INA333-Q1 [TI]

汽车类低功耗零漂移精密仪表放大器;
INA333-Q1
型号: INA333-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类低功耗零漂移精密仪表放大器

放大器 仪表 仪表放大器
文件: 总29页 (文件大小:1349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA333-Q1  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
INA333-Q1 汽车类零温漂微功率仪表放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C TA +125°C  
功能安全型  
INA333-Q1 是一款具备出色精度的低功耗精密仪表放  
大器。该器件具有三级运算放大器设计、小尺寸和低功  
是需要漏电流检测等精密测量的汽车应用的理想选  
择。此 INA333-Q1 也是使用电阻式电桥传感器的应用  
的理想选择。  
可提供用于功能安全系统设计的文档  
• 低失调电压25μV最大值),G 100  
• 低温漂0.1μV/°CG 100  
• 低噪声50nV/HzG 100  
CMRR96dB最小值),G 10  
• 低输入偏置电流280pA最大值)  
• 电源电压范围1.8V 5.5V  
• 输入电压(V-) + 0.1V (V+) - 0.1V  
• 输出范围(V-) + 0.05V (V+) - 0.05V  
• 低静态电流50μA  
可通过单个外部电阻器1 1000 范围内设置增益。  
INA333-Q1 的设计适用业界通用的增益公式G = 1 +  
(100k/RG)。  
INA333-Q1 供极低的失调电压25μVG ≥  
100、出色的温漂0.1μV/°CG 100和高共  
模抑制G 10 时为 96dB。该器件采用低至 1.8V  
(±0.9V) 的电源电压静态电流仅为 50µA。自动校准  
技术可在汽车温度范围内保持出色的精度。INA333-Q1  
1µV 的极低峰峰值噪声。  
• 工作温度40°C +125°C  
RFI 滤波输入  
• 封装8 VSSOP  
INA333-Q1 器件采用 8 引脚 VSSOP 封装额定温度  
范围TA = 40°C +125°C。  
2 应用  
封装信息  
封装(1)  
动力总成扭矩传感器  
动力总成压力传感器  
动力总成温度传感器  
动力总成爆震传感器  
车辆乘员检测传感器  
驾驶员生命体征监测  
• 控制面板基于力传感器的开关  
封装尺寸(2)  
器件型号  
INA333-Q1  
VSSOP (8)  
3 mm × 4.9 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
V+  
7
150 k  
150 k  
2
1
VIN-  
RFI Filtered Inputs  
+
A1  
RFI Filtered Inputs  
50 k  
6
5
A3  
+
RG  
VOUT  
50 k  
8
150 k  
RFI Filtered Inputs  
RFI Filtered Inputs  
150 k  
A2  
REF  
VIN+ 3  
+
INA333-Q1  
100 k  
4
V
G = 1 +  
RG  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS464  
 
 
 
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
Table of Contents  
7.4 Device Functional Modes..........................................13  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Application.................................................... 15  
8.3 Power Supply Recommendations.............................20  
8.4 Layout....................................................................... 20  
9 Device and Documentation Support............................21  
9.1 Device Support......................................................... 21  
9.2 Documentation Support............................................ 22  
9.3 接收文档更新通知..................................................... 22  
9.4 支持资源....................................................................22  
9.5 Trademarks...............................................................22  
9.6 静电放电警告............................................................ 22  
9.7 术语表....................................................................... 22  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................13  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (May 2020) to Revision B (June 2023)  
Page  
• 添加了“功能安全”特性要点.............................................................................................................................1  
• 将首页图中的四个电阻器150Ω改为 150kΩ............................................................................................. 1  
Changed four resistors in functional block diagram from 150 Ωto 150 kΩ.....................................................13  
Changes from Revision * (October 2019) to Revision A (May 2020)  
Page  
• 将器件状态从“预告信息预发布”更改为“量产数据正在供货........................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
2
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
5 Pin Configuration and Functions  
RG  
VINœ  
VIN+  
Vœ  
1
2
3
4
8
7
6
5
RG  
V+  
VOUT  
REF  
Not to scale  
5-1. DGK Package, 8-Pin VSSOP (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
REF  
RG  
NO.  
5
Input Reference input. This pin must be driven by low impedance or connected to ground.  
1, 8  
7
Gain setting pins. For gains greater than 1, place a gain resistor between pins 1 and 8.  
V+  
Positive supply  
Negative supply  
4
V–  
VIN+  
VIN–  
VOUT  
3
Input Positive input  
Input Negative input  
Output Output  
2
6
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Single-supply, VS = (V+)  
7
±3.5  
VS  
Supply voltage  
Input voltage  
V
Dual-supply, VS = (V+) (V)  
Common-mode  
(V+) + 0.3  
(V) 0.3  
V
(V+) (V) +  
Differential  
0.2  
Input current  
±10  
Continuous  
150  
mA  
Output short circuit(2)  
Operating temperature  
Junction temperature  
Storage temperature  
Continuous  
TA  
°C  
°C  
°C  
55  
TJ  
150  
Tstg  
150  
65  
(1) Operation outside of Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings do not  
imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating  
Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be  
fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002  
HBM ESD classification level 2(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charge device model (CDM), per AEC Q100-011  
CDM ESD classification level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
MAX  
5.5  
UNIT  
VS  
TA  
Supply voltage  
V
Operating temperature  
125  
°C  
40  
6.4 Thermal Information  
INA333-Q1  
DGK (VSSOP)  
8 PINS  
169.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
62.7  
90.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.6  
ψJT  
88.7  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
4
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
 
 
 
 
 
 
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6.5 Electrical Characteristics  
at VS = 1.8 V to 5.5 V at TA = 25°C, RL = 10 k, VREF = VS / 2, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT(1)  
±10  
±25  
±0.1  
±110  
±0.5  
μV  
μV/°C  
μV  
VOSI  
Input stage offset voltage(2)  
vs temperature, TA = 40°C to +125°C  
vs temperature, TA = 40°C to +125°C  
±25  
Output stage offset  
voltage(2)  
VOSO  
μV/°C  
Power-supply rejection  
ratio  
PSRR  
90  
102  
dB  
Zid  
Zic  
Differential impedance  
100 || 3  
100 || 3  
G|| pF  
G|| pF  
Common-mode impedance  
(V) +  
(V+) –  
VCM  
Common-mode voltage  
VO = 0 V  
V
0.1  
0.1  
G = 1  
78  
96  
96  
96  
90  
110  
115  
115  
DC to 60 Hz,  
G = 10  
Common-mode rejection  
ratio  
CMRR  
VS = 5.5 V, VCM = (V) +  
0.1 V to (V+) 0.1 V  
dB  
G = 100  
G = 1000  
INPUT BIAS CURRENT  
±70  
See 6-26  
±50  
±280  
±280  
pA  
pA/°C  
pA  
IB  
Input bias current  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
IOS  
Input offset current  
pA/°C  
See 6-28  
INPUT VOLTAGE NOISE  
f = 10 Hz  
50  
50  
50  
1
f = 100 Hz  
nV/Hz  
eNI  
Input voltage noise  
G = 100, RS = 0 Ω  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
μVPP  
fA/Hz  
pAPP  
f = 10 Hz  
100  
2
In  
Input current noise  
f = 0.1 Hz to 10 Hz  
GAIN  
1 + (100  
k/ RG)  
Gain equation  
Gain  
V/V  
V/V  
G
1
1000  
±0.1  
±0.25  
±0.25  
±0.5  
±5  
G = 1  
±0.01  
±0.05  
±0.07  
±0.25  
±1  
VS = 5.5 V,  
(V) + 100 mV VO ≤  
(V+) 100 mV  
G = 10  
G = 100  
G = 1000  
GE  
Gain error  
%
Gain vs temperature  
Gain nonlinearity  
ppm/°C  
ppm  
TA = 40°C to +125°C  
G > 1(3)  
±15  
±50  
G = 1 to 1000  
10  
40  
VS = 5.5 V, (V) + 100 mV VO (V+) 100 mV  
OUTPUT  
Output voltage swing from  
rail  
VS = 5.5 V  
50  
mV  
Capacitive load drive  
Short-circuit current  
500  
pF  
ISC  
Continuous to common  
mA  
40, +5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6.5 Electrical Characteristics (continued)  
at VS = 1.8 V to 5.5 V at TA = 25°C, RL = 10 k, VREF = VS / 2, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
G = 1  
150  
35  
G = 10  
G = 100  
G = 1000  
kHz  
BW  
SR  
tS  
Bandwidth, 3 dB  
3.5  
350  
0.16  
0.05  
50  
Hz  
G = 1  
Slew rate  
VS = 5 V, VO = 4-V step  
VSTEP = 4 V  
V/μs  
G = 100  
G = 1  
Settling time to 0.01%  
G = 100  
G = 1  
400  
60  
μs  
μs  
Settling time to 0.001%  
Overload recovery  
VSTEP = 4 V  
G = 100  
500  
75  
50% overdrive  
REFERENCE INPUT  
RIN  
Input impedance  
300  
50  
kΩ  
Voltage range  
V+  
V
V–  
POWER SUPPLY  
VIN = VS / 2  
75  
80  
IQ  
Quiescent current  
μA  
TA = 40°C to +125°C  
(1) Total VOS, referred-to-input = (VOSI) + (VOSO / G).  
(2) RTI = Referred-to-input.  
(3) Does not include effects of external resistor RG.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
6
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6.6 Typical Characteristics  
at TA = 25°C, VS = 5 V, RL = 10 k, VREF = midsupply, and G = 1 (unless otherwise noted)  
Input Offset Voltage (µV)  
Input Voltage Offset Drift (µV/°C)  
6-1. Input Offset Voltage  
6-2. Input Voltage Offset Drift (40°C to 125°C)  
Output Offset Voltage (µV)  
6-3. Output Offset Voltage  
VS = 1.8 V  
Output Voltage Offset Drift (µV/°C)  
6-4. Output Voltage Offset Drift (40°C to 125°C)  
0
-5  
VS = 5 V  
-10  
-15  
-20  
-25  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VCM (V)  
Time (1 s/div)  
6-5. Offset Voltage vs Common-Mode Voltage  
6-6. 0.1-Hz to 10-Hz Noise  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 k, VREF = midsupply, and G = 1 (unless otherwise noted)  
1000  
1000  
100  
Output Noise  
100  
Current Noise  
Input Noise  
10  
1
10  
2
(Output Noise)  
G
Total Input-Referred Noise =  
(Input Noise)2  
+
1
0.1  
1
10  
100  
1k  
10k  
Time (1 s/div)  
Frequency (Hz)  
6-7. 0.1-Hz to 10-Hz Noise  
6-8. Spectral Noise Density  
0.012  
0.008  
0.004  
0
G = 1000  
G = 100  
G = 10  
G = 1  
-0.004  
-0.008  
-0.012  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VOUT (V)  
Time (25 µs/div)  
6-9. Nonlinearity Error  
6-10. Large Signal Response  
Time (100 µs/div)  
Time (10 µs/div)  
6-11. Large-Signal Step Response  
6-12. Small-Signal Step Response  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
8
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 k, VREF = midsupply, and G = 1 (unless otherwise noted)  
10000  
1000  
0.001%  
100  
0.01%  
10  
0.1%  
1
10  
100  
1000  
Time (100 µs/div)  
Gain (V/V)  
6-13. Small-Signal Step Response  
6-14. Settling Time vs Gain  
80  
60  
G = 1000  
Supply  
G = 100  
G = 10  
40  
VOUT  
20  
G = 1  
0
-20  
-40  
-60  
10  
100  
1k  
10k  
100k  
1M  
Time (50 µs/div)  
Frequency (Hz)  
6-15. Start-Up Settling Time  
6-16. Gain vs Frequency  
10  
8
VS  
VS  
=
=
2.75 V  
0.ꢀ V  
G = 1  
6
4
G = 10  
2
0
-2  
-4  
-6  
-8  
-10  
G = 100,  
G = 1000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
CMRR (µV/V)  
Temperature (°C)  
6-17. Common-Mode Rejection Ratio  
6-18. Common-Mode Rejection Ratio vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 k, VREF = midsupply, and G = 1 (unless otherwise noted)  
160  
140  
120  
100  
80  
2.5  
2.0  
G = 1000  
G = 100  
1.0  
0
60  
G = 1  
-1.0  
40  
G = 10  
20  
-2.0  
2.5  
0
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
-2.5 -2.0  
-1.0  
0
1.0  
2.0 2.5  
Output Voltage (V)  
6-19. Common-Mode Rejection Ratio vs Frequency  
6-20. Typical Common-Mode Range vs Output Voltage  
5
0.9  
0.7  
4
3
2
1
0
0.5  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
-0.7  
-0.9  
0
1
2
3
4
5
-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3  
Output Voltage (V)  
0.5  
0.7  
0.9  
Output Voltage (V)  
6-21. Typical Common-Mode Range vs Output Voltage  
6-22. Typical Common-Mode Range vs Output Voltage  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
160  
140  
G = 1000  
120  
100  
G = 100  
80  
60  
G = 10  
40  
20  
G = 1  
0
0
0.2  
0.4  
0.5  
0.8  
1.0 1.2  
1.4  
1.6  
1.8  
1
10  
1k  
10k  
100k  
1M  
100  
Output Voltage (V)  
Frequency (Hz)  
6-23. Typical Common-Mode Range vs Output Voltage  
6-24. Positive Power-Supply Rejection Ratio  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
10  
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 k, VREF = midsupply, and G = 1 (unless otherwise noted)  
160  
140  
120  
100  
80  
1200  
1000  
800  
600  
400  
200  
0
+IB  
-IB  
G = 100  
G = 1000  
G = 10  
60  
V
=
0ꢀ ꢁ V  
V
= 2ꢀ75 V  
S
S
40  
G = 1  
20  
0
-200  
-20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Frequency (Hz)  
Temperature (°C)  
6-25. Negative Power-Supply Rejection Ratio  
200  
6-26. Input Bias Current vs Temperature  
250  
200  
150  
100  
50  
180  
160  
140  
120  
100  
80  
V
V
=
=
2ꢀ75 V  
0ꢀ. V  
S
60  
0
S
40  
-50  
-100  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VCM (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
6-27. Input Bias Current vs Common-Mode Voltage  
6-28. Input Offset Current vs Temperature  
80  
(V+)  
VS  
VS  
=
=
2.75 V  
0.ꢀ V  
(V+) - 0.25  
(V+) - 0.50  
(V+) - 0.75  
(V+) - 1.00  
(V+) - 1.25  
(V+) - 1.50  
(V+) - 1.75  
70  
60  
50  
40  
30  
20  
10  
0
VS = 5 V  
(V-) + 1.75  
(V-) + 1.50  
(V-) + 1.25  
(V-) + 1.00  
(V-) + 0.75  
(V-) + 0.50  
(V-) + 0.25  
(V-)  
VS = 1.8 V  
125°C  
25°C  
-40°C  
0
10  
20  
30  
40  
50  
60  
-50  
0
25  
50  
75  
100  
125  
150  
-25  
IOUT (mA)  
Temperature (°C)  
6-29. Output Voltage Swing vs Output Current  
6-30. Quiescent Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 k, VREF = midsupply, and G = 1 (unless otherwise noted)  
80  
70  
VS = 5 V  
60  
50  
40  
VS = 1.8 V  
30  
20  
10  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
VCM (V)  
6-31. Quiescent Current vs Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
12  
Submit Document Feedback  
Product Folder Links: INA333-Q1  
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
7 Detailed Description  
7.1 Overview  
The INA333-Q1 is a monolithic instrumentation amplifier (INA) based on the precision zero-drift INA333-Q1  
(operational amplifier) core. The INA333-Q1 also integrates laser-trimmed resistors to maintain excellent  
common-mode rejection and low gain error. The combination of the zero-drift amplifier core and the precision  
resistors allows this device to achieve outstanding dc precision, and makes the INA333-Q1 an excellent choice  
for many 3.3-V and 5-V automotive applications.  
7.2 Functional Block Diagram  
V+  
7
150 k  
150 k  
2
1
VIN-  
RFI Filtered Inputs  
+
A1  
RFI Filtered Inputs  
50 k  
6
5
A3  
+
RG  
VOUT  
50 k  
8
3
150 k  
RFI Filtered Inputs  
RFI Filtered Inputs  
150 k  
A2  
REF  
VIN+  
+
INA333-Q1  
100 k  
4
V
G = 1 +  
RG  
7.3 Feature Description  
7.3.1 Internal Offset Correction  
The INA333-Q1 internal operational amplifiers use an autocalibration technique with a time-continuous, 350kHz  
operational amplifier in the signal path. The amplifier is zero-corrected every 8 µs using a proprietary technique.  
At power up, the amplifier requires approximately 100 µs to achieve the specified VOS accuracy. This design has  
no aliasing or flicker noise.  
7.3.2 Input Protection  
The input pins of the INA333-Q1 are protected with internal diodes connected to the power-supply rails. These  
diodes clamp and prevent the applied signal from damaging the input circuitry. If the input signal voltage exceeds  
the power supplies by greater than 0.3 V, limit the input signal current to less than 10 mA to protect the internal  
clamp diodes. This current limiting is generally done with a series input resistor. Some signal sources are  
inherently current-limited and do not require limiting resistors.  
7.4 Device Functional Modes  
The INA333-Q1 has a single functional mode, and is operational when the power-supply voltage is greater than  
1.8 V. The recommended maximum specified power-supply voltage for the INA333-Q1 is 5.5 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
 
 
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The INA333-Q1 measures small differential voltages with high common-mode voltage developed between the  
noninverting and inverting input. The high input impedance makes the INA333-Q1 a great choice for a wide  
range of applications. The ability to set the reference pin to adjust the functionality of the output signal offers  
additional flexibility that is practical for multiple configurations.  
8.1.1 Input Common-Mode Range  
The linear input voltage range of the input circuitry of the INA333-Q1 is from approximately 0.1 V below the  
positive supply voltage to 0.1 V above the negative supply. As a differential input voltage causes the output  
voltage to increase, however, the linear input range is limited by the output voltage swing of amplifiers A1 and  
A2. Thus, the linear common-mode input range is related to the output voltage of the complete amplifier. This  
behavior also depends on supply voltage; see 6-20 to 6-23 in 6.6.  
Input overload conditions can produce an output voltage that appears normal. For example, if an input overload  
condition drives both input amplifiers to the respective positive output swing limit, the difference voltage  
measured by the output amplifier is near zero. The output of the INA333-Q1 is near 0 V even though both inputs  
are overloaded.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
14  
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
8.2 Typical Application  
8-1 shows the basic connections required for operation of the INA333-Q1. Good layout practice mandates the  
use of bypass capacitors placed close to the device pins as shown.  
The output of the INA333-Q1 is referred to the output reference (REF) pin, which is normally grounded. This  
connection must be low-impedance to maintain good common-mode rejection. Although 15 or less of stray  
resistance can be tolerated while maintaining specified CMRR, small stray resistances of tens of ohms in series  
with the REF pin can cause noticeable degradation in CMRR.  
0.1 µF  
V+  
7
150 k  
150 kꢀ  
2
1
VINœ  
RFI Filtered Inputs  
+
VO = G ì V  
- VIN-  
(
)
IN+  
A1  
RFI Filtered Inputs  
œ
100 kW  
RG  
G = 1 +  
50 kꢀ  
œ
A3  
+
6
5
+
RG  
Also drawn in simplified form:  
VOUT  
50 kꢀ  
VINœ  
œ
Load  
VO  
8
3
150 kꢀ  
INA333-Q1  
RFI Filtered Inputs  
RFI Filtered Inputs  
RG  
VO  
œ
150 kꢀ  
REF  
œ
A2  
VIN+  
+
+
REF  
VIN+  
INA333-Q1  
4
0.1 µF  
Vœ  
8-1. Basic Connections  
8.2.1 Design Requirements  
The device can be configured to monitor the input differential voltage when the gain of the input signal is set by  
external resistor RG. The output signal references to the REF pin. The most common application is where the  
output is referenced to ground when no input signal is present by connecting the REF pin to ground. When the  
input signal increases, the output voltage at the OUT pin also increases.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting the Gain  
The gain of the INA333-Q1 is set by a single external resistor, RG, connected between pins 1 and 8. The value of  
RG is selected according to 方程1:  
G = 1 + (100 k/ RG)  
(1)  
8-1 lists several commonly-used gains and resistor values. The 100 kin 方程式 1 comes from the sum of  
the two internal feedback resistors of A1 and A2. These on-chip resistors are laser trimmed to accurate absolute  
values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift  
specifications of the INA333-Q1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
The stability and temperature drift of the external gain setting resistor, RG, also affects gain. The contribution of  
RG to gain accuracy and drift can be directly inferred from 方程式 1. Low resistor values required for high gain  
can make wiring resistance important. Sockets add to the wiring resistance and contribute additional gain error  
(possibly an unstable gain error) in gains of approximately 100 or greater. To maintain stability, avoid parasitic  
capacitance greater than a few picofarads at the RG connections. Careful matching of any parasitics on both RG  
pins maintains optimal CMRR over frequency.  
8-1. Commonly Used Gains and Resistor Values  
DESIRED GAIN  
RG ()  
NC(1)  
100k  
NEAREST 1% RG ()  
1
2
NC  
100k  
24.9k  
11k  
5
25k  
10  
11.1k  
5.26k  
2.04k  
1.01k  
502.5  
200.4  
100.1  
20  
5.23k  
2.05  
1k  
50  
100  
200  
500  
1000  
499  
200  
100  
(1) NC denotes no connection. When using the SPICE model, the simulation does not converge unless  
a resistor is connected to the RG pins; use a very large resistor value.  
8.2.2.2 Offset Trimming  
Most applications require no external offset adjustment. However, if necessary, adjustments can be made by  
applying a voltage to the REF pin. 8-2 shows an optional circuit for trimming the output offset voltage. The  
voltage applied to REF pin is summed at the output. The operational amplifier buffer provides low impedance at  
the REF pin to preserve good common-mode rejection.  
VIN-  
œ
V+  
VO  
INA333-Q1  
RG  
100 µA  
½ REF200  
+
VIN+  
Ref  
100  
OPA333  
10mV  
Adjustment Range  
10 kꢀ  
100 ꢀ  
100 µA  
½ REF200  
V-  
8-2. Optional Trimming of Output Offset Voltage  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
8.2.2.3 Noise Performance  
The autocalibration technique used by the INA333-Q1 results in reduced low frequency noise, typically only  
50 nV/Hz (G = 100). The spectral noise density is shown in detail in 6-8. The low-frequency noise of the  
device is approximately 1 μVPP measured from 0.1 Hz to 10 Hz (G = 100).  
8.2.2.4 Input Bias Current Return Path  
The input impedance of the INA333-Q1 is extremely high; approximately 100 G. However, a path must be  
provided for the input bias current of both inputs. This input bias current is typically ±70 pA. High input  
impedance means that this input bias current changes very little with varying input voltage.  
Input circuitry must provide a path for this input bias current for proper operation. 8-3 shows various  
provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds  
the common-mode range of the device, and the input amplifiers saturate. If the differential source resistance is  
low, the bias current return path can be connected to one input (see the thermocouple example in 8-3). With  
higher source impedance, use two equal resistors to provide a balanced input with the possible advantages of a  
lower input offset voltage as a result of bias current, and improved high-frequency common-mode rejection.  
œ
Microphone,  
Hydrophone,  
and more  
INA333-Q1  
+
œ
Thermocouple  
INA333-Q1  
+
10 kΩ  
œ
INA333-Q1  
+
GND  
8-3. Providing an Input Common-Mode Current Path  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
8.2.2.5 Low Voltage Operation  
The INA333-Q1 can be operated on power supplies as low as ±0.9 V. Most parameters vary only slightly  
throughout this supply voltage range; see 6.6. Operation at a very-low supply voltage requires careful  
attention to make sure that the input voltages remain within the linear range. Voltage swing requirements of  
internal nodes limit the input common-mode range with low power-supply voltage. 6-20 to 6-23 show the  
range of linear operation for various supply voltages and gains.  
8.2.2.6 Single-Supply Operation  
The INA333-Q1 can be used on single power supplies of 1.8 V to 5.5 V. 8-4 shows a basic single-supply  
circuit. The output REF pin is connected to midsupply. Zero differential input voltage demands an output voltage  
of midsupply. Actual output voltage swing is limited to approximately 50 mV more than ground, when the load is  
referred to ground as shown. 6-29 shows how the output voltage swing varies with output current.  
With single-supply operation, VIN+ and VINmust both be 0.1 V greater than ground for linear operation. For  
instance, the inverting input cannot be connected to ground to measure a voltage connected to the noninverting  
input.  
To show the issues affecting low-voltage operation, consider the circuit in 8-4 that shows the device operating  
from a single 3-V supply. A resistor in series with the low side of the bridge makes sure that the bridge output  
voltage is within the common-mode range of the amplifier inputs.  
+3 V  
3 V  
2 V - DV  
œ
RG  
INA333-Q1  
VO  
300 Ω  
+
REF  
2 V + DV  
1.5 V  
150 Ω  
R1(1)  
(1) R1 creates proper common-mode voltage, only for low-voltage operation; see 8.2.2.6.  
8-4. Single-Supply Bridge Amplifier  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
18  
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
8.2.3 Application Curves  
Time (25 µs/div)  
Time (100 µs/div)  
8-5. Large Signal Response  
8-6. Large-Signal Step Response  
Time (10 µs/div)  
Time (100 µs/div)  
8-7. Small-Signal Step Response  
8-8. Small-Signal Step Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
8.3 Power Supply Recommendations  
The minimum power supply voltage for the INA333-Q1 is 1.8 V, and the maximum power supply voltage is 5.5 V;  
for specified performance, 3.3 V to 5 V is recommended. Add a bypass capacitor at the input to compensate for  
the layout and power supply source impedance.  
8.4 Layout  
8.4.1 Layout Guidelines  
Attention to good layout practices is always recommended.  
Keep traces short.  
When possible, use a printed-circuit-board (PCB) ground plane with surface-mount components placed as  
close to the device pins as possible.  
Place a 0.1-μF bypass capacitor closely across the supply pins.  
Apply these guidelines throughout the analog circuit to improve performance and provide benefits such as  
reducing the electromagnetic-interference (EMI) susceptibility.  
Instrumentation amplifiers vary in susceptibility to radio-frequency interference (RFI). RFI can generally be  
identified as a variation in offset voltage or dc signal levels with changes in the interfering RF signal. The  
INA333-Q1 has been specifically designed to minimize susceptibility to RFI by incorporating passive RC filters  
with an 8-MHz corner frequency at the VIN+ and VINinputs. As a result, the INA333-Q1 demonstrates  
remarkably low sensitivity compared to previous-generation devices. Strong RF fields can continue to cause  
varying offset levels, however, and can require additional shielding.  
8.4.2 Layout Example  
Gain Resistor  
Bypass  
Capacitor  
RG  
V-IN  
V+IN  
V-  
RG  
V+  
VO  
V+  
VIN-  
VOUT  
GND  
VIN+  
Ref  
Bypass  
Capacitor  
V-  
GND  
8-9. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
20  
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 TINA-TI Simulation Software (Free Download)  
TINAis a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TIis  
a free, fully functional version of the TINA software, preloaded with a library of macromodels in addition to a  
range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency  
domain analysis of SPICE as well as additional design capabilities.  
Available as a free download from the Design tools and simulation web page, TINA-TI simulation software offers  
extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments  
offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic  
quick-start tool.  
Virtual instruments offer users the ability to select input waveforms and probe circuit nodes, voltages, and  
waveforms, creating a dynamic quick-start tool.  
9-1 shows example TINA-TI circuits for the device that can be used to develop, modify, and assess the circuit  
design for specific applications. Links to download these simulation files are given below.  
备注  
These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed.  
Download the free TINA-TI software from the TINA-TI folder.  
3 V  
R1  
2 kΩ  
Rwa  
3Ω  
EMU21 RTD3  
œ
Pt100 RTD  
U2  
OPA333-Q1  
RWb  
3Ω  
+
2
+
VT+  
RTD+  
RTD-  
U1 INA333-Q1  
VOFF  
œ
œ
VT 25  
RG  
V-  
VT-  
Mon-  
1
8
PGA112  
MSP430  
RGAIN  
100 kΩ  
Out  
3 V  
Mon-  
Ref  
6
RG  
+
V+  
RWc  
4Ω  
5
RZERO  
100 Ω  
3
7
+
Temp (°C)  
(Volts = °C)  
V
VREF  
3 V  
VRTD  
RWd  
3Ω  
RTD Resistance  
(Volts = Ohms)  
+
+
A
IREF1  
A
IREF2  
3 V  
VREF  
3 V  
3 V  
Use BF861A  
T3 BF256A  
Use BF861A  
T1 BF256A  
U1 REF3212  
VREF  
VREF  
EN  
+
+
+
+
OUTF  
OUTS  
U3  
OPA333-Q1  
In  
œ
œ
OPA333-Q1  
C7  
470 nF  
GNDF GNDS  
3 V  
+
V4 3  
RSET1  
2.5 kΩ  
RSET2  
2.5 kΩ  
NOTE: RWa, RWb, RWc, and RWd simulate wire resistance. These resistors are included to show the four-wire sense technique  
immunity to line mismatches. This method assumes the use of a four-wire RTD.  
9-1. Four-Wire, 3-V Conditioner for a PT100 RTD With Programmable Gain Acquisition System  
Download the TINA-TI simulation file for this circuit with the following link: PT100 RTD.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA333-Q1  
English Data Sheet: SBOS464  
 
 
 
INA333-Q1  
www.ti.com.cn  
ZHCSKC7B SEPTEMBER 2019 REVISED JUNE 2023  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, OPA188-Q1 Precision, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift, Automotive-  
Grade Operational Amplifier data sheet  
Texas Instruments, OPA333-Q1 1.8-V microPower CMOS Operational Amplifier Zero-Drift Series data sheet  
Texas Instruments, Circuit board layout techniques  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TINAis a trademark of DesignSoft, Inc.  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS464  
22  
Submit Document Feedback  
Product Folder Links: INA333-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA333QDGKRQ1  
ACTIVE  
VSSOP  
DGK  
8
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
333Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA333-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jun-2023  
Catalog : INA333  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA333QDGKRQ1  
VSSOP  
DGK  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSSOP DGK  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
INA333QDGKRQ1  
8
2500  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

INA333AIDGKR

Micro-Power (50uA), Zer┆-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333AIDGKRG4

Micro-Power (50mA), Zer?-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333AIDGKT

Micro-Power (50uA), Zer┆-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333AIDGKTG4

Micro-Power (50mA), Zer?-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333AIDRGR

Micro-Power (50uA), Zer┆-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333AIDRGT

Micro-Power (50uA), Zer┆-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333QDGKRQ1

汽车类低功耗零漂移精密仪表放大器 | DGK | 8 | -40 to 125
TI

INA333SHKJ

Micro-Power, Zerø-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333SHKQ

暂无描述
TI

INA333SJD

Micro-Power, Zerø-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333SKGD1

Micro-Power, Zerø-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI

INA333SKGD2

Micro-Power, Zero-Drift, Rail-to-Rail Out Instrumentation Amplifier
TI