INA597_V02 [TI]

INA597 High-Precision, Wide-Bandwidth e-trim™ Difference Amplifier;
INA597_V02
型号: INA597_V02
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

INA597 High-Precision, Wide-Bandwidth e-trim™ Difference Amplifier

文件: 总47页 (文件大小:3383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA597  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
INA597 High-Precision, Wide-Bandwidth e-trim™ Difference Amplifier  
1 Features  
3 Description  
Low offset voltage: 200 μV (maximum)  
Low offset voltage drift: ±5 μV/°C (maximum)  
Low noise: 18 nV/√Hz at 1 kHz  
Low gain error: ±0.03% (maximum)  
High common-mode rejection: 88 dB (minimum)  
Wide bandwidth: 2-MHz GBW  
Low quiescent current: 1.1 mA per amplifier  
High slew rate: 18 V/μs  
High capacitive load drive capability: 500 pF  
Wide supply range:  
– Single-supply: 4.5 V to 36 V  
– Dual-supply: ±2.25 V to ±18 V  
Specified temperature range:  
–40°C to +125°C  
Packages: 8-pin SOIC and VSSOP, 10-pin VSON  
The INA597 is  
a
low-power, wide-bandwidth,  
difference amplifier for cost-sensitive applications.  
The INA597 consists of a precision operational  
amplifier (op amp) and a precision resistor network.  
Excellent tracking of resistors maintains gain accuracy  
and common-mode rejection over temperature.  
Unique features such as low offset (200 μV,  
maximum), low offset drift (5 μV/°C maximum) high  
slew rate (18 V/μs), and high capacitive load drive  
of up to 500 pF make the INA597 a robust,  
high-performance difference amplifier for high-voltage  
industrial applications.  
The common-mode range of the internal op amp  
extends to the negative supply, and enables the  
device to operate in single-supply applications. The  
device operates on single (4.5 V to 36 V) or dual  
supplies (±2.25 V to ±18 V).  
2 Applications  
Data acquisition (DAQ)  
Sensor modules and tags for asset tracking  
Flow transmitter  
Optical module  
Power supply module  
AC drive position feedback  
Servo drive position feedback  
Voltage conditioning module  
The difference amplifier is the foundation of many  
commonly used circuits. The INA597 provides this  
circuit function without using an expensive precision  
resistor network.  
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
3.00 mm × 3.00 mm  
SOIC (8)  
INA597  
VSON (10)  
VSSOP (8)  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
VCC  
20  
15  
10  
5
V+  
INA597  
SENSE  
œIN  
6 k  
6 kꢀ  
12 kꢀ  
12 kꢀ  
œ
ADC  
16 Bits Out  
AIN  
OUT  
REF  
+
+IN  
Vœ  
1
2
V
=
V+IN - VœIN  
(
)
OUT  
0
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
Differential Input Data Acquisition  
D004  
Offset Voltage (mV)  
Typical Distribution of Offset Voltage (RTO)  
G = 1/2, VS = ±18 V  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings .............................................................. 4  
7.3 Recommended Operating Conditions ........................4  
7.4 Thermal Information ...................................................4  
7.5 Electrical Characteristics: G = 1/2 ..............................5  
7.6 Electrical Characteristics: G = 2 .................................6  
7.7 Typical Characteristics................................................7  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................22  
8.4 Device Functional Modes..........................................22  
9 Application and Implementation..................................23  
9.1 Application Information............................................. 23  
9.2 Typical Applications.................................................. 23  
10 Power Supply Recommendations..............................30  
11 Layout...........................................................................30  
11.1 Layout Guidelines................................................... 30  
11.2 Layout Example...................................................... 31  
12 Device and Documentation Support..........................33  
12.1 Documentation Support.......................................... 33  
12.2 Receiving Notification of Documentation Updates..33  
12.3 Support Resources................................................. 33  
12.4 Trademarks.............................................................33  
12.5 Electrostatic Discharge Caution..............................33  
12.6 Glossary..................................................................33  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 33  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (February 2021) to Revision B (April 2021)  
Page  
Added DRC package and associated content....................................................................................................1  
Changes from Revision * (August 2019) to Revision A (February 2021)  
Page  
Added D package and associated content......................................................................................................... 1  
Added input current (max) to Absolute Maximum Ratings ................................................................................ 4  
Deleted input voltage (max) from Absolute Maximum Ratings ..........................................................................4  
Changed common-mode voltage (min and max) in Electrical Characteristics .................................................. 4  
Added input impedance specifications to Electrical Characteristics ..................................................................4  
Changed Fig. 6-39, Positive Output Voltage vs Output Current (sourcing) G = ½, Y-axis unit from µV to V......7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
5 Device Comparison Table  
DEVICE  
DESCRIPTION  
GAIN EQUATION  
G = 0.5 V/V or 2 V/V  
G = 0.5 V/V or 2 V/V  
G = 0.2 V/V  
INA597 Cost-effective, wide-bandwidth e-trimdifference amplifier  
INA592 High-precision, wide-bandwidth e-trimdifference amplifier  
INA159 High-speed, precision, gain of 0.2 level translation difference amplifier  
INA137 Audio differential line receiver ±6 dB (G = 1/2 or 2)  
G = 0.5 V/V or 2 V/V  
G = 1 V/V  
INA132 Low-power, single-supply difference amplifier  
INA819 35-µV offset, 0.4 µV/°C VOS drift, 8-nV/√Hz noise, low-power, precision instrumentation amplifier  
INA821 35-µV offset, 0.4 µV/°C VOS drift, 7-nV/√Hz noise, high-bandwidth, precision instrumentation amplifier  
INA333 25-µV VOS, 0.1 µV/°C VOS drift, 1.8-V to 5-V, RRO, 50-µA IQ, chopper-stabilized INA  
G = 1 + 50 kΩ / RG  
G = 1 + 49.4 kΩ / RG  
G = 1 + 100 kΩ / RG  
PGA280 20-mV to ±10-V Programmable Gain IA With 3-V or 5-V Differential Output; Analog Supply up to ±18 V Digital programmable  
PGA112 Precision Programmable Gain Op Amp With SPI  
Digital programmable  
6 Pin Configuration and Functions  
REF  
1
–INOP  
REF  
–IN  
1
2
3
4
5
10  
9
+INOP  
NC  
8
7
6
NC  
V+  
œ
œIN  
2
Thermal  
Pad  
+
8
V+  
+IN  
3
4
OUT  
+IN  
7
OUT  
SENSE  
Vœ  
5
SENSE  
V–  
6
NC = No Connection  
Not to scale  
Figure 6-1. D (8-Pin SOIC) and DGK (8-Pin VSSOP)  
Packages, Top View  
Figure 6-2. DRC (10-Pin VSON With Thermal Pad)  
Package, Top View  
Table 6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
D (SOIC),  
DGK (VSSOP)  
NAME  
DRC (VSON)  
12-kΩ resistor to noninverting terminal of op amp.  
+IN  
3
2
4
I
I
Used as positive input in G = ½ configuration.  
Used as reference pin in G = 2 configuration.  
12-kΩ resistor to inverting terminal of op amp.  
Used as negative input in G = ½ configuration.  
Connect to output in G = 2 configuration.  
–IN  
3
+INOP  
–INOP  
NC  
8
10  
1
I
I
Direct connection to noninverting terminal of op amp  
Direct connection to inverting terminal of op amp  
No internal connection (can be left floating)  
Output  
9
O
OUT  
6
7
6-kΩ resistor to noninverting terminal of op amp.  
Used as reference pin in G = ½ configuration.  
Used as positive input in G = 2 configuration.  
REF  
1
5
2
6
I
I
6-kΩ resistor to inverting terminal of op amp.  
Connect to output in G = ½ configuration.  
Used as negative input in G = 2 configuration.  
SENSE  
V+  
V–  
7
4
8
5
Positive (highest) power supply  
Negative (lowest) power supply  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA597  
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
36  
UNIT  
V
Single supply, (V+) to (V–)  
V±  
Dual supply, (V+) – (V–)  
±18  
10  
V
IIN  
IS  
Input current  
mA  
Output short circuit (to ground)  
Operating temperature  
Junction temperature  
Storage temperature  
Continuous  
–55  
TA  
TJ  
125  
125  
150  
°C  
°C  
°C  
–55  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Section 7.3.  
Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
7.2 ESD Ratings  
VALUE  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
V
Single supply, VS = (V+) to (V–)  
Dual supply, VS = (V+) – (V–)  
V±  
TA  
Supply voltage  
±2.25  
–40  
±18  
125  
V
Specified temperature  
°C  
7.4 Thermal Information  
INA597  
THERMAL METRIC(1)  
D
DGK  
8 PINS  
115  
DRC  
UNIT  
8 PINS  
158  
10 PINS  
47.4  
49.6  
21.0  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.6  
78.7  
3.9  
52.4  
59.2  
9.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
77.3  
N/A  
58.3  
N/A  
20.9  
5.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
 
 
 
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.5 Electrical Characteristics: G = 1/2  
at VS = ±2.25 V to ±18 V, TA = 25°C, VCM = VOUT = VS / 2, RL = 10 kΩ connected to ground, and REF pin connected to  
ground (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE (RTO)  
G = 1/2, RTO, TA = 25°C, VS = ±2.25 V to ±3  
±14  
±14  
±200  
±200  
±5.0  
±5  
µV  
µV  
V,  
VCM = –3V  
VOS  
Input offset voltage  
G = 1/2, RTO, TA = 25°C, VS = ±3 V to ±18  
V, VCM = VS / 2  
Input offset voltage  
drift  
dVOS/dT  
PSRR  
±0.7  
±0.5  
µV/°C  
µV/V  
Power-supply  
rejection ratio  
VS = ±3 V to ±18 V  
INPUT VOLTAGE  
Common-mode  
voltage  
3[(V–)–0.1]  
–2VREF  
VCM  
VOUT = 0 V  
3(V+)–2VREF  
V
TA = 25°C  
88  
82  
88  
72  
100  
90  
dB  
dB  
dB  
dB  
RTO, 3 [(V−) – 0.1 V)] ≤  
VCM ≤ 3 [(V+) – 3 V]  
TA = –40°C to +125°C  
TA = 25°C  
Common-mode  
rejection ratio  
CMRR  
100  
90  
RTO, 3 [(V+) - 1.5 V)] ≤  
VCM ≤ 3 [(V+))]  
TA = –40°C to +125°C  
INPUT IMPEDANCE  
zid  
Differential  
VO = 0 V  
24  
9
kΩ  
kΩ  
zic  
Common-mode  
GAIN  
G
Initial  
1/2  
±0.01  
±0.2  
1
V/V  
%
GE  
Gain error  
VOUT = –10 V to +10 V, VS = ±15 V  
VOUT = –10 V to +10 V, VS = ±15 V  
±0.03  
Gain error drift(1)  
±0.5 ppm/°C  
ppm  
Gain nonlinearity  
OUTPUT  
Positive rail  
Negative rail  
170  
190  
220  
220  
mV  
mV  
Output voltage  
swing  
VO  
Short-circuit  
current  
ISC  
±65  
mA  
NOISE  
Output voltage  
noise  
f = 0.1 Hz to 10 Hz, RTO  
f = 1 kHz, RTO  
3
μVpp  
Vn  
Output voltage  
noise density  
18  
nV/√Hz  
FREQUENCY RESPONSE  
Small signal  
GBW  
Amplitude = –3 dB  
2.0  
MHz  
bandwidth  
SR  
tS  
Slew rate  
18  
1
V/µs  
µs  
To 0.1%  
VOUT = 10-V step  
VOUT = 10-V step  
Settling time  
To 0.01%  
1.3  
µs  
Total harmonic  
distortion + noise  
f = 1 kHz, VOUT = 2.8 VRMS  
0.00038  
–116  
%
dB  
ns  
THD+N  
tDR  
Noise floor, RTO  
80-kHz bandwidth, VOUT = 3.5 VRMS  
Overload recovery  
time  
200  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.5 Electrical Characteristics: G = 1/2 (continued)  
at VS = ±2.25 V to ±18 V, TA = 25°C, VCM = VOUT = VS / 2, RL = 10 kΩ connected to ground, and REF pin connected to  
ground (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
TA = 25°C  
1.1  
1.2  
1.5  
mA  
mA  
IQ  
Quiescent current IOUT = 0 mA  
TA = –40°C to +125°C  
(1) Specified by wafer test to 95% confidence level.  
7.6 Electrical Characteristics: G = 2  
at VS = ±2.25 V to ±18 V, TA = 25°C, VCM = VOUT = VS / 2, RL = 10 kΩ connected to ground, and REF pin connected to  
ground (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE (RTO)  
G = 2, RTO, TA = 25°C, VS = ±2.25 V to ±3  
V , VCM = –1.5V  
±28  
±400  
µV  
VOS  
Input offset voltage  
G = 2, RTO, TA = 25°C, VS = ±3 V to ±18  
±28  
±1.4  
±1  
±400  
±10  
±5  
µV  
V,  
VCM = VS / 2  
dVOS/dT Input offset voltage drift  
µV/°C  
µV/V  
Power-supply rejection  
PSRR  
ratio  
VS = ±2.25 V to ±18 V  
INPUT VOLTAGE  
3/2[(V–)–  
0.1]–0.5VREF  
3/2(V+)–  
0.5VREF  
VCM  
Common-mode voltage  
VOUT = 0 V  
V
TA = 25°C  
82  
80  
82  
65  
94  
84  
94  
84  
dB  
dB  
dB  
dB  
RTO, 1.5 [(V−) – 0.1 V)]  
≤ VCM ≤ 1.5 [(V+) – 3 V)]  
TA = –40°C to +125°C  
TA = 25°C  
Common-mode rejection  
ratio  
CMRR  
RTO, 1.5 [(V+) - 1.5 V)]  
≤ VCM ≤ 1.5 [(V+))]  
TA = –40°C to +125°C  
INPUT IMPEDANCE  
zid  
Differential  
VO = 0 V  
12  
9
kΩ  
kΩ  
zic  
Common-mode  
GAIN  
G
Initial  
2
±0.01  
±0.25  
1
V/V  
%
GE  
Gain error  
VOUT = –10 V to +10 V, VS = ±15 V  
VOUT = –10 V to +10 V, VS = ±15 V  
±0.03  
Gain error drift (1)  
±0.5 ppm/°C  
ppm  
Gain nonlinearity  
OUTPUT  
Positive rai  
130  
140  
±65  
180  
180  
mV  
mV  
mA  
VO  
Output voltage swing  
Short-circuit current  
Negative rail  
ISC  
NOISE  
Output voltage noise  
f = 0.1 Hz to 10 Hz, RTO  
f = 1 kHz, RTO  
6
μVpp  
Vn  
Output voltage noise  
density  
36  
nV/√Hz  
FREQUENCY RESPONSE  
GBW  
SR  
Small signal bandwidth  
Slew rate  
Amplitude = –3 dB  
0.8  
18  
MHz  
V/µs  
µs  
To 0.1%  
VOUT = 10-V step  
1.0  
1.7  
tS  
Settling time  
To 0.01%  
VOUT = 10-V step  
µs  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA597  
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.6 Electrical Characteristics: G = 2 (continued)  
at VS = ±2.25 V to ±18 V, TA = 25°C, VCM = VOUT = VS / 2, RL = 10 kΩ connected to ground, and REF pin connected to  
ground (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total harmonic distortion +  
noise  
f = 1 kHz, VOUT = 2.8 VRMS  
0.00066  
%
THD+N  
tDR  
Noise floor, RTO  
80-kHz bandwidth, VOUT = 3.5 VRMS  
–110  
200  
dB  
ns  
Overload recovery time  
POWER SUPPLY  
TA = 25°C  
1.1  
1.2  
1.5  
mA  
mA  
IQ Quiescent current  
IOUT = 0 mA  
TA = –40°C to +125°C  
(1) Specified by wafer test to 95% confidence level.  
7.7 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
Table 7-1. Table of Graphs  
DESCRIPTION  
Typical Distribution of Offset Voltage (RTO) G= 1/2, VS = ±2.25 V  
Typical Distribution of Offset Voltage (RTO) G= 2, , VS = ±2.25 V  
Typical Distribution of Offset Voltage (RTO) G= 1/2, , VS = ±18 V  
Typical Distribution of Offset Voltage (RTO) G= 2, VS = ±18 V  
Typical Distribution of Offset Voltage Drift (RTO) G = 1/2  
Typical Distribution of Offset Voltage Drift (RTO) G = 2  
Output Offset Voltage vs Temperature G = 1/2  
Output Offset Voltage vs Temperature G = 2  
Offset Voltage vs Common-Mode Voltage G = 1/2  
Offset Voltage vs Common-Mode Voltage G = 2  
Input Bias Current vs Temperature G = 1/2 and G = 2  
Input Offset Current vs Temperature  
FIGURE  
Figure 7-1  
Figure 7-2  
Figure 7-3  
Figure 7-4  
Figure 7-5  
Figure 7-6  
Figure 7-7  
Figure 7-8  
Figure 7-9  
Figure 7-10  
Figure 7-11  
Figure 7-12  
Figure 7-13  
Figure 7-14  
Figure 7-15  
Figure 7-16  
Figure 7-17  
Figure 7-18  
Figure 7-19  
Figure 7-20  
Figure 7-21  
Figure 7-22  
Figure 7-23  
Figure 7-24  
Figure 7-25  
Figure 7-26  
Figure 7-27  
Figure 7-28  
Figure 7-29  
Figure 7-30  
Figure 7-31  
Figure 7-32  
Figure 7-33  
Input Bias Current vs Common Mode Voltage G = 1/2  
Input Bias Current vs Common Mode Voltage G = 2  
Typical CMRR Distribution G= 1/2, Vs = ±2.25 V  
Typical CMRR Distribution G = 2, Vs = ±2.25 V  
Typical CMRR Distribution G= 1/2, Vs = ±18 V  
Typical CMRR Distribution G = 2, Vs = ±18 V  
CMRR vs Temperature G= 1/2  
CMRR vs Temperature G= 2  
Common-Mode Rejection Ratio vs Frequency (RTI) G = 1/2 and 2  
Maximum Output Voltage vs Frequency  
PSRR vs Temperature G = 1/2  
PSRR vs Temperature G = 2  
PSRR vs Frequency (RTI) G = 1/2  
PSRR vs Frequency (RTI) G = 2  
Typical Distribution of Gain Error G = 1/2, VS = ±2.25 V  
Typical Distribution of Gain Error G = 2, VS = ±2.25 V  
Gain Error vs Temperature G = 1 /2  
Gain Error vs Temperature G = 2  
Closed-Loop Gain vs Frequency G = 1/2  
Closed-Loop Gain vs Frequency G = 2  
Voltage Noise Spectral Density vs Frequency (RTI) G = 1/2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA597  
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
Table 7-1. Table of Graphs (continued)  
DESCRIPTION  
Voltage Noise Spectral Density vs Frequency (RTI) G = 2  
0.1-Hz to 10-Hz RTI Voltage Noise G = 1/2  
FIGURE  
Figure 7-34  
Figure 7-35  
Figure 7-36  
Figure 7-37  
Figure 7-38  
Figure 7-39  
Figure 7-40  
Figure 7-41  
Figure 7-42  
Figure 7-43  
Figure 7-44  
Figure 7-45  
Figure 7-46  
Figure 7-47  
Figure 7-48  
Figure 7-49  
Figure 7-50  
Figure 7-51  
Figure 7-52  
Figure 7-53  
Figure 7-54  
Figure 7-55  
Figure 7-56  
Figure 7-57  
Figure 7-58  
Figure 7-59  
Figure 7-60  
Figure 7-61  
Figure 7-62  
Figure 7-63  
Figure 7-64  
Figure 7-65  
Figure 7-66  
Figure 7-67  
Figure 7-68  
Figure 7-69  
Figure 7-70  
Figure 7-71  
Figure 7-72  
Figure 7-73  
0.1-Hz to 10-Hz RTI Voltage Noise G = 2  
Integrated Output Voltage Noise vs Noise Bandwidth G = 1/2  
Integrated Output Voltage Noise vs Noise Bandwidth G = 2  
Positive Output Voltage vs Output Current (sourcing) G = 1/2  
Positive Output Voltage vs Output Current (sourcing) G = 2  
Negative Output Voltage vs Output Current (sinking) G = 1/2  
Negative Output Voltage vs Output Current (sinking) G = 2  
Settling Time G = 1/2  
Settling Time G = 2  
Large Signal Step Response G = 1/2  
Large Signal Step Response G =2  
Slew Rate over Temperature  
Overload Recovery (Normalized to 0V)  
Small-Signal Overshoot vs Capacitive Load G = 1/2  
Small-Signal Overshoot vs Capacitive Load G = 2  
Small-Signal Step Response G = 1/2  
Small-Signal Step Response G = 2  
THD+N vs Frequency G = 1/2  
THD+N vs Frequency G = 2  
THD+N Ratio vs Output Amplitude G = 1/2  
THD+N Ratio vs Output Amplitude G = 2  
Supply Current vs Temperature G = 1/2  
Supply Current vs Temperature G = 2  
Supply Current vs Supply Voltage G = 1/2  
Supply Current vs Supply Voltage G = 2  
Short Circuit Current vs Temperature G = 1/2  
Short Circuit Current vs Temperature G = 2  
Differential-Mode EMI Rejection Ratio G = 1/2  
Differential-Mode EMI Rejection Ratio G = 2  
Common-Mode EMI Rejection Ratio G = 1/2  
Common-Mode EMI Rejection Ratio G = 2  
Input Common-Mode Voltage vs Output Voltage G = 1/2, Bipolar Supply  
Input Common-Mode Voltage vs Output Voltage G= 2, Bipolar Supply  
Input Common-Mode Voltage vs Output Voltage G = 1/2, 5-V Supply  
Input Common-Mode Voltage vs Output Voltage G = 2, 5-V Supply  
Input Common-Mode Voltage vs Output Voltage G = 1/2, 36-V Supply  
Input Common-Mode Voltage vs Output Voltage G = 2, 36-V Supply  
Closed-Loop Output Impedance vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA597  
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
D001  
D002  
Offset Voltage (mV)  
Offset Voltage (mV)  
N = 470  
G = 1/2  
Mean = 0.82 μV  
VS = ±2.25 V  
Std. Dev. = 2.91 μV  
VCM = –3 V  
N = 470  
G = 2  
Mean = 1.64 μV  
VS = ±2.25 V  
Std. Dev. = 5.82 μV  
VCM = –3 V  
Figure 7-1. Typical Distribution of Offset Voltage (RTO)  
Figure 7-2. Typical Distribution of Offset Voltage (RTO)  
20  
20  
15  
10  
5
15  
10  
5
0
0
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
D003  
D004  
Offset Voltage (mV)  
Offset Voltage (mV)  
N = 470  
G = 1/2  
Mean = –5.22 μV Std. Dev. = 8.38 μV  
N = 470  
G = 2  
Mean = –10.43 μV Std. Dev. = 16.77 μV  
Figure 7-3. Typical Distribution of Offset Voltage (RTO)  
Figure 7-4. Typical Distribution of Offset Voltage (RTO)  
30  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-2 -1.6 -1.2 -0.8 -0.4  
0
0.4 0.8 1.2 1.6  
2
-4 -3.2 -2.4 -1.6 -0.8  
0
0.8 1.6 2.4 3.2  
4
D005  
D006  
Offset Voltage Drift (mV/èC)  
Offset Voltage Drift (mV/èC)  
N = 30  
Mean = –0.075 μV/°C Std. Dev. = 0.502 μV/°C  
N = 30  
G = 2  
Mean = –0.325 μV/°C Std. Dev. = 0.887 μV/°C  
G = 1/2  
Figure 7-5. Typical Distribution of Offset Voltage Drift (RTO)  
Figure 7-6. Typical Distribution of Offset Voltage Drift (RTO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
100  
50  
150  
100  
50  
0
0
-50  
-100  
-150  
-200  
-250  
-300  
-50  
-100  
-150  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D007  
D05018  
G = 1/2  
30 units  
G = 2  
30 units  
Figure 7-7. Output Offset Voltage vs Temperature  
Figure 7-8. Output Offset Voltage vs Temperature  
1500  
1000  
750  
500  
1000  
500  
250  
0
0
-250  
-500  
-750  
-1000  
-500  
-1000  
-1500  
-60  
-40  
-20  
Common-Mode Voltage (V)  
0
20  
40  
60  
-30 -25 -20 -15 -10 -5  
0
Common-Mode Voltage (V)  
5
10 15 20 25 30  
D009  
D010  
G = 1/2  
12 units  
G = 2  
12 units  
Figure 7-9. Offset Voltage vs Common-Mode Voltage  
Figure 7-10. Offset Voltage vs Common-Mode Voltage  
1200  
100  
1000  
800  
600  
400  
200  
0
0
-100  
-200  
-300  
-400  
-500  
-600  
-200  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D011  
D012  
Figure 7-11. Input Bias Current vs Temperature  
Figure 7-12. Input Offset Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
-500  
-1000  
-1500  
-500  
-1000  
-1500  
-40èC  
25èC  
125 èC  
-40èC  
25èC  
125èC  
-60  
-40  
-20  
Common-Mode Voltage (V)  
0
20  
40  
60  
-30 -25 -20 -15 -10 -5  
0
Common-Mode Voltage (V)  
5
10 15 20 25 30  
D013  
D014  
G = 1/2  
G = 2  
Figure 7-13. Input Bias Current vs Common-Mode Voltage  
Figure 7-14. Input Bias Current vs Common-Mode Voltage  
30  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
D015  
D016  
Common-Mode Rejection Ratio (mV/V)  
Common-Mode Rejection Ratio (mV/V)  
N = 470  
G = 1/2  
Mean = 6.01 μV/V  
VS = ±2.25 V  
Std. Dev. = 4.85 μV/V  
N = 470  
G= 2  
Mean = –6.22 μV/V  
VS = ±2.25 V  
Std. Dev. = 10.74 μV/V  
Figure 7-15. Typical CMRR Distribution  
Figure 7-16. Typical CMRR Distribution  
40  
30  
25  
20  
15  
10  
5
30  
20  
10  
0
0
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
D017  
D018  
Common-Mode Rejection Ratio (mV/V)  
Common-Mode Rejection Ratio (mV/V)  
N = 470  
G = 1/2  
Mean = 4.86 μV/V  
Std. Dev. = 4.75 μV/V  
N = 470  
Mean = –8.64 μV/V  
Std. Dev. = 9.70 μV/V  
G = 2  
Figure 7-17. Typical CMRR Distribution  
Figure 7-18. Typical CMRR Distribution  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
-5  
-10  
-15  
-20  
-25  
-30  
35  
30  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D019  
D020  
G = 1/2  
24 units  
Figure 7-19. CMRR vs Temperature  
G = 2  
24 units  
Figure 7-20. CMRR vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
120  
100  
80  
VS  
VS  
=
=
1ꢀ V  
4 V  
G = 1/2  
G = 2  
60  
40  
20  
100m  
0
1
1
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
Frequency (Hz)  
D056  
G = 1/2 and G = 2  
Figure 7-22. Maximum Output Voltage vs Frequency  
Figure 7-21. Common-Mode Rejection Ratio vs Frequency,  
Referred-to-Input  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D023  
D024  
G = 1/2  
24 units  
Figure 7-23. PSRR vs Temperature  
G = 2  
24 units  
Figure 7-24. PSRR vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
140  
120  
100  
80  
140  
120  
100  
80  
PSRR+  
PSRR+  
̶
̶
PSRR  
PSRR  
60  
60  
40  
40  
20  
20  
0
0
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
G = 1/2  
G = 2  
Figure 7-25. PSRR vs Frequency (RTI)  
Figure 7-26. PSRR vs Frequency (RTI)  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
0
0
-0.03  
0.005  
0.01  
0.015  
0.02  
0.025  
0.03  
-0.025  
-0.02  
-0.015  
-0.01  
-0.005  
0
D027  
D028  
Gain Error (%)  
Gain Error (%)  
N = 470  
G = 1/2  
Mean = 0.0085%  
Std. Dev. = 0.0014%  
N = 470  
G = 2  
Mean = –0.0076%  
Std. Dev. = 0.0015%  
Figure 7-27. Typical Distribution of Gain Error  
Figure 7-28. Typical Distribution of Gain Error  
0.01  
-0.002  
-0.0025  
-0.003  
-0.0035  
-0.004  
-0.0045  
-0.005  
-0.0055  
-0.006  
-0.0065  
-0.007  
-0.0075  
-0.008  
-0.0085  
-0.009  
-0.0095  
-0.01  
0.00.8  
0.00.6  
0.00.4  
0.00.2  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D029  
D030  
G = 1 /2  
30 units  
G = 2  
30 units  
Figure 7-30. Gain Error vs Temperature  
Figure 7-29. Gain Error vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
10  
20  
10  
0
0
-10  
-20  
-30  
-10  
CLOAD = 20 pF  
CLOAD = 100 pF  
CLOAD = 20 pF  
CLOAD = 100 pF  
-20  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D032  
D031  
G = 2  
Figure 7-32. Closed-Loop Gain vs Frequency  
G = 1/2  
Figure 7-31. Closed-Loop Gain vs Frequency  
1000  
100  
10  
1000  
100  
10  
1
100m  
1
100m  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
D033  
D034  
G = 1/2  
G = 2  
Figure 7-33. Voltage Noise Spectral Density vs Frequency (RTI) Figure 7-34. Voltage Noise Spectral Density vs Frequency (RTI)  
Time (1 s/div)  
Time (1 s/div)  
G = 2  
Figure 7-36. 0.1-Hz to 10-Hz RTI Voltage Noise  
G = 1/2  
Figure 7-35. 0.1-Hz to 10-Hz RTI Voltage Noise  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
100  
10  
1
100  
10  
1
0.1  
0.1  
1
10  
100 1k  
Frequency (Hz)  
10k  
100k  
1
10  
100 1k  
Frequency (Hz)  
10k  
100k  
D037  
D038  
G = 1/2  
G = 2  
Figure 7-37. Integrated Output Voltage Noise vs Noise  
Bandwidth  
Figure 7-38. Integrated Output Voltage Noise vs Noise  
Bandwidth  
18  
18  
-40èC  
-40èC  
25èC  
85èC  
125èC  
17.5  
17.5  
17  
25èC  
17  
85èC  
125èC  
16.5  
16.5  
16  
16  
15.5  
15  
15.5  
15  
14.5  
14  
14.5  
14  
13.5  
13  
13.5  
13  
12.5  
12  
12.5  
12  
11.5  
11.5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
ILoad (mA)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
ILoad ( mA )  
G = 1/2  
G = 2  
Figure 7-39. Positive Output Voltage vs Output Current  
(Sourcing)  
Figure 7-40. Positive Output Voltage vs Output Current  
(Sourcing)  
-14  
-14  
-14.25  
-14.5  
-14.75  
-15  
-40èC  
25èC  
85èC  
125èC  
-14.25  
-14.5  
-14.75  
-15  
-40èC  
25èC  
85èC  
125èC  
-15.25  
-15.5  
-15.75  
-16  
-15.25  
-15.5  
-15.75  
-16  
-16.25  
-16.5  
-16.75  
-17  
-16.25  
-16.5  
-16.75  
-17  
-17.25  
-17.5  
-17.75  
-18  
-17.25  
-17.5  
-17.75  
-18  
-5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
ILoad ( mA )  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
ILoad ( mA )  
G = 1/2  
G = 2  
Figure 7-41. Negative Output Voltage vs Output Current  
(Sinking)  
Figure 7-42. Negative Output Voltage vs Output Current  
(Sinking)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
Falling  
Rising  
Falling  
Rising  
Time (1 ms/div)  
Time (1 ms/div)  
D043  
D044  
G = 1/2  
G = 2  
Figure 7-43. Settling Time  
Figure 7-44. Settling Time  
VIN  
VIN+  
VOUT  
VIN-  
VIN +  
VOUT  
Time (1 μs/div)  
Time (1 ms/div)  
D046  
G = 2  
Figure 7-46. Large-Signal Step Response  
G = 1/2  
Figure 7-45. Large-Signal Step Response  
30  
24  
18  
12  
Negative  
Positive  
Rising  
Falling  
-60  
-35  
-10  
15  
40  
65  
90  
115  
140  
Time (200 μs/div)  
Temperature (èC)  
D047  
Figure 7-47. Slew Rate Over Temperature  
Figure 7-48. Overload Recovery (Normalized to 0 V)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
RISO = 0 Ω  
RISO = 25 Ω  
RISO = 50 Ω  
RISO = 0 Ω  
RISO = 25 Ω  
RISO = 50 Ω  
10  
100  
Capacitance (pF)  
1000  
10  
100  
Capacitance (pF)  
1000  
G = 1/2  
G = 2  
Figure 7-49. Small-Signal Overshoot vs Capacitive Load  
Figure 7-50. Small-Signal Overshoot vs Capacitive Load  
VIN-  
VIN +  
VOUT  
VIN  
VIN+  
VOUT  
Time (1 ms/div)  
Time (1 μs/div)  
D051  
G = 2  
G = 1/2  
Figure 7-51. Small-Signal Step Response  
Figure 7-52. Small-Signal Step Response  
1
-40  
1
0.1  
-40  
RL = 10 kW  
RL = 2 kW  
RL = 600 W  
RL = 10 kW  
RL = 2 kW  
RL = 600 W  
0.1  
-60  
-60  
0.01  
-80  
0.01  
-80  
0.001  
0.0001  
-100  
-120  
0.001  
0.0001  
-100  
-120  
100  
1k  
Frequency (Hz)  
10k  
100  
1k  
Frequency (Hz)  
10k  
D053  
D054  
G = 1/2  
VOUT = 3.5 VRMS  
G = 2  
VOUT = 3.5 VRMS  
Figure 7-53. THD+N vs Frequency  
Figure 7-54. THD+N vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
1
-40  
1
-40  
RL = 10 kW  
RL = 2 kW  
RL = 600 W  
RL = 10 kW  
RL = 2 kW  
RL = 600 W  
0.1  
-60  
0.1  
-60  
0.01  
-80  
0.01  
-80  
0.001  
-100  
-120  
0.001  
-100  
-120  
0.0001  
0.0001  
10m  
100m  
Output Amplitude (VRMS  
1
10  
10m  
100m  
Output Amplitude (VRMS  
1
10  
)
)
D055  
D056  
G = 1/2  
G = 2  
Figure 7-55. THD+N Ratio vs Output Amplitude  
Figure 7-56. THD+N Ratio vs Output Amplitude  
1.1  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1
1.08  
1.06  
1.04  
1.02  
1
0.99  
0.98  
0.97  
0.96  
0.98  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D057  
D058  
G = 1/2  
30 units  
G = 2  
30 units  
Figure 7-57. Supply Current vs Temperature  
Figure 7-58. Supply Current vs Temperature  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
0
5
10  
15  
20  
Total Supply (V)  
25  
30  
35  
40  
0
5
10  
15  
20  
Total Supply (V)  
25  
30  
35  
40  
D060  
D059  
G = 2  
30 units  
G = 1/2  
30 units  
Figure 7-60. Supply Current vs Supply Voltage  
Figure 7-59. Supply Current vs Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
90  
60  
30  
0
90  
60  
30  
0
-30  
-60  
-90  
-30  
-60  
-90  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D062  
D061  
G = 2  
30 units  
G = 1/2  
30 units  
Figure 7-62. Short Circuit Current vs Temperature  
Figure 7-61. Short Circuit Current vs Temperature  
160  
150  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
60  
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
1G  
10G  
Frequency (Hz)  
G = 1/2  
G = 2  
Figure 7-64. Differential-Mode EMI Rejection Ratio  
Figure 7-63. Differential-Mode EMI Rejection Ratio  
180  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
80  
60  
10M  
70  
10M  
100M  
Frequency (Hz)  
1G  
10G  
100M  
1G  
10G  
Frequency (Hz)  
D065  
G = 1/2  
G = 2  
Figure 7-66. Common-Mode EMI Rejection Ratio  
Figure 7-65. Common-Mode EMI Rejection Ratio  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA597  
 
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
80  
60  
40  
30  
VS = ê2.25 V  
VS = ê18 V  
VS = ê2.25 V  
VS = ê18 V  
40  
20  
20  
10  
0
0
-20  
-40  
-60  
-80  
-10  
-20  
-30  
-40  
-20 -16 -12  
-8  
-4  
Output Voltage (V)  
0
4
8
12  
16  
20  
-20  
-15  
-10  
-5  
Output Voltage (V)  
0
5
10  
15  
20  
D067  
D068  
G = 1/2  
Bipolar supply  
VREF = 0 V  
G = 2  
Bipolar supply  
VREF = 0 V  
Figure 7-67. Input Common-Mode Voltage vs Output Voltage  
Figure 7-68. Input Common-Mode Voltage vs Output Voltage  
20  
10  
15  
10  
5
7.5  
5
2.5  
0
0
-5  
-2.5  
-5  
-10  
-1.25  
0
1.25  
2.5  
Output Voltage (V)  
3.75  
5
6.25  
-1.25  
0
1.25  
2.5  
Output Voltage (V)  
3.75  
5
6.25  
D069  
D070  
G = 1/2  
5-V supply  
VREF = 0 V  
G = 2  
5-V supply  
VREF = 0 V  
Figure 7-69. Input Common-Mode Voltage vs Output Voltage  
Figure 7-70. Input Common-Mode Voltage vs Output Voltage  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
60  
40  
20  
0
-20  
-40  
-60  
-10  
-20  
0
4
8
12  
16  
Output Voltage (V)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Output Voltage (V)  
20  
24  
28  
32  
36  
40  
D071  
D072  
G = 1/2  
36-V supply  
VREF = 0 V  
G = 2  
36-V supply  
VREF = 0 V  
Figure 7-71. Input Common-Mode Voltage vs Output Voltage  
Figure 7-72. Input Common-Mode Voltage vs Output Voltage  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, G = 1/2 (unless otherwise noted)  
1000  
100  
10  
1
0.1  
0.01  
0.001  
0.0001  
G = 2  
G = 0.5  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D073  
Figure 7-73. Closed-Loop Output Impedance vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
8 Detailed Description  
8.1 Overview  
The INA597 consists of a high-precision, e-trimoperational amplifier and four trimmed resistors. These  
resistors can be connected to make a wide variety of amplifier configurations, including difference, noninverting,  
and inverting configurations. Using the on-chip resistors of the INA597 provides the designer with several  
advantages over a discrete design. The INA597 also includes internal compensation capacitors, as shown in  
Section 8.2.  
8.2 Functional Block Diagram  
V+  
INA597  
12 k  
6 kꢀ  
œIN  
SENSE  
16 pF  
œ
OUT  
+
16 pF  
Vœ  
12 kꢀ  
6 kꢀ  
+IN  
REF  
Vœ  
8.3 Feature Description  
Much of the dc performance of op-amp circuits depends on the accuracy of the surrounding resistors. The  
resistors on the INA597 are laid out to be tightly matched. The resistors of each part are matched on-chip and  
tested for their matching accuracy. As a result of this trimming and testing, the INA597 provides high accuracy  
for specifications such as gain drift, common-mode rejection, and gain error.  
8.4 Device Functional Modes  
The INA597 measures voltages beyond the rails. For the G = ½ and G = 2 difference amplifier configurations,  
see the input voltage range in Section 7 for details. The INA597 can be configured in several ways; see  
Figure 9-5 to Figure 9-9. These configurations rely on the internal, matched resistors; therefore, all of these  
configurations have excellent gain accuracy and gain drift.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
Figure 9-1 shows the basic connections required for operation of the INA597. Connect power supply bypass  
capacitors close to the device pins.  
The differential input signal is connected to pins 2 and 3, as shown. The source impedances connected to the  
inputs must be nearly equal to provide good common-mode rejection. An 8-Ω mismatch in source impedance  
degrades the common-mode rejection of a typical device to approximately 80 dB. Gain accuracy is also slightly  
affected. If the source has a known impedance mismatch, use an additional resistor in series with one input to  
preserve good common-mode rejection.  
9.2 Typical Applications  
9.2.1 Basic Power-Supply and Signal Connections  
V–  
V+  
1 µF  
1 µF  
4
7
INA597  
R1  
R2  
2
3
5
6
V2  
12 kW  
6 kW  
R3  
V3  
RL  
12 kW  
R4  
6 kW  
VOUT = V3 – V2  
1
REF  
Figure 9-1. Basic Power-Supply and Signal Connections  
9.2.1.1 Design Requirements  
For the application shown in Figure 9-1, the design requirements are:  
Gain of G = ½  
VREF = 0 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA597  
 
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Operating Voltage  
The INA597 operates from single (4.5 V to 36 V) or dual (±2.25 V to ±18 V) supplies with excellent  
performance. Specifications are production tested with +5-V and ±15-V supplies. Most behavior remains  
unchanged throughout the full operating voltage range. Parameters that vary significantly with operating voltage  
are shown in Section 7.7. The internal op amp in the INA597 is a single-supply design. This design allows linear  
operation with the op amp common-mode voltage equal to, or slightly less than V– (or single-supply ground).  
Although input voltages on pins 2 and 3 that are less than the negative supply voltage do not damage the  
device, operation in this region is not recommended. Transient conditions at the inverting input terminal less than  
the negative supply can cause a positive feedback condition that could lock the device output to the negative rail.  
The INA597 accurately measures differential signals that are greater than the positive power supply. For  
example with G = ½, the linear common-mode range extends to nearly three times the positive power supply  
voltage; see Section 7.7, as well as Section 9.2.1.2.3.  
9.2.1.2.2 Offset Voltage Trim  
The INA597 is production trimmed for low offset voltage and drift. Most applications require no external offset  
adjustment. Figure 9-2 shows an optional circuit for trimming the output offset voltage. The output is referred to  
the output reference terminal (pin 1), which is normally grounded. A voltage applied to the REF pin is summed  
with the output signal. This configuration can be used to null offset voltage. To maintain good common-mode  
rejection, make sure the source impedance of a signal applied to the REF pin is less than 8 Ω. For low  
impedance at the REF pin, the trim voltage can be buffered with an op amp, such as the OPA177.  
INA597  
R1  
R2  
2
5
6
V2  
VO  
8 W  
R3  
3
V3  
R
4
+15 V  
1
REF  
R = 237 kW  
VO = V3 V2  
Offset Adjustment  
Range = 5ꢀꢀ ꢁV  
1ꢀꢀ kW  
8 W  
–15 V  
NOTE: For 75ꢀ0ꢁV rangeꢂ R = 158 kW.  
Figure 9-2. Offset Adjustment  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
9.2.1.2.3 Input Voltage Range  
The INA597 measures input voltages beyond the supply rails. The internal resistors divide down the voltage  
before the voltage reaches the internal op amp and provide protection to the op amp inputs. Figure 9-3 shows  
an example of how the voltage division works in a difference-amplifier configuration. For the INA597 to measure  
correctly, the input voltages at the input nodes of the internal op amp must stay less than 0.1 V of the positive  
supply rail, and can exceed the negative supply rail by 0.1 V. See Section 10 for more details.  
R4  
-INOP =  
V-IN  
R3 + R4  
R3  
R4  
VœIN  
œIN  
SENSE  
œ
OUT  
+
R1  
R2  
V+IN  
+IN  
REF  
R2  
+INOP =  
V+IN  
R1+ R2  
Figure 9-3. Voltage Division in the Difference Amplifier Configuration  
The INA597 has integrated ESD diodes at the inputs that provide overvoltage protection. This feature simplifies  
system design by eliminating the need for additional external protection circuitry, and enables a more robust  
system. The voltages at any of the inputs of the parts in G = ½ configuration with ±18 V supplies can safely  
range from +VS − 54 V up to −VS + 54 V. For example, on ±10-V supplies, the input voltages can go as high as  
±30 V.  
9.2.1.2.4 Capacitive Load Drive Capability  
The INA597 can drive large capacitive loads, even at low supplies. The device is stable with a 500-pF load; see  
Section 7.7.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA597  
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
9.2.1.3 Application Curve  
The interaction between the output stage of an operational amplifier (op amp) and capacitive loads can impact  
the stability of the circuit. Throughout the industry, op-amp output-stage requirements have changed greatly  
since their original creation. Classic output stages with the class-AB common-emitter bipolar junction transistor  
(BJT) have now been replaced with common-collector BJT and common-drain complementary metal-oxide  
semiconductor (CMOS) devices. Both of these technologies enable rail-to-rail output voltages for single-supply  
and battery-powered applications. A result of changing these output-stage structures is that the op-amp  
open-loop output impedance (Zo) changed from the largely resistive behavior of early BJT op amps to a  
frequency-dependent ZO that features capacitive, resistive, and inductive portions. Proper understanding of  
ZO over frequency—and also the resulting closed-loop output impedance over frequency—is crucial for the  
understanding of loop gain, bandwidth, and stability analysis. Figure 9-4 shows how the INA597 closed-loop  
output impedance varies over frequency.  
1000  
100  
10  
1
0.1  
0.01  
0.001  
0.0001  
G = 2  
G = 0.5  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D073  
VS = ±18 V  
Figure 9-4. Closed-Loop Output Impedance vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
9.2.2 Precision Instrumentation Amplifier  
The INA597 can be combined with op amps to form a complete instrumentation amplifier (IA) with specialized  
performance characteristics, as shown in Figure 9-5.  
V1  
INA597  
–IN  
A1  
2
5
R2  
6
R1  
VO  
R2  
1
3
A2  
V2  
+IN  
VO = (1 + 2R2 / R1) (V2 – V1)  
Figure 9-5. Precision Instrumentation Amplifier  
9.2.3 Low Power, High-Output Current, Precision, Difference Amplifier  
BUF634 inside feedback  
loop contributes no error.  
INA597  
2
5
6
1
–IN  
V
BUF634  
O
R
L
3
(Low IQ mode)  
+IN  
Figure 9-6. Low Power, High-Output Current, Precision, Difference Amplifier  
9.2.4 Pseudoground Generator  
V+  
V+  
3
INA597  
2
5
7
6
(V+) / 2  
1
4
Ground  
Ground  
Figure 9-7. Pseudoground Generator  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
9.2.5 Differential Input Data Acquisition  
5 V  
7
INA597  
2
5
6
1
–IN  
12 Bits  
Out  
ADS7806  
0-V to 4-V  
Input  
3
+IN  
4
VCM = 0 V to 8 V  
tS = 45 µs (4-V Step to 0.01%)  
Figure 9-8. Differential Input Data Acquisition  
9.2.6 Precision Voltage-to-Current Conversion  
V+  
12.5 k  
50 kꢀ  
1 kꢀ  
0-V to 10-V in  
7
œ
Set R1 = R2  
6 kꢀ  
12 kꢀ  
5
2
15 V  
2
+
R1  
R2  
VœIN  
œ
OPA192  
6
R1  
INA597  
2N3904  
+
50.1 ꢀ  
VOUT  
6
REF10  
R3  
R4  
1
3
10 V  
R2  
V+IN  
VREF  
50.1 ꢀ  
6 kꢀ  
12 kꢀ  
4
4
For 4-mA to 20-mA applications,  
the REF10 sets the 4-mA,  
low-scale output for the 0-V input.  
RL  
IOUT = 4 mA to 20 mA  
«
1
1
IOUT = 2V+IN - V-IN  
+
(
)
÷
40 kW R2 ◊  
Figure 9-9. Precision Voltage-to-Current Conversion  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
9.2.7 Additional Applications  
Texas Instruments offers many complete high-performance instrumentation amplifiers. See Table 9-1 for some of  
the products with related performance.  
Table 9-1. Recommended Op Amp Products to Use With the INA597  
A1, A2  
FEATURE  
SIMILAR TI IA  
OPA27  
Low noise  
INA103  
OPA129  
OPA177  
OPA2130  
OPA2234  
OPA2237  
Ultra-low bias current (fA)  
Low offset drift, low noise  
Low power, FET-input (pA)  
Single supply, precision, low power  
SIngle supply, low power, 8-pin MSOP  
INA116  
INA114, INA128  
INA111  
INA122. INA118  
INA122, INA126  
The difference amplifier is a highly versatile building block that is useful in a wide variety of applications. See the  
INA105 data sheet for additional applications ideas, including:  
Current receiver with compliance to rails  
Precision unity-gain inverting amplifier  
±10-V precision voltage reference  
±5-V precision voltage reference  
Precision unity-gain buffer  
Precision average value amplifier  
Precision G = 2 amplifier  
Precision summing amplifier  
Precision G = 1/2 amplifier  
Precision bipolar offsetting  
Precision summing amplifier with gain  
Instrumentation amplifier guard drive generator  
Precision summing instrumentation amplifier  
Precision absolute value buffer  
Precision voltage-to-current converter with differential inputs  
Differential input voltage-to-current converter for low IOUT  
Isolating current source  
Differential output difference amplifier  
Isolating current source with buffering amplifier for greater accuracy  
Window comparator with window span and window center inputs  
Precision voltage-controlled current source with buffered differential inputs and gain  
Digitally controlled gain of ±1 amplifier  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
10 Power Supply Recommendations  
The nominal performance of the INA597 is specified with a supply voltage of ±15 V and midsupply reference  
voltage. The device operates using power supplies from ±2.25 V (4.5 V) to ±18 V (36 V) and non-midsupply  
reference voltages with excellent performance. Parameters that can vary significantly with operating voltage and  
reference voltage are shown in Section 7.7.  
11 Layout  
11.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good PCB layout practices, including:  
Take care to make sure that both input paths are well-matched for source impedance and capacitance to  
avoid converting common-mode signals into differential signals.  
Noise propagates into analog circuitry through the power pins of the circuit as a whole and of the device.  
Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the analog  
circuitry.  
– Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible.  
If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in  
parallel with the noisy trace.  
Place the external components as close to the device as possible.  
Keep the traces as short as possible.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: INA597  
 
 
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
11.2 Layout Example  
Vœ  
V+  
1 F  
1 F  
C1  
C2  
4
7
12 kꢀ  
6 kꢀ  
2
5
VœIN  
SENSE  
œIN  
R1  
R2  
œ
6
VOUT  
+
OUT  
RL  
R3  
R4  
3
1
V+IN  
VREF = GND  
REF  
+IN  
12 kꢀ  
6 kꢀ  
1
=
VOUT  
V+IN - V-IN  
(
)
2
+V  
Low-impedance  
connection for reference  
terminal  
GND  
C2  
Use ground pours for  
shielding the input signal  
pairs  
INA597  
1
8
7
6
NC  
REF  
œ
2
V+  
œIN  
œIN  
+
3
+IN  
OUT  
+IN  
VOUT  
4
Vœ  
5
SENSE  
C1  
GND  
RL  
Place bypass capacitors  
as close to IC as  
possible  
GND  
œV  
Figure 11-1. Example Schematic and Associated PCB Layout for SOIC and VSSOP Packages  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: INA597  
 
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
Vœ  
V+  
1 F  
1 F  
C1  
C2  
5
8
12 kꢀ  
6 kꢀ  
3
6
VœIN  
SENSE  
œIN  
R1  
R2  
œ
1
-INOP  
7
VOUT  
+
10  
OUT  
+INOP  
RL  
R3  
R4  
4
2
V+IN  
VREF = GND  
REF  
+IN  
12 kꢀ  
6 kꢀ  
1
=
VOUT  
V+IN - V-IN  
(
)
2
Low-impedance  
connection for  
reference terminal  
INA597  
1
2
GND  
Þ INOP  
+INOP  
10  
REF  
NC  
V+  
9
8
œ
œIN  
œIN  
3
4
5
+
C2  
+IN  
+IN  
OUT  
7
6
+INOP  
Vœ  
SENSE  
GND  
NC= No Connection  
RL  
C1  
Use ground pours  
for shielding  
the input  
Place bypass capacitors  
as close to IC as  
possible  
signal pairs  
œV  
Figure 11-2. Example Schematic and Associated PCB Layout with VSON Package  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: INA597  
INA597  
www.ti.com  
SBOS385B – AUGUST 2019 – REVISED APRIL 2021  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Universal Difference Amplifier Evaluation Module user's guide  
Texas Instruments, Precision Signal-Conditioning Solutions for Motor-Control Position Feedback technical  
brief  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
e-trimand TI E2Eare trademarks of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: INA597  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA597IDGKR  
INA597IDGKT  
INA597IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1WT6  
1WT6  
NIPDAUAG  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
8
3000 RoHS & Green  
3000 RoHS & Green  
INA597  
IN597  
INA597IDRCR  
INA597IDRCT  
INA597IDT  
VSON  
VSON  
SOIC  
DRC  
DRC  
D
10  
10  
8
-40 to 125  
-40 to 125  
250  
250  
RoHS & Green  
RoHS & Green  
IN597  
INA597  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Jun-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA597IDGKR  
INA597IDGKT  
INA597IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500  
250  
330.0  
330.0  
330.0  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
3.3  
3.3  
6.4  
3.4  
3.4  
5.2  
3.3  
3.3  
5.2  
1.4  
1.4  
2.1  
1.1  
1.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q2  
Q2  
Q1  
8
3000  
3000  
250  
INA597IDRCR  
INA597IDRCT  
INA597IDT  
VSON  
VSON  
SOIC  
DRC  
DRC  
D
10  
10  
8
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Jun-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA597IDGKR  
INA597IDGKT  
INA597IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500  
250  
366.0  
366.0  
853.0  
367.0  
210.0  
210.0  
364.0  
364.0  
449.0  
367.0  
185.0  
185.0  
50.0  
50.0  
35.0  
35.0  
35.0  
35.0  
8
3000  
3000  
250  
INA597IDRCR  
INA597IDRCT  
INA597IDT  
VSON  
VSON  
SOIC  
DRC  
DRC  
D
10  
10  
8
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

INA6001AC1

FOR HIGH CURRENT DRIVE APPLICATION SILICON PNP EPITAXIAL TYPE
ISAHAYA

INA6001AP1

FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE
ISAHAYA

INA6002AC1

FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON NPN EPITAXIAL TYPE
ISAHAYA

INA6005AC1

FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE
ISAHAYA

INA6005AP1

FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE
ISAHAYA

INA6006AC1

FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE
ISAHAYA

INA6006AP1

FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE
ISAHAYA

INA818

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 1、8)仪表放大器
TI

INA818ID

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 1、8)仪表放大器 | D | 8 | -40 to 125
TI

INA818IDR

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 1、8)仪表放大器 | D | 8 | -40 to 125
TI

INA819

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 2、3)仪表放大器
TI

INA819ID

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 2、3)仪表放大器 | D | 8 | -40 to 125
TI