DRV8703D-Q1 [TI]

具有 SPI 控制功能的汽车类 47V、半桥智能栅极驱动器;
DRV8703D-Q1
型号: DRV8703D-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 SPI 控制功能的汽车类 47V、半桥智能栅极驱动器

栅极驱动 驱动器
文件: 总62页 (文件大小:1461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
DRV870xD-Q1 汽车 半桥栅极驱动器  
1 特性  
通过 PWM 接口,可轻松连接到控制器电路。内部传  
1
感放大器提供可调的电流控制。集成的电荷泵可提供  
100% 占空比支持,而且可用于驱动外部反向电池开  
关。独立半桥模式支持半桥共享,能够以具有成本效益  
的方式顺序控制多个直流电机。这款栅极驱动器内置有  
相应的电路,能够使用关断时间固定的 PWM 电流斩  
波来调节绕组电流。  
符合面向汽车应用的 应用  
器件温度等级 1:环境工作温度范围为 –40°C  
+125°C  
单通道 半桥栅极驱动器  
驱动两个外部 N 沟道 MOSFET  
支持 100% 脉宽调制 (PWM) 占空比  
工作电源电压范围:5.5V 45V  
PWM 控制接口  
DRV870xD-Q1 器件采用了智能栅极驱动技术,因此无  
需任何外部栅极组件(电阻器和齐纳二极管),同时可  
为外部 FET 提供保护。智能栅极驱动架构可优化死区  
时间以避免出现任何击穿问题,在通过可编程压摆率控  
制技术降低电磁干扰 (EMI) 方面带来了灵活性,而且  
可防止任何栅极短路问题。此外,该架构中还包括主动  
和被动下拉特性,可防止任何 dv/dt 栅极导通。  
用于配置的串行接口 (DRV8703D-Q1)  
智能栅极驱动架构  
可调压摆率控制  
支持 1.8V3.3V 5V 逻辑输入  
电流分流放大器  
集成 PWM 电流调节功能  
低功耗睡眠模式  
器件信息(1)  
器件型号  
DRV8702D-Q1  
DRV8703D-Q1  
封装  
封装尺寸(标称值)  
保护 特性  
电源欠压锁定 (UVLO)  
电荷泵欠压 (CPUV) 锁定  
过流保护 (OCP)  
VQFN (32)  
5.00mm × 5.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
栅极驱动器故障 (GDF)  
热关断 (TSD)  
简化原理图  
5.5 to 45 V  
监视器计时器 (DRV8703D-Q1)  
故障调节输出 (nFAULT)  
DRV870xD-Q1  
PWM  
2 应用  
Gate  
nSLEEP  
Half-Bridge Gate Driver  
Drive  
Half-  
Bridge  
M
燃油泵  
VREF  
Sense Output  
单向刷式直流电机  
继电器或螺线管  
单极负载  
Shunt Amplifier  
Current  
Sense  
nFAULT  
Current Regulation  
Protection  
3 说明  
DRV870xD-Q1 器件是一款小型半桥栅极驱动器,它使  
用两个外部 N 通道 MOSFET,旨在驱动单向刷式直流  
电机或电磁阀负载。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDX8  
 
 
 
 
 
 
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 39  
7.6 Register Maps......................................................... 41  
Application and Implementation ........................ 47  
8.1 Application Information............................................ 47  
8.2 Typical Application .................................................. 47  
Power Supply Recommendations...................... 51  
9.1 Bulk Capacitance Sizing ......................................... 51  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 SPI Timing Requirements ....................................... 11  
6.7 Switching Characteristics........................................ 11  
6.8 Typical Characteristics............................................ 13  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 21  
7.4 Device Functional Modes........................................ 39  
8
9
10 Layout................................................................... 52  
10.1 Layout Guidelines ................................................. 52  
10.2 Layout Example .................................................... 52  
11 器件和文档支持 ..................................................... 53  
11.1 文档支持................................................................ 53  
11.2 相关链接................................................................ 53  
11.3 接收文档更新通知 ................................................. 53  
11.4 社区资源................................................................ 53  
11.5 ....................................................................... 53  
11.6 静电放电警告......................................................... 53  
11.7 术语表 ................................................................... 53  
12 机械、封装和可订购信息....................................... 54  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (August 2018) to Revision B  
Page  
已更改 首页,删除第二个 说............................................................................................................................................... 1  
已删除 栅极驱动电流图........................................................................................................................................................... 1  
Deleted MODE pulldown resistance ...................................................................................................................................... 7  
Added MODE typical pulldown resistance ............................................................................................................................ 7  
Added MODE typical pullup resistance ................................................................................................................................. 7  
已更改 Wording in VDS Configuration section .................................................................................................................... 49  
Changes from Original (March 2017) to Revision A  
Page  
已更改 更改了特性 说明 部分.............................................................................................................................................. 1  
已删除 在简化原理图 中删除了 PWM 线路中的 PH/EN ......................................................................................................... 1  
Changed Vvref description update ........................................................................................................................................ 6  
已更改 the VDS(OCP) from 0.86 V to 0.96 V in the OCP Threshold Voltage graph ................................................................ 15  
已更改 the I(CHOP) equation in the Current Regulation and Current Chopping Configuration sections................................. 24  
已更改 the current equation in the Amplifier Output (SO) section........................................................................................ 24  
已更改 the description of the WD_EN bit in the IDRIVE and WD Field Descriptions table.................................................. 44  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
DRV8702D-Q1 RHB Package With Wettable Flanks  
DRV8703D-Q1 RHB Package With Wettable Flanks  
32-Pin VQFN  
Top View  
32-Pin VQFN  
Top View  
GND  
IN1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
RSVD  
SP  
GND  
IN1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
RSVD  
SP  
IN2  
SN  
IN2  
SN  
GND  
SP  
SDO  
SP  
Thermal  
Pad  
Thermal  
Pad  
IDRIVE  
VDS  
GL  
nSCS  
SDI  
GL  
SH  
SH  
GND  
GH  
SCLK  
nSLEEP  
GH  
nSLEEP  
GND  
GND  
Not to scale  
Not to scale  
Pin Functions  
PIN  
NO.  
DRV8702D-Q1 DRV8703D-Q1  
TYPE(1)  
DESCRIPTION  
NAME  
Analog regulator. This pin is the 5-V analog supply regulator. Bypass this pin to  
ground with a 6.3-V, 1-µF ceramic capacitor.  
AVDD  
CPH  
14  
30  
31  
12  
14  
30  
31  
12  
PWR  
PWR  
PWR  
PWR  
Charge-pump switching node. Connect a 0.1-µF X7R capacitor rated for the  
supply voltage (VM) between the CPH and CPL pins.  
Charge-pump switching node. Connect a 0.1-µF X7R capacitor rated for the  
supply voltage (VM) between the CPH and CPL pins.  
CPL  
Logic regulator. This pin is the regulator for the 3.3-V logic supply. Bypass this  
pin to ground with a 6.3-V, 1-µF ceramic capacitor.  
DVDD  
GH  
18  
20  
1
18  
20  
1
O
High-side gate. Connect this pin to the high-side FET gate.  
Low-side gate. Connect this pin to the low-side FET gate.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
GL  
O
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
13  
17  
25  
4
13  
17  
25  
7
9
Current setting pin for the gate drive. The resistor value or voltage forced on  
this pin sets the gate-drive current. For more information see the IDRIVE  
Configuration section.  
IDRIVE  
IN1  
5
2
2
I
I
Input control pins. The logic of this pin is dependent on the MODE pin. This pin  
is connected to an internal pulldown resistor.  
(1) I = input, O = output, PWR = power, NC = no connect, OD = open-drain output  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8702D-Q1 DRV8703D-Q1  
Input control pins. The logic of this pin is dependent on the MODE pin. This pin  
is connected to an internal pulldown resistor.  
IN2  
3
3
I
I
Mode control pin. Pull this pin to logic high for half-bridge operation without  
internal current regulation. Leave this pin as no-connect for half-bridge  
operation with internal current regulation. Operation of this pin is latched on  
power up or when exiting sleep mode. This pin is connected to an internal  
pullup and pulldown resistor.  
MODE  
11  
11  
NC  
32  
10  
32  
10  
NC  
OD  
No connect. No internal connection  
Fault indication pin. This pin is pulled logic low when a fault condition occurs.  
This pin is an open-drain output that requires an external pullup resistor.  
nFAULT  
SPI chip select. This pin is the select and enable for SPI. This pin is active low.  
This pin is connected to an internal pulldown resistor.  
nSCS  
8
5
8
I
I
Device sleep mode. Pull this pin to logic low to put device into a low-power  
sleep mode with the FETs in high impedance (Hi-Z). This pin is connected to  
an internal pulldown resistor.  
nSLEEP  
Watchdog fault indication pin. This pin is pulled logic low when a watchdog fault  
condition occurs. This pin is an open-drain output that requires an external  
pullup resistor.  
nWDFLT  
9
OD  
RSVD  
RSVD  
26  
24  
26  
24  
RSVD  
RSVD  
Reserved. Do not connect anything.  
Reserved. Do not connect anything.  
SPI clock. This pin is for the SPI clock signal. This pin is connected to an  
internal pulldown resistor.  
SCLK  
SDI  
7
6
4
I
I
SPI input. This pin is for the SPI input signal. This pin is connected to an  
internal pulldown resistor.  
SPI output. This pin is for the SPI output signal. This pin is an open-drain  
output that requires an external pullup resistor.  
SDO  
OD  
SH  
SN  
19  
22  
19  
22  
I
I
High-side source. Connect this pin to the high-side FET source.  
Shunt-amplifier negative input. Connect this pin to the current-sense resistor.  
Shunt-amplifier output. The voltage on this pin is equal to the SP voltage times  
AV plus an offset. Place no more than 1 nF of capacitance on this pin.  
SO  
16  
16  
O
SP  
SP  
21  
23  
21  
23  
I
I
Shunt-amplifier positive input. Connect this pin to the current-sense resistor.  
Shunt-amplifier positive input. Connect this pin to the current-sense resistor.  
Charge-pump output. Connect a 16-V, 1-µF ceramic capacitor between this pin  
and the VM pin.  
VCP  
29  
27  
29  
27  
PWR  
I
VDRAIN  
High-side FET drain connection. This pin is common for the half-bridge.  
VDS monitor setting pin. The resistor value or voltage forced on this pin sets  
the VDS monitor threshold. For more information see the VDS Configuration  
section.  
VDS  
6
I
Power supply. Connect this pin to the motor supply voltage. Bypass this pin to  
ground with a 0.1-µF ceramic plus a 10-µF (minimum) capacitor.  
VM  
28  
15  
28  
15  
PWR  
I
Current set reference input. The voltage on this pin sets the driver chopping  
current.  
VREF  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
47  
UNIT  
V
Power supply voltage  
VM  
Charge pump voltage  
VCP, CPH  
CPL  
VVM + 12  
VVM  
V
Charge pump negative switching pin  
Internal logic regulator voltage  
Internal analog regulator voltage  
Drain pin voltage  
V
DVDD  
AVDD  
VDRAIN  
3.8  
V
5.7  
V
47  
V
Voltage difference between supply and  
VDRAIN  
VM – VDRAIN  
–10  
10  
V
VIN1, IN2, nSLEEP, nFAULT, VREF, IDRIVE,  
VDS, MODE, nSCS, SCLK, SDI, SDO,  
nWDFLT  
Control pin voltage  
–0.3  
5.75  
V
High-side gate pin voltage  
GH  
GL  
SH  
SH  
SP  
SN  
SP  
SO  
SO  
–0.3  
–0.3  
–1.2  
–2  
VVM + 12  
12  
V
V
Low-side gate pin voltage  
Continuous phase-node pin voltage  
Pulsed 10-µs phase-node pin voltage  
VVM + 1.2  
VVM + 2  
1.2  
V
V
–0.5  
–0.3  
–1  
V
Continuous shunt amplifier input pin voltage  
0.3  
V
Pulsed 10-µs shunt amplifier input pin voltage  
Shunt amplifier output pin voltage  
1.2  
V
–0.3  
0
5.75  
V
Shunt amplifier output pin current  
5
mA  
Maximum current, limit current with external  
series resistor  
VDRAIN  
–2  
2
mA  
Open-drain output current  
Gate pin source current  
nFAULT, SDO, nWDFLT  
GH, GL  
0
0
10  
250  
500  
150  
150  
mA  
mA  
mA  
°C  
Gate pin sink current  
GH, GL  
0
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
Electrostatic  
discharge  
V(ESD)  
V
All pins  
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
Corner pins (1, 8, 9, 16, 17, 24, 25,  
and 32)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
MIN  
5.5  
MAX  
45  
UNIT  
V
VVM  
Power supply voltage  
VM  
VCC  
Logic-level input voltage  
0
5.25  
3.6  
V
VVREF  
f(PWM)  
IAVDD  
IDVDD  
ISO  
Current Shunt Amplifier Reference Voltage  
Applied PWM signal (IN1/IN2)  
AVDD external load current  
VREF  
0.3(1)  
V
IN1, IN2  
100  
30(2)  
30(2)  
5
kHz  
mA  
mA  
mA  
°C  
DVDD external load current  
Shunt-amplifier output-current loading  
Operating ambient temperature  
SO  
TA  
–40  
125  
(1) Operational at VVREF = 0 to approximately 0.3 V, but accuracy is degraded.  
(2) Power dissipation and thermal limits must be observed.  
6.4 Thermal Information  
DRV870xD-Q1  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
32.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
19.6  
6.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
6.8  
RθJC(bot)  
1.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, AVDD, DVDD)  
Gate drivers functional  
5.5  
4.5  
5.5  
45  
45  
VVM  
VM operating voltage  
V
Logic functional  
IVM  
VM operating supply current  
VM sleep mode supply current  
VVM = 13.5 V; nSLEEP=1  
nSLEEP = 0, VVM = 13.5 V, TA = 25°C  
nSLEEP = 0, VVM = 13.5 V, TA = 125°C(1)  
2-mA load  
7.5  
12  
mA  
µA  
14  
I(SLEEP)  
25  
3
2.9  
4.7  
4.6  
3.3  
3.2  
5
3.5  
3.5  
5.3  
5.3  
VDVDD  
Internal logic regulator voltage  
Internal logic regulator voltage  
V
V
30-mA load, VVM = 13.5 V  
2-mA load  
VAVDD  
30-mA load, VVM = 13.5 V  
5
CHARGE PUMP (VCP, CPH, CPL)  
VVM = 13.5 V; IVCP = 0 to 12 mA  
VVM = 8 V; IVCP = 0 to 10 mA  
VVM = 5.5 V; IVCP = 0 to 8 mA  
VVM > 13.5 V  
22.5  
13.7  
8.9  
12  
23.5  
14  
24.5  
14.8  
9.5  
VVCP  
VCP operating voltage  
V
9.1  
IVCP  
Charge-pump current capacity  
8 V < VVM < 13.5 V  
10  
mA  
5.5 V < VVM < 8 V  
8
CONTROL INPUTS (IN1, IN2, nSLEEP, MODE, nSCS, SCLK, SDI)  
VIL  
VIH  
Input logic-low voltage  
Input logic-high voltage  
0
0.8  
V
V
1.5  
5.25  
(1) Ensured by design and characterization data.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
100  
–5  
TYP  
MAX  
UNIT  
mV  
µA  
Vhys  
IIL  
Input logic hysteresis  
Input logic-low current  
Input logic-high current  
Pulldown resistance  
Pulldown resistance  
Pullup resistance  
VIN = 0 V  
VIN = 5 V  
5
70  
IIH  
µA  
RPD  
RPD  
RPU  
IN1, IN2, nSLEEP, nSCS, SCLK, SDI  
64  
-2  
100  
65  
173  
kΩ  
MODE  
MODE  
kΩ  
26  
kΩ  
CONTROL OUTPUTS (nFAULT, WDFAULT, SDO)  
VOL  
IOZ  
Output logic-low voltage  
IO = 2 mA  
0.1  
2
V
Output high-impedance leakage  
5V pullup voltage  
µA  
FET GATE DRIVERS (GH1, GH2, SH1, SH2, GL1, GL2)  
VVM > 13.5 V; VGSH with respect to SH  
10.5  
10.5  
11.5  
6.8  
4
High-side VGS gate drive (gate-  
to-source)  
VGSH  
VVM = 8 V; VGSH with respect to SH  
VVM = 5.5 V; VGSH with respect to SH  
VVM > 10.5 V  
5.7  
3.4  
V
V
Low-side VGS gate drive (gate-to-  
source)  
VGSL  
VVM < 10.5 V  
VVM – 2  
R(IDRIVE) < 1 kto GND (DRV8702D) or  
IDRIVE = 3’b000 (DRV8703D)  
10  
20  
50  
R(IDRIVE) = 33 kto GND (DRV8702D) or  
IDRIVE = 3’b001 (DRV8703D)  
R(IDRIVE) = 200 kto GND (DRV8702D)  
or IDRIVE = 3’b010 (DRV8703D)  
IDRIVE = 3’b011 (DRV8703D)  
IDRIVE = 3’b100 (DRV8703D)  
70  
High-side peak source current  
(VVM = 5.5V)  
IDRIVE(SRC_HS)  
mA  
100  
R(IDRIVE) > 2 Mto GND (DRV8702D) or  
IDRIVE = 3’b101 (DRV8703D)  
145  
190  
240  
20  
R(IDRIVE) = 68 kto AVDD (DRV8702D)  
or IDRIVE = 3’b110 (DRV8703D)  
R(IDRIVE) = 1 kto AVDD (DRV8702D) or  
IDRIVE = 3’b111 (DRV8703D)  
R(IDRIVE) < 1 kto GND (DRV8702D) or  
IDRIVE = 3’b000 (DRV8703D)  
R(IDRIVE) = 33 kto GND (DRV8702D) or  
IDRIVE = 3’b001 (DRV8703D)  
40  
R(IDRIVE) = 200 kto GND (DRV8702D)  
or IDRIVE = 3’b010 (DRV8703D)  
90  
IDRIVE = 3’b011 (DRV8703D)  
IDRIVE = 3’b100 (DRV8703D)  
120  
170  
High-side peak sink current  
(VVM = 5.5V)  
IDRIVE(SNK_HS)  
mA  
R(IDRIVE) > 2 Mto GND (DRV8702D) or  
IDRIVE = 3’b101 (DRV8703D)  
250  
330  
420  
R(IDRIVE) = 68 kto AVDD (DRV8702D)  
or IDRIVE = 3’b110 (DRV8703D)  
R(IDRIVE) = 1 kto AVDD (DRV8702D) or  
IDRIVE = 3’b111 (DRV8703D)  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R(IDRIVE) < 1 kto GND (DRV8702D) or  
IDRIVE = 3’b000 (DRV8703D)  
10  
R(IDRIVE) = 33 kto GND (DRV8702D) or  
IDRIVE = 3’b001 (DRV8703D)  
20  
40  
R(IDRIVE) = 200 kto GND (DRV8702D)  
or IDRIVE = 3’b010 (DRV8703D)  
IDRIVE = 3’b011 (DRV8703D)  
IDRIVE = 3’b100 (DRV8703D)  
55  
75  
Low-side peak source current  
(VVM = 5.5V)  
IDRIVE(SRC_LS)  
IDRIVE(SNK_LS)  
IDRIVE(SRC_HS)  
mA  
R(IDRIVE) > 2 Mto GND (DRV8702D) or  
IDRIVE = 3’b101 (DRV8703D)  
115  
145  
190  
20  
R(IDRIVE) = 68 kto AVDD (DRV8702D)  
or IDRIVE = 3’b110 (DRV8703D)  
R(IDRIVE) = 1 kto AVDD (DRV8702D) or  
IDRIVE = 3’b111 (DRV8703D)  
R(IDRIVE) < 1 kto GND (DRV8702D) or  
IDRIVE = 3’b000 (DRV8703D)  
R(IDRIVE) = 33 kto GND (DRV8702D) or  
IDRIVE = 3’b001 (DRV8703D)  
40  
R(IDRIVE) = 200 kto GND (DRV8702D)  
or IDRIVE = 3’b010 (DRV8703D)  
85  
IDRIVE = 3’b011 (DRV8703D)  
IDRIVE = 3’b100 (DRV8703D)  
115  
160  
Low-side peak sink current  
(VVM = 5.5V)  
mA  
R(IDRIVE) > 2 Mto GND (DRV8702D) or  
IDRIVE = 3’b101 (DRV8703D)  
235  
300  
360  
10  
R(IDRIVE) = 68 kto AVDD (DRV8702D)  
or IDRIVE = 3’b110 (DRV8703D)  
R(IDRIVE) = 1 kto AVDD (DRV8702D) or  
IDRIVE = 3’b111 (DRV8703D)  
R(IDRIVE) < 1 kto GND (DRV8702D) or  
IDRIVE = 3’b000 (DRV8703D)  
R(IDRIVE) = 33 kto GND (DRV8702D) or  
IDRIVE = 3’b001 (DRV8703D)  
20  
R(IDRIVE) = 200 kto GND (DRV8702D)  
or IDRIVE = 3’b010 (DRV8703D)  
50  
IDRIVE = 3’b011 (DRV8703D)  
IDRIVE = 3’b100 (DRV8703D)  
70  
High-side peak source current  
(VVM = 13.5V)  
mA  
105  
R(IDRIVE) > 2 Mto GND (DRV8702D) or  
IDRIVE = 3’b101 (DRV8703D)  
155  
210  
260  
R(IDRIVE) = 68 kto AVDD (DRV8702D)  
or IDRIVE = 3’b110 (DRV8703D)  
R(IDRIVE) = 1 kto AVDD (DRV8702D) or  
IDRIVE = 3’b111 (DRV8703D)  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R(IDRIVE) < 1 kto GND (DRV8702D) or  
IDRIVE = 3’b000 (DRV8703D)  
20  
R(IDRIVE) = 33 kto GND (DRV8702D) or  
IDRIVE = 3’b001 (DRV8703D)  
40  
95  
R(IDRIVE) = 200 kto GND (DRV8702D)  
or IDRIVE = 3’b010 (DRV8703D)  
IDRIVE = 3’b011 (DRV8703D)  
IDRIVE = 3’b100 (DRV8703D)  
130  
185  
High-side peak sink current  
(VVM = 13.5V)  
IDRIVE(SNK_HS)  
IDRIVE(SRC_LS)  
IDRIVE(SNK_LS)  
mA  
R(IDRIVE) > 2 Mto GND (DRV8702D) or  
IDRIVE = 3’b101 (DRV8703D)  
265  
350  
440  
10  
R(IDRIVE) = 68 kto AVDD (DRV8702D)  
or IDRIVE = 3’b110 (DRV8703D)  
R(IDRIVE) = 1 kto AVDD (DRV8702D) or  
IDRIVE = 3’b111 (DRV8703D)  
R(IDRIVE) < 1 kto GND (DRV8702D) or  
IDRIVE = 3’b000 (DRV8703D)  
R(IDRIVE) = 33 kto GND (DRV8702D) or  
IDRIVE = 3’b001 (DRV8703D)  
20  
R(IDRIVE) = 200 kto GND (DRV8702D)  
or IDRIVE = 3’b010 (DRV8703D)  
45  
IDRIVE = 3’b011 (DRV8703D)  
IDRIVE = 3’b100 (DRV8703D)  
60  
90  
Low-side peak source current  
(VVM = 13.5V)  
mA  
R(IDRIVE) > 2 Mto GND (DRV8702D) or  
IDRIVE = 3’b101 (DRV8703D)  
130  
180  
225  
20  
R(IDRIVE) = 68 kto AVDD (DRV8702D)  
or IDRIVE = 3’b110 (DRV8703D)  
R(IDRIVE) = 1 kto AVDD (DRV8702D) or  
IDRIVE = 3’b111 (DRV8703D)  
R(IDRIVE) < 1 kΩ to GND (DRV8702D) or  
IDRIVE = 3’b000 (DRV8703D)  
R(IDRIVE) = 33 kΩ to GND (DRV8702D) or  
IDRIVE = 3’b001 (DRV8703D)  
40  
R(IDRIVE) = 200 kΩ to GND (DRV8702D)  
or IDRIVE = 3’b010 (DRV8703D)  
95  
IDRIVE = 3’b011 (DRV8703D)  
IDRIVE = 3’b100 (DRV8703D)  
125  
180  
Low-side peak sink current  
(VVM = 13.5V)  
mA  
R(IDRIVE) > 2 MΩ to GND (DRV8702D) or  
IDRIVE = 3’b101 (DRV8703D)  
260  
350  
430  
R(IDRIVE) = 68 kΩ to AVDD (DRV8702D)  
or IDRIVE = 3’b110 (DRV8703D)  
R(IDRIVE) = 1 kΩ to AVDD (DRV8702D) or  
IDRIVE = 3’b111 (DRV8703D)  
Source current after tDRIVE  
Sink current after tDRIVE  
GH  
10  
40  
IHOLD  
FET holding current  
mA  
mA  
kΩ  
750  
1000  
150  
150  
ISTRONG  
FET holdoff strong pulldown  
FET gate holdoff resistor  
GL  
Pulldown GH to SH  
Pulldown GL to GND  
R(OFF)  
CURRENT SHUNT AMPLIFIER AND PWM CURRENT CONTROL (SP, SN, SO, VREF)  
VVREF VREF input rms voltage For current internal chopping  
0.3(2)  
3.6  
V
(2) Operational at VVREF = 0 to approximately 0.3 V, but accuracy is degraded.  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DRV8702D and DRV8703D VREF_SCL =  
00 (100%)  
1
MΩ  
RVREF  
VREF input impedance  
Amplifier gain (DRV8702D-Q1)  
DRV8703D VREF_SCL = 2’b01, 2’b10 or  
2’b11  
175  
19.8  
10  
kΩ  
AV  
60 < VSP < 225 mV; VSN = GND  
19.3  
9.75  
20.3  
V/V  
GAIN_CS = 00; 10 < VSP < 450 mV; VSN  
= GND  
10.25  
GAIN_CS = 01; 60 < VSP < 225 mV; VSN  
= GND  
19.3  
38.4  
73  
19.8  
39.4  
78  
20.3  
40.4  
AV  
Amplifier gain (DRV8703D-Q1)  
V/V  
GAIN_CS = 10; 10 < VSP < 112 mV; VSN  
= GND  
GAIN_CS = 11; 10 < VSP < 56 mV; VSN  
GND  
=
81  
10  
VIO  
Input-referred offset  
Drift offset(2)  
VSP = VSN = GND  
5
10  
mV  
µV/°C  
µA  
VIO(DRIFT)  
ISP  
VSP = VSN = GND  
SP input current  
VSP = 100 mV; VSN = GND  
–20  
VSO  
SO pin output voltage range  
Allowable SO pin capacitance  
AV × Vio  
4.5  
1
V
C(SO)  
nF  
PROTECTION CIRCUITS  
VM falling; UVLO2 report  
VM rising; UVLO2 recovery  
5.25  
5.4  
5.45  
5.65  
4.5  
V(UVLO2)  
VM undervoltage lockout  
V
V(UVLO1)  
Logic undervoltage lockout  
VM undervoltage hysteresis  
V
Vhys(UVLO)  
Rising to falling threshold  
VCP falling; CPUV report  
100  
mV  
VVM  
+
1.5  
V(CP_UV)  
Charge pump undervoltage  
CP undervoltage hysteresis  
V
VVM  
+
VCP rising; CPUV recovery  
1.55  
Vhys(CP_UV)  
Rising to falling threshold  
R(VDS) < 1 kΩ to GND  
R(VDS) = 33 kΩ to GND  
R(VDS) = 200 kΩ to GND  
R(VDS) > 2 MΩ to GND  
R(VDS) = 68 kΩ to AVDD  
R(VDS) < 1 kΩ to AVDD  
VDS_LEVEL = 3’b000  
VDS_LEVEL = 3’b001  
VDS_LEVEL = 3’b010  
VDS_LEVEL = 3’b011  
VDS_LEVEL = 3’b100  
VDS_LEVEL = 3’b101  
VDS_LEVEL = 3’b110  
VDS_LEVEL = 3’b111  
50  
0.06  
mV  
0.12  
Overcurrent protection trip level,  
VDS of each external FET  
(DRV8702D-Q1)  
High side FETs: VDRAIN – SH  
Low side FETs: SH – SP  
0.24  
VDS(OCP)  
V
0.48  
0.96  
Disabled  
0.06  
0.145  
0.17  
Overcurrent protection trip level,  
VDS of each external FET  
(DRV8703D-Q1)  
High-side FETs: VDRAIN – SH  
Low-side FETs: SH – SP  
0.2  
VDS(OCP)  
V
V
0.12  
0.24  
0.48  
0.96  
Overcurrent protection trip level,  
measured by sense amplifier  
Thermal warning temperature(1)  
VSP(OCP)  
VSP with respect to GND  
Die temperature TJ  
Thermal shutdown temperature(1) Die temperature TJ  
0.8  
1
1.2  
T(OTW)  
TSD  
120  
150  
135  
145  
°C  
°C  
°C  
Thys  
Thermal shutdown hysteresis(1)  
Die temperature TJ  
20  
17  
Positive clamping voltage  
Negative clamping voltage  
16.3  
–1  
17.8  
–0.5  
VC(GS)  
Gate-drive clamping voltage  
V
–0.7  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
6.6 SPI Timing Requirements  
MIN  
100  
50  
NOM  
MAX  
UNIT  
ns  
t(CLK)  
Minimum SPI clock period  
Clock high time  
t(CLKH)  
t(CLKL)  
t(SU_SDI)  
t(HD_SDI)  
ns  
Clock low time  
50  
ns  
SDI input data setup time  
SDI input data hold time  
20  
ns  
30  
ns  
t(HD_SDO) SDO output hold time  
t(SU_SCS) SCS setup time  
t(HD_SCS) SCS hold time  
40  
ns  
50  
ns  
50  
ns  
t(HI_SCS)  
SCS minimum high time before SCS active low  
400  
ns  
6.7 Switching Characteristics  
Over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, AVDD, DVDD)  
t(SLEEP)  
t(wu)  
Sleep time  
nSLEEP = low to sleep mode  
nSLEEP = high to output change  
VM > UVLO2 to output transition  
100  
1
µs  
ms  
ms  
Wake-up time  
Turn on time  
ton  
1
CHARGE PUMP (VCP, CPH, CPL)  
fS(VCP) Charge-pump switching frequency VM > UVLO2  
CONTROL INPUTS (IN1, IN2, nSLEEP, MODE, nSCS, SCLK, SDI, PH, EN)  
200  
400  
500  
700  
kHz  
ns  
removed PH and EN pinsIN1, IN2 to  
GH or GL  
tpd  
Propagation delay  
FET GATE DRIVERS (GH1, GH2, SH1, SH2, GL1, GL2)  
Observed t(DEAD) depends on  
IDRIVE setting  
t(DEAD)  
Output dead time (DRV8702D-Q1)  
240  
120  
240  
480  
ns  
TDEAD = 2’b00; Observed t(DEAD)  
depends on IDRIVE setting  
TDEAD = 2’b01; Observed t(DEAD)  
depends on IDRIVE setting  
t(DEAD)  
Output dead time (DRV8703D-Q1)  
Gate drive time  
ns  
µs  
TDEAD = 2’b10; Observed t(DEAD)  
depends on IDRIVE setting  
TDEAD = 2’b11; Observed t(DEAD)  
depends on IDRIVE setting  
960  
2.5  
t(DRIVE)  
CURRENT SHUNT AMPLIFIER AND PWM CURRENT CONTROL (SP, SN, SO, VREF)  
VSP = VSN = GND to VSP = 240 mV,  
VSN = GND, AV= 10; C(SO) = 200 pF  
0.5  
1
VSP = VSN = GND to VSP = 120 mV,  
VSN = GND, AV= 20; C(SO) = 200 pF  
tS  
Settling time to ±1%(1)  
µs  
VSP = VSN = GND to VSP = 60 mV,  
VSN = GND, AV= 40; C(SO) = 200 pF  
2
VSP = VSN = GND to VSP = 30 mV,  
VSN = GND, AV= 80; C(SO) = 200 pF  
4
toff  
PWM off-time (DRV8702D-Q1)  
PWM off-time (DRV8703D-Q1)  
PWM blanking time  
25  
25  
µs  
µs  
µs  
TOFF = 00  
TOFF = 01  
TOFF = 10  
TOFF = 11  
50  
toff  
100  
200  
2
t(BLANK)  
(1) Ensured by design  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Switching Characteristics (continued)  
Over recommended operating conditions unless otherwise noted  
PARAMETER  
PROTECTION CIRCUITS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
t(UVLO)  
t(OCP)  
VM UVLO falling deglitch time  
Overcurrent deglitch time  
Overcurrent retry time  
VM falling; UVLO report  
10  
4
µs  
µs  
3.7  
2.8  
4.3  
3.2  
t(RETRY)  
3
ms  
WD_DLY = 2’b00  
WD_DLY = 2’b01  
WD_DLY = 2’b10  
WD_DLY = 2’b11  
10  
20  
50  
100  
64  
Watchdog time out (DRV8703D-  
Q1)  
t(WD)  
ms  
µs  
t(RESET)  
Watchdog timer reset period  
SPI  
t(SPI_READY) SPI read after power on  
SDO output data delay time, CLK  
VM > VUVLO1  
CL = 20 pF  
5
10  
30  
ms  
ns  
td(SDO)  
high to SDO valid  
SCS access time, SCS low to SDO  
out of high impedance  
ta  
10  
10  
ns  
ns  
SCS disable time, SCS high to  
SDO high impedance  
tdis  
t(HI_SCS)  
t(HD_SCS)  
t(SU_SCS)  
SCS  
t(CLK)  
SCLK  
SDI  
t(CLKH)  
t(CLKL)  
MSB in  
(must be valid)  
LSB  
t(SU_SDI) t(HD_SDI)  
MSB out (is valid)  
SDO  
Z
LSB  
Z
tdis  
ta  
td(SDO)  
t(HD_SDO)  
1. SPI Slave Mode Timing Definition  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
1
2
3
4
X
15  
16  
SCS  
SCLK  
SDI  
LSB  
LSB  
MSB  
MSB  
SDO  
Receive  
Latch Points  
2. SPI Slave Mode Timing Diagram  
6.8 Typical Characteristics  
8.4  
8.1  
7.8  
7.5  
7.2  
6.9  
6.6  
6.3  
8.4  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
8.1  
7.8  
7.5  
7.2  
6.9  
6.6  
6.3  
TA = -40èC  
TA = 25èC  
TA = 125èC  
5
10  
15  
20  
25  
30  
35  
40  
45  
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (èC)  
D001  
D002  
3. Supply Current vs Supply Voltage (VM)  
4. Supply Current vs Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
21  
19  
17  
15  
13  
11  
9
21  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
TA = -40èC  
TA = 25èC  
19  
TA = 125èC  
17  
15  
13  
11  
9
7
7
5
10  
15  
20  
25  
30  
35  
40  
45  
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (èC)  
D003  
D004  
5. Sleep Current vs Supply Voltage (VM)  
6. Sleep Current vs Temperature  
3.4  
5.1  
5.05  
5
TA = -40èC  
TA = 25èC  
TA = 125èC  
3.35  
3.3  
3.25  
3.2  
4.95  
4.9  
TA = -40èC  
3.15  
3.1  
TA = 25èC  
TA = 125èC  
5
10  
15  
20  
25  
30  
35  
40  
45  
5
10  
15  
20  
25  
30  
35  
40  
45  
Supply Voltage (V)  
Supply Voltage (V)  
D005  
D006  
2-mA load  
2-mA load  
7. DVDD Regulator  
8. AVDD Regulator  
3.26  
3.24  
3.22  
3.2  
5.1  
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
3.18  
3.16  
3.14  
3.12  
3.1  
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
3.08  
5
10  
15  
20  
25  
30  
35  
40  
45  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Supply Voltage (V)  
Supply Voltage (V)  
D007  
D008  
30-mA load  
30-mA load  
9. DVDD Regulator  
10. AVDD Regulator  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
Typical Characteristics (接下页)  
10  
19.9  
19.84  
19.78  
19.72  
19.66  
19.6  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
9.98  
9.96  
9.94  
9.92  
9.9  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D009  
D010  
10-V/V gain  
19.8-V/V gain  
11. Amplifier Gain  
12. Amplifier Gain  
40  
39.8  
39.6  
39.4  
39.2  
39  
79  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
78.8  
78.6  
78.4  
78.2  
78  
77.8  
77.6  
77.4  
77.2  
77  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D011  
D012  
39.4-V/V gain  
78-V/V gain  
13. Amplifier Gain  
14. Amplifier Gain  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D013  
D014  
VDS(OCP) = 0.06 V  
15. OCP Threshold Voltage  
VDS(OCP) = 0.12 V  
16. OCP Threshold Voltage  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
0.19  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
0.21  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
0.18  
0.17  
0.16  
0.15  
0.14  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D015  
D016  
VDS(OCP) = 0.17 V  
VDS(OCP) = 0.24 V  
17. OCP Threshold Voltage  
18. OCP Threshold Voltage  
0.51  
1
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
0.505  
0.5  
0.495  
0.49  
0.485  
0.48  
0.475  
0.47  
0.465  
0.46  
0.455  
0.45  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
VDS(OCP) = 0.48 V  
VDS(OCP) = 0.96 V  
19. OCP Threshold Voltage  
20. OCP Threshold Voltage  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D019  
D020  
VVM = 5.5 V  
VVM = 5.5 V  
21. High-Side Source Current  
22. High-Side Sink Current  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
Typical Characteristics (接下页)  
250  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
200  
150  
100  
50  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
100  
100  
125  
Temperature (èC)  
Temperature (èC)  
D021  
D022  
VVM = 5.5 V  
23. Low-Side Source Current  
VVM = 5.5 V  
24. Low-Side Sink Current  
350  
300  
250  
200  
150  
100  
50  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
0
-50  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
125  
Temperature (èC)  
Temperature (èC)  
D023  
D024  
VVM = 13.5 V  
VVM = 13.5 V  
25. High-Side Source Current  
26. High-Side Sink Current  
300  
250  
200  
150  
100  
50  
550  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-50  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
125  
Temperature (èC)  
Temperature (èC)  
D025  
D026  
VVM = 13.5 V  
VVM = 13.5 V  
27. Low-Side Source Current  
28. Low-Side Sink Current  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
DRV87002D-Q1 and DRV87003D-Q1 are single half-bridge drivers, also referred to as gate controllers. The  
drivers control two external NMOS FETs used to drive a bi-directional brushed-DC motors. The devices can also  
operate in independent half bridge mode to drive two single directional brushed-DC motors.  
The devices can support supply voltages from 5.5 V to 45 V and have a low power sleep mode enabled through  
the nSLEEP pin. There are three options for the interface modes including a configurable PH/EN, independent  
half-bridge control, or PWM interface. This allows easy interfacing to the controller circuit.  
DRV87002D-Q1 and DRV87003D-Q1 include Smart Gate Drive technology which offers a combination of  
protection features and gate-drive configurability to improve design simplicity and bring a new level of intelligence  
to motor systems. The gate-drive strength, or gate-drive current can be adjusted through the driver itself to  
optimize for different FETs and applications without the need for external resistors. Smart Gate Drive significantly  
reduces the component count of discrete motor-driver systems by integrating the required FET drive circuitry into  
a single device. The peak current can be adjusted through the IDRIVE pin for DRV8702D-Q1 and through SPI  
for DRV8703D-Q1. Both the high-side and low-side FETs are driven with a gate source voltage (VGS) of 10.5 V  
(nominal) when the VM voltage is more than 13.5 V. At lower VM voltages, the VGS is reduced. The high-side  
gate drive voltage is generated using a doubler-architecture charge pump that regulates to the VM + 10.5 V.  
The inrush or start up current and running current can be limited through a built in fixed time-off current chopping  
scheme. The chopping current level is set through the sense resistor by setting a voltage on the VREF pin. See  
the current regulation section for more information. A shunt-amplifier is also included in the devices to provide  
accurate current measurements to the system controller. The SO pin outputs a voltage that is approximately 20  
times the voltage across the sense resistor on the DRV8702D-Q1 device. For the DRV8703D-Q1, this gain is  
configurable.  
The DRV870xD-Q1 device also has protection features beyond traditional discrete implementations including:  
undervoltage lockout (UVLO), overcurrent protection (OCP), gate driver faults, and thermal shutdown (TSD).  
The device integrates a spread spectrum clocking feature for both the internal digital oscillator and internal  
charge pump. This feature combined with output slew rate control minimizes the radiated emissions from the  
device.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.2 Functional Block Diagram  
VM  
0.1 F  
10 µF  
(minimum)  
VM  
VM  
VM  
Power  
VDRAIN  
1 µF  
VCP  
VVCP  
GH  
HS  
CPH  
Charge Pump  
0.1 µF  
CPL  
DVDD  
3.3-V LDO  
Gate Driver  
Logic  
1 µF  
SH  
GL  
AVDD  
5-V LDO  
1 µF  
M
VGLS LDO  
VGLS  
LS  
IN1  
IN2  
nSLEEP  
Current Regulation  
Control Inputs  
SP  
MODE  
R(SENSE)  
+
AV  
IDRIVE  
SN  
SO  
œ
RIDRIVE  
VDS  
RVDS  
VREF  
Output  
nFAULT  
GND  
GND  
PAD  
Copyright © 2017, Texas Instruments Incorporated  
29. DRV8702D-Q1 Functional Block Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Functional Block Diagram (接下页)  
VM  
0.1 F  
10 µF  
(minimum)  
VM  
VM  
VM  
Power  
1 µF  
VCP  
VDRAIN  
GH  
Gate Driver  
VVCP  
CPH  
0.1 µF  
Charge Pump  
HS  
CPL  
DVDD  
3.3-V LDO  
5-V LDO  
1 µF  
AVDD  
1 µF  
Logic  
SH  
VGLS LDO  
VGLS  
M
IN1  
IN2  
GL  
LS  
Control Inputs  
nSLEEP  
Current Regulation  
SP  
MODE  
Outputs  
AV  
R(SENSE)  
+
-
nFAULT  
SN  
SO  
nWDFLT  
VREF  
SCLK  
SDI  
SPI  
SDO  
nSCS  
GND  
Copyright © 2017, Texas Instruments Incorporated  
GND  
PAD  
30. DRV8703D-Q1 Functional Block Diagram  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.3 Feature Description  
1 and 2 list the recommended external components for the device.  
1. External Components  
COMPONENT  
C(VM1)  
PIN 1  
VM  
PIN 2  
GND  
RECOMMENDED  
0.1-µF ceramic capacitor rated for VM  
10-µF electrolytic capacitor rated for VM  
16-V, 1-µF ceramic capacitor  
0.1-µF X7R capacitor rated for VM  
6.3-V, 1-µF ceramic capacitor  
6.3-V, 1-µF ceramic capacitor  
For resistor sizing, see the Typical Application section  
For resistor sizing, see the Typical Application section  
10 kΩ  
C(VM2)  
VM  
GND  
C(VCP)  
VCP  
VM  
C(SW)  
CPH  
CPL  
C(DVDD)  
C(AVDD)  
R(IDRIVE)  
R(VDS)  
DVDD  
AVDD  
IDRIVE  
VDS  
GND  
GND  
GND  
GND  
(1)  
R(nFAULT)  
R(nWDFLT)  
R(SENSE)  
VCC  
nFAULT  
nWDFLT  
SN or GND  
VM  
(1)  
VCC  
10 kΩ  
SP  
Optional low-side sense resistor  
100-Ω series resistor  
(2)  
R(VDRAIN)  
VDRAIN  
(1) The VCC pin is not a pin on the DRV870xD-Q1, but a VCC supply voltage pullup is required for open-drain outputs nFAULT. These pins  
can be pulled up to either AVDD or DVDD.  
(2) The R(VDRAIN) resistor should be used between the VDRAIN and VM pins to minimize current to the VDRAIN pin if no external reverse  
battery protection is implemented on the VDRAIN pin.  
2. External Gates  
COMPONENT  
GATE  
DRAIN  
SOURCE  
RECOMMENDED  
Supports FETs up to 200 nC at 40 kHz  
PWM  
Q(HS)  
GH  
VM  
SH  
For more information, see Application  
Q(LS)  
GL  
SH  
SP or GND  
and Implementation  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
 
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.3.1 Bridge Control  
The DRV870xD-Q1 device is controlled using a configurable input interface. The Logic Tables section provides  
the half-bridge operation states. These tables do not consider the current control built into the DRV870xD-Q1  
device. The logic operation set by the MODE pin is latched on power-up or when exiting sleep mode. 31  
shows the direction of the flow of current through the load when it is connected between the SH pin and GND,  
and between the SH pin and VM.  
VM  
VM  
1
2
Drive  
Slow decay (brake)  
2
1
2
1
SH  
SH  
31. Bridge Control  
7.3.1.1 Logic Tables  
3, and 4 are the device logic tables. An X denotes a don’t care input or output.  
Any other input logic combinations, aside from the ones mentioned in 3 and 4, result  
in an error, and the device will trigger a fault.  
3. DRV870xD-Q1 PWM Control Interface Without Current Regulation (MODE = 1)  
nSLEEP  
IN1  
X
IN2  
X
GH  
X
GL  
X
SH  
Hi-Z  
L
AVDD/DVDD  
Disabled  
Description  
0
1
1
Sleep mode ½-bridge disabled  
½-bridge low side on  
0
0
0
1
Enabled  
1
0
1
0
H
Enabled  
½-bridge high side on  
4. DRV870xD-Q1 PWM Control Interface With Current Regulation (MODE = Hi-Z)  
nSLEEP  
IN1  
X
IN2  
X
GH  
X
GL  
X
SH  
Hi-Z  
Hi-Z  
H
AVDD/DVDD  
Disabled  
Enabled  
Description  
Sleep mode ½-bridge disabled  
½-bridge is in tri-state  
½-bridge high-side on  
½-bridge low-side on  
0
1
1
1
0
0
0
0
1
0
1
0
Enabled  
1
1
0
1
L
Enabled  
If MODE = Hi-Z is selected, the device performs current regulation (refer to the Current Regulation section).  
Having both the input (INx) pins high puts the motor in brake mode (low-side slow decay). If MODE = 1 is  
selected, current regulation is disabled and must be performed externally using a MCU. With MODE = 1, the load  
current recirculation occurs through the high-side FET as shown in 31.  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.3.2 MODE Pin  
The MODE pin of the device determines the control interface and latches on power-up or when exiting sleep  
mode. 32 shows an overview of the internal circuit of the MODE pin.  
DVDD  
+
œ
1.35 V  
0.75 V  
Digital  
Core  
26 k  
MODE  
+
65 kꢀ  
œ
32. MODE Pin Block Diagram  
5 lists the different control interfaces that can be set via MODE pin at power-up or when exiting sleep mode.  
5. MODE Pin Configuration  
MODE  
1
CONTROL INTERFACE  
PWM control interface without current regulation  
PWM control interface with current regulation  
Hi-Z  
During the device power-up sequence, the DVDD pin is enabled first. Then the MODE pin latches. Finally the  
AVDD pin is enabled. For setting PWM control interface, TI does not recommended connecting the MODE pin to  
the AVDD pin. Instead the MODE pin should be connected to an external 5-V or 3.3-V supply or to the DVDD pin  
if not driven by an external microcontroller (MCU).  
7.3.3 nFAULT Pin  
The nFAULT pin has an open-drain output and should be pulled up to a 5-V or 3.3-V supply. When a fault is  
detected, the nFAULT line is logic low.  
Output  
nFAULT  
33. nFAULT Block Diagram  
For a 3.3-V pullup the nFAULT pin can be tied to the DVDD pin with a resistor (refer to the Application and  
Implementation section). For a 5-V pullup an external 5-V supply should be used. TI does not recommended  
connecting the nFAULT pin to the AVDD pin.  
7.3.4 Current Regulation  
The maximum current through the motor winding is regulated by a fixed off-time PWM current regulation or  
current chopping. When an half-bridge is enabled, current rises through the winding at a rate dependent on the  
DC voltage and inductance of the winding. When the current hits the current chopping threshold, the bridge  
enters a brake (low-side slow decay) mode until the toff time expires.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Immediately after the current is enabled, the voltage on the SP pin is ignored for a period  
(t(BLANK)) before enabling the current-sense circuitry.  
The PWM chopping current is set by a comparator that compares the voltage across a current-sense resistor  
connected to the SP pin, multiplied by a factor of AV, with a reference voltage from the VREF pin. The factor AV  
is the shunt-amplifier gain, which is 19.8 V/V for the DRV8702D-Q1 device or configurable to 10, 19.8, 39.4, or  
78 V/V for the DRV8703D-Q1 device.  
Use 公式 1 to calculate the chopping current (ICHOP).  
VVREF - V ì AV  
AV ì R(SENSE)  
IO  
I(CHOP)  
=
(1)  
For example, if a 50-mΩ sense resistor and a VREF value of 3.3 V are selected, the full-scale chopping current  
is 3.28 A. The AV is 19.8 V/V and VIO is assumed to be 50 mV in this example.  
If the load is connected between the SH pin and VM and current regulation is enabled  
(MODE pin is Hi-Z), the low-side FET is switched on when the current flowing through the  
load exceeds the ICHOP threshold. This result in an adverse effect by driving the load at  
100% duty cycle because the maximum current flows through the load as the low-side  
FET remains switched on for the tOFF duration. Texas Instruments recommends using the  
PWM control interface without current regulation (MODE pin is 1) for this configuration to  
drive the load.  
For DC motors, current regulation is used to limit the start-up and stall current of the motor. If the current  
regulation feature is not needed, it can be disabled by tying the VREF pin directly to the AVDD pin. If the PWM  
control-interface mode without current regulation (MODE pin is 1) is selected for operation, the device does not  
perform PWM current regulation or current chopping.  
7.3.5 Amplifier Output (SO)  
The SO pin on the DRV870xD-Q1 device outputs an analog voltage equal to the voltage across the SP and SN  
pins multiplied by AV. The SO voltage is only valid for when the load is connected in the way shown in 31. Use  
公式 2 to calculate the approximate current for the half-bridge.  
VSO - V ì AV  
AV ì R(SENSE)  
IO  
I =  
(2)  
When the SP and SN voltages are 0 V, the SO pin outputs the amplifier offset voltage times the amplifier gain,  
Vio × Av. When SP minus SN is greater than 0 V, the SO pin outputs the sum of the amplifier offset voltage and  
the sense resist or voltage, times the amplifier gain, (Vio + Vrsense) × Av. No capacitor is required on the SO pin.  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
AVDD  
AV  
VIO × AV  
SP-SN (V)  
34. Current Sense Amplifier Output  
If the voltage across the SP and SN pins exceeds 1 V, then the DRV870xD-Q1 device flags an overcurrent  
condition.  
The SO pin can source up to 5 mA of current. If the pin is shorted to ground, or if this pin drives a higher current  
load, the output functions as a constant-current source. The output voltage is not representative of the half-bridge  
current in this state.  
I(CHOP)  
Drive  
Brake and Slow Decay  
tOFF  
Drive  
Brake and Slow Decay  
tOFF  
t(DRIVE)  
t(DRIVE)  
(Vio+Vrsense) x AV  
(Vio+Vrsense) x AV  
VVREF  
35. Current Sense Amplifier and Current Chopping Operation  
During brake mode (slow decay), current is circulated through the low-side FET. Because current is not flowing  
through the sense resistor, the SO pin does not represent the motor current.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.3.5.1 SO Sample and Hold Operation  
The DRV8703D-Q1 device allows the shunt amplifier to operate in a sample and hold configuration. To enable  
this mode, set the SH_EN bit high through the SPI. In this mode, the shunt amplifier output is disabled to the  
Hi-Z state whenever the driver is in a brake mode. Place an external capacitor on this pin.  
I(CHOP)  
Drive  
Brake and Slow Decay  
tOFF  
Drive  
Brake and Slow Decay  
tOFF  
t(DRIVE)  
t(DRIVE)  
(Vio+Vrsense) x AV  
(Vio+Vrsense) x AV  
VVREF  
SO Output Hi-Z  
SO Output Hi-Z  
36. Sample and Hold Operation  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.3.6 PWM Motor Gate Drivers  
The DRV870xD-Q1 device has gate drivers for a single half-bridge with external NMOS FETs. 37 shows a  
block diagram of the predrive circuitry.  
VGHS  
VM  
GH  
IN  
R(OFF)  
SH  
Predrive  
VGLS  
Logic  
nSLEEP  
GL  
M
R(OFF)  
SP  
SN  
R(SENSE)  
37. Predrive Block Diagram  
Gate drivers inside the DRV870xD-Q1 device directly drive N-Channel MOSFETs, which drive the motor current.  
The high-side gate drive is supplied by the charge pump, while an internal regulator generates the low-side gate  
drive.  
The peak drive current of the gate drivers is adjustable through the IDRIVE pin for DRV8702D-Q1 device or the  
IDRIVE register for the DRV8703D-Q1 device. Peak source currents can be set to the values listed in the FET  
gate drivers section of the Electrical Characteristics table. The peak sink current is approximately two times the  
peak source current. Adjusting the peak current changes the output slew rate, which also depends on the FET  
input capacitance and gate charge.  
Fast switching times can cause extra noise on the VM and GND pins. This additional noise can occur specifically  
because of a relatively slow reverse-recovery time of the low-side body diode, when the body diode conducts  
reverse-bias momentarily, similar to shoot-through. Slow switching times can cause excessive power dissipation  
because the external FETs have a longer turn on and turn off time.  
When changing the state of the output, the peak current (IDRIVE) is applied for a short period (t(DRIVE)), to charge  
the gate capacitance. After this time, a weak current source (IHOLD) is used to keep the gate at the desired state.  
When selecting the gate drive strength for a given external FET, the selected current must be high enough to  
charge fully and discharge the gate during t(DRIVE), or excessive power is dissipated in the FET.  
During high-side turn on, the low-side gate is pulled low with a strong pulldown (ISTRONG). This pulldown prevents  
the low-side FET QGS from charging and keeps the FET off, even when fast switching occurs at the outputs.  
The gate-driver circuits include enforcement of a dead time in analog circuitry, which prevents the high-side and  
low-side FETs from conducting at the same time. When the switching FETs are on, this handshaking prevents  
the high-side or low-side FET from turning on until the opposite FET turns off.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
t(DRIVE)  
IHOLD  
IDRIVE(SNK)  
High-side  
gate drive  
current  
ISTRONG  
ISTRONG  
High-side  
VGS  
tDRIVE  
IHOLD  
IHOLD  
Low-side  
IDRIVE(SNK)  
gate drive  
current  
ISTRONG  
Low-side  
VGS  
38. Gate Driver Output to Control External FETs  
7.3.6.1 Miller Charge (QGD  
)
When a FET gate turns on, the following capacitances must be charged:  
Gate-to-source charge, QGS  
Gate-to-drain charge, QGD (Miller charge)  
Remaining QG  
The FET output is slewing primarily during the QGD charge.  
24 V  
25  
20  
10  
8
D
VGHS  
6
15  
10  
5
G
GH  
Predrive  
4
SH  
2
S
10  
30  
40  
50  
20  
QGS  
QGD  
Gate Charge (nC)  
39. FET Gate Charging Profile  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.3.7 IDRIVE Pin (DRV8702D-Q1 Only)  
The rise and fall times of the half-bridge output (SH pin) can be adjusted by setting the IDRIVE resistor value or  
forcing a voltage onto the IDRIVE pin. The FET gate voltage ramps faster if a higher IDRIVE setting is selected.  
The ramp of the FET gate directly affects the rise and fall times of the half-bridge output.  
Tying the IDRIVE pin to ground selects the lowest drive setting of 10-mA source and 20-mA sink. Leaving this  
pin open selects the drive setting of 155-mA high side and 130-mA low side for source current, and 265-mA high  
side, 260-mA low side for sink current, at a VM voltage of 13.5 V. For a detailed list of IDRIVE configurations,  
see 6.  
+
œ
4.9 V  
3.7 V  
2.5 V  
AVDD  
+
190 kΩ  
œ
IDRIVE  
+
310 kΩ  
Digital  
Core  
œ
+
œ
1.3 V  
0.1 V  
+
œ
40. IDRIVE Pin Internal Circuitry  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
6. DRV8702D-Q1 IDRIVE Settings  
SOURCE CURRENT  
SINK CURRENT  
IDRIVE  
RESISTANCE  
IDRIVE  
VOLTAGE  
CIRCUIT  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 5.5 V  
VVM = 13.5 V  
IDRIVE  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
< 1 kΩ to GND  
GND  
0.7 V ± 5%  
2 V ± 5%  
3 V ± 5%  
4 V ± 5%  
AVDD  
IDRIVE  
33 kΩ ± 5% to  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 40 mA  
Low-side: 40 mA  
High-side: 40 mA  
Low-side: 40 mA  
GND  
RIDRIVE  
IDRIVE  
200 kΩ ± 5% to  
High-side: 50 mA  
Low-side: 40 mA  
High-side: 50 mA  
Low-side: 45 mA  
High-side: 90 mA  
Low-side: 85 mA  
High-side: 95 mA  
Low-side: 95 mA  
GND  
RIDRIVE  
IDRIVE  
> 2 MΩ to GND,  
High-side: 145 mA High-side: 155 mA High-side: 250 mA High-side: 265 mA  
Low-side: 115 mA Low-side: 130 mA Low-side: 235 mA Low-side: 260 mA  
Hi-Z  
AVDD  
68 kΩ ± 5% to  
High-side: 190 mA High-side: 210 mA High-side: 330 mA High-side: 350 mA  
Low-side: 145 mA Low-side: 180 mA Low-side: 300 mA Low-side: 350 mA  
IDRIVE  
AVDD  
AVDD  
High-side: 240 mA High-side: 260 mA High-side: 420 mA High-side: 440 mA  
Low-side: 190 mA Low-side: 225 mA Low-side: 360 mA Low-side:430 mA  
< 1 kΩ to AVDD  
IDRIVE  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.3.8 Dead Time  
The dead time (t(DEAD)) is measured as the time when the SH pin is in the Hi-Z state between turning off one of  
the half-bridge FETs and turning on the other. For example, the output is Hi-Z between turning off the high-side  
FET and turning on the low-side FET.  
The dead time consists of an inserted digital dead time and FET gate slewing. The DRV8702D-Q1 device has a  
digital dead time of approximately 240 ns. The DRV8703D-Q1 device has programmable dead-time options of  
120, 240, 480, 960 ns. In addition to this digital dead time, the output is Hi-Z as long as the voltage across the  
GL pin to ground or GH pin to SH pin is less than the FET threshold voltage.  
The total dead time is dependent on the IDRIVE resistor setting because a portion of the FET gate ramp (GH  
and GL pins) includes the observable dead time.  
7.3.9 Propagation Delay  
The propagation delay time (tPD) is measured as the time between an input edge to an output change. This time  
is composed of two parts: an input deglitcher and output slewing delay. The input deglitcher prevents noise on  
the input pins from affecting the output state.  
The gate drive slew rate also contributes to the delay time. For the output to change state during normal  
operation, one FET must first be turned off. The FET gate is ramped down according to the IDRIVE resistor  
selection, and the observed propagation delay ends when the FET gate falls below the threshold voltage.  
7.3.10 Overcurrent VDS Monitor  
The gate-driver circuit monitors the VDS voltage of each external FET when it is driving current. When the  
voltage monitored is greater than the OCP threshold voltage (VDS(OCP)) after the OCP deglitch time has expired,  
an OCP condition is detected. The VDS(OCP) voltage can be adjusted by changing the resistor (RVDS) on the VDS  
pin of the DRV8702D-Q1 device. The DRV8703D-Q1 device provides VDS(OCP) voltage levels by setting the VDS  
register.  
VM  
VDRAIN  
+
High-Side  
VDS OCP  
Monitor  
GH  
SH  
GL  
œ
+
Low-Side  
VDS OCP  
Monitor 1  
M
œ
SP  
SN  
R(SENSE)  
41. VDS(OCP) Block Diagram  
The VDS voltage on the high-side FET is measured across the VDRAIN to SH pin. The low-side VDS monitor  
measures the VDS voltage across the SH to SP pins. Ensure that the SP pin is always connected to the source  
of the low-side FET of half-bridge, even when the sense amplifier is not used.  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.3.11 VDS Pin (DRV8702D-Q1 Only)  
The VDS pin on the DRV8702D-Q1 device is used to select the VDS threshold voltage for overcurrent detection.  
Tying the VDS pin to ground selects the lowest setting of 0.06 V. Leaving this pin open selects the setting of  
0.48 V. Tying the VDS pin to the AVDD the pin disables the VDS monitor. For a detailed list of VDS  
configurations, see 7.  
+
œ
4.9 V  
3.7 V  
2.5 V  
AVDD  
+
190 kΩ  
œ
VDS  
+
310 kΩ  
Digital  
Core  
œ
+
œ
1.3 V  
0.1 V  
+
œ
42. VDS Block Diagram  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7. VDS Pin Resistor Setting  
OVERCURRENT  
TRIP LEVEL  
VDS RESISTANCE  
VDS VOLTAGE  
CIRCUIT  
(VDS(OCP)  
)
VDS  
< 1 kΩ to GND  
33 kΩ ± 5% to GND  
200 kΩ ± 5% to GND  
> 2 MΩ to GND, Hi-Z  
68 kΩ ± 5% to AVDD  
< 1 kΩ to AVDD  
GND  
0.06 V  
VDS  
0.7 V ± 5%  
2 V ± 5%  
3 V ± 5%  
4 V ± 5%  
AVDD  
0.12 V  
0.24 V  
0.48 V  
0.96 V  
RIDRIVE  
VDS  
RIDRIVE  
VDS  
AVDD  
VDS  
AVDD  
VDS  
Disabled  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.3.12 Charge Pump  
A charge pump is integrated to supply the gate drive voltage of a high-side NMOS (VGSH). The charge pump  
requires a capacitor between the VM and VCP pins. Additionally, a low-ESR ceramic capacitor is required  
between the CPH and CPL pins. When the VM voltage is below 13.5 V, this charge pump functions as a doubler  
and generates a VVCP equal to 2 × VVM – 1.5 V if unloaded. When the VM voltage is more than 13.5 V, the  
charge pump regulates VVCP such that it is equal to VVM + 10.5 V.  
VM  
1 F  
VCP  
CPH  
VM  
Charge  
Pump  
0.1 F  
CPL  
43. Charge Pump Block Diagram  
7.3.13 Gate Drive Clamp  
A clamping structure limits the gate-drive output voltage to the VC(GS) voltage to protect the power FETs from  
damage. The positive voltage clamp is realized using a series of diodes. The negative voltage clamp uses the  
body diodes of the internal predriver FET.  
VGHS  
VM  
I(REVERSE)  
GH  
VGS > VC  
IC  
SH  
Predriver  
VGLS  
VGS negative  
GL  
R(SENSE)  
PGND  
44. Gate Drive Clamp  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.3.14 Protection Circuits  
The DRV870xD-Q1 device is protected against VM undervoltage, charge-pump undervoltage, overcurrent, gate-  
driver shorts, and overtemperature events.  
7.3.14.1 VM Undervoltage Lockout (UVLO2)  
If the voltage on the VM pin falls below the VM undervoltage lockout threshold voltage (VUVLO2), both FETs in the  
half-bridge are disabled, the charge pump is disabled, and the nFAULT pin is driven low. The VM_UVFL bit of  
the DRV8703D-Q1 device is set. The operation resumes when the VM voltage rises above the UVLO2 threshold.  
The nFAULT pin is released after the operation resumes but the VM_UVFL bit on the DRV8703D-Q1 device  
remains set until cleared by writing to the CLR_FLT bit.  
The SPI settings on the DRV8703D-Q1 device are not reset by this fault even though the output drivers are  
disabled. The settings are maintained and internal logic remains active until the VM voltage falls below the logic  
undervoltage threshold (VUVLO1).  
7.3.14.2 Logic Undervoltage (UVLO1)  
If the voltage on the VM pin falls below the logic undervoltage threshold voltage (VUVLO1), the internal logic is  
reset. The operation resumes when the VM voltage rises above the UVLO1 threshold. The nFAULT pin is logic  
low during this state because it is pulled low when the VM undervoltage condition occurs. Decreasing the VM  
voltage below this undervoltage threshold resets the SPI settings.  
7.3.14.3 VCP Undervoltage Lockout (CPUV)  
If the voltage on the VCP pin falls below the threshold voltage of the charge-pump undervoltage (CPUV) lockout,  
both FETs in the half-bridge are disabled and the nFAULT pin is driven low. The DRV8703D-Q1 the VCP_UVFL  
bit is set. The operation resumes when the VCP voltage rises above the CPUV threshold. The nFAULT pin is  
released after the operation resumes but the VCP_UVFL bit on the DRV8703D-Q1 device remains set until  
cleared by writing to the CLR_FLT bit.  
7.3.14.4 Overcurrent Protection (OCP)  
Overcurrent is sensed by monitoring the VDS voltage drop across the external FETs. If the voltage across a  
driven FET exceeds the VDS(OCP) level for longer than the OCP deglitch time, an OCP event is recognized. Both  
FETs in the half-bridge are disabled, and the nFAULT pin is driven low. The OCP bit of the DRV8703D-Q1  
device is set. The drive re-enables after the t(RETRY) time has passed. The nFAULT pin becomes high again after  
the retry time.  
If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal operation resumes  
and the nFAULT pin goes high. The OCP bit on the DRV8703D-Q1 remains set until cleared by writing to the  
CLR_FLT bit. In addition to this FET VDS monitor, an overcurrent condition is detected if the voltage at the SP  
pin exceeds VSP(OCP) and the nFAULT pin is driven low. The OCP bit in the DRV8703-Q1 device is set.  
7.3.14.5 Gate Driver Fault (GDF)  
The GH and GL pins are monitored such that if the voltage on the external FET gate does not increase or  
decrease after the t(DRIVE) time, a gate driver fault is detected. This fault occurs if the GH or GL pins are shorted  
to the GND, SH, or VM pin. Additionally, a gate-driver fault occurs if the selected IDRIVE setting is not sufficient  
to turn on the external FET. Both FETs in the half-bridge are disabled, and the nFAULT pin is driven low. The  
GDF bit of the DRV8703D-Q1 device is set. The driver re-enables after the OCP retry period (t(RETRY)) has  
passed. The nFAULT pin is released after the operation has resumed but the GDF bit on the DRV8703D-Q1  
device remains set until cleared by writing to the CLR_FLT bit.  
7.3.14.6 Thermal Shutdown (TSD)  
If the die temperature exceeds the TSD temperature, both FETs in the half-bridge are disabled, the charge pump  
shuts down, the AVDD regulator is disabled, and the nFAULT pin is driven low. The OTSD bit of the DRV8703D-  
Q1 device is set as well. After the die temperature falls below TSD – Thys temperature, device operation  
automatically resumes. The nFAULT pin is released after the operation resumes, but the OTSD bit on the  
DRV8703D-Q1 device remains set until cleared by writing to the CLR_FLT bit.  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.3.14.7 Watchdog Fault (WDFLT, DRV8703D-Q1 Only)  
An MCU watchdog function can be enabled to ensure that the external controller that is instructing the  
DRV8703D-Q1 device is active and in a known state. The SPI watchdog must be enabled by writing a 1 to the  
WD_EN bit through the SPI (disabled by default, bit is 0). When the watchdog is enabled, an internal timer starts  
to count down to an interval set by the WD_DLY bits. The register address 0x00 must be read by the MCU within  
the interval set by the WD_DLY bit to reset the watchdog. If the timer is allowed to expire, the nWDFLT pin is  
enabled. When the nWDFLT pin is enabled the following occurs:  
The nWDFLT pin goes low for 64 µs.  
The nFAULT pin is asserted.  
The WD_EN bit is cleared.  
The drivers are disabled.  
The WDFLT bit remains asserted, and operation is halted until the CLR_FLT bit has been written to 1.  
8 lists the fault responses of the device under the fault conditions.  
8. Fault Response  
FAULT  
CONDITION  
HALF-BRIDGE  
CHARGE PUMP  
AVDD  
DVDD  
RECOVERY  
VM undervoltage  
(UVLO)  
VVM V(UVLOx)  
(5.45 V, max)  
VVM V(UVLOx)  
(5.65 V, max)  
Disabled  
Disabled  
Disabled  
Operating  
VCP undervoltage  
(CPUV)  
V
VCP V(CP_UV)  
V
VCP V(CP_UV)  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Operating  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Operating  
Operating  
(VVM + 1.5, typ)  
(VVM + 1.5, typ)  
External FET overload  
(OCP)  
VDS VDS(OCP)  
VSP – VSN > 1 V  
t(RETRY)  
t(RETRY)  
Gate driver fault  
(GDF)  
Gate voltage unchanged after  
t(DRIVE)  
Watchdog fault  
(WDFLT)  
Watchdog timer expires  
CLR_FLT bit  
Thermal shutdown  
(TSD)  
TJ TSD – Thys  
TJ TSD (150°C, min)  
(Thys is typically 20°C)  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.3.14.8 Reverse Supply Protection  
The circuit in 45 can be implemented to help protect the system from reverse supply conditions. This circuit  
requires the following additional components:  
NMOS FET  
NPN BJT  
Diode  
10-kΩ resistor  
43-kΩ resistor  
VM  
43 k  
10 kΩ  
0.1 µF  
CP2  
1 µF  
+
Bulk  
10 µF (min)  
0.1 µF  
CP1  
VCP  
VM  
GH  
SH  
GL  
M
SP  
SN  
R(SENSE)  
45. Reverse Supply Protection  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.3.15 Hardware Interface  
The DRV8702D-Q1 hardware interface allows the device to be configured without a SPI, however not all of the  
functionality is configurable like the DRV8703D-Q1 device. The following configuration settings are fixed for the  
hardware-interface device option:  
The toff value is set to 25 µs.  
Current regulation is enabled  
The VREF pin voltage is not scaled internally (100%).  
The shunt amplifier has a fixed gain of 19.8 V/V.  
7.3.15.1 IDRIVE (6-level input)  
The voltage or resistance on the IDRIVE pin sets the peak source and peak sink IDRIVE setting as listed in 9.  
9. DRV8702D-Q1 IDRIVE Settings  
SOURCE CURRENT  
SINK CURRENT  
VVM = 13.5 V  
IDRIVE  
RESISTANCE  
IDRIVE VOLTAGE  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 5.5 V  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
< 1 kΩ to GND  
GND  
0.7 V ± 5%  
2 V ± 5%  
3 V ± 5%  
4 V ± 5%  
AVDD  
33 kΩ ± 5% to  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 40 mA  
Low-side: 40 mA  
High-side: 40 mA  
Low-side: 40 mA  
GND  
200 kΩ ± 5% to  
High-side: 50 mA  
Low-side: 40 mA  
High-side: 50 mA  
Low-side: 45 mA  
High-side: 90 mA  
Low-side: 85 mA  
High-side: 95 mA  
Low-side: 95 mA  
GND  
> 2 MΩ to GND,  
High-side: 145 mA  
Low-side: 115 mA  
High-side: 155 mA  
Low-side: 130 mA  
High-side: 250 mA  
Low-side: 235 mA  
High-side: 265 mA  
Low-side: 260 mA  
Hi-Z  
68 kΩ ± 5% to  
High-side: 190 mA  
Low-side: 145 mA  
High-side: 210 mA  
Low-side: 180 mA  
High-side: 330 mA  
Low-side: 300 mA  
High-side: 350 mA  
Low-side: 350 mA  
AVDD  
High-side: 240 mA  
Low-side: 190 mA  
High-side: 260 mA  
Low-side: 225 mA  
High-side: 420 mA  
Low-side: 360 mA  
High-side: 440 mA  
Low-side:430 mA  
< 1 kΩ to AVDD  
7.3.15.2 VDS (6-Level Input)  
This input controls the VDS monitor trip voltage as listed in 10.  
10. DRV8702D-Q1 VDS Settings  
OVERCURRENT TRIP LEVEL  
VDS RESISTANCE  
VDS VOLTAGE  
(VDS(OCP)  
0.06 V  
0.12 V  
0.24 V  
0.48 V  
0.96 V  
)
< 1 kΩ to GND  
33 kΩ ± 5% to GND  
200 kΩ ± 5% to GND  
> 2 MΩ to GND, Hi-Z  
68 kΩ ± 5% to AVDD  
< 1 kΩ to AVDD  
GND  
0.7 V ± 5%  
2 V ± 5%  
3 V ± 5%  
4 V ± 5%  
AVDD  
Disabled  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.4 Device Functional Modes  
The DRV870xD-Q1 device is active unless the nSLEEP pin is brought low. In sleep mode, the charge pump is  
disabled, the half-bridge FETs are disabled to the Hi-Z state, and the AVDD and DVDD regulators are disabled.  
The t(SLEEP) time must elapse after a falling edge on the nSLEEP pin before the device is  
in sleep mode. The DRV870xD-Q1 device is brought out of sleep mode automatically if  
the nSLEEP pin is brought high.  
The t(WAKE) time must elapse before the outputs change state after wakeup.  
On the DRV8703D-Q1 device, the SPI settings are reset when coming out of UVLO or exiting sleep mode.  
While the nSLEEP pin is brought low, both external half-bridge FETs are disabled. The high-side gate pin, GH,  
are pulled to the output node, SH, by an internal resistor and the low-side gate pin, GL, are pulled to ground.  
When the VM voltage is not applied and during the power-on time (ton) the outputs are disabled using weak  
pulldown resistors between the GH and SH pins and the GL and GND pins.  
The MODE pin controls the device-logic operation for the PWM input mode. This operation  
is latched on power up or when exiting sleep mode.  
7.5 Programming  
7.5.1 SPI Communication  
7.5.1.1 Serial Peripheral Interface (SPI)  
The SPI (DRV8703D-Q1 only) is used to set device configurations, operating parameters, and read out  
diagnostic information. The DRV8703D-Q1 SPI operates in slave mode. The SPI input data (SDI) word consists  
of a 16-bit word, with a 5-bit command, 3 don't care bits, and 8 bits of data. The SPI output data (SDO) word  
consists of 8-bit register data and the first 8 bits are don’t cares.  
A valid frame has to meet following conditions:  
The clock polarity (CPOL) must be set to 0.  
The clock phase (CPHA) must be set to 0.  
The SCLK pin must be low when the nSCS pin goes low and when the nSCS pin goes high.  
No SCLK signal can occur when the nSCS signal is in transition.  
The SCLK pin must be low when the nSCS pin goes high.  
The nSCS pin should be taken high for at least 500 ns between frames.  
When the nSCS pin is asserted high, any signals at the SCLK and SDI pins are ignored, and the SDO pin is  
in the high impedance state.  
Full 16 SCLK cycles must occur.  
Data is captured on the falling edge of the clock and data is driven on the rising edge of the clock.  
The most-significant bit (MSB) is shifted in and out first  
For a write command, if the data word sent to the SDI pin is less than or more than 16 bits, a frame error  
occurs and the data word is ignored.  
For a write command, the existing data in the register being written to is shifted out on the SDO pin following  
the 5-bit command data  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Programming (接下页)  
7.5.1.2 SPI Format  
The SDI input-data word is 16 bits long and consists of the following format:  
1 read or write bit, W (bit 15)  
4 address bits, A (bits 14 through 11)  
3 don't care bits, X (10 through 8)  
8 data bits, D (7:0)  
The SDO output-data word is 16 bits long and the first 8 bits are don’t care bits. The data word is the content of  
the register being accessed.  
For a write command (W0 = 0), the response word on the SDO pin is the data currently in the register being  
written to.  
For a read command (W0 = 1), the response word is the data currently in the register being read.  
11. SDI Input Data Word Format  
R/W  
B15  
W0  
ADDRESS  
DON'T CARE  
DATA  
B4  
D4  
B14  
A3  
B13  
A2  
B12  
A1  
B11  
A0  
B10  
X
B9  
X
B8  
X
B7  
D7  
B6  
D6  
B5  
D5  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
12. SDO Output Data Word Format  
DON'T CARE  
DATA  
B15  
X
B14  
X
B13  
X
B12  
X
B11  
X
B10  
X
B9  
X
B8  
X
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
nSCS  
SCLK  
SDI  
X
Z
X
Z
MSB  
LSB  
SDO  
LSB  
MSB  
Capture  
Point  
Propagate  
Point  
46. SPI Transaction  
The SCLK pin should be low at power-up of the device for reliable SPI transaction. If the SCLK pin cannot be  
guaranteed to be low at power-up, TI recommends performing a dummy SPI-read transaction (of any register)  
after power-up to ensure reliable subsequent transactions. Data read from this dummy read transaction should  
be discarded.  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.6 Register Maps  
DRV8703D-Q1 Memory Map  
Register  
7
Access  
Type  
Address  
(Hex)  
6
5
4
3
2
1
0
Name  
FAULT Status  
VDS and GDF  
Main  
FAULT  
WDFLT  
GDF  
OCP  
L_GDF  
LOCK  
VM_UVFL  
VCP_UVFL  
OTSD  
H_VDS  
IN2  
OTW  
L_VDS  
R
0
1
2
3
4
5
RESERVED  
H_GDF  
RESERVED  
R
RESERVED  
TDEAD  
IN1  
CLR_FLT  
RW  
RW  
RW  
RW  
IDRIVE and WD  
VDS  
WD_EN  
VDS  
WD_DLY  
IDRIVE  
DIS_H_VDS  
SO_LIM  
RESERVED  
SH_EN  
DIS_L_VDS  
Config  
TOFF  
CHOP_IDS  
VREF_SCL  
GAIN_CS  
13. Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
7.6.1 Status Registers  
The status registers are used to report warning and fault conditions. Status registers are read only registers.  
14 lists the memory-mapped registers for the status registers. All register offset addresses not listed in 14  
should be considered as reserved locations and the register contents should not be modified.  
14. Status Registers Summary Table  
Address  
0x00h  
Register Name  
FAULT status  
Section  
Go  
0x01h  
VDS and GDF status  
Go  
7.6.1.1 FAULT Status Register (address = 0x00h)  
FAULT status is shown in 47 and described in 15.  
Return to Summary Table.  
Read only  
47. FAULT Status Register  
7
6
5
4
3
2
1
0
FAULT  
R-0b  
WDFLT  
R-0b  
GDF  
R-0b  
OCP  
R-0b  
VM_UVFL  
R-0b  
VCP_UVFL  
R-0b  
OTSD  
R-0b  
OTW  
R-0b  
15. FAULT Status Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
FAULT  
R
0b  
Logic OR of the FAULT status register excluding the OTW bit  
Watchdog time-out fault  
6
5
4
3
2
1
0
WDFLT  
GDF  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Indicates gate drive fault condition  
OCP  
Indicates VDS monitor overcurrent fault condition  
Indicates VM undervoltage lockout fault condition  
Indicates charge-pump undervoltage fault condition  
Indicates overtemperature shutdown  
VM_UVFL  
VCP_UVFL  
OTSD  
OTW  
Indicates overtemperature warning  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
 
 
 
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.1.2 VDS and GDF Status Register Name (address = 0x01h)  
VDS and GDF status is shown in 48 and described in 16.  
Return to Summary Table.  
Read only  
48. VDS and GDF Status Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
H_GDF  
R-0b  
L_GDF  
R-0b  
RESERVED  
R-00b  
H_VDS  
R-0b  
L_VDS  
R-0b  
16. VDS and GDF Status Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
RESERVED  
R
00b  
Reserved  
5
4
H_GDF  
R
R
R
R
0b  
Indicates gate drive fault on the high-side FET of half-bridge  
Indicates gate drive fault on the low-side FET of half-bridge  
Reserved  
L_GDF  
0b  
3-2  
1
RESERVED  
H_VDS  
00b  
0b  
Indicates VDS monitor overcurrent fault on the high-side FET of  
half-bridge  
0
L_VDS  
R
0b  
Indicates VDS monitor overcurrent fault on the low-side FET of  
half-bridge  
7.6.2 Control Registers  
The control registers are used to configure the device. Control registers are read and write capable.  
17 lists the memory-mapped registers for the status registers. All register offset addresses not listed in 17  
should be considered as reserved locations and the register contents should not be modified.  
17. Status Registers Summary Table  
Address  
0x02h  
0x03h  
0x04h  
0x05h  
Register Name  
Main control  
Section  
Go  
IDRIVE and WD control  
VDS control  
Go  
Go  
Config control  
Go  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.6.2.1 Main Control Register Name (address = 0x02h)  
Main control is shown in 49 and described in 18.  
Return to Summary Table.  
Read and write  
49. Main Control Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-00b  
LOCK  
IN1  
IN2  
CLR_FLT  
R/W-0b  
R/W-011b  
R/W-0b  
R/W-0b  
18. Main Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
RESERVED  
R/W  
00b  
Reserved  
5-3  
LOCK  
R/W  
011b  
Write 110b to lock the settings by ignoring further register  
changes except to address 0x02h. Writing any sequence other  
than 110b has no effect when unlocked.  
Write 011b to this register to unlock all registers. Writing any  
sequence other than 011b has no effect when locked.  
2
1
0
IN1  
R/W  
R/W  
R/W  
0b  
0b  
0b  
This bit is ORed with the IN1 pin  
This bit is ORed with the IN2 pin  
Write a 1 to this bit to clear the fault bits  
IN2  
CLR_FLT  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
 
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.2.2 IDRIVE and WD Control Register Name (address = 0x03h)  
IDRIVE and WD control is shown in 50 and described in 19.  
Return to Summary Table.  
Read and write  
50. IDRIVE and WD Register  
7
6
5
4
3
2
1
0
TDEAD  
WD_EN  
R/W-0b  
WD_DLY  
R/W-00b  
IDRIVE  
R/W-111b  
R/W-00b  
19. IDRIVE and WD Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
TDEAD  
R/W  
00b  
Dead time  
00b = 120 ns  
01b = 240 ns  
10b = 480 ns  
11b = 960 ns  
5
WD_EN  
R/W  
R/W  
0b  
Enables or disables the watchdog time (disabled by default)  
4-3  
WD_DLY  
00b  
Watchdog timeout delay (if WD_EN = 1)  
00b = 10 ms  
01b = 20 ms  
10b = 50 ms  
11b = 100 ms  
2-0  
IDRIVE  
R/W  
111b  
Sets the peak source current and peak sink current of the gate  
drive. 20 lists the bit settings.  
20. IDRIVE Bit Settings  
Source Current  
VVM = 13.5 V  
Sink Current  
Bit Value  
VVM = 5.5 V  
VVM = 5.5 V  
VVM = 13.5 V  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 40 mA  
Low-side: 40 mA  
High-side: 40 mA  
Low-side: 40 mA  
High-side: 50 mA  
Low-side: 40 mA  
High-side: 50 mA  
Low-side: 45 mA  
High-side: 90 mA  
Low-side: 85 mA  
High-side: 95 mA  
Low-side: 95 mA  
High-side: 70 mA  
Low-side: 55 mA  
High-side: 70 mA  
Low-side: 60 mA  
High-side: 120 mA  
Low-side: 115 mA  
High-side: 130 mA  
Low-side: 125 mA  
High-side: 100 mA  
Low-side: 75 mA  
High-side: 105 mA  
Low-side: 90 mA  
High-side: 170 mA  
Low-side: 160 mA  
High-side: 185 mA  
Low-side: 180 mA  
High-side: 145 mA  
Low-side: 115 mA  
High-side: 155 mA  
Low-side: 130 mA  
High-side: 250 mA  
Low-side: 235 mA  
High-side: 265 mA  
Low-side: 260 mA  
High-side: 190 mA  
Low-side: 145 mA  
High-side: 210 mA  
Low-side: 180 mA  
High-side: 330 mA  
Low-side: 300 mA  
High-side: 350 mA  
Low-side: 350 mA  
High-side: 240 mA  
Low-side: 190 mA  
High-side: 260 mA  
Low-side: 225 mA  
High-side: 420 mA  
Low-side: 360 mA  
High-side: 440 mA  
Low-side: 430 mA  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
7.6.2.3 VDS Control Register Name (address = 0x04h)  
VDS control is shown in 51 and described in 21.  
Return to Summary Table.  
Read and write  
51. VDS Control Register  
7
6
5
4
3
2
1
0
SO_LIM  
R/W-0b  
VDS  
RESERVED  
R-00b  
DIS_H_VDS  
R/W-0b  
DIS_L_VDS  
R/W-0b  
R/W-111b  
21. VDS Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
SO_LIM  
R/W  
0b  
0b = Default operation  
1b = SO output is voltage-limited to 3.6 V  
6-4  
VDS  
R/W  
111b  
Sets the VDS(OCP) monitor for each FET  
000b = 0.06 V  
001b = 0.145 V  
010b = 0.17 V  
011b = 0.2 V  
100b = 0.12 V  
101b = 0.24 V  
110b = 0.48 V  
111b = 0.96 V  
3-2  
1
RESERVED  
R
00b  
0b  
Reserved  
DIS_H_VDS  
R/W  
Disables the VDS monitor on the high-side FET of half-bridge  
(enabled by default)  
0
DIS_L_VDS  
R/W  
0b  
Disables the VDS monitor on the low-side FET of half-bridge  
(enabled by default)  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
 
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.2.4 Config Control Register Name (address = 0x05h)  
Config control is shown in 52 and described in 22.  
Return to Summary Table.  
Read and write  
52. Config Control Register  
7
6
5
4
3
2
1
0
TOFF  
CHOP_IDS  
R/W-0b  
VREF_SCL  
R/W-00b  
SH_EN  
R/W-0b  
GAIN_CS  
R/W-01b  
R/W-00b  
22. Config Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
TOFF  
R/W  
00b  
Off time for PWM current chopping  
00b = 25 µs  
01b = 50 µs  
10b = 100 µs  
11b = 200 µs  
5
CHOP_IDS  
VREF_SCL  
R/W  
R/W  
0b  
Disables current regulation (enabled by default)  
4-3  
00b  
Scale factor for the VREF input  
00b = 100%  
01b = 75%  
10b = 50%  
11b = 25%  
2
SH_EN  
R/W  
R/W  
0b  
Enables sample and hold operation of the shunt amplifier  
(disabled by default)  
1-0  
GAIN_CS  
01b  
Shunt amplifier gain setting  
00b = 10 V/V  
01b = 19.8 V/V  
10b = 39.4 V/V  
11b = 78 V/V  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV870xD-Q1 device is used in brushed-DC, solenoid, or relay-control applications. The following typical  
application can be used to configure the DRV870xD-Q1 device.  
8.2 Typical Application  
This application features the DRV8702D-Q1 device.  
VM  
+
VM  
0.1 µF  
Bulk  
0.1 µF 1 µF  
+
Bulk  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GND  
IN1  
RSVD  
SP  
IN2  
SN  
BDC  
10 m  
GND  
IDRIVE  
VDS  
SP  
GND  
(PAD)  
GL  
200 kΩ  
SH  
0 Ω  
GND  
nSLEEP  
GH  
GND  
VM  
+
Bulk  
VM  
R1  
R2  
10 kΩ  
1 µF  
1 µF  
Copyright © 2017, Texas Instruments Incorporated  
53. DRV8702D-Q1 Typical Application Schematic  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 23 as the input parameters.  
23. Design Parameters  
DESIGN PARAMETER  
Nominal supply voltage  
REFERENCE  
EXAMPLE VALUE  
14 V  
VM  
Supply voltage range  
FET part number  
7 V to 35 V  
CSD18502Q5B  
52 nC (typical)  
8.4 nC (typical)  
100 to 300 ns  
15 A  
FET total gate charge  
FET gate-to-drain charge  
Target FET gate rise time  
Motor current chopping level  
Qg  
Qgd  
tr  
I(CHOP)  
8.2.2 Detailed Design Procedure  
8.2.2.1 External FET Selection  
The DRV8702D-Q1 FET support is based on the charge-pump capacity and PWM-output frequency. For a quick  
calculation of FET driving capacity, use 公式 3 when drive and brake (slow decay) are the primary modes of  
operation.  
IVCP  
Qg <  
f(PWM)  
where  
fPWM is the maximum desired PWM frequency to be applied to the DRV8702D-Q1 inputs or the current  
chopping frequency, whichever is larger.  
IVCP is the charge-pump capacity, which depends on the VM voltage.  
(3)  
(4)  
The internal current chopping frequency is at most equal to the PWM frequency as shown in 公式 4.  
1
f(PWM)  
<
toff + t(BLANK)  
For example, if the VM voltage of a system is 7 V (IVCP = 8 mA) and uses a maximum PWM frequency of 40 kHz,  
then the DRV8702D-Q1 device will support FETs with a Qg up to 200 nC.  
If the application requires a forced fast decay (or alternating between drive and reverse drive), use 公式 5 to  
calculate the maximum FET driving capacity.  
IVCP  
Qg <  
2 ì f(PWM)  
(5)  
8.2.2.2 IDRIVE Configuration  
The IDRIVE current is selected based on the gate charge of the FETs. The IDRIVE pin must be configured so  
that the FET gates are charged entirely during the t(DRIVE) time. If the selected IDRIVE current is too low for a  
given FET, then the FET may not turn on completely. TI recommends adjusting these values in-system with the  
required external FETs and motor to determine the best possible setting for any application.  
For FETs with a known gate-to-drain charge (Qgd) and desired rise time (tr), the IDRIVE current can be selected  
based on the 公式 6.  
Qgd  
IDRIVE  
>
tr  
(6)  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
 
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
If the gate-to-drain charge is 2.3 nC and the desired rise time is around 100 to 300 ns, use 公式 7 to calculate  
the minimum IDRIVE (IDRIVE1) and 公式 8 to calculate the maximum IDRIVE (IDRIVE2).  
IDRIVE1 = 8.4 nC / 100 ns = 84 mA  
IDRIVE2 = 8.4 nC / 300 ns = 28 mA  
(7)  
(8)  
Select a value for IDRIVE between 28 and 84 mA. An IDRIVE value of approximately 50 mA for the source  
(approximately 100 mA sink) was selected for this application. This value requires a 200-kΩ resistor from the  
IDRIVE pin to ground.  
8.2.2.3 VDS Configuration  
The VDS monitor threshold voltage, VDS(OCP), is configured based on the maximum current, IVDS, and RDS(on) of  
the FETs. The drain to source voltage, VDSFET, is the maximum current, IVDS, multiplied by the RDS(on) of the FET.  
The VDS pin of the DRV8702D-Q1 selects the VDS monitor trip threshold, VDS(OCP). The VDS bits in the VDS  
register of the DRV8703D-Q1 selects the VDS(OCP) voltage. Use 公式 9 to calculate the trip current.  
VDSFET  
IVDS  
>
RDS(on)  
(9)  
If the RDS(on) of the FET is 1.8 mΩ and the desired maximum current is less than 100 A, the VDSFET voltage is  
equal to 180 mV as shown in 公式 10.  
For this example, select a value for the VDS(OCP) that is less than 180 mV. A VDS(OCP) value of 0.12 V was  
selected for this application.  
To set the VDS(OCP) to 0.12 V, use the SPI (DRV8703D-Q1 Only) or place a 33k resistor at the VDS pin to ground  
(DRV8702D-Q1 Only).  
The VDS pin can configured to select other VDS(OCP) threshold voltages. See the VDS Pin (DRV8702D-Q1 Only)  
section for more information on VDS operation.  
VDSFET= IVDS × RDS(on) = 100 A × 1.8 mΩ = 180 mV  
(10)  
8.2.2.4 Current Chopping Configuration  
The chopping current is set based on the sense resistor value and the analog voltage at the VREF pin. Use 公式  
11 to calculate the current (I(CHOP)). The amplifier gain, AV, is 19.8 V/V for the DRV8702D-Q1 and VIO is typically  
5 mV (input referred).  
VVREF - V ì AV  
AV ì R(SENSE)  
IO  
I(CHOP)  
=
(11)  
For example, if the desired chopping current is 15 A, select a value of 10 mΩ for R(SENSE). The value of VVREF  
must therefore be 2.975 V. Add a resistor divider from the AVDD (5 V) pin to set the VVREF at approximately  
2.975 V. Select a value of 13 kΩ for R2 and 19.1 kΩ for R1 (the VREF resistor).  
If current chopping is not required, the sense resistor can be removed and the source of the low side FET can be  
connected to ground.  
SN and SP should be connected to the source of the low side FET and VREF should be connected to AVDD  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
 
 
 
 
 
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.3 Application Curves  
SH  
SH  
IN2  
IN2  
10-mA source  
20-mA sink  
10-mA source  
20-mA sink  
54. SH Fall Time  
55. SH Rise Time  
SH  
SH  
ILOAD  
IN2  
ILOAD  
IN2  
56. Current Profile on Motor Startup With Regulation  
57. Current Profile on Motor Startup Without Regulation  
SH  
ILOAD  
IN2  
58. Current Regulating at 2.25 A on Motor Startup  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
9 Power Supply Recommendations  
The DRV8702D-Q1 device is designed to operate with an input voltage supply (VM) rangefrom 5.5 V to 45 V. A  
0.1-µF ceramic capacitor rated for VM must be placed as close to the DRV8702D-Q1 device as possible. Also, a  
bulk capacitor valued at least 10 µF must be placed on the VM pin.  
Additional bulk capacitance is required to bypass the external half-bridge FETs.  
9.1 Bulk Capacitance Sizing  
Bulk capacitance sizing is an important factor in motor drive system design. It is beneficial to have more bulk  
capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors including:  
The highest current required by the motor system.  
The capacitance of the power supply and the ability of the power supply to source current.  
The amount of parasitic inductance between the power supply and motor system.  
The acceptable voltage ripple.  
The type of motor used (brushed DC, brushless DC, and stepper).  
The motor braking method.  
The inductance between the power supply and motor drive system limits the rate that current can change from  
the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands  
or dumps from the motor with a change in voltage. When sufficient bulk capacitance is used, the motor voltage  
remains stable, and high current can be quickly supplied.  
The data sheet provides a recommended value, but system-level testing is required to determine the appropriate  
sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
œ
GND  
Local  
IC Bypass  
Bulk Capacitor  
Capacitor  
Copyright © 2016, Texas Instruments Incorporated  
59. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage to provide a margin for cases  
when the motor transfers energy to the supply.  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The VM pin should be bypassed to ground using a low-ESR ceramic bypass capacitor with a recommended  
value of 0.1 µF rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick  
trace or ground-plane connection to the GND pin of the device. The VM pin must also be bypassed to ground  
using a bulk capacitor rated for VM. This capacitor can be electrolytic and must be at least 10 µF.  
A low-ESR ceramic capacitor must be placed between the CPL and CPH pins. A value of 0.1 µF rated for VM is  
recommended. Place this capacitor as close to the pins as possible. A low-ESR ceramic capacitor must be  
placed in between the VM and VCP pins. A value of 1 µF rated for 16 V is recommended. Place this component  
as close to the pins as possible.  
Bypass the AVDD and DVDD pins to ground with ceramic capacitors rated for 6.3 V. Place these bypassing  
capacitors as close to the pins as possible.  
Use separate traces to connect the SP and SN pins to the R(SENSE) resistor.  
10.2 Layout Example  
RSENSE  
VM  
1 µF  
0.1 µF  
0.1 µF  
S
S
S
G
D
D
D
D
1
2
3
4
5
6
7
8
24  
GND  
RSVD  
23  
22  
21  
SP  
SN  
SP  
IN1  
IN2  
GND  
GND  
20 GL  
IDRIVE  
VDS  
(PPAD)  
19  
SH  
Bulk  
18  
17  
GH  
GND  
SH1  
GND  
nSLEEP  
D
D
D
D
G
S
S
S
1 µF  
1 µF  
60. DRV8702D-Q1 Layout Example  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)DRV8702-Q1 EVM 用户指南》  
德州仪器 (TI)DRV8703-Q1 EVM 用户指南》  
德州仪器 (TI)《小型电机驱动器天窗模块设计指南》  
德州仪器 (TI)《采用 TI 智能栅极驱动技术进行电机驱动保护》TI 技术手册  
德州仪器 (TI)《采用 TI 智能栅极驱动技术缩减电机驱动 BOM PCB 面积》TI 技术手册  
德州仪器 (TI)《采用 TI 智能栅极驱动技术降低 EMI 辐射发射》TI 技术手册  
德州仪器 (TI)《可在汽车应用中驱动刷式直流电机的继电器替代 应用应用报告  
德州仪器 (TI)《了解 TI 智能栅极驱动器中的 IDRIVE TDRIVE》  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
24. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
DRV8702D-Q1  
DRV8703D-Q1  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
PACKAGE OUTLINE  
RHB0032N  
VQFN - 0.9 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
0.1 MIN  
(0.05)  
SECTION A-A  
TYPICAL  
A
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
A
A
2X  
SYMM  
33  
3.5  
0.3  
32X  
0.2  
24  
0.1  
C A B  
1
0.05  
C
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4222893/B 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
DRV8702D-Q1, DRV8703D-Q1  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RHB0032N  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222893/B 02/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8702D-Q1, DRV8703D-Q1  
www.ti.com.cn  
ZHCSG57B MARCH 2017REVISED DECEMBER 2018  
EXAMPLE STENCIL DESIGN  
RHB0032N  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222893/B 02/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8702DQRHBRQ1  
DRV8702DQRHBTQ1  
DRV8703DQRHBRQ1  
DRV8703DQRHBTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
8702D  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
8702D  
8703D  
8703D  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8702DQRHBRQ1  
DRV8702DQRHBTQ1  
DRV8703DQRHBRQ1  
DRV8703DQRHBTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8702DQRHBRQ1  
DRV8702DQRHBTQ1  
DRV8703DQRHBRQ1  
DRV8703DQRHBTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8703DQRHBRQ1

具有 SPI 控制功能的汽车类 47V、半桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8703DQRHBTQ1

具有 SPI 控制功能的汽车类 47V、半桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8703QRHBRQ1

具有 SPI 控制功能的汽车类 47V H 桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8703QRHBTQ1

具有 SPI 控制功能的汽车类 47V H 桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8704

60V 双路 H 桥智能栅极驱动器
TI

DRV8704DCP

60V 双路 H 桥智能栅极驱动器 | DCP | 38 | -40 to 85
TI

DRV8704DCPR

60-V dual H-bridge smart gate driver | DCP | 38 | -40 to 85
TI

DRV8705-Q1

具有离线诊断功能的汽车级、40V、H 桥智能栅极驱动器
TI

DRV8705HQRHBRQ1

具有离线诊断功能的汽车级、40V、H 桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8705SQRHBRQ1

具有离线诊断功能的汽车级、40V、H 桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8706-Q1

具有离线诊断功能和直列式电流检测放大器的汽车级 40V 半桥智能栅极驱动器
TI

DRV8706HQRHBRQ1

具有离线诊断功能和直列式电流检测放大器的汽车级 40V 半桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI