DS90UB954-Q1 [TI]

适用于 2MP/60fps 摄像机和雷达、具有 CSI-2 输出的双路 200 万像素 FPD-Link III 解串器;
DS90UB954-Q1
型号: DS90UB954-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 2MP/60fps 摄像机和雷达、具有 CSI-2 输出的双路 200 万像素 FPD-Link III 解串器

摄像机 雷达 光电二极管
文件: 总179页 (文件大小:4446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
DS90UB954-Q1 适用2MP/60fps 摄像头和雷达的双4.16GbpsMIPI CSI-2 输  
出、FPD-Link III 解串器集线器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
DS90UB954-Q1 是一款多功能双路解串器集线器可  
通过 FPD-Link III 接口从一个或两个 独立源接收串行  
传感器数据。与 DS90UB953-Q1 串行器配合使用时,  
DS90UB954-Q1 从成像仪接收数据支持 2MP/60fps  
4MP/30fps 摄像头以及卫星雷达和其他传感器如  
ToF 和激光雷达。接收的数据将聚合至符合 MIPI  
CSI-2 标准并与下游处理器互连的输出端。 对于配备  
DS90UB933-Q1 DS90UB913A-Q1 串行器的传  
感器DS90UB954-Q1 从一个或两个传感器包括全  
高清 1080p 2MP 60/fps 成像仪传感器接收并聚合数  
据。为 2 通道运行配置 CSI-2 接口时会提供一个完  
全相同的 MIPI CSI-2 时钟通道以提供复制输出。复  
制模式可创建两个聚合视频流副本用于数据记录和并  
行处理。  
– 器件温度等2-40+105境工作温  
度范围  
• 双路解串器集线器可以通FPD-Link III 接口聚合  
一个或两个有源传感器  
• 同轴电缆供(PoC) 兼容收发器  
• 符MIPI DPHY 1.2/CSI-2 1 .3 标准  
CSI-2 输出端口  
– 支1234 个数据通道  
CSI-2 数据速率可扩展每个数据通道支持  
400Mbps/800Mbps/1.5Gbps/1.6Gbps  
– 可编程数据类型  
– 四个虚拟通道  
ECC CRC 生成  
2x2 输出复制模式  
• 超低数据和控制路径延迟  
• 支持单端同轴或屏蔽双绞线(STP) 电缆  
• 自适应接收均衡  
• 具有快速模式增强版1MbpsI2C  
• 用于摄像头同步和诊断的灵GPIO  
DS90UB935-Q1DS90UB953-Q1、  
DS90UB933-Q1 DS90UB913A-Q1 串行器兼容  
• 线路故障检测和高级诊断  
DS90UB954-Q1 和配套的 DS90UB953-Q1 芯片组符  
AEC-Q100 标准旨在通过 50Ω 单端同轴电缆或  
100Ω 差分 STP 电缆接收数据。解串器集线器非常适  
合同轴电缆供电应用接收均衡器会自动适应以补偿电  
缆损耗特性无需额外的编程),包括随时间推移而出  
现的电缆老化。  
每个 FPD-Link III 接口包括一个单独的低延迟双向控制  
通道 (BCC)该通道可连续传送 I2CGPIO 和其他控  
制信息。用于传感器同步和诊断功能的 GPIO 信号也  
使BCC。  
• 符ISO 10605 IEC 61000-4-2 ESD 标准  
2 应用  
器件信息  
(1)  
• 汽ADAS  
封装尺寸标称值)  
器件型号  
后视摄像(RVC)  
环视系(SVS)  
DS90UB954-Q1  
VQFN (48)  
7.00mm × 7.00mm  
摄像头监控系(CMS)  
前视摄像(FC)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
驾驶员监控系(DMS)  
卫星雷达飞行时(ToF) 和激光雷达传感器模  
FPD-Link III  
MIPI CSI-2  
DS90UB953  
FPD-Link III  
Serializer  
Coax or STP  
D3P/N  
D2P/N  
D1P/N  
D0P/N  
CLKP/N  
DS90UB954-Q1  
FPD-Link III  
Deserializer  
Processor  
SoC  
安全和监控  
工业和医疗成像  
I2C  
DS90UB953  
FPD-Link III  
Serializer  
GPIO  
典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS570  
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Table of Contents  
7.6 Register Maps...........................................................72  
8 Application and Implementation................................144  
8.1 Application Information........................................... 144  
8.2 Typical Application.................................................. 148  
8.3 System Examples................................................... 151  
9 Power Supply Recommendations..............................153  
9.1 VDD and VDDIO Power Supply..............................153  
9.2 Power-Up Sequencing............................................153  
10 Layout.........................................................................157  
10.1 PCB Layout Guidelines.........................................157  
10.2 Layout Examples.................................................. 160  
11 Device and Documentation Support........................163  
11.1 Device Support......................................................163  
11.2 Documentation Support........................................ 163  
11.3 接收文档更新通知................................................. 163  
11.4 支持资源................................................................163  
11.5 Trademarks........................................................... 163  
11.6 静电放电警告.........................................................163  
11.7 术语表................................................................... 163  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................5  
6 Specifications.................................................................. 9  
6.1 Absolute Maximum Ratings........................................ 9  
6.2 ESD Ratings............................................................... 9  
6.3 Recommended Operating Conditions.......................10  
6.4 Thermal Information..................................................10  
6.5 DC Electrical Characteristics.....................................11  
6.6 AC Electrical Characteristics.....................................15  
6.7 AC Electrical Characteristics CSI-2.......................... 16  
6.8 Recommended Timing for the Serial Control Bus.....20  
6.9 Timing Diagrams.......................................................22  
6.10 Typical Characteristics............................................26  
7 Detailed Description......................................................27  
7.1 Overview...................................................................27  
7.2 Functional Block Diagram.........................................28  
7.3 Feature Description...................................................28  
7.4 Device Functional Modes..........................................28  
7.5 Programming............................................................ 57  
Information.................................................................. 164  
12.1 Package Option Addendum..................................165  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (December 2018) to Revision C (January 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 将所有旧术语实例更改为控制器和目标...............................................................................................................1  
Revised the PDB pin voltage for normal operation.............................................................................................5  
Changed the VDD11 pin descriptions for clarity................................................................................................. 5  
Added a link to Design Requirements under the RIN pins................................................................................. 5  
Updated the VIH and VIL specifications of pins PDB, XIN/REFCLK, and VDD_SEL.........................................11  
Removed the mention of CSI-2 non-synchronous clocking mode....................................................................28  
Changed the bits that need to be modified for Clock Mode .............................................................................29  
Changed the names of registers CAM_INT_RISE_STS and CAM_INT_FALL_STS to SEN_INT_RISE_STS  
and SEN_INT_FALL_STS................................................................................................................................ 37  
Removed the mention of setting the REF_CLK_MODE bit as it is a reserved bit............................................ 46  
Fixed typos in the internal FrameSync calculations..........................................................................................49  
Rewrote the basic synchronized forwarding code example to set both sensors to use CSI-2 serializers........51  
Added in that VVDDIO must match VI2C ............................................................................................................ 57  
Removed the mention of 'PDB' from register 0x0D.......................................................................................... 79  
Changed BCC_Config Register[2:0] binary setting value 0b111 to reserved................................................. 103  
Changed PORT_CONFIG2[5] default value to 0x1........................................................................................ 117  
Changed suggested ferrite beads for 4G FPD-Link PoC Network from 1500 kΩto 1.5 kΩ........................ 144  
Changed PoC network impedance recommendation from 2kΩto 1kΩ........................................................ 144  
Updated the PoC description..........................................................................................................................144  
Removed the insertion and return loss values from the table on Suggested Characteristics for Single-Ended  
PCB Traces With Attached PoC Networks..................................................................................................... 144  
Added a note to explain the differences between the decoupling capacitors.................................................148  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Changed the value of the capacitor for pin VDD11_CSI from 1-μF to 10-μF in the diagram where VDD_SEL  
= HIGH............................................................................................................................................................148  
Moved the additional notes in the typical application diagram from the picture to below the diagram........... 148  
Added a note to clarify the power-up sequence between VDD18 and VDDIO...............................................153  
Removed T0 and T2 from power-up sequence.............................................................................................. 153  
Added a note to clarify that a hard reset is optional in the power-up sequence............................................. 153  
Added in T7, the PDB to I2C ready delay, to the power-up sequence........................................................... 153  
Changed the pull-up resistor for PDB from 33-kΩto 10-kΩ..........................................................................154  
Changes from Revision A (September 2018) to Revision B (December 2018)  
Page  
Changed the intended content bandwidth limit from 2.528 Gbps to 3.328 Gbps ............................................ 46  
Changes from Revision * (August 2017) to Revision A (September 2018)  
Page  
Changed supply voltage test condition from V(VDD11)(VDD_SEL = LOW ONLY to V(VDD11)(VDD_SEL =  
HIGH ONLY) ....................................................................................................................................................10  
Added spread-spectrum reference clock modulation percentage parameter to the ROC tables..................... 10  
Added V(VDDIO) VDD18 ±50mV test condition to the high level output voltage parameter............................ 11  
Added V(VDDIO) = VDD18 ±50mV test to the low level output voltage parameter..........................................11  
Added PDB pin/frequency test condition and values to the high level input voltage parameter.......................11  
Added PDB pin/frequency test condition and values to the low level input voltage parameter ....................... 11  
Changed output short circuit current symbol from Isc to Ios.............................................................................11  
Added AEQ rating ±3ms RAW mode to the deserializer data lock time parameter..........................................15  
Added data bit rate minimum and typical values to the REFCLK = 23 MHz and REFCLK = 26 MHz test  
conditions..........................................................................................................................................................16  
Added DDR clock frequency minmum and typical values to the REFCLK = 23 MHz and REFCLK = 26 MHz  
test conditions...................................................................................................................................................16  
Added the text '1.5 Gbps' after the 'Data rate <' and 'Data rate >' text in slew rate test conditions for falling  
and rising edge................................................................................................................................................. 16  
Changed the UI instantaneous maximum value from 12.5 ns to 2.7 ns........................................................... 16  
Added discrete synch signals requirement when using DVP format ............................................................... 29  
Changed FPD3_PCLK to fPCLK in the RAW mode line rate calculations .........................................................29  
Added information about YUV support ............................................................................................................ 29  
Removed Coax/STP column and reorganized rows. .......................................................................................29  
Relaxed REFCLK Oscillator jitter specification to 200 ps maximum ............................................................... 30  
Relaxed REFCLK Oscillator rise and fall time to 6 ns maximum .....................................................................30  
Added REFCLK spread-spectrum modulation percentage and frequency ......................................................30  
Changed Text from: AEQ_FLOOR value to: ADAPTIVE_EQ_FLOOR_VALUE ..............................................33  
Updated Forward Channel GPIO typical latency value.................................................................................... 39  
Updated Back Channel GPIO typical latency and jitter for 50 Mbps rate......................................................... 40  
Added need for discrete synch signals in DVP mode and included RAW/YUV support...................................43  
Changed from GPIO7 pin to GPIO6 pin........................................................................................................... 48  
Changed Text from: The total period of the FrameSync is (1 s / 60 hz) / 600 ns to: The total period of the  
FrameSync is (1 / 60 hz) / 600 ns.....................................................................................................................49  
Deleted Sentence "It is recommended to forward the relevant RX port data streams prior to enabling the  
CSI-2 TX output"...............................................................................................................................................50  
Added Enabling and Disabling the CSI-2 Transmitter section .........................................................................50  
Changed Sensor A and B to Sensor X in definition list.....................................................................................51  
Changed Register 0x7C to register 0x7D.........................................................................................................67  
Changed BIST_CTL to BIST Control to match register map............................................................................71  
Changed Parity Error Threshold High to PAR_ERR_THOLD_HI..................................................................... 74  
Changed Parity Error Threshold Low to PAR_ERR_THOLD_LO.....................................................................74  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Added Cross-reference to GPIO4_OUT_SRC bit description.......................................................................... 82  
Changed GPIO5_OUT_VAL bit description text from: GPIO5_OUT_SEL[2:0] = 00 to: GPIO5_OUT_SEL[2:0]  
= 000.................................................................................................................................................................82  
Changed GPIO6_OUT_VAL bit description text from: GPIO6_OUT_SEL[2:0] = 00 to: GPIO6_OUT_SEL[2:0]  
= 000.................................................................................................................................................................82  
Changed FS_GEN_MODE bit description text from: 'FS_HIGH_TIME and FS_LOW_TIME register values' to:  
'FS_HIGH_TIME [15:0] and FS_LOW_TIME [15:0] register values' for clarity.................................................83  
Changed INT bit to INTERRUPT_STS bit in INTERRUPT_STS bit description...............................................88  
Changed RESERVED bit numbers from: 6:4 to: 6:5.........................................................................................88  
Changed RESERVED bit description text from: CSI_PLL to: CSI_PLL_CTL ..................................................91  
Added sentence about RX port specific register for registers 0x4A, 0x4B, 0x4D - 0x7F, 0xD0 - 0xDF ...........96  
Updated RX_PORT_STS2 register bit 1 field and description ........................................................................ 99  
Changed VOLT1_SENSE_LEVEL to VOLT0_SENSE_LEVEL...................................................................... 101  
Changed PAR_ERROR line _BYTE_1 to PAR_ERROR _BYTE_1 and RX PARITY CHECKER ENABLE to  
RX_PARITY_CHECKER_ENABLE................................................................................................................ 102  
Changed RX PARITY CHECKER ENABLE to RX_PARITY_CHECKER_ENABLE....................................... 102  
Changed BCC_Config Register 0x58[2:0] binary setting value from 0b100 to 0b010 to select 10 Mbps non-  
synchronous back channel rate......................................................................................................................103  
Removed Text 'This field is normally loaded from the remote serializer. It can be overwritten if the  
OVERRIDE_FC_CONFIG bit in the DATAPATH_CTL0 register is 1.' from the RESERVED bit description.. 104  
Changed PASSPARITY-ERR to PASS_PARITY_ERR................................................................................... 119  
Removed Broken link in the IND_ACC_CTL register table............................................................................ 122  
Changed IA_SEL bit enumerations from: 0001-0100 and 1000-0111 to: 000110100 and 10001111...... 122  
Changed RESERVED Register to FPD3_ENC_CTL .....................................................................................124  
Changed RESERVED bit numbers from: 5:3 to: 4:2 ......................................................................................125  
Changed ADAPTIVE_EQ_FLOOR_VALUE bit description from: register {reg_35[5:4]} to: register 0xD2[2].128  
Changed IE_FC_SENS_STS bit description from: Camera and CAM to: Sensor and SEN.......................... 130  
Fixed Broken link in Power Over Coax section...............................................................................................144  
Redraw the PoC Network diagram ................................................................................................................ 144  
Updated Return Loss S11 values .................................................................................................................. 144  
Redraw RINx STP setting for figure "Typical Connection Diagram STP With External 1.1-V supply"............148  
Fixed Broken links in the Detailed Design Procedure section........................................................................ 150  
Removed Second paragraph in System Examples ....................................................................................... 151  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
MODE  
CMLOUTP  
CMLOUTN  
CSI_D3P  
CSI_D3N  
CSI_D2P  
CSI_D2N  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DAP = GND  
VDD18_FPD0  
RIN0+  
VDD11_CSI  
CSI_CLK1P  
DS90UB954-Q1  
48L QFN  
(Top View)  
RIN0-  
VDD11_FPD0  
RES  
CSI_CLK1N  
VDD18_CSI  
CSI_D1P  
VDD18_P0  
VDD_SEL  
CSI_D1N  
CSI_D0P  
PASS  
LOCK  
CSI_D0N  
5-1. RGZ Package 48-Pin VQFN Top View  
5-1. Pin Functions  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
RECEIVE DATA CSI-2 OUTPUT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
24  
23  
22  
21  
19  
18  
16  
15  
14  
13  
12  
11  
CSI_D3P  
CSI_D3N  
CSI_D2P  
CSI_D2N  
RECEIVE DATA OUTPUT: This signal carries data from the FPD-LINK III  
Deserializer to the processor over CSI-2 interface. Receive data is CSI-2 configured  
with DPHY outputs as one differential clock lane (CSI_CLK0P/N) and up to four  
differential data lanes (CSI_D0P/N: CSI_D3P/N) or two clock lanes (CSI_CLK0P/N,  
CSI_CLK1P/N) and two differential data lanes for each clock. When in replicate  
mode data lanes CSI_D2P/N and CSI_D3P/N are associated with clock lane  
CSI_CLK1P/N to provide the replicated output. For unused outputs leave as No  
Connect.  
CSI_CLK1P  
CSI_CLK1N  
CSI_D1P  
O
CSI_D1N  
CSI_D0P  
CSI_D0N  
CSI_CLK0P  
CSI_CLK0N  
CLOCK INTERFACE  
Crystal oscillator output: Output Pin for providing crystal oscillator reference. Leave  
this pin NC when reference clock input is driving XIN/REFCLK.  
XOUT  
4
5
O
Reference clock input or crystal oscillator input. Pin is shared with XIN and  
REFCLK. Typically REFCLK connected to 23- to 26-MHz reference oscillator output  
(100 ppm) or XIN configured with external 23- to 26-MHz crystal to XOUT. See 节  
7.4.4.  
XIN/REFCLK  
S, I  
SYNCHRONIZATION AND GPIO  
GPIO0  
GPIO1  
GPIO2  
GPIO4  
GPIO5  
GPIO6  
28  
General-Purpose Input/Output: Pins can be used to control and respond to various  
commands. They may be configured to be the input signals for the corresponding  
GPIOs on the serializer or they may be configured to be outputs to follow local  
register settings. At power up, the GPIO are disabled and by default include a 35-k  
(typical) pulldown resistor. See 7.4.13 for programmability. Unused GPIO can be  
left open or no connect.  
27  
26  
10  
9
I/O, PD  
I/O, OD  
8
General-Purpose Input/Output: Pin GPIO3 can be configured to be input signals for  
GPOs on the Serializer. Pin 25 is shared with INTB. Pullup with 4.7 kΩto V(VDDIO)  
.
GPIO3/INTB  
25  
The programmable input and output pin is an active-low open drain and controlled  
by the status registers. See 7.4.13 for programmability. Unused GPIO can be left  
open or no connect.  
FPD-LINK III INTERFACE  
RIN0+  
41  
42  
32  
33  
Receive Input Channel 0: Differential FPD-Link receiver and bidirectional control  
back channel output. The IO must be AC coupled. See Design Requirements for  
the correct AC-coupling capacitor values. If port is unused, leave NC and set  
RX_PORT_CTL register bit 0 = 0 to disable (see 7.4.6).  
I/O  
I/O  
RIN0–  
RIN1+  
Receive Input Channel 1: Differential FPD-Link receiver and bidirectional control  
back channel output. The IO must be AC coupled. See Design Requirements for  
the correct AC-coupling capacitor values. If port is unused, leave NC and set  
RX_PORT_CTL register bit 1 = 0 to disable (see 7.4.6).  
RIN1–  
I2C PINS  
I2C Serial Clock: Clock line for the bidirectional control bus communication.  
External 2-kΩto 4.7-kΩpullup resistor to 1.8-V or 3.3-V supply rail recommended  
per I2C interface standards. I2C_SCL and I2C_SDA inputs are 3.3-V tolerant. See  
7.5.1 for more information.  
I2C_SCL  
I2C_SDA  
2
1
I/O, OD  
I/O, OD  
I2C Serial Data: Data line for bidirectional control bus communication.  
External 2-kΩto 4.7-kΩpullup resistor to 1.8-V or 3.3-V supply rail recommended  
per I2C interface standards. I2C_SCL and I2C_SDA inputs are 3.3-V tolerant. See  
7.5.1 for more information.  
CONFIGURATION AND CONTROL PINS  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
VDD Select: Configuration pin to select internal LDO regulator supply. When  
VDD_SEL = LOW, internal 1.1-V supply mode is selected. Feed 1.8 V to VDD18  
inputs = 1.8 V ±5%. An internal 1.1-V regulator will supply the VDD11. VDD11  
inputs should be terminated with bypass capacitors. When VDD_SEL = HIGH,  
external 1.1-V supply mode is selected. After 1.8-V supply is applied to VDD18  
inputs, then apply 1.1 V to VDD11 inputs = 1.1 V ±5%. Voltage at VDD11 supply  
pins must always be less than main voltage applied to VDD18 when using  
external 1.1-V supply.  
VDD_SEL  
46  
S, PD  
Input. I2C Serial Control Bus Primary Device ID Address Select.  
Once enabled the voltage at this pin will be sampled to configure the default I2C  
device address. Typically connected with external pullup resistor to VDD18 and  
pulldown resistor to GND to create a voltage divider. See 7-15.  
IDX  
35  
37  
S, PD  
S, PD  
Mode select configuration input to set operating mode based on input voltage level.  
Typically connected to voltage divider through external pullup to VDD18 and  
pulldown to GND. See 7-2.  
MODE  
Power-down inverted Input Pin. Typically connected to processor GPIO with pull  
down. When PDB input is brought HIGH, the device is enabled and internal register  
and state machines are reset to default values. Asserting PDB signal low will power  
down the device and consume minimum power with CSI-2 Tx outputs in tri-state.  
The default function of this pin is PDB = LOW; POWER DOWN with internal 50 kΩ  
pull down enabled. PDB should remain low until after power supplies are applied  
and reach minimum required levels. PDB INPUT IS 3.3-V TOLERANT. See section  
9.2.  
PDB  
30  
I, PD  
PDB = 1.8 V, device is enabled (normal operation)  
PDB = 0, device is powered down.  
DIAGNOSTIC PINS  
CMLOUTP  
38  
39  
Monitor Loop-Through Driver differential output. Typically routed to test points and  
not connected. For monitoring, CMLOUT should be terminated with 100-Ω  
differential load. See 7.4.10.  
O
CMLOUTN  
BIST Enable: BISTEN = H, BIST Mode is enabled BISTEN = L, BIST Mode is  
disabled. If unused connect BISTEN directly to GND. See BIST section 7.5.12  
for more information.  
BISTEN  
6
S, PD  
PASS Output: PASS = H indicates pass conditions are met and PASS = L signals or  
more pass condition is not met. Typically route to processor input pin or test point  
for monitoring. May also be configured to indicate logical AND of pass status when  
both Rx ports are enabled. See 7.4.7 for more information. For BIST operation  
PASS = H, ERROR FREE Transmission in forward channel operation. PASS = L,  
one or more errors were detected in the received payload. See BIST section for  
more information. Leave No Connect if unused.  
PASS  
LOCK  
47  
O
LOCK Status: Output Pin for monitoring lock status of FPD-Link III channel, may be  
used as Link Status. LOCK = H, the FPD-Link III receiver is Locked and Rx Ports  
are active. LOCK = L, receiver is unlocked. May also be configured to indicate  
logical AND of lock status when both Rx ports are enabled. See 7.4.7 for more  
information. Leave No Connect if unused.  
48  
44  
O
RES  
PD  
RES must be tied to GND for normal operation.  
POWER AND GROUND  
VDDIO voltage supply input: The single-ended outputs and control input are  
powered from VDDIO. VDDIO can be connected to either a 1.8-V or 3.3-V supply  
rail. When VDDIO is connected to 1.8-V supply, VDDIO must be within ±100 mV of  
VDD18 to ensure output timing requirements are met. Each VDDIO pin requires a  
minimum 1-µF and 0.01-µF capacitor to GND.  
VDDIO  
7,29  
17  
P
1.8-V (±5%) Power Supply.  
Requires 1-µF and 0.01-µF capacitors to GND.  
VDD18_CSI  
P
P
1.8-V(±5%) Power Supplies.  
Requires 0.01-µF capacitors to GND at each VDD pin along with 10-µF bulk  
decoupling  
VDD18_P0  
VDD18_P1  
45  
36  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
VDD18_FPD0  
NO.  
40  
31  
1.8-V(±5%) Analog Power Supplies.  
Requires 10-µF, and 0.1-µF capacitors to GND at each VDD pin.  
P
VDD18_FPD1  
When VDD_SEL = LOW:  
Do not connect to 1.1-V power rail  
Requires 0.1 to 0.01-µF capacitor and a 4.7-µF capacitor to GND  
When VDD_SEL = HIGH:  
Connect to external 1.1-V power rail  
Requires a 0.01-μF capacitor to GND  
Requires a 10-μF capacitor to GND shared with VDD11_FPD1  
VDD11_FPD0  
43  
D, P  
See sections Power Supply Recommendations and Typical Application for more  
information  
When VDD_SEL = LOW:  
Do not connect to 1.1-V power rail  
Requires a 0.1 to 0.01-µF capacitor and a 4.7-µF capacitor to GND  
When VDD_SEL = HIGH:  
Connect to external 1.1-V power rail  
Requires a 0.01-μF capacitor to GND  
Requires a 10-μF capacitor to GND shared with VDD11_FPD0  
VDD11_FPD1  
VDD11_CSI  
34  
20  
D, P  
When VDD_SEL = LOW:  
Do not connect to 1.1-V power rail  
Requires a 0.1 to 0.01-µF capacitor and a 4.7-µF capacitor to GND  
When VDD_SEL = HIGH:  
D, P  
Connect to external 1.1-V power rail  
Requires a 0.01-μF capacitor and a 10-μF capacitor to GND  
When VDD_SEL = LOW:  
Do not connect to 1.1-V power rail  
Requires a 0.1 to 0.01-µF capacitor and a 4.7-µF capacitor to GND  
When VDD_SEL = HIGH:  
Connect to external 1.1-V power rail  
VDD11_D  
GND  
3
D, P  
G
Requires a 0.01-μF capacitor and a 1-μF capacitor to GND  
DAP is the large metal contact at the bottom side, located at the center of the QFN  
package. Connect to the ground plane (GND).  
DAP  
The definitions below define the functionality of the I/O cells for each pin. TYPE:  
I = Input  
O = Output  
I/O = Input/Output  
S = Configuration pin (All strap pins have internal pulldowns. If the default strap value is needed to be changed then use an external  
resistor.)  
PD = Internal pulldown  
OD = Open Drain  
P, G = Power supply, ground  
D = Decoupling pin for internal voltage rail  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
VDD18 (VDD18_CSI, VDD18_P1 , VDD18_P0 , VDD18_FPD0,  
VDD18_FPD1)  
2.16  
V
0.3  
1.32  
and <  
Supply voltage  
VDD11 (VDD11_CSI, VDD11_D , VDD11_FPD0, VDD11_FPD1)  
V
0.3  
V(VDD18)  
VDDIO  
3.96  
2.75  
V
V
0.3  
0.3  
Device powered up (VDD18, VDD11 and VDDIO within  
recommended operating conditions)  
RIN0+,  
RIN0, Device powered down (VDD18, VDD11 and VDDIO below  
FPD-Link III input voltage  
1.45  
1.35  
V
V
0.3  
0.3  
RIN1+, recommended operating conditions) Transient Voltage  
RIN1–  
Device powered down (VDD18, VDD11 and VDDIO below  
recommended operating conditions) DC Voltage  
GPIO0, GPIO1, GPIO2, GPIOI4, GPIO5, GPIO6, XIN/REFCLK,  
VDD_SEL, XOUT, BISTEN, LOCK, PASS, CSI_D3P/N, CSI_D2P/N,  
CSI_D1P/N, CSI_D0P/N, CSI_CLK1P/N, CSI_CLK0P/N  
V(VDDIO)  
+
V
0.3  
0.3  
LVCMOS IO voltage  
PDB  
3.96  
V
V
0.3  
0.3  
0.3  
V(VDD18)  
+
Configuration input voltage  
MODE, IDX  
0.3  
Open-drain voltage  
GPIO3/INTB, I2C_SDA, I2C_SCL  
3.96  
150  
150  
V
Junction temperature  
Storage temperature, Tstg  
°C  
°C  
65  
(1) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office or Distributors for availability and  
specifications.  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
All pins except 32, 33, 41 and  
42  
±4500  
Human body model (HBM), per  
AEC Q100-002(1)  
Pins 32, 33, 41 and 42  
±8000  
±1250  
Charged device model (CDM), per AEC Q100-011  
Contact Discharge  
±8000  
±18000  
±8000  
(RIN0+, RIN0-, RIN1+, RIN1-)  
IEC 61000-4-2, powered-up only  
RD = 330 , CS = 150 pF  
V(ESD)  
Electrostatic discharge  
V
Air Discharge  
(RIN0+, RIN0-, RIN1+, RIN1-  
Contact Discharge  
(RIN0+, RIN0-, RIN1+, RIN1-)  
ISO 10605  
RD= 330 , CS= 150 pF and 330  
pF  
Air Discharge  
(RIN0+, RIN0-, RIN1+, RIN1-)  
±18000  
RD= 2 k, CS= 150 pF and 330 pF  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
 
 
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN NOM MAX UNIT  
V(VDD18)  
1.71  
1.045  
-50  
1.8  
1.89  
V
V
Supply voltage  
V(VDD11) (VDD_SEL = HIGH ONLY)  
1.1 1.155  
Supply voltage offset  
V(VDD11) - V(VDDIO), V(VDDIO) = 1.8V  
50 mV  
1.71  
3
1.8  
3.3  
1.89  
V
V
V(VDDIO) = 1.8 V  
OR V(VDDIO) = 3.3 V  
LVCMOS supply voltage  
3.6  
3.6  
GPIO3/INTB = V(INTB), I2C_SDA, I2C_SCL =  
V(I2C)  
Open-drain voltage  
1.71  
V
Operating free-air temperature, TA  
MIPI data rate (per CSI-2 lane)  
MIPI CSI-2 HS clock frequency  
Reference clock oscillator frequency  
25  
105  
°C  
40  
368  
184  
23  
1664 Mbps  
832 MHz  
26 MHz  
REFCLK or XIN/XOUT  
Center Spread  
-0.5  
-1  
0.5  
0
%
%
Spread-spectrum reference clock modulation  
percentage  
Down Spread  
Local I2C frequency, fI2C  
1
MHz  
V(VDD11)  
25 mVP-P  
50 mVP-P  
V(VDD18)  
Supply noise(1)  
V(VDDIO) = 1.8 V  
V(VDDIO) = 3.3 V  
RIN0+, RIN1+  
50  
mVP-P  
100  
10  
mVP-P  
(1) DC-50 MHz  
6.4 Thermal Information  
DS90UB954-Q1  
THERMAL METRIC(1)  
RGC (VQFN)  
48 PINS  
30.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(TOP)  
RθJC(BOT)  
RθJB  
15.7  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
1.1  
6.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
ψJT  
6.7  
ψJB  
(1) Thermal data in accordance with JESD51. For more information about traditional and new thermal metrics, see the Semiconductor and  
IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
 
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
564 mW  
450 mW  
TOTAL POWER CONSUMPTION  
2 x FPD-Link III Input, FPD-Link III line-  
rate = 4.0 Gbps  
CSI-2 line-rate = 1.6 Gbps, CSI-2 = 4  
DATA lanes + 1 CLK lane  
V(VDD18)= 1.89 V,  
V(VDDIO) = 3.6 V  
473  
Total power consumption  
for MIPI CSI-2 output  
mode, normal operation  
VDD_SEL = LOW, default registers  
PT  
2 x FPD-Link III Input, FPD-Link III line-  
rate = 4.0 Gbps  
CSI-2 line-rate = 1.6 Gbps, CS-I2 = 4  
DATA lanes + 1 CLK lane  
V(VDD18)= 1.89 V,  
V(VDD11) = 1.155  
V V(VDDIO) = 3.6  
V
VDD_SEL = HIGH, default registers  
DESERIALIZER SUPPLY CURRENT  
- FPD-Link III Rx Port0 AND Rx Port1 PAIRED WITH 2x DS90UB953  
2 x FPD-Link III Input, FPD-Link III line-  
rate = 4.0 Gbps per Rx port  
CSI-2 line-rate = 1.6 Gbps per lane,  
CSI-2 = 4 DATA lanes + 1 CLK lane  
VDD_SEL=LOW, default registers,  
VDD18  
VDDIO  
240  
5
279  
mA  
10  
includes CSI-2 load current  
Deserializer supply  
current 2 Rx 4 Tx  
IDD-R2T4  
2 x FPD-Link III Input, FPD-Link III line-  
rate = 4.0 Gbps per Rx port  
VDD18  
VDD11  
110  
100  
140  
130  
mA  
CSI-2 line-rate = 1.6 Gbps per lane,  
CSI-2 = 4 DATA lanes + 1 CLK lane  
VDD_SEL=HIGH, default registers,  
includes CSI-2 load current  
VDDIO  
VDD18  
5
10  
2 x FPD-Link III Input, FPD-Link III line-  
rate = 4.0 Gbps per Rx port  
CSI-2 line-rate = 1.6 Gbps, Replicate  
mode, CSI-2 = 2x 2 DATA lanes and 2x  
1 CLK lanes  
240  
279  
mA  
10  
VDDIO  
5
VDD_SEL=LOW, includes CSI-2 load  
current  
Deserializer supply  
current 2 Rx 2x2 Tx  
IDD-R2T22  
2 x FPD-Link III Input, FPD-Link III line-  
rate = 4.0 Gbps per Rx port  
CSI-2 line-rate = 1.6 Gbps, Replicate  
mode, CSI-2 = 2x 2 DATA lanes and 2x  
1 CLK lanes  
VDD18  
VDD11  
110  
100  
140  
130  
mA  
10  
VDDIO  
5
VDD_SEL=HIGH , includes CSI-2 load  
current  
DESERIALIZER SUPPLY CURRENT  
- FPD-Link III Rx Port0 OR Rx Port1 PAIRED WITH 1x DS90UB953  
1 x FPD-Link III Input, FPD-Link III line-  
rate = 4.0 Gbps  
CSI-2 line-rate = 800 Mbps per lane,  
CSI-2 = 4 DATA lanes + 1 CLK lane  
VDD_SEL=LOW, default registers,  
includes CSI-2 load current  
VDD18  
VDDIO  
170  
5
188  
mA  
10  
Deserializer supply  
current 1 Rx 4 Tx  
IDD-R1T4  
1 x FPD-Link III Input, FPD-Link III line-  
rate = 4.0 Gbps  
CSI-2 line-rate = 800 Mbps per lane,  
CSI2 = 4 DATA lanes + 1 CLK lane  
VDD_SEL=HIGH, default registers,  
includes CSI-2 load current  
VDD18  
VDD11  
65  
80  
80  
100  
mA  
VDDIO  
5
10  
DESERIALIZER SUPPLY CURRENT  
- FPD-Link III Rx Port0 AND Rx Port1 PAIRED WITH 2x DS90UB933  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.5 DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
2 x FPD-Link III Input, FPD-Link III line-  
rate = 1.867 Gbps per Rx port  
CSI-2 line-rate = 800 Mbps, CSI-2 = 4  
DATA lanes + 1 CLK lanes  
VDD_SEL=LOW, includes CSI-2 load  
current  
VDD18  
220  
265  
mA  
10  
VDDIO  
5
Deserializer supply  
current 2G 2 Rx 4 Tx  
IDD2-R2T4  
2 x FPD-Link III Input, FPD-Link III line-  
rate = 1.867 Gbps per Rx port  
CSI-2 line-rate = 800 Mbps, CSI-2 = 4  
DATA lanes + 1 CLK lanes  
VDD18  
VDD11  
110  
85  
148  
100  
mA  
VDDIO  
5
10  
VDD_SEL=HIGH, includes CSI-2 load  
current  
DESERIALIZER SUPPLY CURRENT  
- FPD-Link III Rx Port0 OR Rx Port1 PAIRED WITH 1x DS90UB933  
1 x FPD-Link III Input, FPD-Link III line-  
rate = 1.867 Gbps  
CSI-2 line-rate = 800 Mbps, CSI-2 = 4  
DATA lanes + 1 CLK lane  
VDD_SEL=LOW, includes CSI-2 load  
current  
VDD18  
VDDIO  
150  
5
205  
mA  
10  
Deserializer supply  
current 2G 1 Rx 4 Tx  
IDD2-R1T4  
1 x FPD-Link III Input, FPD-Link III line-  
rate = 1.867 Gbps  
CSI-2 line-rate = 800 Mbps, CSI-2 = 4  
DATA lanes + 1 CLK lane  
VDD_SEL=HIGH, includes CSI-2 load  
current  
VDD18  
VDD11  
65  
75  
86  
110  
mA  
VDDIO  
5
10  
DESERIALIZER SUPPLY CURRENT  
- Power Down  
VDD18  
VDIO  
82  
2.5  
10  
115  
5
PDB = HIGH to LOW, VDD_SEL = LOW  
PDB = HIGH to LOW, VDD_SEL = HIGH  
Deserializer shutdown  
current  
IDDZ  
VDD18  
VDD11  
VDDIO  
15  
110  
5
mA  
30  
2.5  
1.8-V LVCMOS I/O  
GPIO[6:4],  
GPIO[2:0],  
LOCK, PASS  
V(VDDIO)  
0.45  
IOH = 2 mA, V(VDDIO) = 1.71 to 1.89 V;  
V(VDDIO) = VDD18 ±50 mV  
VOH  
High level output voltage  
Low level output voltage  
V(VDDIO)  
V
IOL = 2 mA, V(VDDIO) = 1.71 to 1.89 V;  
V(VDDIO) = VDD18 ±50 mV  
GPIO[6:0],  
LOCK, PASS  
VOL  
GND  
0.45  
V(VDDIO)  
V(VDDIO)  
V(VDDIO)  
V
V
V
V
V
V
V
V(VDDIO) = 1.71 to 1.89 V; V(VDDIO)  
VDD18 ±50 mV  
=
=
=
GPIO[6:0],  
BISTEN  
0.65 ×  
V(VDDIO)  
V(VDDIO) = 1.71 to 1.89 V; V(VDDIO)  
VDD18 ±50 mV  
PDB,  
VDD_SEL  
VIH  
High level input voltage  
Low level input voltage  
1.17  
1.15  
V(VDDIO) = 1.71 to 1.89 V; V(VDDIO)  
VDD18 ±50 mV  
XIN/REFCLK  
V(VDDIO) = 1.71 to 1.89V; V(VDDIO) =  
VDD18 ±50 mV  
GPIO[6:0],  
BISTEN  
0.35 ×  
V(VDDIO)  
GND  
GND  
GND  
V(VDDIO) = 1.71 to 1.89V; V(VDDIO) =  
VDD18 ±50 mV  
PDB,  
VDD_SEL  
VIL  
0.63  
0.7  
V(VDDIO) = 1.71 to 1.89V; V(VDDIO) =  
VDD18 ±50 mV  
XIN/REFCLK  
Internal  
VIN = V(VDDIO) = 1.71  
pulldown enable  
to 1.89 V,  
GPIO[6:0], PDB,  
BISTEN  
IIH  
Input high current  
100  
100  
μA  
d
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.5 DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Internal  
pulldown  
disabled  
GPIO[6:0],  
XIN/REFCLK,  
VDD_SEL  
VIN = V(VDDIO) = 1.71  
to 1.89 V,  
IIH  
Input high current  
30  
30  
20  
μA  
μA  
GPIO[6:0], PDB,  
XIN/REFCLK,  
VDD_SEL,  
IIL  
Input low current  
VIN = 0V  
20  
BISTEN  
Output short circuit  
current  
IOS  
IOZ  
VOUT = 0 V  
VOUT = 0 V  
mA  
25  
TRI-STATE Output  
Current  
VOUT = 0 V or VDDIO  
PDB = L  
,
VOUT = 0 V or  
VDDIO, PDB = L  
25  
25  
μA  
3.3-V LVCMOS I/O  
VOH High level output voltage  
GPIO[6:4],  
GPIO[2:0],  
2.4  
V(VDDIO)  
V
IOH = 4 mA, V(VDDIO) = 3.0 to 3.6 V  
LOCK, PASS  
GPIO[6:0],  
LOCK, PASS  
VOL  
Low level output voltage IOL = 4 mA, V(VDDIO) = 3.0 to 3.6 V  
V(VDDIO) = 3 to 3.6 V  
GND  
2
0.4  
V
V
GPIO[6:0],  
BISTEN  
V(VDDIO)  
VIH  
High level input voltage  
V(VDDIO) = 3 to 3.6 V  
PDB,  
VDD_SEL  
1.17  
1.15  
GND  
V(VDDIO)  
V(VDDIO)  
0.8  
V
V
V
V(VDDIO) = 3 to 3.6 V  
V(VDDIO) = 3 to 3.6 V  
XIN/REFCLK  
GPIO[6:0],  
BISTEN  
VIL  
Low level input voltage  
V(VDDIO) = 3 to 3.6 V  
PDB,  
VDD_SEL  
GND  
GND  
0.63  
0.7  
V
V
V(VDDIO) = 3 to 3.6 V  
XIN/REFCLK  
VIN = 3 to 3.6 V, internal pulldown  
enabled  
GPIO[6:0], PDB,  
BISTEN  
190  
190  
μA  
IIH  
Input high current  
GPIO[6:0],  
XIN/REFCLK,  
VDD_SEL  
VIN = 3 to 3.6 V, internal pulldown  
disabled  
30  
30  
20  
20  
μA  
μA  
GPIO[6:0], PDB,  
XIN/REFCLK,  
VDD_SEL,  
IIL  
Input low current  
VIN = 0 V  
BISTEN  
Output short circuit  
current  
GPIO[7:0],  
LOCK, PASS  
IOS  
VOUT = 0 V  
mA  
40  
GPIO[7:0],  
LOCK, PASS  
IOZ  
TRI-STATE output current VOUT = 0 V or V(VDDIO), PDB = L  
35  
25  
μA  
SERIAL CONTROL BUS(1)  
0.7 ×  
V(I2C)  
VIH  
Input high level  
V(I2C)  
V
V
0.3 ×  
V(I2C)  
VIL  
Input low level  
GND  
VHY  
Input hysteresis  
50  
mV  
V
I2C_SDA,  
I2C_SCL  
Standard-mode/Fast-mode IOL = 3 mA  
Fast-mode Plus IOL = 20 mA  
VIN = V(I2C)  
0
0
0.4  
0.4  
10  
VOL  
Output low level  
V
IIH  
Input high current  
Input low current  
Input capacitance  
µA  
µA  
pF  
10  
10  
IIL  
VIN = 0V  
10  
CIN  
5
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.5 DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
FPD-LINK III  
INPUT  
RIN0+, RIN0-  
RIN1+, RIN1-  
VCM  
Common mode voltage  
1.2  
50  
V
Single-ended  
Differential  
RIN0+, RIN1+  
40  
80  
60  
Internal termination  
resistor  
RT  
RIN0+, RIN0-  
RIN1+, RIN1-  
100  
120  
FPD-LINK III BIDIRECTIONAL CONTROL CHANNEL  
Back Channel Output  
Single-ended voltage  
RL = 50 , coaxial configuration, forward  
VOUT-BC  
VOD-BC  
190  
380  
225  
450  
260  
520  
mV  
mV  
channel disabled  
RIN0+, RIN0-  
RIN1+, RIN1-  
Back channel output  
differential  
RL = 100 , STP configuration, forward  
channel disabled  
HSTX DRIVER  
HS transmit static  
VCMTX  
150  
140  
200  
200  
250  
5
mV  
mVP-P  
mV  
common-mode voltage  
|
Δ
VCMTX mismatch when  
output is 1 or 0  
VCMTX(1,0)  
|
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLK1P/N,  
CSI_CLK0P/N  
HS transmit differential  
voltage  
|VOD  
|
270  
VOD mismatch when  
output is 1 or 0  
14  
360  
mV  
mV  
Ω
|ΔVOD  
VOHHS  
ZOS  
|
HS output high voltage  
Single-ended output  
impedance  
40  
50  
62.5  
Mismatch in single-ended  
output impedance  
10  
%
ΔZOS  
LPTX DRIVER  
Applicable when the supported data rate  
is 1.5 Gbps  
1.1  
1.2  
1.3  
V
V
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLK1P/N,  
CSI_CLK0P/N  
VOH  
High level output voltage  
Applicable when the supported data rate  
is > 1.5 Gbps  
0.95  
1.3  
50  
VOL  
Low level output voltage  
Output impedance  
-50  
mV  
ZOLP  
110  
Ω
(1) V(VDDIO) = 1.8 V ± 5% OR 3.3 V ± 10%  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LVCMOS I/O  
LVCMOS low-to-high  
transition time  
tCLH  
tCHL  
tPDB  
2.5  
2.5  
ns  
ns  
V(VDDIO) = 1.71 to 1.89 V =  
VDD18 ±50 mV OR V(VDDIO)  
3V to 3.6 V, CL = 8pF  
=
GPIO[6:0]  
PDB  
LVCMOS high-to-low  
transition time  
Voltage supplies applied and  
stable  
PDB reset pulse width  
2
ms  
FPD-LINK III RECEIVER INPUT  
Coaxial configuration,  
attenuation = 20dB @ 2.1 GHz  
VIN  
VID  
Single ended input voltage  
Differential input voltage  
RIN0+, RIN1+  
40  
80  
mV  
mV  
STP configuration, attenuation =  
25dB @ 2.1 GHz  
RIN0+, RIN0-,  
RIN1+, RIN1-  
AEQ full range 0x00  
to 0x3F,  
SFILTER_CFG  
=0xA9  
CSI mode paired with  
DS90UB953-Q1, coaxial cable,  
attenuation = 20 dB @ 2.1GHz  
tDDLT  
tDDLT  
tDDLT  
tDDLT  
20  
300  
30  
ms  
ms  
ms  
ms  
CSI mode paired with  
DS90UB953-Q1, coaxial cable,  
attenuation = 20 dB @ 2.1GHz  
AEQ range +/- 3,  
SFILTER_CFG =  
0xA9  
15  
15  
15  
Deserializer data lock time  
AEQ full range 0x00  
to 0x3F,  
SFILTER_CFG =  
0xA9  
RAW mode paired with  
DS90UB933-Q1, coaxial cable,  
attenuation = 14 dB @ 1.2 GHz  
200  
30  
RAW mode paired with  
DS90UB933-Q1, coaxial cable,  
attenuation = 14 dB @ 1.2 GHz  
AEQ range +/- 3,  
SFILTER_CFG =  
0xA9  
CSI-2 mode paired with  
DS90UB953-Q1, coaxial  
configuration (attenuation = 20  
dB) or STP configuration  
(attenuation = 25 dB) @ 2.1  
GHz  
Jitter Frequency >  
FPD3_PLCK/15  
tIJIT  
Input Jitter  
0.4  
UI  
FPD-LINK III BI-DIRECTIONAL CONTROL CHANNEL  
Coaxial configuration, fBC = 52  
RIN0+, RIN1+  
130  
260  
0.7  
160  
320  
0.8  
mV  
mV  
MHz  
Back channel output eye  
height  
EH-BC  
EW-BC  
fBC  
RIN0+, RIN0-,  
RIN1+, RIN1-  
STP configuration, fBC = 52 MHz  
Back channel output eye  
width  
Coaxial or STP  
configuration, fBC = 52 MHz  
RIN0+, RIN0-,  
RIN1+, RIN1-  
UI  
Signal applied to  
REFCLK input  
2×  
REFCLK  
Mbps  
Synchronous CSI-2 input mode,  
default register settings  
Back channel datarate(1)  
No signal present at  
REFCLK input  
46  
56 Mbps  
(1) The backchannel data rate (Mbps) listed is for the encoded back channel data stream. The internal reference frequency used to  
generate the encoded back channel data stream is two times the back channel datarate.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.7 AC Electrical Characteristics CSI-2  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
PARAMETER  
TEST CONDITIONS  
FREQUENC  
Y
MIN  
TYP  
MAX UNIT  
HSTX DRIVER  
AC SPECIFICATIONS  
REFCLK = 23 MHz  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
368  
400  
736  
800  
1472 Mbps  
1600 Mbps  
REFCLK = 25 MHz  
HSTXDBR  
Data bit rate  
REFCLK = 26 MHz  
416  
832  
1664 Mbps  
CSI_CLK1P/  
N
REFCLK = 23 MHz  
REFCLK = 25 MHz  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
184  
200  
368  
400  
736 MHz  
800 MHz  
fCLK  
DDR clock frequency  
REFCLK = 26 MHz  
208  
416  
832 MHz  
15 mVRMS  
CSI_CLK1P/  
N
Common mode voltage variations Common-level variations above  
HF 450MHz  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
ΔVCMTX(HF)  
Common mode voltage variations Common-level variations  
25 mVRMS  
ΔVCMTX(LF)  
LF  
between 50 and 450MHz  
CSI_CLK1P/  
N
HS bit rates 1 Gbps (UI 1  
ns)  
0.3  
UI  
UI  
HS bit rates > 1 Gbps (UI  
0.35  
Applicable for all HS bit rates.  
However, to avoid excessive  
radiation, bit rates 1 Gbps (UI  
1 ns), should not use values  
below 150 ps  
100  
ps  
UI  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
tRHS tFHS  
20% to 80% rise and fall HS  
Applicable for all HS bit rates  
when supporting > 1.5 Gbps  
0.4  
Applicable for all HS bit rates  
when supporting > 1.5 Gbps.  
However, to avoid excessive  
radiation, bit rates 1.5 Gbps  
should not use values below 100  
ps and bit rates 1 Gbps  
should not use values below 150  
ps.  
CSI_CLK1P/  
N
50  
ps  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.7 AC Electrical Characteristics CSI-2 (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
PARAMETER  
TEST CONDITIONS  
FREQUENC  
Y
MIN  
TYP  
18  
9  
MAX UNIT  
fLPMAX  
dB  
dB  
HSData  
rates < 1.5  
Gbps  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
fH  
HSData  
rates > 1.5  
Gbps  
-4.5  
dB  
SDDTX  
TX differential return loss  
HSData  
rates < 1.5  
Gbps  
CSI_CLK1P/  
N
dB  
dB  
-3  
fMAX  
HSData rates  
> 1.5 Gbps  
-2.5  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
fLPMAX  
fH  
dB  
dB  
20  
15  
SCCTX  
TX common mode return loss  
fMAX  
dB  
9  
CSI_CLK1P/  
N
LPTX DRIVER  
AC SPECIFICATIONS  
tRLP Rise time LP  
tFLP  
15% to 85% rise time  
15% to 85% fall time  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
25  
25  
ns  
ns  
Fall time LP  
tREOT  
Rise time post-EoT  
30%-85% rise time  
35  
ns  
CSI_CLK1P/  
N
First LP exclusive-OR clock  
pulse after Stop state or last  
pulse before Stop state  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
40  
20  
90  
ns  
ns  
ns  
Pulse width of the LP exclusive-  
OR clock  
tLP PULSE-TX  
-
All other pulses  
Pulse width of the LP exclusive-  
OR clock  
tLP-PER-TX  
CSI_CLK1P/  
N
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
MAX UNIT  
6.7 AC Electrical Characteristics CSI-2 (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENC  
Y
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
CLoad = 0pF  
500 mV/ns  
300 mV/ns  
250 mV/ns  
150 mV/ns  
CLoad = 5pF  
CLoad = 20pF  
CLoad = 70pF  
CLoad = 0 to 70pF (Falling Edge  
Only) Data rate < 1.5 Gbps  
30  
30  
25  
25  
mV/ns  
mV/ns  
mV/ns  
mV/ns  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
CLoad = 0 to 70pF (Rising Edge  
Only) Data rate < 1.5 Gbps  
CLoad = 0 to 70pF (Falling Edge  
Only) Data rate > 1.5 Gbps  
DV/DtSR  
Slew rate  
CLoad = 0 to 70pF (Rising Edge  
Only) Data rate > 1.5 Gbps  
CSI_CLK1P/  
N
CLoad = 0 to 70pF (Rising Edge  
Only) Applicable when the  
supported Data rate is < 1.5  
Gbps  
0 - 0.075  
× (VO,INST  
- 700)  
mV/ns  
mV/ns  
CLoad = 0 to 70pF (Rising Edge  
Only) Applicable when the  
supported Data rate is > 1.5  
Gbps  
25 -  
0.0625 ×  
(VO,INST  
-
550)  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
CLOAD  
Load capacitance  
0
50  
pF  
CSI_CLK1P/  
N
DATA-CLOCK  
TIMING SPECIFICATIONS  
In 1, 2, 3, or 4 Lane  
Configuration  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
UIINST  
UI instantaneous  
0.6  
2.7  
ns  
UI  
-10%  
10%  
UI 1ns  
UI variation  
ΔUI  
-5%  
5%  
UI  
0.667ns UI  
Data rate 1 Gbps  
CSI_CLK1P/  
N
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
-0.15  
0.15 UIINST  
Data to Clock Skew (measured at  
transmitter) Skew between clock  
and data from ideal center  
tSKEW(TX)  
Data rate: 1 Gbps to 1.5 Gbps  
-0.2  
0.2 UIINST  
CSI_CLK1P/  
N
tSKEW(TX)STAT  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
Static Data to Clock Skew (TX)  
-0.2  
0.2 UIINST  
IC  
tSKEW(TX)DYN Dynamic Data to Clock Skew  
-0.15  
0.15 UIINST  
(TX)  
Data rate > 1.5 Gbps  
AMIC  
ISI  
Channel ISI  
0.2 UIINST  
CSI_CLK1P/  
N
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.7 AC Electrical Characteristics CSI-2 (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
PARAMETER  
TEST CONDITIONS  
FREQUENC  
Y
MIN  
TYP  
MAX UNIT  
CSI-2 TIMING  
SPECIFICATIONS  
Timeout for receiver to detect  
tCLK-MISS  
absence of clock transitions and  
disable the clock lane HS-RX  
60  
ns  
ns  
60 +  
52×UI  
tCLK-POST  
HS exit  
Time HS clock shall be driver  
prior to any associated data lane  
beginning the transition from LP  
to HS mode  
tCLK-PRE  
8
UI  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
tCLK-PREPARE Clock lane HS entry  
38  
95  
95  
ns  
ns  
Time interval during which the HS  
tCLK-SETTLE  
receiver shall ignore any clock  
lane HS transitions  
300  
Time for  
Dn to  
reach  
VTERM-  
EN  
CSI_CLK1P/  
N
Time-out at clock lane display  
module to enable HS termination  
tCLK-TERM-EN  
38  
ns  
Time that the transmitter drives  
the HS-0 state after the last  
payload clock bit of a HS  
transmission burst  
tCLK-TRAIL  
60  
ns  
ns  
ns  
TCLK-PREPARE + time that the  
transmitter drives the HS-0 state  
prior to starting the clock  
tCLK-PREPARE  
+ tCLK-ZERO  
300  
Time for  
Dn to  
reach  
Time for the data lane receiver to  
enable the HS line termination  
35 +  
4×UI  
tD-TERM-EN  
VTERM-EN  
Transmitted time interval from the  
start of tHS-TRAIL to the start of  
the LP-11 state following a HS  
burst  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N,  
CSI_CLK0P/  
N,  
105 +  
12×UI  
tEOT  
ns  
Time that the transmitter drives  
LP-11 following a HS burst  
tHS-EXIT  
100  
ns  
ns  
CSI_CLK1P/  
N
85 +  
6×UI  
tHS-PREPARE Data lane HS entry  
tHS-PREPARE + time that the  
40 + 4×UI  
tHS PREPARE  
+ tHS-ZERO  
-
transmitter drives the HS-0 state  
prior to transmitting the Sync  
sequence  
145 +  
10×UI  
ns  
ns  
Time interval during which the HS  
receiver shall ignore any data  
lane HS transitions, starting from  
the beginning of tHS-SETTLE  
145 +  
10×UI  
tHS-SETTLE  
85 + 6×UI  
Time interval during which the  
HS-RX should ignore any  
transitions on the data lane,  
following a HS burst. The end  
point of the interval is defined as  
the beginning of the LP-11 state  
following the HS burst.  
55 +  
4×UI  
tHS-SKIP  
40  
ns  
ns  
tHS-TRAIL  
Data lane HS exit  
60 + 4×UI  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
MAX UNIT  
6.7 AC Electrical Characteristics CSI-2 (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENC  
Y
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
tLPX  
Transmitted length of LP state  
50  
1
ns  
ms  
µs  
Recovery Time from Ultra Low  
Power State (ULPS)  
tWAKEUP  
tINIT  
Initialization period  
100  
6.8 Recommended Timing for the Serial Control Bus  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
TYP  
MAX UNIT  
100 kHz  
400 kHz  
Standard-mode  
>0  
>0  
fSCL  
SCL Clock Frequency  
SCL Low Period  
Fast-mode  
Fast-mode Plus  
Standard-mode  
Fast-mode  
>0  
1
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
4.0  
0.6  
0.26  
4.7  
0.6  
0.26  
0
tLOW  
tHIGH  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Fast-mode Plus  
Standard-mode  
Fast-mode  
SCL High Period  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Hold time for a start or a repeated start  
condition  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Set up time for a start or a repeated  
start condition  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast -mode  
0
250  
100  
50  
Data set up time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
4.0  
0.6  
0.26  
4.7  
1.3  
0.5  
Set up time for STOP condition  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Bus free time between STOP and  
START  
Fast-mode Plus  
Standard-mode  
Fast-mode  
1000  
300  
120  
300  
300  
120  
tr  
SCL & SDA rise time  
SCL & SDA fall time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tf  
Fast-mode Plus  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.8 Recommended Timing for the Serial Control Bus (continued)  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
TYP  
MAX UNIT  
Standard-mode  
400  
400  
550  
3.45  
0.9  
pF  
pF  
pF  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
Cb  
Capacitive load for each bus line  
Data valid time  
Fast-mode  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tVD:DAT  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0.45  
3.45  
0.9  
tVD;ACK  
Data vallid acknowledge time  
Input filter  
Fast-mode Plus  
Fast-mode  
0.45  
50  
tSP  
Fast-mode Plus  
50  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.9 Timing Diagrams  
V(VDDIO)  
80%  
20%  
tCHL  
GND  
tCLH  
6-1. LVCMOS Transition Times  
Single  
Ended  
RIN+  
or RIN  
VIN  
VIN  
œ
VCM  
0 V  
ö
Differential  
VID  
(RIN+) - (RINœ)  
0 V  
6-2. FPD-Link III Receiver VID, VIN, VCM  
PDB=H  
tDDLT  
RIN  
GPIOx  
(LOCK)  
VDDIO/2  
6-3. Deserializer Data Lock Time  
SDA  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
r
f
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
6-4. I2C Serial Control Bus Timing  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
CSI_D[3:0]P  
CSI_D[3:0]N  
0.5UI  
+ tSKEW  
CSI_CLK0/1P  
CSI_CLK0/1N  
1 UI  
6-5. Clock and Data Timing in HS Transmission  
Clock  
Lane  
Data Lane  
Dp/Dn  
TLPX  
THS-ZERO  
THS-SYNC  
Disconnect  
Terminator  
VOH  
THS-PREPARE  
VIH(min)  
VIL(max)  
VOL  
TREOT  
Capture  
1st Data Bit  
TD-TERM-EN  
THS-SKIP  
TEOT  
THS-TRAIL  
LP-11  
LP-11  
LP-01  
LP-00  
THS-SETTLE  
THS-EXIT  
LOW-POWER TO  
HIGH-SPEED  
TRANSITION  
START OF  
HS-ZERO TRANSMISSION  
SEQUENCE  
HIGH-SPEED TO  
HS-TRAIL LOW-POWER  
TRANSITION  
HIGH-SPEED DATA  
TRANSMISSION  
6-6. High-Speed Data Transmission Burst  
Disconnect  
Terminator  
Clock Lane  
Dp/Dn  
T
CLK-SETTLE  
T
T
EOT  
CLK-POST  
TCLK-TERM-EN  
T
CLK-MISS  
VIH(min)  
VIL(max)  
T
T
T
LPX  
T
T
CLK-PRE  
CLK-TRAIL  
HS-EXIT  
CLK-ZERO  
T
CLK-PREPARE  
Data Lane  
Dp/Dn  
T
HS-PREPARE  
Disconnect  
Terminator  
T
LPX  
VIH(min)  
VIL(max)  
T
HS-SKIP  
T
D-TERM-EN  
T
HS-SETTLE  
6-7. Switching the Clock Lane Between Clock Transmission and Low-Power Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
VVALID  
(internal Node)  
Vertical Blanking  
1st  
Line  
2nd  
Line  
Last  
Line  
HVALID  
(internal Node)  
CSI0_D[3:0]  
or  
CSI1_D[3:0]  
1 to 216  
t
LPX  
Line  
Packet  
Line  
Packet  
Line  
Packet  
Line  
Packet  
FS  
FE  
FS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
Frame  
Sync  
Packet  
Line  
Packet  
6-8. Long Line Packets and Short Frame Sync Packets  
Frame Blanking  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
6-9. CSI-2 General Frame Format  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 4  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 3  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-4  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 3  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 4  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 3  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
3 CSI-2 Data Lane Configuration  
EOT  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 2  
HS BYTES TRANSMITTED (n) IS 3 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 2  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-1  
EOT  
EOT  
4 CSI-2 Data Lane Configuration (default)  
2 CSI-2 Data Lane Configuration  
6-10. MIPI CSI-2 Data Lane Configuration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
6.10 Typical Characteristics  
6-11. Forward Channel Monitor Loop Through  
6-12. Back Channel Output Typical Waveform  
Typical Rx Waveform (CMLOUT)  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90UB954-Q1 is a versatile deserializer that aggregates up to two inputs acquired from a FPD-Link III  
stream and transmits the received data over a MIPI camera serial interface (CSI-2). When coupled with an  
ADAS FPD-Link III serializer (DS90UB953-Q1, DS90UB935-Q1, DS90UB933-Q1 or DS90UB913A-Q1), the  
DS90UB954-Q1 receives data streams from multiple sensors to be multiplexed on the same CSI-2 links. When  
paired with the DS90UB953-Q1 or the DS90UB935-Q1, the DS90UB954-Q1 operates at full features, and in  
backwards compatible mode with DS90UB933-Q1 serializer or DS90UB913A-Q1, operates with basic  
functionality.  
7-1. Serializer Compatibility  
Serializer  
DS90UB935-Q1  
DS90UB953-Q1  
DS90UB933-Q1  
DS90UB913A-Q1  
Compatibility  
Yes  
Yes  
Yes  
Yes  
7.1.1 Functional Description  
The DS90UB954-Q1 FPD-Link III Deserializer, in conjunction with an ADAS FPD-Link III serializer supports the  
video transport needs with an ultra-high speed forward channel and an embedded bidirectional control channel.  
The DS90UB954-Q1 received data is output from a configurable MIPI CSI-2 port. The CSI-2 port may be  
configured as either a single CSI-2 output with four lanes up to 1.662 Gbps per lane or as two 2 lane CSI-2  
outputs for sending replicated data on both ports. A second differential clock is available for the second  
replicated output when configured for dual CSI-2 outputs supporting one clock lane and one or two data lanes  
each. The DS90UB954-Q1 can support multiple data formats and different resolutions as provided by the  
sensor. Conversion between different data formats is not supported. The CSI-2 Tx module accommodates both  
image data and non-image data (including synchronization or embedded data packets).  
The DS90UB954-Q1 CSI-2 interface combines each of the sensor data streams into packets designated for  
each virtual channel. The output generated is composed of virtual channels to separate different streams to be  
interleaved. Each virtual channel is identified by a unique channel identification number in the packet header.  
When the DS90UB954-Q1 is paired with a DS90UB953-Q1 or DS90UB935-Q1 serializer, the received FPD-Link  
III forward channel is constructed in 40-bit long frames. Each encoded frame contains video payload data, I2C  
forward channel data, and additional information on framing, data integrity and link diagnostics. The high-speed,  
serial bit stream from the DS90UB953-Q1 or DS90UB935-Q1 contains an embedded clock and DC-balancing  
ensuring sufficient data line transitions for enhanced signal quality. When paired with ADAS serializers in RAW  
input mode, the received FPD-Link III forward channel is similarly constructed at a lower line rate in 28-bit long  
frames. The DS90UB954-Q1 device recovers a high-speed, FPD-Link III forward channel signal and generates a  
bidirectional control channel control signal in the reverse channel direction. The DS90UB954-Q1 converts the  
FPD-Link III stream into a MIPI CSI-2 output interface designed to support automotive sensors, including 2MP/  
60fps and 4MP/30fps image sensors .  
The DS90UB954-Q1 device has two receive input ports to accept up to two sensor streams simultaneously. The  
control channel function of the DS90UB95x-Q1 chipset provides bidirectional communication between the image  
sensors and ECU. The integrated bidirectional control channel transfers data bidirectionally over the same  
differential pair used for video data interface. This interface offers advantages over other chipsets by eliminating  
the need for additional wires for programming and control. The bidirectional control channel bus is controlled  
through an I2C port. The bidirectional control channel offers continuous low latency communication and is not  
dependent on video blanking intervals. The DS90UB95x-Q1 chipset can operate entirely off of the back channel  
frequency clock generated by the DS90UB954-Q1 and recovered by the DS90UB953-Q1 or DS90UB935-Q1.  
The DS90UB953-Q1 or DS90UB935-Q1 provides the reference clock source for the sensor based on the  
recovered back channel clock. Synchronous clocking mode provides distinct advantages in a multi-sensor  
system by locking all of the sensors and the receiver to a common reference in the same clock domain, which  
reduces or eliminates the need for data buffering and re-synchronization. This mode also eliminates the cost,  
space, and potential failure point of a reference oscillator within the sensor. The DS90UB95x-Q1 chipset offer  
customers the choice to work with different clocking schemes. The DS90UB95x-Q1 chipset can also use an  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
external oscillator as the reference clock source for the PLL or CSI CLK from the sensor as the primary  
reference clock to the serializer (see the DS90UB953-Q1 data sheet).  
7.2 Functional Block Diagram  
CDR  
4
CSI_CLK[0,1]  
RT  
RT  
8
7
CSI_DATA[3:0]  
GPIO[6:0]  
RIN0+  
RIN0œ  
XIN/REFCLK  
XOUT  
Clock  
Gen  
RIN1+  
RIN1œ  
CDR  
VDD_SEL  
PDB  
Timing and  
Control  
LDO  
MODE  
LDO  
LDO  
LDO  
IDX  
SDA  
SCL  
CMLOUTP  
CMLOUTN  
LOCK  
PASS  
Diagnostics  
BISTEN  
7-1. Functional Block Diagram  
7.3 Feature Description  
The DS90UB954-Q1 provides a flexible deserializer for automotive sensor applications. The device includes two  
FPD-Link III inputs for sensor data streams from one or two DS90UB953-Q1 or DS90UB935-Q1 serializers. The  
FPD-Link III interface is also backward compatible with DS90UB933-Q1 and DS90UB913A-Q1 ADAS  
serializers. Data received from the two input ports is aggregated onto a CSI-2 TX output with up to 4 data lanes.  
7.4 Device Functional Modes  
The DS90UB954-Q1 supports two main FPD-Link III operating modes:  
CSI-2 Mode (DS90UB953-Q1 and DS90UB935-Q1 compatible)  
RAW Mode (DS90UB913A-Q1 and DS90UB933-Q1 compatible)  
The two modes mainly control the FPD-Link III receiver operation of the device. In both cases, the output format  
for the device is CSI-2 through the CSI-2 transmit port.  
Each input port can be individually configured for CSI-2 or RAW modes of operation.  
The input mode of operation is controlled by the FPD3_MODE (Register 0x6D[1:0]) setting in the Port  
Configuration register. The input mode may also be controlled by the MODE strap pin.  
7.4.1 CSI-2 Mode  
When operating in CSI-2 FPD-Link III input mode (with DS90UB953-Q1 or DS90UB935-Q1), the DS90UB954-  
Q1 receives CSI-2 formatted data on one or two FPD-Link III input ports and forwards the data to the CSI-2  
transmit port. The deserializer can operate in CSI-2 mode with synchronous back channel reference or non-  
synchronous mode. The forward channel line rate is independent of the CSI-2 rate in synchronous or non-  
synchronous with external clock mode. Each CSI-2 mode supports remapping of Virtual Channel IDs at the input  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
of each receive port. This allows handling of conflicting VC-IDs for input streams from dual sensors and sending  
those streams to the same CSI-2 transmit port.  
In CSI-2 mode each deserializer Rx Port can support an FPD-Link line rate up to 4.16 Gbps, where the forward  
channel and back channel rates are based on the reference frequency used for the serializer:  
In Synchronous mode based on REFCLK input frequency reference, the FPD-Link line rate is a fixed value of  
160 × REFCLK. FPD3_PCLK = 4 × REFCLK and Back channel rate = 2 × REFCLK. For example with  
REFCLK = 25 MHz, line rate = 4.0 Gbps, FPD3_PCLK = 100 MHz, back channel data rate = 50 Mbps. The  
sensor CSI-2 rate is independent of the line rate and Tx CSI-2 rate in synchronous clocking mode and can be  
up to 3.328 Gbps.  
In Non-synchronous clocking mode when the DS90UB953-Q1 or DS90UB935-Q1 uses external reference  
clock (fCLKIN) the FPD-Link line rate is typically fCLKIN × 80, FPD3_PCLK = 2 × fCLKIN or 1 x fCLKIN and back  
channel data rate is set to 10 Mbps. For example, with fCLKIN = 50 MHz, line rate = 4Gbps, FPD3_PCLK =  
100 MHz, and the back channel rate is 10 Mbps. The sensor CSI-2 rate is independent of the fCLKIN  
.
7.4.2 RAW Mode  
When operating in Raw FPD-Link III input mode, the DS90UB954-Q1 receives RAW10 or RAW12 data from a  
DS90UB9x3x-Q1 serializer. The data is translated into a RAW10 or RAW12 CSI-2 video stream for forwarding to  
the CSI-2 transmit port. For each input port, the CSI-2 packet header VC-ID and Data Type are programmable.  
DVP RAW8 data format is also supported in serializer RAW10 transmit mode with 8/10 data input bits (MSB or  
LSB) connected to the serializer DVP source. DVP format serializer inputs must have discrete synch signals.  
When paired with DS90UB913A-Q1 or DS90UB933-Q1 serializers, the DS90UB954-Q1 utilizes the HSYNC and  
VSYNC inputs to construct the MIPI CSI-2 Tx data packets. Ensure the Frame Valid to Line Valid setup time is  
configured appropriately for DVP input system use cases as a minimum setup timing is required as per 7-11.  
In RAW mode the DS90UB954-Q1 deserializer each Rx Port can support up to:  
12 bits of DATA + 2 SYNC bits for an input PCLK range of 37.5 MHz to 100 MHz (75 MHz for 913A-Q1) in the  
12-bit, high frequency mode. Line rate = fPCLK × (2/3) × 28; for example, fPCLK = 100 MHz, line rate = (100  
MHz) × (2/3) × 28 = 1.87 Gbps. Note: No HS/VS restrictions (raw).  
10 bits of DATA + 2 SYNC bits for an input PCLK range of 50 MHz to 100 MHz in the 10-bit mode. Line rate =  
fPCLK/2 × 28; for example, fPCLK = 100 MHz, line rate = (100 MHz/2) × 28 = 1.40 Gbps. Note: HS/VS is  
restricted to no more than one transition per 10 PCLK cycles.  
12 bits of DATA + 2 bits SYNC for an input PCLK range of 25 MHz to 50 MHz in the 12-bit low frequency  
mode. Note: No HS/VS restrictions (raw).  
When operating with DVP serializer, the DS90UB954-Q1 deserializer also supports DVP formats such as  
YUV-422 which have the same pixel packing as RAW8, RAW10 or RAW12. For example; there are 3 YUV CSI-2  
data types that have the same pixel packing as RAW10: YUV420 10 bit, YUV420 10 bit Chroma shifted or  
YUV422 10bit. These formats can be used as well as 8 bit and 12 bit YUV formats which adhere to the same  
structure as RAW8 and RAW12 respectively.  
7.4.3 RX MODE Pin  
Configuration of the FPD-Link III operating input mode may be done through the MODE input strap pin, or  
through the configuration register bits. A pullup resistor and a pull-down resistor of suggested values may be  
used to set the voltage ratio of the MODE input (VTARGET) and V(VDD18) to select one of the 8 possible selected  
modes. The DS90UB954-Q1 waits 1 ms after PDB goes high to allow time for power supply transients before  
sampling the MODE pin strap value and configuring the device to set the I2C address. Possible configurations  
are:  
CSI-2 input Rx REFCLK mode  
12-bit HF / 12-bit LF / 10-bit DVP Rx modes  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
VDD18  
R
HIGH  
MODE  
or IDX  
V
TARGET  
R
LOW  
Deserializer  
GND  
7-2. Strap Pin Connection Diagram  
7-2. Strap Configuration Mode Select  
VTARGET STRAP SUGGESTED STRAP RESISTORS (1%  
VTARGET VOLTAGE RANGE  
MODE  
NO.  
VOLTAGE  
VDD18 = 1.8 V  
0
TOL)  
RX MODE  
VMIN  
VTYP  
VMAX  
RHIGH (k)  
RLOW (k)  
0
0
0
0.131 × V(VDD18)  
OPEN  
10.0  
CSI-2 non-  
synchronous Back  
Channel  
1
2
3
4
0.179 × V(VDD18)  
0.642 × V(VDD18)  
0.296 × V(VDD18)  
0.761 × V(VDD18)  
0.412 × V(VDD18)  
0.876 × V(VDD18)  
0.525 × V(VDD18)  
0.213 × V(VDD18)  
0.673 × V(VDD18)  
0.330 × V(VDD18)  
0.792 × V(VDD18)  
0.443 × V(VDD18)  
V(VDD18)  
0.247 × V(VDD18)  
0.704 × V(VDD18)  
0.362 × V(VDD18)  
0.823 × V(VDD18)  
0.474 × V(VDD18)  
V(VDD18)  
0.374  
1.202  
0.582  
1.420  
0.792  
1.8  
88.7  
39.2  
75.0  
25.5  
71.5  
10.0  
78.7  
23.2  
78.7  
35.7  
95.3  
56.2  
OPEN  
97.6  
RAW12 LF  
RAW12 HF  
RAW10  
0.559 × V(VDD18)  
0.592 × V(VDD18)  
0.995  
CSI-2 Synchronous  
Back Channel  
The strapped values can be viewed and modified in the following locations:  
RX Mode Port Configuration FPD3_MODE (Register 0x6D[1:0])  
Clock Mode Device Status and CSI_PLL_CTL (Register bits 0x04[4] and 0x1F[1:0])  
7.4.4 REFCLK  
A valid 23-MHz to 26-MHz reference clock is required on the REFCLK pin 5 for precise frequency operation. The  
REFCLK frequency defines all internal clock timers, including the back channel rate, I2C timers, CSI-2 datarate,  
FrameSync signal parameters, and other timing critical internal circuitry. REFCLK input must be continuous. If  
the REFCLK input does not detect a transition more than 20 µS, this may cause a disruption in the CSI-2 output.  
REFCLK should be applied to the DS90UB954-Q1 only when the supply rails are above minimum levels (see 节  
9.2). At start-up, the DS90UB954-Q1 defaults to an internal oscillator to generate an backup internal reference  
clock at nominal frequency of 25 MHz ±10%.  
The REFCLK LVCMOS input oscillator specifications are listed in 7-3.  
7-3. REFCLK Oscillator Specifications  
PARAMETER  
REFERENCE CLOCK  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
±50  
±50  
ppm  
ppm  
Frequency tolerance  
Frequency stability  
Amplitude  
40°C TA 105°C  
Aging  
800  
1200  
50%  
V(VDDIO)  
60%  
6
mVp-p  
Symmetry  
Duty Cycle  
40%  
ns  
Rise and fall time  
Jitter  
10% 90%  
50  
25  
200  
ps p-p  
MHz  
200 kHz 10 MHz  
Frequency  
23  
26  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-3. REFCLK Oscillator Specifications (continued)  
PARAMETER  
TEST CONDITIONS  
Center Spread  
Down Spread  
MIN  
-0.5  
-1  
TYP  
MAX  
+0.5  
0
UNIT  
%
Spread-spectrum clock modulation percentage  
Spread-spectrum clock modulation frequency  
%
33  
KHz  
7.4.5 Crystal Recommendations  
A 25-MHz, parallel, 18-pF load crystal resonator should be used if a crystal source is desired. 7-3 shows a  
typical connection for a crystal resonator circuit. The load capacitor values will vary with the crystal vendors;  
check with the vendor for the recommended loads.  
XIN  
XOUT  
R1  
CL1  
CL2  
7-3. Crystal Oscillator Circuit  
As a starting point for evaluating an oscillator circuit, if the requirements for the crystal are not known, CL1 and  
CL2 should be set at 27 pF and R1 should be set at 0 Ω. Specification for 25-MHz crystal are listed in 7-4.  
7-4. 25 MHz Crystal Specifications  
PARAMETER  
REFERENCE CLOCK  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Frequency  
25  
MHz  
ppm  
Across operational temperature and  
aging  
Frequency Tolerance and Stability  
±100  
7.4.6 Receiver Port Control  
The DS90UB954-Q1 can support single or dual simultaneous inputs to Rx port 0 and Rx port 1. The Receiver  
port control register RX_PORT_CTL 0x0C (7-31) allows for disabling one or both of the Rx inputs when not in  
use. These bits can only be written by a local I2C controller at the deserializer side of the FPD-Link.  
Each FPD-Link III Receive port has a unique set of registers that provides control and status corresponding to  
Rx port 0 or Rx port 1. Control of the FPD-Link III port registers is assigned by the FPD3_PORT_SEL register,  
which sets the page controls for reading or writing individual ports unique registers. For each of the FPD-Link III  
Receive Ports, the FPD3_PORT_SEL 0x4C register defaults to selecting that ports registers as detailed in  
register description (7-86).  
As an alternative to paging to access FPD-Link III Receive unique port registers, separate I2C addresses may  
be enabled to allow direct access to the port-specific registers. The Port I2C address registers allow  
programming a separate 7-bit I2C address to allow access to unique, port-specific registers without paging. I2C  
commands to these assigned I2C addresses are also allowed access to all shared registers (see 7-179).  
7.4.6.1 Video Stream Forwarding  
Video stream forwarding is handled by the Rx Port forwarding control in register 0x20 (see 7.6.33).  
Forwarding from input ports are disabled by default and must be enabled using per-port controls. Different  
options for forwarding CSI-2 packets can also be selected as described starting in 7.4.28.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.7 LOCK and PASS Status  
The DS90UB954-Q1 provides dedicated PASS and LOCK outputs for monitoring status as well as through the  
DEVICE_STS register (address 0x04).The source of the deserializer LOCK and PASS signals for pin monitoring  
and interrupt operation is also controlled by the LOCK_SEL and PASS_SEL fields in the RX_PORT_CTL  
register. The source of the LOCK and PASS can be allocated to either of the following system use cases: 00:  
Port 0 Receiver, 01: Port 1 Receiver, 10: Any Enabled Receiver Port (Logical OR), and 11: All Enabled Receiver  
Ports (logical AND). At start-up, the deserializer will synchronize with the input signal provided by the serializer  
and assert the LOCK indication once stable. The lock detect circuit includes an option to check for link bit errors  
as part of the lock detection and determine if LOCK is lost. The Receive Port Lock status is available for each  
port through the RX_PORT_STS1 register 0x4D. The LOCK status may also be used to enable video forwarding  
and other options. I2C communication across the FPD-Link should be attempted only during LOCK condition.  
In RAW12 HF mode, the LOCK pin is only high if there is a link with a serializer that has an active PCLK input.  
LOCK is low if there is a serializer connected and there is a link established using the internal oscillator of the  
serializer. Therefore, when using this mode, it is preferred to use the port-specific LOCK_STS register (0x4D[0]),  
which is high when linked to a serializer with internal oscillator. This LOCK_STS signal can also be an output to  
a GPIO pin for monitoring in real time. Once LOCK_STS is high for a specific port, remote I2C is available to that  
serializer. In RAW 10-bit mode, the LOCK pin is high when there is a link with a serializer regardless of whether  
there is an active PCLK input. The port-specific LOCK_STS register is also valid in either of these modes.  
If the deserializer loses LOCK, the receiver will reset and perform the LOCK algorithm again to reacquire the  
serial data stream sent by the serializer. The receive port will truncate video frames containing errors and  
resume forwarding the video when LOCK is re-established.  
The Receive port will indicate Pass status once specific conditions are met, including a number of valid frames  
received. Valid frames may include requiring no link bit errors and consistent frame size including video line  
length or number of video lines. The receive port may be programmed to truncate video frames containing errors  
and prevent the forwarding of video until the Pass conditions are met.  
7.4.8 Input Jitter Tolerance  
Input jitter tolerance is the ability of the Clock and Data Recovery (CDR) Phase-Lock Loop ( PLL) of the receiver  
to track and recover the incoming serial data stream. Jitter tolerance at a specific frequency is the maximum jitter  
permissible before data errors occur. The following shows the allowable total jitter of the receiver inputs and  
must be less than the values in the chart.  
Amplitude  
(UI p-p)  
A1  
A2  
Ö (MHz)  
Ö1  
Ö2  
7-4. Input Jitter Tolerance Plot  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-5. Input Jitter Tolerance Limit  
JITTER AMPLITUDE (UI p-p)  
INTERFACE  
FREQUENCY (MHz) (1)  
A1  
A2  
ƒ1  
FPD3_PCLK / 80  
ƒ2  
FPD-Link III  
1
0.4  
FPD3_PCLK / 15  
(1) FPD3_PCLK is proportional to REFCLK, CSI-2 or PCLK frequency based on the operating MODE (7.4):  
CSI-2 mode: 4×REFCLK or CSI-2 CLK/4 (typ)  
RAW 10-bit mode: PCLK_Freq. / 2  
RAW 12-bit HF mode: PCLK_Freq. x 2/3  
7.4.9 Adaptive Equalizer  
The FPD-Link III receiver inputs incorporates an adaptive equalizer (AEQ), to compensate for signal degradation  
from the communications channel and interconnect components. Each RX port signal path continuously  
monitors cable characteristics for long-term cable aging and temperature changes. The AEQ is primarily  
intended to adapt and compensate for channel losses over the lifetime of a cable installed in an automobile. The  
AEQ attempts to optimize the equalization setting of the RX receiver. This adaption includes compensating  
insertion loss from temperature effects and aging degradation due to bending and flexion. To determine the  
maximum cable reach, factors that affect signal integrity such as jitter, skew, inter-symbol interference (ISI),  
crosstalk, and so forth, must also be considered. The equalization configuration and status are programmed in  
registers 0xD20xD3 (see 7-159).  
7.4.9.1 Adaptive Equalizer Algorithm  
The AEQ process steps through allowed values of the equalizer controls find a value that allows the Clock Data  
Recovery (CDR) circuit to maintain valid lock condition. For each EQ setting, the circuit waits for a programmed  
re-lock time period, then checks results for valid lock. If valid lock is detected, the circuit will stop at the current  
EQ setting and maintain constant value as long as lock state persists. If the deserializer loses LOCK, the  
adaptive equalizer will resume the LOCK algorithm and the EQ setting is incremented to the next valid state.  
Once lock is lost, the circuit will continue searching EQ settings to find a valid setting to reacquire the serial data  
stream sent by the serializer that remains locked.  
7.4.9.2 AEQ Settings  
7.4.9.2.1 AEQ Start-Up and Initialization  
The AEQ circuit can be restarted at any time by setting the AEQ_RESTART bit in the AEQ_CTL2 register 0xD2  
(see 7-159). Once the deserializer is powered on, the AEQ is continually searching through EQ settings and  
could be at any setting when signal is supplied from the serializer. If the Rx Port CDR locks to the signal, it may  
be good enough for low bit errors, but could be not optimized or over-equalized. The DS90UB954-Q1 when  
connected to a ADAS serializer (DS90UB953-Q1, DS90UB935-Q1, DS90UB933-Q1, or DS90UB913A-Q1) will  
by default restart the AEQ adaption upon achieving first positive lock indication to provide more consistent start-  
up from known conditions. With this feature disabled, the AEQ may lock at a relatively random EQ setting based  
on when the FPD-Link III input signal is initially present. Alternatively, AEQ_RESTART or DIGITAL_RESET0  
could be applied once the ADAS serializer input signal frequency is stable to restart adaption from the minimum  
EQ gain value. These techniques allow for a more consistent initial EQ setting following adaption.  
7.4.9.2.2 AEQ Range  
AEQ Min/Max settings: The AEQ circuit can be programmed with minimum and maximum settings used during  
the EQ adaption. Using the full AEQ range will provide the most flexible solution, however if the channel  
conditions are known an improved deserializer lock time can be achieved by narrowing the search window for  
allowable EQ gain settings. For example in a system use case with a longer cable and multiple interconnects  
creating higher channel attenuation, the AEQ would not adapt to the minimum EQ gain settings. Likewise in a  
system use case with short cable and low channel attenuation AEQ would not generally adapt to the highest EQ  
gain settings. The AEQ range is determined by the AEQ_MIN_MAX register 0xD5 (see 7.6.144) where  
AEQ_MAX sets the maximum value of EQ gain. The ADAPTIVE_EQ_FLOOR_VALUE determines the starting  
value for EQ gain adaption. To enable the minimum AEQ limit, SET_AEQ_FLOOR bit in the AEQ_CTL2 register  
0xD2[2] must also be set. An AEQ range (AEQ_MAX - AEQ_FLOOR) to allow a variation around the nominal  
setting of 2/+4 or ±3 around the nominal AEQ value specific to Rx port channel characteristics provides a good  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
trade off in lock time and adaptability. The setting for the AEQ after adaption can be readback from the  
AEQ_STATUS register 0xD3 (see 7.6.142).  
7.4.9.2.3 AEQ Timing  
The dwell time for AEQ to wait for lock or error free status is also programmable. When checking each EQ  
setting the AEQ will wait for a time interval, controlled by the ADAPTIVE_EQ_RELOCK_TIME field in the  
AEQ_CTL2 register (see 7-159) before incrementing to the next allowable EQ gain setting. The default wait  
time is set to 2.62 ms based on REFCLK = 25 MHz. Once the maximum setting is reached, if there is no lock  
acquired during the programmed relock time, the AEQ will restart adaption at the minimum setting or  
AEQ_FLOOR value.  
7.4.9.2.4 AEQ Threshold  
The DS90UB954-Q1 receiver will by default adapt based on FPD-Link error checking during the Adaptive  
Equalization process. The specific errors linked to equalizer adaption, FPD-Link III clock recovery error, packet  
encoding error, and parity error can be individually selected in AEQ_CTL1 register 0x42 (see 7.6.63). Errors  
are accumulated over 1/2 of the period of the timer set by the ADAPTIVE_EQ_RELOCK_TIME. If the number of  
errors is greater than the programmed threshold (AEQ_ERR_THOLD), the AEQ will attempt to increase the EQ  
setting.  
7.4.10 Channel Monitor Loop-Through Output Driver (CMLOUT)  
The DS90UB954-Q1 includes an internal Channel Monitor Loop-through output on the CMLOUTP and  
CMLOUTN pins. A buffered loop-through output driver is provided on the CMLOUTP and CMLOUTN for  
observing jitter after equalization for each of the two RX receive channels. The CMLOUT monitors the post EQ  
stage thus providing the recovered input of the deserializer signal. The measured serial data width on the  
CMLOUT loop-through is the total jitter including the internal driver, AEQ, back channel echo, and so forth. Each  
channel also has its own CMLOUT monitor and can be used for debug purposes. This CMLOUT is useful in  
identifying gross signal conditioning issues.  
7-7 includes details on selecting the corresponding RX receiver of CMLOUTP and CMLOUTN configuration.  
To disable the CMLOUT, either follow the instructions in table to reload register default values, or reset the  
DS90UB954-Q1.  
7-6. CML Monitor Output Driver  
PARAMETER  
TEST CONDITIONS  
RL = 100 Ω  
(7-5)  
PIN  
MIN  
TYP  
MAX UNIT  
Differential Output Eye  
Opening  
CMLOUTP,  
CMLOUTN  
EW  
0.45  
UI(1)  
(1) UI Unit Interval is equivalent to one ideal serialized FPD-Link III data bit width. The UI scales with serializer input PCLK frequency.  
Refer to the serializer datasheets for more PCLK information  
CSI-2 mode: 1 UI = 1 / (PCLK_Freq x 40) (typical)  
10-bit mode: 1 UI = 1 / ( PCLK_Freq. / 2 × 28)  
12-bit HF mode: 1 UI = 1 / ( PCLK_Freq. × 2 / 3 × 28)  
12-bit LF mode: 1 UI = 1 / ( PCLK_Freq. × 28)  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
VOD (+)  
Ew  
0V  
VOD (-)  
t
(1 UI)  
BIT  
7-5. CMLOUT Output Driver  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-7. Channel Monitor Loop-Through Output Configuration  
FPD-Link III RX Port 0  
FPD-Link III RX Port 1  
0xB0 = 0x14; 0xB1 = 0x00; 0xB2 = 0x80  
ENABLE MAIN LOOP-THROUGH DRIVER  
SELECT CHANNEL MUX  
0xB1 = 0x03; 0xB2 = 0x28  
0xB1 = 0x04; 0xB2 = 0x28  
0xB1 = 0x02; 0xB2 = 0x20  
0xB1 = 0x02; 0xB2 = 0xA0  
0xB0 = 0x04; 0xB1 = 0x0F; 0xB2 0xB0 = 0x08; 0xB1 = 0x0F; 0xB2  
SELECT RX PORT  
= 0x01  
= 0x01  
0xB1 = 0x10; 0xB2 = 0x02  
0xB1 = 0x10; 0xB2 = 0x02  
0xB0 = 0x14; 0xB1 = 0x00; 0xB2 = 0x00  
DISABLE MAIN LOOP-THROUGH DRIVER  
DESELECT CHANNEL MUX  
DESELECT RX PORT  
0xB1 = 0x03 ; 0xB2 = 0x08  
0xB1 = 0x04; 0xB2 = 0x08  
0xB1 = 0x02; 0xB2 = 0x20  
0xB1 = 0x02; 0xB2 = 0x20  
0xB0 = 0x04; 0xB1 = 0x0F; 0xB2 0xB0 = 0x08; 0xB1 = 0x0F; 0xB2  
= 0x00  
= 0x00  
0xB1 = 0x10; 0xB2 = 0x00  
0xB1 = 0x10; 0xB2 = 0x00  
7.4.10.1 Code Example for CMLOUT FPD-Link III RX Port 0:  
WriteI2C(0xB0,0x14)  
WriteI2C(0xB1,0x00)  
WriteI2C(0xB2,0x80)  
WriteI2C(0xB1,0x03)  
WriteI2C(0xB2,0x28)  
WriteI2C(0xB1,0x04)  
WriteI2C(0xB2,0x28)  
#
WriteI2C(0xB1,0x02)  
WriteI2C(0xB2,0x20)  
#
WriteI2C(0xB0,0x04)  
WriteI2C(0xB1,0x0F)  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB1,0x10)  
WriteI2C(0xB2,0x02)  
# FPD-Link III RX Shared, page 0  
# Offset 0  
# Enable loop through driver  
#
#
#
#
#
#
# Offset 4  
#
#
#
# Enable CML data output  
7.4.11 RX Port Status  
In addition to the Lock and PASS indications, the deserializer is able to monitor and detect several other RX port-  
specific conditions and interrupt states. This information is latched into the RX port status registers  
RX_PORT_STS1 (0x4D) and RX_PORT_STS2 (0x4E). There are bits to flag any change in LOCK status  
(LOCK_STS_CHG) or detect any errors in the control channel over the forward link (BCC_CRC_ERROR,  
BCC_SEQ_ERROR) which are cleared upon read. The Rx Port status registers also allow the user to monitor  
the presence of the stable input signal, along with parity and CRC errors, line length, and lines per video frame.  
7.4.11.1 RX Parity Status  
The FPD-Link III receiver checks the decoded data parity to detect any errors in the received FPD-Link III frame.  
Parity errors are counted up and accessible through the RX_PAR_ERR_HI and RX_PAR_ERR_LO registers  
0x55 and 0x56 to provide combined 16-bit error counter. In addition, a parity error flag can be set once a  
programmed number of parity errors have been detected. This condition is indicated by the PARITY_ERROR  
flag in the RX_PORT_STS1 register. Reading the counter value will clear the counter value and  
PARITY_ERROR flag. An interrupt may also be generated based on assertion of the parity error flag. By default,  
the parity error counter will be cleared and the flag will be cleared on loss of Receiver lock. To ensure an exact  
read of the parity error counter, parity checking should be disabled in the GENERAL_CFG register 0x02 before  
reading the counter.  
7.4.11.2 FPD-Link Decoder Status  
The FPD-Link III receiver also checks the decoded data for encoding or sequence errors in the received FPD-  
Link III frame. If either of these error conditions are detected the FPD3_ENC_ERROR bit will be latched in the  
RX_PORT_STS2 register 0x4E[5]. An interrupt may also be generated based on assertion of the encoded error  
flag. To detect FPD-Link III Encoder errors, the LINK_ERROR_COUNT must be enabled with a  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
LINK_ERR_THRESH value greater than 1. Otherwise, the loss of Receiver Lock will prevent detection of the  
Encoder error. The FPD3_ENC_ERROR flag is cleared on read.  
When partnered with a DS90UB953-Q1 or DS90UB935-Q1, the FPD3 Encoder may be configured to include a  
CRC check of the FPD3 encoder sequence. The CRC check provides an extra layer of error checking on the  
encoder sequence. This CRC checking adds protection to the encoder sequence used to send link information  
comprised of Datapath Control (registers 0x59 and 0x5A), Sensor Status (registers 0x51-0x54), and Serializer ID  
(register 0x5B). TI recommends enabling the CRC error checking on the FPD3 Encoder sequence to prevent  
any updates of link information values from encoded packets that do not pass CRC check. The FPD3 Encoder  
CRC is enabled by setting the FPD3_ENC_CRC_DIS (register 0xBA[7] 7-151) to 0. In addition, the  
FPD3_ENC_CRC_CAP flag should be set in register 0x4A[4] (see 7.6.66).  
7.4.11.3 RX Port Input Signal Detection  
The DS90UB954-Q1 can detect and measure the approximate input frequency and frequency stability of each  
RX input port and indicate status in bits [2:1] of RX_PORT_STS2. Frequency measurement stable  
FREQ_STABLE indicates the FPD-Link III input clock frequency is stable. When no FPD-Link III input clock is  
detected at the RX input port the CABLE_FAULT bit indicates that condition has occurred. Setting of these error  
flags is dependent on the stability control settings in the FREQ_DET_CTL register 0x77. The CABLE_FAULT bit  
will be set if the input frequency is below the setting programmed in the FREQ_LO_THR setting in the  
FREQ_DET_CTL register. A change in frequency FREQ_STABLE = 0, is defined as any change in MHz greater  
than the value programmed in the FREQ_HYST value. The frequency is continually monitored and provided for  
readback through the I2C interface less than every 1 ms. A 16-bit value is used to provide the frequency in units  
of 2 to 8 MHz. An interrupt can also be generated for any of the ports to indicate if a change in frequency is  
detected on any port.  
7.4.11.4 Line Counter  
For each video frame received, the deserializer will count the number of video lines in the frame. In CSI-2 input  
mode, any long packet will be counted as a video line. In RAW mode, any assertion of the Line Valid (LV) signal  
will be interpreted as a video line. The LINE_COUNT_1 and LINE_COUNT_0 registers in 0x73 and 0x74 can be  
used to read the line count for the most recent video frame. Line Length may not be consistent when receiving  
multiple CSI-2 video streams differentiated by VC-ID. An interrupt may be enabled based on a change in the  
LINE_COUNT value. If interrupts are enabled, the LINE_COUNT registers will be latched at the interrupt and  
held until read back by the processor through I2C.  
7.4.11.5 Line Length  
For each video line, the length (in bytes) will be determined. The LINE_LEN_1 and LINE_LEN_0 registers 0x75  
and 0x76 can be used to read the line count for the most recent video frame. If the line length is not stable  
throughout the frame, the length of the last line of the frame will be reported. Line Count may not be consistent  
when receiving multiple CSI-2 video streams differentiated by VC-ID. An interrupt may be enabled based on a  
change in the LINE_LEN value. If interrupts are enabled, the LINE_LEN registers will be latched at the interrupt  
and held until read by the processor through I2C.  
7.4.12 Sensor Status  
When paired with the DS90UB935-Q1 or DS90UB953-Q1 serializer, the DS90UB954-Q1 is capable of receiving  
diagnostic indicators from the serializer. The sensor alarm and status diagnostic information are reported in the  
SENSOR_STS_X registers (0x51 to 0x54 in 7-92). The interrupt capability from detected status changes in  
sensor are described in 7.5.8.2.2. Sensor Status This interrupt condition will be cleared by reading the  
SEN_INT_RISE_STS and SEN_INT_FALL_STS registers (registers 0xDE and 0xDF).  
7.4.13 GPIO Support  
In addition to the dedicated LOCK and PASS output pins, the DS90UB954-Q1 supports seven pins, GPIO0  
through GPIO6, which can be monitored, configured, and controlled through I2C in registers 0x0E - 0x16. GPIO3  
programmable I/O pin is an active-low open drain and is shared with INTB. The current status of all GPIO can be  
readback from register 0x0E. Each GPIO is programmable for multiple uses options through the  
GPIOx_PIN_CTL registers 0x10 - 0x16.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.13.1 GPIO Input Control and Status  
Upon initialization GPIO0 through GPIO6 are enabled as inputs by default. Each GPIO pin has an input disable  
and a pulldown disable control bit, with the exception of GPIO3 which is open drain. By default, the GPIO pin  
input paths are enabled and the internal pulldown circuit for the GPIO is enabled. The GPIO_INPUT_CTL (0x0F)  
and GPIO_PD_CTL (0xBE) registers allow control of the input enable and the pulldown, respectively. For  
example, to disable GPIO1 and GPIO2 as inputs the user would program in register 0x0F[2:1] = 11. For most  
applications, there is no need to modify the default register settings for the pulldown resistors. The status HIGH  
or LOW of each GPIO pin 0 through 6 may be read through the GPIO_PIN_STS register 0x0E. This register  
read operation provides the status of the GPIO pin independent of whether the GPIO pin is configured as an  
input or output.  
7.4.13.2 GPIO Output Pin Control  
Individual GPIO output pin control is programmable through the GPIOx_PIN_CTL registers 0x10 to 0x16 (表  
7-35). To enable any of the GPIO as output, set bit 0 = 1 in the respective register 0x10 to 0x16 after clearing the  
corresponding input enable bit in register 0x0F (7-34). The configuration register for each GPIO is listed in 表  
7-8.  
7.4.13.3  
7-6. GPIOx Register Content (0x10 - 0x16)  
7
6
5
4
3
2
1
0
GPIOX_OUTPUT_SEL[2:0]  
GPIOX_OUT_SRC[2:0]  
GPIOX_OUT_V GPIOX_OUT_E  
AL  
N
7-8. GPIOx Output Function Programming  
GPIOX OUTPUT  
SOURCE SELECT  
GPIOX_OUT_SRC[2:0]  
GPIOX OUTPUT  
FUNCTION SELECT  
GPIOX_OUTPUT_SE  
L[2:0]  
GPIOX OUTPUT  
VALUE  
(GPIOX_OUT_VAL)  
GPIO OUTPUT  
ENABLE  
(GPIOX_OUT EN)  
GPIO OUTPUT FUNCTION  
OUTPUT  
VALUE  
SIGNAL  
SOURCE  
No output.  
GPIO is  
GPIOX output disabled  
X
Disabled or  
set to input  
mode  
X
X
0
GPIOX linked to Forward channel received  
GPIO0 from RX Port 0 Serializer  
000  
001  
010  
011  
X
X
X
X
1
1
1
1
GPIOX linked to Forward channel received  
GPIO1 from RX Port 0 Serializer  
GPIOX linked to Forward channel received  
GPIO2 from RX Port 0 Serializer  
000  
RX Port 0  
GPIOX linked to Forward channel received  
GPIO3 from RX Port 0 Serializer  
RX Port 0 Lock indication  
RX Port 0 Pass indication  
RX Port 0 Frame Valid signal  
RX Port 0 Line Valid signal  
100  
101  
110  
111  
X
X
X
X
1
1
1
1
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-8. GPIOx Output Function Programming (continued)  
GPIOX OUTPUT  
SOURCE SELECT  
GPIOX_OUT_SRC[2:0]  
GPIOX OUTPUT  
FUNCTION SELECT  
GPIOX_OUTPUT_SE  
L[2:0]  
GPIOX OUTPUT  
VALUE  
(GPIOX_OUT_VAL)  
GPIO OUTPUT  
ENABLE  
(GPIOX_OUT EN)  
GPIO OUTPUT FUNCTION  
OUTPUT  
VALUE  
SIGNAL  
SOURCE  
GPIOX linked to Forward channel received  
GPIO0 from RX Port 1 Serializer  
000  
001  
010  
011  
X
X
X
X
1
1
1
1
GPIOX linked to Forward channel received  
GPIO1 from RX Port 1 Serializer  
GPIOX linked to Forward channel received  
GPIO2 from RX Port 1 Serializer  
001  
RX Port 1  
GPIOX linked to Forward channel received  
GPIO3 from RX Port 1 Serializer  
RX Port 1 Lock indication  
RX Port 1 Pass indication  
RX Port 1 Frame Valid signal  
RX Port 1 Line Valid signal  
Reserved  
100  
101  
110  
111  
X
X
X
X
X
X
1
1
1
1
X
010  
Reserved  
Set GPI0X = LOW value programmed by  
register  
000  
000  
001  
010  
011  
0
1
1
1
1
1
1
Set GPIOX = HIGH value programmed by  
register  
Logical OR of Lock indication from enabled  
RX ports  
X
X
X
Logical AND of Lock indication from  
enabled RX ports  
100  
Device Status  
Logical AND of Pass indication from  
enabled RX ports  
FrameSync signal (internal or external)  
Device interrupt active high  
Device interrupt active low  
100  
101  
110  
111  
000  
001  
X
X
X
X
X
X
1
1
1
X
1
1
Reserved  
100  
101  
Reserved  
Pass (AND of selected RX port status)  
Pass (OR of selected RX port status)  
Frame Valid signal corresponding to video  
frame recovered at deserializer (Note)  
Insert cross reference  
010  
X
1
CSI-2 Tx Port  
Line Valid signal corresponding to video  
frame recovered at deserializer (Note)  
Insert cross reference  
011  
100  
X
X
1
1
RX Ports synchronized, RX Port 0  
synchronized with RX Port 1  
:CSI-2 TX Port Interrupt active high  
101  
110  
111  
X
X
X
X
X
X
1
X
X
X
X
Reserved  
Reserved  
Reserved  
Reserved  
101  
101  
110  
111  
Reserved  
Reserved  
Reserved  
Reserved  
X
7.4.13.4 Forward Channel GPIO  
The DS90UB954-Q1 has seven GPIO pins that can output data received from the forward channel when paired  
with the DS90UB935-Q1 or DS90UB953-Q1 serializer. The remote Serializer GPIO are mapped to GPIO. Each  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
GPIO pin can be programmed for output mode and mapped. Up to four GPIOs are supported in the forward  
direction on each FPD-Link III Receive port (see 7-99). Each forward channel GPIO (from any port) can be  
mapped to any GPIO output pin. The DS90UB933-Q1 and DS90UB913A-Q1 GPIOs cannot be configured as  
inputs for remote communication over the forward channel to the DS90UB954-Q1.  
The timing for the forward channel GPIO is dependant on the number of GPIOs assigned at the serializer. When  
a single GPIO input from the DS90UB953-Q1 or DS90UB935-Q1 serializer is linked to a DS90UB954-Q1  
deserializer, the GPIO output value is sampled every forward channel transmit frame. Two linked GPIO are  
sampled every two forward channel frames and three or four linked GPIO are sampled every five frames. The  
typical minimum latency for the GPIO remains consistent (approximately 225 ns), but as the information gets  
spread over multiple frames, the jitter is typically increased on the order of the sampling period (number of  
forward channel frames). TI recommends maintaining a 4x oversampling ratio for linked GPIO throughput. For  
example, when operating in 4-Gbps synchronous mode with REFCLK = 25 MHz, the maximum recommended  
GPIO input frequency based on the number of GPIO linked over the forward channel is shown in 7-9.  
7-9. Forward Channel GPIO Typical Timing  
NUMBER OF LINKED  
FORWARD CHANNEL GPIOs  
(FC_GPIO_EN 7-99)  
SAMPLING FREQUENCY (MHz)  
AT FPD-Link III LINE RATE = 4  
Gbps  
MAXIMUM RECOMMENDED  
FORWARD CHANNEL GPIO  
FREQUENCY (MHz)  
TYPICAL JITTER (ns)  
1
2
4
100  
50  
25  
12.5  
5
12  
24  
60  
20  
In addition to mapping remote serializer GPI, an internally generated FrameSync (see 7.4.27) or other control  
signals may be output from any of the deserializer GPIOs for synchronization with a local processor or another  
deserializer.  
7.4.13.5 Back Channel GPIO  
Each DS90UB954-Q1 GPIO pin defaults to input mode at start-up. The deserializer can link GPIO pin input data  
on up to four available slots to send on the back channel per each remote serializer connection. Any of the  
seven GPIO pin data can be mapped to send over the available back channel slots for each FPD-Link III Rx port.  
The same GPIO on the deserializer pin can be mapped to multiple back channel GPIO signals. For each 50-  
Mbps back channel operation, the frame period is 600 ns (30 bits × 20 ns/bit). For 2.5-Mbps back channel  
operation, the frame period is 12 µs (30 bits × 400 ns/bit). As the back channel GPIOs are sampled and sent  
each back channel frame by the DS90UB954-Q1 deserializer, the latency and jitter timing are each on the order  
of one back channel frame. The back channel GPIO is effectively sampled at a rate of 1/30 of the back channel  
rate or 1.67 MHz at fBC = 50 Mbps. TI recommends that the input to back channel GPIO switching frequency is <  
1/4 of the sampling rate or 416 kHz at fBC = 50 Mbps. For example, when operating in 4-Gbps synchronous  
mode with REFCLK = 25 MHz, the maximum recommended GPIO input frequency based on the data rate when  
linked over the back channel is shown in 7-10.  
7-10. Back Channel GPIO Typical Timing  
MAXIMUM  
BACK CHANNEL RATE SAMPLING FREQUENCY RECOMMENDED BACK  
TYPICAL LATENCY (us)  
TYPICAL JITTER (us)  
(Mbps)  
(kHz)  
CHANNEL GPIO  
FREQUENCY (kHz)  
50  
10  
1670  
334  
416  
83.5  
20  
1.5  
3.2  
0.7  
3
2.5  
83.5  
12.2  
12  
In addition to sending GPIO from pins, an internally generated FrameSync or external FrameSync input signal  
may be mapped to any of the back channel GPIOs for synchronization of multiple sensors with extremely low  
skew. (see 7.4.27).  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
For each port, GPIO control is available through the BC_GPIO_CTL0 register 0x6E (see 7-120) and  
BC_GPIO_CTL1 register 0x6F (see 7-121).  
7.4.13.6 Other GPIO Pin Controls  
Each GPIO pin can has a input disable and a pulldown disable. By default, the GPIO pin input paths are enabled  
and the internal pulldown circuit in the GPIO is enabled. The GPIO_INPUT_CTL register 0x0F and  
GPIO_PD_CTL register 0xBE allow control of the input enable and the pulldown respectively. For most  
applications, there is no need to modify the default register settings.  
7.4.14 Line Valid and Frame Valid Indicators  
The FrameValid (FV) and LineValid (LV) indications from the Receive Port indicate approximate frame and line  
boundaries at the FPD-Link III Receiver input. These signals may not be accurate if the receiver is in CSI-2 input  
mode and multiple video streams are present at the Receive Port input. A common example of this scenario  
would be multiple Virtual Channel IDs received on a single port.  
When the receiver is in one of the Raw modes the LV and FV provides controls for the video framing. The FV is  
equivalent to a Vertical Sync (VSYNC) while the LineValid is equivalent to a Horizontal Sync (HSYNC) input to  
the DS90UB933A-Q1 and DS90UB913A-Q1 device (see 7.4.27).  
The DS90UB954-Q1 allows setting the polarity of these signals by register programming. The FV and LV polarity  
are controlled on a per-port basis and can be independently set in the PORT_CONFIG2 register 0x7C.  
To prevent false detection of FrameValid, FV must be asserted for a minimum number of clocks prior to first  
video line to be considered valid. The minimum FrameValid time is programmable in the FV_MIN_TIME register  
0xBC. Because the measurement is in FPD-Link III clocks, the minimum FrameValid setup to LineValid timing at  
the Serializer will vary based on the RAW input operating mode.  
A minimum FV to LV timing is required when processing RAW video frames at the serializer input. If the FV to LV  
minimum setup is not met (by default), the first video line is discarded. Optionally, a register control  
(PORT_CONFIG:DISCARD_1ST_ON_ERR) forwards the first video line missing some number of pixels at the  
start of the line.  
FV  
TFV_LV  
LV  
7-7. Minimum FV to LV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-11. Minimum FV to LV Setup Requirement (in RAW Mode Serializer FPD-Link III PCLKs)  
FV_MIN_TIME  
CONVERSION FACTOR  
ABSOLUTE MIN  
(FV_MIN_TIME = 0)  
DEFAULT  
(FV_MIN_TIME = 128)  
MODE  
RAW12 HF  
RAW10  
1.5  
2
3
5
195  
261  
For other settings of FV_MIN_TIME, the required FV to LV setup in Serializer PCLKs can be determined by:  
Absolute Min + (FV_MIN_TIME × Conversion factor)  
7.4.15 CSI-2 Protocol Layer  
The DS90UB954-Q1 implements High-Speed mode to forward CSI-2 Low Level Protocol data. This includes  
features as described in the Low Level Protocol section of the MIPI CSI-2 Specification. It supports short and  
long packet formats.  
The feature set of the protocol layer implemented by the CSI-2 TX is:  
Transport of arbitrary data (payload-independent)  
8-bit word size  
Support for up to four interleaved virtual channels on the same link  
Special packets for frame start, frame end, line start and line end information  
Descriptor for the type, pixel depth and format of the Application Specific Payload data  
16-bit Checksum Code for error detection  
7-8 shows the CSI-2 protocol layer with short and long packets.  
DATA:  
Short  
Packet  
Long  
Packet  
Long  
Packet  
Short  
Packet  
ST SP ET  
ST PH  
DATA  
PF ET  
ST PH  
DATA  
PF ET  
ST SP ET  
LPS  
LPS  
LPS  
KEY:  
ST œ Start of Transmission  
ET œ End of Transmission  
LPS œ Low Power State  
PH œ Packet Header  
PF œ Packet Footer  
7-8. CSI-2 Protocol Layer With Short and Long Packets  
7.4.16 CSI-2 Short Packet  
The short packet provides frame or line synchronization. 7-9 shows the structure of a short packet. A short  
packet is identified by data types 0x00 to 0x0F.  
32-bit SHORT PACKET (SH)  
Data Type (DT) = 0x00 œ 0x0F  
7-9. CSI-2 Short Packet Structure  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.17 CSI-2 Long Packet  
A long packet consists of three elements: a 32-bit packet header (PH), an application-specific data payload with  
a variable number of 8-bit data words, and a 16-bit packet footer (PF). The packet header is further composed of  
three elements: an 8-bit data identifier, a 16-bit word count field, and an 8-bit ECC. The packet footer has one  
element, a 16-bit checksum. 7-10 shows the structure of a long packet.  
32-bit  
PACKET  
HEADER  
(PH)  
PACKET DATA:  
16-bit  
PACKET  
FOOTER  
(PF)  
Length = Word Count (WC) * Data Word  
Width (8-bits). There are NO restrictions  
on the values of the data words  
7-10. CSI-2 Long Packet Structure  
7-12. CSI-2 Long Packet Structure Description  
PACKET PART  
FIELD NAME  
SIZE (BIT)  
DESCRIPTION  
VC / Data ID  
Word Count  
8
Contains the virtual channel identifier and the data-type information.  
Number of data words in the packet data. A word is 8 bits.  
16  
Header  
ECC for data ID and WC field. Allows 1-bit error recovery and 2-bit  
error detection.  
ECC  
8
Data  
Data  
WC × 8  
16  
Application-specific payload (WC words of 8 bits).  
16-bit cyclic redundancy check (CRC) for packet data.  
Footer  
Checksum  
7.4.18 CSI-2 Data Type Identifier  
The DS90UB954-Q1 MIPI CSI-2 protocol interface transmits the data identifier byte containing the values for the  
virtual channel ID (VC) and data type (DT) for the application specific payload data, as shown in 7-11. The  
virtual channel ID is contained in the 2 MSBs of the data identifier byte and identify the data as directed to one of  
four virtual channels. The value of the data type is contained in the six LSBs of the data identifier byte. When  
partnered with a DS90UB953-Q1 or DS90UB935-Q1 serializer, the Data Type is passed through from the  
received CSI-2 packets. When partnered with DS90UB933-Q1 or DS90UB913A-Q1 the received RAW mode  
data is converted to CSI-2 Tx packets with assigned data type and virtual channel ID and matches what is sent  
by the video source.  
DVP format serializer inputs must have discrete synch signals. When interfacing with DS90UB913A-Q1 or  
DS90UB933-Q1 serializers, the DS90UB954-Q1 utilizes the HSYNC and VSYNC inputs to construct the MIPI  
CSI-2 Tx data packets. When paired with a DVP serializer, the DS90UB954-Q1deserializer supports RAW8,  
RAW10 or RAW12 as well as formats which have the same pixel packing as RAW8, RAW10 or RAW12 such as  
YUV-422.  
For each RX Port, registers define with which virtual channel and data type the RAW data context is associated:  
For FPD Receiver port operating in RAW input mode connected to a DS90UB933-Q1 or DS90UB913A-Q1  
serializer, register 0x70 (see 7-122) describes RAW10 Mode and 0x71 (see 7-123) RAW12 Mode.  
RAW1x_VC[7:6] field defines the associated virtual ID transported by the CSI-2 protocol from the sensor.  
RAW1x_ID[5:0] field defines the associated data type. The data type is a combination of the data type  
transported by the CSI-2 protocol.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Data Identifier (DI) Byte  
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0  
VC  
DT  
Virtual Channel  
Indentifier  
(VC)  
Data Type  
(DT)  
7-11. CSI-2 Data Identifier Structure  
7.4.19 Virtual Channel and Context  
The CSI-2 protocol layer transports virtual channels. The purpose of virtual channels is to separate different data  
flows interleaved in the same data stream. Each virtual channel is identified by a unique channel identification  
number in the packet header. Therefore, a CSI-2 TX context can be associated with a virtual channel and a data  
type. Virtual channels are defined by a 2-bit field. This channel identification number is encoded in the 2-bit code.  
The CSI-2 TX transmits the channel identifier number and multiplexes the interleaved data streams. The CSI-2  
TX supports up to four concurrent virtual channels.  
7.4.20 CSI-2 Input Mode Virtual Channel Mapping  
The CSI-2 Input mode (see 7.4.1) provides per-port Virtual Channel ID mapping. For each FPD-Link III input  
port, separate mapping may be done for each input VC-ID to any of four VC-ID values. The mapping is  
controlled by the VC_ID_MAP register 0x72 (see 7-124). This function sends the output as a time-multiplexed  
CSI-2 stream, where the video sources are differentiated by the virtual channel. The equivalent registers  
0x70-0x71 can be used for mapping VC-IDs when operating in RAW FPD-Link III mode connected to  
DS90UB9x3x-Q1.  
7.4.20.1 Example 1  
The DS90UB954-Q1 is capable of receiving data from sensors attached to each port. Each port is sending a  
video stream using VC-ID of 0. The DS90UB954-Q1 can be configured to re-map the incoming VC-IDs to ensure  
each video stream has a unique ID. The direct implementation would map incoming VC-ID of 0 for RX Port 0,  
and VC-ID of 1 for RX Port 1.  
DS90UB954  
Sensor A  
VC-ID = 0  
Port 0  
VC-ID = 0  
CSI2 RX  
VC-ID = 1  
CSI TX  
Sensor B  
VC-ID = 0  
Port 1  
CSI2 RX  
7-12. VC-ID Mapping Example 1  
7.4.20.2 Example 2:  
The DS90UB954-Q1 is receiving two video streams from sensors on each input port. Each sensor is sending  
video streams using VC-IDs 0 and 1. Receive Port 0 maps the VC-IDs directly without change. Receive Port 1  
maps the VC-IDs 0 and 1 to VC-IDs 2 and 3. This is required because each CSI-2 transmitter is limited to 4 VC-  
IDs per MIPI specification.  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
DS90UB954  
Port 0  
VC-ID = 0,1  
Sensor A  
VC-ID = 0,1  
CSI2 RX  
CSI TX  
Sensor B  
Port 1  
VC-ID = 0,1  
VC-ID = 2,3  
CSI2 RX  
7-13. VC-ID Mapping Example 2  
CSI-2 port0, 1 CK lane,  
up to 4 data lanes  
FPD-Link III  
Serializer  
A1  
A2  
A3  
A4  
Sensor A  
A1  
B1  
A2  
B2 A3 B3  
A4  
B4  
954  
Deserializer  
Color of the packet  
represents the VC-ID  
FPD-Link III  
Serializer  
B1  
B2  
B3  
B4  
Sensor B  
7-14. Two Sensor Data onto CSI-2 With Virtual Channels (VC-ID)  
7-15. Two Sensor Data onto CSI-2 With Virtual Channels (VC-ID)  
CSI-2 port0, 1 CK lane,  
up to 2 data lanes  
FPD-Link III  
Serializer  
A1  
A2  
A3  
A4  
Sensor A  
A1  
B1  
A2  
B2  
A3  
A4  
954  
Deserializer  
Sensor B has fewer  
FPD-Link III  
Serializer  
B1  
B2  
Sensor B  
A1  
B1  
A2  
B2  
A3  
A4  
CSI-2 port0, 1 CK lane,  
up to 2 data lanes  
Port1 can be the  
Replica of Port0  
7-16. Two Sensor Data With Different Frame Size Replicated onto CSI-2 With Virtual Channels (VC-ID)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.21 CSI-2 Transmitter Frequency  
The CSI-2 Transmitters may operate nominally at 400 or 800 Mbps, 1.5 Gbps, or 1.6 Gbps. This operation is  
controlled through the CSI_PLL_CTL 0x1F register (see 7-50). The actual CSI-2 rate is proportional to the  
REFCLK frequency.  
7-13. Net CSI-2 Bandwidth Options  
CSI-2 TX DATA RATE PER  
LANE (Mbps)  
NET CSI-2 VIDEO BANDWIDTH  
PER RX PORT (Gbps)  
CSI_PLL_CTL[1:0]  
REFCLK FREQUENCY (MHz)  
1664  
1600  
26  
25  
3.328  
3.328  
00  
1472  
23  
3.328  
01  
10  
11  
Reserved  
800  
Reserved  
25  
Reserved  
1.6 (RX Port 0 and RX Port 1)  
0.8 (RX Port 0 and RX Port 1)  
400  
25  
When configuring to 800 Mbps or 1.6 Gbps, the CSI-2 timing parameters are automatically set based on the  
CSI_PLL_CTL 0x1F register. In the case of alternate settings, the respective CSI-2 timing parameters registers  
must be programmed, and the appropriate override bit must be set. For the 1.664-Gbps and 1.472-Gbps options,  
these settings will also affect internal device timing for back channel operation, I2C, Bidirectional Control  
Channel, and FrameSync operation which scale with the REFCLK frequency. Net CSI-2 video bandwidth shown  
for CSI-2 TX frequency of 400 Mbps and 800 Mbps in 7-13 are for both RX ports enabled. When operating  
with a single RX port, the net CSI-2 video bandwidth can be up to 3.328 Gbps.  
To operate CSI-2 at speed of 400-Mbps mode, set CSI_PLL_CTL to 11b (0x1F[1:0] =11) to enable 400-Mbps  
operation for the CSI-2 Transmitters. Internal PLL and Timers are then automatically adjusted for the reduced  
reference clock frequency. Software control of CSI-2 Transmitter timing registers is required to provide proper  
interface timing on the CSI-2 Output. The following are the recommended timer settings for 400-Mbps operation.  
# Set CSI-2 Timing parameters  
WriteI2C(0xB0,0x2)  
WriteI2C(0xB1,0x40)  
WriteI2C(0xB2,0x83)  
WriteI2C(0xB2,0x8D)  
WriteI2C(0xB2,0x87)  
WriteI2C(0xB2,0x87)  
WriteI2C(0xB2,0x83)  
WriteI2C(0xB2,0x86)  
WriteI2C(0xB2,0x84)  
WriteI2C(0xB2,0x86)  
WriteI2C(0xB2,0x84)  
# set auto-increment, page 0  
# CSI-2 Port 0  
# TCK Prep  
# TCK Zero  
# TCK Trail  
# TCK Post  
# THS Prep  
# THS Zero  
# THS Trail  
# THS Exit  
# TLPX  
7.4.22 CSI-2 Replicate Mode  
In CSI-2 Replicate mode, both ports can be programmed to output the same data. The output from CSI-2 port 0  
is also presented on CSI-2 port 1.  
To configure this mode of operation, set the CSI_REPLICATE bit in the FWD_CTL2 register (Address 0x21 in 表  
7-52). Enabling replicate mode will automatically enable the second CSI-2 Clock output signal. The CSI-2  
transmitter must be programmed for one or two lanes only through the CSI_LANE_COUNT field in the CSI_CTL  
register as only one or two lanes are supported.  
7.4.23 CSI-2 Transmitter Output Control  
Two register bits allow controlling the CSI-2 Transmitter output state. If the OUTPUT_SLEEP_STATE_SELECT  
(OSS_SEL) control is set to 0 in the GENERAL_CFG 0x02 register (see 7-21), the CSI-2 Transmitter outputs  
are forced to the HS-0 state. If the OUTPUT_ENABLE (OEN) register bit is set to 0 in the GENERAL_CFG  
register, the CSI-2 pins are set to the high-impedance state.  
For normal operation (OSS_SEL and OEN both set to 1), activity on either of the Rx Port determines the state of  
the CSI-2 outputs. The CSI-2 Pin State during FPD-Link III inactive includes two options, controlled by the  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
OUTPUT_EN_MODE bit in the GENERAL_CFG register and FWD_PORTx_DIS in the FWD_CTL1 register  
0x20. If OUTPUT_EN_MODE is set to 0, a lack of activity will force the outputs to Hi-Z condition. If  
OUTPUT_EN_MODE is set to 1, or if the forwarding for the Rx Port is disabled (FWD_PORTx_DIS = 1), the  
output enters LP-11 state as there is no data available to the CSI-2 Transmitter input. The FPD-Link III inputs are  
considered active if the Receiver indicates valid lock to the incoming signal. For a CSI-2 TX port, lock is  
considered valid if any Received port mapped to the TX port is indicating Lock. See section 7.4.6 for  
description of Rx port forwarding.  
7-14. CSI-2 Output Control Options  
OUTPUT_O  
EN_MODE  
PDB pin  
OSS_SEL  
OEN  
FWD_PORTx_DIS  
FPD-Link III INPUT  
CSI-2 PIN STATE  
0
1
1
1
1
1
1
X
0
1
1
1
1
1
X
X
0
1
1
1
1
X
X
X
0
X
X
X
X
X
1
X
Hi-Z  
HS-0  
Hi-Z  
X
X
All inactive  
All inactive  
Any active  
Any active  
Hi-Z  
1
LP-11  
LP-11  
Valid  
X
X
0
7.4.24 CSI-2 Transmitter Status  
The status of the CSI-2 Transmitter may be monitored by readback of the CSI_STS register 0x35, or brought to  
one of the configurable GPIO pins as an output. The TX_PORT_PASS 0x35[0] indicates valid CSI-2 data being  
presented on CSI-2 port. If no data is being forwarded or if error conditions have been detected on the video  
data, the CSI-2 Pass signal will be cleared. The TX_PORT_SYNC 0x35[0] indicates the CSI-2 Tx port is able to  
properly synchronize input data streams from multiple sources. TX_PORT_SYNC will always return 0 if  
Synchronized Forwarding is disabled. Interrupts may also be generated based on changes in the CSI-2 port  
status.  
7.4.25 Video Buffers  
The DS90UB954-Q1 implements two video line buffer and FIFO, one for each RX channel. The video buffers  
provide storage of data payload and forward requirements for sending multiple video streams on the CSI-2  
transmit ports. The total line buffer memory size is a 16-kB block for each RX port.  
The CSI-2 transmitter waits for an entire packet to be available before pulling data from the video buffers.  
7.4.26 CSI-2 Line Count and Line Length  
The DS90UB954-Q1 counts the number of received lines (long packets) to determine line count on  
LINE_COUNT_1 and LINE_COUNT_0 registers 0x7374. For received line length, DS90UB954-Q1 reads the  
number of bytes per line in LINE_LEN_1 and LINE_LEN_0 registers 0x750x76. Line Count and Line Length  
values are valid when receiving a single video stream. If multiple virtual channels are received on a FPD-Link III  
Receive port in CSI-2 input mode, the values in registers 0x73-74 may not be accurate  
7.4.27 FrameSync Operation  
A frame synchronization signal (FrameSync) can be sent through the back channel using any of the back  
channel GPIOs. The signal can be generated in two different methods. The first option offers sending the  
external FrameSync using one of the available GPIO pins on the DS90UB954-Q1 and mapping that GPIO to a  
back channel GPIO on one or two of the FPD-Link III ports.  
The second option is to have the DS90UB954-Q1 internally generate a FrameSync signal to send through the  
back channel GPIO to one or two of the attached Serializers.  
FrameSync signaling is synchronous on each of the two back channels. Thus, the FrameSync signal arrives at  
both of the serializers with limited skew.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.27.1 External FrameSync Control  
In External FrameSync mode, an external signal is input to the DS90UB954-Q1 through one of the GPIO pins on  
the device. The external FrameSync signal may be propagated to one or more of the attached FPD-Link III  
Serializers through a GPIO signal in the back channel. The expected skew timing for external FrameSynch mode  
is on the order of one back channel frame period or 600 ns when operating at 50 Mbps.  
954 Deserializer  
FPD-Link III  
GPIOx  
BC_GPIOx  
Serializer  
FPD-Link III  
GPIOx  
BC_GPIOx  
Serializer  
GPIOy  
External  
Frame Synch  
7-17. External FrameSync  
Enabling the external FrameSync mode is done by setting the FS_MODE control in the FS_CTL register to a  
value between 0x8 (GPIO0 pin) to 0xE (GPIO6 pin). Set FS_GEN_ENABLE to 0 for this mode.  
To send the FrameSync signal on a ports BC_GPIOx signal, the BC_GPIO_CTL0 or BC_GPIO_CTL1 register  
should be programmed for that port to select the FrameSync signal.  
954 Deserializer  
FPD-Link III  
GPIOx  
BC_GPIOx  
Serializer  
GPIOy  
External  
Frame Synch  
REFCLK  
25 MHz  
REFCLK  
954 Deserializer  
BC_GPIOx  
FPD-Link III  
GPIOx  
Serializer  
GPIOy  
External  
Frame Synch  
7-18. External FrameSync With Two DS90UB954 Deserializers  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.27.2 Internally Generated FrameSync  
In Internal FrameSync mode, an internally generated FrameSync signal is sent to one or more of the attached  
FPD-Link III Serializers through a GPIO signal in the back channel.  
FrameSync operation is controlled by the FS_CTL 0x18, FS_HIGH_TIME_x, and FS_LOW_TIME_x 0x190x1A  
registers. The resolution of the FrameSync generator clock (FS_CLK_PD) is derived from the back channel  
frame period (see BC_FREQ_SELECT[2:0] in 7-98). For example, each 50-Mbps back channel operation, the  
frame period is 600 ns (30 bits × 20 ns/bit), and for 2.5-Mbps back channel operation, the frame period is 12 µs  
(30 bits × 400 ns/bit).  
Once enabled, the FrameSync signal is sent continuously based on the programmed conditions.  
Enabling the internal FrameSync mode is done by setting the FS_GEN_ENABLE control in the FS_CTL register  
to a value of 1. The FS_MODE field controls the clock source used for the FrameSync generation. The  
FS_GEN_MODE field configures whether the duty cycle of the FrameSync is 50/50 or whether the high and low  
periods are controlled separately. The FrameSync high and low periods are controlled by the FS_HIGH_TIME  
and FS_LOW_TIME registers.  
The accuracy of the internally generated FrameSync is directly dependent on the accuracy of the 25-MHz  
oscillator used as the reference clock and timing values should be scaled if reference other than 25 MHz is used.  
954 Deserializer  
FPD-Link III  
GPIOx  
BC_GPIOx  
Serializer  
FPD-Link III  
GPIOx  
BC_GPIOx  
Serializer  
FrameSync  
Generator  
7-19. Internal FrameSync  
FS_HIGH  
FS_LOW  
FS_LOW = FS_LOW_TIME * FS_CLK_PD  
FS_HIGH = FS_HIGH_TIME * FS_CLK_PD  
where FS_CLK_PD is the resolution of the FrameSync generator clock  
7-20. Internal FrameSync Signal  
The following example shows generation of a FrameSync signal at 60 pulses per second. Mode settings:  
Programmable High/Low periods: FS_GEN_MODE 0x18[1]=0  
Use port 0 back channel frame period: FS_MODE 0x18[7:4]=0x0  
Back channel rate of 50 Mbps: BC_FREQ_SELECT for port 0 0x58[2:0]=110b  
Initial FS state of 0: FS_INIT_STATE 0x18[2]=0  
Based on mode settings, the FrameSync is generated based upon FS_CLK_PD of 600 ns.  
The total period of the FrameSync is (1 / 60 hz) / 600 ns or approximately 27778 counts. The high time is  
programmed to 2778 and the low time is programmed to 25000.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
For a 10% duty cycle, set the high time to 2777 (0x0AD9) cycles, and the low time to 24999 (0x61A7) cycles:  
FS_HIGH_TIME_1: 0x19=0x0A  
FS_HIGH_TIME_0: 0x1A=0xD9  
FS_LOW_TIME_1: 0x1B=0x61  
FS_LOW_TIME_0: 0x1C=0xA7  
7.4.27.2.1 Code Example for Internally Generated FrameSync  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x6E,0xAA) # BC_GPIO_CTL0: FrameSync signal to GPIO0/1  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x6E,0xAA) # BC_GPIO_CTL0: FrameSync signal to GPIO0/1  
WriteI2C(0x10,0x91A) # FrameSync signal; Device Status; Enabled  
WriteI2C(0x19,0x0A) # FS_HIGH_TIME_1  
WriteI2C(0x1A,0xD9) # FS_HIGH_TIME_0  
WriteI2C(0x1B,0x61) # FS_LOW_TIME_1  
WriteI2C(0x1C,0xA7) # FS_LOW_TIME_0  
WriteI2C(0x18,0x01) # Enable FrameSync  
7.4.28 CSI-2 Forwarding  
Video stream forwarding is handled by the forwarding control in the DS90UB954-Q1 on FWD_CTL1 register  
0x20. The forwarding control pulls data from the video buffers for each FPD-Link III RX port and forwards the  
data to the CSI-2 output interfaces. It also handles generation of transitions between LP and HS modes as well  
as sending of Synchronization frames. The forwarding control monitors each of the video buffers for packet and  
data availability.  
Forwarding from input ports may be disabled using per-port controls. Each of the forwarding engines may be  
configured to pull data from either of the two video buffers, although both buffer may only be assigned to one  
CSI-2 Transmitter at a time unless in replicate mode. The two forwarding engines operate independently.  
7.4.28.1 Enabling and Disabling the CSI-2 Transmitter  
When CSI-2 Transmitter is enabled in CSI_CTL register bit 0x33[0], by default the output will transition to LP11  
state. Once enabled, it is typically best to leave the CSI-2 Transmitter enable, and only change the forwarding  
controls if changes are required to the system. When enabling and disabling the CSI-2 Transmitter, forwarding  
should be disabled to ensure proper start and stop of the CSI Transmitter.  
When enabling and disabling the CSI-2 Transmitter, use the following sequence:  
To Disable:  
1. Disable forwarding for assigned ports in the FWD_CTL1 register.  
2. Disable CSI periodic calibration (if enabled) in the CSI_ CTL2 register.  
3. Disable continuous clock operation (if enabled) in the CSI_ CTL register.  
4. Clear CSI Transmit enable in CSI_ CTL register.  
To Enable:  
1. Set CSI Transmit enable (and continuous clock if desired) in CSI_ CTL register.  
2. Enable CSI periodic calibration (if desired) in the CSI_CTL2 register.  
3. Enable forwarding for assigned ports in the FWD_CTL1 register.  
7.4.28.2 Best-Effort Round Robin CSI-2 Forwarding  
Best-Effort Round Robin (RR) CSI-2 Forwarding allows for combining sensor sources with different resolutions  
and timing to the same CSI-2 Tx output. By default, the RR forwarding of packets use standard CSI-2 method of  
video stream determination. No special ordering of CSI-2 packets are specified, effectively relying on the Virtual  
Channel Identifier (VC) and Data Type (DT) fields to distinguish video streams. Each image sensor is assigned a  
VC-ID to identify the source. Different data types within a virtual channel are also supported in this mode.  
When receiving FPD-Link RAW packets from DS90UB9x3x-Q1, each image sensor is assigned a VC-ID to  
identify the source. Different data types within a virtual channel is also supported in this mode.  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
The forwarding engine forwards packets as they become available to the forwarding engine. In the case where  
multiple packets may be available to transmit, the forwarding engine typically operates in an RR fashion based  
on the input port from which the packets are received.  
Best-effort CSI-2 RR forwarding has the following characteristics and capabilities:  
Uses Virtual Channel ID to differentiate each video stream  
Separate Frame Synchronization packets for each VC  
No synchronization requirements  
This mode of operation allows input RX ports to have different video characteristics and there is no requirement  
that the video be synchronized between ports. The attached video processor would be required to properly  
decode the various video streams based on the VC and DT fields.  
Best-effort forwarding is enabled by setting the CSIx_RR_FWD bits in the FWD_CTL2 register 0x21.  
7.4.28.3 Synchronized Forwarding  
In cases with multiple input sources, synchronized forwarding offers synchronization of all incoming data stored  
within the buffer. If packets arrive within a certain window, the forwarding control may be programmed to attempt  
to synchronize the video buffer data. In this mode, it attempts to send each channel synchronization packets in  
order (VC0, VC1) as well as sending packet data in the same order. In the following sections, Sensor A (SA) and  
Sensor B (SB) refer to the sensors connected at FPD-Link III RX port 0, and RX port 1, respectively. The  
following describe only the 2-port operation, but single port configuration also can be applied.  
The forwarding engine for the CSI-2 Transmitter can be configured to synchronize both video sources.  
Requirements:  
Video arriving at input ports should be synchronized within approximately one video line period  
All enabled ports should have valid, synchronized video  
Each port must have identical video parameters, including number and size of video lines, presence of  
synchronization packets, and so forth.  
The forwarding engine attempts to send the video synchronized. If synchronization fails, the CSI-2 transmitter  
stops forwarding packets and attempt to restart sending synchronized video at the next FrameStart indication.  
Packets are discarded as long as the forwarding engine is unable to send the synchronized video.  
Status is provided to indicate when the forwarding engine is synchronized. In addition, a flag is used to indicate  
that synchronization has been lost (status is cleared on a read).  
Three options are available for Synchronized forwarding:  
Basic Synchronized forwarding  
Line-Interleave forwarding  
Line-Concatenated forwarding  
Synchronized forwarding modes are selected by setting the CSIx_SYNC_FWD controls in the FWD_CTL2  
register. To enable synchronized forwarding the following order of operations is recommended:  
1. Disable Best-effort forwarding by clearing the CSIx_RR_FWD bits in the FWD_CTL2 register  
2. Enable forwarding per Receive port by clearing the FWD_PORTx_DIS bits in the FWD_CTL1 register  
3. Enable Synchronized forwarding in the FWD_CTL2 register  
7.4.28.4 Basic Synchronized Forwarding  
During Basic Synchronized Forwarding, each forwarded frame is an independent CSI-2 video frame including  
FrameStart (FS), video lines, and FrameEnd (FE) packets. Each forwarded stream may have a unique VC ID. If  
the forwarded streams do not have a unique VC-ID, the receiving process may use the frame order to  
differentiate the video stream packets.  
The forwarding engine attempts to send the video synchronized. If synchronization fails, the CSI-2 transmitter  
stops forwarding packets and attempts to restart sending synchronized video at the next FS indication. Packets  
are discarded as long as the forwarding engine is unable to send the synchronized video.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Example Synchronized traffic to CSI-2 Transmit port at start of frame:  
FS_A FS_B SA_L1 SB_L1 SA_L2 SB_L2 SA_L3 …  
Example Synchronized traffic to CSI-2 Transmit port at end of frame:  
... SA_LN SB_LN FE_A FE_B  
Notes:  
FS_x  
FrameStart for Sensor X  
FE_x  
FrameEnd for Sensor X  
Sx_Ly  
Sx_LN  
Line Y for Sensor X video frame  
Last line for Sensor X video frame  
Each packet includes the virtual channel ID assigned to receive port for each sensor.  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.28.4.1 Code Example for Basic Synchronized Forwarding  
# Configure RX0 to map VC0 from data received on RX0 to VC0  
WriteI2C(0x4C,0x01) # FPD3_PORT_SEL  
WriteI2C(0x72,0xE4) # CSI_VC_MAP  
#
Configure RX1 to map VC1 from data received on RX1 to VC1  
WriteI2C(0x4C,0x12) # FPD3_PORT_SEL  
WriteI2C(0x70,0xE5) # CSI_VC_MAP  
#
Enable CSI Output and set 4 CSI lanes  
WriteI2C(0x33,0x1) # CSI_CTL  
Enable synchronized basic forwarding for output port 0  
WriteI2C(0x21,0x04) # FWD_CTL2  
Enable forwarding from RX0 and RX1  
WriteI2C(0x20,0x00) # FWD_CTL1  
#
#
Frame Blanking  
SA_L1  
SB_L1  
FS_A FS_B  
.
.
.
Frame 1  
Image Data  
{Sensor A}  
{Sensor B}  
Line Blanking  
.
.
.
SA_LN  
SB_LN  
FE_A FE_B  
Frame Blanking  
KEY:  
PH œ Packet Header  
FS œ Frame Start  
LS œ Line Start  
PF œ Packet Footer + Filler (if applicable)  
FE œ Frame End  
LE œ Line End  
Sensor A  
VC-ID = 0  
Sensor B  
VC-ID = 1  
*Blanking intervals do not provide accurate synchronization timing  
7-21. Basic Synchronized Format  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.28.5 Line-Interleave Forwarding  
In synchronized forwarding, the forwarding engine may be programmed to send only one of each  
synchronization packet. For example, if forwarding from both input ports, only one FS and FE packet is sent for  
each video frame. The synchronization packets for the other port is dropped. The video line packets for each  
video stream are sent as individual packets. This effectively merges the frames from N video sources into a  
single frame that has N times the number of video lines.  
In this mode, all video streams must also have the same VC, although this is not checked by the forwarding  
engine. This is useful when connected to a controller that does not support multiple VCs. The receiving  
processor must process the image based on order of video line reception.  
Example Synchronized traffic to CSI-2 Transmit port at start of frame:  
FS_A SA_L1 SB_L1 SA_L2 SB_L2 SA_L3 …  
Example Synchronized traffic to CSI-2 Transmit port at end of frame:  
... SA_LN SB_LN FE_A  
Notes:  
FS_x  
FrameStart for Sensor X  
FE_x  
FrameEnd for Sensor X  
Sx_Ly  
Sx_LN  
Line Y for Sensor X video frame  
Last line for Sensor X video frame  
All packets would have the same VC ID.  
7.4.28.5.1 Code Example for Line-Interleave Forwarding  
# "*** RX0 VC=0 ***"  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x72,0xE8) # Map Sensor A VC0 to CSI-Tx VC0  
# "*** RX1 VC=1 ***"  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x70,0xE8) # Map Sensor B VC0 to CSI-Tx VC0  
#
"CSI_EN"  
WriteI2C(0x33,0x1) # CSI_EN & CSI0 4L  
# "*** CSI0_SYNC_FWD synchronous forwarding with line interleaving ***"  
WriteI2C(0x21,0x28) # synchronous forwarding with line interleaving  
#
"*** FWD_PORT all RX to CSI0"  
WriteI2C(0x20,0x00) # forwarding of all RX to CSI0  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Frame Blanking  
SA_L1  
SB_L1  
FS_A  
.
.
.
Frame 1  
Image Data  
{Sensor A}  
{Sensor B}  
Line Blanking  
.
.
.
SA_LN  
SB_LN  
FE_A  
Frame Blanking  
KEY:  
PH œ Packet Header  
FS œ Frame Start  
LS œ Line Start  
PF œ Packet Footer + Filler (if applicable)  
FE œ Frame End  
LE œ Line End  
Sensor A  
VC-ID = 0  
Sensor B  
VC-ID = 0  
*Blanking intervals do not provide accurate synchronization timing  
7-22. Line-Interleave Format  
7.4.28.6 Line-Concatenated Forwarding  
In synchronized forwarding, the forwarding engine may be programmed to merge video frames from multiple  
sources into a single video frame by concatenating video lines. Each of the sensors attached to each RX Port  
carry different data streams that get concatenated into one CSI-2 stream. For example, if forwarding from both  
input ports, only one FS an FE packet is sent for each video frame. The synchronization packets for the other  
port is dropped. In addition, the video lines from each sensor are combined into a single line. The controller must  
separate the single video line into the separate components based on position within the concatenated video  
line.  
Example Synchronized traffic to CSI-2 Transmit port at start of frame:  
FS_A SA_L1,SB_L1 SA_L2,SB_L2 SA_L3,SB_L3 …  
Example Synchronized traffic to CSI-2 Transmit port at end of frame:  
... SA_LN,SB_LN FE_A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Notes:  
FS_x  
FrameStart for Sensor X  
FE_x  
FrameEnd for Sensor X  
Sx_Ly  
Sx_LN  
Line Y for Sensor X video frame  
Last line for Sensor X video frame  
SA_L1,SB_L1 indicate concatenation of the first video line from each Sensor into a single video line. This packet  
has a modified header and footer that matches the concatenated line data.  
Packets would have the same VC ID, based on the VC ID for the lowest number Sensor port being forwarded.  
Lines are concatenated on a byte basis without padding between video line data.  
7.4.28.6.1 Code Example for Line-Concatenate Forwarding  
# "*** RX0 VC=0 ***"  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x72,0xE8) # Map Sensor A VC0 to CSI-Tx VC0  
# "*** RX1 VC=1 ***"  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x70,0xED) # Map Sensor B VC0 to CSI-Tx VC1  
#
"CSI_EN"  
WriteI2C(0x33,0x1) # CSI_EN & CSI0 4L  
# "*** CSI0_SYNC_FWD synchronous forwarding with line concatenation ***"  
WriteI2C(0x21,0x3c) # synchronous forwarding with line concatenation  
#
"***FWD_PORT all RX to CSI0"  
WriteI2C(0x20,0x00) # forwarding of all RX to CSI0  
Frame Blanking  
FS_A  
SA_L1  
SA_L2  
SB_L1  
SB_L2  
.
.
.
.
.
.
Line Blanking  
Frame 1  
Image Data  
{Sensor A}  
Frame 1  
Image Data  
{Sensor B}  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SA_LN  
SB_LN  
FE_A  
Frame Blanking  
Sensor B  
VC-ID = 0  
Sensor A  
VC-ID = 0  
KEY:  
PH œ Packet Header  
FS œ Frame Start  
LS œ Line Start  
PF œ Packet Footer + Filler (if applicable)  
FE œ Frame End  
LE œ Line End  
*Blanking intervals do not provide accurate synchronization timing  
7-23. Line-Concatenated Format  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.5 Programming  
7.5.1 Serial Control Bus and Bidirectional Control Channel  
The DS90UB954-Q1 implements an I2C-compatible serial control bus. The I2C is for local device configuration  
and incorporates a Bidirectional Control Channel (BCC) that allows communication across the FPD-Link cable  
with remote serializers as well as remote I2C target devices. The DS90UB954-Q1 implements an I2C compatible  
target capable of operation compliant to the Standard, Fast, and Fast-plus modes of operation. This allows I2C  
operation at up to 1-MHz clock frequencies. When paired with a DS90UB935-Q1 or DS90UB953-Q1 serializer  
the DS90UB954-Q1 supports combined format I2C read and write access. When paired with the DS90UB933-  
Q1 or DS90UB913A-Q1 serializers, all I2C remote writes must be terminated with a STOP rather than repeated  
START. The timing for the I2C interface is detailed in 6-4.  
For accesses to local registers, the I2C Target operates without stretching the clock. Accesses to remote devices  
over the Bidirectional Control Channel results in clock stretching to allow for response time across the link. The  
DS90UB954-Q1 can also act as I2C Controller for regenerating Bidirectional Control Channel accesses  
originating from the remote devices across FPD-Link. Set I2C_CONTROLLER_EN in register 0x02[5] = 1 to  
enable the proxy controller functionality of the deserializer.  
7.5.1.1 Bidirectional Control  
The Bidirectional Control Channel (BCC) supports higher frequency operation when attached to the  
DS90UB935-Q1 or DS90UB953-Q1 and is also backward compatible with the DS90UB933-Q1 or DS90UB913A-  
Q1 serializers. The Bidirectional Control Channel is compatible with I2C devices, allowing local I2C target access  
to device registers as well as bidirectional I2C operation across the link to the Serializer and attached devices.  
I2C access should not be attempted across the link when Rx Port Lock status is Low. In addition to providing  
BCC operation, the back channel signaling also supports GPIO operations and advertising device capabilities to  
the attached Serializer device. The default back channel frequency is selected by the strap setting of the MODE  
pin. Additional speeds are also available, controlled separately for each Rx Port through the  
BC_FREQ_SELECT register field in the BCC_CONFIG register 0x58. Back channel frequency operates in 50-  
Mbps and 2.5-Mbps modes to support DS90UB935-Q1, DS90UB953-Q1 and DS90UB933-Q1 or DS90UB913A-  
Q1 Serializers.  
7.5.1.2 Device Address  
The primary device address is set through a resistor divider (RHIGH and RLOW see 7-24 below) connected  
to the IDX pin. Note that the voltage of VI2C must match the voltage of VVDDIO. The DS90UB954-Q1 waits 1  
ms after PDB goes high to allow time for power supply transients before sampling the IDX value and configuring  
the device to set the I2C address. The primary I2C target address is stored in the I2C Device ID register at  
address 0x0. In addition to the primary I2C target address, the DS90UB954-Q1 may be programmed to respond  
to up to 2 other I2C addresses. The two RX Port ID addresses provide direct access to the Receive Port 0 and  
Por1 registers without needing to set the paging controls normally required to access the port registers. In  
addition, these Rx port assigned I2C IDs also allow access to the shared registers in the same manner as the  
primary I2C target address. The I2C_RX0_ID and I2C_RX1_ID, registers are located in register address 0xF8  
and 0xF9, respectively.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
VDD18  
R
HIGH  
VI2C VI2C  
IDX  
RPU  
RPU  
R
LOW  
HOST  
Deserializer  
SCL  
SCL  
SDA  
SDA  
To other Devices  
7-24. Serial Control Bus Connection  
The IDX pin configures the control interface to one of eight possible device addresses. A pullup resistor and a  
pulldown resistor may be used to set the appropriate voltage ratio between the IDX input pin (VIDX) and V(VDD18)  
,
each ratio corresponding to a specific device address. See 7-15, Serial Control Bus Addresses for IDX.  
7-15. Serial Control Bus Addresses for IDX  
VIDX VOLTAGE RANGE  
VIDX TARGET  
VOLTAGE  
SUGGESTED STRAP  
RESISTORS (1% TOL)  
PRIMARY ASSIGNED I2C  
ADDRESS  
NO  
.
VMIN  
VTYP  
VMAX  
(V); VDD1P8 =  
1.80V  
RHIGH ( k)  
RLOW ( k)  
7-BIT  
0x30  
8-BIT  
0x60  
0
1
0
0
0.131 × V(VDD18)  
0.247 × V(VDD18)  
0
OPEN  
88.7  
10.0  
23.2  
0.179 ×  
V(VDD18)  
0.213 ×  
V(VDD18)  
0.374  
0x32  
0x34  
0x36  
0x38  
0x3A  
0x3C  
0x3D  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7A  
2
3
4
5
6
7
0.296 ×  
V(VDD18)  
0.330 ×  
V(VDD18)  
0.362 × V(VDD18)  
0.474 × V(VDD18)  
0.592 × V(VDD18)  
0.704 × V(VDD18)  
0.823 × V(VDD18)  
V(VDD18)  
0.582  
0.792  
0.995  
1.202  
1.420  
1.8  
75.0  
71.5  
78.7  
39.2  
25.5  
10.0  
35.7  
56.2  
0.412 ×  
V(VDD18)  
0.443 ×  
V(VDD18)  
0.525 ×  
V(VDD18)  
0.559 ×  
V(VDD18)  
97.6  
0.642 ×  
V(VDD18)  
0.673 ×  
V(VDD18)  
78.7  
0.761 ×  
V(VDD18)  
0.792 ×  
V(VDD18)  
95.3  
0.876 ×  
V(VDD18)  
V(VDD18)  
OPEN  
7.5.1.3 Basic I2C Serial Bus Operation  
The serial control bus consists of two signals, SCL and SDA. SCL is a Serial Bus Clock Input. SDA is the Serial  
Bus Data Input / Output signal. Both SCL and SDA signals require an external pullup resistor to 1.8-V or 3.3-V  
nominal VI2C. For most applications, TI recommends a 4.7-kpullup resistor to VI2C. However, the pullup  
resistor value may be adjusted for capacitive loading and data rate requirements. The signals are either pulled  
High or driven Low.  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
7-25.  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
7-25. START and STOP Conditions  
To communicate with a target device, the host controller (controller) sends the target address and listens for a  
response from the target. This response is referred to as an acknowledge bit (ACK). If a target on the bus is  
addressed correctly, it acknowledges (ACKs) the controller by driving the SDA bus low. If the address does not  
match the target address of the device, it not-acknowledges (NACKs) the controller by letting SDA be pulled  
High. ACKs also occur on the bus when data is being transmitted. When the controller is writing data, the target  
ACKs after every data byte is successfully received. When the controller is reading data, the controller ACKs  
after every data byte is received to let the target know it wants to receive another data byte. When the controller  
wants to stop reading, it NACKs after the last data byte and creates a stop condition on the bus. All  
communication on the bus begins with either a Start condition or a Repeated Start condition. All communication  
on the bus ends with a Stop condition. A READ is shown in 7-26 and a WRITE is shown in 7-27.  
N
A
C
K
Bus Activity:  
Controller  
Register  
Address  
Target  
Address  
Target  
Address  
S
P
SDA  
Line  
S
7-bit Address  
7-bit Address  
0
1
A
C
K
A
C
K
A
C
K
Data  
Bus Activity:  
Target  
7-26. Serial Control Bus READ  
Bus Activity:  
Controller  
Register  
Address  
Tagret  
Address  
Data  
SDA Line  
7-bit Address  
P
S
0
A
C
K
A
C
K
A
C
K
Bus Activity:  
Target  
7-27. Serial Control Bus WRITE  
For more information on I2C interface requirements and throughput considerations, refer to I2C Communication  
Over FPD-Link III With Bidirectional Control Channel (SNLA131) and I2C Over DS90UB913/4 FPD-Link III With  
Bidirectional Control Channel (SNLA222).  
7.5.2 I2C Target Operation  
The DS90UB954-Q1 implements an I2C-compatible target capable of operation compliant to the Standard, Fast,  
and Fast-plus modes of operation allowing I2C operation at up to 1-MHz clock frequencies. Local I2C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
transactions to access DS90UB954-Q1 registers can be conducted 2 ms after power supplies are stable and  
PDB is brought high. For accesses to local registers, the I2C Target operates without stretching the clock. The  
primary I2C target address is set through the IDx pin. The primary I2C target address is stored in the I2C Device  
ID register at address 0x0. In addition to the primary I2C target address, the DS90UB954-Q1 may be  
programmed to respond to up to two other I2C addresses. The two RX Port ID addresses provide direct access  
to the Receive Port registers without needing to set the paging controls normally required to access the port  
registers.  
7.5.3 Remote Target Operation  
The Bidirectional control channel provides a mechanism to read or write I2C registers in remote devices over the  
FPD-Link III interface. The I2C Controller located at the Deserializer must support I2C clock stretching. Accesses  
to serializer or remote target devices over the Bidirectional Control Channel will result in clock stretching to allow  
for response time across the link. The DS90UB954-Q1 acts as an I2C target on the local bus, forwards read and  
write requests to the remote device, and returns the response from the remote device to the local I2C bus. To  
allow for the propagation and regeneration of the I2C transaction at the remote device, the DS90UB954-Q1 will  
stretch the I2C clock while waiting for the remote response. To communicate with a remote target device, the Rx  
Port which is intended for messaging also must be selected in register 0x4C. The I2C address of the currently  
selected RX Port serializer will be populated in register 0x5B of the DS90UB954-Q1. The BCC_CONFIG register  
0x58 also must have bit 6, I2C_PASS_THROUGH set to one. If enabled, local I2C transactions with valid  
address decode will then be forwarded through the Bidirectional Control Channel to the remote I2C bus. When  
I2C PASS THROUGH is set, the deserializer will only propagate messages that it recognizes, such as the  
registered serializer alias address (SER ALIAS), or any registered remote target alias attached to the serializer  
I2C bus (TARGET ALIAS) assigned to the specific Rx Port0 or Port 1. Setting PASS THROUGH ALL and AUTO  
ACK are less common use cases and primarily used for debugging I2C messaging as they will respectively pass  
all addresses regardless of valid I2C address (PASS_THROUGH_ALL) and acknowledge all I2C commands  
without waiting for a response from serializer (AUTO_ACK).  
7.5.3.1 Remote I2C Targets Data Throughput  
Since the BCC buffers each I2C data byte and regenerates the I2C protocol on the remote side of the link, the  
overall I2C throughput will be reduced. The reduction is dependent on the operating frequencies of the local and  
remote interfaces. The local I2C rate is based on the host controller clock rate, while the remote rate depends on  
the settings for the proxy I2C controller (SCL frequency).  
For purposes of understanding the effects of the BCC on data throughput from a host controller to a remote I2C  
controller, the approximate bit rate including latency timings across the control channel can be calculated by the  
following:  
9 bits / ((Host_bit * 9) + (Remote_bit * 9) + FCdelay + BCCdelay)  
Example of DS90UB953/954 chipset:  
For the 100 kbit/s (100 kHz) :  
Host_bit = 10us (100 kHz)  
Remote_bit = 13.5us (default 74 kHz)  
FCdelay = 225ns (typical value)  
BCCdelay = 1.5us (typical value for 50 Mbps back channel rate)  
Effective rate = 9bits / (90us + 121us + 0.225us + 1.5us) = 42.3 kbit/s  
7-16. Typical Achievable Bit Rates  
Host I2C rate  
100 kbit/s  
400 kbit/s  
1 Mbit/s  
Remote I2C rate  
74 kbit/s (default settings)  
100 kbit/s  
Net bit rate  
42.3 kbit/s  
78.8 kbit/s  
89.4 kbit/s  
270.88 kbit/s  
100 kbit/s  
1 Mbit/s  
400 kbit/s  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-16. Typical Achievable Bit Rates (continued)  
Host I2C rate  
Remote I2C rate  
Net bit rate  
1 Mbit/s  
1 Mbit/s  
456.27 kbit/s  
Since the I2C protocol includes overhead for sending address information as well as START and STOP bits, the  
actual data throughput depends on the size and type of transactions used. Use of large bursts to read and write  
data will result in higher data transfer rates.  
7.5.4 Remote Target Addressing  
Various system use cases require multiple sensor devices with the same fixed I2C target address to be remotely  
accessible from the same I2C bus at the deserialilzer. The DS90UB954-Q1 provides target ID virtual addressing  
to differentiate target target addresses when connecting two or more remote devices. Eight pairs of TargetAlias  
and TargetID registers are allocated for each FPD-Link III Receive port in registers 0x5C through 0x6C. The  
TargetAlias register allows programming a virtual address which the host controller uses to access the remote  
device. The TargetID register provides the actual target address for the device on the remote I2C bus. Since  
eight pairs of registers are available for each port (total of 16 pairs), multiple devices may be directly accessible  
remotely without need for reprogramming. Multiple TargetAlias can be assigned to the same TargetID as well.  
7.5.5 Broadcast Write to Remote Target Devices  
The DS90UB954-Q1 provides a mechanism to broadcast I2C writes to remote devices (either remote targets or  
serializers). For each Receive port, the TargetID and TargetAlias register pairs would be programmed with the  
same TargetAlias value so they would each respond to the local I2C access. The TargetID value would match  
the intended remote device address, either remote target or serializers. For each receive port, on of the  
TargetAlias registers is set with an Alias value. For each port, the TargetID value is set to the address of the  
remote device. These values may be the same. To access the remote serializer registers rather than a remote  
target, the serializer ID (SER_IDX or SER_IDY) would be used as the TargetID value.  
7.5.5.1 Code Example for Broadcast Write  
#
"FPD3_PORT_SEL Boardcast RX0/1"  
WriteI2C(0x4c,0x0f) # RX_PORT0 read; RX0/1 write  
"enable pass through"  
#
WriteI2C(0x58,0x58) # enable pass through  
WriteI2C(0x5c,0x18) # "SER_ALIAS_ID"  
WriteI2C(0x5d,0x60) # "TargetID[0]"  
WriteI2C(0x65,0x60) # "TargetAlias[0]"  
WriteI2C(0x7c,0x01) # "FV_POLARITY"  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
7.5.6 I2C Controller Proxy  
The DS90UB954-Q1 implements an I2C controller that acts as a proxy controller to regenerate I2C accesses  
originating from a remote serializer (DS90UB935-Q1, DS90UB933-Q1, DS90UB913A-Q1, or the DS90UB953-  
Q1). By default, the I2C Controller Enable bit (I2C_CONTROLLER_EN) in register 0x05[2]= 0 to block Controller  
access to local deserialilzer I2C from remote serializers. Set I2C_CONTROLLER_EN] = 1 if system requires the  
deserializer to act as proxy controller for remote serializers on the local deserializer I2C bus. The proxy controller  
is an I2C compatible controller, capable of operating with Standard-mode, Fast-mode, or Fast-mode Plus I2C  
timing. It is also capable of arbitration with other controllers, allowing multiple controllers and targets to exist on  
the I2C bus. A separate I2C proxy controller is implemented for each Receive port. This allows independent  
operation for all sources to the I2C interface. Arbitration between multiple sources is handled automatically using  
I2C multi-controller arbitration.  
7.5.7 I2C Controller Proxy Timing  
The proxy controller timing parameters are based on the REFCLK timing. Timing accuracy for the I2C proxy  
controller based on the REFCLK or XTL clock source attached to the DS90UB954-Q1 deserializer. Before  
REFCLK is applied the deserializer will default to internal reference clock with accuracy of 25 MHz ±10%.The  
I2C Controller regenerates the I2C read or write access using timing controls in the registers 0xA and 0xB to  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
regenerate the clock and data signals to meet the desired I2C timing in standard, fast, or fast-plus modes of  
operation.  
I2C Controller SCL High Time is set in register 0x0A[7:0]. This field configures the high pulse width of the SCL  
output when the Serializer is the Controller on the local deserializer I2C bus. The default value is set to provide a  
minimum 5-µs SCL high time with the reference clock at 25 MHz + 100 ppm including four additional oscillator  
clock periods or synchronization and response time. Units are 40 ns for the nominal oscillator clock frequency,  
giving Min_delay = 40 ns × (SCL_HIGH_TIME + 4).  
I2C Controller SCL Low Time is set in register 0x0B[7:0]. This field configures the low pulse width of the SCL  
output when the Serializer is the Controller on the local deserializer I2C bus. This value is also used as the SDA  
setup time by the I2C Target for providing data prior to releasing SCL during accesses over the BiDirectional  
Control Channel. The default value is set to provide a minimum 5-µs SCL high time with the reference clock at  
25 MHz + 100 ppm including four additional oscillator clock periods or synchronization and response time. Units  
are 40 ns for the nominal oscillator clock frequency, giving Min_delay = 40 ns × (SCL_HIGH_TIME + 4). See 表  
7-17 example settings for Standard mode, Fast mode, and Fast Mode Plus timing.  
7-17. Typical I2C Timing Register Settings  
SCL HIGH TIME  
SCL LOW TIME  
I2C MODE  
NOMINAL DELAY AT  
REFCLK = 25 MHz  
NOMINAL DELAY AT  
REFCLK = 25 MHz  
0x0A[7:0]  
0x0B[7:0]  
Standard  
Fast  
0x7A  
0x13  
0x06  
5.04 us  
0.920 us  
0.400 us  
0x7A  
0x25  
0x0C  
5.04 us  
1.64 us  
0.640 us  
Fast - Plus  
7.5.7.1 Code Example for Configuring Fast Mode Plus I2C Operation  
#
"RX0 I2C Controller Fast Plus Configuration"  
WriteI2C(0x02,0x3E) # Enable Proxy  
WriteI2C(0x4c,0x01) # Select RX_PORT0  
# Set SCL High and Low Time delays  
WriteI2C(0x0a,0x06) # SCL High  
WriteI2C(0x0b,0x0C) # SCL Low  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.5.8 Interrupt Support  
Interrupts can be brought out on the INTB pin as controlled by the INTERRUPT_CTL 0x23 and  
INTERRUPT_STS 0x24 registers. The main interrupt control registers provide control and status for interrupts  
from the individual sources. Sources include each of the two FPD-Link III Receive ports as well as the CSI-2  
Transmit port. Clearing interrupt conditions requires reading the associated status register for the source. The  
setting of the individual interrupt status bits is not dependent on the related interrupt enable controls. The  
interrupt enable controls whether an interrupt is generated based on the condition, but does not prevent the  
interrupt status assertion.  
The DS90UB954-Q1 devices have built in flexibility such that the main interrupt may be brought to any GPIO pin  
through the GPIOx_PIN_CTL register for that pin (see 7-35). Note that the GPIO3 pin is the only GPIO that is  
implemented as open-drain, so this is the preferred pin for signaling the interrupt.  
For an interrupt to be generated based on one of the interrupt status assertions, both the individual interrupt  
enable and the INT_EN control must be set in the INTERRUPT_CTL 0x23 register. For example, to generate an  
interrupt if IS_RX0 is set, both the IE_RX0 and INT_EN bits must be set. If IE_RX0 is set but INT_EN is not, the  
INT status is indicated in the INTERRUPT_STS register, and the INTB pin does not indicate the interrupt  
condition.  
See the INTERRUPT_CTL 0x23 and INTERRUPT_STS 0x24 registers for details.  
7.5.8.1 Code Example to Enable Interrupts  
#
"RX0/1 INTERRUPT_CTL enable"  
WriteI2C(0x23,0xBF) # RX all & INTB PIN EN  
# Individual RX0/1 INTERRUPT_CTL enable  
# "RX0 INTERRUPT_CTL enable"  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x23,0x81) # RX0 & INTB PIN EN  
# "RX1 INTERRUPT_CTL enable"  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x23,0x82) # RX1 & INTB PIN EN  
7.5.8.2 FPD-Link III Receive Port Interrupts  
For each FPD-Link III Receive port, multiple options are available for generating interrupts. Interrupt generation  
is controlled through the PORT_ICR_HI 0xD8 and PORT_ICR_LO 0xD9 registers. In addition, the  
PORT_ISR_HI 0xDA and PORT_ISR_LO 0xDB registers provide read-only status for the interrupts. Clearing of  
interrupt conditions is handled by reading the RX_PORT_STS1, RX_PORT_STS2, and CSI_RX_STS registers.  
The status bits in the PORT_ISR_HI/LO registers are copies of the associated bits in the main status registers.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
To enable interrupts from one of the Receive port interrupt sources:  
1. Enable the interrupt source by setting the appropriate interrupt enable bit in the PORT_ICR_HI or  
PORT_ICR_LO register  
2. Set the RX Port X Interrupt control bit (IE_RXx) in the INTERRUPT_CTL register  
3. Set the INT_EN bit in the INTERRUPT_CTL register to allow the interrupt to assert the INTB pin low  
To clear interrupts from one of the Receive port interrupt sources:  
1. (optional) Read the INTERRUPT_STS register to determine which RX Port caused the interrupt  
2. (optional) Read the PORT_ISR_HI and PORT_ISR_LO registers to determine source of interrupt  
3. Read the appropriate RX_PORT_STS1, RX_PORT_STS2, or CSI_RX_STS register to clear the interrupt.  
The first two steps are optional. The interrupt could be determined and cleared by just reading the status  
registers.  
7.5.8.2.1 Interrupts on Forward Channel GPIO  
When connected to the DS90UB935-Q1 or DS90UB953-Q1 serializer, interrupts can be generated on changes  
in any of the four forward channel GPIOs per port. Interrupts are enabled by setting bits in the FC_GPIO_ICR  
register. Interrupts may be generated on rising and/or falling transitions on the GPIO signal. The GPIO interrupt  
status is cleared by reading the FC_GPIO_STS register.  
Interrupts should only be used for GPIO signals operating at less than 10 MHz. High or low pulses that are less  
than 100 ns might not be detected at the DS90UB954-Q1. To avoid false interrupt indications, the interrupts  
should not be enabled until after the Forward Channel GPIOs are enabled at the serializer.  
7.5.8.2.2 Interrupts on Change in Sensor Status  
The FPD-Link III Receiver recovers 32-bits of Sensor status from the attached DS90UB935-Q1 or DS90UB953-  
Q1 serializer. Interrupts may be generated based on changes in the Sensor Status values received from the  
forward channel. The Sensor Status consists of 4 bytes of data, which may be read from the SENSOR_STS_x  
registers for each Receive port. Interrupts may be generated based on a change in any of the bits in the first  
byte (SENSOR_STS_0). Each bit can be individually masked for Rising and/or Falling interrupts.  
Two registers control the interrupt masks for the SENSOR_STS bits: SEN_INT_RISE_CTL and  
SEN_INT_FALL_CTL.  
Two registers provide interrupt status: SEN_INT_RISE_STS, SEN_INT_FALL_STS.  
If a mask bit is set, a change in the associated SENSOR_STS_0 bit will be detected and latched in the  
SEN_INT_RISE_STS or SEN_INT_FALL_STS registers. If the mask bit is not set, the associated interrupt status  
bit will always be 0. If any of the SEN_INT_RISE_STS or SEN_INT_FALL_STS bits is set, the IS_FC_SEN_STS  
bit will be set in the PORT_ISR_HI register.  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.5.8.3 Code Example to Readback Interrupts  
INTERRUPT_STS = ReadI2C(0x24) # 0x24 INTERRUPT_STS  
if ((INTERRUPT_STS & 0x80) >> 7):  
print "# GLOBAL INTERRUPT DETECTED "  
if ((INTERRUPT_STS & 0x40) >> 6):  
print "# RESERVED "  
if ((INTERRUPT_STS & 0x10) >> 4):  
print "# IS_CSI_TX DETECTED "  
if ((INTERRUPT_STS & 0x02) >> 1):  
print "# IS_RX1 DETECTED "  
if ((INTERRUPT_STS & 0x01) ):  
print "# IS_RX0 DETECTED "  
# "################################################"  
#
"RX0 status"  
# "################################################"  
WriteReg(0x4C,0x01) # RX0  
PORT_ISR_LO = ReadI2C(0xDB)  
print "0xDB PORT_ISR_LO : ", hex(PORT_ISR_LO) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_LO & 0x40) >> 6):  
print "# IS_LINE_LEN_CHG INTERRUPT DETECTED "  
if ((PORT_ISR_LO & 0x20) >> 5):  
print "# IS_LINE_CNT_CHG DETECTED "  
if ((PORT_ISR_LO & 0x10) >> 4):  
print "# IS_BUFFER_ERR DETECTED "  
if ((PORT_ISR_LO & 0x08) >> 3):  
print "# IS_CSI_RX_ERR DETECTED "  
if ((PORT_ISR_LO & 0x04) >> 2):  
print "# IS_FPD3_PAR_ERR DETECTED "  
if ((PORT_ISR_LO & 0x02) >> 1):  
print "# IS_PORT_PASS DETECTED "  
if ((PORT_ISR_LO & 0x01) ) :  
print "# IS_LOCK_STS DETECTED "  
################################################  
PORT_ISR_HI = ReadI2C(0xDA)  
print "0xDA PORT_ISR_HI : ", hex(PORT_ISR_HI) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_HI & 0x04) >> 2):  
print "# IS_FPD3_ENC_ERR DETECTED "  
if ((PORT_ISR_HI & 0x02) >> 1):  
print "# IS_BCC_SEQ_ERR DETECTED "  
if ((PORT_ISR_HI & 0x01) ) :  
print "# IS_BCC_CRC_ERR DETECTED "  
################################################  
RX_PORT_STS1 = ReadI2C(0x4D) # R/COR  
if ((RX_PORT_STS1 & 0xc0) >> 6) == 1:  
print "# RX_PORT_NUM = RX1"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 0:  
print "# RX_PORT_NUM = RX0"  
if ((RX_PORT_STS1 & 0x20) >> 5):  
print "# BCC_CRC_ERR DETECTED "  
if ((RX_PORT_STS1 & 0x10) >> 4):  
print "# LOCK_STS_CHG DETECTED "  
if ((RX_PORT_STS1 & 0x08) >> 3):  
print "# BCC_SEQ_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x04) >> 2):  
print "# PARITY_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x02) >> 1):  
print "# PORT_PASS=1 "  
if ((RX_PORT_STS1 & 0x01) ):  
print "# LOCK_STS=1 "  
################################################  
RX_PORT_STS2 = ReadI2C(0x4E)  
if ((RX_PORT_STS2 & 0x80) >> 7):  
print "# LINE_LEN_UNSTABLE DETECTED "  
if ((RX_PORT_STS2 & 0x40) >> 6):  
print "# LINE_LEN_CHG "  
if ((RX_PORT_STS2 & 0x20) >> 5):  
print "# FPD3_ENCODE_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x10) >> 4):  
print "# BUFFER_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x08) >> 3):  
print "# CSI_ERR DETECTED "  
if ((RX_PORT_STS2 & 0x04) >> 2):  
print "# FREQ_STABLE DETECTED "  
if ((RX_PORT_STS2 & 0x02) >> 1):  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
print "# CABLE_FAULT DETECTED "  
if ((RX_PORT_STS2 & 0x01) ):  
print "# LINE_CNT_CHG DETECTED "  
################################################  
# "################################################"  
#
"RX1 status"  
# "################################################"  
WriteReg(0x4C,0x12) # RX1  
PORT_ISR_LO = ReadI2C(0xDB) # PORT_ISR_LO readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_LO & 0x40) >> 6):  
print "# IS_LINE_LEN_CHG INTERRUPT DETECTED "  
if ((PORT_ISR_LO & 0x20) >> 5):  
print "# IS_LINE_CNT_CHG DETECTED "  
if ((PORT_ISR_LO & 0x10) >> 4):  
print "# IS_BUFFER_ERR DETECTED "  
if ((PORT_ISR_LO & 0x08) >> 3):  
print "# IS_CSI_RX_ERR DETECTED "  
if ((PORT_ISR_LO & 0x04) >> 2):  
print "# IS_FPD3_PAR_ERR DETECTED "  
if ((PORT_ISR_LO & 0x02) >> 1):  
print "# IS_PORT_PASS DETECTED "  
if ((PORT_ISR_LO & 0x01) ) :  
print "# IS_LOCK_STS DETECTED "  
################################################  
PORT_ISR_HI = ReadI2C(0xDA) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_HI & 0x04) >> 2):  
print "# IS_FPD3_ENC_ERR DETECTED "  
if ((PORT_ISR_HI & 0x02) >> 1):  
print "# IS_BCC_SEQ_ERR DETECTED "  
if ((PORT_ISR_HI & 0x01) ) :  
print "# IS_BCC_CRC_ERR DETECTED "  
################################################  
RX_PORT_STS1 = ReadI2C(0x4D) # R/COR  
if ((RX_PORT_STS1 & 0xc0) >> 6) == 1:  
print "# RX_PORT_NUM = RX1"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 0:  
print "# RX_PORT_NUM = RX0"  
if ((RX_PORT_STS1 & 0x20) >> 5):  
print "# BCC_CRC_ERR DETECTED "  
if ((RX_PORT_STS1 & 0x10) >> 4):  
print "# LOCK_STS_CHG DETECTED "  
if ((RX_PORT_STS1 & 0x08) >> 3):  
print "# BCC_SEQ_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x04) >> 2):  
print "# PARITY_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x02) >> 1):  
print "# PORT_PASS=1 "  
if ((RX_PORT_STS1 & 0x01) ):  
print "# LOCK_STS=1 "  
################################################  
RX_PORT_STS2 = ReadI2C(0x4E)  
if ((RX_PORT_STS2 & 0x80) >> 7):  
print "# LINE_LEN_UNSTABLE DETECTED "  
if ((RX_PORT_STS2 & 0x40) >> 6):  
print "# LINE_LEN_CHG "  
if ((RX_PORT_STS2 & 0x20) >> 5):  
print "# FPD3_ENCODE_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x10) >> 4):  
print "# BUFFER_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x08) >> 3):  
print "# CSI_ERR DETECTED "  
if ((RX_PORT_STS2 & 0x04) >> 2):  
print "# FREQ_STABLE DETECTED "  
if ((RX_PORT_STS2 & 0x02) >> 1):  
print "# CABLE_FAULT DETECTED "  
if ((RX_PORT_STS2 & 0x01) ):  
print "# LINE_CNT_CHG DETECTED "  
################################################  
7.5.8.4 CSI-2 Transmit Port Interrupts  
The following interrupts are available for each CSI-2 Transmit Port:  
Pass indication  
Synchronized status  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Deassertion of Pass indication for an input port assigned to the CSI-2 TX Port  
Loss of Synchronization between input video streams  
RX Port Interrupt interrupts from RX Ports mapped to this CSI-2 Transmit port  
See the CSI_TX_ICR address 0x36 and CSI_TX_ISR address 0x37 registers for details.  
The setting of the individual interrupt status bits is not dependent on the related interrupt enable controls. The  
interrupt enable controls whether an interrupt is generated based on the condition, but does not prevent the  
interrupt status assertion.  
7.5.9 Error Handling  
In the DS90UB954-Q1 , the FPD-Link III receiver transfers incoming video frames to internal video buffers for  
forwarding to the CSI-2 Transmit ports. When the DS90UB954-Q1 detects an error condition the standard  
operation would be to flag this error condition and truncate sending the CSI-2 frame to avoid sending corrupted  
data downstream. When the DS90UB954-Q1 recovers from an error condition, it will provide Start of Frame and  
resume sending valid data. Consequently, when the downstream CSI-2 input receives a repeated Start of Frame  
condition, this will indicate that the data received in between the prior start of frame is suspect and the signal  
processor can then discard the suspected data. The settings in registers PORT_CONFIG2 (0x7C) and  
PORT_PASS_CTL (0x7D) can be used to change how the 954 handles errors when passing video frames. The  
receive ports may be configured to qualify the incoming video, providing a status indication and preventing  
forwarding of video frames until certain error free conditions are met. The Pass indication may be used to  
prevent forwarding packets to the internal video buffers by setting the PASS_DISCARD_EN bit in the  
PORT_PASS_CTL register. When this bit is set, video input will be discarded until the Pass signal indicates valid  
receive data. The Receive port will indicate Pass status once specific conditions are met including a number of  
valid frames received. Valid frames may include requiring no FPD-Link III Parity errors and consistent frame size  
including video line length and/or number of video lines.  
In addition, the Receive port may be programmed to truncate video frames containing errors or prevent the  
forwarding of video until the Pass conditions are met. Register settings in PORT_CONFIG2 register 0x7C can be  
used to truncate frames on different line/frame sizes or a CSI-2 parity error is detected. When the deserializer  
truncates frames in cases of different line/frame sizes different line/frame sizes, the video frame will stop  
immediately with no frame end packet. Often the condition will not be cleared until the next valid frame is  
received.  
The Rx Port PASS indication may be used to prevent forwarding packets to the internal video buffers by setting  
the PASS_DISCARD_EN bit in the PORT_PASS_CTL register 0x7D. When this bit is set, video input will be  
discarded until the Pass signal indicates valid receive data. The incoming video frames may be truncated based  
on error conditions or change in video line size or number of lines. These functions are controlled by bits in the  
PORT_CONFIG2 register. When truncating video frames, the video frame may be truncated after sending any  
number of video lines. A truncated frame will not send a Frame End packet to the CSI-2 Transmit port.  
7.5.9.1 Receive Frame Threshold  
The FPD-Link III Receiver may be programmed to require a specified number of valid video frames prior to  
indicating a Pass condition and forwarding video frames. The number of required valid video frames is  
programmable through the PASS_THRESH field in the PORT_PASS_CTL register 0x7D (7-135). The  
threshold can be programmed from 0 to 3 video frames. If set to 0, Pass will typically be indicated as soon as the  
FPD-Link III Receiver reports Lock to the incoming signal. If set greater than 0, the Receiver will require that  
number of valid frames before indicating Pass. Determination of valid frames will be dependent on the control  
bits in the PORT_PASS_CTL register. In the case of a Parity Error, when PASS_PARITY_ERR is set to 1  
forwarding will be enabled one frame early. To ensure at least one good frame occurs following a parity error the  
counter should be set to 2 or higher when PASS_PARITY_ERR = 1.  
7.5.9.2 Port PASS Control  
When the PASS_LINE_SIZE control is set in the PORT_PASS_CTL register, the Receiver will qualify received  
frames based on having a consistent video line size. For PASS_LINE_SIZE to be clear, the deserializer checks  
that the received line length remains consistent during the frame and between frames. For each video line, the  
length (in bytes) will be determined. If it varies then we will flag this condition. Each video line in the packet must  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
be the same size, and the line size must be consistent across video frames. A change in video line size will  
restart the valid frame counter.  
When the PASS_LINE_CNT control is set in the PORT_PASS_CTL register, the Receiver will qualify received  
frames based on having a consistent frame size in number of lines. A change in number of video lines will restart  
the valid frame counter.  
When the PASS_PARITY_ERR control is set in the PORT_PASS_CTL register, the Receiver will clear the Pass  
indication on receipt of a parity error on the FPD-Link III interface. The valid frame counter will also be cleared on  
the parity error event. When PASS_PARITY_ERR is set to 1, TI also recommends setting PASS_THRESHOLD  
to 2 or higher to ensure at least one good frame occurs following a parity error.  
7.5.10 Timestamp Video Skew Detection  
The DS90UB954-Q1 implements logic to detect skew between video signaling from attached Sensors. For each  
input port, the DS90UB954-Q1 provides the ability to capture a timestamp for both a start-of-frame and start-of-  
line event. Comparison of timestamps can provide information on the relative skew between the ports. Start-of-  
frame timestamps are generated at the active edge of the Vertical Sync signal in Raw mode. Start-of-line  
timestamps are generated at the start of reception of the Nth line of video data after the start-of-frame for either  
mode of operation. The function does not use the Line Start (LS) packet or Horizontal Sync controls to determine  
the start of lines. Timestamp operation is not supported if multiple video streams (Virtual Channels) are present  
on a single Rx port.  
The skew detection can run in either a FrameSync mode or free-run mode.  
Skew detection can be individually enabled for each RX port.  
For start-of-line timestamps, a line number must be programmed. The same line number is used for all channels.  
Prior to reading timestamps, the TS_FREEZE bit for each port that will be read should be set. This will prevent  
overwrite of the timestamps by the detection circuit until all timestamps have been read. The freeze condition will  
be released automatically once all frozen timestamps have been read. The freeze bits can also be cleared if it  
does not read all the timestamp values.  
The TS_STATUS register includes the following:  
Flags to indicate multiple start-of-frame per FrameSync period  
Flag to indicate Timestamps Ready  
Flags to indicate Timestamps valid (per port) if ports are not synchronized, all ports may not indicate valid  
timestamps  
The Timestamp Ready flag will be cleared when the TS_FREEZE bit is cleared.  
7.5.11 Pattern Generation  
The DS90UB954-Q1 supports an internal pattern generation feature to provide a simple way to generate video  
test patterns for the CSI-2 transmitter outputs. Two types of patterns are supported: Reference Color Bar pattern  
and Fixed Color patterns and accessed by the Pattern Generator page 0 in the indirect register set.  
Prior to enabling the Packet Generator, the following should be done:  
1. Disable video forwarding by setting bits [5:4] of the FWD_CTL1 register (that is, set register 0x20 to 0x30).  
2. Configure CSI-2 Transmitter operating speed using the CSI_PLL_CTL register.  
3. Enable the CSI-2 Transmitter for port 0 using the CSI_CTL register  
7.5.11.1 Reference Color Bar Pattern  
The Reference Color Bar Patterns are based on the pattern defined in Appendix D of the mipi_CTS_for_D-  
PHY_v1-1_r03 specification. The pattern is an eight color bar pattern designed to provide high, low, and medium  
frequency outputs on the CSI-2 transmit data lanes.  
The CSI-2 Reference pattern provides eight color bars by default with the following byte data for the color bars:  
X bytes of 0xAA (high-frequency pattern, inverted) X bytes of 0x33 (mid-frequency pattern) X bytes of 0xF0 (low-  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
frequency pattern, inverted) X bytes of 0x7F (lone 0 pattern) X bytes of 0x55 (high-frequency pattern) X bytes of  
0xCC (mid-frequency pattern, inverted) X bytes of 0x0F (low-frequency pattern) Y bytes of 0x80 (lone 1 pattern)  
In most cases, Y will be the same as X. For certain data types, the last color bar may need to be larger than the  
others to properly fill the video line dimensions.  
The Pattern Generator is programmable with the following options:  
Number of color bars (1, 2, 4, or 8)  
Number of bytes per line  
Number of bytes per color bar  
CSI-2 DataType field and VC-ID  
Number of active video lines per frame  
Number of total lines per frame (active plus blanking)  
Line period (possibly program in units of 10 ns)  
Vertical front porch number of blank lines prior to FrameEnd packet  
Vertical back porch number of blank lines following FrameStart packet  
The pattern generator relies on proper programming by software to ensure the color bar widths are set to  
multiples of the block (or word) size required for the specified DataType. For example, for RGB888, the block  
size is 3 bytes which also matches the pixel size. In this case, the number of bytes per color bar must be a  
multiple of 3. The Pattern Generator is implemented in the CSI-2 Transmit clock domain, providing the pattern  
directly to the CSI-2 Transmitter. The circuit generates the CSI-2 formatted data.  
7.5.11.2 Fixed Color Patterns  
When programmed for Fixed Color Pattern mode, Pattern Generator can generate a video image with a  
programmable fixed data pattern. The basic programming fields for image dimensions are the same as used with  
the Color Bar Patterns. When sending Fixed Color Patterns, the color bar controls allow alternating between the  
fixed pattern data and the bit-wise inverse of the fixed pattern data.  
The Fixed Color patterns assume a fixed block size for the byte pattern to be sent. The block size is  
programmable through the register and is designed to support most 8-bit, 10-bit, and 12-bit pixel formats. The  
block size should be set based on the pixel size converted to blocks that are an integer multiple of bytes. For  
example, an RGB888 pattern would consist of 3-byte pixels and therefore require a 3-byte block size. A 2x12-bit  
pixel image would also require 3-byte block size, while a 3x12-bit pixel image would require nine bytes (two  
pixels) to send an integer number of bytes. Sending a RAW10 pattern typically requires a 5-byte block size for  
four pixels, so 1x10-bit and 2x10-bit could both be sent with a 5-byte block size. For 3x10-bit, a 15-byte block  
size would be required.  
The Fixed Color patterns support block sizes up to 16 bytes in length, allowing additional options for patterns in  
some conditions. For example, an RGB888 image could alternate between four different pixels by using a  
twelve-byte block size. An alternating black and white RGB888 image could be sent with a block size of 6-bytes  
and setting first three bytes to 0xFF and next three bytes to 0x00.  
To support up to 16-byte block sizes, a set of sixteen registers are implemented to allow programming the value  
for each data byte. The line period is calculated in units of 10 ns, unless the CSI-2 mode is set to 400-Mb  
operation in which case the unit time dependancy is 20 ns.  
7.5.11.3 Packet Generator Programming  
The information in this section provides details on how to program the Pattern Generator to provide a specific  
color bar pattern, based on datatype, frame size, and line size.  
Most basic configuration information is determined directly from the expected video frame parameters. The  
requirements should include the datatype, frame rate (frames per second), number of active lines per frame,  
number of total lines per frame (active plus blanking), and number of pixels per line.  
PGEN_ACT_LPF Number of active lines per frame  
PGEN_TOT_LPF Number of total lines per frame  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
PGEN_LSIZE Video line length size in bytes. Compute based on pixels per line multiplied by pixel size in  
bytes  
CSI-2 DataType field and VC-ID  
Optional: PGEN_VBP Vertical back porch. This is the number of lines of vertical blanking following Frame  
Valid  
Optional: PGEN_VFP Vertical front porch. This is the number of lines of vertical blanking preceding Frame  
Valid  
PGEN_LINE_PD Line period in 10-ns units. Compute based on Frame Rate and total lines per frame  
PGEN_BAR_SIZE Color bar size in bytes. Compute based on datatype and line length in bytes (see  
details below)  
7.5.11.3.1 Determining Color Bar Size  
The color bar pattern should be programmed in units of a block or word size dependent on the datatype of the  
video being sent. The sizes are defined in the Mipi CSI-2 specification. For example, RGB888 requires a 3-byte  
block size which is the same as the pixel size. RAW10 requires a 5-byte block size which is equal to 4 pixels.  
RAW12 requires a 3-byte block size which is equal to 2 pixels.  
When programming the Pattern Generator, software should compute the required bar size in bytes based on the  
line size and the number of bars. For the standard eight color bar pattern, that would require the following  
algorithm:  
Select the desired datatype, and a valid length for that datatype (in pixels).  
Convert pixels/line to blocks/line (by dividing by the number of pixels/block, as defined in the datatype  
specification).  
Divide the blocks/line result by the number of color bars (8), giving blocks/bar  
Round result down to the nearest integer  
Convert blocks/bar to bytes/bar and program that value into the PGEN_BAR_SIZE register  
As an alternative, the blocks/line can be computed by converting pixels/line to bytes/line and divide by bytes/  
block.  
7.5.11.4 Code Example for Pattern Generator  
#Patgen Fixed Colorbar 1280x720p30  
WriteI2C(0x33,0x01) # CSI0 enable  
WriteI2C(0xB0,0x00) # Indirect Pattern Gen Registers  
WriteI2C(0xB1,0x01) # PGEN_CTL  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB1,0x02) # PGEN_CFG  
WriteI2C(0xB2,0x33)  
WriteI2C(0xB1,0x03) # PGEN_CSI_DI  
WriteI2C(0xB2,0x24)  
WriteI2C(0xB1,0x04) # PGEN_LINE_SIZE1  
WriteI2C(0xB2,0x0F)  
WriteI2C(0xB1,0x05) # PGEN_LINE_SIZE0  
WriteI2C(0xB2,0x00)  
WriteI2C(0xB1,0x06) # PGEN_BAR_SIZE1  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB1,0x07) # PGEN_BAR_SIZE0  
WriteI2C(0xB2,0xE0)  
WriteI2C(0xB1,0x08) # PGEN_ACT_LPF1  
WriteI2C(0xB2,0x02)  
WriteI2C(0xB1,0x09) # PGEN_ACT_LPF0  
WriteI2C(0xB2,0xD0)  
WriteI2C(0xB1,0x0A) # PGEN_TOT_LPF1  
WriteI2C(0xB2,0x04)  
WriteI2C(0xB1,0x0B) # PGEN_TOT_LPF0  
WriteI2C(0xB2,0x1A)  
WriteI2C(0xB1,0x0C) # PGEN_LINE_PD1  
WriteI2C(0xB2,0x0C)  
WriteI2C(0xB1,0x0D) # PGEN_LINE_PD0  
WriteI2C(0xB2,0x67)  
WriteI2C(0xB1,0x0E) # PGEN_VBP  
WriteI2C(0xB2,0x21)  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
WriteI2C(0xB1,0x0F) # PGEN_VFP  
WriteI2C(0xB2,0x0A)  
7.5.12 FPD-Link BIST Mode  
An optional At-Speed Built-In Self Test (BIST) feature supports testing of the high-speed serial link and the back  
channel without external data connections. The BIST mode is enabled by either applying a logic high level to the  
BISTEN pin or programming the BIST configuration register 0xB3. This is useful in the prototype stage,  
equipment production, in-system test, and system diagnostics.  
When BIST is activated, the DS90UB954-Q1 sends register writes to the Serializer through the Back Channel.  
The control channel register writes configure the Serializer for BIST mode operation. The serializer outputs a  
continuous stream of a pseudo-random sequence and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The serializer also tracks errors indicated by the CRC fields in each back  
channel frame.  
The LOCK, PASS and CMLOUT output functions are all available during BIST mode. While the lock indications  
are required to identify the beginning of proper data reception, for any link failures or data corruption, the best  
indication is the contents of the error counter in the BIST_ERR_COUNT register 0x57 for each RX port. The test  
may select whether the Serializer uses an external or internal clock as reference for the BIST pattern frequency.  
7.5.12.1 BIST Operation Through BISTEN Pin  
One method to enable BIST is by driving a logic high level on the BISTEN pin. During pin control BIST, the  
values on GPIO1 and GPIO0 pins will control whether the Serializer uses an external or internal clock for the  
BIST pattern. The values on GPIO1 and GPIO0 will be written to the Serializer register 0x14[2:1]. A value of 00  
will select an external clock. A non-zero value will enable an internal clock of the frequency defined in the  
Serializer register 0x14. Note that when the DS90UB954-Q1 is paired with DS90UB933-Q1 or DS90UB913A-  
Q1, a setting of 11 may result in a frequency that is too slow for the DS90UB954-Q1 to recover. The GPIO1 and  
GPIO0 values are sampled at the start of BIST (when BISTEN pin transitions to high). Changing this value after  
BIST is enabled will not change operation. Link BIST can also be enabled by register control through the BIST  
Control register (address 0xB3)  
7.5.12.2 BIST Operation Through Register Control  
The FPD-Link III BIST is configured and enabled by programming the BIST Control register (address 0xB3).  
BIST pass or fail status may be brought to GPIO pins by selecting the Pass indication for each receive port using  
the GPIOx_PIN_CTL registers. The Pass/Fail status will be deasserted low for each data error detected on the  
selected port input data. In addition, it is advisable to bring the Receiver Lock status for selected ports to the  
GPIO pins as well. After completion of BIST, the BIST Error Counter may be read to determine if errors occurred  
during the test. If the DS90UB954-Q1 failed to lock to the input signal or lost lock to the input signal, the BIST  
Error Counter will indicate 0xFF. The maximum normal count value will be 0xFE. The SER_BIST_ACT register  
bit 0xD0[5] can be monitored during testing to ensure BIST is activated in the serializer.  
During BIST, DS90UB954-Q1 output activity are gated by BIST_Control[7:6] (BIST_OUT_MODE[1:0]). as  
follows:  
00 : Outputs disabled during BIST  
10 : Outputs enabled during BIST  
When enabling the outputs by setting BIST_OUT_MODE = 10, the CSI-2 will be inactive by default (LP11 state).  
To exercise the CSI-2 interface during BIST mode, it is possible to Enable Pattern Generator to send a video  
data pattern on the CSI-2 outputs.  
The BIST clock frequency is controlled by the BIST_CLOCK_SOURCE field in the BIST Control register. This 2-  
bit value will be written to the Serializer register 0x14[2:1]. A value of 00 will select an external clock. A non-zero  
value will enable an internal clock of the frequency defined in the Serializer register 0x14. Note that when the  
DS90UB954-Q1 is paired with DS90UB933-Q1or DS90UB913A-Q1, a setting of 11 may result in a frequency  
that is too slow for the DS90UB954-Q1 to recover. The BIST_CLOCK_SOURCE field is sampled at the start of  
BIST. Changing this value after BIST is enabled will not change operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6 Register Maps  
In the register definitions under the TYPE and DEFAULT heading, the following definitions apply:  
R = Read only access  
R/W = Read / Write access  
R/RC = Read only access, Read to Clear  
(R/W)/SC = Read / Write access, Self-Clearing bit  
(R/W)/S = Read / Write access, Set based on strap pin configuration at startup  
LL = Latched Low and held until read  
LH = Latched High and held until read  
S = Set based on strap pin configuration at startup  
The DS90UB954-Q1 implements the following register blocks, accessible through I2C as well as the bi-  
directional control channel:  
Main Registers  
FPD-Link III RX Port Registers (separate register block for each of the four RX ports)  
CSI-2 Port Registers (separate register block for each of the CSI-2 ports)  
7-18. Main Register Map Descriptions  
ADDRESS RANGE  
0x00-0x31  
DESCRIPTION  
ADDRESS MAP  
Digital Shared Registers  
Shared  
0x32-0x3A  
Digital CSI-2 Tx Port Registers  
Reserved  
Shared  
0x3B - 0x4B  
Reserved  
FPD3 RX Port 0  
R: 0x4C[5:4]=00  
W: 0x4C[0]=1  
FPD3 RX Port 1  
R: 0x4C[5:4]=01  
W: 0x4C[1]=1  
Digital RX Port Registers  
(paged, broadcast write allowed)  
0x4C-0x7F  
0x80-0xAF  
0xB0-0xB2  
0xB0-0xBF  
0xC0-0xCF  
0xD0-0xDF  
0xE0-0xEF  
0xF0-0xF5  
0xF8-0xFB  
Reserved  
Reserved  
Shared  
Indirect Access Registers  
Digital Share Registers  
Reserved  
Shared  
Reserved  
Digital RX Port Test Mode Registers  
Reserved  
FPD3 RX Port 0  
FPD3 RX Port 1  
Reserved  
Shared  
FPD3 RX ID  
Port I2C Addressing  
Reserved  
Shared  
0xF6-0xF7  
0xFC-0xFF  
Reserved  
7.6.1 I2C Device ID Register  
The I2C Device ID Register field always indicates the current value of the I2C ID. When bit 0 of this register is 0,  
this field is read-only and shows the strapped ID from device initialization after power on. When bit 0 of this  
register is 1, this field is read/write and can be used to assign any valid I2C ID address to the deserializer.  
7-19. I2C Device ID (Address 0x00)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:1  
DEVICE_ID  
R/W  
0x3D  
0x0  
7-bit I2C ID of Deserializer.  
0: Device ID is from strap  
1: Register I2C Device ID overrides strapped value  
0
DES_ID  
R/W  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.2 Reset Register  
The Reset register allows for soft digital reset of the DS90UB954-Q1 device internal circuitry without using PDB  
hardware analog reset. Digital Reset 0 is recommended if desired to reset without overwriting configuration  
registers to default values.  
7-20. Reset (Address 0x01)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:3  
RESERVED  
R/W  
0x00  
Reserved  
Restart Auto-load  
Setting this bit to 1 causes a re-load of the default settings including  
MODE and IDX. This bit is self-clearing. Software may check for Auto-  
load complete by checking the CFG_INIT_DONE bit in the  
DEVICE_STS register.  
RESTART  
_AUTOLOAD  
2
(R/W)/SC  
0x0  
Digital Reset 1  
Resets the entire digital block including registers. This bit is self-  
1
0
DIGITAL_RESET1  
DIGITAL_RESET0  
(R/W)/SC  
(R/W)/SC  
0x0  
0x0  
clearing.  
1: Reset  
0: Normal operation  
Digital Reset 0  
Resets the entire digital block except registers. This bit is self-clearing.  
1: Reset  
0: Normal operation  
7.6.3 General Configuration Register  
The general configuration register enables and disables high level block functionality.  
7-21. General Configuration (Address 0x02)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:6  
RESERVED  
R/W  
0x0  
Reserved  
I2C Controller Enable. This bit must be set if system requires the  
deserializer to act as proxy controller for remote I2C access to the local  
I2C bus from remote serializers.  
0: Block proxy Controller access to local I2C from remote serializers  
1: Enable proxy Controller access to local I2C from remote serializers  
I2C_CONTROLLER  
_ENABLE  
5
R/W  
0x0  
Output Enable Mode. If set to 0, the CSI TX output port will be forced to  
the high-impedance state if no assigned RX ports have an active  
Receiver lock. If set to 1 and no assigned RX ports have an active  
Receiver lock the CSI TX output port will continue in normal operation  
and enter the LP-11 state. CSI TX operation will remain under register  
control via the CSI_CTL register for each port.  
4
3
OUTPUT_EN_MODE R/W  
0x1  
0x1  
Output Enable Control (usage dependant on Output Sleep State  
Select). If OUTPUT_SLEEP_STATE_SEL is set to 1 and  
OUTPUT_ENABLE is set to 0, the CSI TX outputs will be forced into a  
high impedance state.  
OUTPUT_ENABLE  
R/W  
OSS Select to control output state when LOCK is low (usage  
dependant on Output Enable) When OUTPUT_SLEEP _STATE  
_SELECT is set to 0, the CSI TX outputs will be forced into a HS-0  
state.  
OUTPUT_SLEEP  
_STATE _SELECT  
2
1
0
R/W  
R/W  
R/W  
0x1  
0x1  
0x0  
RX_PARITY  
_CHECKER  
_ENABLE  
FPD-Link III Parity Checker Enable  
0: Disable  
1: Enable  
Force indication of external reference clock  
0: Normal operation, reference clock detect circuit indicates the  
presence of an external reference clock  
FORCE_REFCLK  
_DET  
1: Force reference clock to be indicated present  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.4 Revision/Mask ID Register  
Revision ID field for production silicon version can be read back from this register.  
7-22. Revision/Mask ID (Address 0x03)  
BIT  
7:4  
3:0  
FIELD  
TYPE  
DEFAULT  
0x2  
DESCRIPTION  
Revision ID field  
Mask ID  
REVISION_ID  
MASK_ID  
R
R
0x0  
7.6.5 DEVICE_STS Register  
Device status register provides read back access to high level link diagnostics.  
7-23. DEVICE_STS (Address 0x04)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Configuration Checksum Passed. CFG_CKSUM_STS bit is set to one  
following initialization if the Configuration data had a valid checksum  
7
CFG_CKSUM_STS  
R
0x1  
Power-up initialization complete. CFG_INIT_DONE bit is set to one  
after Initialization is complete.  
6
5
CFG_INIT_DONE  
RESERVED  
R
R
0x1  
0x0  
Reserved  
REFCLK valid frequency bit indicates when a valid frequency has  
been detected on the REFCLK pin.  
0 : Invalid frequency detected  
4
3
REFCLK_VALID  
PASS  
R
R
0x0  
0x0  
1 : REFCLK frequency between 12MHz and 64MHz.  
Device PASS status This bit indicates the PASS status for the device.  
The value in this register matches the indication on the PASS pin.  
Device LOCK status This bit indicates the LOCK status for the device.  
The value in this register matches the indication on the LOCK pin.  
2
LOCK  
R
R
0x0  
0x3  
1:0  
RESERVED  
Reserved  
7.6.6 PAR_ERR_THOLD_HI Register  
For each port, if the FPD-Link III receiver detects a number of parity errors greater than or equal to total value in  
PAR_ERR_THOLD[15:0], the PARITY_ERROR flag is set in the RX_PORT_STS1 register.  
PAR_ERR_THOLD_HI contains bits [15:8] of the 16 bit parity error threshold PAR_ERR_THOLD[15:0].  
7-24. PAR_ERR_THOLD_HI (Address 0x05)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD3 Parity Error Threshold High byte  
This register provides the 8 most significant bits [15:8] of the Parity  
Error Threshold value PAR_ERR_THOLD[15:0].  
PAR_ERR_THOLD  
_HI  
7:0  
R/W  
0x01  
7.6.7 PAR_ERR_THOLD_LO Register  
For each port, if the FPD-Link III receiver detects a number of parity errors greater than or equal to total value in  
PAR_ERR_THOLD[15:0], the PARITY_ERROR flag is set in the RX_PORT_STS1 register.  
PAR_ERR_THOLD_LO contains bits [7:0] of the 16 bit parity error threshold PAR_ERR_THOLD[15:0].  
7-25. PAR_ERR_THOLD_LO (Address 0x06)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD3 Parity Error Threshold Low byte  
This register provides the 8 least significant bits [7:0] of the Parity  
Error Threshold value PAR_ERR_THOLD[15:0].  
PAR_ERR_THOLD  
_LO  
7:0  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.8 BCC Watchdog Control Register  
The BCC watchdog timer allows termination of a control channel transaction if it fails to complete within a  
programmed amount of time.  
7-26. BCC Watchdog Control (Address 0x07)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
BCC_WATCHDOG  
_TIMER  
Sets the Bidirectional Control Channel Watchdog Timeout value in  
units of 2 milliseconds. This field should not be set to 0.  
7:1  
R/W  
0x7F  
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
BCC_WATCHDOG  
_TIMER_DISABLE  
0
R/W  
0x0  
7.6.9 I2C Control 1 Register  
7-27. I2C Control 1 (Address 0x08)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Disable Remote Writes to Local Registers  
Setting this bit to a 1 will prevent remote writes to local device  
registers from across the control channel. This prevents writes to the  
Deserializer registers from an I2C controller attached to the  
Serializer. Setting this bit does not affect remote access to I2C  
targets at the Deserializer.  
LOCAL_WRITE  
_DISABLE  
7
R/W  
0x0  
Internal SDA Hold Time  
6:4  
3:0  
I2C_SDA_HOLD  
R/W  
0x1  
This field configures the amount of internal hold time provided for the  
SDA input relative to the SCL input. Units are 40 nanoseconds.  
I2C Glitch Filter Depth  
This field configures the maximum width of glitch pulses on the SCL  
and SDA inputs that will be rejected. Units are 5 nanoseconds.  
I2C_FILTER_DEPTH R/W  
0xC  
7.6.10 I2C Control 2 Register  
7-28. I2C Control 2 (Address 0x09)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Ack SDA Output Setup  
When a Control Channel (remote) access is active, this field  
configures setup time from the SDA output relative to the rising edge  
of SCL during ACK cycles. Setting this value will increase setup time  
SDA_OUTPUT_SET  
UP  
in units of 640ns. The nominal output setup time value for SDA to  
SCL are:  
7:4  
R/W  
0x1  
00 : 80ns  
01: 720ns  
10: 1400ns  
11: 2080ns  
SDA Output Delay  
This field configures additional delay on the SDA output relative to  
the falling edge of SCL. Setting this value increases output delay in  
SDA_OUTPUT_DEL  
AY  
units of 40ns. Nominal output delay values for SCL to SDA are:  
3:2  
R/W  
R/W  
0x0  
0x0  
00 : 240ns  
01: 280ns  
10: 320ns  
11: 360ns  
Speed up I2C Bus Watchdog Timer  
1: Watchdog Timer expires after approximately 50 microseconds  
0: Watchdog Timer expires after approximately 1 second.  
I2C_BUS_TIMER  
_SPEEDUP  
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-28. I2C Control 2 (Address 0x09) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Disable I2C Bus Watchdog Timer  
When enabled, the I2C Watchdog Timer may be used to detect  
when the I2C bus is free or hung up following an invalid termination  
of a transaction. If SDA is high and no signalling occurs for  
approximately 1 second, the I2C bus is assumed to be free. If SDA  
is low and no signaling occurs, the device will attempt to clear the  
bus by driving 9 clocks on SCL  
I2C_BUS_TIMER  
_DISABLE  
0
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.11 SCL High Time Register  
The SCL High Time register field configures the high pulse width of the I2C SCL output when the Serializer is the  
Controller on the local I2C bus. Units are 40 ns for the nominal oscillator clock frequency. The default value is set  
to approximately 100 kHz with the internal oscillator clock running at nominal 25 MHz. Delay includes 4  
additional oscillator clock periods. The internal oscillator has ±10% variation when REFCLK is not applied, which  
must be taken into account when setting the SCL High and Low Time registers.  
7-29. SCL High Time (Address 0x0A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
I2C Controller SCL high time  
7:0  
SCL_HIGH_TIME  
R/W  
0x7A  
Default set to approximately 100 kHz when REFCLK = 25 MHz.  
Nominal High Time = 40 ns × (SCL HIGH TIME + 4)  
7.6.12 SCL Low Time Register  
The SCL Low Time register field configures the low pulse width of the SCL output when the serializer is the  
controller on the local I2C bus. This value is also used as the SDA setup time by the I2C Target for providing  
data prior to releasing SCL during accesses over the Bidirectional control channel. Units are 40 ns for the  
nominal oscillator clock frequency. The default value is set to approximately 100 kHz with the internal oscillator  
clock running at nominal 25 MHz. Delay includes 4 additional oscillator clock periods. The internal oscillator has  
±10% variation when REFCLK is not applied, which must be taken into account when setting the SCL High and  
Low Time registers.  
7-30. SCL Low Time (Address 0x0B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
I2C SCL low time  
7:0  
SCL_LOW_TIME  
R/W  
0x7A  
Default set to approximately 100 kHz when REFCLK = 25 MHz.  
Nominal low time = 40 ns × (SCL LOW TIME + 4)  
7.6.13 RX_PORT_CTL Register  
Receiver port control register assigns rules for lock and pass in the general status register and allows for  
enabling and disabling each Rx port.  
7-31. RX_PORT_CTL (Address 0x0C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
R
0x2  
Reserved  
Pass Output Select  
Both receivers can be active at the same time. This field controls  
the source of the PASS output.  
00: Port 0 Receiver Pass  
01: Port 1 Receiver Pass  
5:4  
PASS_SEL  
R/W  
0x00  
10: Any Enabled Receiver Port Pass  
11: All Enabled Receiver Ports Pass  
This field can only be written via a local I2C controller.  
Lock Output Select  
Both receivers can be active at the same time. This field controls  
the source of the LOCK output.  
00: Port 0 Receiver Lock  
01: Port 1 Receiver Lock  
10: Any Enabled Receiver Port Lock  
11: All Enabled Receiver Ports Lock.  
This field can only be written via a local I2C controller.  
3:2  
LOCK_SEL  
PORT1_EN  
R/W  
R/W  
0x0  
0x1  
Port 1 Receiver Enable  
0: Disable Port 1 Receiver  
1: Enable Port 1 Receiver  
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-31. RX_PORT_CTL (Address 0x0C) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Port 0 Receiver Enable  
0: Disable Port 0 Receiver  
1: Enable Port 0 Receiver  
0
PORT0_EN  
R/W  
0x1  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.14 IO_CTL Register  
7-32. IO_CTL (Address 0x0D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
3.3V I/O Select on I2C_SCL, I2C_SDA and INTB pins.  
0: 1.8V I/O Supply  
7
SEL3P3V  
R/W  
0x0  
1: 3.3V I/O Supply  
If IO_SUPPLY_MODE_OV is 0, a read of this register will return the  
detected I/O voltage level.  
Override I/O Supply Mode bit  
0: Detected I/O voltage level will be used for both SEL3P3V and  
IO_SUPPLY_MODE controls.  
1: Register values written to the SEL3P3V and IO_SUPPLY_MODE  
fields will be used.  
IO_SUPPLY  
_MODE_OV  
6
R/W  
0x0  
I/O Supply Mode  
00: 1.8V  
01: Reserved  
5:4  
3:0  
IO_SUPPLY_MODE R/W  
0x0  
0x9  
10: Reserved  
11: 3.3V  
If IO_SUPPLY_MODE_OV is 0, a read of this register will return the  
detected I/O voltage level.  
RESERVED  
R/W  
Reserved  
7.6.15 GPIO_PIN_STS Register  
This register reads the current values on each of the 7 GPIO pins.  
7-33. GPIO_PIN_STS (Address 0x0E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
GPIO Pin High/ Low Status.  
Bit 6 reads GPIO6 and bit 0 reads GPIO0.  
6:0  
GPIO_STS  
R
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.16 GPIO_INPUT_CTL Register  
7-34. GPIO_INPUT_CTL (Address 0x0F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
GPIO6 Input Enable. Must be set to zero if GPIO6 is configured as  
an output by setting 0x16[0] = 1  
0: Disabled  
1: Enabled  
6
5
4
3
2
1
0
GPIO6_INPUT_EN  
GPIO5_INPUT_EN  
GPIO4_INPUT_EN  
GPIO3_INPUT_EN  
GPIO2_INPUT_EN  
GPIO1_INPUT_EN  
GPIO0_INPUT_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
GPIO5 Input Enable. Must be set to zero if GPIO5 is configured as  
an output by setting 0x15[0] = 1  
0: Disabled  
1: Enabled  
GPIO4 Input Enable. Must be set to zero if GPIO4 is configured as  
an output by setting 0x14[0] = 1  
0: Disabled  
1: Enabled  
GPIO3 Input Enable. Must be set to zero if GPIO3 is configured as  
an output by setting 0x13[0] = 1  
0: Disabled  
1: Enabled  
GPIO2 Input Enable. Must be set to zero if GPIO2 is configured as  
an output by setting 0x12[0] = 1  
0: Disabled  
1: Enabled  
GPIO1 Input Enable. Must be set to zero if GPIO1 is configured as  
an output by setting 0x11[0] = 1  
0: Disabled  
1: Enabled  
GPIO0 Input Enable. Must be set to zero if GPIO0 is configured as  
an output by setting 0x10[0] = 1  
0: Disabled  
1: Enabled  
7.6.17 GPIO0_PIN_CTL Register  
7-35. GPIO0_PIN_CTL (Address 0x10)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO0 Output Select  
Determines the output data for the selected source. See 7.4.13.2.  
7:5  
GPIO0_OUT_SEL  
R/W  
0x0  
GPIO0 Output Source Select  
Selects output source for GPIO0 data: See 7-8.  
4:2  
1
GPIO0_OUT_SRC  
GPIO0_OUT_VAL  
R/W  
R/W  
0x0  
0x0  
GPIO0 Output Value  
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value by setting  
GPIO0_OUT_SRC[2:0] = 100 and GPIO0_OUT_SEL[2:0] = 000.  
GPIO0 Output Enable. Must be set to zero when configured as an  
input in GPIO Input Control register, 0x0F[0] = 1  
0: Disabled  
1: Enabled  
0
GPIO0_OUT_EN  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
80  
Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.18 GPIO1_PIN_CTL Register  
7-36. GPIO1_PIN_CTL (Address 0x11)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO1 Output Select  
7:5  
GPIO1_OUT_SEL  
RW  
0x0  
Determines the output data for the selected source. See 节  
7.4.13.2.  
GPIO1 Output Source Select  
Selects output source for GPIO1 data: See 7-8.  
4:2  
1
GPIO1_OUT_SRC  
GPIO1_OUT_VAL  
R/W  
R/W  
0x0  
0x0  
GPIO1 Output Value  
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value by setting  
GPIO1_OUT_SRC[2:0] = 100 and GPIO1_OUT_SEL[2:0] = 000  
GPIO1 Output Enable. Must be set to zero when configured as an  
input in GPIO Input Control register, 0x0F[1] = 1.  
0: Disabled  
1: Enabled  
0
GPIO1_OUT_EN  
R/W  
0x0  
7.6.19 GPIO2_PIN_CTL Register  
7-37. GPIO2_PIN_CTL (Address 0x12)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO2 Output Select  
Determines the output data for the selected source. See 7.4.13.2.  
7:5  
GPIO2_OUT_SEL  
R/W  
0x0  
GPIO2 Output Source Select  
Selects output source for GPIO2 data: See 7-8.  
4:2  
1
GPIO2_OUT_SRC  
GPIO2_OUT_VAL  
R/W  
R/W  
0x0  
0x0  
GPIO2 Output Value  
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value by setting  
GPIO2_OUT_SRC[2:0] = 100 and GPIO2_OUT_SEL[2:0] = 00  
GPIO2 Output Enable. Must be set to zero when configured as an  
input in GPIO Input Control register, 0x0F[2] = 1.  
0: Disabled  
1: Enabled  
0
GPIO2_OUT_EN  
R/W  
0x0  
7.6.20 GPIO3_PIN_CTL Register  
7-38. GPIO3_PIN_CTL (Address 0x13)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO3 Output Select  
Determines the output data for the selected source. See 7.4.13.2.  
7:5  
GPIO3_OUT_SEL  
R/W  
0x0  
GPIO3 Output Source Select  
Selects output source for GPIO3 data. See 7-8.  
4:2  
1
GPIO3_OUT_SRC  
GPIO3_OUT_VAL  
R/W  
R/W  
0x0  
0x0  
GPIO3 Output Value  
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value by setting  
GPIO3_OUT_SRC[2:0] = 100 and GPIO3_OUT_SEL[2:0] = 000  
GPIO3 Output Enable. Must be set to zero when configured as an  
input in GPIO Input Control register, 0x0F[3] = 1.  
0: Disabled  
1: Enabled  
0
GPIO3_OUT_EN  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.21 GPIO4_PIN_CTL Register  
7-39. GPIO4_PIN_CTL (Address 0x14)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO4 Output Select  
Determines the output data for the selected source. See 7.4.13.2.  
7:5  
GPIO4_OUT_SEL  
R/W  
0x0  
GPIO4 Output Source Select  
Selects output source for GPIO4 data. See 7.4.13.2.  
4:2  
1
GPIO4_OUT_SRC  
GPIO4_OUT_VAL  
R/W  
R/W  
0x0  
0x0  
GPIO4 Output Value  
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value by setting  
GPIO4_OUT_SRC[2:0] = 100 and GPIO4_OUT_SEL[2:0] = 000  
GPIO4 Output Enable. Must be set to zero when configured as an  
input in GPIO Input Control register, 0x0F[4] = 1.  
0: Disabled  
1: Enabled  
0
GPIO4_OUT_EN  
R/W  
0x0  
7.6.22 GPIO5_PIN_CTL Register  
7-40. GPIO5_PIN_CTL (Address 0x15)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO5 Output Select  
Determines the output data for the selected source. See 7.4.13.2.  
7:5  
GPIO5_OUT_SEL  
R/W  
0x0  
GPIO5 Output Source Select  
Selects output source for GPIO5 data: See 7-8.  
4:2  
1
GPIO5_OUT_SRC  
GPIO5_OUT_VAL  
R/W  
R/W  
0x0  
0x0  
GPIO5 Output Value  
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value by setting  
GPIO5_OUT_SRC[2:0] = 100 and GPIO5_OUT_SEL[2:0] = 00  
GPIO5 Output Enable. Must be set to zero when configured as an  
input in GPIO Input Control register, 0x0F[5] = 1.  
0: Disabled  
1: Enabled  
0
GPIO5_OUT_EN  
R/W  
0x0  
7.6.23 GPIO6_PIN_CTL Register  
7-41. GPIO6_PIN_CTL (Address 0x16)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO6 Output Select  
Determines the output data for the selected source. See 7.4.13.2.  
7:5  
GPIO6_OUT_SEL  
R/W  
0x0  
GPIO6 Output Source Select  
Selects output source for GPIO6 data: See 7-8  
4:2  
1
GPIO6_OUT_SRC  
GPIO6_OUT_VAL  
R/W  
R/W  
0x0  
0x0  
GPIO6 Output Value  
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value by setting  
GPIO6_OUT_SRC[2:0] = 100 and GPIO6_OUT_SEL[2:0] = 00  
GPIO6 Output Enable. Must be set to zero when configured as an  
input in GPIO Input Control register, 0x0F[6] = 1.  
0: Disabled  
1: Enabled  
0
GPIO6_OUT_EN  
R/W  
0x0  
7.6.24 RESERVED Register  
7-42. RESERVED (Address 0x17)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.25 FS_CTL Register  
7-43. FS_CTL (Address 0x18)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync Mode  
0000: Internal Generated FrameSync, use back channel frame clock  
from port 0  
0001: Internal Generated FrameSync, use back channel frame clock  
from port 1  
0010: Reserved.  
0011: Reserved  
01xx: Internal Generated FrameSync, use 25MHz clock  
1000: External FrameSync from GPIO0  
1001: External FrameSync from GPIO1  
1010: External FrameSync from GPIO2  
1011: External FrameSync from GPIO3  
1100: External FrameSync from GPIO4  
1101: External FrameSync from GPIO5  
1110: External FrameSync from GPIO6  
1111: Reserved  
7:4  
FS_MODE  
R/W  
0x0  
Generate Single FrameSync pulse  
When this bit is set, a single FrameSync pulse will be generated.  
The system should wait for the full duration of the desired pulse  
before generating another pulse. When using this feature, the  
FS_GEN_ENABLE bit should remain set to 0. This bit is self-  
clearing and will always return 0.  
3
2
FS_SINGLE  
(R/W)/SC  
R/W  
0x0  
0x0  
Initial State. This register controls the initial state of the FrameSync  
signal.  
0: FrameSync initial state is 0  
1: FrameSync initial state is 1  
FS_INIT_STATE  
FrameSync Generation Mode  
This control selects between Hi/Lo and 50/50 modes. In Hi/Lo mode,  
the FrameSync generator uses the FS_HIGH_TIME [15:0] and  
FS_LOW_TIME [15:0] register values to separately control the High  
and Low periods for the generated FrameSync signal. In 50/50  
mode, the FrameSync generator uses the values in the  
FS_HIGH_TIME_0, FS_LOW_TIME_1 and FS_LOW_TIME_0  
registers as a 24-bit value for both the High and Low periods of the  
generated FrameSync signal.  
1
0
FS_GEN_MODE  
R/W  
R/W  
0x0  
0x0  
0: Hi/Lo  
1: 50/50  
FrameSync Generation Enable  
0: Disabled  
FS_GEN_ENABLE  
1: Enabled  
7.6.26 FS_HIGH_TIME_1 Register  
7-44. FS_HIGH_TIME_1 (Address 0x19)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync High Time bits 15:8  
The value programmed to the FS_HIGH_TIME register should be  
reduced by 1 from the desired delay. For example, a value of 0 in  
the FRAMESYNC_HIGH_TIME field will result in a 1 cycle high  
pulse on the FrameSync signal.  
FRAMESYNC_HIGH_  
TIME_1  
7:0  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.27 FS_HIGH_TIME_0 Register  
7-45. FS_HIGH_TIME_0 (Address 0x1A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync High Time bits 7:0  
The value programmed to the FS_HIGH_TIME register should be  
reduced by 1 from the desired delay. For example, a value of 0 in  
the FRAMESYNC_HIGH_TIME field will result in a 1 cycle high  
pulse on the FrameSync signal.  
FRAMESYNC  
_HIGH_TIME_0  
7:0  
R/W  
0x0  
7.6.28 FS_LOW_TIME_1 Register  
7-46. FS_LOW_TIME_1 (Address 0x1B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync Low Time bits 15:8  
The value programmed to the FS_LO_TIME register should be  
reduced by 1 from the desired delay. For example, a value of 0 in  
the FRAMESYNC_LO_TIME field will result in a 1 cycle high pulse  
on the FrameSync signal.  
FRAMESYNC  
_LOW_TIME_1  
7:0  
R/W  
0x0  
7.6.29 FS_LOW_TIME_0 Register  
7-47. FS_LOW_TIME_0 (Address 0x1C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync Low Time bits 7:0  
The value programmed to the FS_LO_TIME register should be  
reduced by 1 from the desired delay. For example, a value of 0 in  
the FRAMESYNC_LO_TIME field will result in a 1 cycle high pulse  
on the FrameSync signal.  
FRAMESYNC_LOW_  
TIME_0  
7:0  
R/W  
0x0  
7.6.30 MAX_FRM_HI Register  
7-48. MAX_FRM_HI (Address 0x1D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Maximum Frame Count bits 15:8  
In RAW mode operation, the FPD3 Receiver will create CSI-2 video  
frames. For the Frame Start and Frame End packets of each video  
frame, a 16-bit frame number field will be generated. If the  
Maximum Frame Count value is set to 0, the frame number is  
disabled and will always be 0. If Maximum Frame Count value is  
non-zero, the frame number will increment for each from 1 up to the  
Maximum Frame Count value before resetting to 1.  
7:0  
MAX_FRAME_HI  
R/W  
0x00  
7.6.31 MAX_FRM_LO Register  
7-49. MAX_FRM_LO (Address 0x1E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Maximum Frame Count bits 7:0  
In RAW mode operation, the FPD3 Receiver will create CSI-2  
video frames. For the Frame Start and Frame End packets of each  
video frame, a 16-bit frame number field will be generated. If the  
Maximum Frame Count value is set to 0, the frame number is  
disabled and will always be 0. If Maximum Frame Count value is  
non-zero, the frame number will increment for each from 1 up to  
the Maximum Frame Count value before resetting to 1.  
7:0  
MAX_FRAME_LO  
R/W  
0x04  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.32 CSI_PLL_CTL Register  
7-50. CSI_PLL_CTL (Address 0x1F)  
BIT  
7:4  
3:2  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
Reserved  
R/W  
0x0  
Reserved  
CSI Transmitter Speed select:  
Controls the CSI Transmitter frequency.  
00 : 1.6 Gbps serial rate  
01 : Reserved  
1:0  
CSI_TX_SPEED  
R/W  
0x2  
10 : 800 Mbps serial rate  
11 : 400 Mbps serial rate  
7.6.33 FWD_CTL1 Register  
Forwarding control enables or disables video stream from each Rx Port.  
7-51. FWD_CTL1 (Address 0x20)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
R/W  
0x0  
Reserved.  
Disable forwarding of RX Port 1  
0: Forwarding enabled for RX Port 1  
1: Forwarding disabled for RX Port 1  
5
FWD_PORT1_DIS  
R/W  
0x1  
Disable forwarding of RX Port 0  
0: Forwarding enabled for RX Port 0  
1: Forwarding disabled for RX Port 0  
4
FWD_PORT0_DIS  
RESERVED  
R/W  
R
0x1  
0x0  
3:0  
Reserved.  
7.6.34 FWD_CTL2 Register  
7-52. FWD_CTL2 (Address 0x21)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI Replicate Mode. When set to a 1, the CSI output from port 0 will  
also be generated on CSI port 1. In this mode, each CSI port may be  
one or two lanes only. The same output data will be presented on both  
ports.  
7
CSI_REPLICATE  
R/W  
0x0  
Synchronized Forwarding. As Available During Synchronized  
Forwarding, each forwarding engine will wait for video data to be  
available from each enabled port, prior to sending the video line.  
Setting this bit to a 1 will allow sending the next video line as it  
becomes available. For example if RX Ports 0 and 1 are being  
forwarded, port 0 video line is forwarded when it becomes available,  
rather than waiting until both ports 0 and ports 1 have video data  
available. This operation may reduce the likelihood of buffer overflow  
errors in some conditions. This bit will have no effect in video line  
concatenation mode and only affects video lines (long packets) rather  
than synchronization packets. (See 7.4.28.3.)  
FWD_SYNC  
_AS_AVAIL  
6
R/W  
0x0  
5:4  
3:2  
1
RESERVED  
R
0x0  
Reserved.  
Enable synchronized forwarding for CSI output port 0. (See 节  
7.4.28.3.)  
00: Synchronized forwarding disabled  
01: Basic Synchronized forwarding enabled  
10: Synchronous forwarding with line interleaving  
11: Synchronous forwarding with line concatenation  
Only one of CSI0_RR_FWD and CSI0_SYNC_FWD must be set at a  
time.  
CSI0_SYNC_FWD  
RESERVED  
R/W  
R/W  
0x00  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-52. FWD_CTL2 (Address 0x21) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Enable round robin forwarding for CSI TX output port. When this mode  
is enabled, no attempt is made to synchronize the video traffic. When  
multiple sources have data available to forward, the data will tend to be  
forwarded in a round-robin fashion.  
0
CSI0_RR_FWD  
R/W  
0x1  
0: Round robin forwarding disabled  
1: Round robin forwarding enabled  
Only one of CSI0_RR_FWD and CSI0_SYNC_FWD must be set at a  
time.  
Copyright © 2023 Texas Instruments Incorporated  
86  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.35 FWD_STS Register  
7-53. FWD_STS (Address 0x22)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
R
0x0  
Reserved  
Forwarding synchronization failed for CSI TX output port  
During Synchronized forwarding, this flag indicates a failure of  
synchronized video has been detected. For this bit to be set, the  
forwarding process must have previously been successful at sending at  
least one synchronized video frame.  
2
FWD_SYNC_FAIL0  
R/RC  
0x0  
0: No failure  
1: Synchronization failure  
This bit is cleared on read.  
1
0
RESERVED  
R
R
0x0  
0x0  
Reserved  
Forwarding synchronized for CSI TX output port:  
During Synchronized forwarding, this bit indicates that the forwarding  
engine is currently able to provide synchronized video from enabled  
Receive ports. This bit is always 0 if Synchronized forwarding is  
disabled.  
FWD_SYNC0  
0: Not synchronized  
1: Synchronized  
7.6.36 INTERRUPT_CTL Register  
7-54. INTERRUPT_CTL (Address 0x23)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Global Interrupt Enable:  
7
INT_EN  
R/W  
R
0x0  
0x0  
0x0  
0x0  
0x0  
Enables interrupt on the interrupt signal to the controller.  
Reserved  
6:5  
4
RESERVED  
IE_CSI_TX0  
RESERVED  
IE_RX1  
CSI Transmit Port Interrupt:  
Enable interrupt from CSI Transmitter Port.  
R/W  
R
3:2  
1
Reserved  
RX Port 1 Interrupt:  
Enable interrupt from Receiver Port 1.  
R/W  
RX Port 0 Interrupt:  
Enable interrupt from Receiver Port 0.  
0
IE_RX0  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.37 INTERRUPT_STS Register  
7-55. INTERRUPT_STS (Address 0x24)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Global Interrupt:  
Set if any enabled interrupt is indicated in the individual status bits in this  
register. The setting of this bit is not dependent on the INT_EN bit in the  
INTERRUPT_CTL register but does depend on the IE_xxx bits. For  
example, if IE_RX0 and IS_RX0 are both asserted, the  
INTERRUPT_STS bit is set to 1.  
7
INTERRUPT_STS  
R
0x0  
6:5  
4
RESERVED  
IS_CSI_TX0  
RESERVED  
R
R
R
0x0  
0x0  
0x0  
Reserved  
CSI Transmit Port Interrupt:  
An interrupt has occurred for CSI Transmitter Port 0. This interrupt is  
cleared upon reading the CSI_TX_ISR register for CSI Transmit Port.  
3:2  
Reserved  
RX Port 1 Interrupt:  
An interrupt has occurred for Receive Port 1. This interrupt is cleared by  
reading the associated status register(s) for the event(s) that caused the  
interrupt. The status registers are RX_PORT_STS1, RX_PORT_STS2,  
and CSI_RX_STS.  
1
0
IS_RX1  
IS_RX0  
R
R
0x0  
0x0  
RX Port 0 Interrupt:  
An interrupt has occurred for Receive Port 0. This interrupt is cleared by  
reading the associated status register(s) for the event(s) that caused the  
interrupt. The status registers are RX_PORT_STS1, RX_PORT_STS2,  
and CSI_RX_STS.  
7.6.38 TS_CONFIG Register  
7-56. TS_CONFIG (Address 0x25)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
Framesync Polarity  
Indicates active edge of FrameSync signal  
0: Rising edge  
1: Falling edge  
6
5:4  
3
FS_POLARITY  
TS_RES_CTL  
TS_AS_AVAIL  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
Timestamp Resolution Control. For typical applications of 30-Hz and 60-  
Hz frame rate 1.0-µs setting 11 = 1.0 µs should be selected to give  
counter duration of 1.0 µs × 65535 = 65.5 ms  
00: 40 ns  
01: 80 ns  
10: 160 ns  
11: 1.0 µs  
Timestamp Ready Control  
0: Normal operation  
1: Indicate timestamps ready as soon as all port timestamps are  
available  
2
1
RESERVED  
R
0x0  
0x0  
Reserved  
FreeRun Mode  
0: FrameSync mode  
1: FreeRun mode  
TS_FREERUN  
R/W  
Timestamp Mode  
0: Line start  
0
TS_MODE  
R/W  
0x0  
1: Frame start  
Copyright © 2023 Texas Instruments Incorporated  
88  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.39 TS_CONTROL Register  
7-57. TS_CONTROL (Address 0x26)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
R
0x0  
Reserved  
Freeze Timestamps  
0: Normal operation  
1: Freeze timestamps  
4
TS_FREEZE  
R/W  
0x0  
Setting this bit freezes timestamps and clears the TS_READY flag. The  
TS_FREEZE bit should be cleared after reading timestamps to resume  
operation.  
3:2  
1
RESERVED  
R
0x0  
0x0  
Reserved  
Timestamp Enable RX Port 1  
0: Disabled  
TS_ENABLE1  
R/W  
1: Enabled  
Timestamp Enable RX Port 0  
0: Disabled  
0
TS_ENABLE0  
R/W  
0x0  
1: Enabled  
7.6.40 TS_LINE_HI Register  
7-58. TS_LINE_HI (Address 0x27)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Timestamp Line, upper 8 bits  
This field is the line number at which to capture the timestamp when  
Line Start mode is enabled. For proper operation, the line number  
should be set to a value greater than 1. During Frame Start mode, if  
TS_FREERUN is set, the TS_LINE value is used to determine when to  
begin checking for Frame Start  
7:0  
TS_LINE_HI  
R/W  
0x0  
7.6.41 TS_LINE_LO Register  
7-59. TS_LINE_LO (Address 0x28)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Timestamp Line, lower 8 bits  
This field is the line number at which to capture the timestamp when  
Line Start mode is enabled. For proper operation, the line number  
should be set to a value greater than 1. During Frame Start mode, if  
TS_FREERUN is set, the TS_LINE value is used to determine when to  
begin checking for Frame Start  
7:0  
TS_LINE_LO  
R/W  
0x0  
7.6.42 TS_STATUS Register  
7-60. TS_STATUS (Address 0x29)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
R
0x0  
Reserved  
Timestamp Ready  
4
TS_READY  
R
0x0  
This flag indicates when timestamps are ready to be read. This flag is  
cleared when the TS_FREEZE bit is set.  
3:2  
1
RESERVED  
TS_VALID1  
TS_VALID0  
R
R
R
0x0  
0x0  
0x0  
Reserved  
Timestamp Valid, RX Port 1  
Timestamp Valid, RX Port 0  
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.43 TIMESTAMP_P0_HI Register  
7-61. TIMESTAMP_P0_HI (Address 0x2A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P0_HI  
R
0x0  
Timestamp, upper 8 bits, RX Port 0  
7.6.44 TIMESTAMP_P0_LO Register  
7-62. TIMESTAMP_P0_LO (Address 0x2B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P0_LO R  
0x0  
Timestamp, lower 8 bits, RX Port 0  
7.6.45 TIMESTAMP_P1_HI Register  
7-63. TIMESTAMP_P1_HI (Address 0x2C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
TIMESTAMP  
_P1_HI  
7:0  
R
0x0  
Timestamp, upper 8 bits, RX Port 1  
7.6.46 TIMESTAMP_P1_LO Register  
7-64. TIMESTAMP_P1_LO (Address 0x2D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
TIMESTAMP  
_P1_LO  
7:0  
R
0x0  
Timestamp, lower 8 bits, RX Port 1  
7.6.47 RESERVED Register  
7-65. RESERVED (Address 0x2E 0x32)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R
0x00  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
90  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.48 CSI_CTL Register  
7-66. CSI_CTL (Address 0x33)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
Enable initial CSI Skew-Calibration sequence  
When the initial skew-calibration sequence is enabled, the CSI  
Transmitter will send the sequence at initialization, prior to sending any  
HS data. This bit should be set when operating at 1.6 Gbps CSI speed  
(as configured in the CSI_PLL_CTL register).  
0: Disabled  
6
CSI_CAL_EN  
R/W  
0x0  
1: Enabled  
CSI lane count  
00: 4 lanes  
01: 3 lanes  
5:4  
3:2  
CSI_LANE_COUNT R/W  
0x0  
0x0  
10: 2 lanes  
11: 1 lane  
If CSI_REPLICATE is set in the FWD_CTL2 register, the device must  
be programmed for 1 or 2 lanes only.  
Force LP00 state on data/clock lanes  
00: Normal operation  
01: LP00 state forced only on data lanes  
10: Reserved  
CSI_ULP  
R/W  
11: LP00 state forced on data and clock lanes  
Enable CSI continuous clock mode. CSI-2 Tx outputs will provide a  
CSI_CONTS  
_CLOCK  
continuous clock output signal once first packet is received.  
0: Disabled  
1: Enabled  
1
0
R/W  
R/W  
0x0  
0x0  
Enable CSI output  
0: Disabled  
CSI_ENABLE  
1: Enabled  
7.6.49 CSI_CTL2 Register  
7-67. CSI_CTL2 (Address 0x34)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:4  
RESERVED  
R
0x4  
Reserved  
CSI PASS indication mode  
Determines whether the CSI Pass indication is for a single port or all  
enabled ports.  
3
CSI_PASS_MODE  
CSI_CAL_INV  
R/W  
0x0  
0 : Assert PASS if at least one enabled Receive port is providing valid  
video data  
1 : Assert PASS only if ALL enabled Receive ports are providing valid  
video data  
CSI Calibration Inverted Data pattern  
During the CSI skew-calibration pattern, the CSI Transmitter will send a  
sequence of 01010101 data (first bit 0). Setting this bit to a 1 will invert  
the sequence to 10101010 data.  
2
1
R/W  
0x0  
0x0  
Enable single periodic CSI Skew-Calibration sequence  
Setting this bit will send a single skew-calibration sequence from the  
CSI Transmitter. The skew-calibration sequence is the 1010 bit  
sequence required for periodic calibration. The calibration sequence is  
sent at the next idle period on the CSI interface. This bit is self-clearing  
and will reset to 0 after the calibration sequence is sent.  
CSI_CAL  
_SINGLE  
(R/W)/SC  
Enable periodic CSI Skew-Calibration sequence  
When the periodic skew-calibration sequence is enabled, the CSI  
Transmitter will send the periodic skew-calibration sequence following  
the sending of Frame End packets.  
CSI_CAL  
_PERIODIC  
0
R/W  
0x0  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.50 CSI_STS Register  
7-68. CSI_STS (Address 0x35)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:2  
RESERVED  
R
0x0  
Reserved  
TX Port Synchronized  
This bit indicates the CSI Transmit Port is able to properly synchronize  
input data streams from multiple sources. This bit is 0 if synchronization  
is disabled via the FWD_CTL2 register.  
1
TX_PORT_SYNC  
R
0x0  
0 : Input streams are not synchronized  
1 : Input streams are synchronized  
TX Port Pass  
Indicates valid data is available on at least one port, or on all ports if  
configured for all port status via the CSI_PASS_MODE bit in the  
CSI_CTL2 register. The function differs based on mode of operation.  
In non-synchronous operation, the TX_PORT_PASS indicates the CSI  
port is actively delivering valid video data. The status is cleared based  
on detection of an error condition that interrupts transmission.  
During Synchronized forwarding, the TX_PORT_PASS indicates valid  
data is available for delivery on the CSI TX output. Data may not be  
delivered if ports are not synchronized. The TX_PORT_SYNC status is  
a better indicator that valid data is being delivered to the CSI transmit  
port.  
0
TX_PORT_PASS  
R
0x0  
7.6.51 CSI_TX_ICR Register  
7-69. CSI_TX_ICR (Address 0x36)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
R
0x0  
Reserved  
RX Port Interrupt Enable  
4
3
2
IE_RX_PORT_INT  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
Enable interrupt based on receiver port interrupt for the RX Ports being  
forwarded to the CSI Transmit Port.  
IE_CSI_SYNC  
_ERROR  
CSI Sync Error interrupt Enable  
Enable interrupt on CSI Synchronization enable.  
CSI Synchronized interrupt Enable  
Enable interrupts on CSI Transmit Port assertion of CSI Synchronized  
Status.  
IE_CSI_SYNC  
IE_CSI_PASS  
_ERROR  
CSI RX Pass Error interrupt Enable  
Enable interrupt on CSI Pass Error  
1
0
R/W  
R/W  
0x0  
0x0  
CSI Pass interrupt Enable  
Enable interrupt on CSI Transmit Port assertion of CSI Pass.  
IE_CSI_PASS  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.52 CSI_TX_ISR Register  
7-70. CSI_TX_ISR (Address 0x37)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
R
0x0  
Reserved  
RX Port Interrupt  
A Receiver port interrupt has been generated for one of the RX Ports  
being forwarded to the CSI Transmit Port. A read of the associated port  
receive status registers will clear this interrupt. See the PORT_ISR_HI  
and PORT_ISR_LO registers for details.  
4
IS_RX_PORT_INT  
R
0x0  
CSI Sync Error interrupt  
A synchronization error has been detected for multiple video stream  
inputs to the CSI Transmitter.  
IS_CSI_SYNC_ERR  
OR  
3
2
1
0
R/RC  
R/RC  
R/RC  
R/RC  
0x0  
0x0  
0x0  
0x0  
CSI Synchronized interrupt  
CSI Transmit Port assertion of CSI Synchronized Status. Current status  
for CSI Sync can be read from the TX_PORT_SYNC flag in the  
CSI_STS register.  
IS_CSI_SYNC  
CSI RX Pass Error interrupt  
A deassertion of CSI Pass has been detected on one of the RX Ports  
being forwarded to the CSI Transmit Port  
IS_CSI_PASS_ERR  
OR  
CSI Pass interrupt  
CSI Transmit Port assertion of CSI Pass detected. Current status for the  
CSI Pass indication can be read from the TX_PORT_PASS flag in the  
CSI_STS register  
IS_CSI_PASS  
7.6.53 CSI_TEST_CTL Register  
7-71. CSI_TEST_CTL (Address 0x38)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
7.6.54 CSI_TEST_PATT_HI Register  
7-72. CSI_TEST_PATT_HI (Address 0x39)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
CSI_TEST_PATT  
R/W  
0x00 Bits 15:8 of fixed pattern for characterization test  
7.6.55 CSI_TEST_PATT_LO Register  
7-73. CSI_TEST_PATT_LO (Address 0x3A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
CSI_TEST_PATT  
R/W  
0x00  
Bits 7:0 of fixed pattern for characterization test  
7.6.56 RESERVED Register  
7-74. RESERVED (Address 0x3B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x01  
Reserved  
7.6.57 RESERVED Register  
7-75. RESERVED (Address 0x3C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x14  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.58 RESERVED Register  
7-76. RESERVED (Address 0x3D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x6F  
Reserved  
7.6.59 RESERVED Register  
7-77. RESERVED (Address 0x3E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
7.6.60 RESERVED Register  
7-78. RESERVED (Address 0x3F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x40  
Reserved  
7.6.61 RESERVED Register  
7-79. RESERVED (Address 0x40)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.62 SFILTER_CFG Register  
The SFilter configuration register controls the minimum and maximum values allow for the clock to data sample  
timing. It is recommended to program this register to 0xA9 during initialization for optimal startup time and  
ensure consistent AEQ performance across different channel characteristics.  
7-80. SFILTER_CFG (Address 0x41)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
SFILTER maximum setting This field controls the maximum SFILTER  
setting. Allowed values are 0-14 with 7 being the mid point. These  
values are used for both AEQ adaption and dynamic SFILTER control.  
The maximum setting must be greater than or equal to the minimum  
setting.  
7:4  
SFILTER_MAX  
R/W  
0xA  
SFILTER minimum setting. This field controls the maximum SFILTER  
setting. Allowed values are 0-14, where 7 is the mid point. These values  
are used for both AEQ adaption and dynamic SFILTER control. The  
minimum setting must be less than or equal to the SFILTER_MAX.  
Recommend to set SFILTER_MIN = 0x9 for normal operation in typical  
system use cases.  
3:0  
SFILTER_MIN  
R/W  
0x7  
7.6.63 AEQ_CTL1 Register  
7-81. AEQ_CTL1 (Address 0x42)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
AEQ Error Control  
Setting any bits in AEQ_ERR_CTL will enable FPD3 error checking  
during the Adaptive Equalization process. Errors are accumulated over  
1/2 of the period of the timer set by the  
ADAPTIVE_EQ_RELOCK_TIME filed in the AEQ_CTL2 register. If the  
number of errors is greater than the programmed threshold  
(AEQ_ERR_THOLD), the AEQ will attempt to increase the EQ setting.  
The errors may also be checked as part of EQ setting validation if  
AEQ_2STEP_EN is set. The following errors are checked based on this  
three bit field:  
6:4  
AEQ_ERR_CTL  
R/W  
0x7  
[6] FPD-Link III clock errors  
[5] Packet encoding errors  
[4] Parity errors  
3
2
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
AEQ 2-step enable  
This bit enables a two-step operation as part of the Adaptive EQ  
algorithm. If disabled, the state machine will wait for a programmed  
period of time, then check status to determine if setting is valid. If  
enabled, the state machine will wait for 1/2 the programmed period,  
then check for errors over an additional 1/2 the programmed period. If  
errors occur during the 2nd step, the state machine will immediately  
move to the next setting.  
AEQ_2STEP_EN  
0 : Wait for full programmed delay, then check instantaneous lock value  
1 : Wait for 1/2 programmed time, then check for errors over 1/2  
programmed time. The programmed time is controlled by the  
ADAPTIVE_EQ_RELOCK_TIME field in the AEQ_CTL2 register  
AEQ outer loop control  
This bit controls whether the Equalizer or SFILTER adaption is the outer  
loop when the AEQ adaption includes SFILTER adaption.  
0 : AEQ is inner loop, SFILTER is outer loop  
1 : AEQ is outer loop, SFILTER is inner loop  
1
0
AEQ_OUTER_LOOP R/W  
0x0  
0x1  
Enable SFILTER Adaption with AEQ  
Setting this bit allows SFILTER adaption as part of the Adaptive  
Equalizer algorithm.  
AEQ_SFILTER_EN  
R/W  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.64 AEQ_ERR_THOLD Register  
7-82. AEQ_ERR_THOLD (Address 0x43)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
AEQ Error Threshold  
AEQ_ERR  
_THRESHOLD  
This register controls the error threshold to determine when to re-adapt  
the EQ settings. This register should not be programmed to a value of  
0.  
7:0  
R/W  
0x1  
7.6.65 RESERVED Register  
7-83. RESERVED (Address 0x44 0x49)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R
0x00  
Reserved  
7.6.66 FPD3_CAP Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
It is recommended to set bit four in the FPD-Link III capabilities register to one, to flag errors detected from the  
enhanced CRC on FPD-Link III encoded link control information. The FPD-Link III Encoder CRC must also be  
enabled by setting the FPD3_ENC_CRC_DIS (register 0xBA[7]) to 0.  
7-84. FPD3_CAP (Address 0x4A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
R/W  
0x0  
Reserved  
FPD3_ENC_CRC_C  
AP  
0: Disable CRC error flag from FPD-Link III encoder  
1: Enable CRC error flag from FPD-Link III encoder (recommended)  
4
R/W  
R/W  
0x0  
0x0  
3:0  
RESERVED  
Reserved  
7.6.67 RAW_EMBED_DTYPE Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
When the receiver is programmed for Raw mode data, this register field allows setting the Data Type field for the  
first N lines to indicated embedded non-image data. RAW_EMBED_DTYPE has no effect on CSI-2 receiver  
modes.  
7-85. RAW_EMBED_DTYPE (Address 0x4B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Embedded Data Type Enable.  
00 : All long packets will be forwarded as RAW10 or RAW12 video data  
01, 10, or 11 : Send first N long packets (1, 2, or 3) as Embedded data  
using the data type in the EMBED_DTYPE_ID field of this register. This  
control has no effect if the Receiver is programmed to receive CSI  
formatted data.  
7:6  
EMBED_DTYPE_EN R/W  
EMBED_DTYPE_ID R/W  
0x00  
Embedded Data Type. If sending embedded data is enabled via the  
EMBED_DTYPE_EN control in this register, the Data Type field for the  
first N lines of each frame will use this value rather than the value  
programmed in the RAW12_ID or RAW10_ID registers. The default  
setting matches the CSI-2 specification for Embedded 8-bit non Image  
Data  
5:0  
0x12  
Copyright © 2023 Texas Instruments Incorporated  
96  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.68 FPD3_PORT_SEL Register  
The FPD-Link III Port Select register configures which port is accessed in I2C commands to unique Rx Port  
registers 0x4A, 0x4B, 0x4D - 0x7F and 0xD0 - 0xDF. A 2-bit RX_READ_PORT field provides for reading values  
from a single port. The 4-bit RX_WRITE_PORT field provides individual enables for each port, allowing  
simultaneous writes broadcast to both of the FPD-Link III Receive port register blocks in unison. The  
DS90UB954-Q1 maintains separate page control, preventing conflict between sources.  
7-86. FPD3_PORT_SEL (Address 0x4C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
Physical port number  
This field provides the physical port connection when reading from a  
remote device via the Bi-directional Control Channel.  
When accessed via local I2C interfaces, the value returned is always  
0. When accessed via Bi-directional Control Channel, the value  
returned is the port number of the Receive port connection.  
0x0  
Port#  
6
5
PHYS_PORT_NUM  
RESERVED  
R
R
0x0  
Reserved  
Select RX port for register read  
This field selects one of the two RX port register blocks for readback.  
This applies to all paged FPD-Link III Receiver port registers.  
0: Port 0 registers  
0x0  
Port#  
4
3:2  
1
RX_READ_PORT  
RESERVED  
R/W  
R
1: Port 1 registers  
When accessed via local I2C interfaces, the default setting is 0. When  
accessed via Bi-directional Control Channel, the default value is the  
port number of the Receive port connection.  
0x00  
Reserved  
Write Enable for RX port 1 registers  
This bit enables writes to RX port 1 registers. Any combination of RX  
port registers can be written simultaneously. This applies to all paged  
FPD-Link III Receiver port registers.  
0: Writes disabled  
1: Writes enabled  
0x0  
0x1 for RX  
Port 1  
RX_WRITE_PORT_1 R/W  
When accessed via Bi-directional Control Channel, the default value is  
1 if accessed over RX port 1.  
Write Enable for RX port 0 registers  
This bit enables writes to RX port 0 registers. Any combination of RX  
port registers can be written simultaneously. This applies to all paged  
FPD-Link III Receiver port registers.  
0: Writes disabled  
1: Writes enabled  
0x0  
0x1 for RX  
Port 0  
0
RX_WRITE_PORT_0 R/W  
When accessed via Bi-directional Control Channel, the default value is  
1 if accessed over RX port 0.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.69 RX_PORT_STS1 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-87. RX_PORT_STS1 (Address 0x4D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
RX Port Number. This read-only field indicates the number of the  
currently selected RX read port.  
6
5
RX_PORT_NUM  
R
0x0  
0x0  
Bi-directional Control Channel CRC Error Detected  
This bit indicates a CRC error has been detected in the forward control  
channel. If this bit is set, an error may have occurred in the control  
channel operation. This bit is cleared on read.  
BCC_CRC_ERROR  
R/RC  
Lock Status Changed  
This bit is set if a change in receiver lock status has been detected  
since the last read of this register. Current lock status is available in  
the LOCK_STS bit of this register.  
4
3
LOCK_STS_CHG  
R/RC  
R/RC  
0x0  
0x0  
This bit is cleared on read.  
Bi-directional Control Channel Sequence Error Detected  
This bit indicates a sequence error has been detected in the forward  
control channel. If this bit is set, an error may have occurred in the  
control channel operation. This bit is cleared on read.  
BCC_SEQ_ERROR  
FPD-Link III parity errors detected  
This flag is set when the number of parity errors detected is greater  
than the threshold programmed in the PAR_ERR_THOLD registers.  
1: Number of FPD-Link III parity errors detected is greater than the  
threshold  
2
PARITY_ERROR  
R
0x0  
0: Number of FPD-Link III parity errors is below the threshold  
This bit is cleared when the RX_PAR_ERR_HI/LO registers are  
cleared.  
Receiver PASS indication.  
This bit indicates the current status of the Receiver PASS indication.  
The requirements for setting the Receiver PASS indication are  
controlled by the PORT_PASS_CTL register.  
1: Receive input has met PASS criteria  
1
0
PORT_PASS  
LOCK_STS  
R
R
0x0  
0x0  
0: Receive input does not meet PASS criteria  
FPD-Link III receiver is locked to incoming data  
1: Receiver is locked to incoming data  
0: Receiver is not locked  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.70 RX_PORT_STS2 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-88. RX_PORT_STS2 (Address 0x4E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Length Unstable  
If set, this bit indicates the line length was detected as unstable during  
a previous video frame. The line length is considered to be stable if all  
the lines in the video frame have the same length. This flag will remain  
set until read.  
LINE_LEN  
_UNSTABLE  
7
R/RC  
0x0  
Line Length Changed  
1: Change of line length detected  
0: Change of line length not detected  
This bit is cleared on read.  
6
5
LINE_LEN_CHG  
R/RC  
R/RC  
0x0  
0x0  
FPD-Link III Encoder error detected  
If set, this flag indicates an error in the FPD-Link III encoding has been  
detected by the FPD-Link III receiver.  
FPD3_ENCODE  
_ERROR  
This bit is cleared on read.  
Note, to detect FP3 Encoder errors, the LINK_ERROR_COUNT must  
be enabled with a LINK_ERR_THRESH value greater than 1.  
Otherwise, the loss of Receiver Lock will prevent detection of the  
Encoder error.  
Packet buffer error detected. If this bit is set, an overflow condition has  
occurred on the packet buffer FIFO.  
4
BUFFER_ERROR  
R/RC  
0x0  
1: Packet Buffer error detected  
0: No Packet Buffer errors detected  
This bit is cleared on read.  
3
2
CSI_ERROR  
R
R
0x0  
0x0  
CSI Receive error detected. See the CSI_RX_STS register for details.  
Frequency measurement stable  
FREQ_STABLE  
When link is expected to be operational, CABLE_FAULT would indicate  
open or short on the cable as no FPD-Link clock is detected at the  
deserializer Rx input.  
1
0
CABLE_FAULT  
R
0x0  
0x0  
Line Count Changed  
1: Change of line count detected  
0: Change of line count not detected  
This bit is cleared on read.  
LINE_CNT_CHG  
R/RC  
7.6.71 RX_FREQ_HIGH Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-89. RX_FREQ_HIGH (Address 0x4F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Frequency Counter High Byte (MHz)  
7:0  
FREQ_CNT_HIGH  
R
0x00  
The Frequency counter reports the measured frequency for the FPD-  
Link III Receiver. This portion of the field is the integer value in MHz.  
7.6.72 RX_FREQ_LOW Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-90. RX_FREQ_LOW (Address 0x50)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Frequency Counter Low Byte (1/256 MHz)  
The Frequency counter reports the measured frequency for the FPD-  
Link III Receiver. This portion of the field is the fractional value in  
1/256 MHz.  
7:0  
FREQ_CNT_LOW  
R
0x00  
Copyright © 2023 Texas Instruments Incorporated  
100 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.73 SENSOR_STS_0 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Sensor Status Register 0 field provides additional status information when paired with a DS90UB935-Q1 or  
DS90UB953-Q1 Serializer. This field is automatically loaded from the forward channel.  
7-91. SENSOR_STS_0 (Address 0x51)  
BIT  
7:6  
5
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
CSI_ALARM  
BCC_ALARM  
R
R
R
0x00  
Reserved  
0x0  
Alarm flag for CSI error from serializer  
Alarm flag for back channel error from serializer  
4
0x0  
LINK_DETECT_ALA  
RM  
3
2
1
0
R
R
R
R
0x0  
0x0  
0x0  
0x0  
Alarm flag for link detect from serializer  
Alarm flag for temp sensor from serializer  
Alarm flag for voltage sensor 1 from serializer  
Alarm flag for voltage sensor 0 from serializer  
TEMP_SENSE_ALA  
RM  
VOLT1_SENSE_ALA  
RM  
VOLT0_SENSE_ALA  
RM  
7.6.74 SENSOR_STS_1 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Sensor Status Register 1 field provides additional status information when paired with a DS90UB935-Q1 or  
DS90UB953-Q1 Serializer. This field is automatically loaded from the forward channel.  
7-92. SENSOR_STS_1 (Address 0x52)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
VOLT1_SENSE_LEV  
EL  
6:4  
3
R
R
R
0x0  
0x0  
0x0  
Voltage sensor sampled value from serializer  
Reserved  
RESERVED  
VOLT0_SENSE_LEV  
EL  
2:0  
Voltage sensor sampled value from serializer  
7.6.75 SENSOR_STS_2 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Sensor Status Register 2 field provides additional status information when paired with a DS90UB935-Q1 or  
DS90UB953-Q1 Serializer. This field is automatically loaded from the forward channel.  
7-93. SENSOR_STS_2 (Address 0x53)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
R
0x0  
TEMP_SENSE_LEVE  
L
2:0  
R
0x0  
Temperature sensor sampled value from serializer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.76 SENSOR_STS_3 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Sensor Status Register 3 field provides additional status information on the CSI-2 input when paired with a  
DS90UB935-Q1 or DS90UB953-Q1 Serializer. This field is automatically loaded from the forward channel.  
7-94. SENSOR_STS_3 (Address 0x54)  
BIT  
7:5  
4
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
R
R
R
R
R
R
0x0  
Reserved  
CSI_ECC_2BIT_ERR  
CSI_CHKSUM_ERR  
CSI_SOT_ERR  
CSI_SYNC_ERR  
CSI_CNTRL_ERR  
0x0  
CSI -2 ECC error flag from serializer  
CSI-2 checksum error from serializer  
CSI-2 start of transmission error from serializer  
CSI-2 synchronization error from serializer  
CSI-2 control error from serializer  
3
0x0  
2
0x0  
1
0x0  
0
0x0  
7.6.77 RX_PAR_ERR_HI Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-95. RX_PAR_ERR_HI (Address 0x55)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Number of FPD-Link III parity errors  
8 most significant bits. The parity error counter registers return the  
number of data parity errors that have been detected on the FPD-Link  
III Receiver data since the last detection of valid lock or last read of  
the RX_PAR_ERR_LO register. For accurate reading of the parity  
error count, disable the RX_PARITY_CHECKER_ENABLE bit in  
register 0x02 prior to reading the parity error count registers. This  
register is cleared upon reading the RX_PAR_ERR_LO register.  
PAR_ERROR  
_ BYTE_1  
7:0  
R/RC  
0x0  
7.6.78 RX_PAR_ERR_LO Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-96. RX_PAR_ERR_LO (Address 0x56)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Number of FPD-Link III parity errors  
8 least significant bits. The parity error counter registers return the  
number of data parity errors that have been detected on the FPD-Link  
III Receiver data since the last detection of valid lock or last read of  
the RX_PAR_ERR_LO register. For accurate reading of the parity  
error count, disable the RX_PARITY_CHECKER_ENABLE bit in  
register 0x02 prior to reading the parity error count registers. This  
register is cleared on read.  
PAR_ERROR  
_BYTE_0  
7:0  
R/RC  
0x0  
7.6.79 BIST_ERR_COUNT Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-97. BIST_ERR_COUNT (Address 0x57)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
BIST_ERROR  
_COUNT  
Bist Error Count  
Returns BIST error count  
7:0  
R
0x0  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.80 BCC_CONFIG Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-98. BCC_CONFIG (Address 0x58)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
I2C Pass-Through All Transactions  
0: Disabled  
1: Enabled  
I2C_PASS  
_THROUGH_ALL  
7
R/W  
0x0  
I2C Pass-Through to Serializer if decode matches  
0: Pass-Through Disabled  
1: Pass-Through Enabled  
I2C_PASS  
_THROUGH  
6
5
R/W  
R/W  
0x0  
0x0  
Automatically Acknowledge all I2C writes independent of the forward  
channel lock state or status of the remote Acknowledge  
1: Enable  
0: Disable  
AUTO_ACK_ALL  
BC_ALWAYS_ON  
Back channel enable  
1: Back channel is always enabled independent of  
I2C_PASS_THROUGH and I2C_PASS_THROUGH_ALL  
0: Back channel enable requires setting of either  
I2C_PASS_THROUGH and I2C_PASS_THROUGH_ALL  
This bit may only be written through a local I2C controller.  
4
3
R/W  
R/W  
0x1  
0x1  
BC_CRC  
_GENERATOR  
_ENABLE  
Back Channel CRC Generator Enable  
0: Disable  
1: Enable  
Back Channel Frequency Select. Default value set by strap condition  
upon asserting PDB = HIGH.  
000: 2.5 Mbps (select for DS90UB933-Q1 or DS90UB913A-Q1  
compatibility)  
001- 011: Reserved  
010: 10 Mbps (select for non-synchronous back channel  
compatibility)  
101: 25 Mbps  
2:0  
BC_FREQ_SELECT R/W  
S
110: 50 Mbps (default for DS90UB953-Q1 or DS90UB935-Q1 CSI  
Synchronous back channel compatibility)  
111: Reserved  
Note that changing this setting will result in some errors on the back  
channel for a short period of time. If set over the control channel, the  
Serializer should first be programmed to Auto-Ack operation to avoid  
a control channel timeout due to lack of response from the  
Deserializer.  
7.6.81 DATAPATH_CTL1 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-99. DATAPATH_CTL1 (Address 0x59)  
BIT  
7
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
1: Disable loading of the DATAPATH_CTL registers from the forward  
channel, keeping locally written values intact  
0: Allow forward channel loading of DATAPATH_CTL registers  
OVERRIDE_FC  
_CONFIG  
R/W  
0x0  
6:2  
RESERVED  
R/W  
0x0  
Reserved  
Forward Channel GPIO Enable  
Configures the number of enabled forward channel GPIOs  
00: GPIOs disabled  
01: One GPIO  
10: Two GPIOs  
1:0  
FC_GPIO_EN  
R/W  
0x0  
11: Four GPIOs  
This field is normally loaded from the remote serializer. It can be  
overwritten if the OVERRIDE_FC_CONFIG bit in this register is 1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.82 DATAPATH_CTL2 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-100. DATAPATH_CTL2 (Address 0x5A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x0  
Reserved  
7.6.83 SER_ID Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-101. SER_ID (Address 0x5B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Serializer ID  
7:1  
SER_ID  
R/W  
0x00  
This field is normally loaded automatically from the remote  
Serializer.  
Freeze Serializer Device ID  
0
FREEZE_DEVICE_ID R/W  
0x0  
Prevent auto-loading of the Serializer Device ID from the Forward  
Channel. The ID is frozen at the value written.  
7.6.84 SER_ALIAS_ID Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-102. SER_ALIAS_ID (Address 0x5C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Serializer Alias ID  
Configures the decoder for detecting transactions designated for  
an I2C Target device attached to the remote Deserializer. The  
transaction is remapped to the address specified in the Target ID  
register. A value of 0 in this field disables access to the remote I2C  
Target.  
7:1  
SER_ALIAS_ID  
R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Serializer  
independent of the forward channel lock state or status of the  
0
SER_AUTO_ACK  
R/W  
0x0  
remote Serializer Acknowledge  
1: Enable  
0: Disable  
7.6.85 TargetID[0] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-103. TargetID[0] (Address 0x5D)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 0  
Configures the physical I2C address of the remote I2C Target  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Target Alias ID0, the transaction is remapped to  
this address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
TARGET_ID0  
RESERVED  
0x0  
0x0  
Reserved.  
7.6.86 TargetID[1] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
BIT  
7-104. TargetID[1] (Address 0x5E)  
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 1  
Configures the physical I2C address of the remote I2C Target  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Target Alias ID1, the transaction is remapped to  
this address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
7:1  
0
TARGET_ID1  
RESERVED  
0x0  
0x0  
Reserved.  
7.6.87 TargetID[2] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-105. TargetID[2] (Address 0x5F)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 2  
Configures the physical I2C address of the remote I2C Target  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Target Alias ID2, the transaction is remapped  
to this address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
TARGET_ID2  
RESERVED  
0x0  
0x0  
Reserved.  
7.6.88 TargetID[3] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-106. TargetID[3] (Address 0x60)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 3  
Configures the physical I2C address of the remote I2C Target  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Target Alias ID3, the transaction is remapped  
to this address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
TARGET_ID3  
RESERVED  
0x0  
0x0  
Reserved.  
7.6.89 TargetID[4] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-107. TargetID[4] (Address 0x61)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 4  
Configures the physical I2C address of the remote I2C Target  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Target Alias ID4, the transaction is remapped  
to this address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
TARGET_ID4  
RESERVED  
0x0  
0x0  
Reserved.  
7.6.90 TargetID[5] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-108. TargetID[5] (Address 0x62)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 5  
Configures the physical I2C address of the remote I2C Target  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Target Alias ID5, the transaction is remapped  
to this address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
TARGET_ID5  
RESERVED  
0x0  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
106 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.91 TargetID[6] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-109. TargetID[6] (Address 0x63)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 6  
Configures the physical I2C address of the remote I2C Target  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Target Alias ID6, the transaction is remapped  
to this address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
TARGET_ID6  
RESERVED  
0x0  
0x0  
Reserved.  
7.6.92 TargetID[7] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-110. TargetID[7] (Address 0x64)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 7  
Configures the physical I2C address of the remote I2C Target  
device attached to the remote Serializer. If an I2C transaction  
is addressed to the Target Alias ID7, the transaction is  
remapped to this address before passing the transaction  
across the Bidirectional Control Channel to the Serializer.  
TARGET_ID7  
RESERVED  
0x0  
0x0  
Reserved.  
7.6.93 TargetAlias[0] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-111. TargetAlias[0] (Address 0x65)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device Alias ID 0  
Configures the decoder for detecting transactions designated  
for an I2C Target device attached to the remote Serializer. The  
transaction is remapped to the address specified in the Target  
ID0 register. A value of 0 in this field disables access to the  
remote I2C Target.  
7:1  
TARGET_ALIAS_ID0 R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Target  
0 independent of the forward channel lock state or status of the  
remote Serializer Acknowledge  
1: Enable  
TARGET_AUTO_AC  
K_0  
0
R/W  
0x0  
0: Disable  
7.6.94 TargetAlias[1] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-112. TargetAlias[1] (Address 0x66)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device Alias ID 1  
Configures the decoder for detecting transactions designated  
for an I2C Target device attached to the remote Serializer. The  
transaction is remapped to the address specified in the Target  
ID1 register. A value of 0 in this field disables access to the  
remote I2C Target.  
7:1  
TARGET_ALIAS_ID1 R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Target  
1 independent of the forward channel lock state or status of  
the remote Serializer Acknowledge  
1: Enable  
TARGET_AUTO_AC  
K_1  
0
R/W  
0x0  
0: Disable  
Copyright © 2023 Texas Instruments Incorporated  
108 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.95 TargetAlias[2] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-113. TargetAlias[2] (Address 0x67)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device Alias ID 2  
Configures the decoder for detecting transactions designated  
for an I2C Target device attached to the remote Serializer. The  
transaction is remapped to the address specified in the Target  
ID2 register. A value of 0 in this field disables access to the  
remote I2C Target.  
7:1  
TARGET_ALIAS_ID2 R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Target  
2 independent of the forward channel lock state or status of  
the remote Serializer Acknowledge  
1: Enable  
TARGET_AUTO_ACK  
2
0
R/W  
0x0  
0: Disable  
7.6.96 TargetAlias[3] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-114. TargetAlias[3] (Address 0x68)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device Alias ID 3  
Configures the decoder for detecting transactions designated  
for an I2C Target device attached to the remote Serializer. The  
transaction is remapped to the address specified in the Target  
ID3 register. A value of 0 in this field disables access to the  
remote I2C Target.  
7:1  
TARGET_ALIAS_ID3 R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Target  
3 independent of the forward channel lock state or status of  
the remote Serializer Acknowledge  
1: Enable  
TARGET_AUTO_ACK  
_3  
0
R/W  
0x0  
0: Disable  
7.6.97 TargetAlias[4] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-115. TargetAlias[4] (Address 0x69)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device Alias ID 4  
Configures the decoder for detecting transactions designated  
for an I2C Target device attached to the remote Serializer. The  
transaction is remapped to the address specified in the Target  
ID4 register. A value of 0 in this field disables access to the  
remote I2C Target.  
7:1  
TARGET_ALIAS_ID4 R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Target  
4 independent of the forward channel lock state or status of  
the remote Serializer Acknowledge  
1: Enable  
TARGET_AUTO_AC  
K_4  
0
R/W  
0x0  
0: Disable  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.98 TargetAlias[5] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-116. TargetAlias[5] (Address 0x6A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device Alias ID 5  
Configures the decoder for detecting transactions designated  
for an I2C Target device attached to the remote Serializer. The  
transaction is remapped to the address specified in the Target  
ID5 register. A value of 0 in this field disables access to the  
remote I2C Target.  
7:1  
TARGET_ALIAS_ID5 R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Target  
5 independent of the forward channel lock state or status of the  
remote Serializer Acknowledge  
1: Enable  
TARGET_AUTO_AC  
K_5  
0
R/W  
0x0  
0: Disable  
7.6.99 TargetAlias[6] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-117. TargetAlias[6] (Address 0x6B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device Alias ID 6  
Configures the decoder for detecting transactions designated  
for an I2C Target device attached to the remote Serializer. The  
transaction is remapped to the address specified in the Target  
ID6 register. A value of 0 in this field disables access to the  
remote I2C Target.  
7:1  
TARGET_ALIAS_ID6 R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Target  
6 independent of the forward channel lock state or status of the  
remote Serializer Acknowledge  
1: Enable  
TARGET_AUTO_ACK  
_6  
0
R/W  
0x0  
0: Disable  
7.6.100 TargetAlias[7] Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-118. TargetAlias[7] (Address 0x6C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device Alias ID 7  
Configures the decoder for detecting transactions designated  
for an I2C Target device attached to the remote Serializer. The  
transaction is remapped to the address specified in the Target  
ID7 register. A value of 0 in this field disables access to the  
remote I2C Target.  
7:1  
TARGET_ALIAS_ID7 R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Target  
7 independent of the forward channel lock state or status of  
the remote Serializer Acknowledge  
1: Enable  
TARGET_AUTO_AC  
K 7  
0
R/W  
0x0  
0: Disable  
Copyright © 2023 Texas Instruments Incorporated  
110  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.101 PORT_CONFIG Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-119. PORT_CONFIG (Address 0x6D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI Wait for FrameStart packet with count 1  
The CSI Receiver will wait for a Frame Start packet with count  
of 1 before accepting other packets  
7
CSI_WAIT_FS1  
R/W  
0x0  
CSI Wait for FrameStart packet  
6
5
4
CSI_WAIT_FS  
R/W  
R/W  
R/W  
0x1  
0x1  
0x1  
CSI-2 Receiver will wait for a Frame Start packet before  
accepting other packets  
Forward CSI packets with checksum errors  
0: Do not forward packets with errors  
1: Forward packets with errors  
CSI_FWD_CKSUM  
CSI_FWD_ECC  
Forward CSI packets with ECC errors  
0: Do not forward packets with errors  
1: Forward packets with errors  
In CSI FPD-Link III Input Mode, Forward CSI packets with  
length errors. In RAW Input Mode, forward truncated 1st video  
line.  
0: CSI: Do not forward packets with errors. RAW: Forward  
truncated 1st video line  
CSI_FWD_LEN/  
DISCARD_1ST  
_LINE_ON_ERR  
3
2
R/W  
R/W  
R/W  
0x1  
1: CSI: Forward packets with errors. RAW: Discard truncated  
1st video line  
Enable coax cable mode  
Default value set by strap condition of MODE pin upon  
asserting PDB = HIGH at start-up.  
0: Shielded-twisted pair (STP) mode  
1: Coax mode  
COAX_MODE  
FPD3_MODE  
S
FPD-Link III Input Mode  
Default value set by strap condition of MODE pin upon  
asserting PDB = HIGH at start-up.  
00: CSI Mode (DS90UB953/935 compatible)  
01: RAW12 Mode/50 MHz (DS90UB913A/933 compatible)  
10: RAW12 Mode/75 MHz (DS90UB913A/933 compatible)  
11: RAW10 Mode/100 MHz (DS90UB913A/933 compatible)  
1:0  
S
7.6.102 BC_GPIO_CTL0 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-120. BC_GPIO_CTL0 (Address 0x6E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Back channel GPIO1 Select:  
Determines the data sent on GPIO1 for the port back channel.  
0xxx : Pin GPIOx where x is BC_GPIO1_SEL[2:0]  
0111 : Reserved  
7:4  
BC_GPIO1_SEL  
R/W  
0x8  
1000 : Constant value of 0  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
Back channel GPIO0 Select:  
Determines the data sent on GPIO0 for the port back channel.  
0xxx : Pin GPIOx where x is BC_GPIO0_SEL[2:0]  
0111 : Reserved  
3:0  
BC_GPIO0_SEL  
R/W  
0x8  
1000 : Constant value of 0  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.103 BC_GPIO_CTL1 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-121. BC_GPIO_CTL1 (Address 0x6F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Back channel GPIO3 Select:  
Determines the data sent on GPIO3 for the port back  
channel.  
0xxx : Pin GPIOx where x is BC_GPIO3_SEL[2:0]  
0111 : Reserved  
7:4  
BC_GPIO3_SEL  
R/W  
0x8  
1000 : Constant value of 0  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
Back channel GPIO2 Select:  
Determines the data sent on GPIO2 for the port back  
channel.  
0xxx : Pin GPIOx where x is BC_GPIO2_SEL[2:0]  
0111 : Reserved  
3:0  
BC_GPIO2_SEL  
R/W  
0x8  
1000 : Constant value of 0  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
7.6.104 RAW10_ID Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
RAW10 virtual channel mapping only applies when FPD-Link III operating in RAW10 input mode. See register  
0x71 for RAW12 and register 0x72 for CSI-2 mode operation.  
7-122. RAW10_ID (Address 0x70)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RAW10 Mode Virtual Channel  
This field configures the CSI Virtual Channel assigned to the  
port when receiving RAW10 data.  
7:6  
RAW10_VC  
R/W  
<RX Port #>  
The field value defaults to the FPD-Link III receive port  
number (0 or 1)  
RAW10 DT  
5:0  
RAW10_DT  
R/W  
0x2B  
This field configures the CSI data type used in RAW10  
mode. The default of 0x2B matches the CSI specification.  
7.6.105 RAW12_ID Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
RAW12 virtual channel mapping only applies when FPD-Link III operating in RAW12 input mode. See register  
0x70 for RAW10 and register 0x72 for CSI-2 mode operation.  
7-123. RAW12_ID (Address 0x71)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RAW12 Mode Virtual Channel  
This field configures the CSI Virtual Channel assigned to the  
port when receiving RAW12 data.  
7:6  
RAW12_VC  
R/W  
<RX Port #>  
The field value defaults to the FPD-Link III receive port  
number (0 or 1)  
Copyright © 2023 Texas Instruments Incorporated  
112  
Submit Document Feedback  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-123. RAW12_ID (Address 0x71) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RAW12 DT  
5:0  
RAW12_DT  
R/W  
0x2C  
This field configures the CSI data type used in RAW12  
mode. The default of 0x2C matches the CSI specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.106 CSI_VC_MAP Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
CSI virtual channel mapping only applies when FPD-Link III operating in CSI-2 input mode. See registers 0x70  
and 0x71 for RAW mode operation.  
7-124. CSI_VC_MAP (Address 0x72)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Virtual Channel Mapping Register  
This register provides a method for replacing the Virtual  
Channel Identifier (VC-ID) of incoming CSI packets.  
[7:6] : Map value for VC-ID of 3  
7:0  
CSI_VC_MAP  
R/W  
0xE4  
[5:4] : Map value for VC-ID of 2  
[3:2] : Map value for VC-ID of 1  
[1:0] : Map value for VC-ID of 0  
7.6.107 LINE_COUNT_HI Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-125. LINE_COUNT_HI (Address 0x73)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
High byte of Line Count  
The Line Count reports the line count for the most recent  
video frame. When interrupts are enabled for the Line Count  
(via the IE_LINE_CNT_CHG register bit), the Line Count  
value is frozen until read.  
7:0  
LINE_COUNT_HI  
R
0x0  
7.6.108 LINE_COUNT_LO Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-126. LINE_COUNT_LO (Address 0x74)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Low byte of Line Count  
The Line Count reports the line count for the most recent  
video frame. When interrupts are enabled for the Line Count  
(via the IE_LINE_CNT_CHG register bit), the Line Count  
value is frozen until read. In addition, when reading the  
LINE_COUNT registers, the LINE_COUNT_LO is latched  
upon reading LINE_COUNT_HI to ensure consistency  
between the two portions of the Line Count.  
7:0  
LINE_COUNT_LO  
R
0x0  
7.6.109 LINE_LEN_1 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-127. LINE_LEN_1 (Address 0x75)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
High byte of Line Length  
The Line Length reports the line length recorded during the  
most recent video frame. If line length is not stable during  
the frame, this register will report the length of the last line  
in the video frame. When interrupts are enabled for the Line  
Length (via the IE_LINE_LEN_CHG register bit), the Line  
Length value is frozen until read.  
7:0  
LINE_LEN_HI  
R
0x0  
Copyright © 2023 Texas Instruments Incorporated  
114  
Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.110 LINE_LEN_0 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-128. LINE_LEN_0 (Address 0x76)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Low byte of Line Length  
The Line Length reports the length of the most recent video  
line. When interrupts are enabled for the Line Length (via  
the IE_LINE_LEN_CHG register bit), the Line Length value  
is frozen until read. In addition, when reading the LINE_LEN  
registers, the LINE_LEN_LO is latched upon reading  
LINE_LEN_HI to ensure consistency between the two  
portions of the Line Length.  
7:0  
LINE_LEN_LO  
R
0x0  
7.6.111 FREQ_DET_CTL Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-129. FREQ_DET_CTL (Address 0x77)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Frequency Detect Hysteresis  
The Frequency detect hysteresis setting allows ignoring minor  
fluctuations in frequency. A new frequency measurement will  
be captured only if the measured frequency differs from the  
current measured frequency by more than the FREQ_HYST  
setting. The FREQ_HYST setting is in MHz.  
7:6  
FREQ_HYST  
R/W  
0x3  
Frequency Stable Threshold  
The Frequency detect circuit can be used to detect a stable  
clock frequency. The Stability Threshold determines the  
amount of time required for the clock frequency to stay within  
5:4  
3:0  
FREQ_STABLE_THR R/W  
0x0  
0x5  
the FREQ_HYST range to be considered stable:  
00 : 40 µs  
01 : 80 µs  
10 : 320 µs  
11 : 1.28 ms  
Frequency Low Threshold  
Sets the low threshold for the Clock frequency detect circuit in  
MHz. This value is used to determine if the clock frequency is  
too low for proper operation.  
FREQ_LO_THR  
R/W  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.112 MAILBOX_1 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-130. MAILBOX_1 (Address 0x78)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Mailbox Register  
This register is an unused read/write register that can be used  
for any purpose such as passing messages between I2C  
controllers on opposite ends of the link.  
7:0  
MAILBOX_0  
R/W  
0x00  
7.6.113 MAILBOX_2 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-131. MAILBOX_2 (Address 0x79)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Mailbox Register  
This register is an unused read/write register that can be used  
for any purpose such as passing messages between I2C  
controllers on opposite ends of the link.  
7:0  
MAILBOX_1  
R/W  
0x01  
7.6.114 CSI_RX_STS Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-132. CSI_RX_STS (Address 0x7A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:4  
RESERVED  
R
0x0  
Reserved  
Packet Length Error detected for received CSI packet  
If set, this bit indicates a packet length error was detected on  
at least one CSI packet received from the sensor. Packet  
length errors occur if the data length field in the packet header  
does not match the actual data length for the packet.  
1: One or more Packet Length errors have been detected  
0: No Packet Length errors have been detected  
This bit is cleared on read.  
3
LENGTH_ERR  
R/RC  
0x0  
Data Checksum Error detected for received CSI packet  
If set, this bit indicates a data checksum error was detected on  
at least one CSI packet received from the sensor. Data  
checksum errors indicate an error was detected in the packet  
data portion of the CSI packet.  
1: One or more Data Checksum errors have been detected  
0: No Data Checksum errors have been detected  
This bit is cleared on read.  
2
1
CKSUM_ERR  
R/RC  
R/RC  
0x0  
0x0  
2-bit ECC Error detected for received CSI packet  
If set, this bit indicates a multi-bit ECC error was detected on  
at least one CSI packet received from the sensor. Multi-bit  
errors are not corrected by the device.  
ECC2_ERR  
1: One or more multi-bit ECC errors have been detected  
0: No multi-bit ECC errors have been detected  
This bit is cleared on read.  
Copyright © 2023 Texas Instruments Incorporated  
116  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
BIT  
7-132. CSI_RX_STS (Address 0x7A) (continued)  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
1-bit ECC Error detected for received CSI packet  
If set, this bit indicates a single-bit ECC error was detected on  
at least one CSI packet received from the sensor. Single-bit  
errors are corrected by the device.  
0
ECC1_ERR  
R/RC  
0x0  
1: One or more 1-bit ECC errors have been detected  
0: No 1-bit ECC errors have been detected  
This bit is cleared on read.  
7.6.115 CSI_ERR_COUNTER Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-133. CSI_ERR_COUNTER (Address 0x7B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI Error Counter Register  
7:0  
CSI_ERR_CNT  
R/RC  
0x00  
This register counts the number of CSI packets received with  
errors since the last read of the counter.  
7.6.116 PORT_CONFIG2 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-134. PORT_CONFIG2 (Address 0x7C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Raw10 8-bit mode  
When Raw10 Mode is enabled for the port, the input data is  
processed as 8-bit data and packed accordingly for  
transmission over CSI.  
00 : Normal Raw10 Mode  
01 : Reserved  
7:6  
RAW10_8BIT_CTL  
R/W  
0x0  
10 : 8-bit processing using upper 8 bits. When selecting this  
value, change CSI data type value RAW10_DT in register  
0x70[5:0]  
11 : 8-bit processing using lower 8 bits. When selecting this  
value, change CSI data type value RAW10_DT in register  
0x70[5:0]  
Discard frames on Parity Error  
0 : Forward packets with parity errors  
1 : Truncate Frames if a parity error is detected  
DISCARD_ON  
_PAR_ERR  
5
4
R/W  
R/W  
0x1  
0x0  
Discard frames on Line Size  
0 : Allow changes in Line Size within packets  
1 : Truncate Frames if a change in line size is detected  
DISCARD_ON  
_LINE_SIZE  
Discard frames on change in Frame Size  
When enabled, a change in the number of lines in a frame will  
result in truncation of the packet. The device will resume  
forwarding video frames based on the PASS_THRESHOLD  
setting in the PORT_PASS_CTL register.  
DISCARD_ON  
_FRAME_SIZE  
3
R/W  
0x0  
0 : Allow changes in Frame Size  
1 : Truncate Frames if a change in frame size is detected  
2
1
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
LineValid Polarity  
This register indicates the expected polarity for the LineValid  
indication received in Raw mode.  
LV_POLARITY  
1 : LineValid is low for the duration of the video line  
0 : LineValid is high for the duration of the video line  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-134. PORT_CONFIG2 (Address 0x7C) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameValid Polarity  
This register indicates the expected polarity for the  
FrameValid indication received in Raw mode.  
0
FV_POLARITY  
R/W  
0x0  
1 : FrameValid is low for the duration of the video frame  
0 : FrameValid is high for the duration of the video frame  
Copyright © 2023 Texas Instruments Incorporated  
118  
Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.117 PORT_PASS_CTL Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-135. PORT_PASS_CTL (Address 0x7D)  
BIT  
7
FIELD  
TYPE  
DEFAULT  
0x0  
DESCRIPTION  
Pass Discard Enable  
Discard packets if PASS is not indicated.  
0 : Ignore PASS for forwarding packets  
1 : Discard packets when PASS is not true  
PASS_DISCARD_EN R/W  
6
RESERVED  
R/W  
0x0  
Reserved  
Pass Line Count Control  
This register controls whether the device will include line  
count in qualification of the Pass indication:  
0 : Don't check line count  
5
4
3
PASS_LINE_CNT  
R/W  
0x0  
0x0  
x00  
1 : Check line count  
When checking line count, Pass is deasserted upon detection  
of a change in the number of video lines per frame. Pass will  
not be reasserted until the PASS_THRESHOLD setting is  
met.  
Pass Line Size Control  
This register controls whether the device will include line size  
in qualification of the Pass indication:  
0 : Don't check line size  
PASS_LINE_SIZE  
R/W  
1 : Check line size  
When checking line size, Pass is deasserted upon detection  
of a change in video line size. Pass will not be reasserted until  
the PASS_THRESHOLD setting is met.  
Parity Error Mode  
If this bit is set to 0, the port Pass indication is deasserted for  
every parity error detected on the FPD-Link III Receive  
interface. If this bit is set to a 1, the port Pass indication is  
cleared on a parity error and remain clear until the  
PASS_THRESHOLD is met. When PASS_PARITY_ERR is  
set to 1, TI also recommends setting PASS_THRESHOLD to  
2 or higher to ensure at least one good frame occurs following  
a parity error  
PASS_PARITY_ERR R/W  
RX Port Pass Watchdog disable  
When enabled, if the FPD Receiver does not detect a valid  
frame end condition within two video frame periods, the Pass  
indication is deasserted. The watchdog timer will not have any  
effect if the PASS_THRESHOLD is set to 0.  
0 : Enable watchdog timer for RX Pass  
2
PASS_WDOG_DIS  
R/W  
0x0  
0x0  
1 : Disable watchdog timer for RX Pass  
Pass Threshold Register  
This register controls the number of valid frames before  
asserting the port Pass indication. If set to 0, PASS is  
asserted after Receiver Lock detect. If non-zero, PASS is  
asserted following reception of the programmed number of  
valid frames.  
1:0  
PASS_THRESHOLD R/W  
7.6.118 SEN_INT_RISE_CTL Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-136. SEN_INT_RISE_CTL (Address 0x7E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Sensor Interrupt Rise Mask  
This register provides the interrupt mask for detecting rising  
edge transitions on the bits in SENSOR_STS_0. If a mask bit  
is set in this register, a rising edge transition on the  
SEN_INT  
_RISE_MASK  
7:0  
R/W  
0x0  
corresponding SENSOR_STS_0 bit will generate an interrupt  
that will be latched in the SEN_INT_RISE_STS register.  
Copyright © 2023 Texas Instruments Incorporated  
120 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.119 SEN_INT_FALL_CTL Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-137. SEN_INT_FALL_CTL (Address 0x7F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Sensor Interrupt Fall Mask  
This register provides the interrupt mask for detecting falling  
edge transitions on the bits in SENSOR_STS_0. If a mask bit  
is set in this register, a falling edge transition on the  
corresponding SENSOR_STS_0 bit will generate an interrupt  
that will be latched in the SEN_INT_FALL_STS register.  
SEN_INT  
_FALL_MASK  
7:0  
R/W  
0x0  
7.6.120 RESERVED Register  
7-138. RESERVED (Address 0xA0 0xA4)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
7.6.121 REFCLK_FREQ Register  
7-139. REFCLK_FREQ (Address 0xA5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
REFCLK frequency measurement in MHz. REFCLK_FREQ  
measurement is not synchronized. Value in this register  
should read twice and only considered valid if  
7:0  
REFCLK_FREQ  
R
0x00  
REFCLK_FREQ is unchanged between reads.  
7.6.122 RESERVED Register  
7-140. RESERVED (Address 0xA7 0xAF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R
0x00  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.123 IND_ACC_CTL Register  
7-141. IND_ACC_CTL (Address 0xB0)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
R
0x0  
Reserved  
Indirect Access Register Select:  
Selects target for register access  
0000 : CSI-2 Pattern Generator & Timing Registers  
0001 : FPD-Link III RX Port 0 Reserved Registers  
0010 : FPD-Link III RX Port 1 Reserved Registers  
000110100: Reserved  
5:2  
IA_SEL  
R/W  
0x0  
0101 : FPD-Link III RX Shared Reserved Registers  
0110 : Simultaneous write to FPD-Link III RX Reserved  
Registers  
0111 : CSI-2 Reserved Registers  
10001111 : Reserved  
Indirect Access Auto Increment:  
Enables auto-increment mode. Upon completion of a read or  
write, the register address will automatically be incremented  
by 1  
1
0
IA_AUTO_INC  
IA_READ  
R/W  
R/W  
0x0  
0x0  
Indirect Access Read:  
Setting this allows generation of a read strobe to the selected  
register block upon setting of the IND_ACC_ADDR register.  
In auto-increment mode, read strobes will also be asserted  
following a read of the IND_ACC_DATA register. This function  
is only required for blocks that need to pre-fetch register data.  
7.6.124 IND_ACC_ADDR Register  
7-142. IND_ACC_ADDR (Address 0xB1)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Indirect Access Register Offset:  
This register contains the 8-bit register offset for the indirect  
access.  
7:0  
IA_ADDR  
R/W  
0x0  
7.6.125 IND_ACC_DATA Register  
7-143. IND_ACC_DATA (Address 0xB2)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Indirect Access Data:  
Writing this register will cause an indirect write of the  
IND_ACC_DATA value to the selected analog block register.  
Reading this register will return the value of the selected block  
register  
7:0  
IA_DATA  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
122 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.126 BIST Control Register  
7-144. BIST Control (Address 0xB3)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
BIST Output Mode  
00 : Outputs disabled during BIST  
01 : Reserved  
7:6  
BIST_OUT_MODE  
R/W  
0x0  
10 : Outputs enabled during BIST  
11 : Reserved  
5:4  
3
RESERVED  
R/W  
R/W  
0x0  
0x1  
Reserved  
Bist Configured through Pin.  
1: Bist configured through pin.  
BIST_PIN_CONFIG  
0: Bist configured through bits 2:0 in this register  
BIST Clock Source  
This register field selects the BIST Clock Source at the  
Serializer. These register bits are automatically written to the  
CLOCK SOURCE bits (register offset 0x14) in the Serializer  
after BIST is enabled. See the appropriate Serializer register  
descriptions for details. When connected to a DS90UB913A/  
933, a setting of 0x3 may result in a clock frequency that is  
too slow for proper recovery.  
BIST_CLOCK  
_SOURCE  
2:1  
R/W  
R/W  
0x00  
0x0  
BIST Control  
1: Enabled  
0: Disabled  
0
BIST_EN  
7.6.127 RESERVED Register  
7-145. RESERVED (Address 0xB4)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x25  
Reserved  
7.6.128 RESERVED Register  
7-146. RESERVED (Address 0xB5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
7.6.129 RESERVED Register  
7-147. RESERVED (Address 0xB6)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x18  
Reserved  
7.6.130 RESERVED Register  
7-148. RESERVED (Address 0xB7)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.131 MODE_IDX_STS Register  
7-149. MODE_IDX_STS (Address 0xB8)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
IDX Done  
7
IDX_DONE  
R
0x1  
If set, indicates the IDX decode has completed and latched  
into the IDX status bits.  
IDX Decode  
3-bit decode from IDX pin  
6:4  
3
IDX  
R
R
R
S
MODE Done  
MODE_DONE  
MODE  
0x1  
S
If set, indicates the MODE decode has completed and  
latched into the MODE status bits.  
MODE Decode  
3-bit decode from MODE pin  
2:0  
7.6.132 LINK_ERROR_COUNT Register  
7-150. LINK_ERROR_COUNT (Address 0xB9)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
R
0x0  
Reserved  
During SFILTER adaption, setting this bit will cause the  
Lock detect circuit to ignore errors during the SFILTER wait  
period after the SFILTER control is updated.  
1: Errors during SFILTER Wait period will be ignored  
0: Errors during SFILTER Wait period will not be ignored  
and may cause loss of Lock  
5
4
LINK_SFIL_WAIT  
R/W  
R/W  
0x1  
0x1  
Enable serial link data integrity error count  
1: Enable error count  
0: DISABLE  
LINK_ERR  
_COUNT_EN  
Link error count threshold.  
The Link Error Counter monitors the forward channel link  
and determines when link will be dropped. The link error  
counter is pixel clock based. FPD Link parity, clock, and  
control are monitored for link errors. If the error counter is  
enabled, the deserializer will lose lock once the error  
counter reaches the LINK_ERR_THRESH value. If the link  
error counter is disabled, the deserilizer will lose lock after  
one error.  
LINK_ERR  
_THRESH  
3:0  
R/W  
0x3  
7.6.133 FPD3_ENC_CTL Register  
It is recommended to enable CRC error checking on the FPD3 Encoder sequence to prevent any updates of link  
information values from encoded packets that do not pass CRC check. The FPD3 Encoder CRC is enabled by  
setting the FPD3_ENC_CRC_DIS register 0xBA[7] to 0. In addition, the FPD3_ENC_CRC_CAP flag should be  
set in register 0x4A[4].  
7-151. FPD3_ENC_CTL (Address 0xBA)  
BIT  
7
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD3_ENC_CRC_DI  
S
0: Enable FPD-Link III encoder CRC (recommended)  
1: Disable FPD-Link III encoder CRC  
R/W  
0x1  
6:0  
RESERVED  
R/W  
0x03  
Reserved  
7.6.134 RESERVED Register  
7-152. RESERVED (Address 0xBB)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x74  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
124 Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.135 FV_MIN_TIME Register  
7-153. FV_MIN_TIME (Address 0xBC)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Frame Valid Minimum Time in RAW input mode.  
This register controls the minimum time the FrameValid  
(FV) should be active before the Raw mode FPD-Link III  
receiver generates a FrameStart packet. Duration is in  
FPD-Link III clock periods.  
7:0  
FRAME_VALID_MIN R/W  
0x80  
7.6.136 RESERVED Register  
7-154. RESERVED (Address 0xBD)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
7.6.137 GPIO_PD_CTL Register  
7-155. GPIO_PD_CTL (Address 0xBE)  
BIT  
7
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
R
0x0  
Reserved  
6
GPIO6_PD_DIS  
GPIO5_PD_DIS  
GPIO4_PD_DIS  
GPIO3_PD_DIS  
GPIO2_PD_DIS  
GPIO1_PD_DIS  
GPIO0_PD_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0  
GPIOX Pulldown Resistor Disable:  
5
0x0  
The GPIO pins by default include a 35-kΩtypical  
pulldown resistor that is automatically enabled when the  
GPIO is not in an output mode. When this bit is set, the  
corresponding pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
1 : Disable GPIO pulldown resistor  
4
0x0  
3
0x0  
2
0x0  
1
0x0  
0 : Enable GPIO pulldown resistor  
0
0x0  
7.6.138 RESERVED Register  
7-156. RESERVED (Address 0xBF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
7.6.139 PORT_DEBUG Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-157. PORT_DEBUG (Address 0xD0)  
BIT  
7
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
RESERVED  
R/W  
0x0  
Reserved  
6
R/W  
0x0  
Reserved  
Serializer BIST active  
This register indicates the Serializer is in BIST mode.  
When in BIST mode this flag can be checked to ensure  
BIST is activated in the serializer during the test. If the  
Deserializer is not in BIST mode, this could indicate an  
error condition.  
5
SER_BIST_ACT  
RESERVED  
R
0x0  
4:2  
1
R/W  
R/W  
0x0  
0x0  
Reserved  
FORCE  
_BC_ERRORS  
Setting this bit introduces continuous single bit errors  
into Back Channel Frames  
FORCE  
_1_BC_ERROR  
Setting this bit introduces a single bit error into one Back  
Channel Frame  
0
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.140 RESERVED Register  
7-158. RESERVED Register (Address 0xD1)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x43  
Reserved  
7.6.141 AEQ_CTL2 Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-159. AEQ_CTL2 (Address 0xD2)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Time to wait for lock before incrementing the EQ to next  
setting  
000 : 164 µs  
001 : 328 µs  
010 : 655 µs  
011 : 1.31 ms  
100 : 2.62 ms  
101 : 5.24 ms  
110 : 10.5 ms  
111 : 21.0 ms  
ADAPTIVE_EQ  
_RELOCK_TIME  
7:5  
R/W  
0x4  
AEQ First Lock Mode.  
This register bit controls the Adaptive Equalizer algorithm  
operation at initial Receiver Lock.  
0 : Initial AEQ lock may occur at any value  
1 : Initial Receiver lock will restart AEQ at 0, providing a  
more deterministic initial AEQ value  
AEQ_1ST_LOCK  
_MODE  
4
3
R/W  
0x1  
0x0  
Set high to restart AEQ adaptation from initial value. This  
bit is self clearing. Adaption is restarted.  
AEQ_RESTART  
(R/W)/SC  
AEQ adaptation starts from a pre-set floor value rather  
than from zero - good in long cable situations  
2
SET_AEQ_FLOOR  
RESERVED  
R/W  
R
0x1  
0x0  
1:0  
Reserved  
7.6.142 AEQ_STATUS Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-160. AEQ_STATUS (Address 0xD3)  
BIT  
7:6  
5:0  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
EQ_STATUS  
R
R
0x0  
Reserved  
0x00  
Adaptive EQ Status  
7.6.143 ADAPTIVE EQ BYPASS Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-161. ADAPTIVE EQ BYPASS (Address 0xD4)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
EQ_STAGE_1  
_SELECT_VALUE  
7:5  
R/W  
0x3  
EQ select value [5:3] - Used if adaptive EQ is bypassed.  
Adaptive Equalizer lock mode  
When set to a 1, Receiver Lock status requires the  
Adaptive Equalizer to complete adaption.  
When set to a 0, Receiver Lock is based only on the Lock  
circuit itself. AEQ may not have stabilized.  
4
AEQ_LOCK_MODE R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
126 Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-161. ADAPTIVE EQ BYPASS (Address 0xD4) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
EQ_STAGE_2  
_SELECT_VALUE  
3:1  
R/W  
0x0  
EQ select value [2:0] - Used if adaptive EQ is bypassed.  
ADAPTIVE_EQ  
_BYPASS  
1: Disable adaptive EQ  
0: Enable adaptive EQ  
0
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.144 AEQ_MIN_MAX Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-162. AEQ_MIN_MAX (Address 0xD5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Adaptive Equalizer Maximum value  
This register sets the maximum value for the Adaptive EQ  
algorithm. Must be higher than  
7:4  
AEQ_MAX  
R/W  
0xF  
ADAPTIVE_EQ_FLOOR_VALUE when  
SET_AEQ_FLOOR is enabled.  
When AEQ floor is enabled by register 0xD2[2] the  
starting EQ gain setting for AEQ adaption is given by this  
register.  
ADAPTIVE_EQ  
_FLOOR_VALUE  
3:0  
R/W  
0x2  
7.6.145 RESERVED Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-163. RESERVED (Address 0xD6)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
7.6.146 RESERVED Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-164. RESERVED (Address 0xD7)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00  
Reserved  
7.6.147 PORT_ICR_HI Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-165. PORT_ICR_HI (Address 0xD8)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
R
0x0  
Reserved  
Interrupt on FPD-Link III Receiver Encoding Error  
When enabled, an interrupt is generated on detection of  
an encoding error on the FPD-Link III interface for the  
receive port as reported in the FPD3_ENC_ERROR bit in  
the RX_PORT_STS2 register  
2
1
IE_FPD3_ENC_ERR R/W  
IE_BCC_SEQ_ERR R/W  
0x0  
0x0  
Interrupt on BCC SEQ Sequence Error.  
When enabled, an interrupt is generated if a Sequence  
Error is detected for the Bi-directional Control Channel  
forward channel receiver as reported in the  
BCC_SEQ_ERROR bit in the RX_PORT_STS1 register.  
Interrupt on BCC CRC error detect  
When enabled, an interrupt is generated if a CRC error is  
detected on a Bi-directional Control Channel frame  
received over the FPD-Link III forward channel as  
reported in the BCC_CRC_ERROR bit in the  
RX_PORT_STS1 register.  
0
IE_BCC_CRC_ERR R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
128 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.148 PORT_ICR_LO Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-166. PORT_ICR_LO (Address 0xD9)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R/W  
0x0  
Reserved  
Interrupt on Video Line length  
When enabled, an interrupt is generated if the length of  
the video line changes. Status is reported in the  
LINE_LEN_CHG bit in the RX_PORT_STS2 register.  
6
5
4
IE_LINE_LEN_CHG R/W  
IE_LINE_CNT_CHG R/W  
0x0  
0x0  
0x0  
Interrupt on Video Line count  
When enabled, an interrupt is generated if the number of  
video lines per frame changes. Status is reported in the  
LINE_CNT_CHG bit in the RX_PORT_STS2 register.  
Interrupt on Receiver Buffer Error  
When enabled, an interrupt is generated if the Receive  
Buffer overflow is detected as reported in the  
BUFFER_ERROR bit in the RX_PORT_STS2 register.  
IE_BUFFER_ERR  
IE_CSI_RX_ERR  
R/W  
R/W  
Interrupt on CSI Receiver Error.  
When enabled, an interrupt will be generated on  
detection of an error by the CSI Receiver. CSI Receiver  
errors are reported in the CSI_RX_STS register (address  
0x7A).  
3
2
0x0  
0x0  
Interrupt on FPD-Link III Receiver Parity Error  
When enabled, an interrupt is generated on detection of  
parity errors on the FPD-Link III interface for the receive  
port. Parity error status is reported in the  
IE_FPD3_PAR_ERR R/W  
PARITY_ERROR bit in the RX_PORT_STS1 register.  
Interrupt on change in Port PASS status  
When enabled, an interrupt is generated on a change in  
receiver port valid status as reported in the PORT_PASS  
bit in the PORT_STS1 register.  
1
0
IE_PORT_PASS  
IE_LOCK_STS  
R/W  
R/W  
0x0  
0x0  
Interrupt on change in Lock Status  
When enabled, an interrupt is generated on a change in  
lock status. Status is reported in the LOCK_STS_CHG  
bit in the RX_PORT_STS1 register.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.149 PORT_ISR_HI Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-167. PORT_ISR_HI (Address 0xDA)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
Reserved  
R
0x0  
Reserved  
FC GPIO Interrupt Status  
A change in forward channel GPIO signal has been  
detected. Forward Channel GPIO status is reported in  
the FC_GPIO_STS register. This interrupt condition will  
be cleared by reading the FC_GPIO_STS register.  
4
3
IE_FC_GPIO  
R
R
0x0  
0x0  
Interrupt on change in Sensor Status  
A change in Sensor Status has been detected. Camera  
Status is reported in the SENSOR_STS_X registers. This  
interrupt condition will be cleared by reading the  
SEN_INT_RISE_STS and SEN_INT_FALL_STS  
registers.  
IE_FC_SENS_STS  
FPD-Link III Receiver Encode Error Interrupt Status  
An encoding error on the FPD-Link III interface for the  
receive port has been detected. Status is reported in the  
FPD3_ENC_ERROR bit in the RX_PORT_STS2 register.  
This interrupt condition is cleared by reading the  
RX_PORT_STS2 register.  
2
1
IS_FPD3_ENC_ERR  
IS_BCC_SEQ_ERR  
R
R
0x0  
0x0  
BCC CRC Sequence Error Interrupt Status  
A Sequence Error has been detected for the Bi-  
directional Control Channel forward channel receiver.  
Status is reported in the BCC_SEQ_ERROR bit in the  
RX_PORT_STS1 register.  
This interrupt condition is cleared by reading the  
RX_PORT_STS1 register.  
BCC CRC error detect Interrupt Status  
A CRC error has been detected on a Bi-directional  
Control Channel frame received over the FPD-Link III  
forward channel. Status is reported in the  
BCC_CRC_ERROR bit in the RX_PORT_STS1 register.  
This interrupt condition is cleared by reading the  
RX_PORT_STS1 register.  
0
IS_BCC_CRC_ERR  
R
0x0  
Copyright © 2023 Texas Instruments Incorporated  
130 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.150 PORT_ISR_LO Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-168. PORT_ISR_LO (Address 0xDB)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R
0x0  
Reserved  
Video Line Length Interrupt Status  
A change in video line length has been detected. Status is  
reported in the LINE_LEN_CHG bit in the RX_PORT_STS2  
register.  
This interrupt condition is cleared by reading the  
RX_PORT_STS2 register.  
6
5
IS_LINE_LEN_CHG  
IS_LINE_CNT_CHG  
R
R
0x0  
0x0  
Video Line Count Interrupt Status  
A change in number of video lines per frame has been  
detected. Status is reported in the LINE_CNT_CHG bit in  
the RX_PORT_STS2 register.  
This interrupt condition is cleared by reading the  
RX_PORT_STS2 register.  
Receiver Buffer Error Interrupt Status  
A Receive Buffer overflow has been detected as reported in  
the BUFFER_ERROR bit in the RX_PORT_STS2 register.  
This interrupt condition is cleared by reading the  
RX_PORT_STS2 register.  
4
3
IS_BUFFER_ERR  
IS_CSI_RX_ERR  
R
R
0x0  
0x0  
CSI Receiver Error Interrupt Status  
The CSI Receiver has detected an error. CSI Receiver  
errors are reported in the CSI_RX_STS register (address  
0x7A). This interrupt condition will be cleared by reading the  
CSI_RX_STS register.  
FPD-Link III Receiver Parity Error Interrupt Status  
A parity error on the FPD-Link III interface for the receive  
port has been detected. Parity error status is reported in the  
PARITY_ERROR bit in the RX_PORT_STS1 register.  
This interrupt condition is cleared by reading the  
RX_PORT_STS1 register.  
2
1
0
IS_FPD3_PAR_ERR  
IS_PORT_PASS  
IS_LOCK_STS  
R
R
R
0x0  
0x0  
0x0  
Port Valid Interrupt Status  
A change in receiver port valid status as reported in the  
PORT_PASS bit in the PORT_STS1 register. This interrupt  
condition is cleared by reading the RX_PORT_STS1  
register.  
Lock Interrupt Status  
A change in lock status has been detected. Status is  
reported in the LOCK_STS_CHG bit in the RX_PORT_STS1  
register.  
This interrupt condition is cleared by reading the  
RX_PORT_STS1 register.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.151 FC_GPIO_STS Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-169. FC_GPIO_STS (Address 0xDC)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO3 Interrupt Status.  
7
GPIO3_INT_STS  
R/RC  
0x0  
This bit indicates an interrupt condition has been met for  
GPIO3. This bit is cleared on read.  
GPIO2 Interrupt Status.  
6
5
4
3
2
1
0
GPIO2_INT_STS  
GPIO1_INT_STS  
GPIO0_INT_STS  
FC_GPIO3_STS  
FC_GPIO2_STS  
FC_GPIO1_STS  
FC_GPIO0_STS  
R/RC  
R/RC  
R/RC  
R
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
This bit indicates an interrupt condition has been met for  
GPIO2. This bit is cleared on read.  
GPIO1 Interrupt Status.  
This bit indicates an interrupt condition has been met for  
GPIO1. This bit is cleared on read.  
GPIO0 Interrupt Status.  
This bit indicates an interrupt condition has been met for  
GPIO0. This bit is cleared on read.  
Forward Channel GPIO3 Status.  
This bit indicates the current value for forward channel  
GPIO3.  
Forward Channel GPIO2 Status.  
This bit indicates the current value for forward channel  
GPIO2.  
R
Forward Channel GPIO1 Status.  
This bit indicates the current value for forward channel  
GPIO1.  
R
Forward Channel GPIO0 Status.  
This bit indicates the current value for forward channel  
GPIO0.  
R
7.6.152 FC_GPIO_ICR Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-170. FC_GPIO_ICR (Address 0xDD)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO3 Fall Interrupt Enable.  
7
GPIO3_FALL_IE  
R/W  
0x0  
If this bit is set, an interrupt will be generated based on  
detection of a falling edge on GPIO3.  
GPIO3 Rise Interrupt Enable.  
6
5
4
3
2
1
GPIO3_RISE_IE  
GPIO2_FALL_IE  
GPIO2_RISE_IE  
GPIO1_FALL_IE  
GPIO1_RISE_IE  
GPIO0_FALL_IE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
If this bit is set, an interrupt will be generated based on  
detection of a rising edge on GPIO3.  
GPIO2 Fall Interrupt Enable.  
If this bit is set, an interrupt will be generated based on  
detection of a falling edge on GPIO2.  
GPIO2 Rise Interrupt Enable.  
If this bit is set, an interrupt will be generated based on  
detection of a rising edge on GPIO2.  
GPIO1 Fall Interrupt Enable.  
If this bit is set, an interrupt will be generated based on  
detection of a falling edge on GPIO1.  
GPIO1 Rise Interrupt Enable.  
If this bit is set, an interrupt will be generated based on  
detection of a rising edge on GPIO1.  
GPIO0 Fall Interrupt Enable.  
If this bit is set, an interrupt will be generated based on  
detection of a falling edge on GPIO0.  
Copyright © 2023 Texas Instruments Incorporated  
132 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7-170. FC_GPIO_ICR (Address 0xDD) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO0 Rise Interrupt Enable.  
0
GPIO0_RISE_IE  
R/W  
0x0  
If this bit is set, an interrupt will be generated based on  
detection of a rising edge on GPIO0.  
7.6.153 SEN_INT_RISE_STS Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-171. SEN_INT_RISE_STS (Address 0xDE)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Sensor Interrupt Rise Status.  
This register provides the interrupt status for rising edge  
transitions on the bits in SENSOR_STS_0. If a mask bit is  
set in the SEN_INT_RISE_MASK register, a rising edge  
transition on the corresponding SENSOR_STS_0 bit will  
generate an interrupt that will be latched in this register.  
7:0  
SEN_INT_RISE  
R/RC  
0x00  
7.6.154 SEN_INT_FALL_STS Register  
RX port specific register. The FPD-Link III Port Select register 0x4C configures which unique RX port registers  
can be accessed by I2C read and write commands.  
7-172. SEN_INT_FALL_STS (Address 0xDF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Sensor Interrupt Fall Status.  
This register provides the interrupt status for falling edge  
transitions on the bits in SENSOR_STS_0. If a mask bit is  
set in the SEN_INT_RISE_MASK register, a falling edge  
transition on the corresponding SENSOR_STS_0 bit will  
generate an interrupt that will be latched in this register.  
7:0  
SEN_INT_FALL  
R/RC  
0x00  
7.6.155 FPD3_RX_ID0 Register  
7-173. FPD3_RX_ID0 (Address 0xF0)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID0  
R
0x5F  
FPD3_RX_ID0: First byte ID code: _’  
7.6.156 FPD3_RX_ID1 Register  
7-174. FPD3_RX_ID1 (Address 0xF1)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID1  
R
0x55  
FPD3_RX_ID1: 2nd byte of ID code: U’  
7.6.157 FPD3_RX_ID2 Register  
7-175. FPD3_RX_ID2 (Address 0xF2)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID2  
R
0x42  
FPD3_RX_ID2: 3rd byte of ID code: B’  
7.6.158 FPD3_RX_ID3 Register  
7-176. FPD3_RX_ID3 (Address 0xF3)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID3  
R
0x39  
FPD3_RX_ID3: 4th byte of ID code: 9’  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.159 FPD3_RX_ID4 Register  
7-177. FPD3_RX_ID4 (Address 0xF4)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID4  
R
0x35  
FPD3_RX_ID4: 5th byte of ID code: '5'  
7.6.160 FPD3_RX_ID5 Register  
7-178. FPD3_RX_ID5 (Address 0xF5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID5  
R
0x34  
FPD3_RX_ID5: 6th byte of ID code: '4'  
7.6.161 I2C_RX0_ID Register  
As an alternative to paging to access FPD-Link III receive port0 registers, a separate I2C address may be  
enabled to allow direct access to the port 0 specific registers. The I2C_RX_0_ID register provides a simpler  
method of accessing device registers specifically for port 0 without having to use the paging function to select  
the register page. Using this address also allows access to all shared registers.  
7-179. I2C_RX0_ID (Address 0xF8)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
0x0  
DESCRIPTION  
7-bit Receive Port 0 I2C ID  
Configures the decoder for detecting transactions  
designated for Receiver port 0 registers. A value of 0x00  
in this field disables the Port0 decoder.  
RX_PORT0_ID  
RESERVED  
0x0  
Reserved  
7.6.162 I2C_RX1_ID Register  
As an alternative to paging to access FPD-Link III receive port 1 registers, a separate I2C address may be  
enabled to allow direct access to the port 1 specific registers. The I2C_RX_1_ID register provides a simpler  
method of accessing device registers specifically for port 1 without having to use the paging function to select  
the register page. Using this address also allows access to all shared registers.  
7-180. I2C_RX1_ID (Address 0xF9)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
0x0  
DESCRIPTION  
7-bit Receive Port 1 I2C ID  
Configures the decoder for detecting transactions  
designated for Receiver port 1 registers. A value of 0x00  
in this field disables the Port1 decoder.  
RX_PORT1_ID  
RESERVED  
0x0  
Reserved  
7.6.163 RESERVED Register  
7-181. RESERVED (Address 0xFA)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R
0x00  
Reserved  
7.6.164 RESERVED Register  
7-182. RESERVED (Address 0xFB)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R
0x00  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
134 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.165 Indirect Access Registers  
Several functional blocks include register sets contained in the Indirect Access map (7-183); that is, Pattern  
Generator, CSI-2 timing, and Analog controls. Register access is provided via an indirect access mechanism  
through the Indirect Access registers (IND_ACC_CTL, IND_ACC_ADDR, and IND_ACC_DATA). These registers  
are located at offsets 0xB0-0xB2 in the main register space.  
The indirect address mechanism involves setting the control register to select the desired block, setting the  
register offset address, and reading or writing the data register. In addition, an auto-increment function is  
provided in the control register to automatically increment the offset address following each read or write of the  
data register.  
For writes, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Write the data value to the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 will write additional data bytes to  
subsequent register offset locations  
For reads, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Read from the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 will read additional data bytes from  
subsequent register offset locations.  
7.6.166  
7-183. Indirect Register Map Description  
IA SELECT  
0xB0[5:2]  
PAGE/BLOCK  
INDIRECT REGISTERS  
ADDRESS RANGE  
DESCRIPTION  
Pattern Gen Registers  
0x01-0x1F  
0x40-0x48  
Digital Page 0 Indirect  
Registers  
0000  
0
CSI TX port 0 Timing Registers  
Test and Debug registers  
FPD-Link III Channel 0  
Reserved Registers  
0001  
0010  
1
2
0x00-0x14  
0x00-0x14  
FPD-Link III Channel 1  
Reserved Registers  
Test and Debug registers  
0011  
0100  
3
4
Reserved  
Reserved  
0x00-0x14  
0x00-0x14  
Reserved  
Reserved  
FPD-Link III Share Reserved  
Registers  
0101  
5
0x00-0x04  
Test and Debug registers  
Write All FPD-Link III Reserved  
Registers  
0110  
0111  
6
7
0x00-0x14  
0x00-0x1D  
Test and Debug registers  
Test and Debug registers  
CSI TX Reserved Registers  
7.6.167 Reserved Register  
7-184. Reserved (Indirect Address Page 0x00; Register 0x00)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.168 PGEN_CTL Register  
7-185. PGEN_CTL (Indirect Address Page 0x00; Register 0x01)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:1  
RESERVED  
R/W  
0x0  
Reserved  
Pattern Generator Enable  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
0
PGEN_ENABLE  
R/W  
0x0  
7.6.169 PGEN_CFG Register  
7-186. PGEN_CFG (Indirect Address Page 0x00; Register 0x02)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Fixed Pattern Enable  
Setting this bit enables Fixed Color Patterns.  
0 : Send Color Bar Pattern  
1 : Send Fixed Color Pattern  
7
PGEN_FIXED_EN  
RESERVED  
R/W  
0x0  
6
R/W  
0x0  
Reserved  
Number of Color Bars  
00 : 1 Color Bar  
5:4  
3:0  
NUM_CBARS  
BLOCK_SIZE  
R/W  
R/W  
0x3  
0x3  
01 : 2 Color Bars  
10 : 4 Color Bars  
11 : 8 Color Bars  
Block Size  
For Fixed Color Patterns, this field controls the size of the fixed  
color field in bytes. Allowed values are 1 to 15.  
7.6.170 PGEN_CSI_DI Register  
7-187. PGEN_CSI_DI (Indirect Address Page 0x00; Register 0x03)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI Virtual Channel Identifier  
7:6  
PGEN_CSI_VC  
R/W  
0x0  
This field controls the value sent in the CSI packet for the Virtual  
Channel Identifier  
CSI Data Type  
5:0  
PGEN_CSI_DT  
R/W  
0x24  
This field controls the value sent in the CSI packet for the Data  
Type. The default value (0x24) indicates RGB888.  
7.6.171 PGEN_LINE_SIZE1 Register  
7-188. PGEN_LINE_SIZE1 (Indirect Address Page 0x00; Register 0x04)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Most significant byte of the Pattern Generator line size. This is the  
active line length in bytes. Default setting is for 1920 bytes for a  
640 pixel line width.  
PGEN_LINE_SIZE[1  
5:8]  
7:0  
R/W  
0x07  
7.6.172 PGEN_LINE_SIZE0 Register  
7-189. PGEN_LINE_SIZE0 (Indirect Address Page 0x00; Register 0x05)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Least significant byte of the Pattern Generator line size. This is  
the active line length in bytes. Default setting is for 1920 bytes  
for a 640 pixel line width.  
PGEN_LINE_SIZE[7:  
0]  
7:0  
R/W  
0x80  
Copyright © 2023 Texas Instruments Incorporated  
136 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.173 PGEN_BAR_SIZE1 Register  
7-190. PGEN_BAR_SIZE1 (Indirect Address Page 0x00; Register 0x06)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Most significant byte of the Pattern Generator color bar size.  
This is the active length in bytes for the color bars. This value is  
used for all except the last color bar. The last color bar is  
determined by the remaining bytes as defined by the  
PGEN_LINE_SIZE value.  
PGEN_BAR_SIZE[15  
:8]  
7:0  
R/W  
0x0  
7.6.174 PGEN_BAR_SIZE0 Register  
7-191. PGEN_BAR_SIZE0 (Indirect Address Page 0x00; Register 0x07)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Least significant byte of the Pattern Generator color bar size.  
This is the active length in bytes for the color bars. This value is  
used for all except the last color bar. The last color bar is  
determined by the remaining bytes as defined by the  
PGEN_LINE_SIZE value.  
PGEN_BAR_SIZE[7:  
0]  
7:0  
R/W  
0xF0  
7.6.175 PGEN_ACT_LPF1 Register  
7-192. PGEN_ACT_LPF1 (Indirect Address Page 0x00; Register 0x08)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Active Lines Per Frame  
Most significant byte of the number of active lines per frame.  
Default setting is for 480 active lines per frame.  
PGEN_ACT_LPF[15:  
8]  
7:0  
R/W  
0x01  
7.6.176 PGEN_ACT_LPF0 Register  
7-193. PGEN_ACT_LPF0 (Indirect Address Page 0x00; Register 0x09)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Active Lines Per Frame  
7:0  
PGEN_ACT_LPF[7:0] R/W  
0xE0  
Least significant byte of the number of active lines per frame.  
Default setting is for 480 active lines per frame.  
7.6.177 PGEN_TOT_LPF1 Register  
7-194. PGEN_TOT_LPF1 (Indirect Address Page 0x00; Register 0x0A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Total Lines Per Frame  
Most significant byte of the number of total lines per frame  
including vertical blanking  
PGEN_TOT_LPF[15:  
8]  
7:0  
R/W  
0x02  
7.6.178 PGEN_TOT_LPF0 Register  
7-195. PGEN_TOT_LPF0 (Indirect Address Page 0x00; Register 0x0B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Total Lines Per Frame  
7:0  
PGEN_TOT_LPF[7:0] R/W  
0x0D  
Least significant byte of the number of total lines per frame  
including vertical blanking  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.179 PGEN_LINE_PD1 Register  
7-196. PGEN_LINE_PD1 (Indirect Address Page 0x00; Register 0x0C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Period  
PGEN_LINE_PD[15:8  
]
Most significant byte of the line period in 10ns units. The  
default setting for the line period registers sets a line period of  
31.75 microseconds.  
7:0  
R/W  
0x0C  
7.6.180 PGEN_LINE_PD0 Register  
7-197. PGEN_LINE_PD0 (Indirect Address Page 0x00; Register 0x0D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Period  
Least significant byte of the line period in 10ns units. The  
default setting for the line period registers sets a line period of  
31.75 microseconds.  
7:0  
PGEN_LINE_PD[7:0] R/W  
0x67  
7.6.181 PGEN_VBP Register  
7-198. PGEN_VBP (Indirect Address Page 0x00; Register 0x0E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Vertical Back Porch  
This value provides the vertical back porch portion of the  
vertical blanking interval. This value provides the number of  
blank lines between the FrameStart packet and the first video  
data packet.  
7:0  
PGEN_VBP  
R/W  
0x21  
7.6.182 PGEN_VFP Register  
7-199. PGEN_VFP (Indirect Address Page 0x00; Register 0x0F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Vertical Front Porch  
This value provides the vertical front porch portion of the  
vertical blanking interval. This value provides the number of  
blank lines between the last video line and the FrameEnd  
packet.  
7:0  
PGEN_VFP  
R/W  
0x0A  
7.6.183 PGEN_COLOR0 Register  
7-200. PGEN_COLOR0 (Indirect Address Page 0x00; Register 0x10)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 0  
For Reference Color Bar Patterns, this register controls the  
byte data value sent during color bar 0.For Fixed Color  
Patterns, this register controls the first byte of the fixed color  
pattern.  
7:0  
PGEN_COLOR0  
R/W  
0xAA  
7.6.184 PGEN_COLOR1 Register  
7-201. PGEN_COLOR1 (Indirect Address Page 0x00; Register 0x11)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 1  
For Reference Color Bar Patterns, this register controls the  
byte data value sent during color bar 1. For Fixed Color  
Patterns, this register controls the second byte of the fixed  
color pattern.  
7:0  
PGEN_COLOR1  
R/W  
0x33  
Copyright © 2023 Texas Instruments Incorporated  
138 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.185 PGEN_COLOR2 Register  
7-202. PGEN_COLOR2 (Indirect Address Page 0x00; Register 0x12)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 2  
For Reference Color Bar Patterns, this register controls the  
byte data value sent during color bar 2. For Fixed Color  
Patterns, this register controls the third byte of the fixed color  
pattern.  
7:0  
PGEN_COLOR2  
R/W  
0xF0  
7.6.186 PGEN_COLOR3 Register  
7-203. PGEN_COLOR3 (Indirect Address Page 0x00; Register 0x13)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 3  
For Reference Color Bar Patterns, this register controls the  
byte data value sent during color bar 3. For Fixed Color  
Patterns, this register controls the fourth byte of the fixed color  
pattern.  
7:0  
PGEN_COLOR3  
R/W  
0x7F  
7.6.187 PGEN_COLOR4 Register  
7-204. PGEN_COLOR4 (Indirect Address Page 0x00; Register 0x14)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 4  
For Reference Color Bar Patterns, this register controls the  
byte data value sent during color bar 4. For Fixed Color  
Patterns, this register controls the fifth byte of the fixed color  
pattern.  
7:0  
PGEN_COLOR4  
R/W  
0x55  
7.6.188 PGEN_COLOR5 Register  
7-205. PGEN_COLOR5 (Indirect Address Page 0x00; Register 0x15)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 5  
For Reference Color Bar Patterns, this register controls the  
byte data value sent during color bar 5. For Fixed Color  
Patterns, this register controls the sixth byte of the fixed color  
pattern.  
7:0  
PGEN_COLOR5  
R/W  
0xCC  
7.6.189 PGEN_COLOR6 Register  
7-206. PGEN_COLOR6 (Indirect Address Page 0x00; Register 0x16)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 6  
For Reference Color Bar Patterns, this register controls the  
byte data value sent during color bar 6. For Fixed Color  
Patterns, this register controls the seventh byte of the fixed  
color pattern.  
7:0  
PGEN_COLOR6  
R/W  
0x0F  
7.6.190 PGEN_COLOR7 Register  
7-207. PGEN_COLOR7 (Indirect Address Page 0x00; Register 0x17)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 7  
For Reference Color Bar Patterns, this register controls the  
byte data value sent during color bar 7. For Fixed Color  
Patterns, this register controls the eighth byte of the fixed  
color pattern.  
7:0  
PGEN_COLOR7  
R/W  
0x80  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.191 PGEN_COLOR8 Register  
7-208. PGEN_COLOR8 (Indirect Address Page 0x00; Register 0x18)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 8  
7:0  
PGEN_COLOR8  
R/W  
0x0  
For Fixed Color Patterns, this register controls the ninth byte  
of the fixed color pattern.  
7.6.192 PGEN_COLOR9 Register  
7-209. PGEN_COLOR9 (Indirect Address Page 0x00; Register 0x19)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 9  
7:0  
PGEN_COLOR9  
R/W  
0x0  
For Fixed Color Patterns, this register controls the tenth  
byte of the fixed color pattern.  
7.6.193 PGEN_COLOR10 Register  
7-210. PGEN_COLOR10 (Indirect Address Page 0x00; Register 0x1A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 10  
7:0  
PGEN_COLOR10  
R/W  
0x0  
For Fixed Color Patterns, this register controls the eleventh  
byte of the fixed color pattern.  
7.6.194 PGEN_COLOR11 Register  
7-211. PGEN_COLOR11 (Indirect Address Page 0x00; Register 0x1B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 11  
7:0  
PGEN_COLOR11  
R/W  
0x0  
For Fixed Color Patterns, this register controls the twelfth  
byte of the fixed color pattern.  
7.6.195 PGEN_COLOR12 Register  
7-212. PGEN_COLOR12 (Indirect Address Page 0x00; Register 0x1C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 12  
7:0  
PGEN_COLOR12  
R/W  
0x0  
For Fixed Color Patterns, this register controls the thirteenth  
byte of the fixed color pattern.  
7.6.196 PGEN_COLOR13 Register  
7-213. PGEN_COLOR13 (Indirect Address Page 0x00; Register 0x1D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 13  
7:0  
PGEN_COLOR13  
R/W  
0x0  
For Fixed Color Patterns, this register controls the fourteenth  
byte of the fixed color pattern.  
7.6.197 PGEN_COLOR14 Register  
7-214. PGEN_COLOR14 (Indirect Address Page 0x00; Register 0x1E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 14  
7:0  
PGEN_COLOR14  
R/W  
0x0  
For Fixed Color Patterns, this register controls the fifteenth byte  
of the fixed color pattern.  
Copyright © 2023 Texas Instruments Incorporated  
140 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.198 RESERVED Register  
7-215. RESERVED (Indirect Address Page 0x00; Register 0x1F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R/W  
0x0  
Reserved  
7.6.199 CSI0_TCK_PREP Register  
7-216. CSI0_TCK_PREP (Indirect Address Page 0x00; Register 0x40)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Tck-prep parameter  
7
MR_TCK_PREP_OV R/W  
0x0  
0: Tck-prep is automatically determined  
1: Override Tck-prep with value in bits 6:0 of this register  
Tck-prep value  
R
MR_TCK_PREP  
R/W  
If bit 7 of this register is 0, this field is read-only, indicating  
current automatically determined value.  
If bit 7 of this register is 1, this field is read/write.  
6:0  
0x0  
7.6.200 CSI0_TCK_ZERO Register  
7-217. CSI0_TCK_ZERO (Indirect Address Page 0x00; Register 0x41)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Tck-zero parameter  
7
MR_TCK_ZERO_OV RW  
0x0  
0: Tck-zero is automatically determined  
1: Override Tck-zero with value in bits 6:0 of this register  
Tck-zero value  
R
MR_TCK_ZERO  
RW  
If bit 7 of this register is 0, this field is read-only, indicating  
current automatically determined value.  
If bit 7 of this register is 1, this field is read/write.  
6:0  
0x0  
7.6.201 CSI0_TCK_TRAIL Register  
7-218. CSI0_TCK_TRAIL (Indirect Address Page 0x00; Register 0x42)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Tck-trail parameter  
7
MR_TCK_TRAIL_OV R/W  
0x0  
0: Tck-trail is automatically determined  
1: Override Tck-trail with value in bits 6:0 of this register  
Tck-trail value  
R
MR_TCK_TRAIL  
R/W  
If bit 7 of this register is 0, this field is read-only, indicating  
current automatically determined value.  
If bit 7 of this register is 1, this field is read/write.  
6:0  
0x0  
7.6.202 CSI0_TCK_POST Register  
7-219. CSI0_TCK_POST (Indirect Address Page 0x00; Register 0x43)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Tck-post parameter  
7
MR_TCK_POST_OV R/W  
0x0  
0: Tck-post is automatically determined  
1: Override Tck-post with value in bits 6:0 of this register  
Tck-post value  
R
MR_TCK_POST  
R/W  
If bit 7 of this register is 0, this field is read-only, indicating  
current automatically determined value.  
If bit 7 of this register is 1, this field is read/write.  
6:0  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.203 CSI0_THS_PREP Register  
7-220. CSI0_THS_PREP (Indirect Address Page 0x00; Register 0x44)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Ths-prep parameter  
7
MR_THS_PREP_OV R/W  
0x0  
0: Ths-prep is automatically determined  
1: Override Ths-prep with value in bits 6:0 of this register  
Ths-prep value  
R
MR_THS_PREP  
R/W  
If bit 7 of this register is 0, this field is read-only, indicating  
current automatically determined value.  
If bit 7 of this register is 1, this field is read/write.  
6:0  
0x0  
7.6.204 CSI0_THS_ZERO Register  
7-221. CSI0_THS_ZERO (Indirect Address Page 0x00; Register 0x45)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Ths-zero parameter  
7
MR_THS_ZERO_OV R/W  
0x0  
0: Ths-zero is automatically determined  
1: Override Ths-zero with value in bits 6:0 of this register  
Ths-zero value  
R
MR_THS_ZERO  
R/W  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value.  
6:0  
0x0  
If bit 7 of this register is 1, this field is read/write.  
7.6.205 CSI0_THS_TRAIL Register  
7-222. CSI0_THS_TRAIL (Indirect Address Page 0x00; Register 0x46)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Ths-trail parameter  
7
MR_THS_TRAIL_OV R/W  
0x0  
0: Ths-trail is automatically determined  
1: Override Ths-trail with value in bits 6:0 of this register  
Ths-trail value  
R
MR_THS_TRAIL  
R/W  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value.  
6:0  
0x0  
If bit 7 of this register is 1, this field is read/write.  
Copyright © 2023 Texas Instruments Incorporated  
142 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
7.6.206 CSI0_THS_EXIT Register  
7-223. CSI0_THS_EXIT (Indirect Address Page 0x00; Register 0x47)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Ths-exit parameter  
7
MR_THS_EXIT_OV R/W  
0x0  
0: Ths-exit is automatically determined  
1: Override Ths-exit with value in bits 6:0 of this register  
Ths-exit value  
R
MR_THS_EXIT  
R/W  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value.  
6:0  
0x0  
If bit 7 of this register is 1, this field is read/write.  
7.6.207 CSI0_TPLX Register  
7-224. CSI0_TPLX (Indirect Address Page 0x00; Register 0x48)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI Tplx parameter  
7
MR_TPLX_OV  
R/W  
0x0  
0: Tplx is automatically determined  
1: Override Tplx with value in bits 6:0 of this register  
Tplx value  
R
R/W  
If bit 7 of this register is 0, this field is read-only, indicating  
current automatically determined value.  
If bit 7 of this register is 1, this field is read/write.  
6:0  
MR_TPLX  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 System  
The DS90UB954-Q1 is a highly integrated sensor hub chip which includes two FPD-Link III inputs targeted at  
ADAS applications, such as front-, rear-, and surround-view cameras, camera monitoring systems, and sensor  
fusion.  
8.1.2 Power Over Coax  
The DS90UB54-Q1 is designed to support the Power-over-Coax (PoC) method of powering remote sensor  
systems. With this method, the power is delivered over the same medium (a coaxial cable) used for high-speed  
digital video data and bidirectional control and diagnostics data transmission. The method uses passive  
networks or filters that isolate the transmission line from the loading of the DC/DC regulator circuits and their  
connecting power traces on both sides of the link as shown in 8-1.  
Sensor Module  
Automotive ECU  
DC-DC  
Regulators  
Power  
Source  
PoC  
PoC  
Coaxial Cable  
POWER  
CAC1  
CAC1  
FPD-Link III  
Serializer  
FPD-Link III  
Deserializer  
Processor  
SoC  
Image Sensor  
FPD-Link III  
Braided  
Shield  
CAC2  
CAC2  
RTERM  
RTERM  
8-1. Power Over Coax (PoC) System Diagram  
The PoC networks' impedance of 1 kΩ over a specific frequency band is recommended to isolate the  
transmission line from the loading of the regulator circuits. Higher PoC network impedance will contribute to  
favorable insertion loss and return loss characteristics in the high-speed channel. The lower limit of the  
frequency band is defined as ½ of the frequency of the bidirectional control channel, fBCC. The upper limit of the  
frequency band is the frequency of the forward high-speed channel, fFC. However, the main criteria that need to  
be met in the total high-speed channel, which consists of a serializer PCB, a deserializer PCB, and a cable, are  
the insertion loss and return loss limits defined in the Total Channel Requirements, while the system is under  
maximum current load and extreme temperature conditions(1) (2)  
.
1. Contact TI for more information on the required Channel Specifications defined for each individual FPD-Link device.  
2. The PoC network and any components along the high-speed trace on the PCB will contribute to the PCB loss budget. TI has  
recommendations for the loss budget allocation for each individual PCB and cable component in the overall high-speed channel, but  
the loss limits defined for the total channel in the Channel Specifications must be met.  
Copyright © 2023 Texas Instruments Incorporated  
144 Submit Document Feedback  
 
 
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
8-2 shows a PoC network recommended for a 4G FPD-Link III consisting of DS90UB953-Q1 and  
DS90UB954-Q1 pair with the bidirectional channel operating at 50 Mbps ( ½ fBCC = 25 MHz) and the forward  
channel operating at 4.16 Gbps (fFC 2.1 GHz).  
VPoC  
R1  
4.02 kW  
L1  
10 mH  
C1  
C2  
10 nF  
> 10µF  
FB3  
(Optional)  
FB2  
(R = 0)  
FB1  
CAC1  
RIN+  
RIN-  
33 nF to 100 nF  
CAC2  
R2  
49.9 W  
15 nF to 47 nF  
8-2. Typical PoC Network for a 4G FPD-Link III  
8-1 lists essential components for this particular PoC network.  
8-1. Suggested Components for a 4G FPD-Link PoC Network  
COUNT REF DES  
DESCRIPTION  
PART NUMBER  
MFR  
Inductor, 10 µH, 0.288 Ωmaximum, 530 mA minimum (Isat, Itemp)  
30-MHz SRF min, 3 mm × 3 mm, General-Purpose  
LQH3NPN100MJR  
LQH3NPZ100MJR  
Murata  
Murata  
Inductor, 10 µH, 0.288 Ωmaximum, 530 mA minimum (Isat, Itemp)  
30-MHz SRF min, 3 mm × 3 mm, AEC-Q200  
Inductor, 10 µH, 0.360 Ωmaximum, 450 mA minimum (Isat, Itemp)  
30-MHz SRF min, 3.2 mm x 2.5 mm, AEC-Q200  
1
L1  
NLCV32T-100K-EFD  
TYS3010100M-10  
TYS3015100M-10  
BLM18HE152SN1  
BLM18HE152SZ1  
TDK  
Laird  
Inductor, 10 µH, 0.400 Ωtypical, 550 mA minimum (Isat, Itemp)  
39-MHz SRF typ, 3 mm × 3 mm, AEC-Q200  
Inductor, 10 µH, 0.325 Ωmaximum, 725 mA minimum (Isat, Itemp)  
41-MHz SRF typ, 3 mm × 3 mm, AEC-Q200  
Laird  
Ferrite Bead, 1.5 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500 mA at 85°C, 0603 SMD , General-Purpose  
Murata  
Murata  
3
FB1-FB3  
Ferrite Bead, 1.5 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500 mA at 85°C, 0603 SMD , AEC-Q200  
8-3 shows a PoC network recommended for a 2G FPD-Link III consisting of a DS90UB933-Q1 or  
DS90UB913A-Q1 serializer and DS90UB954-Q1 with the bidirectional channel operating at the data rate of 5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Mbps (½ fBCC = 2.5 MHz) and the forward channel operating at the data rate as high as 1.87 Gbps (fFC 1  
GHz).  
VPoC  
R1  
2.0 kW  
L1  
C1  
C2  
100 mH  
0.1 mF  
>10 mF  
R2  
L2  
2.0 kW  
4.7 mH œ 22 mH  
FB1  
CAC1  
RIN+  
RIN-  
100 nF  
CAC2  
R3  
49.9 W  
47 nF  
8-3. Typical PoC Network for a 2G FPD-Link III  
8-2 lists essential components for this particular PoC network.  
8-2. Suggested Components for a 2G FPD-Link III PoC Network  
COUNT REF DES  
DESCRIPTION  
PART NUMBER  
MFR  
Inductor, 100 µH, 0.310 Ωmaximum, 710 mA minimum (Isat, Itemp)  
7.2-MHz SRF typical, 6.6 mm × 6.6 mm, AEC-Q200  
1
1
L1  
L2  
MSS7341-104ML  
Coilcraft  
Inductor, 4.7 µH, 0.350 Ωmaximum, 700 mA minimum (Isat, Itemp)  
160-MHz SRF typical, 3.8 mm x 3.8 mm, AEC-Q200  
1008PS-472KL  
Coilcraft  
CBC3225T4R7MRV  
Taiyo Yuden  
Inductor, 4.7 µH, 0.130 Ωmaximum, 830 mA minimum (Isat, Itemp),  
70-MHz SRF typical, 3.2 mm × 2.5 mm, AEC-Q200  
Ferrite Bead, 1.5 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500 mA at 85°C, 0603 SMD , General-Purpose  
BLM18HE152SN1  
BLM18HE152SZ1  
Murata  
Murata  
1
FB1  
Ferrite Bead, 1.5 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500 mA at 85°C, 0603 SMD , AEC-Q200  
Copyright © 2023 Texas Instruments Incorporated  
146 Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Application report Sending Power over Coax in DS90UB913A Designs (SNLA224) discusses defining PoC  
networks in more detail.  
In addition to the PoC network components selection, their placement and layout play a critical role as well.  
Place the smallest component, typically a ferrite bead or a chip inductor, as close to the connector as  
possible. Route the high-speed trace through one of its pads to avoid stubs.  
Use the smallest component pads as allowed by manufacturer's design rules. Add anti-pads in the inner  
planes below the component pads to minimize impedance drop.  
Consult with connector manufacturer for optimized connector footprint. If the connector is mounted on the  
same side as the IC, minimize the impactof the through-hole connector stubs by routing the high-speed signal  
traces on the opposite side of the connector mounting side.  
Use coupled 100-Ωdifferential signal traces from the device pins to the AC-coupling caps. Use 50-Ωsingle-  
ended traces from the AC-coupling capacitors to the connector.  
Terminate the inverting signal traces close to the connectors with standard 49.9-Ωresistors.  
The suggested characteristics for single-ended PCB traces (microstrips or striplines) for serializer or deserializer  
boards are detailed in 8-3. The effects of the PoC networks must be accounted for when testing the traces for  
compliance to the suggested limits.  
8-3. Suggested Characteristics for Single-Ended PCB Traces With Attached PoC Networks  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Ltrace Single-ended PCB trace length from the device pin to the connector pin  
Ztrace Single-ended PCB trace characteristic impedance  
5
55  
60  
cm  
Ω
45  
40  
50  
50  
Zcon  
Connector (mounted) characteristic impedance  
Ω
tΔ  
Allowable electrical length of the connector impedance discontinuity as measured with a  
TDR (100 ps edge)  
20  
ps  
Z_con  
The VPOC noise must be kept to 10 mVp-p or lower on the source / deserializer side of the system. The VPOC  
fluctuations on the serializer side, caused by the transient current draw of the sensor and the DC resistance of  
cables and PoC components,must be kept at minimum as well. Increasing the VPOC voltage and adding extra  
decoupling capacitance (> 10 µF) help reduce the amplitude and slew rate of the VPOC fluctuations.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
8.2 Typical Application  
VDD18_P0  
VDD18_P1  
1.8 V  
VDD11_FPD0  
0.01 µF  
- 0.1 µF  
0.01 µF  
- 0.1 µF  
FB1  
0.1 µF  
10 µF  
4.7 µF  
4.7 µF  
0.01 µF  
- 0.1 µF  
VDD11_FPD1  
VDD11_CSI  
0.01 µF  
- 0.1 µF  
VDD18_CSI  
0.01 µF  
- 0.1 µF  
FB2  
FB3  
10 µF  
0.01 µF  
- 0.1 µF  
4.7 µF  
4.7 µF  
VDD11_D  
0.01 µF  
- 0.1 µF  
VDD18_FPD0  
VDD18_FPD1  
0.01 µF  
- 0.1 µF  
0.1 µF  
10 µF  
0.01 µF  
- 0.1 µF  
23-26 MHz  
(100 ppm)  
XIN/REFCLK  
XOUT  
V(VDDIO)  
VDDIO  
VDDIO  
0.01 µF  
- 0.1 µF  
0.1 µF  
1 µF  
FB4  
C1  
C2  
RIN0P  
RIN0N  
0.01 µF  
- 0.1 µF  
FPD Link III  
VDD_SEL  
C3  
C4  
RIN1P  
RIN1N  
1.8 V  
R1  
CMLOUTP  
CMLOUTN  
0.1 µF  
R2  
TEST  
PAD  
R3  
IDx  
DS90UB954-Q1  
Deserializer  
0.1 µF  
R4  
MODE  
1.8 V  
HW control option  
10 k  
CSI0_CLKN  
CSI0_CLKP  
CSI0_D0N  
CSI0_D0P  
CSI0_D1N  
CSI0_D1P  
CSI0_D2N  
CSI0_D2P  
CSI0_D3N  
CSI0_D3P  
PDB  
RES  
SW Control  
>10 µF  
V(VDDIO)  
4.7 k  
GPIO3/INTB  
GPIO0  
CSI-2 Outputs  
GPIO1  
GPIO  
GPIO2  
GPIO4  
GPIO5  
CSI1_CLKN  
CSI1_CLKP  
GPIO6  
LOCK  
PASS  
Status  
DAP  
1.8 V or 3.3 V  
4.7 k  
4.7 k  
I2C_SDA  
I2C_SCL  
I2C  
8-4. Typical Connection Diagram Coaxial With Internal 1.1-V LDO  
备注  
- The decoupling capacitors for VDD11 are different between the two typical application diagrams  
because VDD_SEL is pulled to different levels. See the Pin Functions table for more information.  
- FB2, F3 may be required depending on system power supply noise levels  
- FB1-FB4: DCR 25m; Z = 120@100MHz  
- C1, C2, C3, C4 (see Design Parameters Values Table)  
- R1, R2 (see IDX Resistor Values Table)  
- R3, R4 (see MODE Resistor Values Table)  
- RTERM = 50Ω  
Copyright © 2023 Texas Instruments Incorporated  
148 Submit Document Feedback  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
1.1 V  
VDD18_P0  
1.8 V  
VDD11_FPD0  
0.01 µF  
- 0.1 µF  
FB1  
0.1 µF  
10 µF  
0.01 µF  
- 0.1 µF  
10 uF  
1 uF  
FB7  
VDD18_P1  
VDD18_CSI  
0.01 µF  
- 0.1 µF  
VDD11_FPD1  
VDD11_CSI  
0.01 µF  
- 0.1 µF  
0.01 µF  
- 0.1 µF  
0.1 µF  
0.1 µF  
10 µF  
FB2  
0.01 µF  
- 0.1 µF  
10 µF  
1 µF  
FB6  
FB5  
VDD11_D  
0.01 µF  
- 0.1 µF  
VDD18_FPD0  
VDD18_FPD1  
0.01 µF  
- 0.1 µF  
10 µF  
FB3  
0.01 µF  
- 0.1 µF  
23-26 MHz  
(100 ppm)  
XIN/REFCLK  
XOUT  
V(VDDIO)  
VDDIO  
VDDIO  
0.01 µF  
- 0.1 µF  
0.1 µF  
1 µF  
FB4  
C1  
C2  
RIN0P  
RIN0N  
0.01 µF  
- 0.1 µF  
FPD Link III  
VDD_SEL  
C3  
C4  
RIN1P  
RIN1N  
1.8 V  
R1  
CMLOUTP  
CMLOUTN  
0.1 µF  
R2  
TEST  
PAD  
R3  
IDx  
DS90UB954-Q1  
Deserializer  
R4  
0.1 µF  
MODE  
1.8 V  
HW control option  
10 k  
CSI0_CLKN  
CSI0_CLKP  
CSI0_D0N  
CSI0_D0P  
CSI0_D1N  
CSI0_D1P  
CSI0_D2N  
CSI0_D2P  
CSI0_D3N  
CSI0_D3P  
SW Control  
PDB  
RES  
>10 µF  
V(VDDIO)  
4.7 k  
GPIO3/INTB  
GPIO0  
CSI-2 Outputs  
GPIO1  
GPIO  
GPIO2  
GPIO4  
GPIO5  
CSI1_CLKN  
CSI1_CLKP  
GPIO6  
LOCK  
PASS  
Status  
1.8 V or 3.3 V  
DAP  
4.7 k  
4.7 k  
I2C_SDA  
I2C_SCL  
I2C  
8-5. Typical Connection Diagram STP With External 1.1-V supply  
备注  
- The decoupling capacitors for VDD11 are different between the two typical application diagrams  
because VDD_SEL is pulled to different levels. See the Pin Functions table for more information.  
- FB1-FB7: DCR 25m; Z = 120@100MHz  
- C1, C2, C3, C4 (see Design Parameters Values Table)  
- R1, R2 (see IDX Resistor Values Table)  
- R3, R4 (see MODE Resistor Values Table)  
- RTERM = 50Ω  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
8.2.1 Design Requirements  
For the typical design application, use the parameters listed in 8-4.  
8-4. Design Parameters  
DESIGN PARAMETER  
V(VDDIO)  
EXAMPLE VALUE  
1.8 V or 3.3 V  
1.8 V  
V(VDD18)  
V(VDD11)( When VDD_SEL = HIGH)  
1.1 V  
AC-coupling Capacitor for Synchronous Modes, Coaxial  
Connection: RIN0+ ,RIN1+  
33 nF - 100nF (50 WV 0402)  
15 nF - 47nF (50 WV 0402)  
33 nF - 100nF (50 WV 0402)  
AC-coupling Capacitor for Synchronous Modes, Coaxial  
Connection: RIN0- ,RIN1-  
AC-coupling Capacitor for Synchronous Modes, STP  
Connection: RIN0± ,RIN1±  
AC-coupling Capacitor for Non-Synchronous and DVP  
Backwards Compatible Modes, Coaxial Connection: RIN0+,  
RIN1+  
100 nF (50 WV 0402)  
47 nF (50 WV 0402)  
100 nF (50 WV 0402)  
AC-coupling Capacitor for Non-Synchronous and DVP  
Backwards Compatible Modes, Coaxial Connection: RIN0-,  
RIN1-  
AC-coupling Capacitor for Non-Synchronous and DVP  
Backwards Compatible Modes, STP Connection: RIN0±,  
RIN1±  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as shown in 8-6 and  
8-7. When connected to the DS90UB935-Q1 or DS90UB953-Q1 serializer operating with 10-Mbps back  
channel, the higher value AC-coupling capacitors are recommended to reduce low frequency attenuation. For  
applications using single-ended 50-Ω coaxial cable, terminate the unused data pins (RIN0, RIN1) with an  
AC-coupling capacitor and a 50-Ωresistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
8-6. AC-Coupled Connection (Coaxial)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
8-7. AC-Coupled Connection (STP)  
For high-speed FPDLink III transmissions, use the smallest available package for the AC-coupling capacitor to  
help minimize degradation of signal quality due to package parasitics.  
8.2.2 Detailed Design Procedure  
8-4 and 8-5 show typical applications of the DS90UB954-Q1 for multi-camera surround view system. From  
8-4, the FPD-Link III is AC coupled an external 33 to 100-nF or 15 to 47-nF capacitors for coaxial  
interconnects. For 2G operation or back channel frequency of 10 Mbps, the higher value AC-coupling  
capacitors 100 nF /47 nF are recommended. The same AC-coupling capacitor values should be matched on the  
paired serializer boards. The deserializer has an internal termination. Bypass capacitors are placed near the  
power supply pins. At a minimum, 0.1-μF or 0.01-μF capacitors should be used for each of the core supply  
pins for local device bypassing. Additional bulk decoupling capacitors and ferrite beads are placed on the  
VDD18 supplies for effective noise suppression.  
Copyright © 2023 Texas Instruments Incorporated  
150 Submit Document Feedback  
 
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
8.2.3 Application Curves  
Time (50 ns/DIV)  
Time (50 ns/DIV)  
8-8. CSI-2 DATA and CLK Output  
8-9. CSI-2 DATA and Continuous CLK Output  
P
LP11  
LP01  
LP00  
HS0  
HS Data  
P
N
LP11  
HS Data  
HS0  
N
Time (50 ns/DIV)  
Time (50 ns/DIV)  
8-10. CSI-2 Start of Transmission (SoT)  
8-11. CSI-2 End of Transmission (EoT)  
8.3 System Examples  
The DS90UB954-Q1 has two input ports that are capable of operating independently. Two sensors can be  
connected simultaneously, or a single sensor can be connected to either Rx input port 0 (8-12) or Rx input  
port 1 (8-14). The DS90UB954-Q1 deserializer is capable of receiving serialized sensor data from one or two  
independent video datastreams and aggregating into a single CSI-Tx output. Alternatively, Rx Data can be  
replicated onto two 2-Lane CSI-2 outputs for interconnect to two seperate CSI-2 Rx inputs for parallel  
downstream processing.  
DS90UB954-Q1  
Deserializer  
MIPI CSI-2  
3.2 Gbps  
DS90UB953  
Serializer  
MIPI CSI-2  
Host / ISP  
1.6 Gbps/lane X 4  
MIPI CSI-2  
3.2 Gbps  
DS90UB953  
Serializer  
8-12. Two DS90UB953-Q1 Sensor Data Combined to One CSI-2 Output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 151  
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
DS90UB954-Q1  
Deserializer  
DS90UB953  
Serializer  
MIPI CSI-2  
3.2 Gbps  
MIPI CSI-2  
800 Mbps/lane X 4  
Host / ISP  
8-13. DS90UB953-Q1 Sensor Data to 1 Rx Port  
DS90UB954-Q1  
Deserializer  
DS90UB953  
Serializer  
MIPI CSI-2  
3.2 Gbps  
MIPI CSI-2  
1.6 Gbps/lane X 2  
Host / ISP  
MIPI CSI-2  
1.6 Gbps/lane X 2  
8-14. DS90UB953-Q1 Sensor Data Replicated onto 2x 2-Lane CSI-2  
DS90UB954-Q1  
MIPI CSI-2  
3.2 Gbps  
DS90UB953  
Serializer  
Deserializer  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
DS90UB933  
Serializer  
RAW 10/12  
8-15. One DS90UB953-Q1 and One DS90UB933-Q1 Sensor Data Combined to One CSI-2 output  
Copyright © 2023 Texas Instruments Incorporated  
152 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
9 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. provides guidance on which circuit blocks are connected to which power pin pairs. In some cases, an  
external filter many be used to provide clean power to sensitive circuits such as PLLs.  
9.1 VDD and VDDIO Power Supply  
Each VDD power supply pin must have a 10-nF (or 100-nF) capacitor to ground connected as close as possible  
to DS90UB954-Q1 device. When operating VDDIO at 1.8-V nominal supply, the voltage at VDDIO must be  
within ±100 mV of VDD18 to ensure VIH, VIL specifications. TI recommends having additional decoupling  
capacitors (1 µF or 10 µF) connected to a common GND plane. Note that although average current for VDDIO is  
less than 10 mA maximum, the peak current into VDDIO may exceed 100 mA on device start-up.  
9.2 Power-Up Sequencing  
The power-up sequence for the DS90UB954-Q1 is as follows:  
VDD18  
T0  
VDDIO  
T5  
T6  
T1  
T4  
Hard  
Reset  
PDB  
REFCLK  
DON’T CARE  
9-1. Power Supply Sequencing VDD_SEL = LOW, Internal VDD 1.1-V Supply  
VDD18  
T0  
VDDIO  
T1  
T2  
VDD11  
T5  
T6  
T3  
T4  
Hard  
Reset  
PDB  
REFCLK  
9-2. Power Supply Sequencing VDD_SEL = HIGH, External VDD 1.1-V Supply  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 153  
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
9-1. Timing Diagram for the Power Supply Start-Up Sequence  
PARAMETER  
MIN  
0.05  
0.2  
0
TYP  
MAX  
UNIT  
NOTES  
at 10/90%  
at 10/90%  
T0  
T1  
T2  
VDD18 rise time  
ms  
VDDIO rise time  
1
ms  
VDD18 High to VDD11 applied  
ms  
N/A when VDD_SEL  
= LOW  
T3  
T4  
VDD11 rise time  
VDD to PDB  
0.2  
0
1
ms  
ms  
at 10/90%  
After all VDD are  
stable  
T5  
T6  
T7  
PDB high time before PDB hard reset  
PDB high to low pulse width  
1
2
2
ms  
ms  
ms  
Hard reset (optional)  
PDB to I2C ready (IDX and MODE valid)  
delay  
Note: VDDIO can come up either before or after VDD18.  
9.2.1 PDB Pin  
The PDB pin is active HIGH and has internal 50 kΩ pull down resistor. PDB input must remain LOW while the  
VDD pin power supplies are in transition. Typically PDB will be connected to GPIO from processor also with  
internal pulldown. Alternatively, when VDD_SEL = LOW, an external RC network on the PDB pin may be  
connected to ensure PDB arrives after all the supply pins have settled to the recommended operating voltage.  
When PDB pin is pulled up to VDD18, a 10-kΩ pullup and a > 10-μF capacitor to GND are recommended to  
delay the PDB input signal rise. All inputs must not be driven until both power supplies have reached steady  
state. When VDD_SEL = HIGH it is not recommended to connect PDB through RC circuit as this may conflict  
with the sequencing of the external 1.1-V supply rail.  
9-2. PDB Pin Pulse Width  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PDB  
tLRST  
PDB Reset Low Pulse  
2
3
ms  
9.2.2 System Initialization  
When initializing the communications link between the DS90UB954-Q1 deserializer hub and a DS90UB935-Q1  
or a DS90UB953-Q1 serializer, the system timing will depend on the mode selected for generating the serializer  
reference clock. When synchronous clocking mode is selected, the serializer will re-lock onto the extracted back  
channel reference clock once available so there is no need for local crystal oscillator at the sensor module (图  
9-3). When the DS90UB935-Q1 or DS90UB953-Q1 is operating in non-synchronous mode, or if connecting to  
DS90UB933-Q1 or DS90UB913A-Q1 serializer the sensor module requires a local reference clock and timing  
would follow 9-4.  
Copyright © 2023 Texas Instruments Incorporated  
154 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
VDD18  
VDDIO  
VDD11  
(int)  
PDB  
T7  
MODE,  
IDX Valid  
REFCLK  
954 Lock Time  
LOCK  
I2C  
Local  
954  
Config  
CSI Tx enable,  
RX Port Forward  
I2C  
Remote  
Sensor  
Config  
SER Lock Time  
RIN+  
SER Internal  
Reference  
954 Backchannel Reference to SER  
CSI TX  
CLK  
9-3. Power-Up Sequencing Synchronous Back Channel Clocking Mode, VDD_SEL = LOW  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 155  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
VDD18  
VDDIO  
VDD11  
(int)  
PDB  
T7  
MODE,  
IDX Valid  
REFCLK  
954 Lock Time  
LOCK  
I2C  
Local  
954  
Config  
CSI Tx enable,  
RX Port Forward  
I2C  
Remote  
Sensor  
Config  
RIN+  
EXTCLK Reference to SER  
CSI TX  
CLK  
9-4. Power-Up Sequencing Non-synchronous Back Channel Clocking Mode, VDD_SEL = LOW  
Copyright © 2023 Texas Instruments Incorporated  
156 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
10 Layout  
10.1 PCB Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices must be designed to provide low-noise power feed  
to the device. Good layout practice also separates high-frequency or high-level inputs and outputs to minimize  
unwanted noise pickup, feedback, and interference. Power system performance may be greatly improved by  
using thin dielectrics (2 to 4 mils) for power or ground sandwiches. This arrangement provides plane capacitance  
for the PCB power system with low-inductance parasitics, which has proven especially effective at high  
frequencies, and makes the value and placement of external bypass capacitors less critical. External bypassing  
should be low-ESR ceramic capacitors with high-quality dielectric. The voltage rating of the ceramic capacitors  
must be at least 2× the power supply voltage being used.  
TI recommends surface-mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 47-µF to 100-µF range, which smooths low frequency switching noise. TI  
recommends connecting power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. Its small  
body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance  
frequency of these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective  
bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the  
frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins  
to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs  
Use at least a four-layer board with a power and ground plane. Locate CSI-2 signals away from the single-ended  
or differential FPD RX input traces to prevent coupling from the CSI-2 signals to the RX inputs. The following  
sections provide important details for routing the FPD-Link III traces, PoC filter, and CSI-2 traces.  
10.1.1 Ground  
TI recommends that a consistent ground plane reference for the high-speed signals in the PCB design to provide  
the best image plane for signal traces running parallel to the plane. Connect the thermal pad of the DS90UB954-  
Q1 to the GND plane with vias.  
10.1.2 Routing FPD-Link III Signal Traces and PoC Filter  
Routing the FPD-Link III signal traces between the RIN pins and the connector as well as connecting the PoC  
filter to these traces are the most critical pieces of a successful DS90UB954-Q1 PCB layout. 10-1 shows an  
example PCB layout of the DS90UB954-Q1 configured for interface to remote sensor modules over coaxial  
cables. The layout example also uses a footprint of an edge-mount FAKRA connector provided by Rosenberger  
(P/N: 59S20X-40ML5-Z). For additional PCB layout details of the example, check the DS90UB954-Q1EVM  
user's guide.  
The following list provides essential recommendations for routing the FPD-Link III signal traces between the  
DS90UB954-Q1EVM receiver input pins (RIN) and the FAKRA connector, and connecting the PoC filter.  
The routing of the FPD-Link III traces may be all on the top layer (as shown in the example) or partially  
embedded in middle layers if EMI is a concern  
The AC-coupling capacitors should be on the top layer and very close to the DS90UB954-Q1EVM receiver  
input pins to minimize the length of coupled differential trace pair between the pins and the capacitors.  
Route the RIN+ trace between the AC-coupling capacitor and the FAKRA connector as a 50-Ωsingle-ended  
micro-strip with tight impedance control (±10%). Calculate the proper width of the trace for a 50-Ω  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 157  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
impedance based on the PCB stack-up. Ensure that the trace can carry the PoC current for the maximum  
load presented by the remote sensor module.  
The PoC filter should be connected to the RIN+ trace through the first ferrite bead (FB1). The FB1 should be  
touching the high-speed trace to minimize the stub length seen by the transmission line. Create an anti-pad  
or a moat under the FB1 pad that touches the trace. The anti-pad should be a plane cutout of the ground  
plane directly underneath the top layer without cutting out the ground reference under the trace. The purpose  
of the anti-pad is to maintain the impedance as close to 50 Ωas possible.  
Route the RINtrace loosely coupled to the RIN+ trace for the length similar to the RIN+ trace length when  
possible. This will help the differential nature of the receiver to cancel out any common-mode noise that may  
be present in the environment that may couple on to the RIN+ and RINsignal traces. When routing on  
inner layers, length matching for single-ended traces does not provide as significant benefit.  
When configured for STP and routing differential signals to the DS90UB954-Q1 receiver inputs, the traces  
should maintain 100-Ω differential impedance routed to the connector. When choosing to implement a common  
mode choke for common mode noise reduction, take care to minimize the effect of any mismatch. 10-2 shows  
an example PCB layout for STP configuration.  
Copyright © 2023 Texas Instruments Incorporated  
158 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
10.1.3 Routing CSI-2 Signal Traces  
Routing the CSI-2 signal traces between the CSI-2 pins and the CSI-2 connector is also important for a  
successful DS90UB954-Q1 PCB layout. 10-1 shows essential details for routing the CSI-2 traces. Additional  
recommendations are given in the following list:  
1. Route CSI_D0N, CSI_D0P, CSI_D1N, and CSI_D1P pairs as differential coupled striplines with controlled  
100-Ωdifferential impedance (±10%)  
2. Keep the trace length difference between CSI-2 traces to 5 mils of each other.  
3. Length matching should be near the location of mismatch.  
4. Each pair should be separated at least by 5 times the signal trace width.  
5. Keep away from other high-speed signals.  
6. Keep the use of bends in differential traces to a minimum. When bends are used, the number of left and right  
bends must be as equal as possible, and the angle of the bend should be 135 degrees. This arrangement  
minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on  
EMI.  
7. Route all differential pairs on one or two inner layers.  
8. Keep the number of signal vias to a minimum TI recommends keeping the via count to the maximum of  
two per CSI-2 trace.  
9. Keep traces on layers adjacent to ground plane.  
10. Do NOT route differential pairs over any plane split.  
11. Adding Test points causes impedance discontinuity and therefore negatively impacts signal performance. If  
test points are used, place them in series and symmetrically. Test points must not be placed in a manner that  
causes a stub on the differential pair.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 159  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
10.2 Layout Examples  
Follow PCB footprint  
recommendations  
from the connector  
manufacturer to  
maintain 50-W  
impedance through  
the connector  
Route RIN+ trace as a  
50-W single-ended  
trace with tight  
impedance control  
10%)  
(
Ensure RIN+ trace  
can carry PoC current  
without significant  
temperature rise  
(<10°C)  
Place the smallest  
ferrite bead or RF  
inductor orthogonally  
right next to the RIN+  
trace  
49.9W  
PoC Filter  
Route RIN- trace  
loosely coupled to the  
RIN+ trace (S > 3W)  
FB1  
FB2  
R1  
L1  
Moat the GND plane  
underneath the FB1  
pad touching the RIN+  
trace to minimize  
parasitic capacitance,  
but maintain the GND  
plane underneath the  
RIN+ trace  
PoC Voltage  
Entry Point  
RIN-  
RIN+  
CAC  
CAC  
Place AC coupling  
caps close to RIN  
pins to minimize the  
length of the RIN  
differential traces  
RIN Pins  
Thermal vias  
under  
DS90UB954 PAD  
*W is a trace width. S is a  
gap between adjacent  
traces.  
10-1. DS90UB954-Q1 PCB Layout Example: FPD-Link III Signal Traces and PoC Filter  
Copyright © 2023 Texas Instruments Incorporated  
160 Submit Document Feedback  
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Follow PCB footprint  
recommendations from the  
connector manufacturer to  
maintain 100-W differential  
impedance through the  
connector  
Route RIN traces as 100-W  
coupled striplines with  
tight impedance control  
( 10%)  
Route RIN traces on an inner  
signal layer close to the  
bottom layer or the bottom  
layer to minimize the  
Optional common mode  
choke  
connector stub length  
Back drill the top side of the  
vias to minimize the via stub  
length  
L1  
Place AC coupling caps  
close to RIN pins to  
minimize the length of  
coupled microstrips  
CAC  
CAC  
RIN Pins  
Thermal vias under  
DS90UB954 PAD  
*W is a trace width. S is a  
gap between adjacent  
traces.  
10-2. DS90UB954-Q1 PCB Layout Example: FPD-Link III Differential Signal Traces  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 161  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
Thermal vias under  
DS90UB954 PAD  
Optional 0-W resistors  
Bring CSI traces to  
the inner layers close  
to the CSI pins  
Route CSI traces as  
100-W differential  
coupled striplines  
(S=2W*) with tight  
impedance control  
( 10%)  
Ensure CSI trace  
length is matched  
within 5 mils for  
minimal intra-pair and  
pair-pair skew  
Avoid acute angles  
when routing CSI  
traces  
Ensure pair-pair gap  
is >5W* for minimal  
pair-pair coupling  
Route CSI traces on 1  
or 2 inner signal  
layers each  
sandwiched with GND  
or power planes to  
form coupled  
striplines  
CSI-2 Connector  
*W is a trace width. S is a  
gap between adjacent  
traces.  
10-3. DS90UB954-Q1 PCB Layout Example: CSI-2 Traces  
Copyright © 2023 Texas Instruments Incorporated  
162 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
For development support, see the following:  
DS90UB953-Q1  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
How to Design a FPD-Link III System Using DS90UB953 and DS90UB954 (SNLA267)  
I2C Communication Over FPD-Link III With Bidirectional Control Channel (SNLA131)  
I2C Bus Pullup Resistor Calculation (SLVA689)  
I2C Over DS90UB913/4 FPD-Link III With Bidirectional Control Channel (SNLA222)  
Sending Power Over Coax in DS90UB913A Designs (SNLA224)  
FPD-Link Learning Center  
An EMC/EMI System-Design and Testing Methodology for FPD-Link III SerDes (SLYT719)  
Ten Tips for Successfully Designing With Automotive EMC/EMI Requirements (SLYT636)  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 163  
 
 
 
 
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
164 Submit Document Feedback  
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
12.1 Package Option Addendum  
Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(4)  
Orderable Device  
Status(1)  
Pins  
Eco Plan(2)  
MSL Peak Temp(3)  
Op Temp (°C)  
Device Marking(5) (6)  
DS90UB954TRGZRQ1  
DS90UB954TRGZTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UB954Q  
UB954Q  
1. The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
2. RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS  
substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free  
processes. TI may reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony  
trioxide based flame retardants must also meet the <=1000ppm threshold requirement.  
3. MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
4. There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
5. Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
6. Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on  
information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI  
has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming  
materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
165  
 
 
 
 
 
 
 
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
12.1.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
DS90UB954TRGZRQ1  
DS90UB954TRGZTQ1  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
330.0  
180.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Copyright © 2023 Texas Instruments Incorporated  
166 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
2500  
250  
Length (mm) Width (mm)  
Height (mm)  
38.0  
DS90UB954TRGZRQ1  
DS90UB954TRGZTQ1  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
367.0  
210.0  
367.0  
185.0  
35.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 167  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
168 Submit Document Feedback  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 169  
DS90UB954-Q1  
ZHCSGT3C AUGUST 2017 REVISED JANUARY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
SYMM  
(1.37)  
TYP  
49  
(R0.05) TYP  
(6.8)  
9X  
1.17)  
METAL  
TYP  
(
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
170 Submit Document Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB954TRGZRQ1  
DS90UB954TRGZTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UB954Q  
UB954Q  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UB954TRGZRQ1  
DS90UB954TRGZTQ1  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
330.0  
180.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UB954TRGZRQ1  
DS90UB954TRGZTQ1  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
(1.37)  
TYP  
SYMM  
49  
(R0.05) TYP  
(6.8)  
9X  
METAL  
TYP  
(
1.17)  
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS90UB954TRGZRQ1

适用于 2MP/60fps 摄像机和雷达、具有 CSI-2 输出的双路 200 万像素 FPD-Link III 解串器 | RGZ | 48 | -40 to 105
TI

DS90UB954TRGZTQ1

适用于 2MP/60fps 摄像机和雷达、具有 CSI-2 输出的双路 200 万像素 FPD-Link III 解串器 | RGZ | 48 | -40 to 105
TI

DS90UB960-Q1

四路 2MP 摄像头集线器 FPD-Link III 解串器,配备双路 CSI-2 输出端口
TI

DS90UB960WRTDRQ1

四路 2MP 摄像头集线器 FPD-Link III 解串器,配备双路 CSI-2 输出端口 | RTD | 64 | -40 to 105
TI

DS90UB960WRTDTQ1

四路 2MP 摄像头集线器 FPD-Link III 解串器,配备双路 CSI-2 输出端口 | RTD | 64 | -40 to 105
TI

DS90UB962-Q1

具有单个 CSI-2 输出的四路 3Gbps FPD-Link III 解串器集线器
TI

DS90UB962WRTDRQ1

具有单个 CSI-2 输出的四路 3Gbps FPD-Link III 解串器集线器 | RTD | 64 | -40 to 105

TI

DS90UB962WRTDTQ1

具有单个 CSI-2 输出的四路 3Gbps FPD-Link III 解串器集线器 | RTD | 64 | -40 to 105

TI

DS90UB964-Q1

四路 1MP 摄像头集线器 FPD-Link III 解串器,1MP 摄像头配备双路 CSI-2 输出端口
TI

DS90UB964TRGCRQ1

四路 1MP 摄像头集线器 FPD-Link III 解串器,1MP 摄像头配备双路 CSI-2 输出端口 | RGC | 64 | -40 to 105
TI

DS90UB964TRGCTQ1

四路 1MP 摄像头集线器 FPD-Link III 解串器,1MP 摄像头配备双路 CSI-2 输出端口 | RGC | 64 | -40 to 105
TI

DS90UH925AQ-Q1

具有 HDCP 的 5 到 85MHz 24 位彩色 FPD-Link III 串行器
TI