DS90UR908QSQE/NOPB [TI]

5 - 65MHz 24 位色彩 FPD-Link II 至 FPD 链接转换器 | RHS | 48 | -40 to 105;
DS90UR908QSQE/NOPB
型号: DS90UR908QSQE/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5 - 65MHz 24 位色彩 FPD-Link II 至 FPD 链接转换器 | RHS | 48 | -40 to 105

驱动 光电二极管 接口集成电路 驱动器 转换器
文件: 总35页 (文件大小:632K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
DS90UR908Q 5 - 65MHz 24 位彩色平面显示器-链路 (FPD-Link) II 至  
FPD-Link 转换器  
查询样品: DS90UR908Q-Q1  
1
特性  
说明  
2
支持 5 – 65MHz140Mbps 1.82Gbps 串行链  
路)  
DS90UR908Q FPD-Link II 转换为 FPD-Link。 它  
将一个单对线 (FPD-Link II) 上具有嵌入时钟的高速串  
行化接口转换为 4 个低压差分信令 (LVDS) 数据/控制  
数据流和 1 LVDS 时钟对 (FPD-Link)。 这个串行总  
线方案消除了时钟和数据间的偏差问题,从而大大简化  
了系统设计,减少了控制器引脚数量,并且减少了互连  
线尺寸、重量和成本,并从总体上简化了印刷电路板  
(PCB) 布局布线。 此外,内部 DC 均衡编码被用来支  
AC 耦合互连。  
5 通道(4 个数据 + 1 个时钟)FPD-Link 驱动器输  
长度达 10 米的 AC 耦合生成树协议 (STP) 互连  
集成型输入端接  
全速 (@ Speed) 链路内置自检 (BIST) 模式和报告  
引脚  
可选 I2C 兼容串行控制总线  
RGB888 + VSHSDE 支持  
DS90UR908Q 转换器恢复数据 (RGB) 和控制信号并  
从一个串行数据流 (FPD-Link II) 中提取时钟。 它能够  
锁定进入数据流,而无需使用一个协商序列或特别的  
SYNC(同步)模式,也不需要一个基准时钟。 提供  
了一个链路状态 (LOCK) 输出信号。  
断电模式大大减少了功率耗散  
快速随机数据锁定;无需基准时钟  
可调输入接收器均衡  
LOCK(锁定)(实时链路状态)报告引脚  
低电磁干扰 (EMI) FPD-Link 输出  
针对低 EMI 的展频时钟生成 (SSCG) 选项  
1.8V 3.3V 兼容 LVCMOS I/O 接口  
汽车应用级产品:符合 AEC-Q100 2 级要求  
>8kV 人体模型 (HBM) 和静电放电 (ESD) 耐受  
向后兼容模式以实现与之前生产的器件的共同运行  
串行输入数据流的可调输入均衡为线缆的传输介质损耗  
提供补偿,并减少了介质引起的确定性抖动。 低压差  
分信令的使用、输出电压电平选择特性和额外的输出展  
频生成大大减少了 EMI。  
由于连接至显示屏物理接口的接线更少,使用 LVDS  
技术的 FPD-Link 输入非常适合于高速、低功率和低  
EMI 数据传输。  
应用范围  
汽车导航显示屏  
汽车娱乐系统显示屏  
DS90UR908Q 采用 48 引脚超薄四方扁平无引线封装  
(WQFN) 封装,并可在 -40˚C +105˚C 的汽车 AEC-  
Q100 2 级额定温度范围内运行。  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009–2013, Texas Instruments Incorporated  
English Data Sheet: SNLS317  
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
Applications Diagram  
FPD-Link  
FPD-Link II  
FPD-Link  
VDDIO  
VDDIO  
(1.8V or 3.3V)  
(1.8V or 3.3V)  
1.8V  
1.8V 3.3V  
RxIN3+/-  
RxIN2+/-  
TxOUT3+/-  
TxOUT2+/-  
High-Speed Serial Link  
1 Pair/AC Coupled  
DOUT+  
DOUT-  
RIN+  
RIN-  
HOST  
Graphics  
Processor  
RGB Display  
QVGA to XGA  
24-bit Color Depth  
RxIN1+/-  
RxIN0+/-  
TxOUT1+/-  
TxOUT0+/-  
100 ohm STP Cable  
RxCLKIN+/-  
TxCLKOUT+/-  
DS90UR907Q  
Converter  
DS90UR908Q  
Converter  
CMF  
LOCK  
PASS  
SSC[2:0]  
PDB  
BISTEN  
VODSEL  
De-Emph  
LFMODE  
CONFIG[1:0]  
MAPSEL  
MAPSEL  
CONFIG[1:0]  
PDB  
BISTEN  
SCL  
SDA  
ID[x]  
SCL  
SDA  
ID[x]  
OEN  
OSSEL  
VODSEL  
Optional  
Optional  
Pin Diagram  
RES  
TxOUT0-  
TxOUT0+  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
VDDA  
GND  
TxOUT1-  
TxOUT1+  
TxOUT2-  
TxOUT2+  
TxCLKOUT-  
TxCLKOUT+  
TxOUT3-  
TxOUT3+  
GND  
RIN+  
RIN-  
DS90UR908Q  
TOP VIEW  
CMF  
VDDA  
GND  
DAP = GND  
GND  
VDDSC  
VDDSC  
GND  
VDDTX  
2
Copyright © 2009–2013, Texas Instruments Incorporated  
DS90UR908Q-Q1  
www.ti.com.cn  
Pin Name  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
PIN DESCRIPTIONS(1)  
Description  
Pin #  
I/O, Type  
FPD-Link II Input Interface  
RIN+  
RIN-  
CMF  
40  
41  
42  
I, LVDS  
I, LVDS  
I, Analog  
True input  
The input must be AC coupled with a 100 nF capacitor. Internal termination.  
Inverting input  
The input must be AC coupled with a 100 nF capacitor. Internal termination.  
Common-Mode Filter  
VCM center-tap is a virtual ground which maybe ac-coupled to ground to increase receiver  
common mode noise immunity. Recommended value is 4.7 μF or higher.  
FPD-Link Output Interface  
TxOUT[3:0]+  
15,19, 21,  
23  
O, LVDS  
O, LVDS  
True LVDS Data Output  
TxOUT[3:0]-  
16,20, 22,  
24  
Inverting LVDS Data Output  
TxCLKOUT+  
TxCLKOUT-  
17  
18  
O, LVDS  
O, LVDS  
True LVDS Clock Output  
Inverting LVDS Clock Output  
LVCMOS Outputs  
LOCK 27  
O, LVMOS  
LOCK Status Output  
LOCK = 1, PLL is locked, output states determined by OEN.  
LOCK = 0, PLL is unlocked, output states determined by OSS_SEL and OEN, Table 3  
May be used as a Link Status or to flag when the Video Data is active (ON/OFF).  
Control and Configuration  
PDB  
1
I, LVCMOS  
Power Down Mode Input  
w/ pull-down PDB = 1, Device is enabled (normal operation)  
PDB = 0, Device is in power-down, the outputs are TRI-STATE. Control registers are  
RESET.  
VODSEL  
33  
I, LVCMOS  
FPD-Link Output Voltage Select, Table 4  
w/ pull-down VODSEL = 1, LVDS VOD is ±400 mV, 800 mVp-p (typ)  
VODSEL = 0, LVDS VOD is ±250 mV, 500 mVp-p (typ)  
OEN  
30  
35  
36  
I, LVCMOS  
w/ pull-down  
Output Enable Input, Table 3  
OSS_SEL  
LFMODE  
I, LVCMOS  
w/ pull-down  
Output Sleep State Select Input, Table 3  
I, LVCMOS  
Low Frequency Mode — Pin or Register Control  
w/ pull-down LF_MODE = 1, low frequency mode (TxCLKOUT = 5-20 MHz)  
LF_MODE = 0, high frequency mode (TxCLKOUT = 20-65 MHz)  
MAPSEL  
34  
I, LVCMOS  
FPD-Link Map Select — Pin or Register Control  
w/ pull-down MAPSEL = 1, MSB on TxOUT3+/-, Figure 16  
MAPSEL = 0, LSB on TxOUT3+/-, Figure 15  
CONFIG[1:0]  
11,10  
I, LVCMOS  
Operating Modes — Pin or Register Control  
w/ pull-down Determine the device operating mode and interfacing device, Table 1  
CONFIG[1:0] = 00: Interfacing to DS90UR905Q or DS90UR907Q, Control Signal Filter  
DISABLED  
CONFIG[1:0] = 01: Interfacing to DS90UR905Q or DS90UR907Q, Control Signal Filter  
ENABLED  
CONFIG[1:0] = 10: Interfacing to DS90UR241 or DS99R421  
CONFIG[1:0] = 11: Interfacing to DS90C241  
SSC[2:0]  
RES  
7, 3, 2  
37  
I, LVCMOS  
w/ pull-down  
Spread Spectrum Clock Generation (SSCG) Range Select, See Table 5 and Table 6  
I, LVCMOS  
Reserved  
w/ pull-down Tie Low  
Control and Configuration — STRAP PIN  
For a High State, use a 10 kpull up to VDDIO; for a Low State, the IO includes an internal pull down. The STRAP pin is read upon power-  
up and set device configuration. Pin number listed along with shared LVCMOS Output name in square bracket.  
EQ  
28 [PASS]  
STRAP  
I, LVCMOS  
EQ Gain Control of FPD-Link II Input  
EQ = 1, EQ gain is enabled (~13 dB)  
w/ pull-down EQ = 0, EQ gain is disabled (~1.625 dB)  
(1) 1 = High, 0 = Low  
Copyright © 2009–2013, Texas Instruments Incorporated  
3
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
PIN DESCRIPTIONS(1) (continued)  
Pin Name  
Pin #  
I/O, Type  
Description  
Optional BIST Mode  
BISTEN  
PASS  
29  
28  
I, LVCMOS  
BIST Enable Input – Optional  
w/ pull-down BISTEN = 1, BIST Mode is enabled.  
BISTEN = 0, normal mode.  
O, LVCMOS PASS Output (BIST Mode) – Optional  
PASS = 1, no errors detected  
PASS = 0, errors detected  
Leave open if unused. Route to a test point (pad) recommended.  
Optional Serial Bus Control Interface  
SCL  
SDA  
ID[x]  
5
I, LVCMOS  
Serial Control Bus Clock Input - Optional  
SCL requires an external pull-up resistor to VDDIO  
.
4
I/O, LVCMOS Serial Control Bus Data Input / Output - Optional  
Open Drain  
I, Analog  
SDA requires an external pull-up resistor to VDDIO.  
12  
Serial Control Bus Device ID Address Select — Optional  
Resistor to Ground and 10 kpull-up to 1.8V rail, Table 7  
Power and Ground  
VDDL  
VDDA  
VDDP  
VDDSC  
VDDTX  
VDDIO  
6, 31  
Power  
Power  
Power  
Power  
Power  
Power  
Ground  
Logic Power, 1.8 V ±5%  
38, 43  
8
Analog Power, 1.8 V ±5%  
PLL Power, 1.8 V ±5%  
46, 47  
13  
SSC Generator Power, 1.8 V ±5%  
FPD-Link Power, 3.3 V ±10%  
LVCMOS I/O Power, 1.8 V ±5% OR 3.3 V ±10%  
Ground  
25  
GND  
9, 14, 26,  
32, 39, 44,  
45, 48  
DAP  
DAP  
Ground  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
Block Diagram  
DS90UR908Q œ CONVERTER  
SSC[2:0]  
OEN  
VODSEL  
SSCG  
CMF  
TxOUT[3]  
TxOUT[2]  
RIN+  
RIN-  
TxOUT[1]  
TxOUT[0]  
TxCLKOUT  
EQ  
Error  
Detector  
PASS  
PDB  
SCL  
SCA  
LOCK  
Timing and  
Control  
ID[x]  
PLL  
BISTEN  
OSS_SEL  
LFMODE  
Figure 1. FPD-Link II to FPD-Link Convertor  
4
Copyright © 2009–2013, Texas Instruments Incorporated  
 
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)(3)  
Supply Voltage – VDDn (1.8V)  
Supply Voltage – VDDTX (3.3V)  
Supply Voltage – VDDIO  
LVCMOS I/O Voltage  
0.3V to +2.5V  
0.3V to +4.0V  
0.3V to +4.0V  
0.3V to +(VDDIO + 0.3V)  
0.3V to (VDD + 0.3V)  
0.3V to (VDDTX + 0.3V)  
+150°C  
Receiver Input Voltage  
LVDS Output Voltage  
Junction Temperature  
Storage Temperature  
65°C to +150°C  
48L WQFN Package  
Maximum Power Dissipation Capacity at 25°C  
Derate about 25°C  
1/ θJA°C/W  
27.7 °C/W  
3.0 °C/W  
θJA  
θJC  
ESD Rating (IEC, powered-up only), RD = 330Ω, CS = 150pFs  
Air Discharge (RIN+, RIN−  
)
±15 kV  
±8 kV  
Contact Discharge (RIN+, RIN−  
)
ESD Rating (ISO10605), RD = 330Ω, CS = 150/330pF  
ESD Rating (ISO10605), RD = 2kΩ, CS = 150/330pF  
Air Discharge (RIN+, RIN−  
)
±15 kV  
±8 kV  
Contact Discharge (RIN+, RIN−  
)
ESD Rating (HBM)  
±8 kV  
ESD Rating (HBM)  
±8 kV  
ESD Rating (CDM)  
±1.25 kV  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.  
(2) For soldering specifications see product folder at www.ti.com and SNOA549  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
Recommended Operating Conditions  
Min  
1.71  
1.71  
3.0  
Nom  
1.8  
Max  
1.89  
1.89  
3.6  
Units  
V
Supply Voltage (VDDn  
LVCMOS Supply Voltage (VDDIO) OR  
LVCMOS Supply Voltage (VDDIO  
)
1.8  
V
)
3.3  
V
Operating Free Air Temperature (TA)  
TxCLKOUT Frequency  
Supply Noise(1)  
40  
5
+25  
+105  
65  
°C  
MHz  
mVP-P  
100  
(1) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the VDDn (1.8V) supply with  
amplitude = 100 mVp-p measured at the device VDDn pins. Bit error rate testing of input to the Ser and output of the Des with 10 meter  
cable shows no error when the noise frequency on the Ser is less than 750 kHz. The Des on the other hand shows no error when the  
noise frequency is less than 400 kHz.  
Copyright © 2009–2013, Texas Instruments Incorporated  
5
 
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
DC Electrical Characteristics(1)(2)(3)(4)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Units  
FPD-Link LVDS Output  
VODSEL = L  
VODSEL = H  
VODSEL = L  
VODSEL = H  
VODSEL = H  
VODSEL = L  
VODSEL = H  
100  
200  
250  
450  
500  
900  
4
400  
600  
mV  
mV  
|VOD  
|
Differential Output Voltage  
mVp-p  
mVp-p  
mV  
Differential Output Voltage  
A-B  
VODp-p  
ΔVOD  
VOS  
RL = 100Ω  
Figure 8  
TxCLKOUT+,  
TxCLKOUT-,  
TxOUT[3:0]+,  
TxOUT[3:0]-  
Output Voltage Unbalance  
Offset Voltage  
50  
1.0  
-10  
1.2  
1.2  
1
1.5  
V
V
ΔVOS  
Offset Voltage Unbalance  
Output Short Circuit Current  
50  
mV  
IOS  
Vout = GND  
OEN = GND,  
Vout =VDDTX, or GND  
-5  
mA  
IOZ  
Output TRI-STATE® Current  
+10  
µA  
3.3 V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 3.0 to 3.6V  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
PDB,  
VODSEL,  
OEN,  
2.2  
VDDIO  
0.8  
V
V
GND  
OSS_SEL,  
MAPSEL,  
LFMODE,  
SSC[2:0],  
BISTEN  
IIN  
Input Current  
VIN = 0V or VDDIO  
-15  
±1  
+15  
μA  
VDDIO  
0.25  
-
VOH  
High Level Output Voltage  
IOH = 2 mA  
VDDIO  
V
VOL  
IOS  
Low Level Output Voltage  
Output Short Circuit Current  
IOL = +2 mA  
VOUT = 0V  
GND  
-45  
0.2  
V
LOCK, PASS  
mA  
PDB = 0V, OSS_SEL = 0V, VOUT = 0V  
or VDDIO  
IOZ  
TRI-STATE® Output Current  
-10  
+10  
µA  
1.8 V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 1.71 to 1.89V  
PDB,  
VODSEL,  
OEN,  
OSS_SEL,  
MAPSEL,  
LFMODE,  
SSC[2:0],  
BISTEN  
0.7*  
VDDIO  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
VDDIO  
V
V
0.3*  
VDDIO  
GND  
IIN  
Input Current  
VIN = 0V or VDDIO  
-10  
±1  
+10  
μA  
VDDIO  
- 0.2  
VOH  
High Level Output Voltage  
IOH = 2 mA  
VDDIO  
V
VOL  
IOS  
IOZ  
Low Level Output Voltage  
Output Short Circuit Current  
TRI-STATE® Output Current  
IOL = +2 mA  
GND  
0.2  
V
LOCK, PASS  
VOUT = 0V  
-13  
mA  
µA  
VOUT = 0V or VDDIO  
-15  
+15  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3V, Ta = +25 degC, and at the Recommended Operation Conditions at  
the time of product characterization and are not ensured.  
(3) When the Serializer output is at TRI-STATE the Deserializer will lose PLL lock. Resynchronization / Relock must occur before data  
transfer require tPLD  
(4) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH and VTL which are differential voltages.  
6
Copyright © 2009–2013, Texas Instruments Incorporated  
 
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
DC Electrical Characteristics(1)(2)(3)(4) (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Units  
FPD-Link II LVDS RECEIVER DC SPECIFICATIONS  
Differential Input Threshold  
High Voltage  
VTH  
+50  
mV  
mV  
VCM = +1.2V (Internal VBIAS  
)
Differential Input Threshold Low  
Voltage  
VTL  
-50  
80  
RIN+, RIN-  
Common Mode Voltage,  
Internal VBIAS  
VCM  
RT  
1.2  
V
Input Termination  
100  
120  
95  
SUPPLY CURRENT  
All VDD(1.8)  
pins  
IDD1  
VDDn= 1.89V  
85  
mA  
Checker Board Pattern,  
VODSEL = H  
SSC{2:0] = 000  
Figure 2  
Supply Current  
(includes load current)  
65 MHz Clock  
IDDTX1  
IDDIO1  
VDDTX = 3.6V VDDTX  
40  
0.3  
0.8  
50  
0.8  
1.5  
mA  
mA  
mA  
VDDIO=1.89V  
VDDIO  
VDDIO = 3.6V  
All VDD(1.8)  
pins  
IDD2  
VDDn= 1.89V  
95  
mA  
Checker Board Pattern,  
VODSEL = H  
SSC[2:0] = 111  
Figure 2  
Supply Current  
(includes load current)  
65 MHz Clock  
IDDTX2  
VDDTX = 3.6V VDDTX  
40  
0.3  
0.8  
mA  
mA  
mA  
VDDIO=1.89V  
VDDIO  
IDDIO2  
VDDIO = 3.6V  
All VDD(1.8)  
pins  
IDDZ  
VDD= 1.89V  
0.15  
2.00  
mA  
PDB = 0V, All other  
LVCMOS Inputs = 0V  
IDDTXZ  
VDDTX = 3.6V VDDTX  
0.01  
0.01  
0.01  
0.10  
0.08  
0.08  
mA  
mA  
mA  
Supply Current Power Down  
VDDIO=1.89V  
VDDIO  
IDDIOZ  
VDDIO = 3.6V  
Copyright © 2009–2013, Texas Instruments Incorporated  
7
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Units  
FPD-Link II  
SSC[2:0] = 000  
5 MHz  
5 MHz  
65 MHz  
65 MHz  
7
14  
6
ms  
ms  
ms  
ms  
SSC[2:0] = 111  
SSC[2:0] = 000  
SSC[2:0] = 111  
tDDLT  
Lock Time, Figure 7(1)  
8
Input Jitter Frequency <  
2 MHz  
>0.9  
UI  
UI  
EQ = Off  
tIJIT  
Input Jitter Tolerance, Figure 10 SSC[2:0] = 000  
Input Jitter Frequency >  
6 MHz  
TxCLKOUT± = 65 MHz  
> 0.5  
FPD-Link Output  
tTLHT  
tTHLT  
tDCCJ  
Low to High Transition Time  
0.3  
0.3  
900  
75  
0.6  
0.6  
ns  
ns  
ps  
ps  
TxCLKOUT±,  
TxOUT[3:0]±  
RL = 100Ω  
High to Low Transition Time  
5 MHz  
2100  
125  
Cycle-to-Cycle Output  
Jitter(2)(3)(4)  
TxCLKOUT±  
65 MHz  
tTTP1  
tTTP0  
tTPP6  
tTTP5  
tTTP4  
tTTP3  
tTTP2  
ΔtTTP  
Transmitter Pulse Position for  
bit 1  
1
2
3
4
5
6
7
UI  
UI  
UI  
UI  
UI  
UI  
UI  
Transmitter Pulse Position for  
bit 0  
Transmitter Pulse Position for  
bit 6  
Transmitter Pulse Position for  
bit 5  
5 - 65 MHz, Figure 9  
TxOUT[3:0]±  
Transmitter Pulse Position for  
bit 4  
Transmitter Pulse Position for  
bit 3  
Transmitter Pulse Position for  
bit 2  
Offset Transmitter Pulse  
Position (bit 6— bit 0)  
65 MHz, Figure 9  
SeeFigure 4  
< +0.1  
10*T  
7
UI  
T
tDD  
Delay-Latency  
tTPDD  
Power Down Delay, active to  
OFF  
65 MHz, Figure 5  
65 MHz, Figure 6  
12  
55  
ns  
ns  
tTXZR  
Enable Delay, OFF to active  
40  
LVCMOS Outputs  
tCLH Low to High Transition Time  
tCHL  
5
5
15  
15  
ns  
ns  
ns  
ns  
CL = 8 pF, Figure 3  
LOCK, PASS  
PASS  
High to Low Transition Time  
5 MHz  
570  
50  
580  
65  
BIST PASS Valid Time,  
BISTEN = 1, Figure 11  
tPASS  
65 MHz  
SSCG Mode  
fDEV  
Spread Spectrum  
Clocking Deviation  
Frequency  
TxCLKOUT = 5 to 65  
MHz,  
SSC[2:0] = ON  
See(4)  
See(4)  
±0.5  
8
±2  
%
fMOD  
Spread Spectrum  
Clocking Modulation  
Frequency  
TxCLKOUT = 5 to 65  
MHz,  
SSC[2:0] = ON  
100  
kHz  
(1) tPLD and tDDLT is the time required by the serializer and deserializer to obtain lock when exiting power-down state with an active PCLK.  
(2) tDCCJ is the maximum amount of jitter between adjacent clock cycles.  
(3) Specification is ensured by characterization and is not tested in production.  
(4) Specification is ensured by design and is not tested in production.  
8
Copyright © 2009–2013, Texas Instruments Incorporated  
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
Recommended Timing for the Serial Control Bus  
Over 3.3V operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
0
Typ  
Max  
100  
400  
Units  
fSCL  
SCL Clock Frequency  
Standard Mode  
Fast Mode  
kHz  
0
tLOW  
SCL Low Period  
SCL High Period  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
us  
us  
us  
us  
us  
tHIGH  
Standard Mode  
Fast Mode  
tHD;STA Hold time for a start or a  
repeated start condition,  
Figure 12  
Standard Mode  
Fast Mode  
0.6  
4.7  
0.6  
us  
us  
us  
tSU:STA Set Up time for a start or a  
repeated start condition,  
Figure 12  
Standard Mode  
Fast Mode  
tHD;DAT Data Hold Time, Figure 12  
Standard Mode  
Fast Mode  
0
3.45  
0.9  
us  
us  
ns  
ns  
us  
us  
us  
us  
ns  
ns  
ns  
ns  
0
tSU;DAT Data Set Up Time, Figure 12  
Standard Mode  
Fast Mode  
250  
100  
4.0  
0.6  
4.7  
1.3  
tSU;STO Set Up Time for STOP  
Condition, Figure 12  
Standard Mode  
Fast Mode  
tBUF  
Bus Free Time Between STOP Standard Mode  
and START, Figure 12  
Fast Mode  
tr  
SCL & SDA Rise Time,  
Figure 12  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
tf  
SCL & SDA Fall Time,  
Figure 12  
Standard Mode  
Fast mode  
DC and AC Serial Control Bus Characteristics  
Over 3.3V supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
VIH  
0.7*  
VDDIO  
Input High Level  
SDA and SCL  
SDA and SCL  
VDDIO  
V
VIL  
0.3*  
VDDIO  
Input Low Level Voltage  
Input Hysteresis  
GND  
V
VHY  
VOL  
Iin  
>50  
mV  
V
SDA, IOL = 0.5mA  
0
0.36  
+10  
SDA or SCL, Vin = VDDIO or GND  
-10  
µA  
ns  
ns  
ns  
ns  
ns  
pF  
tR  
SDA RiseTime – READ  
SDA Fall Time – READ  
800  
50  
SDA, RPU = X, Cb 400pF, Figure 12  
tF  
tSU;DAT Set Up Time — READ  
tHD;DAT Hold Up Time — READ  
540  
600  
50  
See Figure 12  
SDA or SCL  
tSP  
Cin  
Input Filter  
Input Capacitance  
<5  
Copyright © 2009–2013, Texas Instruments Incorporated  
9
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
AC Timing Diagrams and Test Circuits  
+V  
OD  
TxCLKOUT  
-V  
OD  
+V  
OD  
TxOUT[odd]  
-V  
OD  
+V  
OD  
TxOUT[even]  
-V  
OD  
Cycle N  
Cycle N+1  
Figure 2. Checkerboard Data Pattern  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
Figure 3. LVCMOS Transition Times  
START  
BIT  
STOP START  
BIT BIT  
STOP START  
BIT BIT  
STOP START STOP  
BIT BIT BIT  
SYMBOLN+3  
SYMBOLN  
SYMBOLN+1  
SYMBOLN+2  
R
0-23  
IN  
2
3
2
3
2
3
2
3
0
1
2
0
1
2
0
1
2
0
1
2
DCA, DCB  
t
DD  
TxCLKOUT  
TxOUT[3:0]  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
Figure 4. Delay – Latency  
PDB  
VILmax  
RIN  
X
t
TPDD  
LOCK  
PASS  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Z
Z
Figure 5. FPD-Link & LVCMOS Powerdown Delay  
10  
Copyright © 2009–2013, Texas Instruments Incorporated  
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
PDB  
LOCK  
t
TXZR  
OEN  
VIHmin  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Figure 6. FPD-Link Outputs Enable Delay  
PDB  
VIH(min)  
R ±  
IN  
tDDLT  
LOCK  
VOH(min)  
TRI-STATE  
Figure 7. PLL Lock Times  
|VOD|  
VOS  
GND  
+VOD  
0V  
VODp-p  
-VOD  
t
t
THLT  
TLHT  
Figure 8. FPD-Link (LVDS) Single-ended and Differential Waveforms  
Copyright © 2009–2013, Texas Instruments Incorporated  
11  
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
Cycle N  
TxCLKOUT±  
TxOUT[3:0]±  
bit 1 bit 0 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
t
t
t
TTP1  
TTP2  
TTP3  
1UI  
2UI  
Dt  
3UI  
4UI  
TTP  
t
t
TTP4  
TTP5  
5UI  
6UI  
7UI  
t
t
TTP6  
TTP7  
Figure 9. FPD-Link Transmitter Pulse Positions  
Ideal Data  
Bit End  
Sampling  
Window  
Ideal Data Bit  
Beginning  
V
TH  
0V  
RxIN_TOL  
Left  
RxIN_TOL  
Right  
V
TL  
Ideal Center Position (t /2)  
BIT  
t
(1 UI)  
BIT  
tIJIT = RxIN_TOL (Left + Right)  
Sampling Window = 1 UI - t  
IJIT  
Figure 10. Receiver Input Jitter Tolerance  
BISTEN  
VIL  
MAX  
t
PASS  
PASS  
(w/ errors)  
VOL  
MAX  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Result Held  
Figure 11. BIST PASS Waveform  
12  
Copyright © 2009–2013, Texas Instruments Incorporated  
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
tr  
tf  
tBUF  
SDA  
tSU;DAT  
tHD;STA  
tSU;STO  
tLOW  
tSP  
tf  
tSU;STA  
tHD;DAT  
SCL  
tr  
tHIGH  
tHD;STA  
S
Sr  
P
S
Figure 12. Serial Control Bus Timing Diagram  
Copyright © 2009–2013, Texas Instruments Incorporated  
13  
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
Functional Description  
The DS90UR908Q receives 27-bits of data (24-high speed bits and 3 low speed bits) over a single serial FPD-  
Link II pair operating at 140Mbps to 1.82Gbps. The serial stream contains an embedded clock, video control  
signals and the DC-balance information which enhances signal quality and supports AC coupling. The receiver  
converts the serial stream into a 5-channel (4 data and 1 clock) FPD-Link LVDS Interface. The device is intended  
to be used with the DS90UR907Q or the DS90UR905Q FPD-Link II serializers, but is backward compatible with  
previous generation of FPD-Link II as well.  
The device converts a single input serial data stream to a FPD-Link output bus, and also provides a signal check  
for the chipset Built In Self Test (BIST) mode. The device can be configured via external pins or through the  
optional serial control bus. It features enhance signal quality on the link by supporting the FPD-Link II data  
coding that provides randomization, scrambling, and DC balancing of the data. It also includes multiple features  
to reduce EMI associated with display data transmission. This includes the randomization and scrambling of the  
data, FPD-Link LVDS Output interface, and also the output spread spectrum clock generation (SSCG) support.  
The power saving features include a power down mode, and optional LVCMOS (1.8 V) interface compatibility.  
The DS90UR908Q can lock to a data stream without the use of a separate reference clock source, which greatly  
simplifies system complexity and overall cost. It also synchronizes to the serializer regardless of the data pattern,  
delivering true automatic “plug and lock” performance. It can lock to the incoming serial stream without the need  
of special training patterns or sync characters. The DS90UR908Q recovers the clock and data by extracting the  
embedded clock information, validating and then deserializing the incoming data stream.  
The DS90UR907Q / DS90UR908Q chipset supports 24-bit color depth, HS, VS and DE video control signals and  
up to three over-sampled low-speed (general purpose) data bits.  
DATA TRANSFER  
The DS90UR908Q will receive a pixel of data in the following format: C1 and C0 represent the embedded clock  
in the serial stream. C1 is always HIGH and C0 is always LOW. b[23:0] contain the scrambled data. DCB is the  
DC-Balanced control bit. DCB is used to minimize the short and long-term DC bias on the signal lines. This bit  
determines if the data is unmodified or inverted. DCA is used to validate data integrity in the embedded data  
stream. Both DCA and DCB coding schemes are generated by the Ser and decoded by the Des automatically.  
Figure 13 illustrates the serial stream per PCLK cycle.  
Note: The figure only illustrates the bits but does not actually represent the bit location as the bits are scrambled  
and balanced continuously.  
b
1
0
b
1
1
D
C
A
b
0
b
1
b
2
b
3
b
5
b
9
C
1
b
4
b
6
b
7
b
8
D
C
B
b
1
2
b
1
3
b
1
4
b
1
5
b
1
6
b
1
7
b
1
8
b
1
9
b
2
0
b
2
1
b
2
2
b
2
3
C
0
Figure 13. FPD-Link II Serial Stream  
The device supports clocks in the range of 5 MHz to 65 MHz. With every clock cycle 24 bits of payload are  
received along with the four overhead bits. Thus, the line rate is 1.82 Gbps maximum (140 Mbps minimum) with  
an effective data rate of 1.56 Gbps maximum. The link is extremely efficient at 86% (24/28).  
OPERATING MODES AND BACKWARD COMPATIBILITY (CONFIG[1:0])  
The DS90UR908Q is backward compatible with previous generations of FPD-Link II serializers. Configuration  
modes are provided for backwards compatibility with the DS90C241 FPD-Link II Generation 1, and also the  
DS90UR241 or DS99R421 FPD-Link II Generation 2 serializer by setting the respective mode with the  
CONFIG[1:0] pins as shown in Table 1. The selection also determine whether the Video Control Signal filter  
feature is enabled or disabled in Normal mode. This feature may be controlled by pin or by Register.  
14  
Copyright © 2009–2013, Texas Instruments Incorporated  
 
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
Table 1. DS90UR908Q Configuration Modes  
CONFIG1  
CONFIG0  
Mode  
Des Device  
L
L
L
H
L
Normal Mode, Control Signal Filter disabled  
Normal Mode, Control Signal Filter enabled  
Backwards Compatible GEN2  
Backwards Compatible GEN1  
DS90UR907Q, DS90UR905Q  
DS90UR907Q, DS90UR905Q  
DS90UR241, DS99R421  
DS90C241  
H
H
H
VIDEO CONTROL SIGNAL FILTER  
When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled:  
DE and HS — Only 2 transitions per 130 clock cycles are transmitted, the transition pulse must be 3  
PCLK or longer.  
Normal Mode with Control Signal Filter Disabled:  
DE and HS — Only 2 transitions per 130 clock cycles are transmitted, no restriction on minimum transition  
pulse.  
VS — Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal  
can cause a visual display error. This feature allows for the chipset to validate and filter out any high frequency  
noise on the control signals. See Figure 14.  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
Filetered OUT  
HS/VS/DE  
OUT  
Figure 14. Video Control Signal Filter Wavefrom  
COLOR BIT MAPPING SELECT  
The DS90UR908Q can be configured to accept 24-bit color (8-bit RGB) with 2 different mapping schemes: LSBs  
on TxOUT[3] shown in Figure 15 or MSBs on TxOUT[3] shown in Figure 16. The user selects which mapping  
scheme is controlled by MAPSEL pin or by Register.  
Copyright © 2009–2013, Texas Instruments Incorporated  
15  
 
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
TxCLKOUT +/-  
Previous cycle  
Current cycle  
R[1]  
(bit 22)  
R[0]  
(bit 21)  
B[1]  
(bit 26)  
B[0]  
(bit 25)  
G[1]  
(bit 24)  
G[0]  
(bit 23)  
TxOUT3 +/-  
DE  
VS  
HS  
B[7]  
B[6]  
B[5]  
B[4]  
(bit 20)  
(bit 19)  
(bit 18)  
(bit 17)  
(bit 16)  
(bit 15)  
(bit 14)  
TxOUT2 +/-  
TxOUT1 +/-  
B[3]  
(bit 13)  
B[2]  
(bit 12)  
G[7]  
(bit 11)  
G[6]  
(bit 10)  
G[5]  
(bit 9)  
G[4]  
(bit 8)  
G[3]  
(bit 7)  
G[2]  
(bit 6)  
R[7]  
(bit 5)  
R[6]  
(bit 4)  
R[5]  
(bit 3)  
R[4]  
(bit 2)  
R[3]  
(bit 1)  
R[2]  
(bit 0)  
TxOUT0 +/-  
Figure 15. 8–bit FPD-LInk Mapping: LSB's on TxOUT3  
TxCLKOUT +/-  
Previous cycle  
Current cycle  
B[7]  
(bit 26)  
R[7]  
(bit 22)  
R[6]  
(bit 21)  
B[6]  
(bit 25)  
G[7]  
(bit 24)  
G[6]  
(bit 23)  
TxOUT3 +/-  
TxOUT2 +/-  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[5]  
(bit 17)  
B[4]  
(bit 16)  
B[3]  
(bit 15)  
B[2]  
(bit 14)  
G[3]  
(bit 9)  
G[2]  
(bit 8)  
G[1]  
(bit 7)  
B[1]  
(bit 13)  
B[0]  
(bit 12)  
G[5]  
(bit 11)  
G[4]  
(bit 10)  
TxOUT1 +/-  
TxOUT0 +/-  
G[0]  
(bit 6)  
R[5]  
(bit 5)  
R[4]  
(bit 4)  
R[3]  
(bit 3)  
R[2]  
(bit 2)  
R[1]  
(bit 1)  
R[0]  
(bit 0)  
Figure 16. 8–bit FPD-LInk Mapping: MSB's on TxOUT3  
FPD-LINK II INPUT  
Common Mode Filter Pin (CMF) — Optional  
The DS90UR908Q provides access to the center tap of the internal termination. A capacitor may be placed on  
this pin for additional common-mode filtering of the differential pair. This can be useful in high noise  
environments for additional noise rejection capability. A 4.7 µF capacitor may be connected to this pin to Ground.  
Input Equalizer Gain (EQ)  
The DS90UR908Q can enable receiver input equalization of the serial stream to compensate the cable loss and  
increase the eye opening to the input. The equalization feature may be controlled by the EQ pin (strap option)  
Table 4 or by register Table 8.  
16  
Copyright © 2009–2013, Texas Instruments Incorporated  
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
Table 2. EQ Pin Configuration Table  
EQ (Strap Option)  
Effect  
EQ = Off  
~12 dB  
L
H
POWER SAVING FEATURES  
PowerDown Feature (PDB)  
The DS90UR908Q has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by  
the system to save power, disabling the Des when the display is not needed. An auto detect mode is also  
available. In this mode, the PDB pin is tied High and the Des will enter POWER DOWN when the serial stream  
stops. When the serial stream starts up again, the Des will lock to the input stream and assert the LOCK pin and  
output valid data. In POWER DOWN mode, the Data and PCLK output states are determined by the OSS_SEL  
status. Note – in POWER DOWN, the optional Serial Bus Control Registers are RESET.  
Stop Stream SLEEP Feature  
The DS90UR908Q will enter a low power SLEEP state when the input serial stream is stopped. A STOP  
condition is detected when the embedded clock bits are not present. When the serial stream starts again, the  
Des will then lock to the incoming signal and recover the data. Note – in STOP STREAM SLEEP, the optional  
Serial Bus Control Registers values are RETAINED.  
OUTPUT INTERFACES (LVCMOS & FPD-LINK)  
CLOCK-DATA RECOVERY STATUS FLAG (LOCK), OUTPUT ENABLE (OEN) and OUTPUT STATE SELECT (OSS_SEL)  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input, LOCK is Low and the FPD-Link  
interface state is determined by the state of the OSS_SEL pin.  
After the DS90UR908Q completes its lock sequence to the input serial data, the LOCK output is driven HIGH,  
indicating valid data and clock recovered from the serial input is available on the FPD-Link outputs. The TxCLK  
output is held at its current state at the change from OSC_CLK (if this is enabled via OSC_SEL) to the recovered  
clock (or vice versa). Note that the FPD-Link outputs may be held in an inactive state (TRI-STATE) through the  
use of the Output Enable pin (OEN).  
If there is a loss of clock from the input serial stream, LOCK is driven Low and the state of the outputs are based  
on the OSS_SEL setting (configuration pin or register).  
Table 3. Output State Table  
INPUTS  
OEN  
OUTPUTS  
OTHER OUTPUTS  
PDB  
OSS_SEL  
LOCK  
TxCLKOUT is TRI-STATE  
TxOUT[3:0] areTRI-STATE  
PASS is TRI-STATE  
L
X
X
L
X
X
TxCLKOUT is TRI-STATE  
TxOUT[3:0] areTRI-STATE  
PASS is HIGH  
L
H
H
H
L
H
H
X
L
L
TxCLKOUT is TRI-STATE  
TxOUT[3:0] areTRI-STATE  
PASS is TRI-STATE  
TxCLKOUT is TRI-STATE or OSC Output through Register bit  
TxOUT[3:0] areTRI-STATE  
PASS is TRI-STATE  
H
L
L
TxCLKOUT is TRI-STATE  
TxOUT[3:0] areTRI-STATE  
PASS is HIGH  
H
TxCLKOUT is Active  
TxOUT[3:0] are Active  
PASS is Active  
H
H
X
H
(Normal operating mode)  
Copyright © 2009–2013, Texas Instruments Incorporated  
17  
 
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
LVCMOS 1.8V / 3.3V VDDIO Operation  
The LVCMOS outputs can operate with 1.8 V or 3.3 V levels (VDDIO) for target (Display) compatibility. The 1.8 V  
levels will offer a system power savings. This applies to the following pins: PASS and LOCK.  
FPD-LINK OUTPUT  
VODSEL  
The differential output voltage of the FPD-Link interface is controlled by the VODSEL input.  
Table 4. VODSEL Configuration Table  
VODSEL  
Result  
L
VOD is 250mV TYP (500mVp-p)  
VOD is 400mV TYP (800mVp-p)  
H
SSCG GENERATION — OPTIONAL  
The Des provides an internally generated spread spectrum clock (SSCG) to modulate its outputs. Both clock and  
data outputs are modulated. This will aid to lower system EMI. Output SSCG deviations to ±2.0% (4% total) at up  
to 35kHz modulations nominally are available. See Table 5 and Table 6. This feature may be controlled by pins  
or by register. The LFMODE should be set appropriately if the SSCG is being used. Set LFMODE High if the  
clock frequency is between 5 MHz and 20 MHz, set LFMODE Low if the clock frequency is between 20 MHz and  
65 MHz.  
Table 5. SSCG Configuration (LFMODE = L) — Des Output  
SSC[2:0] Inputs  
Result  
LFMODE = L (20 - 65 MHz)  
SSC2  
SSC1  
SSC0  
fdev (%)  
OFF  
±0.9  
fmod (kHz)  
L
L
L
L
L
H
L
OFF  
L
H
H
L
±1.2  
CLK/2168  
CLK/1300  
L
H
L
±1.9  
H
H
H
H
±2.3  
L
H
L
±0.7  
H
H
±1.3  
H
±1.7  
Table 6. SSCG Configuration (LFMODE = H) — Des Output  
SSC[2:0] Inputs  
Result  
LFMODE = H (5 - 20 MHz)  
SSC2  
SSC1  
SSC0  
fdev (%)  
OFF  
±0.7  
fmod (kHz)  
L
L
L
L
L
H
L
OFF  
L
H
H
L
±1.3  
CLK/625  
CLK/385  
L
H
L
±1.8  
H
H
H
H
±2.2  
L
H
L
±0.7  
H
H
±1.2  
H
±1.7  
18  
Copyright © 2009–2013, Texas Instruments Incorporated  
 
 
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
Frequency  
fdev(max)  
F
F
PCLK+  
F
PCLK  
fdev(min)  
Time  
PCLK-  
1/fmod  
Figure 17. SSCG Waveform  
OSCILLATOR OUTPUT — OPTIONAL  
The DS90UR908Q provides an optional TxCLKOUT when the input clock (serial stream) has been lost. This is  
based on an internal oscillator. The frequency of the oscillator may be selected. This feature may be controlled  
by the external pin and the register. See Table 3, Table 8, and Figure 18.  
PDB  
RIN  
active serial stream  
X
(Diff.)  
H
H
LOCK  
TxOUT[3:0]  
TxCLKOUT  
L
L
L
Z
Z
Z
Z
Z
Z
f
f
Z
Z
PASS  
OFF  
Active  
OSC Output  
Active  
OFF  
OSC Output  
CONDITIONS: OEN = H, OSS_SEL = H, and OSC_SEL not equal to 000.  
Figure 18. TxCLKOUT Output Oscillator Option Enabled  
Built In Self Test (BIST) — Optional  
An optional At-Speed Built In Self Test (BIST) feature supports the testing of the high-speed serial link. This is  
useful in the prototype stage, equipment production, in-system test and also for system diagnostics. In the BIST  
mode only an input clock is required along with control to the Ser and Des BISTEN input pins. The Ser outputs a  
test pattern (PRBS7) and drives the link at speed. The Des detects the PRBS7 pattern and monitors it for errors.  
The PASS output pin toggles to flag any payloads that are received with 1 to 24 bit errors. The BISTM pin  
selects the operational mode of the PASS pin. If BISTM = L, the PASS pins reports the final result only. If BISTM  
= H, the PASS pins counts payload errors and also results the result. The result of the test is held on the PASS  
output until reset (new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low  
on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the Des BISTEN pin.  
Sample BIST Sequence  
Copyright © 2009–2013, Texas Instruments Incorporated  
19  
 
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
See Figure 19 for the BIST mode flow diagram.  
Step 1: Place the DS90UR907Q or DS90UR905Q in BIST Mode by setting BISTEN = H. The BIST Mode is  
enabled via the BISTEN pin. An RxCLKIN or PCLK is required for all the Ser options. When the DS90UR908Q  
detects the BIST mode pattern and command (DCA and DCB code) the RGB and control signal outputs are shut  
off.  
Step 2: Place the DS90UR908Q in BIST mode by setting the BISTEN = H. The Device is now in the BIST mode  
and checks the incoming serial payloads for errors. If an error in the payload (1 to 24) is detected, the PASS pin  
will switch low for one half of the clock period. During the BIST test, the PASS output can be monitored and  
counted to determine the payload error rate.  
Step 3: To Stop the BIST mode, the DS90UR908Q BISTEN pin is set Low. It stops checking the data and the  
final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If there was one  
or more errors detected, the PASS output will be Low. The PASS output state is held until a new BIST is run, the  
device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the BISTEN signal.  
Step 4: To return the link to normal operation, the serializer BISTEN input is set Low. The Link returns to normal  
operation.  
Figure 20 shows the waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2  
shows one with multiple errors. In most cases it is difficult to generate errors due to the robustness of the link  
(differential data transmission etc.), thus they may be introduced by greatly extending the cable length, faulting  
the interconnect, reducing signal condition enhancements (De-Emphasis, VODSEL, or Rx Equalization).  
Normal  
Step 1: SER in BIST  
BIST  
Wait  
Step 2: Wait, DES in BIST  
BIST  
Start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
Stop  
Step 4: SER in Normal  
Figure 19. BIST Mode Flow Diagram  
20  
Copyright © 2009–2013, Texas Instruments Incorporated  
 
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
BISTEN  
(Serializer)  
BISTEN  
(DS90UR908Q)  
TxCLKOUT  
(Diff.)  
TxOUT[3:0]  
(Diff.)  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
X
X
PASS  
X = bit error(s)  
DATA  
(internal)  
X
PASS  
FAIL  
Prior Result  
BIST  
Result  
Normal  
PRBS  
Normal  
BIST Test  
BIST Duration  
Held  
Figure 20. BIST Waveforms  
Serial Bus Control — Optional  
The DS90UR908Q may also be configured by the use of a serial control bus that is I2C protocol compatible. By  
default, the I2C reg_0x00'h is set to 00'h and all configuration is set by control/strap pins. A write of 01'h to  
reg_0x00'h will enable/allow configuration by registers; this will override the control/strap pins. Multiple devices  
may share the serial control bus since multiple addresses are supported. See Figure 21.  
The serial bus is comprised of three pins. The SCL is a Serial Bus Clock Input. The SDA is the Serial Bus Data  
Input / Output signal. Both SCL and SDA signals require an external pull up resistor to VDDIO. For most  
applications a 4.7 k pull up resistor to VDDIO may be used. The resistor value may be adjusted for capacitive  
loading and data rate requirements. The signals are either pulled High, or driven Low.  
1.8V  
V
10k  
DDIO  
ID[X]  
4.7k  
4.7k  
R
ID  
HOST  
DS90UR908Q  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 21. Serial Control Bus Connection  
Copyright © 2009–2013, Texas Instruments Incorporated  
21  
 
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 22. START and STOP Conditions  
The third pin is the ID[X] pin. This pin sets one of five possible device addresses. Two different connections are  
possible. The pin may be pulled to VDD (1.8V, NOT VDDIO)) with a 10 kresistor. Or a 10 kpull up resistor (to  
VDD1.8V, NOT VDDIO)) and a pull down resistor of the recommended value to set other three possible addresses  
may be used. See Table 7 for the Des. Do not tie ID[x] directly to ground.  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transition High while SCL is also HIGH. See  
Figure 22.  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 23 and a WRITE is shown in Figure 24.  
If the Serial Bus is not required, the three pins may be left open (NC).  
Table 7. ID[x] Resistor Value  
Resistor  
RID k  
(5%tol)  
Address  
7'b  
Address  
8'b  
0 appended  
(WRITE)  
0.47  
2.7  
7b' 111 0001 (h'71)  
7b' 111 0010 (h'72)  
7b' 111 0011 (h'73)  
7b' 111 0110 (h'76)  
8b' 1110 0010 (h'E2)  
8b' 1110 0100 (h'E4)  
8b' 1110 0110 (h'E6)  
8b' 1110 1100 (h'EC)  
8.2  
Open  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
k
Figure 23. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
Figure 24. Serial Control Bus — WRITE  
22  
Copyright © 2009–2013, Texas Instruments Incorporated  
 
 
 
 
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
Table 8. Serial Bus Control Registers  
ADD ADD Register Name  
(dec) (hex)  
Bit(s)  
R/W Defau Function  
Description  
lt  
(bin)  
0
0
Des Config 1  
7
6
R/W  
R/W  
0
LFMODE  
MAPSEL  
0: 20 to 65 MHz Operation  
1: 5 to 20 MHz Operation  
0
FPD-Link Map Select  
0: LSB on TxOUT3+/-  
1: MSB on TxOUT3+/-  
5
4
R/W  
R/W  
R/W  
0
0
Reserved  
Reserved  
CONFIG  
Reserved  
Reserved  
3:2  
00  
00: Normal Mode, Control Signal Filter Disabled  
01: Normal Mode, Control Signal Filter Enabled  
10: Backwards Compatible (DS90UR241)  
11: Backwards Compatible (DS90C241)  
1
R/W  
0
SLEEP  
Note – not the same function as PowerDown (PDB)  
0: normal mode  
1: Sleep Mode – Register settings retained.  
0
7
R/W  
R/W  
0
0
REG Control  
0: Configurations set from control pins / STRAP pin  
1: Configurations set from registers (except I2C_ID)  
1
2
1
2
Slave ID  
0: Address from ID[X] Pin  
1: Address from Register  
6:0  
R/W 11100 ID[X]  
00  
Serial Bus Device ID, Four IDs are:  
7b '1110 001 (h'71); 8b ' 1110 0010 (h'E2)  
7b '1110 010 (h'72); 8b ' 1110 0100 (h'E4)  
7b '1110 011 (h'73); 8b ' 1110 0110 (h'E6)  
7b '1110 110 (h'76); 8b ' 1110 1100 (h'EC)  
All other addresses are Reserved.  
Des Features 1  
7
6
R/W  
R/W  
R/W  
R/W  
0
0
OEN  
Output Enable Input, Table 3  
Output Sleep State Select, Table 3  
Reserved  
OSS_SEL  
Reserved  
VODSEL  
5:4  
3
00  
0
Differential Driver Output Voltage Select  
0: LVDS VOD is ±250 mV, 500 mVp-p (typ)  
1: LVDS VOD is ±400 mV, 800 mVp-p (typ)  
2:0  
R/W  
00  
OSC_SEL  
000: OFF  
001: Reserved  
010: 25 MHz ±40%  
011: 16.7 MHz ±40%  
100: 12.5 MHz ±40%  
101: 10 MHz ±40%  
110: 8.3 MHz ±40%  
111: 6.3 MHz ±40%  
Copyright © 2009–2013, Texas Instruments Incorporated  
23  
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
Table 8. Serial Bus Control Registers (continued)  
ADD ADD Register Name  
(dec) (hex)  
Bit(s)  
R/W Defau Function  
Description  
lt  
(bin)  
3
3
Des Features 2  
7:5  
R/W  
000 EQ Gain  
000: ~1.625 dB  
001: ~3.25 dB  
010: ~4.87 dB  
011: ~6.5 dB  
100: ~8.125 dB  
101: ~9.75 dB  
110: ~11.375 dB  
111: ~13 dB  
4
R/W  
0
0
EQ Enable  
0: EQ = disabled  
1: EQ = enabled  
3
R/W  
R/W  
Reserved  
Reserved  
2:0  
000 SSC  
IF LFMODE = 0, then:  
000: SSCG OFF  
001: fdev = ±0.9%, fmod = CLK/2168  
010: fdev = ±1.2%, fmod = CLK/2168  
011: fdev = ±1.9%, fmod = CLK/2168  
100: fdev = ±2.3%, fmod = CLK/2168  
101: fdev = ±0.7%, fmod = CLK/1300  
110: fdev = ±1.3%, fmod = CLK/1300  
111: fdev = ±1.57%, fmod = CLK/1300  
IF LFMODE = 1, then:  
000: SSCG OFF  
001: fdev = ±0.7%, fmod = CLK/625  
010: fdev = ±1.3%, fmod = CLK/625  
011: fdev = ±1.8%, fmod = CLK/625  
100: fdev = ±2.2%, fmod = CLK/625  
101: fdev = ±0.7%, fmod = CLK/385  
110: fdev = ±1.2%, fmod = CLK/385  
111: fdev = ±1.7%, fmod = CLK/385  
24  
Copyright © 2009–2013, Texas Instruments Incorporated  
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
APPLICATIONS INFORMATION  
DISPLAY APPLICATION  
The DS90UR908Q, in conjunction with the DS90UR907Q or DS90UR905Q, is intended for interfacing between a  
host (graphics processor) and a Display. It supports an 24-bit color depth (RGB888) and up to 1024 X 768  
display formats. In a RGB888 application, 24 color bits (R[7:0], G[7:0], B[7:0]), Pixel Clock (PCLK) and three  
control bits (VS, HS and DE) are supported across the serial link with PCLK rates from 5 to 65 MHz. The device  
may also be used in 18-bit color applications. In this application three to six general purpose signals may also be  
send from host to display.  
TYPICAL APPLICATION CONNECTION  
Figure 25 shows a typical application of the DS90UR908Q for a 65 MHz XGA Display. The LVDS inputs utilize  
100 nF coupling capacitors to the line and the Receiver provides internal termination. Bypass capacitors are  
placed near the power supply pins. Ferrite beads are placed on the power lines for effective noise suppression.  
DS90UR908Q  
3.3V  
1.8V  
FB4  
FB1  
VDDL  
VDDTX  
C6  
C7  
C11  
C3  
C4  
C8  
C12  
C9  
VDDL  
FB2  
VDDIO  
FB5  
VDDA  
VDDA  
VDDIO  
C13  
C10  
FB3  
VDDP  
C5  
VDDSC  
VDDSC  
TxCLKOUT+  
TxCLKOUT-  
C1  
C2  
TxOUT3+  
TxOUT3-  
TxOUT2+  
TxOUT2-  
TxOUT1+  
TxOUT1-  
TxOUT0+  
TxOUT0-  
RIN+  
FPD-Link  
Interface  
Serial  
FPD-Link II  
Interface  
LVDS  
100 Ohm  
Termination  
RIN-  
CMF  
C14  
BISTEN  
PDB  
Host  
Control  
LOCK  
PASS  
R
C15  
1.8V  
OEN  
OSS_SEL  
LFMODE  
VODSEL  
MAPSEL  
10k  
RID  
ID[X]  
SCL  
SDA  
C1 - C2 = 0.1 mF (50 WV)  
C3 œ C10 = 0.1 mF  
C11 - C14 = 4.7 mF  
C15 = >10 mF  
CONFIG1  
CONFIG0  
RES  
GND  
8
SSC[2]  
SSC[1]  
SSC[0]  
DAP (GND)  
R = 10 kW  
RID (See ID[x] Resistor Value Table)  
FB1 - FB5: Impedance = 1 kW  
Low DC resistance ( <1W)  
Figure 25. DS90UR908Q Typical Connection Diagram  
Copyright © 2009–2013, Texas Instruments Incorporated  
25  
 
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
POWER UP REQUIREMENTS AND PDB PIN  
The VDD (VDDn), VDDTX and VDDIO supply ramps should be faster than 1.5 ms with a monotonic rise. Supplies  
may power up in any order, however device operation should be initiated only after all supplies are in their valid  
operating ranges. The optional serial bus address selection is done upon power up also. Thus, if using this  
optional feature, the PDB signal must be delayed to allow time for the ID setting to occur. The delay maybe done  
by simply holding the PDB pin at a Low, or with an external RC delay based off the VDDIO rail which would then  
need to lag the others in time. If the PDB pin is pulled to VDDIO, it is recommended to use a 10 kΩ pull-up and a  
10 uF cap to GND to delay the PDB input signal.  
TRANSMISSION MEDIA  
The FPD-Link II chipset is intended to be used in a point-to-point configuration, through a PCB trace, or through  
twisted pair cable. The serializer and deserializer provide internal terminations providing a clean signaling  
environment. The interconnect for LVDS should present a differential impedance of 100 Ω. Use cables and  
connectors that have matched differential impedance to minimize impedance discontinuities. Shielded or un-  
shielded cables may be used depending upon the noise environment and application requirements.  
LIVE LINK INSERTION  
The serializer and deserializer devices support live pluggable applications. The automatic receiver lock to  
random data “plug & go” hot insertion capability allows the DS90UR908Q to attain lock to the active data stream  
during a live insertion event.  
ALTERNATE COLOR / DATA MAPPING  
Color Mapped data Pin names are provided to specify a recommended mapping for 24-bit and 18-bit  
Applications. When connecting to earlier generations of FPD-Link II serializer devices, a color mapping review is  
recommended to ensure the correct connectivity is obtained. Table 9 provides examples for interfacing between  
DS90UR908Q and different deserializers.  
Table 9. Alternate Color / Data Mapping  
FPD-Link  
Bit Number  
RGB (LSB  
Example)  
DS90UR905Q  
DS90UR241  
DS99R421  
DS90C241  
Bit 26  
Bit 25  
Bit 24  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
B1  
B0  
G1  
G0  
R1  
R0  
DE  
VS  
HS  
B7  
B6  
B5  
B4  
B3  
B2  
G7  
G6  
G5  
G4  
G3  
B1  
B0  
G1  
G0  
R1  
R0  
DE  
VS  
HS  
B7  
B6  
B5  
B4  
B3  
B2  
G7  
G6  
G5  
G4  
G3  
TxOUT3  
N/A  
DIN20  
DIN19  
DIN18  
DIN17  
DIN16  
DIN15  
DIN14  
DIN13  
DIN12  
DIN11  
DIN10  
DIN9  
DIN20  
DIN19  
DIN18  
DIN17  
DIN16  
DIN15  
DIN14  
DIN13  
DIN12  
DIN11  
DIN10  
DIN9  
TxOUT2  
RxIN2  
TxOUT1  
RxIN1  
Bit 8  
DIN8  
DIN8  
Bit 7  
DIN7  
DIN7  
26  
Copyright © 2009–2013, Texas Instruments Incorporated  
 
DS90UR908Q-Q1  
www.ti.com.cn  
FPD-Link  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
Table 9. Alternate Color / Data Mapping (continued)  
Bit Number  
RGB (LSB  
Example)  
DS90UR905Q  
DS90UR241  
DS99R421  
DS90C241  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
G2  
R7  
R6  
R5  
R4  
R3  
R2  
G2  
R7  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
DIN1  
DIN0  
DIN23  
DIN22  
DIN21  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
DIN1  
DIN0  
DIN23  
DIN22  
DIN21  
R6  
TxOUT0  
R5  
RxIN0  
R4  
R3  
R2  
N/ADIN12  
OS2  
OS1  
OS0  
DS90UR908Q  
Settings  
MAPSEL = 0  
CONFIG [1:0] =  
00  
CONFIG [1:0] = 10  
CONFIG [1:0] =  
11  
PCB LAYOUT AND POWER SYSTEM CONSIDERATIONS  
Circuit board layout and stack-up for the LVDS devices should be designed to provide low-noise power feed to  
the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by  
using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance  
for the PCB power system with low-inductance parasitics, which has proven especially effective at high  
frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2 µF to 10 µF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50µF to 100µF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely-coupled differential lines of 100 Ω  
are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise  
will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate  
less.  
Information on the WQFN style package is provided in TI Application Note: AN-1187 (SNOA401).  
Copyright © 2009–2013, Texas Instruments Incorporated  
27  
DS90UR908Q-Q1  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
www.ti.com.cn  
LVDS INTERCONNECT GUIDELINES  
See AN-1108 (SNLA008) and AN-905 (SNLA035) for full details.  
Use 100Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the TI  
web site at: www.ti.com/lvds  
28  
Copyright © 2009–2013, Texas Instruments Incorporated  
DS90UR908Q-Q1  
www.ti.com.cn  
ZHCSB30H SEPTEMBER 2009REVISED APRIL 2013  
Revision History  
03/30/2010 — Initial Release  
07/26/2010 — Update all final AC and DC parameter limits  
08/09/2010 — Update Pin Description of VODSEL  
04/16/2013 — Changed layout of National Data Sheet to TI format  
Copyright © 2009–2013, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UR908QSQ/NOPB  
DS90UR908QSQE/NOPB  
DS90UR908QSQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
90UR908Q  
SN  
SN  
90UR908Q  
90UR908Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UR908QSQ/NOPB WQFN  
DS90UR908QSQE/NOPB WQFN  
DS90UR908QSQX/NOPB WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UR908QSQ/NOPB  
DS90UR908QSQE/NOPB  
DS90UR908QSQX/NOPB  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
2500  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DS90UR908QSQX

5 - 65 MHz 24-bit Color FPD-Link II to FPD-Link Converter
NSC

DS90UR908QSQX/NOPB

5 - 65MHz 24 位色彩 FPD-Link II 至 FPD 链接转换器 | RHS | 48 | -40 to 105
TI

DS90UR910-Q1

10 - 75MHz、24 位彩色 FPD-Link II 至 CSI-2 转换器
TI

DS90UR910QSQ/NOPB

10 - 75MHz、24 位彩色 FPD-Link II 至 CSI-2 转换器 | RTA | 40 | -40 to 105
TI

DS90UR910QSQE/NOPB

10 - 75MHz、24 位彩色 FPD-Link II 至 CSI-2 转换器 | RTA | 40 | -40 to 105
TI

DS90UR910QSQX/NOPB

10 - 75MHz、24 位彩色 FPD-Link II 至 CSI-2 转换器 | RTA | 40 | -40 to 105
TI

DS90UR916Q

5 - 65 MHz 24-bit Color FPD-Link II Deserializer with Image Enhancement
TI

DS90UR916Q-Q1

具有图像增强功能的 5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器
TI

DS90UR916QSQ

5 - 65 MHz 24-bit Color FPD-Link II Deserializer with Image Enhancement
TI

DS90UR916QSQ/NOPB

具有图像增强功能的 5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器 | NKB | 60 | -40 to 105
TI

DS90UR916QSQE

5 - 65 MHz 24-bit Color FPD-Link II Deserializer with Image Enhancement
TI

DS90UR916QSQE/NOPB

具有图像增强功能的 5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器 | NKB | 60 | -40 to 105
TI