HD3SS212_V01 [TI]

HD3SS212 5.4Gbps DisplayPort 1.2 2-to-1 Differential Switch;
HD3SS212_V01
型号: HD3SS212_V01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HD3SS212 5.4Gbps DisplayPort 1.2 2-to-1 Differential Switch

文件: 总26页 (文件大小:1417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD3SS212  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
HD3SS212 5.4Gbps DisplayPort 1.2 2-to-1 Differential Switch  
1 Features  
3 Description  
Compatible with DisplayPort 1.2 electrical standard  
2:1 switching supporting data rates up to 5.4Gbps  
Supports HPD switching  
Wide -3dB differential BW of over 5.4 GHz  
Excellent dynamic characteristics (at 2.7GHz)  
– Crosstalk = –50dB  
The HD3SS212 is a high-speed passive switch  
capable of switching two full DisplayPort 4 lane ports  
from one of two sources to one target location in an  
application. For DisplayPort applications that  
HD3SS212 also supports switching of the Auxiliary  
(AUX) and Hot Plug Detect (HPD) signals. HPD path  
is a buffer which requires a 125kΩ pull-down resistor  
on the HPDC line.  
– Isolation = –22dB  
– Insertion loss = –1.4dB  
A typical application would be a mother board that  
includes two GPUs that need to drive one DisplayPort  
sink. The GPU is selected by the Dx_SEL pin. The  
HD3SS212 is offered in a 48-ball bfBGA package and  
specified to operate from a single supply voltage of  
3.3V over full industrial temperature range of –40°C to  
105°C.  
– Return loss = –11 dB  
– Max bit-bit skew = 4 ps  
VDD operating range 3.3 V ±10%  
Small 5 mm x 5 mm x 1 mm, 48-ball nFBGA  
package  
Output enable (oe) pin disables switch to save  
power  
Device Information (1)  
Power consumption  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
– HD3SS212 <10mW (standby <30µW when OE  
= L)  
HD3SS212  
nFBGA (48)  
5.00 mm x 5.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
2 Applications  
PC & notebooks  
Tablets  
Connected peripherals & printers  
VDD  
4
DAz (p)  
SEL = 0  
4
DAz (n)  
4
(p)  
(n)  
DCz  
DCz  
(z= 0,1,2or3)  
4
4
4
DBz(p)  
DBz(n)  
SEL = 1  
SEL  
Dx_SEL  
SEL  
HPDA  
HPDB  
SEL = 0  
HPDC  
125kW  
SEL = 1  
SEL  
AUXA(p)  
AUXA(n)  
SEL = 0  
(p)  
AUXC  
AUXC  
(n)  
AUXB(p)  
AUXB(n)  
SEL = 1  
OE  
HD3SS212  
GND  
Functional Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Function.....................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................7  
7 Parameter Measurement Information............................8  
7.1 Test Timing Diagrams................................................. 8  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................10  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 13  
10 Layout...........................................................................16  
10.1 Layout Guidelines................................................... 16  
10.2 Layout Example...................................................... 16  
11 Device and Documentation Support..........................17  
11.1 Receiving Notification of Documentation Updates..17  
11.2 Community Resource..............................................17  
11.3 Trademarks............................................................. 17  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 17  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (October 2016) to Revision D (December 2020)  
Page  
NOTE: The device in the MicroStar Jr. BGA packaging were redesigned using a laminate nFBGA package.  
This nFBGA package offers datasheet-equivalent electrical performance. It is also footprint equivalent to the  
MicroStar Jr. BGA. The new package designator in place of the discontinued package designator will be  
updated throughout the datasheet......................................................................................................................1  
Changed u*jr BGA to nFBGA............................................................................................................................. 1  
Changed u*jr ZQE to nFBGA ZXH. Updated thermal information......................................................................5  
Corrected typo from HD3SS3412 to HD3SS212..............................................................................................16  
Changes from Revision B (January 2014) to Revision C (October 2016)  
Page  
Added Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes,  
Application and Implementation section, Power Supply Recommendations section, Layout section, Device  
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. .......... 1  
Deleted Ordering Information table. See POA at the end of the datasheet. ......................................................1  
Changes from Revision A (March 2012) to Revision B (January 2014)  
Page  
Changed OE to OE throughout document..........................................................................................................1  
Changes from Revision * (December 2011) to Revision A (March 2012)  
Page  
Changed Description From: full industrial temperature range of –40°C to 85°C To: full industrial temperature  
range of –40°C to 105°C.....................................................................................................................................1  
Added Operating Temperature to the Abs Max Table.........................................................................................5  
Changed the Operating free-air temperature From MAX = 85°C To: 105°C...................................................... 5  
Changed the values of ψJT and ψJB in the Thermal Information table................................................................5  
Changed the MAX value of Leakage current (Dx_SEL), VDD = 0 V From: 8µA To: 10µA.................................6  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
5 Pin Configuration and Function  
1
2
3
4
5
6
7
8
9
Dx_SEL  
VDD  
DA0(n)  
DA1(n)  
DA2(n)  
DA3(p)  
DA3(n)  
A
B
C
D
E
F
OE  
DC0(n)  
DC0(p)  
NC  
GND  
DA0(p)  
DA1(p)  
DA2(p)  
DB0(p)  
GND  
DB0(n)  
DC1(n)  
DC2(n)  
DC3(n)  
DC1(p)  
DC2(p)  
DC3(p)  
GND  
DB1(p)  
DB2(p)  
DB3(p)  
GND  
DB1(n)  
DB2(n)  
DB3(n)  
G
AUXC(n)  
HPDC  
AUXC(p)  
HPDA  
HPDB  
GND  
VDD  
NC  
NC  
AUXB(p)  
AUXB(n)  
GND  
NC  
AUXA(p)  
AUXA(n)  
H
J
NC  
Table 5-1. Pin Functions  
PIN  
PIN NAME  
I/O  
DESCRIPTION  
A1  
Dx_SEL  
Control I  
High Speed Port Selection Control Pins  
B4  
A4  
DA0(p)  
DA0(n)  
Port A, Channel 0, High Speed Positive Signal  
Port A, Channel 0, High Speed Negative Signal  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
B5  
A5  
DA1(p)  
DA1(n)  
Port A, Channel 1, High Speed Positive Signal  
Port A, Channel 1, High Speed Negative Signal  
B6  
A6  
DA2(p)  
DA2(n)  
Port A, Channel 2, High Speed Positive Signal  
Port A, Channel 2, High Speed Negative Signal  
A8  
A9  
DA3(p)  
DA3(n)  
Port A, Channel 3, High Speed Positive Signal  
Port A, Channel 3, High Speed Negative Signal  
B8  
B9  
DB0(p)  
DB0(n)  
Port B, Channel 0, High Speed Positive Signal  
Port B, Channel 0, High Speed Negative Signal  
D8  
D9  
DB1(p)  
DB1(n)  
Port B, Channel 1, High Speed Positive Signal  
Port B, Channel 1, High Speed Negative Signal  
E8  
E9  
DB2(p)  
DB2(n)  
Port B, Channel 2, High Speed Positive Signal  
Port B, Channel 2, High Speed Negative Signal  
F8  
F9  
DB3(p)  
DB3(n)  
Port B, Channel 3, High Speed Positive Signal  
Port B, Channel 3, High Speed Negative Signal  
B2  
B1  
DC0(p)  
DC0(n)  
Port C, Channel 0, High Speed Positive Signal  
Port C, Channel 0, High Speed Negative Signal  
D2  
D1  
DC1(p)  
DC1(n)  
Port C, Channel 1, High Speed Positive Signal  
Port C, Channel 1, High Speed Negative Signal  
E2  
E1  
DC2(p)  
DC2(n)  
Port C, Channel 2, High Speed Positive Signal  
Port C, Channel 2, High Speed Negative Signal  
F2  
F1  
DC3(p)  
DC3(n)  
Port C, Channel 3, High Speed Positive Signal  
Port C, Channel 3, High Speed Negative Signal  
H9  
J9  
AUXA(p)  
AUXA(n)  
Port A AUX Positive Signal  
Port A AUX Negative Signal  
H6  
J6  
AUXB(p)  
AUXB(n)  
Port B AUX Positive Signal  
Port B AUX Negative Signal  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
Table 5-1. Pin Functions (continued)  
PIN  
PIN NAME  
I/O  
DESCRIPTION  
H2  
H1  
AUXC(p)  
AUXC(n)  
Port C AUX Positive Signal  
Port C AUX Negative Signal  
I/O  
J2, H3, J1  
B7  
HPDA/B/C  
OE  
I/O  
I
Port A/B/C Hot Plug Detect  
Output Enable  
A2, J4  
VDD  
Supply  
3.3V Positive power supply voltage  
B3, C8, G2,  
G8, H4, H7  
GND  
NC  
Supply  
Negative power supply voltage  
Electrically not connected  
C2, H5, H8,  
J5, J8  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
MIN  
–0.5  
–0.5  
–0.5  
–40  
MAX  
UNIT  
V
Supply voltage range(3)  
Voltage range  
VDD  
4
4
Differential I/O  
Control pin  
V
VCC +0.5  
105  
V
Operating free-air temperature  
Continuous power dissipation  
Storage temperature  
°C  
See Section 6.4  
–55  
125  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-B  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM) (1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM) (2)  
(1) Tested in accordance with JEDEC Standard 22, Test Method C101-A  
(2) Tested in accordance with JEDEC Standard 22, Test Method A115-A  
6.3 Recommended Operating Conditions  
Nominal values for all parameters are at VCC = 3.3V and TA = 25°C, all temperature limits are specified by design  
PARAMETER  
Supply voltage  
Input high voltage  
Input low voltage  
CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
VDD  
VIH  
VIL  
3.0  
3.3  
3.6  
V
V
V
Control Pins, Signal Pins (Dx_SEL, OE) (HPDC, 5V Tolerant)  
Control Pins, Signal Pins (Dx_SEL, OE, HPDC)  
2.0  
VDD  
0.8  
–0.1  
Differential voltage (Dx,  
AUXx)  
VI/O_Diff  
VI/O_CM  
Switch I/O diff voltage  
0
0
1.8  
2.0  
Vpp  
V
Common voltage (Dx,  
AUXx)  
Switch I/O common mode voltage  
Operating free-air  
temperature  
–40  
105  
°C  
6.4 Thermal Information  
HD3SS212  
nFBGA (ZXH)  
48-Ball  
64.9  
THERMAL METRIC(1)  
UNIT  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
28.7  
Junction-to-board thermal resistance  
36.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.0  
ψJB  
36.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
 
 
 
 
 
 
 
 
 
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
6.5 Electrical Characteristics  
under recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
DEVICE PARAMETERS  
IIH  
IIL  
Input high current (Dx_SEL)  
Input low current (Dx_SEL)  
VDD = 3.6 V, VIN = VDD  
3
0.01  
2
10 µA  
VDD = 3.6 V, VIN = GND  
1
5
µA  
VDD = 3.3 V, Vi = 2V, OE = 3.3V  
VDD = 0 V, Vi = 2 V, OE = 3.3 V  
Leakage current (Dx_SEL)  
6
10  
2
ILK  
µA  
Leakage current (HPDA)  
Leakage current (HPDB)  
Device shut down current  
VDD = 3.3 V, Vi = 2 V, OE = 3.3 V; Dx_SEL=3.3 V  
VDD = 3.3 V, Vi = 2 V, OE = 3.3 V; Dx_SEL=GND  
VDD = 3.6 V, OE = GND  
0.01  
0.01  
2
Ioff  
5
µA  
VDD = 3.6 V, Dx_SELx = VCC/GND; Outputs  
floating  
IDD  
Supply current  
2.5  
5
mA  
DA, DB, DC HIGH SPEED SIGNAL PATH  
CON  
COFF  
RON  
Outputs ON capacitance  
Outputs OFF capacitance  
Output ON resistance  
Vi = 0 V, Outputs open, Switch ON  
1.5  
1
pF  
pF  
Ω
Vi = 0 V, Outputs open, Switch OFF  
VDD = 3.3 V, VCM = 0.5V - 1.5 V, IO = –40 mA  
6.5  
10  
On resistance match between pairs of the  
same channel  
ΔRON  
VDD = 3.3 V; -0.35V ≤ VI ≤ 1.2 V; IO = –40 mA  
VDD = 3.3 V; -0.35 V ≤ VI ≤ 1.2 V  
1.5  
Ω
Ω
On resistance flatness (RON (MAX) – RON  
RFLAT_ON  
1.3  
)
(MAIN)  
AUXx SIGNAL PATH  
CON  
COFF  
RON  
Outputs ON capacitance  
Vi = 0 V, Outputs open, Switch ON  
9
3
7
pF  
pF  
Ω
Outputs OFF capacitance  
Output ON resistance  
Vi = 0 V, Outputs open, Switch OFF  
VDD = 3.3 V, VCM = 0.5 V - 1.5 V, IO = -40 mA  
12  
DEVICE PARAMETERS (under recommended operating conditions; RL, Rsc = 50 Ω unless otherwise noted  
tPD  
Switch propagation delay  
Rsc and RL = 50 Ω, See Figure 7-2  
200 ps  
Ton  
Dx_SEL -to-Switch Ton (Data and AUX)  
Dx_SEL -to-Switch Toff (Data and AUX)  
Dx_SEL -to-Switch Ton (HPD)  
Dx_SEL -to-Switch Toff (HPD)  
Inter-pair output skew (CH-CH)  
Intra-pair output skew (bit-bit)  
175  
175  
275  
275  
250  
ns  
Rsc and RL = 50 Ω, See Figure 7-1  
Toff  
250  
Ton  
350  
ns  
350  
RL = 50 Ω, See Figure 7-1  
Toff  
TSK(O)  
TSK(b-b)  
50  
ps  
4
Rsc and RL = 1 kΩ, See Figure 7-2  
1
–17  
–11  
–50  
–22  
–0.7  
–1.4  
–1.7  
–1  
1.35 GHz, See Section 6.6  
2.7 GHz, See Section 6.6  
2.7 GHz  
RL  
Dx Differential return loss(1)  
dB  
XTALK  
OIRR  
Dx Differential crosstalk(1)  
Dx Differential off-isolation(1)  
2.7 GHz, See Section 6.6  
f = 1.35 GHz, See Section 6.6  
f = 2.7 GHz, See Section 6.6  
f = 5.4 GHz, See Section 6.6  
f = 360 MHz  
Dx Differential insertion loss(1)  
AUX Differential insertion loss(1)  
dB  
dB  
IL  
(1) For Return Loss, Crosstalk, Off-Isolation, and Insertion Loss values the data was collected on a Rogers material board with minimum  
length traces on the input and output of the device under test.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
6.6 Typical Characteristics  
0
-5  
0
-5  
-10  
-10  
-15  
-20  
-25  
-30  
-15  
-20  
-25  
-30  
1E10 2E10  
1E8  
1E9  
1E8  
1E9  
1E10 2E8  
Frequency - Hz  
Frequency - Hz  
Figure 6-2. Return Loss  
Figure 6-1. Insertion Loss and -3dB Bandwidth  
0
-20  
-40  
-60  
-80  
-100  
1E8  
1E9  
1E10 2E10  
Frequency - Hz  
Figure 6-3. OF Isolation  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
7 Parameter Measurement Information  
7.1 Test Timing Diagrams  
50%  
Dx_SEL  
90%  
VOUT  
10%  
Ton  
Toff  
Figure 7-1. Select to Switch Ton and Toff  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
Vcc  
50 Ω  
DAx/DBx(p)  
DAx/DBx(n)  
DCx(p)  
50 Ω  
50 Ω  
DCx(n)  
50 Ω  
SEL  
DAx/DBx(p)  
50%  
50%  
DAx/DBx(n)  
DCx(p)  
50%  
50%  
DCx(n)  
DCx(p)  
tP1  
t2  
tP2  
t4  
t1  
t3  
50%  
DCx(n)  
DCy(p)  
tSK(O)  
DCy(n)  
tPD = Max(tp1, tp2)  
tSK(O) = Difference between tPD for any  
two pairs of outputs  
tSK(b-b) = 0.5 X |(t4 – t3) + (t1 – t2)|  
Figure 7-2. Propagation Delay and Skew  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
8 Detailed Description  
8.1 Overview  
The HD3SS212 is a high-speed passive switch offered in an industry standard 48-pin u*BGA package available  
in a common footprint shared by several other vendors. The device is specified to operate from a single supply  
voltage of 3.3 V over the industrial temperature range of -40°C to 105°C.  
The HD3SS212 is a generic 4-CH high-speed mux/demux type of switch that can be used for routing high-speed  
signals between two different locations on a circuit board. The HD3SS212 will also support several other high-  
speed data protocols with a differential amplitude of < 1800 mVpp and a common-mode voltage of < 2.0 V, as  
with USB 3.0 and DisplayPort 1.2. For Display Port Applications the HD3SS212 also supports switching of both  
the Auxiliary and Hot Plug Detect signals.  
The device’s High Speed Port Selection Control input (Dx_SEL) pin can easily be controlled by an available  
GPIO pin within a system.  
8.2 Functional Block Diagram  
VDD  
4
DAz (p)  
SEL = 0  
4
DAz (n)  
4
(p)  
(n)  
DCz  
DCz  
(z= 0,1,2or3)  
4
4
4
DBz(p)  
DBz(n)  
SEL = 1  
SEL  
Dx_SEL  
SEL  
HPDA  
HPDB  
SEL = 0  
HPDC  
SEL = 1  
125kW  
SEL  
AUXA(p)  
AUXA(n)  
SEL = 0  
(p)  
AUXC  
AUXC  
(n)  
AUXB(p)  
AUXB(n)  
SEL = 1  
OE  
HD3SS212  
GND  
8.3 Feature Description  
Refer to Section 8.2.  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
 
 
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
The HD3SS212 behaves as a two to one using high bandwidth pass gates. The input port is selected using the  
Dx_SEL pin according to Table 8-1.  
Table 8-1. Switch Control Logic  
CONTROL LINES  
Dx_SEL  
SWITCHED I/O PINS(1) (2)  
DCz(p) PIN  
z = 0, 1, 2 or 3  
DCz(n) PIN  
z = 0, 1, 2 or 3  
HPDC PIN  
AUXC(p) PIN  
AUXC(n) PIN  
L
DAz(p)  
DBz(p)  
DAz(n)  
DBz(n)  
HPDA  
HPDB  
AUXA(p)  
AUXA(n)  
H
AUXVB(p)  
AUXVB(n)  
(1) OE pin - For nomal operation, drive OE high. Driving the OE pin low will disable the switch to enable power savings.  
(2) The ports which are not selected by the Control Lines will be in High Impedance State.  
8.4 Device Functional Modes  
The HD3SS212 can be operated in normal operation mode or in shut down mode. In normal operation, the input  
ports of the HD3SS212 are routed to the output ports according to Table 8-1. In shut down mode the HD3SS212  
is disabled to enable power savings with a typical current consumption of 5 µA. The functional mode is selected  
through the OE input pin with High for normal operation and LOW for shut down.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
 
 
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 AC Coupling Caps  
Many interfaces require AC coupling between the transmitter and receiver. The 0402 capacitors are the  
preferred option to provide AC coupling, and the 0603 size capacitors also work. The 0805 size capacitors and  
C-packs should be avoided. When placing AC coupling capacitors symmetric placement is best. A capacitor  
value of 0.1 µF is best and the value should be match for the ± signal pair. The placement should be along the  
TX pairs on the system board, which are usually routed on the top layer of the board. There are several  
placement options for the AC coupling capacitors. Because the switch requires a bias voltage, the capacitors  
must only be placed on one side of the switch. If they are placed on both sides of the switch, a biasing voltage  
should be provided. A few placement options are shown below. In Figure 9-1, the coupling capacitors are placed  
between the switch and endpoint. In this situation, the switch is biased by the system/host controller.  
Port A  
RX  
Device/  
Endpoint  
Port B  
TX  
TX  
System/Host  
Controller  
Port A  
Port B  
RX  
RX  
Device/  
Endpoint  
TX  
Figure 9-1. AC Coupling Capacitors Between Switch TX and Endpoint TX  
In Figure 9-2, the coupling capacitors are placed on the host transmit pair and endpoint transmit pair. In this  
situation, the switch on the top is biased by the endpoint and the lower switch is biased by the host controller.  
Port A  
RX  
Device/  
Endpoint  
Port B  
TX  
TX  
System/Host  
Controller  
Port A  
Port B  
RX  
RX  
Device/  
Endpoint  
TX  
Figure 9-2. AC Coupling Capacitors on Host TX and Endpoint TX  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
 
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
If the common-mode voltage in the system is higher than 2 V, the coupling capacitors are placed on both sides  
of the switch (shown in Figure 9-3). A biasing voltage of less than 2 V is required in this case.  
VBIAS  
Port A  
RX  
Device/  
Endpoint  
Port B  
TX  
VBIAS  
System/Host  
Controller  
TX  
RX  
Port A  
Port B  
RX  
Device/  
Endpoint  
TX  
Figure 9-3. AC Coupling Capacitors on Both Sides of Switch  
9.2 Typical Application  
DAx (p)  
DAx (n)  
4
4
DCx(p)  
DCx(n)  
4
4
GPU/  
Source A  
AUXAx  
HPDA  
2
Sink/  
Connector  
AUXCx  
HPDC  
2
HPDB  
AUXBx  
2
GPU/  
Source B  
Dx_SEL  
Control  
AUX _SEL  
DBx (p)  
DBx (n)  
4
4
HD3SS212  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9-4. Dual Source Connection Block Diagram  
9.2.1 Design Requirements  
Table 9-1 lists the design parameters.  
Table 9-1. Design Parameters  
DESIGN PARAMETERS  
Input voltage range  
Decoupling capacitors  
AC capacitors  
EXAMPLE VALUE  
3.3 V  
0.1 µF  
75 nF – 200 nF (100 nF shown) USBAA TX p and  
AC capacitors n lines require AC capacitors.  
Alternate mode signals may or may not require AC  
capacitors  
9.2.2 Detailed Design Procedure  
Connect VDD and GND pins to the power and ground planes of the printed circuit board, with 0.1-µF bypass  
capacitor  
Use +3.3-V TTL/CMOS logic level at SEL  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
 
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
Use controlled-impedance transmission media for all the differential signals  
Ensure the received complimentary signals are with a differential amplitude of < 1800 mVpp and a common-  
mode voltage of < 2V.  
9.2.3 Application Curves  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-30  
-30  
1E8  
1E10 2E10  
1E8  
1E9  
1E9  
Frequency - Hz  
1E10 2E8  
Frequency - Hz  
Figure 9-6. Return Loss  
Figure 9-5. Insertion Loss and -3dB Bandwidth  
0
-20  
-40  
-60  
-80  
-100  
1E8  
1E9  
1E10 2E10  
Frequency - Hz  
Figure 9-7. OF Isolation  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
Power Supply Recommendations  
The HD3SS212 requires +3.3-V digital power sources. VDD 3.3 supply must have 0.1-µF bypass capacitors to  
VSS (ground) in order for proper operation. The recommendation is one capacitor for each power terminal. Place  
the capacitor as close as possible to the terminal on the device and keep trace length to a minimum. Smaller  
value capacitors like 0.01-µF are also recommended on the digital supply terminals.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
10 Layout  
10.1 Layout Guidelines  
Decoupling caps should be placed next to each power terminal on the HD3SS212. Take care to minimize the  
stub length of the race connecting the capacitor to the power pin.  
Avoid sharing vias between multiple decoupling caps  
Place vias as close as possible to the decoupling cop solder pad  
Widen VDD/GND planes to reduce effect if static and dynamic IR drop  
The VBUS traces/planes must be wide enough to carry maximum of 2-A current  
10.2 Layout Example  
Use controlled-impedance  
Transmission media for all  
Differential signals  
VDD3P3  
VDD3P3  
AX+  
AX-  
BX+  
BX-  
CX+  
CX-  
VSS  
SEL  
VBUS  
GND  
3.3V Logic level  
VBUS traces wide  
enough to carry 2A  
current  
Figure 10-1. Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
 
 
 
HD3SS212  
www.ti.com  
SLAS822D – DECEMBER 2011 – REVISED DECEMBER 2020  
11 Device and Documentation Support  
11.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.2 Community Resource  
11.3 Trademarks  
All trademarks are the property of their respective owners.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
HD3SS212ZQER  
HD3SS212ZQET  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LIFEBUY  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
48  
48  
2500 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
HD3SS212  
LIFEBUY  
BGA  
ZQE  
250  
RoHS & Green  
SNAGCU  
-40 to 85  
HD3SS212  
MICROSTAR  
JUNIOR  
HD3SS212ZXHR  
HD3SS212ZXHT  
ACTIVE  
ACTIVE  
NFBGA  
ZXH  
ZXH  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
HD3SS212  
HD3SS212  
NFBGA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HD3SS212ZXHR  
HD3SS212ZXHT  
NFBGA  
NFBGA  
ZXH  
ZXH  
48  
48  
2500  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.5  
1.5  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
HD3SS212ZXHR  
HD3SS212ZXHT  
NFBGA  
NFBGA  
ZXH  
ZXH  
48  
48  
2500  
250  
336.6  
336.6  
336.6  
336.6  
31.8  
31.8  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0048A  
A
5.1  
4.9  
B
BALL A1 CORNER  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.25  
0.15  
BALL TYP  
(0.5) TYP  
4 TYP  
J
(0.5) TYP  
H
G
F
SYMM  
4
TYP  
E
D
C
0.35  
48X Ø  
0.25  
B
A
0.15  
0.05  
C A B  
C
0.5 TYP  
1
2
3
4
5
6
7
8
9
0.5 TYP  
SYMM  
4225133 /A 08/2019  
NOTES:  
NanoFree is a trademark of Texas Instruments.  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0048A  
(0.5) TYP  
3
1
2
4
5
6
7
8
9
A
B
(0.5) TYP  
C
D
E
F
SYMM  
48X (Ø0.25)  
G
H
J
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
(Ø 0.25)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
(Ø 0.25)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225133 /A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0048A  
(0.5) TYP  
3
1
2
4
5
6
7
8
9
A
B
(0.5) TYP  
C
D
E
F
METAL  
TYP  
SYMM  
(R0.05) TYP  
G
H
J
48X ( 0.25)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 20X  
4225133 /A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

HD3SS213

支持 DDC/AUX 开关的 5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器
TI

HD3SS213IZQET

5.4Gbps DisplayPort 1.2a 2:1/1:2 Differential Switch
TI

HD3SS213ZQER

5.4Gbps DisplayPort 1.2a 2:1/1:2 Differential Switch
TI

HD3SS213ZXHR

支持 DDC/AUX 开关的 5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器 | ZXH | 50 | -40 to 105
TI

HD3SS214

支持 DDC/AUX 开关的 8.1 Gbps DisplayPort 1.4 1:2/2:1 差动多路复用器
TI

HD3SS214IZXHR

HD3SS214 8.1 Gbps DisplayPort 1.4 2:1/1:2 Differential Switch
TI

HD3SS214ZXHR

HD3SS214 8.1 Gbps DisplayPort 1.4 2:1/1:2 Differential Switch
TI

HD3SS214_V01

HD3SS214 8.1 Gbps DisplayPort 1.4 2:1/1:2 Differential Switch
TI

HD3SS215

支持 DDC/AUX 开关的 6Gbps HDMI 2.0/5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器
TI

HD3SS215IRTQR

支持 DDC/AUX 开关的 6Gbps HDMI 2.0/5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器 | RTQ | 56 | -40 to 85
TI

HD3SS215IRTQT

支持 DDC/AUX 开关的 6Gbps HDMI 2.0/5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器 | RTQ | 56 | -40 to 85
TI

HD3SS215IZXHR

HD3SS215 6.0 Gbps HDMI DisplayPort 2:1/1:2 Differential Switch
TI