DS280BR820ZBLR [TI]

28Gbps 低功耗 8 通道转接驱动器 | ZBL | 135 | -40 to 85;
DS280BR820ZBLR
型号: DS280BR820ZBLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

28Gbps 低功耗 8 通道转接驱动器 | ZBL | 135 | -40 to 85

驱动 驱动器
文件: 总53页 (文件大小:4429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
DS280BR820 低功耗 28Gbps 8 通道线性中继器  
1 特性  
DS280BR820 将小型封装尺寸、经优化的高速信号退  
1
出和引脚兼容的重定时器相结合,使其成为高密度背板  
应用的 理想选择。。凭借简化的均衡控制、低功耗和  
超低附加抖动特性,该器件适用于 100G-  
八通道多协议线性均衡器,可支持传输速率高达  
28Gbps 的接口  
低功耗:93mW/通道(典型值)  
无需散热器  
SR4/LR4/CR4 等前端接口。8mm x 13mm 小型封装  
适用于 QSFPSFPCFP2CFP4 CDFP 等多种  
标准前端口连接器,并且无需散热器。  
无缝支持链路协商、自动协商和前向纠错 (FEC) 直  
通功能的直线均衡  
扩展通道长度,超出正常专用集成电路 (ASIC) 到  
ASIC 性能 17dB+  
集成交流耦合电容(Rx 侧)免除了集成电路板 (PCB)  
对于外部电容的需求。DS280BR820 具备一个单电  
源,能够最大限度地降低外部组件的数量。这些 特性  
降低了 PCB 布局布线复杂度以及物料清单 (BOM) 成  
本。  
超低延迟:100ps(典型值)  
低附加随机抖动  
采用集成 Rx Tx 交流耦合电容的小型 8mm x  
13mm 小型球状引脚栅格阵列 (BGA) 封装,可实现  
简易直通路由  
引脚兼容的重定时器可用于距离较长的 应用。  
独特的引脚分配支持在封装下对高速信号进行路由  
提供引脚兼容的重定时器  
DS280BR820 可通过 SMBus 或外部 EEPROM 进行  
配置。单个 EEPROM 最多可由 16 个器件共享。  
2.5V±5% 单电源  
运行温度范围:–40°C +85°C  
器件信息 (1)  
器件型号  
封装  
封装尺寸(标称值)  
2 应用  
DS280BR820  
nFBGA (135)  
8.0mm x 13.0mm  
背板和中板长度延长  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
用于光纤铜缆和无源铜缆 (100G-SR4/LR4/CR4) 的  
前端口眼图开启器  
简化电路原理图  
QSFP28SFP28CFP2CFP4CDFP  
RX0P  
RX0N  
TX0P  
TX0N  
3 说明  
DS280BR820 是一款超低功耗、高性能八通道线性均  
衡器,支持数据传输速率高达 28Gbps 的多速率、多  
协议接口。该器件可用于扩展长度范围并提高背板、前  
端口和芯片至芯片应用的高速串行链路的稳定性。 应  
用。  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
RX7P  
RX7N  
TX7P  
TX7N  
VDD  
1 kΩ  
SDA(1)  
SDC(1)  
To system SMBus  
SMBus  
Slave mode  
ADDR0  
ADDR1  
Address straps  
(pull-up, pull-down, or float)  
EN_SMB  
Float for SMBus Slave  
mode, or connect to next  
device‘s READ_EN_N for  
SMBus Master mode  
DS280BR820 均衡器的线性特质保留了发射信号的特  
性,因此允许主机与链路合作伙伴 ASIC 自由协商发射  
均衡器系数 (100G-CR4/KR4)。这种链路协商协议的透  
明管理有助于在对延迟影响最小的情况下实现系统级互  
操作性。每条通道独立运行,允许 DS280BR820 进行  
独立信道前向纠错 (FEC)。  
SMBus Slave  
mode  
READ_EN_N  
VDD  
ALL_DONE_N  
GND  
2.5 V  
1 F  
(2x)  
0.1 F  
(4x)  
(1) SMBus signals need to be pulled up elsewhere in the system.  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS544  
 
 
 
 
 
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 17  
7.5 Programming........................................................... 18  
7.6 Register Maps ........................................................ 19  
Application and Implementation ........................ 29  
8.1 Application Information............................................ 29  
8.2 Typical Applications ............................................... 29  
8.3 Initialization Set Up ................................................ 41  
Power Supply Recommendations...................... 41  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 7  
8
9
10 Layout................................................................... 42  
10.1 Layout Guidelines ................................................. 42  
10.2 Layout Examples................................................... 42  
11 器件和文档支持 ..................................................... 45  
11.1 文档支持................................................................ 45  
11.2 接收文档更新通知 ................................................. 45  
11.3 ....................................................................... 45  
11.4 静电放电警告......................................................... 45  
11.5 Glossary................................................................ 45  
6.6 Electrical Characteristics – Serial Management Bus  
Interface ................................................................... 12  
6.7 Timing Requirements – Serial Management Bus  
Interface ................................................................... 12  
6.8 Typical Characteristics............................................ 13  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (October 2017) to Revision B  
Page  
首次公开发布 ......................................................................................................................................................................... 1  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
5 Pin Configuration and Functions  
Top View  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
GND  
GND  
TX1N  
GND  
TX2N  
GND  
TX3N  
GND  
TX4N  
GND  
TX5N  
GND  
TX6N  
GND  
GND  
GND  
VDD  
J
H
G
F
J
H
G
F
Ground pin  
TX0N  
TX0P  
GND  
GND  
GND  
GND  
TX1P  
GND  
GND  
GND  
SDC  
SDA  
GND  
GND  
GND  
TX2P  
GND  
GND  
GND  
GND  
GND  
RX2P  
GND  
GND  
VDD  
VDD  
VDD  
GND  
GND  
TX3P  
GND  
GND  
VDD  
GND  
GND  
RX3P  
GND  
GND  
VDD  
VDD  
VDD  
GND  
GND  
TX4P  
GND  
GND  
VDD  
GND  
GND  
RX4P  
GND  
GND  
VDD  
VDD  
VDD  
GND  
GND  
TX5P  
GND  
GND  
VDD  
GND  
GND  
RX5P  
GND  
GND  
GND  
GND  
TX6P  
GND  
GND  
GND  
GND  
TX7N  
TX7P  
GND  
High-speed pin  
Power pin  
READ  
_EN_  
N
INT_N  
(NC)  
Control/Status pin  
CAL_  
CLK_  
OUT  
CAL_  
CLK_  
IN  
No connect on  
package  
TEST ADDR  
1
EN_S TEST  
MB  
E
D
C
B
A
E
D
C
B
A
1
0
ALL_  
GND DONE GND  
_N  
ADDR  
0
GND  
RX0P  
RX0N  
GND  
GND  
RX7P  
RX7N  
Test pin  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
RX1P  
RX6P  
GND  
GND  
RX1N  
GND  
RX2N  
GND  
RX3N  
GND  
RX4N  
GND  
RX5N  
GND  
RX6N  
GND  
GND  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
HIGH SPEED DIFFERENTIAL I/O  
RX0N  
RX0P  
RX1N  
RX1P  
RX2N  
RX2P  
RX3N  
RX3P  
RX4N  
RX4P  
RX5N  
RX5P  
RX6N  
RX6P  
RX7N  
RX7P  
B15  
C15  
A13  
B13  
A11  
B11  
A9  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Inverting and non-inverting differential inputs to the equalizer. An on-chip 100-Ω termination  
resistor connects RXP to RXN. These inputs are AC coupled with 220-nF capacitors  
assembled on the package substrate.  
Inverting and non-inverting differential inputs to the equalizer. An on-chip 100-Ω termination  
resistor connects RXP to RXN. These inputs are AC coupled with 220-nF capacitors  
assembled on the package substrate.  
Inverting and non-inverting differential inputs to the equalizer. An on-chip 100-Ω termination  
resistor connects RXP to RXN. These inputs are AC coupled with 220-nF capacitors  
assembled on the package substrate.  
Inverting and non-inverting differential inputs to the equalizer. An on-chip 100-Ω termination  
resistor connects RXP to RXN. These inputs are AC coupled with 220-nF capacitors  
assembled on the package substrate.  
B9  
A7  
Inverting and non-inverting differential inputs to the equalizer. An on-chip 100-Ω termination  
resistor connects RXP to RXN. These inputs are AC coupled with 220-nF capacitors  
assembled on the package substrate.  
B7  
A5  
Inverting and non-inverting differential inputs to the equalizer. An on-chip 100-Ω termination  
resistor connects RXP to RXN. These inputs are AC coupled with 220-nF capacitors  
assembled on the package substrate.  
B5  
A3  
Inverting and non-inverting differential inputs to the equalizer. An on-chip 100-Ω termination  
resistor connects RXP to RXN. These inputs are AC coupled with 220-nF capacitors  
assembled on the package substrate.  
B3  
B1  
Inverting and non-inverting differential inputs to the equalizer. An on-chip 100-Ω termination  
resistor connects RXP to RXN. These inputs are AC coupled with 220-nF capacitors  
assembled on the package substrate.  
C1  
TX0N  
TX0P  
TX1N  
TX1P  
H15  
G15  
J13  
Output  
Output  
Output  
Output  
Inverting and non-inverting 50-driver outputs. Compatible with AC-coupled differential  
inputs.  
Inverting and non-inverting 50-driver outputs. Compatible with AC-coupled differential  
inputs.  
H13  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
TX2N  
TX2P  
TX3N  
TX3P  
TX4N  
TX4P  
TX5N  
TX5P  
TX6N  
TX6P  
TX7N  
TX7P  
NO.  
J11  
H11  
J9  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Inverting and non-inverting 50-driver outputs. Compatible with AC-coupled differential  
inputs.  
Inverting and non-inverting 50-driver outputs. Compatible with AC-coupled differential  
inputs.  
H9  
J7  
Inverting and non-inverting 50-driver outputs. Compatible with AC-coupled differential  
inputs.  
H7  
J5  
Inverting and non-inverting 50-driver outputs. Compatible with AC-coupled differential  
inputs.  
H5  
J3  
Inverting and non-inverting 50-driver outputs. Compatible with AC-coupled differential  
inputs.  
H3  
H1  
G1  
Inverting and non-inverting 50-driver outputs. Compatible with AC-coupled differential  
inputs.  
CALIBRATION CLOCK PINS (FOR SUPPORTING UPGRADE PATH TO PIN-COMPATIBLE RETIMER DEVICE)  
25-MHz (±100 PPM) 2.5-V single-ended clock from external oscillator. No stringent phase  
noise or jitter requirements on this clock. A 25-MHz input clock is only required if there is  
a need to support a future upgrade to the pin-compatible Retimer device. If there is no  
need to support a future upgrade to a pin-compatible Retimer device, then a 25-MHz clock is  
not required. This input pin has a weak active pull-down and can be left floating if the  
CAL_CLK feature is not required.  
CAL_CLK_IN  
E1  
Input  
CAL_CLK_  
OUT  
2.5-V buffered replica of calibration clock input (pin E1) for connecting multiple devices in a  
daisy-chained fashion.  
E15  
Output  
SYSTEM MANAGEMENT BUS (SMBus) PINS  
ADDR0  
D13  
Input, 4-Level 4-level strap pins used to set the SMBus address of the device. The pin state is read on  
power-up. The multi-level nature of these pins allows for 16 unique device addresses. The  
four strap options include:  
0: 1 kto GND  
R: 10 kto GND  
ADDR1  
E13  
Input, 4-Level  
F: Float  
1: 1 kto VDD  
Indicates the completion of a valid EEPROM register load operation when in SMBus master  
mode (EN_SMB = Float):  
High = External EEPROM load failed or incomplete.  
Low = External EEPROM load successful and complete.  
When in SMBus slave mode (EN_SMB = 1 kΩ to VDD), this output will be high-Z until  
READ_EN_N is driven low, at which point ALL_DONE_N will be driven low. This behavior  
allows the reset signal connected to READ_EN_N of one device to propagate to the  
subsequent devices when ALL_DONE_N is connected to READ_EN_N in an SMBus slave  
mode application.  
ALL_DONE_  
N
Output,  
LVCMOS  
D3  
E3  
4-level 2.5-V input used to select between SMBus master mode (float) and SMBus slave  
mode (high). The four defined levels are:  
0: 1 kto GND - RESERVED  
EN_SMB  
Input, 4-Level  
R: 10 kto GND - RESERVED  
F: Float - SMBus master mode  
1: 1 kto VDD - SMBus slave mode  
Pin has weak pull-up.  
This pin is 3.3 V tolerant.  
SMBus master mode (EN_SMB = Float): When asserted low, initiates the SMBus master  
mode EEPROM read function. Once EEPROM read is complete (indicated by assertion of  
ALL_DONE_N low), this pin can be held low for normal device operation.  
Input,  
LVCMOS  
READ_EN_N  
F13  
E12  
SMBus slave mode (EN_SMB = 1 kΩ to VDD): When asserted low, this causes the device to  
be held in reset (SMBus state machine reset and register reset). This pin should be pulled  
high or left floating for normal operation in SMBus slave mode.  
I/O, 3.3-V  
LVCMOS,  
Open Drain  
SMBus data input and open drain output. External 2-kto 5-kpull-up resistor is required.  
This pin is 3.3-V LVCMOS tolerant.  
SDA  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
I/O, 3.3-V  
LVCMOS,  
Open Drain  
SMBus clock input and open drain clock output. External 2-kto 5-kpull-up resistor is  
required. This pin is 3.3-V LVCMOS tolerant.  
SDC  
F12  
MISCELLANEOUS PINS  
No connect on package. For applications using multiple repeaters and retimers, this pin  
should be connected to other devices’ INT_N pins. This is only a recommendation for cases  
where there is a need to support a potential future upgrade to the pin-compatible retimer  
device, which uses this pin as an interrupt signal to a system controller.  
INT_N  
TEST0  
F3  
No Connect  
Input,  
LVCMOS  
E2  
Reserved test pin. During normal (non-test-mode) operation, this pin is configured as an  
input and therefore is not affected by the presence of a signal. This pin may be left floating,  
tied to GND, or connected to a 2.5-V (max) output.  
Input,  
LVCMOS  
TEST1  
E14  
POWER  
A1, A2, A4,  
A6, A8, A10,  
A12, A14,  
A15, B2, B4,  
B6, B8, B10,  
B12, B14,  
C2, C3, C4,  
C5, C6, C7,  
C8, C9, C10,  
C11, C12,  
C13, C14,  
D1, D2, D4,  
D5, D7, D9,  
D11, D12,  
D14, D15,  
Ground reference. The GND pins on this device should be connected through a low-  
impedance path to the board GND plane.  
GND  
Power  
E4, E11, F1,  
F2, F4, F5,  
F7, F9, F11,  
F14, F15,  
G2, G3, G4,  
G5, G6, G7,  
G8, G9, G10,  
G11, G12,  
G13, G14,  
H2, H4, H6,  
H8, H10,  
H12, H14, J1,  
J2, J4, J6,  
J8, J10, J12,  
J14, J15  
Power supply, VDD = 2.5 V ±5%. Use at least six de-coupling capacitors between the  
Repeater’s VDD plane and GND as close to the Repeater as possible. For example, four  
0.1-μF capacitors and two 1-μF capacitors directly beneath the device or as close to the VDD  
pins as possible. The VDD pins on this device should be connected through a low-resistance  
path to the board VDD plane. For more information, see Power Supply Recommendations.  
D6, D8, D10,  
E5, E6, E7,  
E8, E9, E10,  
F6, F8, F10  
VDD  
Power  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted).  
(1)  
MIN  
–0.5  
–0.5  
MAX  
2.75  
2.75  
UNIT  
V
VDDABSMAX  
Supply voltage (VDD)  
VIO2.5V,ABSMAX  
2.5 V I/O voltage (LVCMOS and CMOS)  
V
Open drain and 3.3 V-tolerance I/O voltage (SDA, SDC,  
READ_EN_N)  
VIO3.3V,ABSMAX  
–0.5  
–0.5  
4
V
VIOHS,ABSMAX  
TJABSMAX  
Tstg  
High-speed I/O voltage (RXnP, RXnN, TXnP, TXnN)  
Junction temperature  
2.75  
150  
150  
V
°C  
°C  
Storage temperature  
-40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
±2000  
V(ESD)  
Electrostatic discharge  
V
±750  
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2 kV  
may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
NOM  
MAX  
UNIT  
DC plus AC power should not  
exceed these limits  
VDD  
NVDD  
Supply voltage, VDD to GND  
2.375  
2.5  
2.625  
V
Supply noise, DC to <50 Hz,  
sinusoidal  
250  
20  
mVpp  
mVpp  
mVpp  
Supply noise, 50 Hz to 10 MHz,  
sinusoidal  
(1)  
Supply noise tolerance  
Supply noise, >10 MHz,  
sinusoidal  
10  
TRampVDD  
VDD supply ramp time  
From 0 V to 2.375 V  
150  
-40  
-40  
µs  
C
TJ  
Operating junction temperature  
Operating ambient temperature  
110  
85  
TA  
C
SMBus SDA and SDC Open  
Drain Termination Voltage  
Supply voltage for open drain  
pull-up resistor  
VDDSMBUS  
3.6  
V
SMBus clock (SDC) frequency in  
SMBus slave mode  
FSMBus  
400  
kHz  
(1) Sinusoidal noise is superimposed to supply voltage with negligible impact to device function or critical performance shown in the  
Electrical Table.  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
6.4 Thermal Information  
(1)  
THERMAL METRIC  
CONDITIONS / ASSUMPTIONS  
4-layer JEDEC board  
VALUE  
45.2  
26.3  
24.8  
22.7  
26.6  
25.8  
13.3  
13.0  
13.0  
13.0  
22.8  
21.4  
21.1  
20.8  
UNIT  
10-layer 8-in x 6-in board  
20-layer 8-in x 6-in board  
30-layer 8-in x 6-in board  
4-layer JEDEC board  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
4-layer JEDEC board  
4-layer JEDEC board  
10-layer 8-in x 6-in board  
20-layer 8-in x 6-in board  
30-layer 8-in x 6-in board  
4-layer JEDEC board  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
10-layer 8-in x 6-in board  
20-layer 8-in x 6-in board  
30-layer 8-in x 6-in board  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
Channel enabled and in linear mode  
with maximum driver VOD  
(DRV_SEL_VOD = 3).  
(1)  
82  
97  
mW  
Static power consumption not  
included.  
Wchannel  
Power consumption per active channel  
Channel enabled and in linear mode  
with minimum driver VOD  
(DRV_SEL_VOD = 0).  
Static power consumption not  
included.  
(1)  
75  
105  
97  
89  
mW  
mW  
mW  
Channel enabled and in FIR limiting  
mode with C0 = 31 and maximum  
driver VOD (DRV_SEL_VOD = 3).  
Static power consumption not  
included.  
(1)  
123  
Wchannel_FIR  
Power consumption per active channel  
Channel enabled and in FIR limiting  
mode with C0 = 31 and minimum  
driver VOD (DRV_SEL_VOD = 0).  
Static power consumption not  
included.  
(1)  
(1)  
115  
132  
Channels disabled and powered down  
(DRV_PD = 1, EQ_PD = 1).  
Idle (static) mode total device power  
consumption  
Wstatic_total  
110  
307  
mW  
mA  
All channels enabled and in linear  
mode with maximum driver VOD  
(DRV_SEL_VOD = 3).  
347  
Active mode total device supply  
current consumption  
Itotal  
All channels enabled and in linear  
mode with minimum driver VOD  
(DRV_SEL_VOD = 0).  
283  
322  
mA  
(1) Max values assume VDD = 2.5 V + 5%.  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All channels enabled and in FIR  
limiting mode with C0 = 31 and  
maximum driver VOD  
380  
426  
mA  
(DRV_SEL_VOD = 3).  
Active mode total device supply  
current consumption  
Itotal_FIR  
All channels enabled and in FIR  
limiting mode with C0 = 31 and  
minimum driver VOD  
355  
44  
401  
50  
mA  
mA  
(DRV_SEL_VOD = 0).  
All channels disabled and powered  
down  
(DRV_PD = 1, EQ_PD = 1).  
Idle (static) mode total device supply  
current consumption  
Istatic_total  
LVCMOS DC SPECIFICATIONS (CAL_CLK_IN, CAL_CLK_OUT, READ_EN_N, ALL_DONE_N, TEST[1:0])  
1.75  
VDD  
3.6  
V
V
VIH  
High level input voltage  
READ_EN_N pin only  
1.75  
GND  
2
VIL  
Low level input voltage  
High level output voltage  
Low level output voltage  
0.7  
V
VOH  
VOL  
IOH = 4 mA  
V
IOL = –4 mA  
0.4  
16  
66  
1
V
Vinput = VDD, TEST[1:0] pins  
Vinput = VDD, CAL_CLK_IN pin  
Vinput = VDD, READ_EN_N pin  
Vinput = 0 V, TEST[1:0] pins  
µA  
µA  
µA  
µA  
µA  
µA  
IIH  
Input high leakage current  
Input low leakage current  
(2)  
–38  
–1  
(3)  
IIL  
Vinput = 0 V, CAL_CLK_IN pin  
Vinput = 0 V, READ_EN_N pin  
(2)  
–55  
4-LEVEL LOGIC ELECTRICAL SPECIFICATIONS (APPLIES TO 4-LEVEL INPUT CONTROL PINS ADDR0, ADDR1, and EN_SMB)  
IIH  
IIL  
Input high leakage current  
Input low leakage current  
105  
µA  
µA  
–253  
0.95 ×  
VDD  
High level (1) input voltage  
Float level input voltage  
V
V
0.67 ×  
VDD  
VTH  
0.33 ×  
VDD  
10 K to GND input voltage  
Low level (0) input voltage  
V
V
0.1  
HIGH-SPEED DIFFERENTIAL INPUTS (RXnP, RXnN)  
Measured with maximum CTLE setting  
and maximum BW setting (EQ_BST1  
= 7, EQ_BST2 = 7, EQ_BW = 3).  
Boost is defined as the gain at 14 GHz  
relative to 20 MHz.  
25.6  
dB  
dB  
BST  
CTLE high-frequency boost  
Measured with maximum CTLE setting  
and maximum BW setting (EQ_BST1  
= 7, EQ_BST2 = 7, EQ_BW = 3).  
Boost is defined as the gain at 12.9  
GHz relative to 20 MHz.  
25.3  
(2) This pin has an internal weak pull-up.  
(3) This pin has an internal weak pull-down.  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured with minimum CTLE setting  
and minimum BW setting (EQ_BST1 =  
0, EQ_BST2 = 0, EQ_BW = 0,  
EQ_EN_BYPASS = 1). Boost is  
defined as the gain at 14 GHz relative  
to 20 MHz.  
2.4  
dB  
BST  
CTLE high-frequency boost  
Measured with minimum CTLE setting  
and minimum BW setting (EQ_BST1 =  
0, EQ_BST2 = 0, EQ_BW = 0,  
EQ_EN_BYPASS = 1). Boost is  
defined as the gain at 12.9 GHz  
relative to 20 MHz.  
2.4  
dB  
Measured with maximum CTLE setting  
(EQ_BST1 = 7, EQ_BST2 = 7). Gain  
variation is defined as the total change  
in gain at 14 GHz due to temperature  
and voltage variation.  
< 3  
< 3  
dB  
dB  
BSTdelta  
CTLE high-frequency gain variation  
Measured with maximum CTLE setting  
(EQ_BST1 = 7, EQ_BST2 = 7). Gain  
variation is defined as the total change  
in gain at 12.9 GHz due to  
temperature and voltage variation.  
Measured with minimum CTLE setting  
(EQ_BST1 = 0, EQ_BST2 = 0,  
EQ_EN_BYPASS = 1). Gain variation  
is defined as the total change in gain  
at 14 GHz due to temperature and  
voltage variation.  
< 2  
< 2  
dB  
dB  
BSTdelta  
CTLE high-frequency gain variation  
Measured with minimum CTLE setting  
(EQ_BST1 = 0, EQ_BST2 = 0,  
EQ_EN_BYPASS = 1). Gain variation  
is defined as the total change in gain  
at 12.9 GHz due to temperature and  
voltage variation.  
50 MHz to 3.7 GHz  
3.7 GHz to 10 GHz  
10 GHz to 14.1 GHz  
14.1 GHz to 20 GHz  
100 MHz to 3.3 GHz  
3.3 GHz to 12.9 GHz  
12.9 GHz to 20 GHz  
100 MHz to 10 GHz  
10 GHz to 20 GHz  
< -14  
< -12  
< -8  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RLSDD11  
Input differential return loss  
< -6  
< -35  
< -26  
< -22  
< -7  
Input differential-to-common-mode  
return loss  
RLSDC11  
RLSCC11  
Input common-mode return loss  
< -8  
Minimum input peak-to-peak amplitude  
level at device pins required to assert  
signal detect. 25.78125 Gbps with  
PRBS7 pattern and 20 dB loss  
channel.  
AC signal detect assert (ON)  
differential voltage threshold level  
VSDAT  
196  
147  
mVpp  
mVpp  
Maximum input peak-to-peak  
amplitude level at device pins which  
causes signal detect to de-assert.  
25.78125 Gbps with PRBS7 pattern  
and 20 dB loss channel.  
AC signal detect de-assert (OFF)  
differential voltage threshold level  
VSDDT  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured with the highest wide-band  
gain setting (EQ_HIGH_GAIN = 1,  
DRV_SEL_VOD = 3). Measured with  
minimal input channel and minimum  
EQ using a 1 GHz signal.  
850  
mVpp  
Measured with a mid wide-band gain  
setting (EQ_HIGH_GAIN = 1,  
DRV_SEL_VOD = 0). Measured with  
minimal input channel and minimum  
EQ using a 1 GHz signal.  
900  
1050  
1250  
mVpp  
mVpp  
mVpp  
Input amplitude linear range. The  
maximum VID for which the repeater  
remains linear, defined as 1 dB  
compression of Vout/Vin.  
VIDlinear  
Measured with a mid wide-band gain  
setting (EQ_HIGH_GAIN = 0,  
DRV_SEL_VOD = 3). Measured with  
minimal input channel and minimum  
EQ using a 1 GHz signal.  
Measured with the lowest wide-band  
gain setting (EQ_HIGH_GAIN = 0,  
DRV_SEL_VOD = 0). Measured with  
minimal input channel and minimum  
EQ using a 1 GHz signal.  
HIGH-SPEED DIFFERENTIAL OUTPUTS (TXnP, TXnN)  
Measured with an 16T pattern at  
28.125 Gbps using C(0),  
Maximum pre-cursor de-emphasis in  
PREDEM-MAX  
Reg_0x0B[4:0], set to 0x0C, C(-1),  
Reg_0x0D[3:0], set to 0xF, and C(+1),  
Reg_0x0C[3:0], set to 0x0. TX  
drv_sel_fir, Reg_0x06[0], set to 0x1.  
-11  
-11  
dB  
dB  
FIR limiting mode  
Measured with an 16T pattern at  
28.125 Gbps using C(0),  
Maximum post-cursor de-emphasis in Reg_0x0B[4:0], set to 0x0C, C(-1),  
PSTDEM-MAX  
FIR limiting mode  
Reg_0x0D[3:0], set to 0x0, and C(+1),  
Reg_0x0C[3:0], set to 0xF. TX  
drv_sel_fir, Reg_0x06[0], set to 0x1.  
Pre-cursor FIR tap delay in FIR  
limiting mode  
TPRE  
TPST  
Independent of data rate  
Independent of data rate  
28  
25  
ps  
ps  
Post-cursor FIR tap delay in FIR  
limiting mode  
Measured with a 16T pattern at  
25.78125 Gbps using C(0),  
Reg_0x0B[4:0], set to 0x00, C(-1),  
Reg_0x0D[3:0], set to 0x0, and C(+1),  
Reg_0x0C[3:0], set to 0x0. TX  
drv_sel_fir, Reg_0x06[0], set to 0x1.  
VOD, Reg_0x06[7:6], set to 0x0.  
185  
360  
mVpp  
mVpp  
Minimum differential output amplitude  
in FIR limiting mode  
VODLIM-MIN  
Measured with a 16T pattern at  
25.78125 Gbps using C(0),  
Reg_0x0B[4:0], set to 0x00, C(-1),  
Reg_0x0D[3:0], set to 0x0, and C(+1),  
Reg_0x0C[3:0], set to 0x0. TX  
drv_sel_fir, Reg_0x06[0], set to 0x1.  
VOD, Reg_0x06[7:6], set to 0x3.  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured with a 16T pattern at  
25.78125 Gbps using C(0),  
Reg_0x0B[4:0], set to 0x1F, C(-1),  
Reg_0x0D[3:0], set to 0x0, and C(+1),  
Reg_0x0C[3:0], set to 0x0. TX  
drv_sel_fir, Reg_0x06[0], set to 0x1.  
VOD, Reg_0x06[7:6], set to 0x0.  
705  
mVpp  
Maximum differential output amplitude  
in FIR limiting mode  
VODLIM-MAX  
Measured with a 16T pattern at  
25.78125 Gbps using C(0),  
Reg_0x0B[4:0], set to 0x1F, C(-1),  
Reg_0x0D[3:0], set to 0x0, and C(+1),  
Reg_0x0C[3:0], set to 0x0. TX  
drv_sel_fir, Reg_0x06[0], set to 0x1.  
VOD, Reg_0x06[7:6], set to 0x3.  
1260  
mVpp  
Differential output amplitude, TX  
disabled or otherwise muted  
VODidle  
< 10  
4.5  
mVpp  
dB  
Measured with the highest wide-band  
gain setting (EQ_HIGH_GAIN = 1,  
DRV_SEL_VOD = 3) at 20 MHz.  
Vout/Vin wide-band amplitude gain in  
linear mode  
GDC  
Measured with the lowest wide-band  
gain setting (EQ_HIGH_GAIN = 0,  
DRV_SEL_VOD = 0) at 20 MHz.  
–5  
Defined as (TXP + TXN)/2. Measured  
with a low-pass filter with 3-dB  
bandwidth at 33 GHz.  
Vcm-TX-AC  
Common-mode AC output noise  
Common-mode DC output  
6
mV, RMS  
V
Defined as (TXP + TXN)/2. Measured  
with a DC signal.  
Vcm-TX-DC  
0.75  
0.96  
1.05  
Measured single-endedly on a  
Keysight E5505A phase noise  
measurement solution with a 28-Gbps  
1010 pattern, from 2 kHz to 20 MHz.  
RJADD-RMS  
Additive random jitter  
11  
fs RMS  
dB  
50 MHz to 4.8 GHz  
4.8 GHz to 10 GHz  
10 GHz to 14.1 GHz  
14.1 GHz to 20 GHz  
50 MHz to 6.0 GHz  
6.0 GHz to 12.9 GHz  
12.9 GHz to 14.1 GHz  
14.1 GHz to 20 GHz  
50 MHz to 3.3 GHz  
3.3 GHz to 10.3 GHz  
10.3 GHz to 20 GHz  
< –16  
< –15  
< –8  
Output differential-to-differential return  
loss  
RLSDD22  
< –8  
< –21  
< –22  
< –21  
< –20  
< –13  
< –11  
< –9  
Output common-mode-to-differential  
return loss  
RLSCD22  
dB  
dB  
RLSCC22  
Output common-mode return loss  
Measured at 28.125 Gbps with 16T  
data pattern using C(0),  
Reg_0x0B[4:0], set to 0x00, C(-1),  
Reg_0x0D[3:0], set to 0x0, and C(+1),  
Reg_0x0C[3:0], set to 0x0. TX  
drv_sel_fir, Reg_0x06[0], set to 0x1.  
19.9  
25.8  
ps  
ps  
Transition time (20%-80%) in FIR  
limiting mode  
tr, tf  
Measured at 28.125 Gbps with 16T  
data pattern using C(0),  
Reg_0x0B[4:0], set to 0x1F, C(-1),  
Reg_0x0D[3:0], set to 0x0, and C(+1),  
Reg_0x0C[3:0], set to 0x0. TX  
drv_sel_fir, Reg_0x06[0], set to 0x1.  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
OTHER PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input-to-output latency (propagation  
delay) through a channel  
tD  
Linear mode  
100  
ps  
Input-to-output latency (propagation  
delay) through a channel  
tD  
FIR limiting mode, Reg_0x06[0]=1  
160  
<14  
ps  
ps  
tSK  
Channel-to-channel interpair skew  
Latency difference between channels.  
Time to assert ALL_DONE_N after  
REAN_EN_N has been asserted.  
Single device reading its configuration  
from an EEPROM with common  
channel configuration. This time scales  
with the number of devices reading  
from the same EEPROM. Does not  
include power-on reset time.  
4
TEEPROM  
EEPROM configuration load time  
ms  
Time to assert ALL_DONE_N after  
REAN_EN_N has been  
asserted. Single device reading its  
configuration from an EEPROM. Non-  
common channel configuration. This  
time scales with the number of devices  
reading from the same EEPROM.  
Does not include power-on reset time.  
7
Internal power-on reset (PoR) stretch  
between stable power supply and de-  
assertion of internal PoR. The SMBus  
address is latched on the completion  
of the PoR stretch, and SMBus  
accesses are permitted once PoR  
completes.  
TPOR  
Power-on reset assertion time  
60  
ms  
6.6 Electrical Characteristics – Serial Management Bus Interface  
PARAMETER  
TEST CONDITIONS  
MIN  
1.75  
GND  
GND  
TYP  
MAX  
3.6  
UNIT  
V
VIH  
VIL  
Input high level voltage  
Input low level voltage  
Output low level voltage  
Input pin capacitance  
SDA and SDC  
SDA and SDC  
0.8  
V
VOL  
CIN  
SDA and SDC, IOL = 1.25 mA  
SDA and SDC  
0.4  
V
15  
pF  
SDA or SDC, VINPUT = VIN, VDD,  
GND  
IIN  
Input current  
–18  
18  
µA  
6.7 Timing Requirements – Serial Management Bus Interface  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RECOMMENDED SMBus SWITCHING CHARACTERISTICS (SMBus SLAVE MODE)  
fSDC  
SDC clock frequency  
Data hold time  
EN_SMB = 1 k to VDD (Slave Mode)  
10  
100  
0.75  
100  
150  
4.5  
400  
kHz  
ns  
TSDA-HD  
TSDA-SU  
TSDA-R  
TSDA-F  
Data setup time  
ns  
SDA rise time, read operation  
SDA fall time, read operation  
Pull-up resistor = 1 kΩ, Cb = 50 pF  
Pull-up resistor = 1 kΩ, Cb = 50 pF  
ns  
ns  
SMBus SWITCHING CHARACTERISTICS (SMBus MASTER MODE)  
fSDC  
SDC clock frequency  
SDC low period  
EN_SMB = Float (Master Mode)  
260  
1.66  
1.22  
303  
1.90  
1.40  
0.6  
346  
2.21  
1.63  
kHz  
µs  
TSDC-LOW  
TSDC-HIGH  
THD-START  
SDC high period  
µs  
Hold time start operation  
µs  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
Timing Requirements – Serial Management Bus Interface (continued)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
Setup time start operation  
Data hold time  
TEST CONDITIONS  
MIN  
TYP  
0.6  
MAX  
UNIT  
µs  
TSU-START  
TSDA-HD  
TSDA-SU  
TSU-STOP  
TBUF  
0.9  
µs  
Data setup time  
0.1  
µs  
Stop condition setup time  
Bus free time between Stop-Start  
SDC rise time  
0.6  
µs  
1.3  
µs  
TSDC-R  
Pull-up resistor = 1 kΩ  
Pull-up resistor = 1 kΩ  
300  
300  
ns  
TSDC-F  
SDC fall time  
ns  
6.8 Typical Characteristics  
1.3  
1.2  
1.1  
1
1.3  
0
6
12  
18  
24  
31  
0
6
1.2  
1.1  
1
12  
18  
24  
31  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
-50  
25  
Temperature (°C)  
105  
2.35  
2.5  
Voltage (V)  
2.65  
D002  
D003  
1. Limiting Mode: FIR VOD Variation Across Temperature  
2. Limiting Mode: FIR VOD Variation Across VDD  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
EQ High Gain Mode 0  
EQ High Gain Mode 3  
EQ Low Gain Mode 0  
EQ Low Gain Mode 3  
0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Input Differential Voltage (VP-P  
1.1 1.2 1.3 1.4  
)
D001  
3. Typical Vin/Vout Linearity  
版权 © 2016–2019, Texas Instruments Incorporated  
13  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS280BR820 is an eight-channel multi-rate linear repeater with integrated signal conditioning. The eight  
channels operate independently from one another. Each channel includes a continuous-time linear equalizer  
(CTLE), an optional FIR filter and a linear output driver, which compensate for the presence of a dispersive  
transmission channel between the source transmitter and the final receiver.  
All receive channels on the DS280BR820 are AC-coupled with physical AC coupling capacitors (220 nF ±20%)  
on the package substrate. This ensures common mode voltage compatibility with all link partner transmitters and  
eliminates the need for AC coupling capacitors on the system PCB, thereby saving cost and greatly reducing  
PCB routing complexity.  
The DS280BR820 is configurable through a single SMBus port. The DS280BR820 can also act as an SMBus  
master to configure itself from an EEPROM.  
The DS280BR820 offers improved high-frequency boost and bandwidth compared to the  
DS280BR810. The DS280BR810 has series AC coupling capacitors on both the RX and  
TX pins, whereas the DS280BR820 has series AC coupling capacitors on the RX inputs  
only. The DS280BR820 and DS280BR810 are otherwise pin-to-pin compatible and share  
the same register programming interface.  
The sections which follow describe the functionality of various circuits and features within the DS280BR820. For  
more information about how to program or operate these features, consult the DS280BR820 Programming  
Guide.  
7.2 Functional Block Diagram  
One of Eight Channels  
Term  
Bypass  
Linear Path  
RXnP  
RXnN  
TXnP  
TXnN  
Boost  
Stage 1  
Boost  
Stage 2  
Driver  
220 nF  
FIR Limiting Path  
3-Tap FIR  
Signal  
Detect  
Voltage  
Regulator  
Channel Digital Core  
ADDRn  
SDC  
SDA  
Power-On  
Reset  
Shared Digital Core  
Always-On 10 MHz  
READ_EN_N  
EN_SMB  
ALL_DONE_N  
CAL_CLK_OUT  
CAL_CLK_IN  
Buffer  
Shared Digital Core (common to all channels)  
14  
版权 © 2016–2019, Texas Instruments Incorporated  
 
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
7.3 Feature Description  
7.3.1 Device Data Path Operation  
The DS280BR820 data path consists of several key blocks as shown in Functional Block Diagram. These key  
circuits are:  
AC-Coupled Receiver Inputs  
Signal Detect  
2-Stage CTLE  
Driver DC Gain Control  
FIR Filter (Limiting Mode)  
Configurable SMBus Address  
7.3.2 AC-Coupled Receiver Inputs  
The differential receiver for each DS280BR820 channel contains an integrated on-die 100-Ω differential  
termination as well as 220-nF ±20% series AC coupling capacitors embedded onto the package substrate.  
7.3.3 Signal Detect  
Each DS280BR820 high speed receiver has a signal detect circuit which monitors the energy level on the inputs.  
The signal detect circuit will enable the high-speed data path if a signal is detected, or power it off if no signal is  
detected. By default, this feature is enabled, but can be manually controlled though the SMBus channel registers.  
This can be useful if it is desired to manually force channels to be disabled. For information on how to manually  
operate the signal detect circuit refer to the DS280BR820 Programming Guide.  
7.3.4 2-Stage CTLE  
The continuous-time linear equalizer (CTLE) in the DS280BR820 consists of two stages which are configurable  
via the SMBus channel registers. This CTLE is designed to be highly linear to allow the DS280BR820 to  
preserve the transmitter's pre-cursor and post cursor signal characteristics. This highly linear behavior enables  
the DS280BR820 to be used in applications that use protocols such as link training, where it is important to  
recover and pass through incremental changes in transmit equalization.  
Each stage in the CTLE has 3-bit boost control. The first CTLE stage provides a coarse adjustment of the total  
boost. Larger settings correspond to higher total boost. The first stage can be bypassed entirely to achieve the  
lowest possible total boost. The second CTLE stage acts as a fine adjustment on the total boost and impacts the  
shape of the boost curve accordingly. Larger settings correspond to higher total boost. The bandwidth of the  
CTLE can be adjusted using a 2-bit bandwidth control. Larger settings correspond to higher total bandwidth. For  
information on how to program the CTLE refer to the DS280BR820 Programming Guide.  
In addition to high-frequency boost, the CTLE can apply wide-band amplitude gain. There are two settings (high-  
gain and low-gain) which work together with the driver DC gain control to affect the total input-to-output wide-  
band amplitude gain.  
7.3.5 Driver DC Gain Control  
In addition to the high-frequency boost provided by the CTLE, the DS280BR820 is also able to provide additional  
DC or low-frequency gain. The effective DC gain is controlled by a 3-bit field, allowing for eight levels of DC  
attenuation or DC gain. For information on how to configure the DC gain refer to the DS280BR820 Programming  
Guide.  
7.3.6 FIR Filter (Limiting Mode)  
The DS280BR820 has an optional limiting mode with a fixed-delay 3-tap finite impulse response (FIR) filter to  
provide transmit equalization. This FIR can be configured to apply pre-cursor and post-cursor boost to the high  
speed signal. The FIR filter also allows for main cursor amplitude control. The tap polarities in the FIR filter are  
fixed to allow for pre-cursor or post-cursor boost to be applied to the signal.  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
 
 
 
 
 
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
CTLE  
Output  
FIR filter  
output  
x
C[-1]  
x
+
+
Fixed  
Delay  
Fixed  
Delay  
C[0]  
x
C[+1]  
4. 3-Tap FIR Filter Block Diagram  
Linear mode is recommended for the majority of applications, especially those which require Link Training.  
Common protocols such as 100 GbE and 40 GbE CR4/KR4, 50 GbE and 25 GbE CR, 10 GbE KR, InfiniBand  
EDR, and others require Link Training. Linear mode is required for Link Training so that the ASIC transmitter pre-  
cursor and post-cursor coefficients can propagate through the DS280BR820 in a transparent fashion. For  
applications which do not utilize Link Training, limiting mode may be used to provide output pre-cursor and post-  
cursor equalization for the purpose of improving the far-end eye opening. If the downstream receiver SerDes  
uses a decision feedback equalizer (DFE) to equalize the signal, the linear mode may be preferable to the  
limiting mode. DFE circuits often perform best when operating on a linear signal.  
7.3.7 Configurable SMBus Address  
The DS280BR820’s SMBus slave address is strapped at power up using the ADDR[1:0] pins. The pin state is  
read on power up, after the internal power-on reset completes. The ADDR[1:0] pins are four-level LVCMOS IOs,  
which provide for 16 unique SMBus addresses. 1 lists the DS280BR820 SMBus slave address options.  
1. SMBus Address Map  
REQUIRED ADDRESS PIN STRAP VALUE  
7-BIT SLAVE ADDRESS  
8-BIT WRITE ADDRESS  
ADDR1  
ADDR0  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x30  
0x32  
0x34  
0x36  
0x38  
0x3A  
0x3C  
0x3E  
0x40  
0x42  
0x44  
0x46  
0x48  
0x4A  
0x4C  
0x4E  
0
0
0
R
F
1
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
16  
版权 © 2016–2019, Texas Instruments Incorporated  
 
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
7.4 Device Functional Modes  
7.4.1 SMBus Slave Mode Configuration  
To configure the DS280BR820 for SMBus slave mode connect the EN_SMB pin to VDD with a 1 kresistor.  
When the DS280BR820 is configured for SMBus slave mode operation the READ_EN_N becomes an active-low  
reset pin, resetting register values when driven to LOW, or VIL. Additionally, when the DS280BR820 is configured  
for SMBus slave mode the ALL_DONE_N output pin is high-Z; except for when READ_EN_N is driven LOW  
which causes ALL_DONE_N to also be driven LOW. Refer to Register Maps for additional register information.  
7.4.2 SMBus Master Mode Configuration (EEPROM Self Load)  
To configure the DS280BR820 for SMBus master mode, leave the EN_SMB pin floating (no connect). If the  
DS280BR820 is configured for SMBus master mode, it will remain in the SMBus IDLE state until the  
READ_EN_N pin is asserted to LOW. Once the READ_EN_N pin is driven LOW, the DS280BR820 becomes an  
SMBus master and attempts to self-configure by reading device settings stored in an external EEPROM (SMBus  
8-bit address 0xA0). When the DS280BR820 has finished reading from the EEPROM successfully, it will drive  
the ALL_DONE_N pin LOW and then change from an SMBus master to an SMBus slave. Not all bits in the  
register map can be configured through an EEPROM load. Refer to the Programming Guide for more  
information.  
When designing a system for using the external EEPROM, the user must follow these specific guidelines:  
Maximum EEPROM size is 8 kb (1024 x 8-bit)  
Set EN_SMB = FLOAT, configure for SMBus master mode  
The external EEPROM device address byte must be 0xA0 and capable of 400 kHz operation at 2.5-V or 3.3-  
V supply.  
Configure the ADDR[1:0] inputs to select the SMBus slave address for the DS280BR820. Once the  
DS280BR820 completes its EEPROM load the device becomes a slave on the control bus.  
EEPROM  
8-bit SMBus  
SMBus address  
address: 0xA0  
SDC  
SDA  
DS280BR820  
DS280BR820  
DS280BR820  
SDC  
SDA  
SDC  
SDA  
SDC  
SDA  
EN_SMB  
EN_SMB  
EN_SMB  
READ_EN_N  
ALL_DONE_N  
READ_EN_N  
ALL_DONE_N  
READ_EN_N  
ALL_DONE_N  
Leave final device‘s ALL_DONE_N pin  
floating or connect to a control chip to  
monitor completion of final EEPROM read.  
Tie first device‘s READ_EN_N pin low to automatically  
initiate EEPROM read at power up, or control this pin from  
a device to initiate EEPROM read manually.  
5. Example Daisy Chain for Multiple Device Single EEPROM Configuration  
When tying multiple DS280BR820 devices to the SDA and SDC bus, use these guidelines to configure the  
devices for SMBus master mode:  
Use SMBus ADDR[1:0] address bits so that each device can load its configuration from the EEPROM. The  
example below is for four devices. The first device in the sequence conventionally uses the 8-bit slave write  
address 0x30, while subsequent devices follow the address order listed below.  
DS280BR820 instance 1 (U1): ADDR[1:0] = {0, 0} = 0x30  
DS280BR820 instance 2 (U2): ADDR[1:0] = {0, R} = 0x32  
DS280BR820 instance 3 (U3): ADDR[1:0] = {0, F} = 0x34  
DS280BR820 instance 4 (U4): ADDR[1:0] = {0, 1} = 0x36  
Use a pull-up resistor on SDA and SDC; resistor value = 2 kΩ to 5 kΩ is adequate.  
Float (no connect) the EN_SMB pin (E3) on all DS280BR820 devices to configure them for SMBus master  
mode. The EN_SMB pin should not be dynamically changed between the high and float states.  
版权 © 2016–2019, Texas Instruments Incorporated  
17  
 
 
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
Daisy-chain READ_EN_N (pin F13) and ALL_DONE_N (pin D3) from one device to the next device in the  
following sequence so that they do not compete for master control of the EEPROM at the same time.  
1. Tie READ_EN_N of the first device in the chain (U1) to GND to trigger EEPROM read immediately after  
the DS280BR820 power-on reset (PoR) completes. Alternatively, drive the READ_EN_N pin from a  
control device (micro-controller or FPGA) to trigger the EEPROM read at a specific time.  
2. Tie ALL_DONE_N of U1 to READ_EN_N of U2  
3. Tie ALL_DONE_N of U2 to READ_EN_N of U3  
4. Tie ALL_DONE_N of U3 to READ_EN_N of U4  
5. Optional: Tie ALL_DONE_N output of U4 to a micro-controller or an LED to show the devices have been  
loaded successfully.  
Once the ALL_DONE_N status pin of the last device is flagged to indicate that all devices sharing the SMBus  
line have been successfully programmed, control of the SMBus line is released by the DS280BR820. The device  
then reverts back to SMBus slave mode. At this point, an external MCU can perform any additional Read or  
Write operations to the DS280BR820.  
Refer to the Programming Guide for additional information concerning SMBus master mode.  
7.5 Programming  
The DS280BR820 can be programmed in two ways. The DS280BR820 can be configured as an SMBus slave  
(EN_SMB = HIGH) or the device can temporarily act as an SMBus master and load its configuration settings  
from an external EEPROM (EN_SMB = FLOAT). Refer to SMBus Slave Mode Configuration and SMBus Master  
Mode Configuration (EEPROM Self Load) for details.  
7.5.1 Transfer of Data with the SMBus Interface  
The System Management Bus (SMBus) is a two-wire serial interface through which a master can communicate  
with various system components. Slave devices are identified by a unique device address. The two-wire serial  
interface consists of SDC and SDA signals. SDC is a clock output from the master to all of the slave devices on  
the bus. SDA is a bidirectional data signal between the master and slave devices. The DS280BR820 SMBus  
SDC and SDA signals are open drain and require external pull-up resistors.  
Start and Stop Conditions:  
The master generates Start and Stop conditions at the beginning and end of each transaction:  
Start: HIGH to LOW transition (falling edge) of SDA while SDC is HIGH.  
Stop: LOW to HIGH transition (rising edge) of SDA while SDC is HIGH.  
The master generates 9 clock pulses for each byte transfer. The 9th clock pulse constitutes the acknowledge  
(ACK) cycle. The transmitter releases SDA to allow the receiver to send the ACK signal. An ACK is when the  
device pulls SDA LOW, while a NACK (no acknowledge) is recorded if the line remains HIGH.  
Writing data from a master to a slave consists of three parts:  
The master begins with a start condition followed by the slave device address with the R/W bit cleared.  
The master sends the 8-bit register address that will be written.  
The master sends the data byte to write for the selected register address. The register address pointer will  
then increment, so the master can send the data byte for the subsequent register without re-addressing the  
device, if desired. The final data byte to write should be followed by a stop condition.  
SMBus read operations consist of four parts:  
The master initiates the read cycle with start condition followed by slave device address with the R/W bit  
cleared.  
The master sends the 8-bit register address that will be read.  
After acknowledgment from the slave, the master initiates a re-start condition.  
The slave device address is resent followed with R/W bit set.  
After acknowledgment from the slave, the data is read back from the slave to the master. The last ACK is  
HIGH if there are no more bytes to read.  
18  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
7.6 Register Maps  
Many of the registers in the DS280BR820 are divided into bit fields. This allows a single register to serve multiple  
purposes which may be unrelated. Often, configuring the DS280BR820 requires writing a bit field that makes up  
only part of a register value while leaving the remainder of the register value unchanged. The procedure for  
accomplishing this task is to read in the current value of the register to be written, modify only the desired bits in  
this value, and write the modified value back to the register. This sequence is commonly referred to as Read-  
Modify-Write. If the entire register is changed, rather than just a bit field within the register, it is not necessary to  
read in the current value of the register first.  
Most register bits can be read or written to. However, some register bits are constrained to specific interface  
instructions.  
Register bits can have the following interface constraints:  
R - Read only  
RW - Read/Write  
RWSC - Read/Write, Self-Clearing  
7.6.1 Register Types: Global, Shared, and Channel  
The DS280BR820 has 3 types of registers:  
1. Global Registers - These registers can be accessed at any time and are used to select between individual  
channel registers and shared registers, or to read back the TI ID and version information.  
2. Shared Registers - These registers are used for device-level configuration, status read back or control. Set  
register 0xFF[0] = 0 and configure 0xFF[5:4] to access the shared registers.  
3. Channel Registers – These registers are used to control and configure specific features for each individual  
channel. All channels have the same channel register set and can be configured independent of each other.  
Set register 0xFF[0] = 1 and configure register 0xFC to access the desired channel register set.  
Refer to the Programming Guide for additional information on register configuration.  
7.6.2 Global Registers: Channel Selection and ID Information  
The global registers can be accessed at any time, regardless of whether the shared or channel register set is  
selected. The DS280BR820 global registers are located at address 0xEF - 0xFF.  
2. Global Register Map  
Addr  
[HEX]  
Default  
[HEX]  
Bit  
Mode  
EEPROM  
Field  
Description  
0xEF  
0x0C  
General  
7
6
5
4
3
0
0
0
0
1
RW  
RW  
RW  
RW  
R
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DEVICE_ID_QUAD_ TI device ID (quad count). Contains 0x0C.  
CNT[3]  
2
1
0
1
0
0
R
R
R
N
N
N
DEVICE_ID_QUAD_  
CNT[2]  
DEVICE_ID_QUAD_  
CNT[1]  
DEVICE_ID_QUAD_  
CNT[0]  
版权 © 2016–2019, Texas Instruments Incorporated  
19  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Register Maps (接下页)  
2. Global Register Map (接下页)  
Addr  
[HEX]  
Default  
[HEX]  
Bit  
Mode  
EEPROM  
Field  
Description  
0xF0  
0xF1  
0xF3  
0xFC  
0xFD  
0x00  
Version Revision  
TYPE  
7
6
5
4
3
2
1
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
TI version ID. Contains 0x00.  
0
VERSION[6]  
VERSION[5]  
VERSION[4]  
VERSION[3]  
VERSION[2]  
VERSION[1]  
VERSION[0]  
Channel Control  
DEVICE_ID[7]  
DEVICE_ID[6]  
DEVICE_ID[5]  
DEVICE_ID[4]  
DEVICE_ID[3]  
DEVICE_ID[2]  
DEVICE_ID[1]  
DEVICE_ID[0]  
Channel Control  
0
0
0
0
0
0
0x40  
7
6
5
4
3
2
1
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
TI device ID. Contains 0x40.  
1
0
0
0
0
0
0
0x00  
7
6
5
4
3
2
1
0
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
CHAN_VERSION[3] TI digital channel version ID. Contains 0x00.  
CHAN_VERSION[2]  
0
CHAN_VERSION[1]  
0
CHAN_VERSION[0]  
0
SHARE_VERSION[3] TI digital share version ID. Contains 0x00.  
SHARE_VERSION[2]  
0
0
SHARE_VERSION[1]  
0
SHARE_VERSION[0]  
0x00  
0
General  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
EN_CH7  
EN_CH6  
EN_CH5  
EN_CH4  
EN_CH3  
EN_CH2  
EN_CH1  
EN_CH0  
Select channel 7  
Select channel 6  
Select channel 5  
Select channel 4  
Select channel 3  
Select channel 2  
Select channel 1  
Select channel 0  
0
0
0
0
0
0
0
0x00  
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
20  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
Register Maps (接下页)  
2. Global Register Map (接下页)  
Addr  
[HEX]  
Default  
[HEX]  
Bit  
Mode  
EEPROM  
Field  
Description  
0xFE  
0x03  
Vendor ID  
7
6
5
4
3
2
1
0
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
VENDOR_ID[7]  
VENDOR_ID[6]  
VENDOR_ID[5]  
VENDOR_ID[4]  
VENDOR_ID[3]  
VENDOR_ID[2]  
VENDOR_ID[1]  
VENDOR_ID[0]  
Channel Control  
RESERVED  
TI vendor ID. Contains 0x03.  
0
0
0
0
1
1
0xFF  
0x10  
0
7
6
5
4
3
2
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
RESERVED  
0
RESERVED  
RESERVED  
0
EN_SHARE_Q1  
EN_SHARE_Q0  
RESERVED  
Select shared registers for Quad 1 (Channels 4-7).  
Select shared registers for Quad 0 (Channels 0-3).  
RESERVED  
1
0
0
RESERVED  
RESERVED  
0
WRITE_ALL_CH  
Allows customer to write to all channels as if they are the same, but only  
allows to read back from the channel specified in 0xFC and 0xFD.  
Note: EN_CH_SMB must be = 1 or else this function is invalid.  
1: Enables SMBus access to the channels specified in register 0xFC.  
0: The shared registers are selected, see 0xFF[5:4].  
0
0
RW  
N
EN_CH_SMB  
版权 © 2016–2019, Texas Instruments Incorporated  
21  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
7.6.3 Shared Registers  
3. Shared Register Map  
Addr  
[HEX]  
Default  
[HEX]  
Bit  
Mode  
EEPROM  
Field  
General  
Description  
0x00  
0x0C  
I2C_ADDR[3]  
I2C_ADDR[2]  
I2C_ADDR[1]  
I2C_ADDR[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Version Revision  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Channel Control  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Channel Control  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
General  
I2C strap observation. The device 7-bit slave address is 0x18 +  
I2C_ADDR[3:0].  
7
6
5
4
3
2
1
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0x01  
0x02  
0x03  
0x04  
0x00  
7
6
5
4
3
2
1
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0x00  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0x00  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0x01  
0
7
6
RW  
N
N
RESERVED  
RST_I2C_REGS  
RESERVED  
0
RWSC  
1: Reset shared registers, bit is self-clearing.  
0: Normal operation  
RST_I2C_MAS  
1: Self-clearing reset for I2C master.  
0: Normal operation  
5
4
0
0
RWSC  
RW  
N
N
FRC_EEPRM_RD  
1: Override EN_SMB and input chain status to force EEPROM  
Configuration.  
0: Normal operation  
RESERVED  
3
2
1
0
0
0
0
1
RW  
RW  
RW  
RW  
N
N
N
N
RESERVED  
REGS_CLOCK_EN RESERVED  
I2C_MAS_CLK_EN  
RESERVED  
I2CSLV_CLK_EN  
RESERVED  
22  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
Addr  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
3. Shared Register Map (接下页)  
Default  
[HEX]  
[HEX]  
Bit  
Mode  
EEPROM  
Field  
Description  
0x05  
0x00  
General  
7
0
RW  
N
DISAB_EEPRM_CFG 1: Disable Master Mode EEPROM Configuration (If not started, not  
effective midway or after configuration).  
0: Normal operation  
6
5
0
0
RW  
RW  
N
N
CRC_EN  
RESERVED  
RESERVED  
ML_TEST  
_CONTROL  
4
0
R
N
EEPROM_READING Sets 1 when EEPROM reading is done.  
_DONE  
3
2
0
0
R
R
N
Y
RESERVED  
CAL_CLK_INV_DIS 1: Disable the inversion of CAL_CLK_OUT.  
0: Normal operation, CAL_CLK_OUT is inverted with respect to  
RESERVED  
CAL_CLK_IN.  
RESERVED  
RESERVED  
1
0
0
0
R
R
N
N
RESERVED  
TEST0_AS_CAL  
_CLK  
0x06  
0x00  
General  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
General  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0x07  
0x00  
0
7
6
RW  
R
N
N
RESERVED  
CAL_CLK_DET  
RESERVED  
0
1: Indicates that CAL_CLK has been detected.  
0: Indicates that CAL_CLK has not been detected.  
RESERVED  
5
4
3
0
0
0
RW  
RW  
RW  
N
N
N
RESERVED  
RESERVED  
RESERVED  
MR_CAL_CLK_DET 1: Disable CAL_CLK detect.  
_DIS  
0: Enable CAL_CLK detect.  
2
1
0
0
0
0
RW  
RW  
RW  
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DIS_CAL_CLK_OUT 1: Disable CAL_CLK_OUT, output is high-Z.  
0: Enable CAL_CLK_OUT.  
0x08  
0x00  
General  
7
6
5
4
3
2
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
General  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0x09  
0x00  
0
7
6
5
4
3
R
R
R
R
R
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
版权 © 2016–2019, Texas Instruments Incorporated  
23  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
3. Shared Register Map (接下页)  
Addr  
[HEX]  
Default  
[HEX]  
Bit  
2
Mode  
EEPROM  
Field  
Description  
RESERVED  
RESERVED  
RESERVED  
0
R
R
R
N
N
N
RESERVED  
RESERVED  
RESERVED  
General  
1
0
0
0
0x0A  
0x00  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
R
0x0B  
0x00  
0
7
6
R
R
N
N
EECFG_CMPLT  
EECFG_FAIL  
11: Not valid  
10: EEPROM load completed successfully.  
01: EEPROM load failed after 64 attempts.  
00: EEPROM load in progress.  
0
5
4
3
2
1
0
0
R
R
R
R
R
R
N
N
N
N
N
N
EECFG_ATMPT[5]  
EECFG_ATMPT[4]  
EECFG_ATMPT[3]  
EECFG_ATMPT[2]  
EECFG_ATMPT[1]  
EECFG_ATMPT[0]  
Indicates number of attempts made to load EEPROM image.  
0
0
0
0
0
0x0C  
0x91  
1
I2C_FAST  
1: EEPROM load uses Fast I2C Mode (400 kHz).  
0: EEPROM load uses Standard I2C Mode (100 kHz).  
7
RW  
N
I2C_SDA_HOLD[2]  
I2C_ SDA_HOLD[1]  
I2C_ SDA_HOLD[0]  
6
5
4
3
2
1
0
0
0
1
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
Internal SDA Hold Time  
This field configures the amount of internal hold time provided for the SDA  
input relative to the SDC input. Units are 100 ns.  
I2C_FLTR_DEPTH[3] I2C Glitch Filter Depth  
This field configures the maximum width of glitch pulses on the SDC and  
SDA inputs that will be rejected. Units are 100 ns.  
I2C_FLTR_DEPTH[2]  
I2C_FLTR_DEPTH[1]  
I2C_FLTR_DEPTH[0]  
24  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
7.6.4 Channel Registers  
4. Channel Register Map  
Addr  
[HEX]  
Default  
[HEX]  
Bit  
Mode  
EEPROM  
Field  
Description  
0x00  
0x00  
General  
7
0
RW  
N
CLK_CORE_DISAB 1: Disables 10 M core clock. This is the main clock domain for all the state  
machines.  
0: Normal operation  
6
0
RW  
N
CLK_REGS_EN  
1: Force enable the clock to the registers. Normally, the register clock is  
enabled automatically on a needed basis.  
0: Normal operation  
5
4
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
CLK_REF_DISAB  
1: Disables the 25 MHz CAL_CLK domain.  
0: Normal operation  
3
2
0
0
RW  
N
N
RST_CORE  
RST_REGS  
1: Reset the 10 M core clock domain. This is the main clock domain for all  
the state machines.  
0: Normal operation  
RWSC  
1: Reset channel registers to power-up defaults.  
0: Normal operation  
1
0
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
RST_CAL_CLK  
1: Resets the 25 MHz reference clock domain.  
0: Normal operation  
0x01  
0x00  
SIG_DET  
7
0
R
N
SIGDET  
Signal detect status.  
1: Signal detected at RX inputs.  
0: No signal detected at RX inputs.  
6
5
4
3
2
1
0
0
R
R
R
R
R
R
R
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0x02  
0x00  
7
6
5
4
3
2
1
0
0
R
R
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CTLE_BOOST  
EQ_BW[1]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
R
0
R
0
RW  
RW  
RW  
RW  
0
0
0
0x03  
0x80  
1
7
6
RW  
RW  
Y
Y
EQ stage one buffer current (strength) control. Impacts EQ bandwidth.  
2'b11 yields highest bandwidth, 2'b00 yields lowest bandwidth. Refer to the  
Programming Guide for more information.  
0
EQ_BW[0]  
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
EQ_BST2[2]  
EQ_BST2[1]  
EQ_BST2[0]  
EQ_BST1[2]  
EQ_BST1[1]  
EQ_BST1[0]  
EQ boost stage 2 controls. Directly goes to analog. No override bit is  
needed. Refer to the Programming Guide for more information.  
0
0
0
EQ boost stage 1 controls. Directly goes to analog. No override bit is  
needed. Refer to the Programming Guide for more information.  
0
0
0x04  
0x90  
1
7
6
RW  
RW  
N
N
RESERVED  
EQ_PD_SD  
RESERVED  
0
1: Power down signal detect  
0: Normal operation  
版权 © 2016–2019, Texas Instruments Incorporated  
25  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
4. Channel Register Map (接下页)  
Addr  
[HEX]  
Default  
[HEX]  
Bit  
Mode  
EEPROM  
Field  
Description  
5
0
RW  
Y
EQ_HIGH_GAIN  
1: Enable EQ high gain  
0: Enable EQ low gain  
RESERVED  
4
3
1
0
RW  
RW  
Y
Y
EQ_EN_DC_OFF  
EQ_PD_EQ  
1: Power down EQ  
0: Enable EQ  
2
1
0
0
0
0
RW  
RW  
RW  
N
Y
Y
RESERVED  
RESERVED  
BG_SEL_IPP100[2] CTLE bias programming. BG_SEL_IPP100[1:0] is in Reg_0x0F[5:4].  
EQ_EN_BYPASS  
1: Enable EQ boost stage 1 (BST1) bypass  
0: Normal operation, signal travels through boost stage 1 (BST1)  
0x05  
0x04  
SIG_DET_CONFIG  
EQ_SD_PRESET  
7
6
0
RW  
RW  
Y
Y
1: Force signal detect result to 1  
0: Normal operation  
This bit should not be set if 0x05[6] is also set.  
1: Force signal detect result to 0  
0: Normal operation  
0
EQ_SD_RESET  
This bit should not be set if 0x05[7] is also set.  
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
N
N
EQ_REFA_SEL[1]  
EQ_REFA_SEL[0]  
EQ_REFD_SEL[1]  
EQ_REFD_SEL[0]  
RESERVED  
Signal detect assert thresholds. Refer to the Programming Guide for more  
information.  
0
0
Signal detect de-assert thresholds. Refer to the Programming Guide for  
more information.  
1
0
RESERVED  
RESERVED  
0
RESERVED  
0x06  
0xC0  
7
6
5
1
1
0
RW  
RW  
RW  
Y
Y
Y
DRV_SEL_VOD[1]  
DRV_SEL_VOD[0]  
DRV_EQ_PD_OV  
Driver VOD adjust (DC gain), applicable to both linear and FIR limiting  
mode. Refer to the Programming Guide for more information.  
1: Driver and equalizer power down manually with Reg_0x06[3] and  
Reg_0x04[3], respectively.  
0: Driver and equalizer are powered down or up by default when LOS=1/0.  
Driver mute override:  
4
0
RW  
Y
DRV_SEL_MUTE  
_OV  
1: Use register 0x06[1] for mute control.  
0: Normal operation. Mute is automatically controlled by signal detect.  
1: Power down the driver.  
3
2
1
0
0
0
0
0
RW  
RW  
RW  
RW  
Y
Y
Y
Y
DRV_PD  
0: Normal operation, driver power on or off is controlled by signal detect.  
DRV_PD_CM_LOOP 1: Disable the driver’s common mode loop control circuit.  
0: Normal operation, common mode loop enabled.  
DRV_SEL_MUTE  
1: Mute driver if override bit is enabled.  
0: Normal operation  
DRV_SEL_FIR  
Linear versus Limiting Mode select. Refer to the Programming Guide for  
more information.  
1: Enable Limiting FIR mode.  
0: Enable Linear mode (disable limiting FIR).  
0x07  
0x20  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
1
0
0
0
0
0
0x08  
0x54  
0
7
RW  
Y
RESERVED  
RESERVED  
26  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
Addr  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
4. Channel Register Map (接下页)  
Default  
[HEX]  
[HEX]  
0x09  
0x0A  
Bit  
Mode  
RW  
EEPROM  
Field  
Description  
RESERVED  
RESERVED  
RESERVED  
6
1
0
1
0
Y
Y
Y
Y
RESERVED  
5
RW  
RESERVED  
4
RW  
RESERVED  
3
RW  
BG_SEL_IPTAT25  
1: Increases the current to the CTLE by 5%.  
0: Default  
2
1
0
1
RW  
RW  
RW  
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0x00  
7
6
5
4
3
2
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0x30  
0
7
6
5
4
RW  
RW  
RW  
RW  
N
Y
Y
Y
RESERVED  
RESERVED  
SD_REF_HIGH  
SD_GAIN  
RESERVED  
RESERVED  
0
1
Signal detect threshold controls:  
11: Normal operation  
10: Signal detect assert or de-assert thresholds reduced.  
01: Signal detect assert or de-assert thresholds reduced.  
00: Signal detect assert or de-assert thresholds reduced.  
1
3
2
1
0
0
RW  
RW  
RW  
RW  
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0x0B  
0x0C  
0x0D  
0x1A  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
N
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
FIR_MAIN[4]  
FIR_MAIN[3]  
FIR_MAIN[2]  
FIR_MAIN[1]  
FIR_MAIN[0]  
RESERVED  
RESERVED  
RESERVED  
0
0
1
FIR Limiting mode main-cursor control. Refer to the Programming Guide for  
more information.  
1
0
1
0
0x40  
7
6
5
4
3
2
1
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
N
N
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FIR_PST[3]  
FIR_PST[2]  
FIR_PST[1]  
FIR_PST[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
FIR Limiting mode post-cursor control. There is no sign bit for the post-  
cursor. The post-cursor always provides a high-pass filter effect. Refer to  
the Programming Guide for more information.  
0
0
0
0x40  
0
7
6
5
4
RW  
RW  
RW  
RW  
N
Y
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1
0
0
版权 © 2016–2019, Texas Instruments Incorporated  
27  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
4. Channel Register Map (接下页)  
Addr  
[HEX]  
Default  
[HEX]  
Bit  
3
Mode  
RW  
EEPROM  
Field  
Description  
0
Y
Y
Y
Y
FIR_PRE[3]  
FIR_PRE[2]  
FIR_PRE[1]  
FIR_PRE[0]  
FIR Limiting mode pre-cursor control. There is no sign bit for the pre-  
cursor. The pre-cursor always provides a high-pass filter effect. Refer to the  
Programming Guide for more information.  
2
0
RW  
1
0
RW  
0
0
RW  
0x0E  
0x00  
7
6
5
4
3
2
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0x0F  
0x00  
0
7
6
5
4
RW  
RW  
RW  
RW  
N
N
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
BG_SEL_IPP100[1] CTLE bias programming. BG_SEL_IPP100[2] is in Reg_0x04[1].  
000: 0% additional current (Default)  
001: 5% additional current  
0
BG_SEL_IPP100[0]  
010: 10% additional current  
011: 15% additional current  
100: 20% additional current  
101: 25% additional current  
110: 30% additional current  
111: 35% additional current  
3
2
0
0
RW  
RW  
Y
Y
BG_SEL_IPH200  
_v1[1]  
Program pre-driver bias current:  
00: 0% additional current (Default)  
01: 12.5% additional current  
10: 25% additional current  
BG_SEL_IPH200  
_v1[0]  
11: 37.5% additional current  
1
0
0
0
RW  
RW  
Y
Y
BG_SEL_IPH200  
_v0[1]  
Program driver bias current:  
00: 0% additional current (Default)  
01: 12.5% additional current  
10: 25% additional current  
BG_SEL_IPH200  
_v0[0]  
11: 37.5% additional current  
28  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS280BR820 is a high-speed linear repeater which extends the reach of differential channels impaired by  
loss from transmission media like PCBs and cables. It can be deployed in a variety of different systems. The  
following sections outline typical applications and their associated design considerations.  
8.2 Typical Applications  
The DS280BR820 is typically used in three main application scenarios:  
1. Backplane and mid-plane reach extension  
2. Front-port eye opening for copper and optical applications  
Line Card  
Switch Fabric Card  
25 G / 28 G-LR  
25 G / 28 G-VSR  
DS280BR820  
Optical  
x8  
x8  
X8 25 G  
/ 28 G-LR  
DS280BR820  
CFP/SFP28/QSFP28  
ASIC  
ASIC  
FPGA  
FPGA  
25 G / 28 G-LR  
25 G / 28 G-VSR  
X8 25 G  
/ 28 G-LR  
DS280BR820  
Passive Copper  
Cable  
x8  
x8  
DS280BR820  
CFP/SFP28/QSFP28  
Backplane /  
Midplane  
6. Typical Application Diagram  
TI recommends to AC couple the DS280BR820's high-speed outputs. In some cases,  
ASIC or FPGA SerDes receivers support DC coupling, and it may be desirable to DC  
couple the DS280BR820 output with the ASIC/FPGA RX input to reduce the PCB area  
which would normally be consumed by AC coupling capacitors. To DC couple the  
DS280BR820 output with an ASIC RX input, the ASIC RX must support DC coupling and  
it must support an input common mode voltage of 1.05 V. To determine if the ASIC RX  
supports DC coupling, here are some items to consider based on 7:  
1. The ASIC RX must be AC coupled on-chip.  
2. The ASIC RX should not force a DC bias on the RX pins.  
3. System designers should ensure that when the PCB powers on, the power supply  
rails are appropriately sequenced to prevent the DS280BR820's output common mode  
voltage from forward-biasing the ESD structure of the ASIC or violating the absolute  
maximum input voltage specifications of the ASIC.  
版权 © 2016–2019, Texas Instruments Incorporated  
29  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
ASIC or FPGA RX  
(3)  
VCC  
Termination  
/ Bias  
(2)  
DS280BR820  
RX  
Rx Pins  
(1)  
VSS  
7. Considerations for DC Coupling to ASIC RX  
8.2.1 Backplane and Mid-Plane Reach Extension  
The DS280BR820 has strong equalization capabilities that allow it to equalize insertion loss and extend the  
reach of backplane channels by 17-22 dB beyond the normal capabilities of the ASICs operating over the  
channel. The DS280BR820 is designed to apply gain in a linear fashion. In most cases, the DS280BR820 should  
be placed with the higher loss channel segment at the input and the lower loss channel segment at the output;  
however, since the DS280BR820 operates in a linear fashion, it can also be used in applications where the lower  
loss channel segment is at the input and the higher loss channel segment is at the output. Refer to 8.  
Passive Backplane/  
Midplane  
Line Card  
Switch Fabric Card  
x8 25 G / 28 G  
ASIC  
ASIC  
FPGA  
FPGA  
x8 25 G / 28 G  
Passive Backplane/  
Midplane  
Line Card  
Switch Fabric Card  
x8 25 G / 28 G  
ASIC  
ASIC  
FPGA  
FPGA  
x8 25 G / 28 G  
8. Typical Backplane and Mid-Plane Application Diagram  
30  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
Typical Applications (接下页)  
Repeater  
AC coupling implemented close to or inside ASIC RX  
No AC coupling capacitors needed  
RX0P  
RX0N  
TX0P  
TX0N  
RX1P  
TX1P  
TX1N  
RX1N  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
RX6P  
RX6N  
TX6P  
TX6N  
RX7P  
RX7N  
TX7P  
TX7N  
VDD  
SMBus  
Slave mode  
1 kΩ  
EN_SMB  
SDA  
SDC  
To system  
SMBus(1)  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
SMBus Slave  
mode  
Float for SMBus  
Slave mode  
READ_EN_N  
ALL_DONE_N  
2.5 V  
GND  
VDD  
Minimum  
recommended  
decoupling  
0.1 F  
(4x)  
1 F  
(2x)  
Backplane / Mid-  
plane Connector  
ASIC / FPGA  
Repeater  
AC coupling implemented  
close to or inside ASIC RX  
No AC coupling  
capacitors needed  
RX0P  
RX0N  
RX1P  
TX0P  
TX0N  
TX1P  
TX1N  
RX1N  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
RX6P  
RX6N  
TX6P  
TX6N  
RX7P  
RX7N  
TX7P  
TX7N  
VDD  
SMBus  
Slave mode  
1 kΩ  
EN_SMB  
SDA  
SDC  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
SMBus Slave  
mode  
READ_EN_N  
ALL_DONE_N  
2.5 V  
GND  
VDD  
Minimum  
recommended  
decoupling  
0.1 F  
(4x)  
1 F  
(2x)  
(1) SMBus signals need to be pulled up elsewhere in the system.  
9. Typical Backplane and Mid-Plane Schematic  
版权 © 2016–2019, Texas Instruments Incorporated  
31  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.1 Design Requirements  
For backplane and mid-plane reach extension application use the guidelines in the table below.  
DESIGN PARAMETER  
REQUIREMENT  
AC Coupling Capacitors  
Generally not required. 220-nF AC coupling capacitors are included  
in the DS280BR820 package on the RX side.  
Input Channel Insertion Loss  
10 dB at 14 GHz as a rough guideline. For best performance, the  
input channel insertion loss should be greater than or equal to the  
equalizer boost setting used in the DS280BR820.  
Output Channel Insertion Loss  
Depends on downstream ASIC or FPGA SerDes capabilities. Should  
be 5 dB at 14 GHz as a rough guideline.  
Total (Input + Output) Channel Insertion Loss  
Depends on downstream ASIC or FPGA SerDes capabilities. The  
DS280BR820 can extend the reach between two ASICs by 17 to 22  
dB beyond the ASICs' normal capabilities.  
Link Partner TX Launch Amplitude  
Link Partner TX FIR Filter  
800 mVPP to 1200 mVPP differential.  
Depends on the channel loss.  
8.2.1.2 Detailed Design Procedure  
The design procedure for backplane and mid-plane applications is as follows:  
1. Determine the total number of channels on the board which require a DS280BR820 for signal conditioning.  
This will dictate the total number of DS280BR820 devices required. It is generally recommended that  
channels with similar total insertion loss on the board be grouped together in the same DS280BR820 device.  
This will simplify the device settings, as similar loss channels generally utilize similar settings.  
2. Determine the maximum current draw required for all DS280BR820 devices. This may impact the selection  
of the regulator for the 2.5-V supply rail. To calculate the maximum current draw, multiply the maximum  
power supply current by the total number of DS280BR820 devices.  
3. Determine the SMBus address scheme needed to uniquely address each DS280BR820 device on the board,  
depending on the total number of devices identified in step 1. Each DS280BR820 can be strapped with one  
of 16 unique SMBus addresses. If there are more DS280BR820 devices on the board than the number of  
unique SMBus addresses which can be assigned, then use an I2C expander like the TCA/PCA family of  
I2C/SMBus switches and multiplexers to split the SMBus into multiple busses.  
4. Determine if the device will be configured from EEPROM (SMBus master mode) or from the system SMBus  
(SMBus slave mode).  
a. If SMBus master mode will be used, provisions should be made for an EEPROM on the board with 8-bit  
SMBus address 0xA0.  
b. If SMBus slave mode will be used for all device configurations, an EEPROM is not needed.  
5. Make provisions in the schematic and layout for standard decoupling capacitors between the device VDD  
supply and GND. Refer to Power Supply Recommendations for more information.  
6. If there is a need to potentially upgrade to a pin-compatible TI Retimer device, then make provisions in the  
schematic and layout for a 25-MHz (±100 ppm) single-ended CMOS clock. Each DS280BR820 buffers the  
clock on the CAL_CLK_IN pin and presents the buffered clock on the CAL_CLK_OUT pin. This allows  
multiple (up to 20) DS280BR820 calibration clocks to be daisy chained to avoid the need for multiple  
oscillators on the board. If the oscillator used on the board has a 2.5 V CMOS output, then no AC coupling  
capacitor or resistor ladder is required at the input to CAL_CLK_IN. No AC coupling or resistor ladder is  
needed between one DS280BR820 CAL_CLK_OUT output and the next DS280BR820’s CAL_CLK_IN input.  
The final DS280BR820’s CAL_CLK_OUT output can be left floating. A 25 MHz clock is not required for the  
DS280BR820, but it is good practice to provision for it in case there is a future plan to upgrade to a pin-  
compatible TI Retimer device.  
7. If there is a need to potentially upgrade to a pin-compatible TI Retimer device, then connect the INT_N pin to  
an FPGA or CPU for interrupt monitoring. Note that multiple INT_N outputs can be connected together. The  
common INT_N net should be pulled high to 2.5 V or 3.3 V. The INT_N pin on the DS280BR820 does not  
perform the interrupt functionality that the equivalent pin on the pin-compatible Retimer device does;  
however, it is good practice to provision for this in case there is a future plan to upgrade to a pin-compatible  
TI Retimer device.  
32  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
8.2.2 Front-Port Applications  
The DS280BR820 has strong equalization capabilities that allow it to equalize insertion loss and extend the  
reach of front-port channels by 17 dB beyond the normal capabilities of the ASIC while support CAUI-4 and CR4  
electrical requirements. The DS280BR820 is designed to apply gain in a linear fashion in order to support longer  
distances between the switch ASIC and the front-port module. A single DS280BR820 can be used to support all  
eight egress channels or all eight ingress channels for two 100 GbE ports. 10 illustrates this configuration.  
Line Card or Top-of-Rack Switch  
Egress signal  
conditioning  
x8 25 G SR/MR/LR  
DS280BR820  
VSR  
DS280BR820  
Optical or Copper  
x8 25 G SR/MR/LR  
Ingress signal conditioning  
(optional in some systems)  
CFP/SFP28/QSFP28  
Mezzanine  
ASIC  
FPGA  
DS280BR820  
Optical or Copper  
x8 25 G SR/MR/LR  
DS280BR820  
Ingress signal conditioning  
(optional in some systems)  
CFP/SFP28/QSFP28  
10. Typical Front-Port Application Diagram  
Standard front-port modules have AC coupling capacitors included inside the module. The DS280BR820,  
therefore, is ideal for front-port Egress signal conditioning applications since it includes AC coupling capacitors  
on the input (RX) side and does not include AC coupling capacitors on the output (TX) side.  
Egress signal  
conditioning  
x8 25G SR/MR/LR  
VSR  
DS280BR820  
QSFP,  
SFP, etc.  
ASIC or  
FPGA  
11. DS280BR820 Recommended for Front-port Egress  
The optimum solution for front-port Ingress signal conditioning applications depends on whether the ASIC RX  
supports DC coupling and whether it can support an input common mode voltage of 1.05 V. For further guidance  
on determining if the ASIC RX supports DC coupling, refer to 7. If the ASIC RX supports DC coupling and can  
tolerate an input common mode voltage of 1.05 V or less, then the DS280BR820 is the optimum solution for  
front-port Ingress signal conditioning. If the ASIC RX does not support DC coupling or cannot tolerate an input  
common mode voltage of 1.05 V, then the pin-compatible DS280BR810 may be the optimum solution.  
版权 © 2016–2019, Texas Instruments Incorporated  
33  
 
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
ASIC or FPGA  
SerDes RX supports  
DC coupling and  
tolerates DC input  
common mode  
QSFP,  
SFP, etc.  
DS280BR820  
G1.05V  
x8 25G SR/MR/LR  
Ingress signal  
conditioning  
12. DS280BR820 Recommended for Front-port Ingress  
QSFP,  
SFP, etc.  
ASIC or FPGA  
SerDes RX does not  
DS280BR810  
support DC  
x8 25G SR/MR/LR  
Ingress signal  
conditioning  
coupling or  
requires DC input  
common mode  
<<1.05V  
QSFP,  
SFP, etc.  
DS280BR820  
x8 25G SR/MR/LR  
13. DS280BR820 or DS280BR810 Recommended for Front-port Ingress  
34  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
Egress Repeater  
AC coupling implemented close to or inside ASIC RX  
No AC coupling capacitors needed  
RX0P  
RX0N  
TX0P  
TX0N  
RX1P  
RX1N  
TX1P  
TX1N  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
RX6P  
RX6N  
TX6P  
TX6N  
RX7P  
RX7N  
TX7P  
TX7N  
VDD  
SMBus  
Slave mode  
1 kΩ  
EN_SMB  
SDA  
SDC  
To system  
SMBus(1)  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
SMBus Slave  
mode  
Float for SMBus  
Slave mode  
READ_EN_N  
ALL_DONE_N  
2.5 V  
GND  
VDD  
Minimum  
recommended  
decoupling  
0.1 F  
(4x)  
1 F  
(2x)  
Two 100 G ports  
(e.g. 2x1 stacked  
QSFP28)  
Switch ASIC  
Ingress Repeater  
AC coupling implemented  
close to or inside ASIC RX  
No AC coupling  
capacitors needed  
RX0P  
RX0N  
RX1P  
TX0P  
TX0N  
TX1P  
TX1N  
RX1N  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
RX6P  
RX6N  
TX6P  
TX6N  
RX7P  
RX7N  
TX7P  
TX7N  
VDD  
SMBus  
Slave mode  
1 kΩ  
EN_SMB  
SDA  
SDC  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
SMBus Slave  
mode  
READ_EN_N  
ALL_DONE_N  
2.5 V  
GND  
VDD  
Minimum  
recommended  
decoupling  
0.1 F  
(4x)  
1 F  
(2x)  
(1) SMBus signals need to be pulled up elsewhere in the system.  
14. Typical Front-port Schematic  
版权 © 2016–2019, Texas Instruments Incorporated  
35  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
8.2.2.1 Design Requirements  
This section lists some critical areas for high speed printed circuit board design consideration and study.  
DESIGN PARAMETER  
REQUIREMENT  
AC Coupling Capacitors  
Generally not required. 220 nF AC coupling capacitors are included  
in the DS280BR820 package on the RX side.  
Input Channel Insertion Loss  
Output Channel Insertion Loss  
10 dB at 14 GHz as a rough guideline. For best performance, the  
input channel insertion loss should be greater than or equal to the  
equalizer boost setting used in the Repeater.  
For best performance in egress applications, place the Repeater  
close to the front-port cage.  
For best performance in ingress applications, place the Repeater  
with 5 dB loss at 14 GHz between the output and the downstream  
ASIC.  
Switch ASIC TX Launch Amplitude  
600 mVppd to 1000 mVppd  
8.2.2.2 Detailed Design Procedure  
The design procedure for front-port applications is as follows:  
1. Determine the total number of channels on the board which require a DS280BR820 for signal conditioning.  
This will dictate the total number of DS280BR820 devices required for the board. It is generally  
recommended that channels belonging to the same QSFP port be grouped together in the same  
DS280BR820 device. This will simplify the device settings, as similar loss channels generally utilize similar  
settings.  
2. Determine the maximum current draw required for all DS280BR820 devices. This may impact the selection  
of the regulator for the 2.5 V supply rail. To calculate the maximum current draw, multiply the maximum  
power supply current by the total number of DS280BR820 devices.  
3. Determine the SMBus address scheme needed to uniquely address each DS280BR820 device on the board,  
depending on the total number of devices identified in step 1. Each DS280BR820 can be strapped with one  
of 16 unique SMBus addresses. If there are more DS280BR820 devices on the board than the number of  
unique SMBus addresses which can be assigned, then use an I2C expander like the TCA/PCA family of  
I2C/SMBus switches and multiplexers to split the SMBus into multiple busses.  
4. Determine if the device will be configured from EEPROM (SMBus master mode) or from the system I2C bus  
(SMBus slave mode).  
1. If SMBus master mode will be used, provisions should be made for an EEPROM on the board with 8-bit  
SMBus address 0xA0.  
2. If SMBus slave mode will be used for all device configurations, an EEPROM is not needed.  
5. Make provisions in the schematic and layout for standard decoupling capacitors between the device VDD  
supply and GND. Refer to Power Supply Recommendations for more information.  
36  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
8.2.3 Application Curves  
8.2.3.1 Pattern Generator Characteristics  
All of the example application results in the sections which follow were tested using a pattern generator with the  
following characteristics.  
Pattern  
Generator  
VOD = 0.8 V-pp,  
DE = 0 dB,  
PRBS9  
Sampling Scope  
BW = 35 GHz,  
Built-in CDR and  
Precision  
Keysight 11742A  
DC block  
Transmission Line  
Timebase  
15. Pattern Generator Test Setup  
16. Pattern Generator Output at 25.78125 Gbps, 800  
17. Pattern Generator Output at 10.31250 Gbps, 800  
mVppd, PRBS9  
mVppd, PRBS9  
5. Pattern Generator Characteristics  
25.78125 Gbps  
10.3125 Gbps  
~800 mVppd  
Differential peak-to-peak voltage (VOD)  
~800 mVppd  
Channel loss between Pattern Generator and  
Scope  
2 dB @ 12.9 GHz  
1 dB @ 5.2 GHz  
Total Jitter @ 1E-15  
8.0 psP-P  
13.4 psP-P  
596 mVP-P  
Differential Eye Height @ 1E-15  
448 mVP-P  
8.2.3.2 Equalizing Moderate Pre-Channel Loss  
This example application result demonstrates the DS280BR820 equalizing for pre-channel insertion loss  
introduced by an FR4 channel.  
Sampling Scope  
Pattern Generator  
VOD = 0.8 V-pp,  
DE = 0 dB, PRBS9  
DS280  
EVM  
Keysight 11742A  
DC block  
BW = 35 GHz,  
Built-in CDR and  
Precision Timebase  
Transmission Line  
IN  
OUT  
18. 5 in input Channel and Minimal Output Channel Test Setup  
版权 © 2016–2019, Texas Instruments Incorporated  
37  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
19. 25.78125 Gbps CAUI-4 Eye Mask with 5 in Input  
20. 10.3125 Gbps nPPI Eye Mask with 5 in Input  
Channel and Minimal Output Channel  
Channel and Minimal Output Channel  
6. Settings and Measurements for CAUI-4 and nPPI with 5 in Input Channel and Minimal Output  
Channel  
25.78125 Gbps (CAUI-4)  
10.3125 Gbps (nPPI)  
Transmission Line 1  
DS280BR820 Rx Channel Loss  
DS280BR820 Tx Channel Loss  
EQ BST1  
5 in 5 mil FR4 + 8 in SMA cable  
5 in 5 mil FR4 + 8 in SMA cable  
14 dB @ 12.9 GHz  
6 dB @ 5.2 GHz  
4.5 dB @ 12.9 GHz  
2 dB @ 5.2 GHz  
3
3
EQ BST2  
0
0
EQ BW  
3
3
VOD  
3
Low  
2
Low  
EQ DC Gain Mode  
Total Jitter @ 1E-15  
Differential Eye Height @ 1E-15  
Mask violations  
11.9 psP-P  
338 mVP-P  
0
13.0 psP-P  
544 mVP-P  
0
8.2.3.3 Equalizing High Pre-Channel Loss  
This example application result demonstrates the DS280BR820 equalizing for pre-channel insertion loss  
introduced by an FR4 channel.  
Sampling Scope  
Pattern Generator  
VOD = 0.8 V-pp,  
DE = 0 dB, PRBS9  
DS280  
EVM  
Keysight 11742A  
DC block  
BW = 35 GHz,  
Built-in CDR and  
Precision Timebase  
Transmission Line  
IN  
OUT  
21. 10 in Input Channel and Minimal Output Channel Test Setup  
38  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
22. 25.78125 Gbps CAUI-4 Eye Mask with 10 in Input  
Channel and Minimal Output Channel  
23. 10.1325 Gbps nPPI Eye Mask with 10 in Input  
Channel and Minimal Output Channel  
7. Settings and Measurements for CAUI-4 and nPPI with 10 in Input Channel and Minimal Output  
Channel  
25.78125 Gbps (CAUI-4)  
10.3125 Gbps (nPPI)  
Transmission Line 1  
DS280BR820 Rx Channel Loss  
DS280BR820 Tx Channel Loss  
EQ BST1  
10 in 5 mil FR4 + 8 in SMA cable  
10 in 5 mil FR4 + 8 in SMA cable  
22 dB @ 12.9 GHz  
10 dB @ 5.2 GHz  
4.5 dB @ 12.9 GHz  
2 dB @ 5.2 GHz  
6
6
EQ BST2  
1
1
EQ BW  
3
3
VOD  
3
Low  
2
Low  
EQ DC Gain Mode  
Total Jitter @ 1E-15  
Differential Eye Height @ 1E-15  
Mask violations  
11.3 psP-P  
210 mVP-P  
0
13.5 psP-P  
532 mVP-P  
0
8.2.3.4 Equalizing High Pre-Channel Loss and Moderate Post-Channel Loss  
This example application result demonstrates the DS280BR820 equalizing for pre-channel and post-channel  
insertion loss introduced by FR4 channels.  
Sampling Scope  
Pattern Generator  
VOD = 0.8 V-pp,  
DE = 0 dB, PRBS9  
DS280  
EVM  
Keysight 11742A  
DC block  
BW = 35 GHz,  
Built-in CDR and  
Precision Timebase  
Transmission Line 1  
IN  
OUT  
Transmission Line 2  
24. 10 in Input Channel and 5 in Output Channel Test Setup  
版权 © 2016–2019, Texas Instruments Incorporated  
39  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Time (6.46 ps/DIV)  
26. 25.78125 Gbps CAUI-4 Eye Mask with 10 in Input  
25. 25.78125 Gbps Eye Diagram with 10 in Input  
Channel and 5 in Output Channel, FIR Limiting Mode  
Channel and 5 in Output Channel, Linear Mode  
27. 10.1325 Gbps nPPI Eye Mask with 10 in Input Channel and 5 in Output Channel, Linear Mode  
8. Settings and Measurements for CAUI-4 and nPPI with 10 in Input Channel and 5 in Output Channel  
25.78125 Gbps (CAUI-4)  
25.78125 Gbps (CAUI-4)  
10.3125 Gbps (nPPI)  
Transmission Line 1  
Transmission Line 2  
DS280BR820 Rx Channel Loss  
DS280BR820 Tx Channel Loss  
EQ BST1  
10 in 5 mil FR4 + 8 in SMA cable 10 in 5 mil FR4 + 8 in SMA cable 10 in 5 mil FR4 + 8 in SMA cable  
5 in 5 mil FR4 + 8 in SMA cable  
5 in 5 mil FR4 + 8 in SMA cable  
5 in 5 mil FR4 + 8 in SMA cable  
22 dB @ 12.9 GHz  
22 dB @ 12.9 GHz  
10 dB @ 5.2 GHz  
14.5 dB @ 12.9 GHz  
14.5 dB @ 12.9 GHz  
6 dB @ 5.2 GHz  
7
7
7
7
EQ BST2  
7
7
EQ BW  
3
3
3
2
VOD  
3
3
EQ DC Gain Mode  
Tx Mode  
Low  
Linear  
N/A  
Low  
Low  
FIR Limiting  
Linear  
N/A  
Tx Main-Cursor  
16  
Tx Pre-Cursor  
N/A  
5
10  
N/A  
Tx Post-Cursor  
N/A  
N/A  
Total Jitter @ 1E-15  
Differential Eye Height @ 1E-15  
Mask violations  
14.8 psP-P  
67 mVP-P  
N/A  
14.8 psP-P  
118 mVP-P  
0
17.0 psP-P  
407 mVP-P  
0
40  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
8.2.3.5 Output in FIR Limiting Mode with 16T Pattern  
This example application result demonstrates the DS280BR820's output in FIR limiting mode.  
Pattern Generator  
VOD = 0.8 V-pp,  
DE = 0 dB, 16T  
Pattern  
Sampling Scope  
DS280  
EVM  
Keysight 11742A  
DC block  
BW = 35 GHz,  
Built-in CDR and  
Precision Timebase  
IN  
OUT  
28. FIR Test Setup  
Time (100 ps/DIV)  
Time (100 ps/DIV)  
29. FIR Post-Cursor Example  
30. FIR Pre-Cursor Example  
9. Example FIR Settings  
29  
30  
(Pre, Main, Post) = (0, 12, 0)  
(Pre, Main, Post) = (0, 16, 15)  
(Pre, Main, Post) = (0, 12, 0)  
(Pre, Main, Post) = (11, 12, 0)  
8.3 Initialization Set Up  
The DS280BR820 does not require any particular start-up or initialization sequence. The device defaults to a  
medium boost value for each channel. It is recommend that the channels be appropriately configured before data  
traffic is transmitted to the DS280BR820 to avoid issues with the link partner ASIC's adaption. Example  
configuration settings can be found in the DS280BR820 Programming Guide.  
9 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply should be designed to provide the recommended operating conditions outlined in  
Specifications in terms of DC voltage, AC noise, and start-up ramp time.  
2. The maximum current draw for the DS280BR820 is provided in Specifications. This figure can be used to  
calculate the maximum current the supply must provide. Typical mission-mode current draw can be inferred  
from the typical power consumption in Specifications.  
3. The DS280BR820 does not require any special power supply filtering, such as ferrite beads, provided the  
recommended operating conditions are met. Only standard supply decoupling is required. Typical supply  
decoupling consists of a 0.1-μF capacitor per power pin, and single 1.0-μF and 10-μF bulk capacitors.  
版权 © 2016–2019, Texas Instruments Incorporated  
41  
 
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The following guidelines should be followed when designing the layout:  
1. Decoupling capacitors should be placed as close to the VDD pins as possible. Placing them directly  
underneath the device is one option if the board design permits.  
2. High-speed differential signals should be tightly coupled, skew matched, and impedance controlled.  
3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, care  
should be taken to minimize the via stub, either by transitioning through most or all layers, or by back drilling.  
4. GND relief can be used beneath the high-speed differential signal pads to improve signal integrity by  
counteracting the pad capacitance.  
5. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to  
the GND planes on other layers. This has the added benefit of improving thermal conductivity from the  
device to the board.  
6. BGA landing pads for a 0.8 mm pitch flip-chip BGA are typically 0.4 mm in diameter (exposed). The actual  
size of the copper pad will depend on whether solder-mask-defined (SMD) or non-solder-mask-defined  
solder land pads are used. For more information, refer to TI’s Surface Mount Technology (SMT) References  
website.  
10.2 Layout Examples  
10.2.1 Stripline Example  
The following example layout demonstrates how all signals can be escaped from the BGA array using stripline  
routing on a generic 8+ layer stackup. This example layout assumes the following:  
Trace width: 0.15 mm (6 mil)  
Trace edge-to-edge spacing: 0.16 mm (6.4 mil)  
VIA finished hole size (diameter): 0.254 mm (10 mil)  
VIA-to-VIA spacing: 1.0 mm (39 mil), to enhance PCB manufacturability  
No VIA-in-pad used  
Note that many other escape routing options exist using different trace width and spacing combinations. The  
optimum trace width and spacing will depend on the PCB material, PCB routing density, and other factors.  
Microstrip escape routing is also possible and may be preferable in some application scenarios such as front-port  
applications.  
32. Stripline Example, Internal Signal Layer 1  
版权 © 2016–2019, Texas Instruments Incorporated  
31. Stripline Example, Top Layer  
42  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
Layout Examples (接下页)  
34. Stripline Example, Bottom Layer  
33. Stripline Example, Internal Signal Layer 2  
10.2.2 Microstrip Example  
The following example layout demonstrates how all signals can be escaped from the BGA array using microstrip  
routing on a generic 8+ layer stackup. This example layout assumes the following:  
Normal trace width: 0.27 mm (10.5 mil)  
Neck-down trace width: 0.18 mm (7 mil)  
Trace edge-to-edge spacing: 0.51 mm (20 mil)  
VIA finished hole size (diameter): 0.203 mm (8 mil)  
VIA-to-VIA spacing: 0.8 mm (31.5 mil)  
No VIA-in-pad used  
Note that many other escape routing options exist using different trace width and spacing combinations. The  
optimum trace width and spacing will depend on the PCB material, PCB routing density, and other factors.  
Stripline escape routing is also possible and may be preferable in some application scenarios such as backplane  
applications.  
36. Microstrip Example, Internal Signal Layer 1  
35. Microstrip Example, Top Layer  
版权 © 2016–2019, Texas Instruments Incorporated  
43  
DS280BR820  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Layout Examples (接下页)  
38. Microstrip Example, Bottom Layer  
37. Microstrip Example, Internal Signal Layer 2  
44  
版权 © 2016–2019, Texas Instruments Incorporated  
DS280BR820  
www.ti.com.cn  
ZHCSKG2B SEPTEMBER 2016REVISED OCTOBER 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)DS280BR810EVM 用户指南》  
德州仪器 (TI)DS280BR810 编程指南》  
德州仪器 (TI)《了解 25G 28G 中继器和重定时器的 EEPROM 编程》 应用报告  
德州仪器 (TI)TI 25G 28G 重定时器和中继器的选择指南》 应用报告  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 商标  
All trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2019, Texas Instruments Incorporated  
45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS280BR820ZBLR  
DS280BR820ZBLT  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
ZBL  
ZBL  
135  
135  
1000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
DS280BR8A  
DS280BR8A  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS280BR820ZBLR  
DS280BR820ZBLT  
NFBGA  
NFBGA  
ZBL  
ZBL  
135  
135  
1000  
250  
330.0  
178.0  
24.4  
24.4  
8.4  
8.4  
13.4  
13.4  
1.9  
1.9  
12.0  
12.0  
24.0  
24.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS280BR820ZBLR  
DS280BR820ZBLT  
NFBGA  
NFBGA  
ZBL  
ZBL  
135  
135  
1000  
250  
367.0  
213.0  
367.0  
191.0  
45.0  
55.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
ZBL0135A  
NFBGA - 1.43 mm max height  
SCALE 1.300  
PLASTIC BALL GRID ARRAY  
13.1  
12.9  
A
B
BALL A1 CORNER  
8.1  
7.9  
(0.97)  
1.43 MAX  
C
SEATING PLANE  
0.2 C  
0.46  
0.25  
BALL TYP  
TYP  
11.2 TYP  
SYMM  
(0.9) TYP  
J
H
G
F
(0.8) TYP  
SYMM  
6.4  
E
D
C
TYP  
0.51  
135X  
0.41  
B
A
0.15  
0.08  
C A B  
C
0.8 TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13  
14 15  
BALL A1 CORNER  
0.8 TYP  
4222880/A 04/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZBL0135A  
NFBGA - 1.43 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
135X ( 0.4)  
4
5
6
7
9
10  
14 15  
1
2
3
8
11 12 13  
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
SCALE:8X  
METAL  
UNDER  
SOLDER MASK  
0.05 MAX  
0.05 MIN  
(
0.4)  
METAL  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222880/A 04/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZBL0135A  
NFBGA - 1.43 mm max height  
PLASTIC BALL GRID ARRAY  
(
0.4) TYP  
(0.8) TYP  
4
5
6
7
8
9
10  
14 15  
1
2
3
11 12 13  
A
B
(0.8) TYP  
C
D
E
F
SYMM  
G
H
J
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:8X  
4222880/A 04/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DS280BR820ZBLT

28Gbps 低功耗 8 通道转接驱动器 | ZBL | 135 | -40 to 85
TI

DS280DF810

28Gbps 多速率 8 通道重定时器
TI

DS280DF810ABVR

28Gbps 多速率 8 通道重定时器 | ABV | 135 | -40 to 85
TI

DS280DF810ABVT

28Gbps 多速率 8 通道重定时器 | ABV | 135 | -40 to 85
TI

DS280DF810ABWR

28Gbps 多速率 8 通道重定时器 | ABW | 135 | -40 to 85
TI

DS280DF810ABWT

28Gbps 多速率 8 通道重定时器 | ABW | 135 | -40 to 85
TI

DS280MB810

具有交叉点的 28Gbps 低功耗 8 通道转接驱动器
TI

DS280MB810ZBLR

具有交叉点的 28Gbps 低功耗 8 通道转接驱动器 | ZBL | 135 | -40 to 85
TI

DS280MB810ZBLT

具有交叉点的 28Gbps 低功耗 8 通道转接驱动器 | ZBL | 135 | -40 to 85
TI

DS2890

1-Wire Digital Potentiometer
DALLAS

DS2890-000

1-Wire Digital Potentiometer
DALLAS

DS2890-000/TR

Interface Circuit,
DALLAS