DS90UR905QSQX/NOPB [TI]

5MHz 至 65MHz 24 位彩色 FPD-Link II 串行器 | RHS | 48 | -40 to 105;
DS90UR905QSQX/NOPB
型号: DS90UR905QSQX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5MHz 至 65MHz 24 位彩色 FPD-Link II 串行器 | RHS | 48 | -40 to 105

驱动 光电二极管 接口集成电路 驱动器
文件: 总60页 (文件大小:1602K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
DS90UR90xQ-Q1 5 65MHz 24 位彩色 FPD-Link II 串行器和解串器  
1 特性  
2 应用  
1
5 65MHz PCLK 支持(140Mbps 至  
1.82Gbps)  
汽车导航显示屏  
汽车娱乐显示屏  
交流耦合 STP 内部互联电缆长达 10 米  
串行器和解串器上的集成终端  
3 说明  
DS90UR90xQ-Q1 芯片组将并行 RGB 视频接口转换  
为单对高速串行化接口。该串行总线方案通过消除时钟  
和数据间的偏差,减少连接器引脚数量,减小互连线路  
的尺寸、重量和成本以及简化印刷电路板 (PCB) 总体  
布局布线等方式简化系统设计。此外,内部 DC 均衡  
解码用于支持 AC 耦合互连。  
@SPEED 链路 BIST 模式和报告引脚  
可选 I2C 兼容串行控制总线  
RGB888 + VSHSDE 支持  
断电模式可最大程度地降低功率耗散  
1.8V 3.3V 兼容 LVCMOS I/O 接口  
汽车级产品:符合 AEC-Q100 2 级要求  
> 8kV HBM ISO 10605 ESD 额定值  
向后兼容模式,用于与老一代器件一起运行  
串行器 - DS90UR905Q-Q1  
DS90UR905Q-Q1 串行器内嵌时钟,可均衡数据有效  
载荷并将信号电平转换为高速低压差分信令。多达 24  
个输入连同 3 个视频控制信号被共同串行化。此器件  
支持全  
RGB888 + VS/HS/DE 串行化为 1 FPD-Link  
II  
24 位颜色或 18 位颜色和 6 个通用信号(例如,音频  
I2S 应用)。  
随机发生器/扰频器 - 直流平衡数据流  
可选输出 VOD 和可调节去加重功能  
DS90UR906Q-Q1 解串器可恢复数据 (RGB) 和控制信  
号,并从串行数据流中提取时钟。DS90UR906Q-Q1  
能够锁定传入数据流,无需使用训练序列或特殊的  
SYNC(同步)模式,也不需要基准时钟。链路状态  
(LOCK) 输出信号也由该芯片组提供。  
解串器 - DS90UR906Q-Q1  
FAST 随机数据锁定;无需参考时钟  
可调节输入接收器均衡  
LOCK(实时链路状态)报告引脚  
输出并行总线的 EMI 最小化 (SSCG)  
输出压摆控制 (OS)  
器件信息(1)  
器件型号  
封装  
WQFN (48)  
WQFN (60)  
封装尺寸(标称值)  
7.00mm x 7.00mm  
9.00mm x 9.00mm  
DS90UR905Q-Q1  
DS90UR906Q-Q1  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
703A I2C  
V
V
V
V
DDIO  
(1.8 Vor3.3 V)  
DDn  
DDn  
DDIO  
(1.8 Vor 3.3 V)  
1.8 V  
1.8 V  
FPD-Link II  
/
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
1
Pair  
AC Coupled  
B[7:0]  
HS  
B[7:0]  
HS  
100 nF  
100 nF  
HOST  
RGB Display  
QVGA to XGA  
24-bit color depth  
Graphics  
Processor  
DOUT+  
DOUT-  
RIN+  
RIN-  
VS  
DE  
VS  
DE  
PCLK  
PCLK  
100 Ω STP Cable  
DS90UR905Q  
Serializer  
DS90UR906Q  
Deserializer  
LOCK  
PASS  
PDB  
CMF  
PDB  
CONFIG [1:0]  
RFB  
BISTEN  
BISTEN  
STRAP pins  
not shown  
VODSEL  
DeEmph  
SCL  
SDA  
ID[x]  
SCL  
SDA  
ID[x]  
Optional  
Optional  
DAP  
DAP  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS313  
 
 
 
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 23  
8.2 Functional Block Diagrams ..................................... 23  
8.3 Feature Description................................................. 24  
8.4 Device Functional Modes........................................ 38  
8.5 Register Maps......................................................... 39  
Application and Implementation ........................ 42  
9.1 Application Information............................................ 42  
9.2 Typical Applications ................................................ 43  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 5  
Specifications....................................................... 10  
7.1 Absolute Maximum Ratings .................................... 10  
7.2 ESD Ratings............................................................ 10  
7.3 Recommended Operating Conditions..................... 11  
7.4 Thermal Information................................................ 11  
7.5 Serializer DC Electrical Characteristics ................. 11  
7.6 Deserializer DC Electrical Characteristics ............. 12  
7.7 DC and AC Serial Control Bus Characteristics....... 14  
9
10 Power Supply Recommendations ..................... 48  
10.1 Power Up Requirements and PDB Pin................. 48  
11 Layout................................................................... 48  
11.1 Layout Guidelines ................................................. 48  
11.2 Layout Example .................................................... 49  
12 器件和文档支持 ..................................................... 51  
12.1 文档支持................................................................ 51  
12.2 相关链接................................................................ 51  
12.3 社区资源................................................................ 51  
12.4 ....................................................................... 51  
12.5 静电放电警告......................................................... 51  
12.6 Glossary................................................................ 51  
13 机械、封装和可订购信息....................................... 51  
7.8 Timing Requirements for DC and AC Serial Control  
Bus........................................................................... 14  
7.9 Timing Requirements for Serializer PCLK .............. 14  
7.10 Timing Requirements for Serial Control Bus ........ 14  
7.11 Switching Characteristics: Serializer..................... 15  
7.12 Switching Characteristics: Deserializer................. 16  
7.13 Typical Characteristics.......................................... 22  
Detailed Description ............................................ 23  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision H (July 2015) to Revision I  
Page  
Fixed typo in power down supply current units - changed mA to uA .................................................................................. 12  
Changes from Revision G (April 2013) to Revision H  
Page  
添加了 ESD 额定值表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关建议 部分、布局 部分、器件和  
文档支持 部分以及机械、封装和可订购信息 部分。............................................................................................................... 1  
Changes from Revision F (January 2011) to Revision G  
Page  
已将美国国家半导体数据表的版面布局更改为 TI 格式 ........................................................................................................... 1  
Changes from Revision E (August 2010) to Revision F  
Page  
Modified ESD to include IEC condition (330 Ohm, 150pF).................................................................................................. 10  
Updated deserializer parameters: IDD1, IDDZ, IDDIOZ, IDDR, VOH, VOL, tROS, tRDC .................................................. 11  
Updated Figure 14 and Figure 15 to reflect data measurement at VDDIO/2 ...................................................................... 20  
Updated Figure 38 – C13 changed to 4.7uF ....................................................................................................................... 44  
Changes from Revision D (May 2010) to Revision E  
Page  
删除了数据随机生成和扰频噪声裕度以及典型性能曲线部分........................................................................................ 1  
修改了订购信息,在 NSPN 列(替代 NSID 列)中添加了 NOPB ................................................................................. 1  
Corrected ESD Ratings to IEC 61000 – 4 – 2 from ISO 10605 (duplication). .................................................................... 10  
2
版权 © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Added RPU = 10k condition for the Serial Control Bus Characteristics of tR and tF. ..................................................... 14  
Changes from Revision C (March 2010) to Revision D  
Page  
DS90UR906Q-Q1 data sheet limits have been updated per characterization results ........................................................ 11  
Corrected register 5 from RFB to VODSEL and register 4 from VODSEL to RFB in Table 14 .......................................... 39  
Changes from Revision B (Feburary 2010) to Revision C  
Page  
Added reference to soldering profile..................................................................................................................................... 10  
Added ESD CDM and ESD MM values................................................................................................................................ 10  
Updated RθA value ............................................................................................................................................................... 11  
Changes from Revision A (September 2009) to Revision B  
Page  
删除了 IDDT3 IDDIOT3(随机模式),原因是其限制与检测板模式相同 .......................................................................... 1  
DS90UR905Q 数据表限制已根据特性结果更新为最终限制 ................................................................................................... 1  
Updated DS90UR905Q-Q1 Typical Connection Diagram — Pin Control. Ref 30102044 .................................................... 5  
Updated DS90UR906Q-Q1 Pin Diagram: strap changes on pin11, pin14, and pin42 .......................................................... 7  
Added strap to pin 11 “ OS_PCLK ” (Output Slew_PCLK) ................................................................................................... 7  
Changed strap pin 14 feature from “ RDS ” to “ OS_DATA ” (Output Slew_DATA) ............................................................. 7  
Added strap to pin 42 “ OP_LOW ” (Output LOW) ................................................................................................................ 8  
Updated DS90UR906Q-Q1 Typical Connection Diagram — Pin Control. Ref 30102045 .................................................... 8  
Updated DS90UR906Q-Q1 Deserializer Pin Descriptions: RDS feature changed to OS_PCLK and OS_DATA.  
Added OP_LOW feature ........................................................................................................................................................ 8  
Created OP_LOW timing Figure 28. Ref 30102065 ............................................................................................................ 31  
Created OP_LOW timing Figure 29. Ref 30102066 ............................................................................................................ 32  
Updated Table 12: deleted ID[x] Address 7'b 110 1000 (h'68) (8'b 1101 0000 (h'D0)) ....................................................... 38  
Updated Table 13: deleted ID[x] Address 7'b 111 0000 (h'70) (8'b 1110 0000 (h'E0)) ....................................................... 39  
Changed Table 14 ADD \ 1 \ bit \ 6:0 \ ID[x]: deleted Device ID 7b'1101 00 (h'68). Only four (4) IDs will be available...... 39  
Changed Table 15: ADD \ 0 \ bit \ 6 \ OSS_SEL: “ OSS_SEL ” changed feature to “ OS_PCLK ” (Output  
Slew_PCLK). OSS_SEL moved to ADD \ 2 \ bit \ 6 \........................................................................................................... 40  
Changed Table 15: ADD \ 0 \ bit \ 5 \ RDS: changed “ RDS ” feature to OS_DATA (Output Slew_DATA) ....................... 40  
Changed Table 15: ADD \ 1\ bit \ 6:0 \ ID[x]: deleted Device ID 7b'1110 00 (h'70). Only four (4) IDs will be available. .... 40  
Changed Table 15: ADD \ 2 \ bit \ 7 \ Reserved: changed “ Reserved ” to “ OP_LOW ”..................................................... 40  
Changed Table 15: ADD \ 2 \ bit \ 6 \ Reserved: changed “ Reserved ” to “ OSS_SEL ”.................................................... 40  
版权 © 2009–2019, Texas Instruments Incorporated  
3
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
5 说明 (续)  
串行传输通过用户可选择的去加重功能、差分输出电平选择 特性和接收器均衡实现优化。通过使用低压差分信令、  
接收器驱动强度控制和展频计时兼容性最大限度地减少了电磁干扰 (EMI)。解串器可配置为在其并行输出中生成展  
频时钟和数据。  
DS90UR905Q-Q1 串行器采用 48 引脚超薄型四方扁平无引线封装 (WQFN) 封装,而 DS90UR906Q-Q1 解串器采  
60 引脚 WQFN 封装。两种器件可在 -40˚C +105˚C 的汽车级 AEC-Q100 2 级温度范围内额定运行。  
4
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
6 Pin Configuration and Functions  
RHS Package  
48-Pin WQFN  
Top View  
G[2]  
G[3]  
G[4]  
G[5]  
G[6]  
G[7]  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
B[5]  
VODSEL  
De-Emph  
VDDTX  
PDB  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DOUT+  
DOUT-  
RES2  
DS90UR905Q  
TOP VIEW  
DAP = GND  
VDDHS  
RES1  
RES0  
VDDP  
CONFIG[1]  
DS90UR905Q-Q1 Serializer Pin Functions(1)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
LVCMOS PARALLEL INTERFACE  
2, 1, 48, 47, 46,  
I, LVCMOS  
with pulldown (MSB = 7, LSB = 0)  
BLUE parallel interface data input pins  
B[7:0]  
45, 44, 43  
Data enable input  
Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
I, LVCMOS  
with pulldown  
DE  
5
control signal filter is enabled (CONFIG[1:0] = 01). There is no restriction on the  
minimum transition pulse when the control signal filter is disabled (CONFIG[1:0] = 00).  
The signal is limited to 2 transitions per 130 PCLKs.  
42, 41, 40, 39,  
38, 37, 36, 35  
I, LVCMOS  
with pulldown (MSB = 7, LSB = 0)  
GREEN parallel interface data input pins  
G[7:0]  
HS  
Horizontal Sync Input  
Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
I, LVCMOS  
with pulldown  
3
control signal filter is enabled (CONFIG[1:0] = 01). There is no restriction on the  
minimum transition pulse when the control signal filter is disabled (CONFIG[1:0] = 00).  
The signal is limited to 2 transitions per 130 PCLKs.  
I, LVCMOS  
Pixel clock input  
PCLK  
R[7:0]  
10  
with pulldown Latch edge set by RFB function.  
34, 33, 32, 29,  
28, 27, 26, 25  
I, LVCMOS RED parallel interface data input pins  
with pulldown (MSB = 7, LSB = 0)  
Vertical sync input  
I, LVCMOS  
with pulldown  
VS  
4
Video control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse  
width is 130 PCLKs.  
(1) 1 = HIGH, 0 = LOW  
Copyright © 2009–2019, Texas Instruments Incorporated  
5
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
DS90UR905Q-Q1 Serializer Pin Functions(1) (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
CONTROL AND CONFIGURATION  
BIST mode — optional  
BISTEN = 1, BIST is enabled  
BISTEN = 0, BIST is disabled  
I, LVCMOS  
with pulldown  
BISTEN  
31  
Operating modes — pin or register control  
Determine the operating mode of the DS90UR905 and interfacing device.  
I, LVCMOS  
CONFIG[1:0] = 00: interfacing to DS90UR906Q-Q1, control signal filter DISABLED  
CONFIG[1:0]  
13, 12  
with pulldown CONFIG[1:0] = 01: interfacing to DS90UR906Q-Q1, control signal filter ENABLED  
CONFIG[1:0] = 10: interfacing to DS90UR124, DS99R124  
CONFIG[1:0] = 11: interfacing to DS90C124  
De-emphasis control — pin or register control  
I, Analog  
with pullup  
De-emph = open (float) - disabled  
To enable de-emphasis, tie a resistor from this pin to GND or control via register (see  
Table 2).  
De-Emph  
ID[x]  
23  
6
Serial control bus device ID address select — optional  
Resistor-to-ground and 10-kpullup to 1.8-V rail (see Table 11).  
I, Analog  
Power-down mode input  
PDB = 1, serializer is enabled (normal operation).  
Refer to Power Up Requirements and PDB Pin.  
with pulldown PDB = 0, serializer is powered down  
When the serializer is in the power-down state, the driver outputs (DOUT±) are both  
I, LVCMOS  
PDB  
21  
logic high, the PLL is shutdown, IDD is minimized. Control registers are RESET.  
I, LVCMOS  
with pulldown  
RES[2:0]  
RFB  
18, 16, 15  
11  
Reserved - tie LOW  
Pixel clock input latch edge select — pin or register control  
RFB = 1, parallel interface data and control signals are latched on the rising clock  
edge.  
RFB = 0, parallel interface data and control signals are latched on the falling clock  
edge.  
I, LVCMOS  
with pulldown  
Serial control bus clock input - optional  
SCL requires an external pullup resistor to VDDIO  
SCL  
SDA  
8
9
I, LVCMOS  
.
I/O, LVCMOS Serial control bus data input/output - optional  
Open-Drain  
SDA requires an external pullup resistor VDDIO.  
Differential driver output voltage select — pin or register control  
I, LVCMOS  
VODSEL = 1, LVDS VOD is ±420 mV, 840 mVp-p (typical) — long cable / de-emp  
VODSEL  
24  
with pulldown applications  
VODSEL = 0, LVDS VOD is 280 mV, 560 mVp-p (typical)  
FPD-LINK II SERIAL INTERFACE  
True output  
DOUT+  
20  
O, LVDS  
O, LVDS  
The output must be AC-coupled with a 100-nF capacitor.  
Inverting output  
The output must be AC-coupled with a 100-nF capacitor.  
DOUT-  
19  
POWER AND GROUND(2)  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
GND  
DAP  
Ground  
VDDHS  
VDDL  
17  
7
Power  
Power  
Power  
Power  
Power  
TX high-speed logic power, 1.8 V ±5%  
Logic power, 1.8 V ±5%  
VDDP  
14  
30  
22  
PLL power, 1.8 V ±5%  
VDDIO  
VDDTX  
LVCMOS I/O power, 1.8 V ±5% or 3.3 V ±10%  
Output Driver power, 1.8 V ±5%  
(2) The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms, then a capacitor on  
the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage.  
6
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
NKB Package  
60-Pin WQFN  
Top View  
NC  
RES  
NC  
46  
47  
48  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VDDL  
VDDIR  
RIN+  
G[0]/OSC_SEL[0]  
G[1]/OSC_SEL[1]  
G[2]/OSC_SEL[2]  
G[3]  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
RIN-  
CMF  
CMLOUTP  
CMLOUTN  
VDDCMLO  
VDDR  
VDDIO  
DS90UR906Q  
TOP VIEW  
G[4]/EQ[0]  
G[5]/EQ[1]  
G[6]/EQ[2]  
G[7]/EQ[3]  
B[0]  
DAP = GND  
ID[x]  
BOLD PIN NAME œ indicates I/O strap  
pin associated with output pin  
VDDPR  
VDDSC  
PDB  
B[1]/RFB  
B[2]/OSS_SEL  
NC  
NC  
DS90UR906Q-Q1 Deserializer Pin Functions(1)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
LVCMOS PARALLEL INTERFACE  
9, 10, 11,  
12, 14, 17,  
18, 19  
BLUE parallel interface data output pins (MSB = 7, LSB = 0)  
In power-down (PDB = 0), outputs are controlled by the OSS_SEL (see Table 6). These pins  
are inputs during power up (see Deserializer Strap Input Pins).  
I, STRAP,  
O, LVCMOS  
B[7:0]  
DE  
Data enable output  
In power down (PDB = 0), output is controlled by the OSS_SEL pin (see Table 6). Video  
control signal pulse width must be 3 PCLKs or longer to be transmitted when the control  
signal filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum transition  
pulse when the control signal filter is disabled  
6
O, LVCMOS  
(CONFIG[1:0] = 00). The signal is limited to 2 transitions per 130 PCLKs.  
20, 21, 22,  
23, 25, 26,  
27, 28  
GREEN parallel interface data output pins (MSB = 7, LSB = 0)  
In power down (PDB = 0), outputs are controlled by the OSS_SEL (see Table 6). These pins  
are inputs during power up (see Deserializer Strap Input Pins).  
I, STRAP,  
O, LVCMOS  
G[7:0]  
HS  
Horizontal sync output  
In power down (PDB = 0), output is controlled by the OSS_SEL pin (see Table 6). Video  
control signal pulse width must be 3 PCLKs or longer to be transmitted when the control  
signal filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum transition  
pulse when the control signal filter is disabled  
8
O, LVCMOS  
(CONFIG[1:0] = 00). The signal is limited to 2 transitions per 130 PCLKs.  
(1) 1 = HIGH, 0 = LOW  
Copyright © 2009–2019, Texas Instruments Incorporated  
7
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
DS90UR906Q-Q1 Deserializer Pin Functions(1) (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
LOCK status output  
LOCK = 1, PLL is Locked, outputs are active LOCK = 0, PLL is unlocked, RGB[7:0], HS, VS,  
DE and PCLK output states are controlled by OSS_SEL (see Table 6). May be used as link  
status or to flag when video data is active (ON/OFF).  
LOCK  
32  
O, LVCMOS  
PASS output (BIST mode)  
PASS = 1, error free transmission  
PASS = 0, one or more errors were detected in the received payload  
Route to test point for monitoring, or leave open if unused.  
PASS  
42  
5
O, LVCMOS  
Pixel clock output  
PCLK  
R[7:0]  
O, LVCMOS In power down (PDB = 0), output is controlled by the OSS_SEL pin (see Table 6). Strobe  
edge set by RFB function.  
33, 34, 35,  
36, 37, 39,  
40, 41  
RED parallel interface data output pins (MSB = 7, LSB = 0)  
In power down (PDB = 0), outputs are controlled by the OSS_SEL (see Table 6). These pins  
are inputs during power up (see Deserializer Strap Input Pins).  
I, STRAP,  
O, LVCMOS  
Vertical sync output  
In power down (PDB = 0), output is controlled by the OSS_SEL pin (see Table 6). Video  
control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse width is 130  
VS  
7
O, LVCMOS  
PCLKs.  
CONTROL AND CONFIGURATION — STRAP PINS  
For a HIGH state, use a 10-kpullup to VDDIO; for a LOW state, the IO includes an internal pulldown. The STRAP pins are read upon  
power up and set device configuration. Pin Number listed along with shared RGB output name in square brackets.  
Operating modes — pin or register control  
These pins determine the operating mode of the DS90UR906 and interfacing device.  
STRAP  
I, LVCMOS  
with pulldown  
10 [B6],  
9 [B7]  
CONFIG[1:0] = 00: interfacing to DS90UR905Q-Q1, control signal filter DISABLED  
CONFIG[1:0] = 01: interfacing to DS90UR905Q-Q1, control signal filter ENABLED  
CONFIG[1:0] = 10: interfacing to DS90UR241  
CONFIG[1:0]  
EQ[3:0]  
CONFIG[1:0] = 11: interfacing to DS90C241  
20 [G7],  
21 [G6],  
22 [G5],  
23 [G4]  
STRAP  
I, LVCMOS Receiver input equalization — pin or register control (see Table 3).  
with pulldown  
SSCG low-frequency mode — pin or register control  
Only required when SSCG is enabled, otherwise LF_MODE condition is a DON’T CARE (X).  
LF_MODE = 1, SSCG in low-frequency mode (PCLK = 5 to 20 MHz)  
LF_MODE = 0, SSCG in high-frequency mode (PCLK = 20 to 65 MHz)  
STRAP  
I, LVCMOS  
with pulldown  
LF_MODE  
12 [B4]  
STRAP  
I, LVCMOS  
with pulldown  
40 [R1],  
41 [R0]  
Bit mapping backward compatibility / DS90UR241 options — pin or register control  
Normal setting to b'00 (see Table 9).  
MAP_SEL[1:0]  
Outputs held LOW when LOCK = 1 — pin or register control  
(2)  
See  
STRAP  
OP_LOW = 1: all outputs are held LOW during power up until released by programming  
OP_LOW  
42 PASS  
I, LVCMOS OP_LOW release / set register HIGH  
with pulldown See  
(3)  
See Figure 30 and Figure 31.  
OP_LOW = 0: all outputs toggle normally as soon as LOCK goes HIGH (default).  
STRAP  
Data output slew select — pin or register control  
OS_DATA  
14 [B3]  
I, LVCMOS OS_DATA = 1, increased DATA slew  
with pulldown OS_DATA = 0, normal (default)  
26 [G2],  
27 [G1],  
28 [G0]  
STRAP  
OSC_SEL[2:0]  
OS_PCLK  
I, LVCMOS Oscillator select — pin or register control (see Table 7 and Table 8).  
with pulldown  
STRAP  
PCLK output slew select — pin or register control  
11 [B5]  
I, LVCMOS OS_PCLK = 1, increased PCLK slew  
with pulldown OS_PCLK = 0, normal (default)  
Output sleep state select — pin or register control  
See  
OSS_SEL is used in conjunction with PDB to determine the state of the outputs in power  
down (Sleep) (see Table 6).  
STRAP  
I, LVCMOS  
with pulldown  
(4)  
OSS_SEL  
17 [B2]  
(2) It is not recommended to use any other strap options with this strap function  
(3) Before the device is powered up, the outputs are in tri-state.  
(4) OSS_SEL strap cannot be used if OP_LOW =1  
8
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
DS90UR906Q-Q1 Deserializer Pin Functions(1) (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
STRAP  
Pixel clock output strobe edge select — pin or register control  
RFB  
18 [B1]  
I, LVCMOS RFB = 1, parallel interface data and control signals are strobed on the rising clock edge.  
with pulldown RFB = 0, parallel interface data and control signals are strobed on the falling clock edge.  
34 [R6],  
35 [R5],  
36 [R4],  
37 R[3]  
STRAP  
I, LVCMOS  
with pulldown  
Spread spectrum clock generation (SSCG) range select — pin or register control  
See Table 4 and Table 5.  
SSC[3:0]  
CONTROL AND CONFIGURATION  
BIST enable input — optional  
BISTEN = 1, BIST is enabled  
BISTEN = 0, BIST is disabled  
I, LVCMOS  
with pulldown  
BISTEN  
ID[x]  
44  
Serial control bus device ID address select — optional  
Resistor-to-ground and 10-kpullup to 1.8-V rail (see Table 10).  
56  
I, Analog  
1, 15, 16,  
30, 31, 45,  
46, 60  
Not connected  
Leave pin open (float)  
NC  
Power-down mode input  
PDB = 1, deserializer is enabled (normal operation).  
I, LVCMOS Refer to Power Up Requirements and PDB Pin.  
with pulldown PDB = 0, deserializer is in power down.  
PDB  
59  
When the deserializer is in the power-down state, the LVCMOS output state is determined by  
Table 6. Control Registers are RESET.  
I, LVCMOS  
RES  
SCL  
SDA  
47  
3
Reserved - tie LOW  
with pulldown  
Serial control bus clock input — optional  
I, LVCMOS  
SCL requires an external pullup resistor to VDDIO  
.
I/O, LVCMOS Serial control bus data input/output — optional  
Open-Drain SDA requires an external pullup resistor to VDDIO  
2
.
FPD-LINK II SERIAL INTERFACE  
Common-mode filter  
CMF  
51  
I, Analog  
VCM center-tap is a virtual ground which may be AC coupled to ground to increase receiver  
common-mode noise immunity. Recommended value is 0.1 μF or higher.  
Test monitor pin — EQ waveform  
NC or connect to test point. Requires serial bus control to enable.  
CMLOUTN  
CMLOUTP  
53  
52  
O, LVDS  
O, LVDS  
Test monitor pin — EQ waveform  
NC or connect to test point. Requires serial bus control to enable.  
RIN+  
RIN-  
49  
50  
I, LVDS  
I, LVDS  
True input. The input must be AC coupled with a 100-nF capacitor.  
Inverting input. The input must be AC coupled with a 100-nF capacitor.  
POWER AND GROUND(5)  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connected to the ground plane (GND) with at least 9 vias.  
GND  
DAP  
Ground  
VDDCMLO  
VDDL  
54  
29  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
RX high-speed logic power, 1.8 V ±5%  
Logic power, 1.8 V ±5%  
VDDIO  
VDDIR  
VDDPR  
VDDR  
13, 24, 38  
48  
LVCMOS I/O power, 1.8 V ±5% or 3.3 V ±10% (VDDIO  
)
Input power, 1.8 V ±5%  
57  
PLL power, 1.8 V ±5%  
43, 55  
4, 58  
RX high-speed logic power, 1.8 V ±5%  
SSCG power, 1.8 V ±5%  
VDDSC  
(5) The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms, then a capacitor on  
the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage.  
Copyright © 2009–2019, Texas Instruments Incorporated  
9
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
.
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
2.5  
4
UNIT  
V
Supply voltage – VDDn (1.8 V)  
Supply voltage – VDDIO  
LVCMOS I/O voltage  
Receiver input voltage  
Driver output voltage  
V
VDDIO + 0.3  
VDD + 0.3  
VDD + 0.3  
150  
V
V
V
Junction temperature  
°C  
Maximum power dissipation capacity at 25°C  
Derate above 25°C  
215  
mW  
mW/°C  
mW  
mW/°C  
°C  
48L RHS package  
1/θJA  
Maximum power dissipation capacity at 25°C  
Derate above 25°C  
470  
60L NKB package  
1/θJA  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office or Distributors for availability and  
specifications.  
(3) For soldering specifications see product folder at www.ti.com and SNOA549.  
7.2 ESD Ratings  
VALUE  
±8000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Machine Model (MM)  
±1000  
±250  
Air Discharge (DOUT+, DOUT−  
)
±30000  
±10000  
±30000  
±10000  
±15000  
±10000  
±15000  
±10000  
±25000  
±8000  
±25000  
±8000  
Contact Discharge (DOUT+, DOUT−  
Air Discharge (RIN+, RIN−  
Contact Discharge (RIN+, RIN−  
Air Discharge (DOUT+, DOUT−  
Contact Discharge (DOUT+, DOUT−  
Air Discharge (RIN+, RIN−  
Contact Discharge (RIN+, RIN−  
Air Discharge (DOUT+, DOUT−  
Contact Discharge (DOUT+, DOUT−  
Air Discharge (RIN+, RIN−  
Contact Discharge (RIN+, RIN−  
)
)
)
ISO10605(2)  
)
)
V(ESD) Electrostatic discharge  
)
V
ISO10605(3)  
)
)
)
IEC 61000-4-2(3)  
)
)
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) RD = 2 kΩ, CS = 150 pF or RD = 2 kΩ, CS = 330 pF or RD = 330 Ω, CS = 150 pF  
(3) RD = 330 Ω, CS = 330 pF  
10  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
1.71  
3
NOM  
1.8  
1.8  
3.3  
25  
MAX  
1.89  
1.89  
3.6  
UNIT  
Supply voltage (VDDn  
)
V
LVCMOS supply voltage (VDDIO  
)
V
OR LVCMOS supply voltage (VDDIO  
Operating free-air temperature (TA)  
PCLK clock frequency  
)
40  
5
105  
65  
°C  
MHz  
mVP-P  
Supply noise(1)  
50  
(1) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the VDDn (1.8-V) supply with  
amplitude = 100 mVp-p measured at the device VDDn pins. Bit error rate testing of input to the serializer and output of the deserializer  
with 10 meter cable shows no error when the noise frequency on the serializer is less than 750 kHz. The deserializer on the other hand  
shows no error when the noise frequency is less than 400 kHz.  
7.4 Thermal Information  
DS90UR905Q-Q1 DS90UR906Q-Q1  
THERMAL METRIC(1)  
RHS (WQFN)  
NKB (WQFN)  
UNIT  
48 PINS  
30.3  
11.5  
7.3  
60 PINS  
26.9  
9.1  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
6.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
0.1  
ψJB  
7.3  
6.0  
RθJC(bot)  
2.7  
1.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) Based on nine thermal vias.  
7.5 Serializer DC Electrical Characteristics  
over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN / FREQ  
MIN  
TYP  
MAX UNIT  
LVCMOS INPUT DC SPECIFICATIONS  
VDDIO = 3.0 to 3.6 V  
2.2  
VDDIO  
VDDIO  
0.8  
V
V
V
V
VIH  
High-level input voltage  
Low-level input voltage  
0.65 ×  
VDDIO  
R[7:0],  
G[7:0],  
B[7:0],  
HS, VS, DE,  
PCLK, PDB,  
VODSEL,  
RFB,  
CONFIG[1:0],BIS  
TEN  
VDDIO = 1.71 to 1.89 V  
VDDIO = 3.0 to 3.6 V  
VDDIO = 1.71 to 1.89 V  
GND  
VIL  
0.35 ×  
VDDIO  
GND  
VDDIO = 3.0  
to 3.6 V  
–15  
–15  
±1  
±1  
+15  
+15  
μA  
μA  
IIN  
Input current  
VIN = 0 V or VDDIO  
VDDIO = 1.7  
to 1.89 V  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = 25°C, and at the Recommended Operating Conditions at the  
time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH and VTL which are differential voltages.  
Copyright © 2009–2019, Texas Instruments Incorporated  
11  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
MAX UNIT  
Serializer DC Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN / FREQ  
MIN  
TYP  
LVDS DRIVER DC SPECIFICATIONS  
VODSEL = 0  
±205  
±320  
±280  
±420  
560  
±355  
mV  
Differential output  
VOD  
DOUT+, DOUT–  
DOUT+, DOUT–  
voltage  
RL = 100 ,  
De-emph = disabled,  
Figure 2  
VODSEL = 1  
VODSEL = 0  
±520  
Differential output  
voltage  
(DOUT+) – (DOUT-)  
VODp-p  
ΔVOD  
VOS  
mVp-p  
VODSEL = 1  
840  
1
Output voltage  
unbalance  
RL = 100 , De-emph = disabled, VODSEL = L  
50  
mV  
V
DOUT+, DOUT–  
DOUT+, DOUT–  
Offset voltage – single-  
ended  
VODSEL = 0  
1.65  
RL = 100 ,  
De-emph = disabled  
VODSEL = 1  
1.575  
at TP A and B, Figure 1  
Offset voltage  
unbalance  
Single-ended  
ΔVOS  
RL = 100 , De-emph = disabled  
1
mV  
at TP A and B, Figure 1  
Output short circuit  
current  
DOUT± = 0 V,  
De-emph = disabled  
IOS  
RT  
VODSEL = 0  
–36  
100  
mA  
Internal termination  
resistor  
80  
120  
SUPPLY CURRENT  
VDD = 1.89 V  
VDDIO = 1.89 V  
VDDIO = 3.6 V  
VDD = 1.89 V  
VDDIO = 1.89 V  
VDDIO = 3.6 V  
VDD = 1.89 V  
VDDIO = 1.89 V  
VDDIO = 3.6 V  
All VDD pins  
VDDIO  
75  
3
85  
5
Checker Board Pattern,  
De-emph = 3 KΩ  
VODSEL = H, Figure 9  
IDDT1  
mA  
mA  
μA  
Serializer  
supply current  
(includes load current)  
RL = 100 , f = 65 MHz  
IDDIOT1  
IDDT2  
IDDIOT2  
IDDZ  
11  
65  
3
15  
All VDD pins  
VDDIO  
75  
Checker Board Pattern,  
De-emph = 6 K,  
VODSEL = L, Figure 9  
5
11  
40  
5
15  
All VDD pins  
VDDIO  
1000  
10  
Serializer  
cupply current power  
down  
PDB = 0 V , (All other  
LVCMOS Inputs = 0 V)  
IDDIOZ  
10  
20  
7.6 Deserializer DC Electrical Characteristics  
over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN / FREQ  
MIN  
TYP  
MAX UNIT  
3.3 V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 3.0 to 3.6 V  
VIH  
VIL  
IIN  
High-level input voltage  
Low-level input voltage  
Input current  
2.2  
GND  
15  
VDDIO  
0.8  
V
V
PDB, BISTEN  
VIN = 0 V or VDDIO  
±1  
15  
μA  
R[7:0], G[7:0],  
B[7:0], HS,VS,  
DE, PCLK,  
IOH = 2 mA,  
OS_PCLK/DATA = L  
VOH  
High-level output voltage  
2.4  
VDDIO  
GND  
V
LOCK, PASS  
R[7:0], G[7:0],  
B[7:0], HS, VS,  
DE,PCLK,  
IOL = +2 mA,  
OS_PCLK/DATA = L  
VOL  
Low-level output voltage  
Output short circuit current  
0.4  
V
LOCK, PASS  
VDDIO = 3.3 V  
VOUT = 0 V,  
OS_PCLK/DATA = L/H  
PCLK  
36  
37  
mA  
IOS  
VDDIO = 3.3 V  
VOUT = 0 V,  
OS_PCLK/DATA = L/H  
Deserializer  
Outputs  
Output short circuit current  
TRI-STATE output current  
mA  
µA  
PDB = 0 V, OSS_SEL = 0  
V, VOUT = H  
IOZ  
12  
Outputs  
15  
15  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Deserializer DC Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN / FREQ  
MIN  
TYP  
MAX UNIT  
1.8 V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 1.71 to 1.89 V  
VIH  
VIL  
IIN  
High-level input voltage  
Low-level input voltage  
Input current  
1.235  
GND  
15  
VDDIO  
0.595  
15  
V
V
PDB, BISTEN  
VIN = 0 V or VDDIO  
±1  
μA  
IOH = 2 mA,  
OS_PCLK/DATA = L/H  
VDDIO  
R[7:0], G[7:0],  
B[7:0], HS, VS,  
DE, PCLK,  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VDDIO  
V
V
0.45  
IOL = +2 mA,  
OS_PCLK/DATA = L/H  
GND  
0.45  
LOCK, PASS  
VDDIO = 1.8 V  
VOUT = 0 V,  
OS_PCLK/DATA = L/H  
PCLK  
18  
18  
mA  
IOS  
Output short circuit current  
TRI-STATE output current  
VDDIO = 1.8 V  
VOUT = 0 V,  
OS_PCLK/DATA = L/H  
DATA  
mA  
µA  
PDB = 0 V, OSS_SEL = 0  
V, VOUT = 0 V or VDDIO  
IOZ  
Outputs  
–15  
15  
LVDS RECEIVER DC SPECIFICATIONS  
Differential input threshold high  
voltage  
VTH  
50  
mV  
mV  
V
VCM = +1.2 V (Internal  
VBIAS  
)
Differential input threshold low  
voltage  
VTL  
–50  
RIN+, RIN-  
RIN+, RIN-  
Common-mode voltage, internal  
VBIAS  
VCM  
1.2  
IIN  
Input current  
VIN = 0 V or VDDIO  
–15  
80  
15  
µA  
RT  
Internal termination resistor  
100  
120  
CMLOUTP/N DRIVER OUTPUT DC SPECIFICATIONS – EQ TEST PORT  
VOD  
Differential output voltage  
RL = 100 Ω  
542  
1.4  
mV  
V
CMLOUTP,  
CMLOUTN  
Offset voltage  
Single-ended  
VOS  
RL = 100 Ω  
CMLOUTP,  
CMLOUTN  
RT  
Internal termination resistor  
80  
100  
120  
SUPPLY CURRENT  
IDD1  
Checker Board Pattern,  
OS_PCLK/DATA = H,  
EQ = 001,  
SSCG=ON  
CMLOUTP/N = enabled  
CL = 4 pF, Figure 9  
All VDD pins  
93  
33  
110  
45  
mA  
mA  
Deserializer  
supply current  
(includes load current)  
IDDIO1  
VDDIO  
62  
75  
mA  
IDDZ  
All VDD pins  
VDDIO  
40  
5
3000  
50  
µA  
µA  
µA  
Deserializer supply current power  
down  
PDB = 0 V, All other  
LVCMOS Inputs = 0 V  
IDDIOZ  
10  
100  
Copyright © 2009–2019, Texas Instruments Incorporated  
13  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
MAX UNIT  
7.7 DC and AC Serial Control Bus Characteristics  
over 3.3-V supply and temperature ranges unless otherwise specified.  
PARAMETERS  
TEST CONDITIONS  
MIN  
2.2  
TYP  
>50  
<5  
VIH  
VIL  
VHY  
VOL  
Iin  
Input high-level voltage  
Input low-level voltage  
Input hysteresis  
SDA and SCL  
SDA and SCL  
VDDIO  
0.8  
V
V
GND  
mV  
V
Output low-level voltage(1)  
SDA, IOL = 1.25 mA  
SDA or SCL, Vin = VDDIO or GND  
SDA or SCL  
0
0.4  
15  
–15  
µA  
pF  
Cin  
Input capacitance  
(1) Specification is ensured by characterization and is not tested in production.  
7.8 Timing Requirements for DC and AC Serial Control Bus  
over recommended operating supply and temperature ranges unless otherwise specified.  
TEST CONDITIONS  
MIN  
NOM  
40  
MAX  
UNIT  
ns  
tR  
tF  
SDA rise time – READ  
SDA fall time – READ  
SDA, RPU = 10 k, Cb 400 pF  
25  
ns  
tSU;DAT Set-up time – READ  
tHD;DAT Hold up time – READ  
520  
55  
ns  
ns  
tSP  
Input filter  
50  
ns  
7.9 Timing Requirements for Serializer PCLK  
over recommended operating supply and temperature ranges unless otherwise specified.  
TEST CONDITIONS  
MIN  
15.38  
0.4T  
0.4T  
0.5  
NOM  
T
MAX  
200  
UNIT  
ns  
tTCP  
Transmit input PCLK period  
Transmit input PCLK high time  
Transmit input PCLK low time  
PCLK input transition time  
tTCIH  
tTCIL  
tCLKT  
0.5T  
0.5T  
0.6T  
0.6T  
2.4  
ns  
5 MHz to 65 MHz, Figure 4  
ns  
ns  
fmod  
fdev  
35 kHz  
±2%  
PCLK input – spread spectrum  
at PCLK = 65 MHz  
SSCIN  
7.10 Timing Requirements for Serial Control Bus  
over 3.3-V supply and temperature ranges unless otherwise specified.  
TEST CONDITIONS  
MIN  
>0  
>0  
4.7  
1.3  
4
NOM  
MAX UNIT  
Standard Mode  
100 kHz  
fSCL  
SCL clock frequency  
SCL low period  
Fast Mode  
400 kHz  
Standard Mode  
Fast Mode  
µs  
µs  
µs  
µs  
us  
tLOW  
Standard Mode  
Fast Mode  
tHIGH  
SCL high period  
0.6  
4
Hold time for a start or a  
Standard Mode  
tHD;STA repeated start condition,  
Figure 18  
Fast Mode  
0.6  
4.7  
0.6  
µs  
µs  
µs  
Set-up time for a start or a  
tSU:STA repeated start condition,  
Figure 18  
Standard Mode  
Fast Mode  
Standard Mode  
Fast Mode  
0
0
3.45  
0.9  
µs  
µs  
ns  
ns  
Data hold time,  
tHD;DAT  
Figure 18  
Standard Mode  
Fast Mode  
250  
100  
Data set-up time,  
tSU;DAT  
Figure 18  
14  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Timing Requirements for Serial Control Bus (continued)  
over 3.3-V supply and temperature ranges unless otherwise specified.  
TEST CONDITIONS  
MIN  
4
NOM  
MAX UNIT  
Standard Mode  
Fast Mode  
µs  
µs  
µs  
µs  
Set-up time for STOP condition,  
Figure 18  
tSU;STO  
0.6  
4.7  
1.3  
Standard Mode  
Fast Mode  
Bus free time between STOP  
and START, Figure 18  
tBUF  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
µs  
ns  
ns  
ns  
SCL and SDA rise time,  
Figure 18  
tr  
Standard Mode  
Fast mode  
SCL and SDA fall time,  
Figure 18  
tf  
7.11 Switching Characteristics: Serializer  
over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
200  
200  
200  
200  
MAX UNIT  
RL = 100 , De-emphasis = disabled, VODSEL = 0  
RL = 100 , De-emphasis = disabled, VODSEL = 1  
RL = 100 , De-emphasis = disabled, VODSEL = 0  
RL = 100 , De-emphasis = disabled, VODSEL = 1  
ps  
ps  
ps  
ps  
Serializer output low-to-high  
transition time, Figure 3  
tLHT  
Serializer output high-to-low  
transition time, Figure 3  
tHLT  
Input data – set-up time,  
Figure 4  
tDIS  
tDIH  
tXZD  
tPLD  
tSD  
RGB[7:0], HS, VS, DE to PCLK  
PCLK to RGB[7:0], HS, VS, DE  
2
2
ns  
ns  
Input data – hold time,  
Figure 4  
Serializer output active to OFF  
delay, Figure 6(1)  
8
15  
10  
ns  
ms  
ns  
Serializer PLL lock time,  
Figure 5(1)(3)  
(2)  
RL = 100 Ω  
RL = 100 Ω  
1.4  
Serializer delay – latency,  
Figure 7(1)  
144 × T 145 × T  
RL = 100 , De-Emph = disabled,  
RANDOM pattern, PCLK = 65 MHz  
0.28  
0.27  
0.35  
UI(4)  
UI  
Serializer output total jitter,  
Figure 8  
RL = 100 , De-Emph = disabled,  
RANDOM pattern, PCLK = 43 MHz  
tDJIT  
RL = 100 , De-Emph = disabled,  
RANDOM pattern, PCLK = 5 MHz  
UI  
PCLK = 65 MHz  
PCLK = 43 MHz  
PCLK = 20 MHz  
PCLK = 5 MHz  
PCLK = 65 MHz  
PCLK = 43 MHz  
PCLK = 20 MHz  
PCLK = 5 MHz  
3
2.3  
MHz  
MHz  
MHz  
kHz  
dB  
Serializer jitter transfer  
Function –3-dB bandwidth  
λSTXBW  
1.3  
650  
0.838  
0.825  
0.826  
0.278  
dB  
Serializer jitter transfer  
function peaking  
δSTX  
dB  
dB  
(1) Specification is ensured by characterization and is not tested in production.  
(2) tPLD is the time required by the serializer to obtain lock when exiting power-down state with an active PCLK.  
(3) When the serializer output is at TRI-STATE the deserializer will lose PLL lock. Resynchronization / Relock must occur before data  
transfer require tPLD  
(4) UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1 / [28 × PCLK]). The UI scales with PCLK frequency.  
Copyright © 2009–2019, Texas Instruments Incorporated  
15  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
MAX UNIT  
7.12 Switching Characteristics: Deserializer  
over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETERS  
TEST CONDITIONS  
tRCP = tTCP  
PIN / FREQ  
MIN  
15.38  
43%  
35%  
40%  
TYP  
T
tRCP  
PCLK output period  
PCLK  
PCLK  
200  
57%  
65%  
60%  
ns  
SSCG=OFF, 5–65 MHz  
SSCG=ON, 5–20 MHz  
SSCG=ON, 20–65 MHz  
VDDIO = 1.8 V, CL = 4 pF  
50%  
59%  
53%  
2.1  
tRDC  
PCLK output duty cycle  
LVCMOS  
ns  
ns  
PCLK/RGB[7:0], HS,  
VS, DE  
tCLH  
Low-to-high transition time,  
Figure 10  
VDDIO = 3.3 V, CL = 4 pF  
2.0  
1.6  
VDDIO = 1.8 V  
CL = 4 pF, OS_PCLK/DATA = L  
ns  
ns  
LVCMOS  
High-to-low transition time,  
Figure 10  
PCLK/RGB[7:0], HS,  
VS, DE  
tCHL  
VDDIO = 3.3 V  
CL = 4 pF, OS_PCLK/DATA = H  
1.5  
VDDIO = 1.71 to 1.89 V or 3.0 to  
3.6 V  
CL = 4pF (lumped load)  
Data valid before PCLK –  
set-up time Figure 14  
tROS  
RGB[7:0], HS, VS, DE  
RGB[7:0], HS, VS, DE  
0.27  
0.4  
0.45  
T
T
VDDIO = 1.71 to 1.89 V or 3.0 to  
3.6 V  
CL = 4pF (lumped load)  
Data valid after PCLK – hold  
time Figure 14  
tROH  
0.55  
SSC[3:0] = 0000 (OFF)(2)  
SSC[3:0] = 0000 (OFF)(2)  
SSC[3:0] = ON(2)  
PCLK = 5 MHz  
PCLK = 65 MHz  
PCLK = 5 MHz  
PCLK = 65 MHz  
3
4
ms  
ms  
ms  
ms  
Deserializer lock time,  
Figure 13  
(1)  
tDDLT  
30  
6
SSC[3:0] = ON(2)  
Deserializer delay – latency,  
Figure 11  
tDD  
SSC[3:0] = 0000 (OFF)(2)  
139 × T 140 × T  
ns  
PCLK = 5 MHz  
975  
500  
550  
675  
375  
500  
0.9  
1700  
1000  
1250  
1150  
900  
ps  
ps  
ps  
ps  
ps  
ps  
UI  
tDPJ  
Deserializer period jitter  
SSC[3:0] = OFF(3)(4)(5)  
PCLK = 10 MHz  
PCLK = 65 MHz  
PCLK = 5 MHz  
Deserializer cycle-to-cycle  
jitter  
tDCCJ  
SSC[3:0] = OFF(6)(7)(5)  
PCLK = 10 MHz  
PCLK = 65 MHz  
for jitter freq < 2 MHz  
1150  
EQ = OFF,  
SSCG = OFF,  
PCLK = 65 MHz  
Deserializer input jitter  
tolerance, Figure 16  
tIJT  
for jitter freq > 6 MHz  
0.5  
UI  
BIST Mode  
BIST PASS valid time,  
BISTEN = 1, Figure 17  
SSCG Mode  
tPASS  
1
10  
µs  
Spread spectrum clocking  
deviation frequency  
PCLK = 5 to 65 MHz,  
SSC[3:0] = ON  
fDEV  
Under typical conditions  
Under typical conditions  
±0.5%  
8
±2%  
Spread spectrum clocking  
modulation frequency  
PCLK = 5 to 65 MHz,  
SSC[3:0] = ON  
fMOD  
100 kHz  
(1) tDDLT is the time required by the deserializer to obtain lock when exiting power-down state with an active PCLK.  
(2) tPLD is the time required by the serializer to obtain lock when exiting power-down state with an active PCLK.  
(3) tDPJ is the maximum amount the period is allowed to deviate over many samples.  
(4) Specification is ensured by characterization and is not tested in production.  
(5) Specification is ensured by design and is not tested in production.  
(6) Specification is ensured by characterization and is not tested in production.  
(7) tDCCJ is the maximum amount of jitter between adjacent clock cycles.  
16  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
A
B
A'  
C
C
Scope  
A
B
50W  
50W  
B'  
50W  
50W  
Figure 1. Serializer Test Circuit  
DOUT+  
VOD-  
VOD+  
DOUT-  
GND  
VOS  
VOD+  
(DOUT+) - (DOUT+  
)
0V  
VODp-p  
VOD-  
Figure 2. Serializer Output Waveforms  
+VOD  
80%  
(DOUT+) - (DOUT-)  
0V  
20%  
-VOD  
t
t
LHLT  
LLHT  
Figure 3. Serializer Output Transition Times  
t
t
TCIL  
t
TCIH  
TCP  
V
DDIO  
PCLK  
w/ RFB = L  
80%  
20%  
1/2 V  
DDIO  
GND  
tCLKT  
tCLKT  
V
DDIO  
V
V
IHmin  
ILmax  
RGB[n],  
VS, HS, DE  
GND  
t
t
DIH  
DIS  
Figure 4. Serializer Input PCLK Waveform and Set and Hold Times  
Copyright © 2009–2019, Texas Instruments Incorporated  
17  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
PDB  
1/2 V  
DDIO  
PCLK  
"X"  
active  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
OD  
= 0V  
Figure 5. Serializer Lock Time  
1/2 V  
DDIO  
PDB  
PCLK  
active  
"X"  
t
XZD  
DOUT  
(Diff.)  
active  
Driver OFF, V  
OD  
= 0V  
Figure 6. Serializer Disable Time  
RGB[7:0],  
SYMBOL N  
SYMBOL N+1  
HS, VS, DE  
t
SD  
PCLK  
(RFB = L)  
START  
BIT  
STOP START  
BIT BIT  
STOP  
BIT  
DOUT  
(Diff.)  
0
1
2
27  
0
1
2
27  
SYMBOL N-1  
SYMBOL N  
Figure 7. Serializer Latency Delay  
18  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
t
t
DJIT  
DJIT  
VOD (+)  
DOUT  
(Diff.)  
TxOUT_E_O  
0V  
VOD (-)  
t
(1 UI)  
BIT  
Figure 8. Serializer Output Jitter  
V
DDIO  
PCLK  
w/ RFB = L  
GND  
V
DDIO  
RGB[n] (odd),  
VS, HS  
GND  
V
DDIO  
RGB[n] (even),  
DE  
GND  
Figure 9. Checkerboard Data Pattern  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
Figure 10. Deserializer LVCMOS Transition Times  
START  
BIT  
STOP START  
BIT BIT  
STOP  
BIT  
RIN  
0
1
2
27  
0
1
2
27  
(Diff.)  
SYMBOL N  
SYMBOL N+1  
t
DD  
PCLK  
(RFB = L)  
RGB[7:0],  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
HS, VS, DE  
Figure 11. Deserializer Delay – Latency  
Copyright © 2009–2019, Texas Instruments Incorporated  
19  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
1/2 V  
PDB  
DDIO  
RIN  
(Diff.)  
active  
"X"  
t
XZR  
PCLK,  
RGB[7:0],  
DE, HS, VS,  
PASS, LOCK  
active  
Z (TRI-STATE)  
Figure 12. Deserializer Disable Time (OSS_SEL = 0)  
2.0V  
PDB  
0.8V  
RIN  
(Diff.)  
Don‘t Care  
t
DDLT  
TRI-STATE  
or LOW  
LOCK  
Z or L  
t
RxZ  
RGB[7:0],  
HS, VS, DE  
TRI-STATE or LOW or Pulled Up  
Z or L or PU  
PCLK  
(RFB = L)  
TRI-STATE or LOW  
IN LOCK TIME  
Z or L  
OFF  
OFF  
ACTIVE  
Figure 13. Deserializer PLL Lock Times and PDB TRI-STATE Delay  
V
DDIO  
PCLK  
w/ RFB = H  
1/2 V  
DDIO  
GND  
V
DDIO  
RGB[n],  
VS, HS, DE  
1/2 V  
DDIO  
GND  
t
t
ROH  
ROS  
Figure 14. Deserializer Output Data Valid (Set-up and Hold) Times With SSCG = Off  
20  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
V
DDIO  
PCLK  
w/ RFB = H  
1/2 V  
DDIO  
GND  
RGB[n],  
VS, HS, DE  
1/2 V  
DDIO  
1/2 V  
V
DDIO  
DDIO  
GND  
t
t
ROH  
ROS  
Figure 15. Deserializer Output Data Valid (Set-up and Hold) Times With SSCG = On  
Ideal Data  
Bit End  
Sampling  
Window  
Ideal Data Bit  
Beginning  
V
TH  
0V  
RxIN_TOL  
Left  
RxIN_TOL  
Right  
V
TL  
Ideal Center Position (t /2)  
BIT  
t
(1 UI)  
BIT  
tRJIT = RxIN_TOL (Left + Right)  
Sampling Window = 1 UI - t  
RJIT  
Figure 16. Receiver Input Jitter Tolerance  
BISTEN  
1/2 V  
DDIO  
tPASS  
PASS  
(w/ errors)  
1/2 V  
DDIO  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Result Held  
Figure 17. BIST PASS Waveform  
SDA  
t
BUF  
t
t
f
LOW  
t
t
r
HD;STA  
t
t
SP  
t
f
r
SCL  
t
t
SU;STA  
t
HD;STA  
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 18. Serial Control Bus Timing Diagram  
Copyright © 2009–2019, Texas Instruments Incorporated  
21  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
7.13 Typical Characteristics  
Figure 20. CMLOUT VOD vs Ambient Temperature  
Figure 19. Differential Output Voltage vs Ambient  
Temperature  
22  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
8 Detailed Description  
8.1 Overview  
The DS90UR90xQ-Q1 chipset transmits and receives 27-bits of data (24-high speed color bits and 3 low speed  
video control signals) over a single serial FPD-Link II pair operating at 140Mbps to 1.82Gbps. The serial stream  
also contains an embedded clock, video control signals and the DC-balance information which enhances signal  
quality and supports AC coupling. The pair is intended for use with each other but is backward-compatible with  
previous generations of FPD-Link II as well.  
The deserializer can attain lock to a data stream without the use of a separate reference clock source, which  
greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the serializer  
regardless of the data pattern, delivering true automatic plug and lock performance. It can lock to the incoming  
serial stream without the need of special training patterns or sync characters. The deserializer recovers the clock  
and data by extracting the embedded clock information, validating and then deserializing the incoming data  
stream providing a parallel LVCMOS video bus to the display.  
The DS90UR90xQ-Q1 chipset can operate in 24-bit color depth (with VS,HS,DE encoded in the DCA bit) or in  
18-bit color depth (with VS, HS, DE encoded in DCA or mapped into the high-speed data bits). In 18–bit color  
applications, the three video signals maybe sent encoded via the DCA bit (restrictions apply) or sent as data bits  
along with three additional general-purpose signals.  
Functional Block Diagrams shows the diagrams for the chipsets.  
8.2 Functional Block Diagrams  
VODSEL  
De-Emph  
24  
RGB[7:0]  
HS  
DOUT+  
VS  
DE  
DOUT-  
RFB  
Pattern  
Generator  
PCLK  
PLL  
CONFIG[1:0]  
PDB  
Timing and  
Control  
SCL  
SCA  
ID[x]  
BISTEN  
Figure 21. DS90UR905Q-Q1 – Serializer  
Copyright © 2009–2019, Texas Instruments Incorporated  
23  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
Functional Block Diagrams (continued)  
STRAP INPUT  
SSCG  
CONFIG [1:0]  
LF_MODE  
OS_PCLK/DATA  
OSS_SEL  
RFB  
EQ [3:0]  
OSC_SEL [2:0]  
SSC [3:0]  
MAPSEL [1:0]  
CMF  
24  
RGB [7:0]  
HS  
VS  
DE  
RIN+  
RIN-  
STRAP INPUT  
Error  
Detector  
PASS  
OP_LOW  
BISTEN  
PDB  
Clock and  
Data  
Recovery  
PCLK  
LOCK  
Timing and  
Control  
SCL  
SCA  
ID[x]  
Figure 22. DS90UR906Q-Q1 – Deserializer  
8.3 Feature Description  
8.3.1 Data Transfer  
The DS90UR90xQ-Q1 chipset will transmit and receive a pixel of data in the following format: C1 and C0  
represent the embedded clock in the serial stream. C1 is always HIGH and C0 is always LOW. b[23:0] contain  
the scrambled RGB data. DCB is the DC-Balanced control bit. DCB is used to minimize the short and long-term  
DC bias on the signal lines. This bit determines if the data is unmodified or inverted. DCA is used to validate data  
integrity in the embedded data stream and can also contain encoded control (VS, HS, DE). Both DCA and DCB  
coding schemes are generated by the serializer and decoded by the deserializer automatically. Figure 23  
illustrates the serial stream per PCLK cycle.  
NOTE  
The figure only illustrates the bits but does not actually represent the bit location as the  
bits are scrambled and balanced continuously.  
b
1
0
b
1
1
D
C
A
b
0
b
1
b
2
b
3
b
5
b
9
C
1
b
4
b
6
b
7
b
8
D
C
B
b
1
2
b
1
3
b
1
4
b
1
5
b
1
6
b
1
7
b
1
8
b
1
9
b
2
0
b
2
1
b
2
2
b
2
3
C
0
Figure 23. FPD-Link II Serial Stream (DS90UR90xQ-Q1)  
24  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Feature Description (continued)  
8.3.2 Video Control Signal Filter — Serializer and Deserializer  
When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled:  
DE and HS: Only 2 transitions per 130 clock cycles are transmitted, the transition pulse must be 3 PCLK  
or longer.  
Normal Mode with Control Signal Filter Disabled:  
DE and HS: Only 2 transitions per 130 clock cycles are transmitted, no restriction on minimum transition  
pulse.  
VS: Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal  
can cause a visual display error. This feature allows for the chipset to validate and filter out any high frequency  
noise on the control signals (see Figure 24).  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
Filetered OUT  
HS/VS/DE  
OUT  
Figure 24. Video Control Signal Filter Waveform  
8.3.3 Serializer Functional Description  
The serializer converts a wide parallel input bus to a single serial output data stream, and also acts as a signal  
generator for the chipset Built-In Self Test (BIST) mode. The device can be configured via external pins or  
through the optional serial control bus. The serializer features enhance signal quality on the link by supporting: a  
selectable VOD level, a selectable de-emphasis signal conditioning and also the FPD-Link II data coding that  
provides randomization, scrambling, and DC balancing of the video data. The serializer includes multiple features  
to reduce EMI associated with display data transmission. This includes the randomization and scrambling of the  
data and also the system spread spectrum PCLK support. The serializer features power saving features with a  
sleep mode, auto stop clock feature, and optional LVCMOS (1.8 V) parallel bus compatibility.  
See also the Functional Description of the chipset's serial control bus and BIST modes.  
8.3.3.1 EMI Reduction Features  
8.3.3.1.1 Serializer Spread Spectrum Compatibility  
The serializer PCLK is capable of tracking spread spectrum clocking (SSC) from a host source. The PCLK will  
accept spread spectrum tracking up to 35 kHz modulation and ±0.5, ±1 or ±2% deviations (center spread). The  
maximum conditions for the PCLK input are: a modulation frequency of 35 kHz and amplitude deviations of ±2%  
(4% total).  
Copyright © 2009–2019, Texas Instruments Incorporated  
25  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (continued)  
8.3.3.2 Signal Quality Enhancers  
8.3.3.2.1 Serializer VOD Select (VODSEL)  
The serializer differential output voltage may be increased by setting the VODSEL pin High. When VODSEL is  
Low, the VOD is at the standard (default) level. When VODSEL is High, the DC VOD is increased in level. The  
increased VOD is useful in extremely high noise environments and also on extra long cable length applications.  
When using de-emphasis it is recommended to set VODSEL = H to avoid excessive signal attenuation especially  
with the larger de-emphasis settings. This feature may be controlled by the external pin or by register.  
Table 1. Differential Output Voltage  
INPUT  
EFFECT  
VODSEL  
VOD (mV)  
±420  
VOD (mVp-p)  
H
L
840  
560  
±280  
8.3.3.2.2 Serializer De-Emphasis (De-Emph)  
The De-Emph pin controls the amount of de-emphasis beginning one full bit time after a logic transition that the  
serializer drives. This is useful to counteract loading effects of long or lossy cables. This pin should be left open  
for standard switching currents (no de-emphasis) or if controlled by register. De-emphasis is selected by  
connecting a resistor on this pin to ground, with R value between 0.5 kto 1 M, or by register setting. When  
using De-Emphasis, TI recommends to set VODSEL = H.  
Table 2. De-Emphasis Resistor Value  
RESISTOR VALUE (K)  
DE-EMPHASIS SETTING  
Open  
0.6  
Disabled  
–12 dB  
–9 dB  
1.0  
2.0  
–6 dB  
5.0  
–3 dB  
0.00  
VDD = 1.8V,  
= 25oC  
T
A
-2.00  
-4.00  
-6.00  
-8.00  
-10.00  
-12.00  
-14.00  
1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06  
R VALUE - LOG SCALE (W)  
Figure 25. De-Emph vs. R value  
8.3.3.3 Power-Saving Features  
8.3.3.3.1 Serializer Power-down Feature (PDB)  
The serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin is controlled by the host  
and is used to save power, disabling the link when the display is not needed. In the power-down mode, the high-  
speed driver outputs are both pulled to VDD and present a 0-V VOD state.  
26  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
NOTE  
In power down, the optional Serial Bus Control Registers are RESET.  
8.3.3.3.2 Serializer Stop Clock Feature  
The serializer will enter a low power SLEEP state when the PCLK is stopped. A STOP condition is detected  
when the input clock frequency is less than 3 MHz. The clock should be held at a static LOW or HIGH state.  
When the PCLK starts again, the Ser will then lock to the valid input PCLK and then transmits the RGB data to  
the deserializer.  
NOTE  
In STOP CLOCK SLEEP, the optional Serial Bus Control Registers values are  
RETAINED.  
8.3.3.3.3 1.8-V or 3.3-V VDDIO Operation  
The serializer parallel bus and serial bus interface can operate with 1.8 V or 3.3 V levels (VDDIO) for host  
compatibility. The 1.8 V levels will offer lower noise (EMI) and also a system power savings.  
8.3.3.4 Serializer Pixel Clock Edge Select (RFB)  
The RFB pin determines the edge that the data is latched on. If RFB is High, input data is latched on the Rising  
edge of the PCLK. If RFB is Low, input data is latched on the Falling edge of the PCLK. serializer and  
deserializer maybe set differently. This feature may be controlled by the external pin or by register.  
8.3.3.5 Optional Serial Bus Control  
See Optional Serial Bus Control.  
8.3.3.6 Optional BIST Mode  
See Built-In Self Test (BIST).  
8.3.4 Deserializer Functional Description  
The deserializer converts a single input serial data stream to a wide parallel output bus, and also provides a  
signal check for the chipset Built-In Self Test (BIST) mode. The device can be configured via external pins and  
strap pins or through the optional serial control bus. The deserializer features enhance signal quality on the link  
by supporting: an equalizer input and also the FPD-Link II data coding that provides randomization, scrambling,  
and DC balanacing of the data. The deserializer includes multiple features to reduce EMI associated with display  
data transmission. This includes the randomization and scrambling of the data and also the output spread  
spectrum clock generation (SSCG) support. The deserializer features power saving features with a power-down  
mode, and optional LVCMOS (1.8 V) interface compatibility.  
8.3.4.1 Signal Quality Enhancers  
8.3.4.1.1 Deserializer Input Equalizer Gain (EQ)  
The deserializer can enable receiver input equalization of the serial stream to increase the eye opening to the  
deserializer input.  
NOTE  
This function cannot be seen at the RxIN± input but can be observed at the serial test port  
(CMLOUTP/N) enabled through the Serial Bus control registers. The equalization feature  
may be controlled by the external pin or by register.  
Copyright © 2009–2019, Texas Instruments Incorporated  
27  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
Table 3. Receiver Equalization Configuration Table  
INPUTS  
EFFECT  
EQ3  
L
EQ2  
L
EQ1  
L
EQ0  
H
1.5 dB  
3 dB  
L
L
H
L
H
L
H
H
L
H
4.5 dB  
6 dB  
L
H
L
H
H
H
H
H
X
H
7.5 dB  
9 dB  
L
H
L
H
H
H
X
H
10.5 dB  
12 dB  
OFF(1)  
H
X
H
L
(1) Default Setting is EQ = Off  
8.3.4.2 EMI Reduction Features  
8.3.4.2.1 Deserializer Output Slew (OS_PCLK/DATA)  
The parallel bus outputs (RGB[7:0], VS, HS, DE and PCLK) of the deserializer feature a selectable output slew.  
The DATA (RGB[7:0], VS, HS, DE) are controlled by strap pin or register bit OS_DATA. The PCLK is controlled  
by strap pin or register bit OS_PCLK. When the OS_PCLK/DATA = HIGH, the maximum slew rate is selected.  
When the OS_PCLK/DATA = LOW, the minimum slew rate is selected. Use the higher slew rate setting when  
driving longer traces or a heavier capacitive load.  
8.3.4.2.2 Deserializer Common-Mode Filter Pin (CMF) — Optional  
The deserializer provides access to the center tap of the internal termination. A capacitor may be placed on this  
pin for additional common-mode filtering of the differential pair. This can be useful in high noise environments for  
additional noise rejection capability. A 0.1-µF capacitor may be connected to this pin to Ground.  
8.3.4.2.3 Deserializer SSCG Generation — Optional  
The deserializer provides an internally generated spread spectrum clock (SSCG) to modulate its outputs. Both  
clock and data outputs are modulated. This will aid to lower system EMI. Output SSCG deviations to ±2.0% (4%  
total) at up to 35kHz modulations nominally are available (see Table 4). This feature may be controlled by  
external STRAP pins or by register.  
Table 4. SSCG Configuration (LF_MODE = L) — Deserializer Output  
SSC[3:0] INPUTS  
RESULT  
LF_MODE = L (20 to 65 MHz)  
SSC3  
SSC2  
SSC1  
SSC0  
FDEV (%)  
Off  
FMOD (kHz)  
L
L
L
L
L
L
L
H
L
Off  
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
±2.0  
L
L
H
H
L
PCLK/2168  
PCLK/1300  
PCLK/868  
L
L
H
L
L
H
H
H
H
L
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
H
L
L
H
L
L
H
H
L
L
H
L
H
28  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Table 4. SSCG Configuration (LF_MODE = L) — Deserializer Output (continued)  
SSC[3:0] INPUTS  
RESULT  
LF_MODE = L (20 to 65 MHz)  
SSC3  
SSC2  
SSC1  
SSC0  
FDEV (%)  
±0.5  
FMOD (kHz)  
H
H
H
H
H
H
L
H
H
H
L
±1.0  
PCLK/650  
H
±1.5  
Table 5. SSCG Configuration (LF_MODE = H) — Deserializer Output  
SSC[3:0] INPUTS  
RESULT  
LH_MODE = H (5 to 20 MHz)  
SSC3  
L
SSC2  
L
SSC1  
L
SSC0  
L
FDEV (%)  
Off  
FMOD (kHz)  
Off  
L
L
L
H
L
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
L
L
H
H
L
PCLK/620  
PCLK/370  
L
L
H
L
L
H
H
H
H
L
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
H
H
H
H
L
L
H
L
L
H
H
L
PCLK/258  
PCLK/192  
L
H
L
H
H
H
H
L
H
L
H
H
H
Frequency  
fdev(max)  
F
F
PCLK+  
F
PCLK  
fdev(min)  
PCLK-  
Time  
1/fmod  
Figure 26. SSCG Waveform  
8.3.4.2.4 1.8-V or 3.3-V VDDIO Operation  
The deserializer parallel bus and Serial Bus Interface can operate with 1.8 V or 3.3 V levels (VDDIO) for target  
(Display) compatibility. The 1.8-V levels will offer a lower noise (EMI) and also a system power-savings.  
Copyright © 2009–2019, Texas Instruments Incorporated  
29  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.4.3 Power-Saving Features  
8.3.4.3.1 Deserializer Power-Down Feature (PDB)  
The deserializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by  
the system to save power, disabling the deserializer when the display is not needed. An auto detect mode is also  
available. In this mode, the PDB pin is tied High and the deserializer will enter power down when the serial  
stream stops. When the serial stream starts up again, the deserializer will lock to the input stream and assert the  
LOCK pin and output valid data. In power-down mode, the Data and PCLK output states are determined by the  
OSS_SEL status.  
NOTE  
In power down, the optional Serial Bus Control Registers are RESET.  
8.3.4.3.2 Deserializer Stop Stream SLEEP Feature  
The deserializer will enter a low power SLEEP state when the input serial stream is stopped. A STOP condition  
is detected when the embedded clock bits are not present. When the serial stream starts again, the deserializer  
will then lock to the incoming signal and recover the data.  
NOTE  
In STOP STREAM SLEEP, the optional Serial Bus Control Registers values are  
RETAINED.  
8.3.4.4 Deserializer CLOCK-DATA RECOVERY STATUS FLAG (LOCK) and OUTPUT STATE SELECT  
(OSS_SEL)  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK goes from TRI-STATE to  
LOW (depending on the value of the OSS_SEL setting). After the DS90UR906Q-Q1 completes its lock sequence  
to the input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial  
input is available on the parallel bus and PCLK outputs. The PCLK output is held at its current state at the  
change from OSC_CLK (if this is enabled via OSC_SEL) to the recovered clock (or vice versa).  
If there is a loss of clock from the input serial stream, LOCK is driven Low and the state of the RGB/VS/HS/DE  
outputs are based on the OSS_SEL setting (STRAP PIN configuration or register).  
8.3.4.5 Deserializer Oscillator Output (Optional)  
The deserializer provides an optional PCLK output when the input clock (serial stream) has been lost. This is  
based on an internal oscillator. The frequency of the oscillator may be selected. This feature may be controlled  
by the external pin or by register (see Table 7 and Table 8).  
Table 6. OSS_SEL and PDB Configuration — Deserializer Outputs(1)  
INPUTS  
PDB  
OUTPUTS  
RGB/HS/VS/DE  
SERIAL  
INPUT  
OSS_SEL  
PCLK  
LOCK  
PASS  
X
L
X
L
Z
L
Z
L
Z
L
Z
L
Static  
Static  
Active  
H
H
H
H
X
Z
Z*  
L
L
Active  
Active  
H
H
(1) If pin is strapped HIGH, output will be pulled up  
30  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Table 7. OSC (Oscillator) Mode — Deserializer Output(1)  
INPUTS  
OUTPUTS  
EMBEDDED PCLK  
PCLK  
RGB/HS/VS/DE  
LOCK  
PASS  
NOTE *  
OSC  
L
L
L
Output  
Present  
Toggling  
Active  
H
H
(1) Absent and OSC_SEL 000  
PDB  
(DES)  
RIN  
(Diff.)  
active serial stream  
X
H
H
LOCK  
Z
L
L
L
Z
L
L
L
RGB[7:0],  
HS, VS, DE  
L
L
PCLK*  
(DES)  
H
H
PASS  
L
L
Z
Z
C0 or C1 Error  
In Bit Stream  
(Loss of LOCK)  
Locking  
Active  
Active  
OFF  
OFF  
CONDITIONS: * RFB = L, and OSS_SEL = L  
Figure 27. Deserializer Outputs With Output State Select Low (OSS_SEL = L)  
PDB  
(DES)  
RIN  
(Diff.)  
active serial stream  
X
H
H
LOCK  
L
Z
Z
Z
Z
Z
L
Z
Z
Z
RGB[7:0],  
HS, VS, DE  
PCLK*  
(DES)  
H
H
PASS  
L
L
Z
Z
Locking  
Active  
C0 or C1 Error  
In Bit Stream  
(Loss of LOCK)  
Active  
OFF  
OFF  
CONDITIONS: * RFB = L, and OSS_SEL = H  
Figure 28. Deserializer Outputs With Output State Select High (OSS_SEL = H)  
Copyright © 2009–2019, Texas Instruments Incorporated  
31  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
Table 8. OSC_SEL (Oscillator) Configuration  
OSC_SEL[2:0] INPUTS  
PCLK OSCILLATOR OUTPUT  
OSC_SEL2  
OSC_SEL1  
OSC_SEL0  
L
L
L
L
L
H
L
Off – Feature Disabled – Default  
50 MHz ±40%  
L
H
H
L
25 MHz ±40%  
L
H
L
16.7 MHz ±40%  
12.5 MHz ±40%  
10 MHz ±40%  
H
H
H
H
L
H
L
H
H
8.3 MHz ±40%  
H
6.3 MHz ±40%  
PDB  
(DES)  
RIN  
(Diff.)  
active serial stream  
X
H
H
LOCK  
Z
L
L
L
L
L
Z
L
L
RGB[7:0],  
HS, VS, DE  
PCLK*  
(DES)  
f
f
H
H
PASS  
L
Z
L
Z
Locking  
Active  
C0 or C1 Error  
In Bit Stream  
(Loss of LOCK)  
Active  
OFF  
OFF  
CONDITIONS: * RFB = L, OSS_SEL = H , and OSC_SEL not equal to 000.  
Figure 29. Deserializer Outputs with Output State High and PCLK Output Oscillator Option Enabled  
8.3.4.6 Deserializer OP_LOW (Optional)  
The OP_ LOW feature is used to hold the LVCMOS outputs (except the LOCK output) at a LOW state. The user  
must toggle the OP_LOW Set / Reset register bit to release the outputs to the normal toggling state.  
NOTE  
The release of the outputs can only occur when LOCK is HIGH. When the OP_LOW  
feature is enabled, anytime LOCK = LOW, the LVCMOS outputs will toggle to a LOW  
state again. The OP_ LOW strap pin feature is assigned to output PASS pin 42.  
Restrictions on other straps:  
1. Other straps should not be used in order to keep RGB[7:0], HS, VS, DE, and PCLK at a true LOW state.  
Other features should be selected through I2C.  
2. OSS_SEL function is not available when O/P_LOW is tied H.  
Outputs RGB[7:0], HSYNC, VSYNC, DE, and PCLK are in TRI-STATE before PDB toggles HIGH because the  
OP_LOW strap value has not been recognized until the DS90UR906Q-Q1 powers up. Figure 30 shows the user  
controlled release of OP_LOW and automatic reset of OP_LOW set on the falling edge of LOCK. Figure 31  
shows the user controlled release of OP_LOW and manual reset of OP_LOW set.  
32  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
NOTE  
Manual reset of OP_LOW can only occur when LOCK is H.  
2.0V  
PDB  
LOCK  
OP_ LOW  
SET  
(Strap pin)  
User  
User  
controlled  
controlled  
OP_ LOW  
RELEASE/SET  
(Register)  
RGB[7:0],  
HS, VS, DE  
TRI-  
STATE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TRI-  
STATE  
PCLK  
Figure 30. OP_LOW Auto Set  
2.0V  
PDB  
LOCK  
OP_LOW  
SET  
(Strap pin)  
User  
controlled  
User  
controlled  
OP_ LOW  
RELEASE/SET  
(Register)  
RGB[7:0],  
HS, VS, DE  
TRI-  
STATE  
ACTIVE  
ACTIVE  
TRI-  
STATE  
PCLK  
Figure 31. OP_LOW Manual Set/Reset  
Copyright © 2009–2019, Texas Instruments Incorporated  
33  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.4.7 Deserializer Pixel Clock Edge Select (RFB)  
The RFB pin determines the edge that the data is strobed on. If RFB is High, output data is strobed on the Rising  
edge of the PCLK. If RFB is Low, data is strobed on the Falling edge of the PCLK. This allows for inter-  
operability with downstream devices. The deserializer output does not need to use the same edge as the  
serializer input. This feature may be controlled by the external pin or by register.  
8.3.4.8 Deserializer Control Signal Filter (Optional)  
The deserializer provides an optional Control Signal (VS, HS, DE) filter that monitors the three video control  
signals and eliminates any pulses that are 1 or 2 PCLKs wide. Control signals must be 3 pixel clocks wide (in its  
HIGH or LOW state, regardless of which state is active). This is set by the CONFIG[1:0] or by the Control  
Register. This feature may be controlled by the external pin or by Register.  
8.3.4.9 Deserializer Low Frequency Optimization (LF_Mode)  
This feature may be controlled by the external pin or by Register.  
8.3.4.10 Deserializer Map Select  
This feature may be controlled by the external pin or by register.  
Table 9. Map Select Configuration  
INPUTS  
Effect  
MAPSEL1  
MAPSEL0  
L
L
Bit 4, Bit 5 on LSB  
DEFAULT  
L
H
LSB 0 or 1  
LSB 0  
H
H or L  
8.3.4.11 Deserializer Strap Input Pins  
Configuration of the device maybe done through configuration input pins and the STRAP input pins, or through  
the Serial Control Bus. The STRAP input pins share select parallel bus output pins. They are used to load in  
configuration values during the initial power-up sequence of the device. Only a pullup on the pin is required when  
a HIGH is desired. By default the pad has an internal pulldown, and will bias Low by itself. The recommended  
value of the pullup is 10 kΩ to VDDIO; open (NC) for Low, no pulldown is required (internal pulldown). If using the  
Serial Control Bus, no pullups are required.  
8.3.4.12 Optional Serial Bus Control  
See Optional Serial Bus Control.  
8.3.4.13 Optional BIST Mode  
See Built-In Self Test (BIST).  
8.3.5 Built-In Self Test (BIST)  
An optional At-Speed Built In Self Test (BIST) feature supports the testing of the high-speed serial link. This is  
useful in the prototype stage, equipment production, in-system test and also for system diagnostics. In the BIST  
mode only a input clock is required along with control to the serializer and deserializer BISTEN input pins. The  
Ser outputs a test pattern (PRBS7) and drives the link at speed. The deserializer detects the PRBS7 pattern and  
monitors it for errors. A PASS output pin toggles to flag any payloads that are received with 1 to 24 errors. Upon  
completion of the test, the result of the test is held on the PASS output until reset (new BIST test or power  
down). A high on PASS indicates NO ERRORS were detected. A Low on PASS indicates one or more errors  
were detected. The duration of the test is controlled by the pulse width applied to the deserializer BISTEN pin.  
During the BIST duration the deserializer data outputs toggle with a checkerboard pattern.  
Inter-operability is supported between this FPD-Link II device and all FPD-Link II generations (Gen 1, 2, 3). See  
Sample BIST Sequence for entering BIST mode and control.  
34  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
8.3.5.1 Sample BIST Sequence  
See Figure 32 for the BIST mode flow diagram.  
Step 1: Place the DS90UR905Q-Q1 serializer in BIST Mode by setting serializer BISTEN = H. For the  
DS90UR905Q-Q1 serializer or DS99R421 FPD-Link II serializer BIST Mode is enabled through the BISTEN pin.  
For the DS90C241 serializer or DS90UR241 serializer, BIST mode is enetered by setting all the input data of the  
device to LOW state. A PCLK is required for all the serializer options. When the deserializer detects the BIST  
mode pattern and command (DCA and DCB code) the RGB and control signal outputs are shut off.  
Step 2: Place the DS90UR906Q-Q1 deserializer in BIST mode by setting the BISTEN = H. The deserializer is  
now in the BIST mode and checks the incoming serial payloads for errors. If an error in the payload (1 to 24) is  
detected, the PASS pin will switch low for one half of the clock period. During the BIST test, the PASS output can  
be monitored and counted to determine the payload error rate.  
Step 3: To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the  
data and the final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If  
there was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new  
BIST is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the  
BISTEN signal.  
Step 4: To return the link to normal operation, the serializer BISTEN input is set Low. The Link returns to normal  
operation.  
Figure 33 shows the waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2  
shows one with multiple errors. In most cases it is difficult to generate errors due to the robustness of the link  
(differential data transmission etc.), thus they may be introduced by greatly extending the cable length, faulting  
the interconnect, reducing signal condition enhancements (De-Emphasis, VODSEL, or Rx Equalization).  
Normal  
Step 1: SER in BIST  
BIST  
Wait  
Step 2: Wait, DES in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: SER in Normal  
Figure 32. BIST Mode Flow Diagram  
8.3.5.2 BER Calculations  
It is possible to calculate the approximate Bit Error Rate (BER). The following is required:  
Pixel Clock Frequency (MHz)  
BIST Duration (seconds)  
BIST test Result (PASS)  
The BER is less than or equal to one over the product of 24 times the PCLK rate times the test duration. If we  
assume a 65-MHz PCLK, a 10 minute (600 seconds) test, and a PASS, the BERT is 1.07 × 10E-12.  
The BIST mode runs a check on the data payload bits. The LOCK pin also provides a link status. It the recovery  
of the C0 and C1 bits does not reconstruct the expected clock signal, the LOCK pin will switch Low. The  
combination of the LOCK and At-Speed BIST PASS pin provides a powerful tool for system evaluation and  
performance monitoring.  
Copyright © 2009–2019, Texas Instruments Incorporated  
35  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
BISTEN  
(SER)  
BISTEN  
(DES)  
PCLK  
(RFB = L)  
RGB[7:0]  
HS, VS, DE  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
PRBS  
Normal  
BIST Test  
BIST Duration  
Figure 33. BIST Waveforms  
36  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
8.3.6 Optional Serial Bus Control  
The serializer and deserializer may also be configured by the use of a serial control bus that is I2C protocol  
compatible. By default, the I2C reg_0x00'h is set to 00'h and all configuration is set by control/strap pins. A write  
of 01'h to reg_0x00'h will enable or allow configuration by registers; this will override the control/strap pins.  
Multiple devices may share the serial control bus since multiple addresses are supported (see Figure 34).  
The serial bus is comprised of three pins. The SCL is a serial bus clock Input. The SDA is the serial bus data  
input/output signal. Both SCL and SDA signals require an external pullup resistor to VDDIO. For most applications  
a 4.7-k pullup resistor to VDDIO may be used. The resistor value may be adjusted for capacitive loading and data  
rate requirements. The signals are either pulled High, or driven Low.  
1.8V  
10 k  
V
DDIO  
ID[X]  
4.7k  
4.7k  
SER  
or  
DES  
R
ID  
HOST  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 34. Serial Control Bus Connection  
The third pin is the ID[X] pin. This pin sets one of four possible device addresses. Two different connections are  
possible. The pin may be pulled to VDD (1.8V, NOT VDDIO) with a 10 kresistor; or a 10-kpullup resistor (to  
VDD1.8V, NOT VDDIO) and a pulldown resistor of the recommended value to set other three possible addresses  
may be used. See Table 10 for the serializer and Table 11 for the deserializer. Do not tie ID[x] directly to VSS.  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transition High while SCL is also HIGH (see  
Figure 35).  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
Figure 35. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 36 and a WRITE is shown in Figure 37.  
NOTE  
During initial power-up, a delay of 10 ms will be required before the I2C will respond.  
Copyright © 2009–2019, Texas Instruments Incorporated  
37  
 
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
If the Serial Bus is not required, the three pins may be left open (NC).  
Table 10. ID[x] Resistor Value – DS90UR905Q-Q1 Serializer  
RESISTOR  
ADDRESS  
ADDRESS  
RID(1) k(5% TOL)  
7'b  
8'b  
0 APPENDED  
(WRITE)  
0.47  
2.7  
7b' 110 1001 (h'69)  
7b' 110 1010 (h'6A)  
7b' 110 1011 (h'6B)  
7b' 110 1110 (h'6E)  
8b' 1101 0010 (h'D2)  
8b' 1101 0100 (h'D4)  
8b' 1101 0110 (h'D6)  
8b' 1101 1100 (h'DC)  
8.2  
Open  
(1) RID 0 Ω, do not connect directly to VSS (GND), this is not a valid address.  
Table 11. ID[x] Resistor Value – DS90UR906Q-Q1 Deserializer  
RESISTOR  
ADDRESS  
7'b  
ADDRESS  
8'b  
RID(1) k(5% TOL)  
0 APPENDED  
(WRITE)  
0.47  
2.7  
7b' 111 0001 (h'71)  
7b' 111 0010 (h'72)  
7b' 111 0011 (h'73)  
7b' 111 0110 (h'76)  
8b' 1110 0010 (h'E2)  
8b' 1110 0100 (h'E4)  
8b' 1110 0110 (h'E6)  
8b' 1110 1100 (h'EC)  
8.2  
Open  
(1) RID 0 Ω, do not connect directly to VSS (GND), this is not a valid address.  
Register Address Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
1
0
0
S
S
P
Figure 36. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
Figure 37. Serial Control Bus — WRITE  
8.4 Device Functional Modes  
8.4.1 Serializer and Deserializer Operating Modes and Backward Compatibility (CONFIG[1:0])  
The DS90UR90xQ-Q1 chipset is also backward-compatible with previous generations of FPD-Link II.  
Configuration modes are provided for backwards compatibility with the DS90C241 / DS90C124 FPD-Link II  
Generation 1, and also the DS90UR241 / DS90UR124 FPD-Link II Generation 2 chipset by setting the respective  
mode with the CONFIG[1:0] pins on the serializer or deserializer as shown in Table 12 and Table 13. The  
selection also determine whether the Video Control Signal filter feature is enabled or disabled in Normal mode.  
This feature may be controlled by pin or by Register.  
Table 12. DS90UR905Q-Q1 Serializer Modes  
CONFIG1  
CONFIG0  
MODE  
DESERIALIZER DEVICE  
DS90UR906Q-Q1  
DS90UR906Q-Q1  
DS90UR124, DS99R124  
DS90C124  
L
L
L
H
L
Normal Mode, Control Signal Filter disabled  
Normal Mode, Control Signal Filter enabled  
Backwards-Compatible GEN2  
Backwards-Compatible GEN1  
H
H
H
38  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Table 13. DS90UR906Q Deserializer Modes  
CONFIG1  
CONFIG0  
MODE  
SERIALIZER DEVICE  
DS90UR905Q-Q1  
DS90UR905Q-Q1  
DS90UR241  
L
L
L
H
L
Normal Mode, Control Signal Filter disabled  
Normal Mode, Control Signal Filter enabled  
Backwards-Compatible GEN2  
Backwards-Compatible GEN1  
H
H
H
DS90C241  
8.5 Register Maps  
Table 14. SERIALIZER — Serial Bus Control Registers  
ADD  
(DEC)  
ADD  
(HEX) NAME  
REGISTER  
BIT(S)  
R/W  
DEFAULT  
(BIN)  
FUNCTION  
DESCRIPTION  
7
6
R/W  
R/W  
0
0
Reserved  
Reserved  
Reserved  
Reserved  
0: Low  
1: High  
5
4
R/W  
R/W  
0
0
VODSEL  
RFB  
0: Data latched on Falling edge of PCLK  
1: Data latched on Rising edge of PCLK  
00: Control Signal Filter Disabled  
01: Control Signal Filter Enabled  
10: DS90UR124, DS99R124 Mode  
11: DS90C124 Mode  
Serializer  
Config 1  
0
0
3:2  
1
R/W  
R/W  
00  
0
CONFIG  
SLEEP  
Note – not the same function as PowerDown (PDB)  
0: normal mode  
1: Sleep Mode – Register settings retained.  
0: Configurations set from control pins  
1: Configuration set from registers (except I2C_ID)  
0
7
R/W  
R/W  
0
0
REG  
0: Address from ID[x] Pin  
1: Address from Register  
REG ID  
Serial Bus Device ID, Four IDs are:  
7b '1101 001 (h'69)  
7b '1101 010 (h'6A)  
7b '1101 011 (h'6B)  
7b '1101 110 (h'6E)  
1
1
Device ID  
6:0  
7:5  
R/W  
R/W  
1101000  
ID[X]  
All other addresses are Reserved.  
000: set by external Resistor  
001: –1 dB  
010: –2 dB  
011: –3.3 dB  
100: –5 dB  
000  
De-E Setting  
De-Emphasis  
Control  
101: –6.7 dB  
110: –9 dB  
2
2
111: –12 dB  
0: De-Emphasis Enabled  
1: De-Emphasis Disabled  
4
R/W  
R/W  
0
De-E EN  
3:0  
000  
Reserved  
Reserved  
Copyright © 2009–2019, Texas Instruments Incorporated  
39  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
Table 15. DESERIALIZER — Serial Bus Control Registers  
ADD  
ADD REGISTER  
BIT(S) R/W  
DEFAULT  
(BIN)  
FUNCTION  
DESCRIPTION  
(DEC) (HEX) NAME  
0: 20 to 65 MHz Operation  
1: 5 to 20 MHz Operation  
7
6
5
4
R/W  
R/W  
R/W  
R/W  
0
0
0
0
LFMODE  
OS_PCLK  
OS_DATA  
RFB  
0: Normal PCLK Output Slew  
1: Increased PCLK Slew  
0: Normal DATA OUTPUT Slew  
1: Increased Data Slew  
0: Data strobed on Falling edge of PCLK  
1: Data strobed on Rising edge of PCLK  
Deserializer  
Config 1  
0
0
00: Normal Mode, Control Signal Filter Disabled  
01: Normal Mode, Control Signal Filter Enabled  
10: Backwards-Compatible (DS90UR241)  
11: Backwards-Compatible (DS90C241)  
3:2  
1
R/W  
R/W  
00  
0
CONFIG  
Note – not the same function as PowerDown (PDB)  
0: normal mode  
SLEEP  
1: Sleep Mode – Register settings retained.  
0: Configurations set from control pins / STRAP pins  
1: Configurations set from registers (except I2C_ID)  
0
7
R/W  
R/W  
0
0
REG Control  
0: Address from ID[X] Pin  
1: Address from Register  
Serial Bus Device ID, Four IDs are:  
7b '1110 001 (h'71)  
7b '1110 010 (h'72)  
1
1
Slave ID  
6:0  
R/W  
1110000  
ID[X]  
7b '1110 011 (h'73)  
7b '1110 110 (h'76)  
All other addresses are Reserved.  
0: set outputs state LOW (except LOCK)  
OP_LOW  
1: release output LOW state, outputs toggling  
7
6
R/W  
R/W  
0
0
Release/Set normally  
Note: This register only works during LOCK = 1.  
Output Sleep State Select  
0: PCLK/RGB[7:0]/HS/VS/DE = L, LOCK = Normal,  
PASS = H  
1: PCLK/RGB[7:0]/HS/VS/DE = Tri-State, LOCK =  
Normal, PASS = H  
OSS_SEL  
MAP_SEL  
Special for Backwards-Compatible Mode  
00: bit 4, 5 on LSB  
01: LSB zero if all data is zero; one if any data is one  
10: LSB zero  
5:4  
3
R/W  
R/W  
00  
0
Deserializer  
Features 1  
2
2
11: LSB zero  
0: strap will determine whether OP_LOW feature is  
ON or OFF  
1: Turns OFF OP_LOW feature  
OP_LOW  
strap bypass  
000: OFF  
001: 50 MHz ±40%  
010: 25 MHz ±40%  
011: 16.7 MHz ±40%  
100: 12.5 MHz ±40%  
101: 10 MHz ±40%  
110: 8.3 MHz ±40%  
111: 6.3 MHz ±40%  
2:0  
R/W  
00  
OSC_SEL  
40  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Table 15. DESERIALIZER — Serial Bus Control Registers (continued)  
ADD  
ADD REGISTER  
BIT(S) R/W  
DEFAULT  
(BIN)  
FUNCTION  
DESCRIPTION  
(DEC) (HEX) NAME  
000: 1.625 dB  
001: 3.25 dB  
010: 4.87 dB  
011: 6.5 dB  
100: 8.125 dB  
101: 9.75 dB  
110: 11.375 dB  
111: 13 dB  
7:5  
4
R/W  
R/W  
000  
0
EQ Gain  
0: EQ = disabled  
1: EQ = enabled  
EQ Enable  
IF LF_MODE = 0, then:  
000: SSCG OFF  
0001: fdev = ±0.5%, fmod = PCLK/2168  
0010: fdev = ±1.0%, fmod = PCLK/2168  
0011: fdev = ±1.5%, fmod = PCLK/2168  
0100: fdev = ±2.0%, fmod = PCLK/2168  
0101: fdev = ±0.5%, fmod = PCLK/1300  
0110: fdev = ±1.0%, fmod = PCLK/1300  
0111: fdev = ±1.5%, fmod = PCLK/1300  
1000: fdev = ±2.0%, fmod = PCLK/1300  
1001: fdev = ±0.5%, fmod = PCLK/868  
1010: fdev = ±1.0%, fmod = PCLK/868  
1011: fdev = ±1.5%, fmod = PCLK/868  
1100: fdev = ±2.0%, fmod = PCLK/868  
1101: fdev = ±0.5%, fmod = PCLK/650  
1110: fdev = ±1.0%, fmod = PCLK/650  
1111: fdev = ±1.5%, fmod = PCLK/650  
IF LF_MODE = 1, then:  
Deserializer  
Features 2  
3
3
3:0  
R/W  
0000  
SSC  
000: SSCG OFF  
0001: fdev = ±0.5%, fmod = PCLK/620  
0010: fdev = ±1.0%, fmod = PCLK/620  
0011: fdev = ±1.5%, fmod = PCLK/620  
0100: fdev = ±2.0%, fmod = PCLK/620  
0101: fdev = ±0.5%, fmod = PCLK/370  
0110: fdev = ±1.0%, fmod = PCLK/370  
0111: fdev = ±1.5%, fmod = PCLK/370  
1000: fdev = ±2.0%, fmod = PCLK/370  
1001: fdev = ±0.5%, fmod = PCLK/258  
1010: fdev = ±1.0%, fmod = PCLK/258  
1011: fdev = ±1.5%, fmod = PCLK/258  
1100: fdev = ±2.0%, fmod = PCLK/258  
1101: fdev = ±0.5%, fmod = PCLK/192  
1110: fdev = ±1.0%, fmod = PCLK/192  
1111: fdev = ±1.5%, fmod = PCLK/192  
Repeater  
Enable  
0: Output CMLOUTP/N = disabled  
1: Output CMLOUTP/N = enabled  
7
R/W  
R/W  
0
4
4
CMLOUT Config  
6:0  
0000000  
Reserved  
Reserved  
Copyright © 2009–2019, Texas Instruments Incorporated  
41  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Display Application  
The DS90UR90xQ-Q1 chipset is intended for interface between a host (graphics processor) and a display. It  
supports an 24-bit color depth (RGB888) and up to 1024 × 768 display formats. In a RGB888 application, 24  
color bits (R[7:0], G[7:0], B[7:0]), Pixel Clock (PCLK) and three control bits (VS, HS and DE) are supported  
across the serial link with PCLK rates from 5 to 65 MHz. The chipset may also be used in 18-bit color  
applications. In this application three to six general-purpose signals may also be sent from host to display.  
The deserializer is expected to be located close to its target device. The interconnect between the deserializer  
and the target device is typically in the 1 to 3 inch separation range. The input capacitance of the target device is  
expected to be in the 5 to 10 pF range. Care should be taken on the PCLK output trace as this signal is edge  
sensitive and strobes the data. It is also assumed that the fanout of the deserializer is one. If additional loads  
need to be driven, a logic buffer or mux device is recommended.  
9.1.2 Live Link Insertion  
The serializer and deserializer devices support live pluggable applications. The automatic receiver lock to  
random data “plug & go” hot insertion capability allows the DS90UR906Q-Q1 to attain lock to the active data  
stream during a live insertion event.  
9.1.3 Alternate Color / Data Mapping  
Color Mapped data Pin names are provided to specify a recommended mapping for 24-bit Color Applications.  
Seven [7] is assumed to be the MSB, and Zero [0] is assumed to be the LSB. While this is recommended it is not  
required. When connecting to earlier generations of FPD-Link II serializer and deserializer devices, a color  
mapping review is recommended to ensure the correct connectivity is obtained. Table 16 provides examples for  
interfacing to 18-bit applications with or without the video control signals embedded. The DS90UR906Q-Q1  
deserializer also provides additional flexibility with the MAP_SEL feature as well.  
Table 16. Alternate Color / Data Mapping  
18-BIT RGB  
LSB R0  
R1  
18-BIT RGB  
GP0  
GP1  
R0  
24-BIT RGB  
905 PIN NAME 906 PIN NAME  
24-BIT RGB  
18-BIT RGB  
GP0  
GP1  
R0  
18-BIT RGB  
LSB R0  
R1  
RO  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
G0  
G1  
G2  
G3  
G4  
G5  
G6  
RO  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
G0  
G1  
G2  
G3  
G4  
G5  
G6  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
G0  
G1  
G2  
G3  
G4  
G5  
G6  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
G0  
G1  
G2  
G3  
G4  
G5  
G6  
R2  
R2  
R3  
R1  
R1  
R3  
R4  
R2  
R2  
R4  
MSB R5  
LSB G0  
G1  
R3  
R3  
MSB R5  
LSB G0  
G1  
R4  
R4  
R5  
R5  
G2  
GP2  
GP3  
GO  
GP2  
GP3  
G0  
G2  
G3  
G3  
G4  
G4  
MSB G5  
LSB B0  
B1  
G1  
G1  
MSB G5  
LSB0  
B1  
G2  
G2  
G3  
G3  
B2  
G4  
G4  
B2  
42  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Application Information (continued)  
Table 16. Alternate Color / Data Mapping (continued)  
18-BIT RGB  
B3  
18-BIT RGB  
24-BIT RGB  
905 PIN NAME 906 PIN NAME  
24-BIT RGB  
18-BIT RGB  
18-BIT RGB  
B3  
G5  
G7  
G7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
HS  
VS  
DE  
G7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
HS  
VS  
DE  
G7  
G5  
B4  
GP4  
B0  
B0  
GP4  
B4  
MSB B5  
HS  
GP5  
B1  
B1  
GP5  
MSB B5  
HS  
B0  
B2  
B2  
B0  
VS  
B1  
B3  
B3  
B1  
VS  
DE  
B2  
B4  
B4  
B2  
DE  
GP0  
B3  
B5  
B5  
B3  
GP0  
GP1  
B4  
B6  
B6  
B4  
GP1  
GP2  
B5  
B7  
B7  
B5  
GP2  
GND  
HS  
VS  
HS  
VS  
HS  
VS  
HS  
VS  
GND  
GND  
GND  
GND  
DE  
DE  
DE  
DE  
GND  
Scenario 3(1)  
Scenario 2(2)  
Scenario 1(3)  
905 Pin Name 906 Pin Name  
Scenario 1(3)  
Scenario 2(2)  
Scenario 3(1)  
(1) Scenario 3 supports an 18-bit RGB color mapping, 3 un-embedded video control signals, and up to three general-purpose signals.  
(2) Scenario 2 supports an 18-bit RGB color mapping, 3 embedded video control signals, and up to six general-purpose signals.  
(3) Scenario 1 supports the 24-bit RGB color mapping, along with the 3 embedded video control signals. This is the native mode for the  
chipset.  
9.2 Typical Applications  
9.2.1 DS90UR905Q-Q1 Typical Connection  
Figure 38 shows a typical application of the DS90UR905Q-Q1 serializer in Pin control mode for a 65 MHz 24-bit  
Color Display Application. The LVDS outputs require 100-nF AC-coupling capacitors to the line. The line driver  
includes internal termination. Bypass capacitors are placed near the power supply pins. At a minimum, four 0.1  
µF capacitors and a 4.7-µF capacitor should be used for local device bypassing. System GPO (General-Purpose  
Output) signals control the PDB and BISTEN pins. In this application the RFB pin is tied Low to latch data on the  
falling edge of the PCLK. The application assumes the companion deserializer (DS90UR906Q-Q1) therefore the  
configuration pins are also both tied Low. In this example the cable is long, therefore the VODSEL pin is tied  
High and a De-Emphasis value is selected by the resistor R1. The interface to the host is with 1.8-V LVCMOS  
levels, thus the VDDIO pin is connected also to the 1.8-V rail. The Optional Serial Bus Control is not used in this  
example, thus the SCL, SDA and ID[x] pins are left open. A delay cap is placed on the PDB signal to delay the  
enabling of the device until power is stable.  
Copyright © 2009–2019, Texas Instruments Incorporated  
43  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Applications (continued)  
DS90UR905Q (SER)  
1.8V  
VDDIO  
VDDIO  
VDDTX  
VDDHS  
C9  
C7  
C8  
C10  
FB1  
C3  
C4  
FB2  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
VDDP  
VDDL  
C11  
C5  
C6  
FB3  
FB4  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
C1  
C2  
Serial  
FPD-Link II  
Interface  
DOUT+  
DOUT-  
LVCMOS  
Parallel  
Video  
Interface  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VDDIO  
PCLK  
HS  
VODSEL  
De-Emph  
1.8V  
VS  
DE  
R1  
LVCMOS  
Control  
Interface  
10k  
RID  
BISTEN  
PDB  
ID[X]  
SCL  
SDA  
C12  
NOTE:  
C1-C2 = 0.1 mF (50 WV)  
C3-C8 = 0.1 mF  
C9-11 = 4.7 mF  
C12 = >10 mF  
CONFIG1  
CONFIG1  
RFB  
RES2  
RES1  
RES0  
R1 (cable specific)  
DAP (GND)  
RID (see ID[x] Resistor Value Table 12)  
FB1-FB4: Impedance = 1 kW,  
low DC resistance (<1W)  
Figure 38. DS90UR905Q-Q1 Typical Connection Diagram – Pin Control  
9.2.1.1 Design Requirements  
For this example, use the parameters listed in Table 17.  
Table 17. Design Parameters  
DESIGN PARAMETERS  
VDDIO  
EXAMPLE VALUE  
1.8 V to 3.3 V  
1.8 V  
VDDL, VDDP, VDDHS, VDDTX  
AC-Coupling Capacitor for DOUT±  
100 nF  
44  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
9.2.1.2 Detailed Design Procedure  
The DOUT± outputs require 100-nF AC-coupling capacitors to the line. The power supply filter capacitors are  
placed near the power supply pins. A smaller capacitance capacitor should be located closer to the power supply  
pins.  
The VODSEL pin is tied to VDDIO for the long cable application. The De-Emph pin may connect a resistor to  
ground. Refer to Table 2. The PDB and BISTEN pins are assumed controlling by a microprocessor. The PDB  
has to be LOW state until all power supply voltages reach the final voltage. The RFB pin is tied Low to latch data  
on the falling edge of the PCLK, High for the rising clock edge. The CNFIG[1:0] pins are set depending on  
operating modes and backward compatibility. The SCL, SDA and ID[x] pins are left open when these Serial Bus  
Control pins are unused. The RES[2:0] pins and DAP should be tied to ground.  
9.2.1.3 Application Curves  
Figure 39. Eye Diagram at PCLK = 5 MHz  
Figure 40. Eye Diagram at PCLK = 20 MHz  
9.2.2 DS90UR906Q-Q1 Typical Connection  
Figure 41 shows a typical application of the DS90UR906Q-Q1 deserializer in Pin/STRAP control mode for a 65-  
MHz 24-bit Color Display Application. The LVDS inputs utilize 100-nF coupling capacitors to the line and the  
receiver provides internal termination. Bypass capacitors are placed near the power supply pins. At a minimum,  
seven 0.1-µF capacitors and two 4.7-µF capacitors should be used for local device bypassing. System GPO  
(General-Purpose Output) signals control the PDB and the BISTEN pins. In this application the RRFB pin is tied  
Low to strobe the data on the falling edge of the PCLK.  
Since the device in the Pin/STRAP mode, four 10-kpullup resistors are used on the parallel output bus to  
select the desired device features. CONFIG[1:0] is set to 01'b for Normal Mode and Control Signal Filter ON, this  
is accomplished with the STRAP pullup on B7. The receiver input equalizer is also enabled and set to provide  
7.5 dB of gain, this is accomplished with EQ[3:0] set to 1001'b with STRAP pullups on G4 and G7. To reduce  
parallel bus EMI, the SSCG feature is enabled and set to 30 kHz and ±1% with SSC[3:0] set to 0010'b and a  
STRAP pullup on R4. The desired features are set with the use of the four pullup resistors.  
The interface to the target display is with 3.3V LVCMOS levels, thus the VDDIO pin is connected to the 3.3 V rail.  
The optional Serial Bus Control is not used in this example, thus the SCL, SDA and ID[x] pins are left open. A  
delay cap is placed on the PDB signal to delay the enabling of the device until power is stable.  
Copyright © 2009–2019, Texas Instruments Incorporated  
45  
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
DS90UR906Q (DES)  
1.8V  
VDDIO  
VDDL  
VDDIO  
VDDIO  
VDDIO  
C14  
C11  
C8  
C12 C15  
FB2  
FB1  
C3  
C4  
C5  
VDDSC  
VDDPR  
VDDR  
C9  
FB3  
FB4  
FB5  
C10  
C16  
C6  
VDDIR  
VDDIO  
EXAMPLE:  
STRAP  
Input  
VDDCMLO  
C17  
C7  
FB6  
Pull-Ups  
(10k)  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
C1  
C2  
Serial  
FPD-Link II  
Interface  
RIN+  
RIN-  
CMF  
C13  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
TP_A  
TP_B  
CMLOUTP  
CMLOUTN  
LVCMOS  
Parallel  
Video  
Host  
Control  
BISTEN  
PDB  
Interface  
C18  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1.8V  
10k  
RID  
ID[X]  
SCL  
SDA  
HS  
VS  
DE  
C1 - C2 = 0.1 mF (50 WV)  
C3 - C12 = 0.1 mF  
C13 - C17 = 4.7 mF  
C18 = >10 mF  
RID (see ID[x] Resistor Value Table 13)  
FB1-FB6: Impedance = 1 kW,  
low DC resistance (<1W)  
NC  
8
PCLK  
RES  
LOCK  
PASS  
DAP (GND)  
Figure 41. DS90UR906Q-Q1 Typical Connection Diagram — Pin Control  
46  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
9.2.2.1 Design Requirements  
For this example, use the parameters listed in Table 18.  
Table 18. Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUE  
VDDIO  
1.8 V to 3.3 V  
VDDL, VDDSC, VDDPR, VDDR,  
VDDIR, VDDCMLO  
1.8 V  
AC-Coupling Capacitor for DOUT±  
100 nF  
9.2.2.2 Detailed Design Procedure  
The RIN± input require 100-nF AC-coupling capacitors to the line. The power supply filter capacitors are placed  
near the power supply pins. A smaller capacitance capacitor should be located closer to the power supply pins.  
The device has twenty-two Control and Configuration pins which are called STARTP pins. These pins include an  
internal pulldown. For a HIGH state, use a 10-KΩ resistor pulled up to VDDIO.  
The PDB and BISTEN pins are assumed controlling by a microprocessor. The PDB has to be LOW state until all  
power supply voltages reach the final voltage. The SCL, SDA and ID[x] pins are left open when these Serial Bus  
Control pins are unused.  
The RES pins and DAP should be tied to ground.  
9.2.2.3 Application Curves  
Figure 42. Eye Diagram at PCLK = 45 MHz  
Figure 43. Eye Diagram at PCLK = 65 MHz  
Copyright © 2009–2019, Texas Instruments Incorporated  
47  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Up Requirements and PDB Pin  
The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms  
then a capacitor on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the  
recommended operating voltage. When PDB pin is pulled to VDDIO, it is recommended to use a 10-kΩ pullup and  
a > 10 µF capacitor to GND to delay the PDB input signal.  
11 Layout  
11.1 Layout Guidelines  
Circuit board layout and stack-up for the LVDS serializer and deserializer devices should be designed to provide  
low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs  
and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance  
may be greatly improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement  
provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven  
especially effective at high frequencies, and makes the value and placement of external bypass capacitors less  
critical. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors  
may use values in the range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2 µF to 10 µF range.  
Voltage rating of the tantalum capacitors should be at least 5× the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50 µF to 100 µF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely-coupled differential lines of 100  
Ohms are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled  
noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also  
radiate less.  
Information on the WQFN style package is provided in Leadless Leadframe Package (LLP) Application Report  
(SNOA401).  
11.1.1 Transmission Media  
The serializer and deserializer chipset is intended to be used in a point-to-point configuration, through a PCB  
trace, or through twisted pair cable. The serializer and deserializer provide internal terminations providing a clean  
signaling environment. The interconnect for LVDS should present a differential impedance of 100 Ohms. Use  
cables and connectors that have matched differential impedance to minimize impedance discontinuities. Shielded  
or un-shielded cables may be used depending upon the noise environment and application requirements.  
48  
Copyright © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
Layout Guidelines (continued)  
11.1.2 LVDS Interconnect Guidelines  
See AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and AN-905 Transmission  
Line RAPIDESIGNER Operation and Applications Guide (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S, 2S, 3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500-Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the TI  
web site at: www.ti.com/lvds  
11.2 Layout Example  
Figure 44 and Figure 45 show the PCB layout example derived from the layout design of the DS90UR905Q-Q1  
and DS90UR906Q-Q1 Evaluation Boards. The graphic and layout description are used to determine both proper  
routing and proper solder techniques for designing the board.  
Figure 44. DS90UR905Q-Q1 Serializer Example Layout  
Copyright © 2009–2019, Texas Instruments Incorporated  
49  
 
DS90UR905Q-Q1, DS90UR906Q-Q1  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
www.ti.com.cn  
Layout Example (continued)  
Figure 45. DS90UR906Q-Q1 Deserializer Example Layout  
50  
版权 © 2009–2019, Texas Instruments Incorporated  
DS90UR905Q-Q1, DS90UR906Q-Q1  
www.ti.com.cn  
ZHCSB29I SEPTEMBER 2009REVISED OCTOBER 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
AN-1108《无引线框架封装 (LLP) 应用报告》(文献编号:SNOA401)  
《通道链路 PCB 和互连设计指南》(文献编号:SNLA008)  
AN-905 传输线路 RAPIDESIGNER 操作和 应用 指南(SNLA035)  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
19. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
DS90UR905Q-Q1  
DS90UR906Q-Q1  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2009–2019, Texas Instruments Incorporated  
51  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UR905QSQ/NOPB  
DS90UR905QSQE/NOPB  
DS90UR905QSQX/NOPB  
DS90UR906QSQ/NOPB  
DS90UR906QSQE/NOPB  
DS90UR906QSQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
NKB  
NKB  
NKB  
48  
48  
48  
60  
60  
60  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
UR905QSQ  
SN  
SN  
SN  
SN  
SN  
UR905QSQ  
UR905QSQ  
UR906QSQ  
UR906QSQ  
UR906QSQ  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UR905QSQ/NOPB WQFN  
DS90UR905QSQE/NOPB WQFN  
DS90UR905QSQX/NOPB WQFN  
DS90UR906QSQ/NOPB WQFN  
DS90UR906QSQE/NOPB WQFN  
DS90UR906QSQX/NOPB WQFN  
RHS  
RHS  
RHS  
NKB  
NKB  
NKB  
48  
48  
48  
60  
60  
60  
1000  
250  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
9.3  
9.3  
9.3  
7.3  
7.3  
7.3  
9.3  
9.3  
9.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
2500  
1000  
250  
2000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UR905QSQ/NOPB  
DS90UR905QSQE/NOPB  
DS90UR905QSQX/NOPB  
DS90UR906QSQ/NOPB  
DS90UR906QSQE/NOPB  
DS90UR906QSQX/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
NKB  
NKB  
NKB  
48  
48  
48  
60  
60  
60  
1000  
250  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
2500  
1000  
250  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NKB0060B  
VQFN - 0.8 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7  
6.3 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
16  
30  
15  
31  
SYMM  
61  
2X 7  
1
0.3  
60X  
45  
0.2  
56X 0.5  
60  
46  
0.1  
C A B  
0.7  
0.5  
PIN 1 ID  
0.05  
60X  
4214995/A 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKB0060B  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
6.3)  
SYMM  
SEE SOLDER MASK  
DETAIL  
60X (0.8)  
60X (0.25)  
46  
60  
1
45  
56X (0.5)  
(1.1) TYP  
(1.2) TYP  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
61  
(0.6) TYP  
(8.6)  
15  
31  
30  
16  
(0.6) TYP  
(1.2) TYP  
(1.1) TYP  
(8.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214995/A 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKB0060B  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
25X ( 1)  
(1.2) TYP  
46  
60X (0.8)  
60X (0.25)  
60  
1
45  
56X (0.5)  
(R0.05) TYP  
(1.2) TYP  
(8.6)  
61  
SYMM  
15  
31  
16  
30  
SYMM  
(8.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 8X  
EXPOSED PAD 61  
63% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4214995/A 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS90UR905QSQXNOPB

LINE DRIVER, QCC48, 7 X 7 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-48
TI

DS90UR906Q-Q1

5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器
TI

DS90UR906QSQ

5 - 65 MHz 24-bit Color FPD-Link II Serializer and Deserializer
NSC

DS90UR906QSQ/NOPB

IC LINE RECEIVER, QCC60, 9 X 9 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-60, Line Driver or Receiver
NSC

DS90UR906QSQ/NOPB

5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器 | NKB | 60 | -40 to 105
TI

DS90UR906QSQE

5 - 65 MHz 24-bit Color FPD-Link II Serializer and Deserializer
NSC

DS90UR906QSQE/NOPB

LINE RECEIVER, QCC60, 7 X 7 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-60
ROCHESTER

DS90UR906QSQE/NOPB

5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器 | NKB | 60 | -40 to 105
TI

DS90UR906QSQENOPB

IC LINE RECEIVER, QCC60, 9 X 9 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-60, Line Driver or Receiver
NSC

DS90UR906QSQENOPB

LINE RECEIVER, QCC60, 7 X 7 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, GREEN, LLP-48
TI

DS90UR906QSQNOPB

暂无描述
NSC

DS90UR906QSQNOPB

LINE RECEIVER, QCC60, 7 X 7 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, GREEN, LLP-48
TI