT connected to VDD  
–18  
20  
2
IOS  
Short-circuit current  
mA  
BW–3dB  
SR  
Bandwidth  
Slew rate  
MHz  
V/µs  
6.5  
0.9  
8
Large signal  
Settling time  
ΔV = ± 2 V to 1%, no external filter  
ΔV = ± 0.4 V to 0.01%  
tsa  
µs  
Small signal  
en  
Output voltage noise density  
f = 1 kHz, compensation loop disabled  
Input voltage range at REFIN pin  
170  
nV/Hz  
VREFIN  
Input voltage range at pin REFIN  
GND  
VDD  
V
(1) See the Magnetic Field Range, Overrange Indicator, and Error Flag section for details on the behavior of the ERROR and OR outputs.  
(2) Parameter value is referred-to-output (RTO).  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
all minimum and maximum specifications are at TA = 25°C, VDD = 3.0 V to 5.5 V, and IDRV1 = IDRV2 = 0 mA (unless otherwise  
noted); typical values are at VDD = 5.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE REFERENCE  
RSEL[1:0] = 00, no load  
2.45  
1.6  
2.5  
2.55  
1.7  
V
Reference output voltage at the  
REFOUT pin  
RSEL[1:0] = 01, no load  
RSEL[1:0] = 1x, no load  
1.65  
VREFOUT  
% of  
VDD  
45  
50  
55  
Reference output voltage drift  
Voltage divider gain error drift  
Power-supply rejection ratio  
RSEL[1:0] = 0x  
RSEL[1:0] = 1x  
RSEL[1:0] = 0x  
–50  
–50  
±10  
±10  
±15  
50 ppm/°C  
50 ppm/°C  
PSRRREF  
–300  
300  
µV/V  
RSEL[1:0] = 0x, load to GND or VDD,  
ΔILOAD = 0 mA to 5 mA, TA = –40°C to +125°C  
0.15  
0.3  
0.35  
0.8  
ΔVO(ΔIO)  
Load regulation  
mV/mA  
RSEL[1:0] = 1x, load to GND or VDD,  
ΔILOAD = 0 mA to 5 mA, TA = –40°C to +125°C  
REFOUT connected to VDD  
REFOUT connected to GND  
20  
mA  
mA  
IOS  
Short-circuit current  
–18  
DIGITAL INPUTS/OUTPUTS (CMOS)  
IIL  
Input leakage current  
0.01  
µA  
V
VIH  
VIL  
VOH  
VOL  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Open-drain output  
0.7 × VDD  
–0.3  
VDD + 0.3  
0.3 × VDD  
V
Set by external pullup resistor  
0.3  
V
4-mA sink current  
V
POWER SUPPLY  
IDRV1/2 = 0 mA, 3.0 V VDD 3.6 V,  
TA = –40°C to +125°C  
6
8
IQ  
Quiescent current  
mA  
V
IDRV1/2 = 0 mA, 4.5 V VDD 5.5 V,  
TA = –40°C to +125°C  
7
10  
VPOR  
Power-on reset threshold  
2.4  
6
版权 © 2019–2020, Texas Instruments Incorporated  
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
6.6 Typical Characteristics  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
D001  
D002  
Offset (mT)  
Offset (mT)  
VDD = 5 V  
VDD = 3.3 V  
1. Fluxgate Sensor Front-End Offset Histogram  
2. Fluxgate Sensor Front-End Offset Histogram  
4
3
4
3
Device 1  
Device 2  
Device 3  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D003  
D004  
3. Fluxgate Sensor Front-End Offset vs  
4. Fluxgate Sensor Front-End Offset vs  
Supply Voltage  
Temperature  
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
D046  
D005  
Offset Drift (nT/èC)  
Gain (mA/mT)  
5. Fluxgate Sensor Front-End Offset Drift Histogram  
6. Fluxgate Sensor Front-End Gain Histogram  
版权 © 2019–2020, Texas Instruments Incorporated  
7
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
12.35  
12.35  
12.3  
Device 1  
Device 2  
Device 3  
12.3  
12.25  
12.2  
12.25  
12.2  
12.15  
12.1  
12.15  
12.1  
12.05  
12.05  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D008  
D009  
7. Fluxgate Sensor Front-End Gain vs  
8. Fluxgate Sensor Front-End Gain vs Temperature  
Supply Voltage  
50  
40  
30  
20  
10  
0
0.2  
0.175  
0.15  
0.125  
0.1  
0.075  
0.05  
0.025  
0
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
D057  
D010  
Linearity (%)  
9. Fluxgate Sensor Front-End Linearity Histogram  
10. Fluxgate Sensor Front-End Linearity vs  
Supply Voltage  
100  
10  
1
0.2  
0.175  
0.15  
0.125  
0.1  
Device 1  
Device 2  
Device 3  
0.075  
0.05  
0.025  
0
0.1  
0.0001  
0.001  
0.01  
0.1  
1
Noise Frequency (kHz)  
10  
100  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D006  
D011  
12. Fluxgate Sensor Front-End Noise Density vs Noise  
11. Fluxgate Sensor Front-End Linearity vs Temperature  
Frequency  
8
版权 © 2019–2020, Texas Instruments Incorporated  
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
D007  
D013  
Saturation Trip Level (mT)  
Saturation Trip Level (mT)  
VDD = 5 V  
VDD = 3.3 V  
13. Fluxgate Sensor Saturation (ERROR Pin)  
14. Fluxgate Sensor Saturation (ERROR Pin)  
Trip Level Histogram  
Trip Level Histogram  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
60  
50  
40  
30  
20  
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D052  
D053  
Compensation Coil Resistance (W)  
16. Compensation Coil Resistance Histogram  
15. Fluxgate Sensor Saturation (ERROR Pin) Trip Level  
vs Temperature  
150  
140  
130  
120  
110  
100  
90  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D054  
D015  
Output Offset (mV)  
VDD = 5 V  
18. Shunt-Sense Amplifier Output Offset Histogram  
17. Compensation Coil Resistance vs Temperature  
版权 © 2019–2020, Texas Instruments Incorporated  
9
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
70  
75  
50  
60  
50  
40  
30  
20  
10  
0
25  
0
-25  
-50  
-75  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
D0165  
D018  
Output Offset (mV)  
VDD = 3.3 V  
20. Shunt-Sense Amplifier Output Offset vs  
19. Shunt-Sense Amplifier Output Offset Histogram  
Supply Voltage  
75  
50  
40  
30  
20  
10  
0
Device 1  
Device 2  
Device 3  
50  
25  
0
-25  
-50  
-75  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D019  
Common-Mode Rejection Ratio (mV/V)  
D017  
21. Shunt-Sense Amplifier Output Offset vs Temperature  
22. Shunt-Sense Amplifier CMRR Histogram  
100  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
40  
20  
0
0.01  
0.1  
1
10  
Input Signal Frequency (kHz)  
100  
1000  
D021  
Power-Supply Rejection Ratio (mV/V)  
D020  
23. Shunt-Sense Amplifier CMRR vs  
24. Shunt-Sense Amplifier PSRR Histogram  
Input Signal Frequency  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
0.01  
0.1  
1
10  
Ripple Frequency (kHz)  
100  
1000  
D023  
AINP Input Impedance (kW)  
D022  
26. Shunt-Sense Amplifier AINP Input Impedance  
25. Shunt-Sense Amplifier PSRR vs  
Histogram  
Ripple Frequency  
50  
51  
50.8  
50.6  
50.4  
50.2  
50  
40  
30  
20  
10  
0
49.8  
49.6  
49.4  
49.2  
49  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D025  
D024  
AINN Input Impedance (kW)  
27. Shunt-Sense Amplifier AINP Input Impedance  
28. Shunt-Sense Amplifier AINN Input Impedance  
vs Temperature  
Histogram  
100  
80  
60  
40  
20  
0
11  
10.8  
10.6  
10.4  
10.2  
10  
9.8  
9.6  
9.4  
9.2  
9
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D027  
D026  
Gain Error (%)  
Including IFG, VDD = 5 V  
29. Shunt-Sense Amplifier AINN Input Impedance  
30. Shunt-Sense Amplifier Gain Error Histogram  
vs Temperature  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
100  
0.3  
0.25  
0.2  
80  
60  
40  
20  
0
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D028  
D055  
Gain Error (%)  
Including IFG, VDD = 3.3 V  
32. Shunt-Sense Amplifier Gain Error vs  
31. Shunt-Sense Amplifier Gain Error Histogram  
Temperature  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0.01  
0
3
0.1  
1
Input Signal Frequency (kHz)  
10  
100  
1000  
10000  
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
D029  
D030  
33. Shunt-Sense Amplifier Gain vs  
34. Shunt-Sense Amplifier Linearity Error vs  
Input Signal Frequency  
Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 5.5 V  
VDD = 3.0 V  
0
1
2
3
4
5
6
Output Current (mA)  
7
8
9
10  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
D031  
D056  
35. OR Pin Trip Level vs Output Current  
36. OR Pin Trip Level vs Supply Voltage  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
0.5  
4
3.75  
3.5  
3.25  
3
VDD = 5.5 V  
VDD = 3.0 V  
0.4  
0.3  
0.2  
0.1  
0
2.75  
2.5  
2.25  
2
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D032  
D033  
37. OR Pin Trip Level vs Temperature  
38. OR Pin Trip Delay vs Temperature  
40  
30  
40  
30  
VOUT to GND  
VOUT to VDD  
VOUT to GND  
VOUT to VDD  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D035  
D034  
39. Shunt-Sense Amplifier Output Short-Circuit Current  
40. Shunt-Sense Amplifier Output Short-Circuit Current  
vs Supply Voltage  
vs Temperature  
0.25  
0.2  
0.25  
VVOUT  
VAINP - VAINN  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
VVOUT  
VAINP - VAINN  
-0.2  
-0.25  
-2.5  
0
2.5  
5
7.5  
Time (ms)  
10  
12.5  
15  
17.5  
-2.5  
0
2.5  
5
7.5  
Time (ms)  
10  
12.5  
15  
17.5  
D012  
D049  
Rising edge  
Falling edge  
41. Shunt-Sense Amplifier Small-Signal  
42. Shunt-Sense Amplifier Small-Signal  
Settling Time  
Settling Time  
版权 © 2019–2020, Texas Instruments Incorporated  
13  
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
1.25  
1.25  
1
VVOUT  
VAINP - VAINN  
1
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-0.25  
-0.5  
-0.75  
-1  
VVOUT  
VAINP - VAINN  
-1  
-1.25  
-1.25  
-0.5  
0
0.5  
1
1.5  
2
2.5  
-0.5  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
Time (ms)  
D050  
D051  
Rising edge  
Falling edge  
43. Shunt-Sense Amplifier Large-Signal  
44. Shunt-Sense Amplifier Large-Signal  
Settling Time  
Settling Time  
5
4
5
4
VAINP - VAINN  
VVOUT  
VAINP - VAINN  
VVOUT  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-0.1 -0.075 -0.05 -0.025  
0
Time (ms)  
0.025 0.05 0.075 0.1  
-0.1 -0.075 -0.05 -0.025  
0
Time (ms)  
0.025 0.05 0.075 0.1  
D036  
D037  
VDD = 5 V  
VDD = 3.3 V  
45. Shunt-Sense Amplifier Overload Recovery Response  
46. Shunt-Sense Amplifier Overload Recovery Response  
10000  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
10  
100  
1000  
Noise Frequency (Hz)  
10000  
100000  
D039  
D038  
Reference Voltge (V)  
VREFOUT = 2.5 V  
48. Reference Voltage Histogram  
47. Shunt-Sense Amplifier Output Voltage Noise Density  
vs Noise Frequency  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
70  
3
2.8  
2.6  
2.4  
2.2  
2
RSEL[1:0] = 00  
RSEL[1:0] = 01  
60  
50  
40  
30  
20  
10  
0
1.8  
1.6  
1.4  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
D042  
D058  
Reference Voltage (V)  
VREFOUT = 1.65 V  
50. Reference Voltage vs Supply Voltage  
49. Reference Voltage Histogram  
2.55  
3
2.8  
2.6  
2.4  
2.2  
2
Device 1  
Device 2  
Device 3  
RSEL[1:0] = 00  
RESL[1:0] = 01  
RSEL[1:0] = 1x  
2.54  
2.53  
2.52  
2.51  
2.5  
2.49  
2.48  
2.47  
2.46  
2.45  
1.8  
1.6  
1.4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-5  
-4  
-3  
-2  
-1  
0
1
Referene Current (mA)  
2
3
4
5
D040  
D043  
51. Reference Voltage vs Temperature  
52. Reference Voltage vs Reference Output Current  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
0
D041  
Reference Voltage Drift (ppm/èC)  
D044  
Power-Supply Rejection Ratio (mV/V)  
53. Reference Voltage Drift Histogram  
54. Reference Voltage PSRR Histogram  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
100  
30  
25  
20  
15  
10  
5
REFOUT to GND  
REFOUT to VDD  
80  
60  
40  
20  
0
0
-5  
-10  
-15  
-20  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D045  
D060  
Load Regulation (mV/mA)  
56. Reference Short-Circuit Current vs Temperature  
55. Reference Voltage Load Regulation Histogram  
10  
9
10  
VDD = 3.3 V  
VDD = 5 V  
9.5  
9
8.5  
8
8
7.5  
7
7
6.5  
6
6
5.5  
5
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
D048  
D061  
58. Quiescent Current vs Temperature  
57. Quiescent Current vs Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
5
2.55  
2.45  
2.35  
2.25  
VDD = 3.3 V  
VDD = 5 V  
0
0
0.25  
0.5  
0.75  
1
1.25  
Magnetic Field (mT)  
1.5  
1.75  
2
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D014  
D047  
59. Supply Current vs Magnetic Field  
60. Power-On Reset Threshold vs Temperature  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
7 Detailed Description  
7.1 Overview  
Magnetic sensors are used in a broad range of applications, such as position, indirect ac and dc current, or  
torque measurement. Hall-effect sensors are most commonly used in magnetic field sensing, but offset, noise,  
gain variation, and nonlinearity limit the achievable resolution and accuracy of the system. Fluxgate sensors offer  
significantly higher sensitivity, lower drift, lower noise, high linearity, and enable up to 1000-times better  
measurement accuracy.  
As shown in the Functional Block Diagram section, the DRV425-Q1 consists of a magnetic fluxgate sensor with  
the necessary sensor conditioning and compensation coil to internally close the control loop. The fluxgate sensor  
is repeatedly driven in and out of saturation, and supports hysteresis-free operation with excellent accuracy. The  
internal compensation coil assures stable gain and high linearity.  
The magnetic field, B, is detected by the internal fluxgate sensor in the DRV425-Q1. The device integrates the  
sensor output to assure high-loop gain. The integrator output connects to the built-in differential driver that drives  
an opposing compensation current through the internal compensation coil. The compensation coil generates an  
opposite magnetic field that brings the original magnetic field at the sensor back to zero.  
The compensation current is proportional to the external magnetic field, with a value of 12.2 mA/mT. This  
compensation current generates a voltage drop across an external shunt resistor, RSHUNT. An integrated  
difference amplifier with a fixed gain of 4 V/V measures this voltage and generates an output voltage that is  
referenced to REFIN, and is proportional to the magnetic field. The value of the output voltage at the VOUT pin  
(VVOUT) is calculated using 公式 1:  
VVOUT [V] = B × G × RSHUNT × GAMP = B [mT] × 12.2 mA/mT × RSHUNT [Ω] × 4 [V/V]  
(1)  
7.2 Functional Block Diagram  
RSHUNT  
COMP1  
COMP2  
DRV2  
DRV1  
AINP  
AINN  
Fluxgate Sensor Front-End  
Shunt  
Sense  
Amplifier  
Compensation  
Coil  
Integrator  
Fluxgate  
Sensor  
Differential  
Driver  
VOUT  
REFIN  
Voltage Reference  
RSEL0 RSEL1  
REFOUT  
Device Control  
DRV425-Q1  
OR ERROR BSEL  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
 
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Fluxgate Sensor Front-End  
The following sections describe the functional blocks and features of the integrated fluxgate sensor front-end.  
7.3.1.1 Fluxgate Sensor  
The fluxgate sensor of the DRV425-Q1 is uniquely designed for high-performance magnetic-field sensors  
because of the high sensitivity, low noise, and low offset of the sensor. The fluxgate principle relies on repeatedly  
driving the sensor in and out of saturation; therefore, the sensor is free of any significant magnetic hysteresis.  
The feedback loop accurately drives a compensation current through the integrated compensation coil and drives  
the magnetic field at the sensor back to zero. This approach supports excellent gain stability and high linearity of  
the measurement.  
The device package is free of any ferromagnetic materials in order to prevent magnetization by external fields  
and to obtain accurate and hysteresis-free operation. Select materials that cannot be magnetized for the printed  
circuit board (PCB) and passive components in the direct vicinity of the DRV425-Q1; see the Layout Guidelines  
section for more details.  
The orientation and the sensitivity axis of the fluxgate sensor is indicated by a dashed line on the top of the  
package, as shown in 61. The figure also shows the location of the sensor inside the package.  
Sensitivity Axis Indication  
(Top View)  
1.74 mm 0.025 mm  
Sensor Location  
(Top View)  
Sensor Location  
(Side View)  
>
0.4 mm 0.025 mm  
Top  
DRV425-Q1  
TI Date  
Code  
Bottom  
2 mm 0.025 mm  
61. Magnetic Sensitivity Direction of the Integrated Fluxgate Sensor  
The sensitivity of the fluxgate sensor is a vector function of the sensitivity axis and the magnitude of the magnetic  
field along that axis. 62 shows the output of the DRV425-Q1 versus the angle of the device orientation relative  
to a constant magnetic field.  
2.65  
2.6  
2.55  
2.5  
2.45  
2.4  
2.35  
0
30 60 90 120 150 180 210 240 270 300 330 360  
Angle (è)  
D063  
62. Device Output vs Magnetic Field Orientation  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
Feature Description (接下页)  
7.3.1.2 Bandwidth  
The small-signal bandwidth of the DRV425-Q1 is determined by the behavior of the compensation loop versus  
frequency. The implemented integrator limits the bandwidth of the loop to provide a stable response. Use digital  
input pin BSEL to select the bandwidth. With a shunt resistor of 22 Ω and BSEL = 0, the bandwidth is 32 kHz; for  
BSEL = 1, the bandwidth is 47 kHz.  
The shunt resistor and the compensation coil resistance form a voltage divider; therefore, to reduce the  
bandwidth, increase the value of the shunt resistor. To calculate the reduced bandwidth (BW), use 公式 2:  
RCOIL + 22 W  
RCOIL + RSHUNT  
122 W  
100 W + RSHUNT  
BW =  
ìBW22 W  
=
ìBW22 W  
where  
RCOIL = internal compensation coil resistance (100 Ω).  
RSHUNT = external shunt resistance.  
BW22Ω = sensor bandwidth with RSHUNT = 22 Ω (depending on the BSEL setting).  
(2)  
The bandwidth for a given shunt resistor value can also be calculated using the DRV425 System Parameter  
Calculator. For large magnetic fields (B > 500 μT), the effective bandwidth of the sensor is limited by fluxgate  
saturation effects. For a magnetic signal with a 2-mT amplitude, the large-signal bandwidth is 10 kHz with BSEL  
= 0, or 15 kHz with BSEL = 1.  
Although the analog output responds slowly to large fields, a magnetic field with a magnitude 1.6 mT beyond  
the measurement range of the DRV425-Q1 triggers the ERROR pin within 4 µs to 6 µs. See the Magnetic Field  
Range, Overrange Indicator, and Error Flag section for more details.  
7.3.1.3 Differential Driver for the Internal Compensation Coil  
The differential compensation coil driver provides the current for the internal compensation coil at the DRV1 and  
DRV2 pins. The driver is capable of sourcing up to ±250 mA with a 5-V supply, or up to ±150 mA with a 3.3-V  
supply. The current capability is not internally limited. The actual value of the compensation coil current depends  
on the magnetic field strength, and is limited by the sum of the resistance of the internal compensation coil and  
the external shunt resistor value. The internal compensation coil resistance depends on temperature (see 17),  
and this dependancy must be taken into account when designing the system. Select the value of the shunt  
resistor to avoid OR pin trip levels in normal operation.  
The common-mode voltage of the compensation coil driver outputs is set by the RSEL pins; see the Voltage  
Reference section. Thus, the common-mode voltage of the shunt-sense amplifier is matched if the internal  
reference is used.  
Consider the polarity of the compensation coil connection to the output of the compensation coil driver. If the  
polarity is incorrect, then the driver output drives to the power-supply rails, even at low primary-current levels. In  
this case, interchange the connection of the DRV1 and DRV2 pins to the compensation coil.  
版权 © 2019–2020, Texas Instruments Incorporated  
19  
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
7.3.1.4 Magnetic Field Range, Overrange Indicator, and Error Flag  
The measurement range of the DRV425-Q1 is determined by the amount of current driven into the compensation  
coil and the output voltage range of the shunt-sense amplifier. The maximum compensation current is limited by  
the supply voltage and the series resistance of the compensation coil and the shunt.  
The magnetic field range is adjusted with the external shunt resistor. The DRV425 System Parameter Calculator  
provides the maximum shunt resistor values depending on the supply voltage (VDD) and the selected reference  
voltage (VREFIN) for various magnetic field ranges.  
For proper operation at a maximum field (BMAX), choose a shunt resistor (RSHUNT) using 公式 3:  
min VDD - V  
,V  
- 0.085 V  
(
)
(
)
REFIN  
REFIN  
RSHUNT  
Ç
BMAX ì12.2 A/Tì 4 V/V  
where  
VDD = minimum supply voltage of the DRV425-Q1 (V).  
VREFIN = common-mode voltage of the shunt-sense amplifier (V).  
BMAX = desired magnetic field range (T).  
(3)  
Alternatively, to adjust the output voltage of the DRV425-Q1 for a desired maximum voltage (VVOUTMAX), use 公式  
4:  
VVOUTMAX - VREFIN  
BMAX ì12.2 A/Tì 4 V/V  
RSHUNT  
Ç
where  
VVOUTMAX = desired maximum output voltage at VOUT pin (V).  
BMAX = desired magnetic field range (T).  
(4)  
To avoid railing of the compensation coil driver, make sure that 公式 5 is fulfilled:  
BMAX ì(RCOIL + RSHUNT )ì12.2A / T  
+ 0.1V Ç min VDD - V  
,V  
REFIN  
(
)
(
)
REFIN  
2
where  
BMAX = desired magnetic field range (T).  
RCOIL = compensation coil resistance (Ω).  
VDD = minimum supply voltage of the DRV425-Q1 (V).  
VREFIN = selected internal reference voltage value (V).  
(5)  
The DRV425 System Parameter Calculator is designed to assist with selecting the system parameters.  
The DRV425-Q1 offers two diagnostic output pins to detect large fields that exceed the measurement range of  
the sensor: the overrange indicator (OR) and the ERROR flag.  
In normal operation, the DRV425-Q1 sensor feedback loop compensates the magnetic field inside the fluxgate to  
zero. Therefore, a large field inside the fluxgate indicates that the feedback loop is not properly working, and the  
sensor output is invalid. To detect this condition, the ERROR pin is pulled low if the internal field exceeds 1.6  
mT. The ERROR output is suppressed for 4 µs to 6 µs to prevent an undesired reaction to transients or noise.  
For static and slowly varying ambient fields, the ERROR pin triggers when the ambient field exceeds the sensor  
measurement range by more than 1.6 mT. For dynamic magnetic fields that exceed the sensor bandwidth as  
specified in the Specifications section, the feedback loop response is too slow to accurately compensate the  
internal field to zero. Therefore, high-frequency fields can trigger the ERROR pin, even if the ambient field does  
not exceed the measurement range by 1.6 mT.  
In addition, the active-low overrange pin (OR) indicates railing of the output of the shunt-sense amplifier. The OR  
output is suppressed for 2.5 µs to 3.5 µs to prevent an undesired reaction to transients or noise. The OR pin trip  
level refers to the output voltage value of the shunt-sense amplifier, as specified in the Specifications section.  
Use 公式 3 and 公式 4 to adjust the OR pin behavior to the specific system-level requirements.  
Both the ERROR and OR pins are open-drain outputs that require an external pullup resistor. If desired, connect  
both pins together with a single pullup resistor to provide a single diagnostic flag.  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
Feature Description (接下页)  
Based on the DRV425 System Parameter Calculator, for a design for a ±2-mT magnetic field input range with a  
supply of 5 V (±5%), a shunt resistor value of 22 Ω is selected. 63 shows the status of the diagnostic flags in  
the resulting three operation ranges.  
Sensor Saturation: B > 3.6 mT  
(OR = 0, ERROR = 0)  
4
Magnetic Overrange: 2 mT < B ≤ 3.6 mT  
(OR = 0, ERROR = 1)  
3
2
1
Designated Operating Range: -2 mT ≤ B ≤ 2 mT  
(OR = 1, ERROR = 1)  
0
-1  
-2  
-3  
-4  
Magnetic Overrange: -3.6 mT ≤ B < -2 mT  
(OR = 0, ERROR = 1)  
Sensor Saturation: B < -3.6 mT  
(OR = 0, ERROR = 0)  
63. Magnetic Field Range of the DRV425-Q1 (VDD = 5 V and RSHUNT = 22 Ω)  
With the proper RSHUNT value, the differential amplifier output rails and activates the overrange flag (OR = 0)  
when the magnetic field exceeds the designated operating range. For fields that exceed the measurement range  
of the DRV425-Q1 by 1.6 mT, the fluxgate is saturated and the ERROR pin is pulled low. In this condition, the  
fluxgate sensor does not provide a valid output value; therefore, the output VOUT of the DRV425-Q1 must be  
ignored. In applications where the ERROR pin cannot be separately monitored, combine the VOUT and ERROR  
outputs as shown in 64. This method indicates that a magnetic field is outside of the sensor range by pulling  
the device output to ground.  
5 V  
1 kW  
DRV2  
VOUT  
RSHUNT  
DRV1  
AINP  
REFIN  
TI Device REFOUT  
OR  
AINN  
COMP1  
COMP2  
ERROR  
5 V  
1 µF  
1 µF  
64. Field Overrange Detection Using a Combined VOUT and ERROR Pin  
版权 © 2019–2020, Texas Instruments Incorporated  
21  
 
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Shunt-Sense Amplifier  
The compensation coil current creates a voltage drop across the external shunt resistor, RSHUNT. The internal  
differential amplifier senses this voltage drop. This differential amplifier offers wide bandwidth and a high slew  
rate. Excellent dc stability and accuracy result from a chopping technique. The voltage gain is 4 V/V, set by  
precisely matched and thermally stable internal resistors.  
Both the AINN and AINP differential amplifier inputs are connected to the external shunt resistor. This shunt  
resistor, in series with the internal 10-kΩ input resistors of the shunt-sense amplifier, causes an additional gain  
error. Therefore, for best common-mode rejection performance, place a dummy shunt resistor (R5) with a value  
higher than the shunt resistor in series with the REFIN pin to restore the matching of both resistor dividers, as  
shown in 65.  
TI Device  
R1  
10 k  
R2  
40 kꢀ  
AINN  
_
Optional  
RF  
500 ꢀ  
VOUT  
REFIN  
Shunt-Sense  
Amplifier  
RSHUNT  
ADC  
CF  
0 F  
+
R3  
10 kꢀ  
R4  
40 kꢀ  
AINP  
REFIN  
(Compensated)  
R5  
(Dummy Shunt)  
DRV1  
DRV2  
ICOMP2  
ICOMP1  
65. Internal Difference Amplifier With an Example of a Decoupling Filter  
For an overall gain of 4 V/V, calculate the value of R5 using 公式 6:  
R2  
R4 + R5  
4 =  
=
R1  
RSHUNT + R3  
where:  
R2 / R1 = R4 / R3 = 4.  
R5 = RSHUNT × 4.  
(6)  
If the input signal is large, the amplifier output drives close to the supply rails. The amplifier output is able to drive  
the input of a successive approximation register (SAR) analog-to-digital converter (ADC). For best performance,  
add an RC low-pass filter stage between the shunt-sense amplifier output and the ADC input. This filter limits the  
noise bandwidth, and decouples the high-frequency sampling noise of the ADC input from the amplifier output.  
For filter resistor RF and filter capacitor CF values, see the specific converter recommendations in the respective  
product data sheet.  
The shunt-sense amplifier output drives 100 pF directly, and shows a 50% overshoot with a 1-nF capacitance.  
Filter resistor RF extends the capacitive load range. With an RF of only 20 Ω, the load capacitor must be either  
less than 1 nF or more than 33 nF to avoid overshoot; with an RF of 50 Ω, this transient area is avoided.  
Reference input REFIN is the common-mode voltage node for the output signal VOUT. To use the internal  
voltage reference of the DRV425-Q1, connect the REFIN pin to the reference output REFOUT. To avoid  
mismatch errors, use the same reference voltage for REFIN and the ADC. Alternatively, use an ADC with a  
pseudodifferential input, with the positive input of the ADC connected to VOUT, and the negative input connected  
to REFIN of the device.  
22  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
Feature Description (接下页)  
7.3.3 Voltage Reference  
The internal precision voltage reference circuit offers low-drift performance at the REFOUT output pin, and is  
used for internal biasing. The reference output is intended to be the common-mode voltage of the output (the  
VOUT pin) to provide a bipolar signal swing. This low-impedance output tolerates sink and source currents of ±5  
mA. However, fast load transients can generate ringing on this line. A small series resistor of a few ohms  
improves the response, particularly for capacitive loads equal to or greater than 1 μF.  
To adjust the value of the voltage reference output to the power supply of the DRV425-Q1, use mode selection  
pins RSEL0 and RSEL1, as shown in 1.  
1. Reference Output Voltage Selection  
MODE  
RSEL1  
RSEL0  
DESCRIPTION  
Use with a sensor module supply of 5 V  
VREFOUT = 2.5 V  
VREFOUT = 1.65 V  
Ratiometric output  
0
0
1
0
1
x
Use with a sensor module supply of 3.3 V  
Provides an output centered on VDD / 2  
In ratiometric output mode, an internal resistor divider divides the power-supply voltage by a factor of two.  
7.3.4 Low-Power Operation  
In applications with low-bandwidth or low sample-rate requirements, significantly reduce the average power  
dissipation of the DRV425-Q1 by powering down the device between measurements. The DRV425-Q1 requires  
300 μs to fully settle the analog output VOUT, as shown in 66. To minimize power dissipation, power down the  
device immediately after the ADC acquires the sample.  
startup  
VDD  
VOUT  
Settling time:  
300 µs  
66. Settling Time of the DRV425-Q1 VOUT Output  
7.4 Device Functional Modes  
The DRV425-Q1 is operational when the power supply VDD is applied, as specified in the Specifications section.  
The DRV425-Q1 has no additional functional modes.  
版权 © 2019–2020, Texas Instruments Incorporated  
23  
 
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV425-Q1 is a high-sensitivity and high-performance magnetic-field sensor. The analog output of the  
DRV425-Q1 can be processed by a 12-bit to 16-bit analog to digital converter (ADC). The following sections  
show application design examples.  
8.2 Typical Applications  
8.2.1 Linear Position Sensing  
The high sensitivity of the fluxgate sensor, combined with the high linearity of the compensation loop and low  
noise of the DRV425-Q1, make the device an excellent choice for high-performance linear-position sense  
applications. A typical schematic of such a 5-V application using an internal 2.5-V reference is shown in 67.  
5 V  
MCU  
DRV2  
VOUT  
RSHUNT  
DRV1  
AINP  
REFIN  
TI Device REFOUT  
OR  
ADC  
AINN  
GPIO0  
GPIO1  
COMP1  
COMP2  
ERROR  
10 kW  
10 kW  
5 V  
1 µF  
1 µF  
67. Linear-Position Sensing  
8.2.1.1 Design Requirements  
For the example shown in 67, use the parameters listed in 2 as a starting point of the design.  
2. Design Parameters  
DESIGN PARAMETER  
Magnetic field range  
EXAMPLE VALUE  
VDD = 5 V: ±2 mT (max)  
VDD = 3.3 V: ±1.3 mT (max)  
Supply voltage, VDD  
3.0 V to 5.5 V  
Range: GND to VDD  
If an internal reference is used: 2.5 V, 1.65 V, or VDD / 2  
Reference voltage, VREFIN  
Depends on the desired magnetic field range, reference, and supply  
voltage; see the DRV425 System Parameter Calculator for details.  
Shunt resistor, RSHUNT  
24  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
8.2.1.2 Detailed Design Procedure  
Use the following procedure to design a solution for a linear-position sensor based on the DRV425-Q1:  
1. Select the proper supply voltage, VDD, to support the desired magnetic field range (see 2 for reference).  
2. Select the proper reference voltage, VREFIN, to support the desired magnetic field range and to match the  
input voltage specifications of the desired ADC.  
3. Use the RangeCalculator tab in the DRV425 System Parameter Calculator to select the proper shunt resistor  
value of RSHUNT  
.
4. The sensitivity drift performance of a DRV425-Q1 based linear position sensor is dominated by the  
temperature coefficient of the external shunt resistor. Select a low-drift shunt resistor for best sensor  
performance.  
5. Use the Problems Detected Table in DRV425 System Parameters tab in the DRV425 System Parameter  
Calculator to verify the system response.  
The amplitude of the magnetic field is a function of distance to, and the shape of, the magnet, as shown in 69.  
If the magnetic field to be measured exceeds 3.6 mT, see the magnet datasheet to calculate the appropriate  
minimum distance to the DRV425-Q1 to avoid saturating the fluxgate sensor.  
The high sensitivity of the DRV425-Q1 may require shielding of the sensing area to avoid influence of undesired  
magnetic field sources (such as the earth magnetic field). Alternatively, an additional DRV425-Q1 can be used to  
perform difference measurement to cancel the influence of a static magnetic field source, as shown in 68. 图  
70 shows the differential voltage generated by two DRV425-Q1 devices in such a circuit.  
DRV425-Q1-1  
DRV425-Q1-2  
Direction of Linear  
Movement  
>
>
REFOUT  
REFIN  
REFOUT  
REFIN  
VOUT  
VOUT  
ADC  
68. Differential Linear-Position Sensing Using Two DRV425-Q1 Devices  
8.2.1.3 Application Curves  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
50 100 150 200 250 300 350 400 450 500  
Distance (mm)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Distance (mm)  
D064  
D065  
69. Analog Output Voltage of the DRV425-Q1 vs  
70. Difference Between Two DRV425-Q1 Outputs vs  
Distance to the Magnet  
Distance to the Magnet  
版权 © 2019–2020, Texas Instruments Incorporated  
25  
 
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
8.2.2 Current Sensing in Busbars  
In existing applications that use busbars for power distribution, closed-loop current modules are usually used to  
accurately measure and control the current. These modules are usually bulky because of the required large  
magnetic core. Additionally, because the compensation current generated inside the module is proportional to the  
usually high busbar current, the power dissipation of this solution is usually as high as several watts.  
71 shows an alternative approach with two DRV425-Q1 devices. If a hole is drilled in the middle of the busbar,  
the current is split in two equal parts that generate magnetic field gradients with opposite directions inside the  
hole. These magnetic fields are termed BR and BL in 72. The opposite fields cancel each other out in the  
middle of the hole. The high sensitivity and linearity of two DRV425-Q1 devices positioned at the same distance  
from the middle of the hole allow the small opposite fields to be sensed and the current measured with high-  
accuracy levels. The differential measurement rejects outside fields that generate a common-mode error that is  
subtracted at the output.  
Busbar  
(Top View)  
I/2  
Hole  
DRV425-Q1-1  
I
I
DRV425-Q1-2  
PCB  
I/2  
71. Current Sensing in Busbars  
I
Axis of  
cross-section  
I/2  
I/2  
Cross-section  
PCB  
DRV425-Q1 - 1  
BR  
I/2  
I/2  
Y-Axis  
BL  
DRV425-Q1 - 2  
72. Magnetic Field Distribution Inside a Busbar Hole  
26  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
8.2.2.1 Design Requirements  
In order to measure the field gradient in the busbar, two DRV425-Q1 sensors are placed inside the hole at a  
well-defined distance by mounting them on opposite sides of a PCB that is inserted in the hole. The  
measurement range and resolution of this solution depends on the following factors:  
Busbar geometry: a wider busbar means a larger measurement range and lower resolution.  
Size of the hole: a larger diameter means a larger measurement range and lower resolution.  
Distance between the two DRV425-Q1 sensors: a smaller distance increases the measurement range and  
resolution.  
Each of these factors can be optimized to create the desired measurement range for a particular application.  
Measurement ranges of ±250 A to ±1500 A are achievable with this approach. Larger currents are supported  
with large busbar structures and minimized distance between the two DRV425-Q1 sensors. Use the parameters  
listed in 3 as a starting point of the design.  
3. Design Parameters  
DESIGN PARAMETER  
Current range  
EXAMPLE VALUE  
Up to ±1500 A  
3.0 V to 5.5 V  
VDD / 2  
Supply voltage, VDD  
Reference voltage, VREFIN  
8.2.2.2 Detailed Design Procedure  
73 shows the schematic diagram of a differential gradient field measurement circuit.  
VDD  
DRV2  
DRV1  
AINP  
DRV2  
DRV1  
AINP  
VOUT  
REFIN  
REFOUT  
OR  
VCM  
VOUT  
REFIN  
REFOUT  
OR  
VDIFF  
U1  
DRV425-Q1  
U2  
DRV425-Q1  
AINN  
AINN  
COMP1  
COMP2  
COMP1  
COMP2  
ERROR  
ERROR  
VDD  
VDD  
1 µF  
1 µF  
1 µF  
1 µF  
R1  
5.1 W  
R2  
5.1 W  
VDD  
R3  
10 W  
1 F  
U3  
OPA320  
10 k  
+
VREF  
œ
10 kꢀ  
73. Busbar Current-Sensing Circuit  
版权 © 2019–2020, Texas Instruments Incorporated  
27  
 
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
In 73, the feedback loops of both DRV425-Q1 sensors are combined to directly produce differential output  
VDIFF that is proportional to the sensed magnetic field difference inside the busbar hole. Both compensation coils  
are connected in series and are driven from a single side of the compensation coil driver (the DRV1 pins of each  
DRV425-Q1). Therefore, both driver stages make sure that a current proportional to the magnetic fields BR and  
BL is driven through the respective compensation coil. The difference in current through both compensation coils,  
and thus the difference field between the sensors, flows through resistor R3, and is sensed by the shunt-sense  
amplifier of U2. The current proportional to the common-mode field inside the busbar hole flows through R1 and  
R2, and is sensed by the shunt-sense amplifier of U1.  
Use the output VCM to verify that the sensors are correctly positioned in the busbar hole with the following steps:  
1. Measure VCM with no current flow through the busbar and the PCB in the middle of the busbar hole. This  
value is the offset voltage VOFFSET. The value of VOFFSET only depends on stray fields and varies little with the  
absolute position of the sensors.  
2. Apply current through the busbar and move the PCB along the y-axis in the busbar hole, as shown in 72.  
The PCB is in the center of the hole if VCM = VOFFSET  
.
The sensitivity drift performance of the circuit shown in 73 is dominated by the temperature coefficient of the  
external resistors R1, R2, and R3. Select low-drift resistors for best sensor performance. For overall system error  
calculation, also consider the affect of thermal expansion on the PCB and busbar.  
The internal voltage reference of the DRV425-Q1 cannot be used in this application because of its limited driver  
capability. The OPA320 (U3) is a low-noise operational amplifier with a short-circuit current capability of ±65 mA,  
and is used to support the required compensation current.  
The advantage of this solution is the simplicity: the currents are subtracted by the two DRV425-Q1 devices  
without additional components. The series connection of the compensation coils halves the voltage swing, and  
reduces the measurement range of the sensors also by 50%. If a larger sensing range is required, operate the  
two sensors independently, and use a differential amplifier or ADC to subtract both voltage outputs (VOUT).  
Use the ERROR outputs for fast overcurrent detection on the system level.  
8.2.2.3 Application Curves  
74 and 75 show the measurement results on a 16-mm wide and 6-mm thick copper busbar with a 12-mm  
hole diameter using the circuit shown in 73. The two DRV425-Q1 devices are placed at a distance of 1 mm  
from each other on opposite sides of the PCB. The measurement range is ±500 A; measurement results are  
limited by test setup. Independent operation of the two DRV425-Q1 sensors increases the measurement range  
to ±1000 A with the same busbar geometry.  
400  
350  
300  
250  
200  
150  
100  
50  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Busbar Current (A)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Busbar Current (A)  
D066  
D067  
74. Analog Output Voltage vs  
75. Linearity Error vs Busbar Current  
Busbar Current  
28  
版权 © 2019–2020, Texas Instruments Incorporated  
 
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
9 Power Supply Recommendations  
9.1 Power Supply Decoupling  
Decouple both VDD pins of the DRV425-Q1 with 1-µF, X7R-type ceramic capacitors to the adjacent GND pin, as  
illustrated in 76. For best performance, place both decoupling capacitors as as possible close to the related  
power-supply pins. Connect these capacitors to the power-supply source in a way that allows the current to flow  
through the pads of the decoupling capacitors.  
9.2 Power-On Start-Up and Brownout  
Power-on is detected when the supply voltage exceeds 2.4 V at the VDD pin. At this point, the DRV425-Q1  
initiates the following start-up sequence:  
1. Digital logic starts up and waits for 26 μs for the supply to settle.  
2. The fluxgate sensor powers up.  
3. The compensation loop is active 70 μs after the supply voltage exceeds 2.4 V.  
During this startup sequence, the DRV1 and DRV2 outputs are pulled low to prevent undesired signals on the  
compensation coil and the ERROR pin is asserted low.  
The DRV425-Q1 tests for low supply voltages with a brownout-voltage level of 2.4 V. Use a power-supply source  
capable of supporting large current pulses driven by the DRV425-Q1, and low-ESR bypass capacitors for a  
stable supply voltage in the system. A supply drop to less than 2.4 V that lasts longer than 20 μs generates a  
power-on reset; the device ignores shorter voltage drops. A voltage drop on the VDD pin to below 1.8 V  
immediately initiates a power-on reset. After the power supply returns to 2.4 V, the device initiates a start-up  
cycle.  
9.3 Power Dissipation  
The thermally-enhanced, WQFN package with thermal pad reduces the thermal impedance from junction to  
case. This package has a downset leadframe to which the die is mounted. The leadframe has an exposed  
thermal pad on the underside of the package, and provides a good thermal path for heat dissipation.  
The power dissipation on both linear outputs DRV1 and DRV2 is calculated with 公式 7:  
PD(DRV) = IDRV × (VDRV – VSUPPLY  
)
where  
IDRV = supply current as shown in 59.  
VDRV = voltage potential on the DRV1 or DRV2 output pin.  
VSUPPLY = voltage potential closer to VDRV: VDD or GND.  
(7)  
9.3.1 Thermal Pad  
Packages with an exposed thermal pad are specifically designed to provide excellent power dissipation, but  
board layout greatly influences the overall heat dissipation. Technical details are described in the PowerPad  
Thermally Enhanced Package, application report, available for download at www.ti.com.  
版权 © 2019–2020, Texas Instruments Incorporated  
29  
 
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The unique, integrated fluxgate of the DRV425-Q1 has a very high sensitivity that enables designing a closed-  
loop magnetic-field sensor with best-in-class precision and linearity. Observe proper PCB layout techniques  
because any current-conducting wire in the direct vicinity of the DRV425-Q1 generates a magnetic field that can  
distort measurements. Common passive components and some PCB plating materials contain ferromagnetic  
materials that are magnetizable. For best performance, use the following layout guidelines:  
Route current-conducting wires in pairs: route a wire with an incoming supply current next to, or on top of, the  
return current path. The opposite magnetic field polarity of these connections cancel each other. To facilitate  
this layout approach, the DRV425-Q1 positive and negative supply pins are located adjacently.  
Route the compensation coil connections close to each other as a pair to reduce coupling effects.  
Minimize the length of the compensation coil connections between the DRV1/2 and COMP1/2 pins.  
Route currents parallel to the fluxgate sensor sensitivity axis as illustrated in 76. As a result, magnetic  
fields are perpendicular to the fluxgate sensitivity and have limited affect.  
Vertical current flow (for example, through vias) generates a field in the fluxgate-sensitive direction. Minimize  
the number of vias in the vicinity of the DRV425-Q1.  
Use passive components (for example, decoupling capacitors and the shunt resistor) that cannot be  
magnetized to prevent magnetic effects near the DRV425-Q1.  
Do not use PCB trace finishes with nickel-gold plating because of the potential for magnetization.  
Connect all GND pins to a local ground plane.  
Ferrite beads in series with the power-supply connection reduce interaction with other circuits powered from the  
same supply voltage source. However, to prevent influence of the magnetic fields if ferrite beads are used, do  
not place them next to the DRV425-Q1.  
The reference output (the REFOUT pin) refers to GND. Use a low-impedance and star-type connection to reduce  
the driver current and the fluxgate sensor current modulating the voltage drop on the ground track. The REFOUT  
and VOUT outputs are able to drive some capacitive load, but avoid large direct capacitive loading because of  
increased internal pulse currents. Given the wide bandwidth of the shunt-sense amplifier, isolate large capacitive  
loads with a small series resistor.  
Solder the exposed thermal pad on the bottom of the package to the ground layer because the thermal pad is  
internally connected to the substrate that must be connected to the most-negative potential.  
76 illustrates a generic layout example that highlights the placement of components that are critical to the  
DRV425-Q1 performance. For specific layout examples, see the DRV425EVM users guide.  
30  
版权 © 2019–2020, Texas Instruments Incorporated  
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
10.2 Layout Example  
Fluxgate sensor sensitivity axis  
Keep this area free of components  
creating magnetic fields.  
To MCU  
To MCU  
BSEL  
RSEL1  
RSEL0  
REFOUT  
REFIN  
OR  
AINN  
AINP  
DRV1  
DRV2  
RSHUNT  
1206  
LEGEND  
To ADC  
Top Layer:  
Copper Pour and Traces  
Via to Ground Plane  
Via to Supply Plane  
76. Generic Layout Example (Top View)  
版权 © 2019–2020, Texas Instruments Incorporated  
31  
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《具有关断功能的 OPAx320 高精度 20MHz、低噪声、低功耗、RRIOCMOS 运算放大器》  
数据表  
德州仪器 (TI)DRV425EVM用户指南  
德州仪器 (TI)DRV425 系统参数计算器》  
德州仪器 (TI)PowerPad 热增强型封装》 应用报告  
德州仪器 (TI)《使用开环磁通门传感器的 ±100A 汇流条电流传感器参考设计》 参考设计 TIPD205  
德州仪器 (TI)《汇流条工作原理》 应用报告  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
32  
版权 © 2019–2020, Texas Instruments Incorporated  
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019–2020, Texas Instruments Incorporated  
33  
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
RTJ0020J  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
0.5  
0.3  
A
0.3  
0.2  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 25.000  
SECTION A-A  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.5 0.1  
2X 2  
A3  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
4X ( 0.35)  
6
10  
A2  
SEE TERMINAL  
DETAIL  
5
11  
(1.695)  
TYP  
2X  
A
A
SYMM  
21  
2
1
15  
16X 0.5  
0.3  
0.2  
20X  
A4  
A1  
0.1  
C A B  
20  
16  
SYMM  
20X  
0.05  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
(1.695) TYP  
4223320/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
34  
版权 © 2019–2020, Texas Instruments Incorporated  
DRV425-Q1  
www.ti.com.cn  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
EXAMPLE BOARD LAYOUT  
RTJ0020J  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.5)  
(1.695)  
TYP  
20  
16  
20X (0.6)  
A1  
20X (0.25)  
A4  
1
15  
(1.695)  
TYP  
21  
SYMM  
(3.8)  
(1)  
TYP  
16X (0.5)  
5
11  
(R0.05)  
TYP  
A2  
A3  
4X ( 0.35)  
6
10  
(1) TYP  
(
0.2) TYP  
VIA  
SYMM  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223320/A 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
版权 © 2019–2020, Texas Instruments Incorporated  
35  
DRV425-Q1  
ZHCSK74A AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RTJ0020J  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(1.695)  
16  
(0.655) TYP  
20  
4X ( 0.35)  
20X (0.6)  
A1  
A4  
21  
1
15  
(1.695)  
20X (0.25)  
SYMM  
(0.655)  
TYP  
(3.8)  
16X (0.5)  
5
11  
(R0.05)  
TYP  
METAL  
TYP  
A2  
A3  
6
10  
4X ( 1.11)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 21:  
79% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223320/A 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
36  
版权 © 2019–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV425QWRTJRQ1  
ACTIVE  
QFN  
RTJ  
20  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 125  
----->  
425-Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV425QWRTJRQ1  
QFN  
RTJ  
20  
3000  
330.0  
12.4  
4.25  
4.25  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
QFN RTJ 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
DRV425QWRTJRQ1  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTJ 20  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224842/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV425QWRTJRQ1

汽车类全集成型磁通门磁场传感器 | RTJ | 20 | -40 to 125
TI

DRV425RTJR

用于开环应用的全集成式磁通门磁传感器 | RTJ | 20 | -40 to 125
TI

DRV425RTJT

用于开环应用的全集成式磁通门磁传感器 | RTJ | 20 | -40 to 125
TI

DRV5011

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器
TI

DRV5011ADDBZR

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 135
TI

DRV5011ADDBZT

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 135
TI

DRV5011ADDMRR

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | DMR | 4 | -40 to 135
TI

DRV5011ADDMRT

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | DMR | 4 | -40 to 135
TI

DRV5011ADLPG

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | LPG | 3 | -40 to 135
TI

DRV5011ADLPGM

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | LPG | 3 | -40 to 135
TI

DRV5011ADYBHR

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | YBH | 4 | -40 to 125
TI

DRV5011ADYBHT

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | YBH | 4 | -40 to 125
TI