INA826S [TI]

具有关断模式的 200μA、36V 轨到轨输出仪表放大器;
INA826S
型号: INA826S
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有关断模式的 200μA、36V 轨到轨输出仪表放大器

放大器 仪表 仪表放大器
文件: 总41页 (文件大小:2473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
具有轨至轨输出和关断的 INA826S 精密 200µA 电源电流,3V 36V 电源  
仪表放大器  
1 特性  
3 说明  
1
输入共模范围:包括 V–  
共模抑制:  
INA826S 器件是一款低成本仪表放大器,此放大器提  
供极低功耗及关断,并可在极宽的单电源或双电源电压  
范围内工作。可通过单个外部电阻在 1 1000 范围内  
设置增益。该器件在过热条件下具有很好的稳定性,即  
使在 G > 1 时,也可实现只有 35ppm/°C(最大值)的  
低增益漂移。  
104dB(最小值,G = 10)  
100dB5kHz 下的最小值,G = 10)  
电源抑制:(最小值,G = 1)  
低失调电压:150µV,最大值  
增益漂移:1ppm/°C (G = 1)35ppm/°C (G > 1)  
噪声:18nV/HzG 100  
带宽:1MHz (G = 1)60kHz (G = 100)  
输入保护电压高达 ±40V  
INA826S 经优化可在频率高达 5kHz 时提供超过  
100dB (G = 10) 的出色共模抑制比。G = 1 时,在从  
负电源直至 1V 正电源的整个输入共模范围内共模抑制  
比将超过 84dBINA826S 采用轨到轨输出,非常适合  
通过 3V 单电源和高达 ±18V 的双电源供电的低电压运  
行器件。  
轨到轨输出  
电源电流:200µA  
关断电流:2µA  
提供关断引脚,可将电源电流降至 2µA 以下。附加电  
路可通过将输入电流限制在 8mA 以下来防止输入出现  
超出电源电压的过压情况(高达 ±40V)。  
电源电压范围:  
单电源:3V 36V  
双电源:±1.5V ±18V  
INA826S 可提供 10 引脚、3mm ×  
特定温度范围:  
–40°C +125°C  
3mm VSON 表面贴装式封装。INA826S 的额定工作温  
度范围为 –40°C +125°C。  
封装:3mm × 3mm VSON  
器件信息(1)  
2 应用  
器件型号  
INA826S  
封装  
VSON (10)  
封装尺寸(标称值)  
工业过程控制  
3.00mm × 3.00mm  
断路器  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
电池检测仪  
心电图 (ECG) 放大器  
电力自动化  
医疗仪表  
INA826S 简化内部原理图  
V+  
0.1 mF  
便携式仪表  
8
(1)  
RS  
1
RFI Filter  
-IN  
50 kW  
50 kW  
A1  
VO = G ´ (VIN+ - VIN-  
)
2
49.4 kW  
24.7 kW  
G = 1 +  
RG  
7
6
RG  
A3  
24.7 kW  
+
3
4
VO  
Load  
-
50 kW  
50 kW  
(1)  
RS  
A2  
REF  
RFI Filter  
+IN  
TI Device  
5
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
V-  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS770  
 
 
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 20  
7.4 Device Functional Modes........................................ 27  
8
9
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Application ................................................. 28  
Power Supply Recommendations...................... 30  
9.1 Low-Voltage Operation ........................................... 30  
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 32  
11.1 文档支持................................................................ 32  
11.2 接收文档更新通知 ................................................. 32  
11.3 社区资源................................................................ 32  
11.4 ....................................................................... 32  
11.5 静电放电警告......................................................... 32  
11.6 Glossary................................................................ 32  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2017) to Revision A  
Page  
Changed output stage offset voltage from 700 µV to 1000 µV .............................................................................................. 5  
2
Copyright © 2017, Texas Instruments Incorporated  
 
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
5 Pin Configuration and Functions  
DRC Package  
10-Pin VSON  
Top View  
œIN  
RG  
RG  
+IN  
EN  
1
2
3
4
5
10  
+VS  
9
8
7
6
OUT  
REF  
Thermal pad  
œVS  
ENREF  
Not to scale  
Pin Functions  
NAME  
NO.  
5
I/O  
I
DESCRIPTION  
EN  
Enable pin; active low with respect to ENREF  
Enable pin reference  
ENREF  
–IN  
6
I
1
I
Negative (inverting) input  
+IN  
4
I
Positive (noninverting) input  
OUT  
REF  
RG  
9
O
I
Output  
8
Reference input. This pin must be driven by low impedance.  
Gain setting pins. Place a gain resistor between pin 2 and pin 3.  
Negative supply  
2, 3  
7
–VS  
+VS  
10  
Positive supply  
Exposed thermal die pad on underside; connect thermal die pad to V–.  
Soldering the thermal pad improves heat dissipation and provides specified performance.  
Thermal pad  
Pad  
Copyright © 2017, Texas Instruments Incorporated  
3
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–20  
MAX  
UNIT  
Supply voltage  
20  
V
Signal input pins  
(–VS) – 40  
–20  
(+VS) + 40  
REF pin  
+20  
Voltage  
V
ENREF pin  
(–VS) – 0.3  
(–VS) – 0.3  
–10  
(+VS) + 0.3  
EN pin  
VENREF + 0.3  
Signal input pins  
10  
10  
1
REF pin  
–10  
Current  
mA  
ENREF pin  
–1  
EN pin  
Output short-circuit(2)  
–1  
1
Continuous  
Operating, TA  
–50  
–65  
150  
175  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS / 2.  
6.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
36  
UNIT  
Single-supply  
Dual-supply  
Supply voltage  
V
±1.5  
–40  
±18  
125  
Specified temperature  
°C  
6.4 Thermal Information  
INA826S  
THERMAL METRIC(1)  
VSON (DRC)  
10 PINS  
51.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
58.2  
25.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.0  
ψJB  
25.8  
RθJC(bot)  
8.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
6.5 Electrical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
RTI  
40  
0.4  
150  
2
µV  
µV/°C  
µV  
VOSI  
Input stage offset voltage(1)  
vs temperature, TA = –40°C to +125°C  
RTI  
200  
2
1000  
5
Output stage offset  
voltage(1)  
VOSO  
vs temperature, TA = –40°C to +125°C  
G = 1, RTI  
µV/°C  
90  
100  
110  
120  
124  
130  
140  
140  
20 || 1  
10 || 5  
20  
G = 10, RTI  
PSRR  
Power-supply rejection ratio  
dB  
G = 100, RTI  
G = 1000, RTI  
zid  
zic  
Differential impedance  
GΩ || pF  
GΩ || pF  
MHz  
Common-mode impedance  
RFI filter, –3-dB frequency  
V–  
(V+) – 1  
±40  
VCM  
Operating input range(2)  
Input overvoltage range  
V
V
VS = ±3 V to ±18 V, TA = –40°C to +125°C  
TA = –40°C to 125°C  
See 12 to 19  
G = 1, VCM = (V–) to (V+) – 1 V  
G = 10, VCM = (V–) to (V+) – 1 V  
82  
95  
115  
130  
130  
104  
120  
120  
At dc to  
60 Hz, RTI  
G = 100, VCM = (V–) to (V+) – 1 V  
G = 1000, VCM = (V–) to (V+) – 1 V  
Common-mode rejection  
ratio  
G = 1, VCM = (V–) to (V+) – 1 V,  
TA = –40°C to +125°C  
CMRR  
80  
dB  
G = 1, VCM = (V–) to (V+) – 1 V  
G = 10, VCM = (V–) to (V+) – 1 V  
G = 100, VCM = (V–) to (V+) – 1 V  
G = 1000, VCM = (V–) to (V+) – 1 V  
84  
100  
105  
105  
At 5 kHz,  
RTI  
BIAS CURRENT  
VCM = VS / 2  
35  
65  
95  
5
IB  
Input bias current  
nA  
nA  
TA = –40°C to +125°C  
VCM = VS / 2  
0.7  
IOS  
Input offset current  
TA = –40°C to +125°C  
10  
NOISE VOLTAGE  
f = 1 kHz, G = 100, RS = 0 Ω  
fB = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz, G = 1, RS = 0 Ω  
fB = 0.1 Hz to 10 Hz, G = 1, RS = 0 Ω  
f = 1 kHz  
18  
0.52  
110  
3.3  
nV/Hz  
µVPP  
eNI  
eNO  
In  
Input stage voltage noise(3)  
nV/Hz  
µVPP  
Output stage voltage noise(3)  
Noise current  
100  
5
fA/Hz  
pAPP  
fB = 0.1 Hz to 10 Hz  
(1) Total offset, referred-to-input (RTI): VOS = (VOSI) + (VOSO / G).  
(2) Input voltage range of the INA826S input stage. The input range depends on the common-mode voltage, differential voltage, gain, and  
reference voltage.  
2
eNO  
2
(eNI  
)
+
G
(3) Total RTI voltage noise is equal to:  
.
Copyright © 2017, Texas Instruments Incorporated  
5
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GAIN  
G
Gain equation  
Range of gain  
1 + (49.4 kΩ / RG)  
V/V  
V/V  
G
1
1000  
±0.020%  
±0.15%  
±0.15%  
±0.15%  
±1  
G = 1, VO = ±10 V  
G = 10, VO = ±10 V  
±0.003%  
±0.03%  
±0.04%  
±0.04%  
±0.1  
Gain error  
GE  
G = 100, VO = ±10 V  
G = 1000, VO = ±10 V  
G = 1, TA = –40°C to +125°C  
G > 1, TA = –40°C to +125°C  
G = 1 to 100, VO = –10 V to 10 V  
G = 1000, VO = –10 V to 10 V  
Gain vs temperature(4)  
Gain nonlinearity  
ppm/°C  
ppm  
±10  
±35  
1
5
5
20  
OUTPUT  
Voltage swing  
RL = 10 kΩ  
(V–) + 0.1  
(V+) – 0.15  
V
Load capacitance stability  
Open-loop output impedance  
Short-circuit current  
1000  
See 59  
pF  
ZO  
ISC  
Continuous to VS / 2  
±16  
mA  
MHz  
kHz  
FREQUENCY RESPONSE  
G = 1  
1
500  
60  
6
G = 10  
BW  
SR  
Bandwidth, –3 dB  
Slew rate  
G = 100  
G = 1000  
G = 1, VSTEP = 10 V  
G = 100, VSTEP = 10 V  
G = 1, VSTEP = 10 V  
1
V/µs  
1
12  
12  
24  
224  
14  
14  
31  
278  
G = 10, VSTEP = 10 V  
0.01%  
G = 100, VSTEP = 10 V  
G = 1000, VSTEP = 10 V  
G = 1, VSTEP = 10 V  
tS  
Settling time  
µs  
G = 10, VSTEP = 10 V  
0.001%  
G = 100, VSTEP = 10 V  
G = 1000, VSTEP = 10 V  
REFERENCE INPUT  
RIN Input impedance  
100  
kΩ  
V
Voltage range  
(V–)  
(V+)  
–1.0  
Gain to output  
1
V/V  
Reference gain error  
0.01%  
ENABLE INPUT  
Referenced to ENREF pin  
TA = –40°C to +125°C  
–0.75  
–0.7  
Enable threshold voltage  
V
V
Referenced to ENREF pin  
TA = –40°C to +125°C  
Disable threshold voltage  
–0.40  
EN pin input current  
ENREF pin input current  
EN pin voltage range  
ENREF voltage range  
Enable delay  
VENREF = 1.5 V, VEN = 0 V  
VENREF = 1.5 V, VEN = 0 V  
3
µA  
µA  
V
–3  
V–  
VENREF  
V+  
(V–) + 1.5 V  
V
100  
µs  
(4) The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
6
Copyright © 2017, Texas Instruments Incorporated  
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
Single  
Dual  
3
36  
±18  
250  
320  
5
VS  
Power-supply voltage  
Quiescent current  
Shutdown current  
V
±1.5  
VIN = 0 V  
200  
2
IQ  
µA  
µA  
TA = –40°C to +125°C  
VS = 3 V to 36 V, VIN = 0 V  
TA = –40°C to +125°C  
IQSD  
6
TEMPERATURE RANGE  
Specified  
–40  
–50  
125  
150  
°C  
°C  
Operating  
版权 © 2017, Texas Instruments Incorporated  
7
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
Input Offset Voltage Drift (V/°C)  
Input Offset Voltage (V)  
C001  
C001  
C001  
C001  
C001  
C001  
1024 units  
5977 units  
1. Typical Distribution of  
2. Typical Distribution of  
Input Offset Voltage Drift  
Input Offset Voltage  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
Output Offset Voltage Drift (V/°C)  
Output Offset Voltage (V)  
1024 units  
5977 units  
3. Typical Distribution of  
4. Typical Distribution of  
Output Offset Voltage Drift  
Output Offset Voltage  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
0
Input Bias Current (nA)  
Input Offset Current (nA)  
1024 units  
1024 units  
5. Typical Distribution of  
6. Typical Distribution of  
Input Bias Current  
Input Offset Current  
8
版权 © 2017, Texas Instruments Incorporated  
 
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
Common-Mode Rejection Ratio (V/V)  
Common-Mode Rejection Ratio (V/V)  
C001  
C001  
C001  
C001  
1024 units  
1024 units  
7. Typical Distribution of CMRR (G = 1)  
8. Typical Distribution of CMRR (G = 100)  
35  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
6
4
2
0
0
Gain Error (m%)  
Gain Error (m%)  
C001  
1024 units  
1024 units  
9. Typical Distribution of Gain Error (G = 1)  
10. Gain Error (G = 10)  
45  
40  
35  
30  
25  
20  
15  
10  
5
3
VREF = 0 V  
VREF = 1.35 V  
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
0
0
0.5  
1
1.5  
2
2.5  
3
Gain Error Drift (ppm/°C)  
Output Voltage (V)  
D035  
Single supply, VS = 3 V, G = 1  
12. Input Common-Mode Voltage vs Output Voltage  
5977 units  
11. Typical Gain Error Drift Distribution  
(G = 1)  
版权 © 2017, Texas Instruments Incorporated  
9
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
3
2.5  
2
5
4.5  
4
VREF = 0 V  
VREF = 1.35 V  
VREF = 0 V  
VREF = 2.5 V  
3.5  
3
1.5  
1
2.5  
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Output Voltage (V)  
Output Voltage (V)  
D036  
D034  
Single supply, VS = 3 V, G = 100  
Single supply, VS = 5 V, G = 1  
13. Input Common-Mode Voltage vs Output Voltage  
14. Input Common-Mode Voltage vs Output Voltage  
5
3
VREF = 0 V  
VREF = 2.5 V  
G = 1  
G = 100  
4.5  
2
1
4
3.5  
3
2.5  
2
0
-1  
-2  
-3  
-4  
1.5  
1
0.5  
0
-0.5  
-1  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
-4  
-3  
-2  
-1  
0
1
2
3
4
Output Voltage (V)  
Output Voltage (V)  
D037  
D039  
Single supply, VS = 5 V, G = 100  
Dual supply, VS = ±3.3 V, VREF = 0 V  
15. Input Common-Mode Voltage vs Output Voltage  
16. Input Common-Mode Voltage vs Output Voltage  
16  
14  
12  
10  
8
5
VS  
VS  
=
=
ê
ê
15 V  
12 V  
G = 1  
G = 100  
4
3
2
6
4
1
2
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
-16  
-12  
-8  
-4  
0
4
8
12  
16  
Output Voltage (V)  
Output Voltage (V)  
D038  
D040  
Dual supply, VS = ±5 V, VREF = 0 V  
Dual supply, VS = ±15 V and ±12 V, G = 1, VREF = 0 V  
17. Input Common-Mode Voltage vs Output Voltage  
18. Input Common-Mode Voltage vs Output Voltage  
10  
版权 © 2017, Texas Instruments Incorporated  
 
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
16  
14  
12  
10  
8
12  
16  
12  
8
VS  
VS  
=
=
ê
ê
15 V  
12 V  
9
6
6
4
3
4
2
0
0
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-3  
-6  
-9  
-12  
-4  
-8  
-12  
-16  
IIN  
VOUT  
-16  
-12  
-8  
-4  
0
4
8
12  
16  
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
Output Voltage (V)  
Input Voltage (V)  
D040  
D065  
Dual supply, VS = ±15 V and ±12 V, G = 100, VREF = 0 V  
G = 1, VS = ±15 V, RS = 0 Ω  
20. Input Current vs Input Voltage  
19. Input Common-Mode Voltage vs Output Voltage  
8
16  
12  
8
160  
6
4
140  
120  
100  
80  
2
4
0
0
-2  
-4  
-6  
-8  
-4  
-8  
-12  
-16  
60  
40  
G = 1  
G = 10  
G = 100  
G = 1000  
20  
IIN  
VOUT  
0
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
10  
100  
1k  
10k  
100k  
Input Voltage (V)  
Frequency (Hz)  
D064  
D001  
G = 1, VS = ±15 V, RS = 10 kΩ  
21. Input Current vs Input Voltage  
with 10-kΩ Resistance  
22. CMRR vs Frequency (RTI)  
140  
160  
140  
120  
100  
80  
G = 1  
G = 10  
G = 100  
G = 1000  
G = 1  
G = 10  
G = 100  
G = 1000  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
D002  
D003  
23. CMRR vs Frequency  
(RTI, 1-kΩ Source Imbalance)  
24. Positive PSRR vs Frequency (RTI)  
版权 © 2017, Texas Instruments Incorporated  
11  
 
 
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
160  
140  
120  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = 1  
G = 10  
G = 100  
G = 1000  
60  
40  
G = 1  
-10  
-20  
-30  
G = 10  
G = 100  
G = 1000  
20  
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
D004  
D005  
25. Negative PSRR vs Frequency (RTI)  
26. Gain vs Frequency  
1k  
100  
10  
1k  
100  
10  
G = 1  
G = 10  
G = 100  
G = 1  
G = 1000  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
D019  
D020  
27. Voltage Noise Spectral Density  
28. Current Noise Spectral Density vs Frequency (RTI)  
vs Frequency (RTI)  
400  
300  
200  
100  
0
3
2
1
0
-100  
-200  
-300  
-400  
-1  
-2  
-3  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time (s/div)  
Time (s/div)  
D007  
D006  
29. 0.1-Hz to 10-Hz RTI Voltage Noise (G = 1)  
30. 0.1-Hz to 10-Hz RTI Voltage Noise (G = 1000)  
12  
版权 © 2017, Texas Instruments Incorporated  
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
15  
10  
5
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-40  
25  
125  
èC  
è
C
èC  
0
-5  
-10  
-15  
0
1
2
3
4
5
6
7
8
9
10  
-1  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
Time (s/div)  
Common-Mode Voltage (V)  
D008  
D056  
VS = 3 V  
31. 0.1-Hz to 10-Hz RTI Current Noise  
32. Input Bias Current vs Common-Mode Voltage  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40  
25  
125  
èC  
è
C
èC  
-16  
-12  
-8  
-4  
0
4
8
12  
16  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Common-Mode Voltage (V)  
Temperature (èC)  
D055  
D033  
VS = ±15 V  
33. Input Bias Current vs Common-Mode Voltage  
34. Input Bias Current vs Temperature  
10  
8
40  
30  
Max Data  
Min Data  
Unit 1  
6
20  
Unit 2  
Unit 3  
4
10  
2
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-2  
-4  
-6  
-8  
-10  
-50  
-25  
0
25  
50  
75  
C)  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
C)  
100  
125  
150  
Temperature (  
è
Temperature (  
è
D053  
D031  
35. Input Offset Current vs Temperature  
36. Gain Error vs Temperature  
(G = 1)  
版权 © 2017, Texas Instruments Incorporated  
13  
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
10  
2000  
1500  
1000  
500  
DUT11  
DUT23  
8
6
4
2
0
0
-2  
-4  
-6  
-8  
-10  
-500  
-1000  
-1500  
-2000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
C)  
100  
125  
150  
Temperature (èC)  
Temperature (  
è
D054  
D032  
37. Gain Error vs Temperature  
38. CMRR vs Temperature (G = 1)  
(G > 1)  
300  
250  
200  
150  
100  
50  
4
3
2
1
0
VS = 2.7 V  
VS = ê15 V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Temperature (èC)  
Output Voltage (V)  
D043  
D021  
39. Supply Current vs Temperature  
40. Gain Nonlinearity (G = 1)  
-10  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
4
3
2
1
0
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Output Voltage (V)  
Output Voltage (V)  
D022  
D023  
41. Gain Nonlinearity (G = 10)  
42. Gain Nonlinearity (G = 100)  
14  
版权 © 2017, Texas Instruments Incorporated  
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
0
400  
350  
300  
250  
200  
150  
100  
50  
-50èC  
-40èC  
25èC  
85èC  
125èC  
150èC  
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
0
-50  
-100  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-15.5  
-15.3  
-15.1  
-14.9  
-14.7  
-14.5  
Output Voltage (V)  
Common-Mode Voltage (V)  
D024  
D057  
VS = ±15 V  
43. Gain Nonlinearity (G = 1000)  
44. Offset Voltage vs  
Negative Common-Mode Voltage  
100  
50  
300  
250  
200  
150  
100  
50  
-50èC  
-40èC  
25èC  
85èC  
125èC  
150èC  
-50èC  
-40èC  
25èC  
85èC  
125èC  
150èC  
0
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
0
-50  
-100  
13.8  
13.9  
14  
14.1  
14.2  
14.3  
14.4  
-0.5 -0.4 -0.3 -0.2 -0.1  
0
0.1 0.2 0.3 0.4 0.5  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
D058  
D059  
VS = ±15 V  
VS = 3 V  
45. Offset Voltage vs  
46. Offset Voltage vs  
Positive Common-Mode Voltage  
Negative Common-Mode Voltage  
200  
150  
100  
50  
15  
14.8  
14.6  
14.4  
14.2  
14  
-50èC  
-40èC  
25èC  
85èC  
125èC  
150èC  
0
-50  
-50èC  
-40èC  
25èC  
85èC  
125èC  
150èC  
-100  
-150  
-200  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0
2
4
6
8
10  
12  
14  
16  
Common-Mode Voltage (V)  
Output Current (mA)  
D060  
D045  
VS = 3 V  
VS = ±15 V  
47. Offset Voltage vs  
48. Positive Output Voltage Swing  
Positive Common-Mode Voltage  
vs Output Current  
版权 © 2017, Texas Instruments Incorporated  
15  
 
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
-14  
-14.2  
-14.4  
-14.6  
-14.8  
-15  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
-50èC  
-40èC  
25èC  
25èC  
85èC  
125èC  
150èC  
1.9  
1.8  
1.7  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Output Current (mA)  
Output Current (mA)  
D046  
D048  
VS = ±15 V  
VS = 3 V  
49. Negative Output Voltage Swing  
50. Positive Output Voltage Swing  
vs Output Current  
vs Output Current  
30  
27  
24  
21  
18  
15  
12  
9
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VS = ê15 V  
VS = +5 V  
25èC  
6
3
0
0
2
4
6
8
10  
12  
14  
16  
1k  
10k  
100k  
Frequency (Hz)  
1M  
Output Current (mA)  
D049  
D014  
VS = 3 V  
51. Negative Output Voltage Swing  
52. Large-Signal Frequency Response  
vs Output Current  
25  
21  
17  
13  
9
100  
0.01%  
0.001%  
1 nF  
0 pF  
100 pF  
220 pF  
500 pF  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
5
2
4
6
8
10  
12  
14  
16  
18  
20  
0
4
8
12 16 20 24 28 32 36 40 44 48  
Time (ps)  
Step Size (V)  
D061  
D013  
53. Settling Time vs Step Size  
54. Small-Signal Response vs  
(VS = ±15 V)  
Capacitive Loads (G = 1)  
16  
版权 © 2017, Texas Instruments Incorporated  
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
100  
100  
80  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Time (ms)  
Time (ms)  
D009  
D010  
G = 1, RL = 1 kΩ, CL = 100 pF  
G = 10, RL = 10 kΩ, CL = 100 pF  
55. Small-Signal Response  
56. Small-Signal Response  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
Time (ms)  
D011  
D012  
G = 100, RL = 10 kΩ, CL = 100 pF  
G = 1000, RL = 10 kΩ, CL = 100 pF  
57. Small-Signal Response  
58. Small-Signal Response  
100k  
10k  
1k  
15  
10  
5
0
-5  
-10  
-15  
100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
2
4
6
8
10  
12  
14  
16  
Frequency (Hz)  
Warm-Up Time (s)  
D062  
D063  
59. Open-Loop Output Impedance vs Frequency  
60. Change in Input Offset Voltage vs Warm-Up Time  
版权 © 2017, Texas Instruments Incorporated  
17  
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
6
0.8  
0.4  
0
6
0.8  
0.4  
0
EN  
ENREF  
Input  
4
4
Output  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
EN  
-0.4  
-0.4  
ENREF  
Input  
Output  
-0.8  
C001  
-0.8  
C001  
Time (50 S/div)  
Time (50 S/div)  
ENREF pin tied to 5 V  
ENREF pin tied to 5 V  
61. Enable Output Response  
62. Disable Output Response  
18  
版权 © 2017, Texas Instruments Incorporated  
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
7 Detailed Description  
7.1 Overview  
A simplified schematic of the INA826S is shown in as well as the basic connections required for proper  
functionality. The INA826S consists of a 4-resistor difference amplifier, composed of amplifier A3 and 50-kΩ  
resistors, as well as buffer amplifiers A1 and A2. The gain of the circuit is set by a single external resistor placed  
across pins 2 and 3. Further information on the internal topology and setting the gain can be found in the Feature  
Description section. High-precision thin-film resistors integrated on-chip allow for excellent rejection of common-  
mode interference signals and high gain accuracy. The INA826S also integrates radio frequency interference  
(RFI) filters on the signal inputs to provide improved performance in the presence of high-frequency interference.  
7.2 Functional Block Diagram  
V+  
0.1 mF  
8
(1)  
RS  
1
RFI Filter  
-IN  
50 kW  
50 kW  
A1  
VO = G ´ (VIN+ - VIN-  
)
2
49.4 kW  
24.7 kW  
G = 1 +  
RG  
7
6
RG  
A3  
24.7 kW  
+
3
4
VO  
Load  
-
50 kW  
50 kW  
(1)  
RS  
A2  
REF  
RFI Filter  
+IN  
TI Device  
5
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
V-  
(1) This resistor is optional if the input voltage stays above [(V–) – 2 V] or the signal source current drive capability is  
limited to less than 3.5 mA. See the Input Protection section for more details.  
63. Simplified Block Diagram  
-IN  
RG  
VO  
TI Device  
REF  
+IN  
Copyright © 2017, Texas Instruments Incorporated  
64. INA826S Basic Connections  
版权 © 2017, Texas Instruments Incorporated  
19  
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Inside the INA826S  
See the Functional Block Diagram section for a simplified representation of the INA826S. A more detailed  
diagram (shown in 65) provides additional details of the INA826S operation.  
Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal  
signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these  
transistors limit input current to approximately 8 mA.  
The differential input voltage is buffered by Q1 and Q2 and is impressed across RG, causing a signal current to  
flow through RG, R1, and R2. The output difference amplifier, A3, removes the common-mode component of the  
input signal and refers the output signal to the REF pin.  
The equations shown in 65 describe the output voltages of A1 and A2. The VBE and voltage drop across R1  
and R2 produce output voltages on A1 and A2 that are approximately 0.8 V higher than the input voltages.  
V+  
V+  
RG  
(External)  
50 kW  
R1  
R2  
A1 Out = VCM + VBE + 0.125 V - VD/2 ´ G  
V+  
24.7 kW  
24.7 kW  
V-  
V-  
A2 Out = VCM + VBE + 0.125 V + VD/2 ´ G  
50 kW  
50 kW  
Output Swing Range A1, A2, (V+) - 0.1 V to (V-) + 0.1 V  
VOUT  
A3  
V+  
VO = G ´ (VIN+ - VIN-) + VREF  
V-  
50 kW  
Linear Input Range A3 = (V+) - 0.9 V to (V-) + 0.1 V  
REF  
V-  
V+  
V+  
-IN  
Q1  
Q2  
C1  
C2  
VD/2  
V-  
V-  
A1  
A2  
Overvoltage  
Protection  
Overvoltage  
Protection  
RB  
VB  
RB  
VCM  
VD/2  
V-  
+IN  
Copyright © 2016, Texas Instruments Incorporated  
65. INA826S Simplified Circuit Diagram  
20  
版权 © 2017, Texas Instruments Incorporated  
 
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
Feature Description (接下页)  
7.3.2 Setting the Gain  
Gain of the INA826S is set by a single external resistor, RG, connected between pins 2 and 3. Use 公式 1 to  
select the value of RG:  
49.4 kW  
G = 1 +  
RG  
(1)  
1 lists several commonly-used gains and resistor values. The 49.4-kterm in 公式 1 comes from the sum of  
the two internal 24.7-kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute  
values. The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift  
specifications of the INA826S.  
1. Commonly-Used Gains and Resistor Values  
DESIRED GAIN (V/V)  
RG ()  
NEAREST 1% RG ()  
1
2
49.4 k  
12.35 k  
5.489 k  
2.600 k  
1.008 k  
499  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1 k  
5
10  
20  
50  
100  
200  
500  
1000  
499  
248  
249  
99  
100  
49.5  
49.9  
7.3.2.1 Gain Drift  
The stability and temperature drift of the external gain setting resistor, RG, also affects gain. The contribution of  
RG to gain accuracy and drift can be directly inferred from the gain of 公式 1.  
The best gain drift of 1 ppm/can be achieved when the INA826S uses G = 1 without RG connected. In this  
case, the gain drift is limited only by the slight mismatch of the temperature coefficient of the integrated 50-kΩ  
resistors in the differential amplifier (A3). At G greater than 1, the gain drift increases as a result of the individual  
drift of the 24.7-kΩ resistors in the feedback of A1 and A2, relative to the drift of the external gain resistor RG.  
Process improvements of the temperature coefficient of the feedback resistors now make possible specifying a  
maximum gain drift of the feedback resistors of 35 ppm/, thus significantly improving the overall temperature  
stability of applications using gains greater than 1.  
Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring  
resistance and contribute additional gain error (such as a possible unstable gain error) at gains of approximately  
100 or greater. To ensure stability, avoid parasitic capacitance of more than a few picofarads at RG connections.  
Careful matching of any parasitics on both RG pins maintains optimal CMRR over frequency; see typical  
characteristic curves 22 and 23.  
版权 © 2017, Texas Instruments Incorporated  
21  
 
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
7.3.3 Offset Trimming  
Most applications require no external offset adjustment; however, if necessary, adjustments can be made by  
applying a voltage to the REF pin. 66 shows an optional circuit for trimming the output offset voltage. The  
voltage applied to the REF pin is summed at the output. The op amp buffer provides low impedance at the REF  
pin to preserve good common-mode rejection.  
mINꢀ  
m+  
RG  
mO  
INA826S  
REF  
100 -A  
1/2 REF200  
mIN+  
100 Ω  
OPA333  
10ꢀ-m  
Adjust-ent Range  
10 kΩ  
100 Ω  
100 -A  
1/2 REF200  
mꢀ  
Copyright © 2017, Texas Instru-ents Incorporated  
66. Optional Trimming of Output Offset Voltage  
7.3.4 Input Common-Mode Range  
The linear input voltage range of the INA826S input circuitry extends from the negative supply voltage to 1 V  
below the positive supply, and maintains 84-dB (minimum) common-mode rejection throughout this range. The  
common-mode range for most common operating conditions is described in 12 through 18 and 44  
through 46. The INA826S can operate over a wide range of power supplies and VREF configurations, making a  
comprehensive guide to common-mode range limits impractical to be provided for all possible conditions.  
The most commonly overlooked overload condition occurs when a circuit exceeds the output swing of A1 and A2,  
which are internal circuit nodes that cannot be measured. Calculating the expected voltages at the output of A1  
and A2 (see 65) provides a check for the most common overload conditions. The designs of A1 and A2 are  
identical and the outputs can swing to within approximately 100 mV of the power-supply rails. For example, when  
the A2 output is saturated, A1 may continue to be in linear operation, responding to changes in the noninverting  
input voltage. This difference can give the appearance of linear operation but the output voltage is invalid.  
A single-supply instrumentation amplifier has special design considerations. To achieve a common-mode range  
that extends to single-supply ground, the INA826S employs a current-feedback topology with PNP input  
transistors; see 65. The matched PNP transistors Q1 and Q2 shift the input voltages of both inputs up by a  
diode drop, and through the feedback network, shift the output of A1 and A2 by approximately 0.8 V. With both  
inputs and VREF at single-supply ground (negative power supply), the output of A1 and A2 is well within the linear  
range, allowing differential measurements to be made at the GND level. As a result of this input level-shifting, the  
voltages at pin 2 and pin 3 are not equal to the respective input pin voltages (pin 1 and pin 4). For most  
applications, this inequality is not important because only the gain-setting resistor connects to these pins.  
22  
版权 © 2017, Texas Instruments Incorporated  
 
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
7.3.5 Input Protection  
The inputs of the INA826S are individually protected for voltages up to ±40 V. For example, a condition of –40 V  
on one input and 40 V on the other input does not cause damage. However, if the input voltage exceeds (V–) –  
2 V and the signal source current drive capability exceeds 3.5 mA, the output voltage switches to the opposite  
polarity; see 20. This polarity reversal can easily be avoided by adding resistance of 10 kΩ in series with both  
inputs.  
Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is  
overloaded, the protection circuitry limits the input current to a safe value of approximately 8 mA. 20 and 21  
illustrate this input current limit behavior. The inputs are protected even if the power supplies are disconnected or  
turned off.  
7.3.6 Input Bias Current Return Path  
The input impedance of the INA826S is extremely high—approximately 20 G. However, a path must be  
provided for the input bias current of both inputs. This input bias current is typically 35 nA. High input impedance  
means that this input bias current changes very little with varying input voltage.  
Input circuitry must provide a path for this input bias current for proper operation. 67 shows various provisions  
for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the  
common-mode range of the INA826S, and the input amplifiers saturate. If the differential source resistance is  
low, as shown in the thermocouple example in 67, the bias current return path can be connected to one input.  
With higher source impedance, using two equal resistors provides a balanced input with possible advantages of  
lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.  
Microphone,  
Hydrophone,  
and So Forth  
TI Device  
47 kW  
47 kW  
Thermocouple  
TI Device  
10 kW  
TI Device  
Center tap provides  
bias current return.  
Copyright © 2017, Texas Instruments Incorporated  
67. Providing an Input Common-Mode Current Path  
版权 © 2017, Texas Instruments Incorporated  
23  
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
7.3.7 Reference Pin (REF)  
The output voltage of the INA826S is developed with respect to the voltage on the reference terminal. Often, in  
dual-supply operation, the reference pin (pin 6) is connected to the low-impedance system ground. In single-  
supply operation, offsetting the output signal to a precise mid-supply level can be useful (for example, 2.5 V in a  
5-V supply environment). To accomplish this offset, a voltage source can be tied to the REF pin to level-shift the  
output so that the INA826S can drive a single-supply ADC, for example.  
For the best performance, keep the source impedance to the REF pin below 5 Ω. As shown in , the reference  
resistor is at one end of a 50-kΩ resistor. Additional impedance at the REF pin adds to this 50-kΩ resistor. The  
imbalance in the resistor ratios results in degraded common-mode rejection ratio (CMRR).  
68 shows two different methods of driving the reference pin with low impedance. The OPA330 is a low-power,  
chopper-stabilized amplifier, and therefore offers excellent stability over temperature. The OPA330 is available in  
the space-saving SC70 and even smaller chip-scale package. The REF3225 is a precision reference in the small  
SOT23-6 package.  
+5 V  
VIN-  
+5 V  
RG  
VOUT  
INA826S  
VIN-  
REF  
VIN+  
RG  
VOUT  
INA826S  
+5 V  
REF  
+5 V  
VIN+  
+2.5 V  
OPA330  
REF3225  
+5 V  
a) Level shifting using the OPA330 as a low-impedance buffer  
b) Level shifting using the low-impedance output of the REF3225  
Copyright © 2017, Texas Instruments Incorporated  
68. Options for Low-Impedance Level Shifting  
24  
版权 © 2017, Texas Instruments Incorporated  
 
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
7.3.8 Shutdown (EN and ENREF) Pins  
The INA826S provides two pins to shut the device down: EN (enable) and ENREF (enable reference). 69  
shows a basic schematic of the shutdown logic circuitry of the INA826S. A PNP transistor forms the basis of the  
internal shutdown circuitry. The ENREF pin is connected to the emitter of the PNP transistor and is meant to be  
connected to a voltage reference point for the enable logic. The EN pin is connected the base of the PNP  
transistor. Applying a voltage to the EN pin that is 0.8 V or more below the enable reference voltage (at the  
ENREF pin) causes a small current to flow in the internal PNP transistor that powers the INA826S internal bias  
circuitry and powers-up the instrumentation amplifier. The shutdown circuitry functions properly with ENREF  
connected to a voltage between (V–) + 1.5 V up to V+. The voltage on the EN pin can be as low as the negative  
supply voltage (VS–) but cannot go above the voltage applied to the ENREF pin.  
VS+  
INA826S  
ENREF  
VS-  
VS+  
EN  
VS-  
To amplifier internal  
bias circuitry  
Copyright © 2017, Texas Instruments Incorporated  
69. Shutdown Pin Simplified Schematic  
To better understand the functionality of these pins, consider the low-voltage, single-supply application shown in  
70 with V+ = 3.3 V. ENREF is connected to the 3.3-V power supply of the microcontroller (labeled µC) and the  
EN pin is toggled by a general-purpose input/output (GPIO) pin of the microcontroller. When the GPIO pin is  
asserted low, such that the voltage at the GPIO pin output is at or near 0 V, the INA826S is enabled. Conversely,  
if the GPIO pin is asserted high, with an output voltage at or near 3.3 V, the INA826S is disabled.  
3.3 V  
VDD  
INA826S  
RG  
GPIO  
IN+  
IN-  
+
ADC IN  
œ
C  
ADC REF  
Copyright © 2017, Texas Instruments Incorporated  
70. Example Configuration in a Single-Supply System  
(Pulling EN low enables the INA826S.)  
版权 © 2017, Texas Instruments Incorporated  
25  
 
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
71 shows an alternate configuration of the enable logic pins. By grounding the enable pin, and toggling the  
ENREF pin with the GPIO of the microcontroller, the enable logic is reversed. Now asserting high at the GPIO  
output enables the INA826S, and pulling the GPIO pin low disables the INA826S.  
3.3 V  
VDD  
GPIO  
INA826S  
IN+  
IN-  
+
ADC IN  
RG  
œ
C  
REF  
Copyright © 2017, Texas Instruments Incorporated  
71. Alternate Configuration for the Enable Logic Pins  
(Pulling ENREF high enables the INA826S.)  
The majority of INA826S applications benefit greatly from the reduction of quiescent current from the typical  
200 µA to values at or below 6 µA. Achieving the lowest possible system-level current in a system requires  
attention to other system voltages applied to the INA826S. When shutdown, voltages applied to the reference or  
input pins of the INA826S can find paths for currents to flow up into the several microamps region. In many  
systems these voltages are shut down when the INA826S is shutdown, simplifying the problem. Otherwise,  
additional switching may be added to reduce currents to a minimum.  
26  
版权 © 2017, Texas Instruments Incorporated  
 
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
7.4 Device Functional Modes  
The INA826S features a shutdown mode that reduces the typical power-supply current consumption from 200 µA  
to less than 6 µA. Disabling the INA826S turns off the bias circuitry that powers the internal amplifiers of the  
INA826S. 72 and 73 show the output behavior of the INA826S when the shutdown state is toggled. For  
these plots, the ENREF pin was connected to a 5-V potential and the EN pin was pulled low to enable the  
INA826S. 72 shows how quickly the INA826S output responds when transitioning from a shutdown state to an  
enabled state. When the EN pin is pulled low, the INA826S output begins to track the input signal approximately  
60 µs later. When transitioning from enabled to shutdown, as shown in 73, the output of the INA826S stops  
tracking the input waveform in approximately 10 µs.  
6
4
0.8  
0.4  
0
6
4
0.8  
0.4  
0
EN  
ENREF  
Input  
Output  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
EN  
-0.4  
-0.4  
ENREF  
Input  
Output  
-0.8  
C001  
-0.8  
C001  
Time (50 S/div)  
Time (50 S/div)  
72. Enable Output Response  
73. Disable Output Response  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The low power consumption and high performance of the INA826S make the device an excellent instrumentation  
amplifier for many applications. The INA826S can be used in many low-power, portable applications because the  
device has a low quiescent current (200 µA, typical) and comes in a small 10-pin VSON package. The input  
protection circuitry, low maximum gain drift, low offset voltage, and 36-V maximum supply voltage also make the  
INA826S an ideal choice for industrial applications as well.  
版权 © 2017, Texas Instruments Incorporated  
27  
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
8.2 Typical Application  
74 shows a three-terminal, programmable-logic controller (PLC) design for the INA826S. This PLC reference  
design accepts inputs of ±10 V or ±20 mA. The output is a single-ended voltage of 2.5 V ± 2.3 V (or 200 mV to  
4.8 V). Many PLCs typically have these input and output ranges.  
±10 V  
R
= 100 kΩ  
= 4.12 kΩ  
1
5 V  
15 V  
V+  
R
2
REF3225  
±20 mA  
v
R
O
= 100 Ω  
V
V
REF  
OUT  
R
=
INA826S  
3
R
= 10.4 kΩ  
G
2.5 V ± 2.3 V  
20 Ω  
V-  
R
= 10 kΩ  
L
+
C
O
= 1.59 nF  
-15 V  
Copyright © 2017, Texas Instruments Incorporated  
74. Three-Terminal Analog Input for PLCs  
8.2.1 Design Requirements  
This design has the following requirements:  
Supply voltage: ±15 V, 5 V  
Inputs: ±10 V, ±20 mA  
Output: 2.5 V, ±2.3 V  
8.2.2 Detailed Design Procedure  
There are two modes of operation for the circuit shown in 74: current input and voltage input. This design  
requires R1 >> R2 >> R3. Given this relationship, 公式 2 calculates the current input mode transfer function.  
VOUT-I = VD ´ G + VREF = -(IIN ´ R3) ´ G + VREF  
where  
G represents the gain of the instrumentation amplifier  
(2)  
公式 3 shows the transfer function for the voltage input mode.  
R2  
VOUT-V = VD ´ G + VREF = - VIN  
´
´ G + VREF  
R1 + R2  
(3)  
R1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. 100 kΩ  
is selected for R1 because increasing the R1 value also increases noise. The value of R3 must be extremely  
small compared to R1 and R2. 20 Ω for R3 is selected because that resistance value is much smaller than R1 and  
yields an input voltage of ±400 mV when operated in current mode (±20 mA).  
公式 4 can be used to calculate R2 given VD = ±400 mV, VIN = ±10 V, and R1 = 100 kΩ.  
R2  
R1 ´ VD  
VD = VIN ´  
® R2 =  
= 4.167 kW  
R1 + R2  
VIN - VD  
(4)  
28  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
Typical Application (接下页)  
The value obtained from 公式 4 is not a standard 0.1% value, so 4.12 kΩ is selected. R1 and R2 also use 0.1%  
tolerance resistors to minimize error.  
Use 公式 5 to calculate the ideal gain of the instrumentation amplifier.  
V
OUT - VREF  
V
4.8 V - 2.5 V  
G =  
=
= 5.75  
V
VD  
400 mV  
(5)  
(6)  
公式 6 calculates the gain-setting resistor value using the INA826S gain equation, 公式 1.  
49.4 kW 49.4 kW 49.4 kW  
GINA826 = 1 +  
® RG =  
=
INA826 - 1 5.75 - 1  
= 10.4 kW  
RG  
G
10.4 kΩ is a standard 0.1% resistor value that can be used in this design. Finally, the output RC filter  
components are selected to have a –3-dB cutoff frequency of 1 MHz.  
8.2.3 Application Curves  
75 and 76 show typical characteristic curves for 74.  
5
4
3
2
1
0
5
4
3
2
1
0
-10  
-5  
0
5
10  
-0.02  
-0.01  
0
0.01  
0.02  
Input Voltage (V)  
Input Current (A)  
D071  
D070  
75. PLC Output Voltage vs Input Voltage  
76. PLC Output Voltage vs Input Current  
版权 © 2017, Texas Instruments Incorporated  
29  
 
 
 
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The INA826S operates over a power-supply range of 3 V to 36 V (±3 V to ±18 V). Supply voltages higher than  
40 V (±20 V) can permanently damage the device. Parameters that vary over supply voltage or temperature are  
illustrated in the Typical Characteristics section.  
9.1 Low-Voltage Operation  
The INA826S can operate on power supplies as low as 3 V. Most parameters vary only slightly throughout this  
supply voltage range; see the Typical Characteristics section. Operation at very low supply voltage requires  
careful attention to assure that the input voltages remain within the linear range. Voltage swing requirements of  
internal nodes limit the input common-mode range with low power-supply voltage. The typical characteristic  
curves 12 through 18 and 44 through 46 describe the range of linear operation for various supply  
voltages, reference connections, and gains.  
30  
版权 © 2017, Texas Instruments Incorporated  
INA826S  
www.ti.com.cn  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close  
to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply  
applications. The bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry, because noise can propagate into analog circuitry through the power  
pins of the circuit as a whole and the op amp specifically.  
Connect the device reference pin to a low-impedance, low-noise, system reference point, such as an analog  
ground. If a potential other than ground is used as a reference, a low output impedance (such as a voltage  
divider with an op amp buffer) must be included.  
Minimize the parasitic capacitance and inductance present at the gain resistor connections. Place the gain  
resistor as close to the device as possible, and remove the ground plane around the gain resistor to minimize  
parasitic capacitances at these nodes.  
For best performance, route the input traces adjacent to each other as a differential pair.  
For proper amplifier function, connect the package thermal pad to the most negative supply voltage (VEE).  
10.2 Layout Example  
Copyright © 2017, Texas Instruments Incorporated  
GND  
Place bypass  
capacitors as close to  
IC as possible  
GND  
VS-  
VS+  
-IN  
RG  
RG  
+IN  
EN  
OUT  
REF  
Input traces routed  
adjacent to each other  
REF pin connected to  
low-impedance  
INA826S  
reference potential  
VSœ  
ENREF  
GND  
VS-  
GND  
GND  
GND  
Ground plane  
removed at gain  
resistor to minimize  
parasitic capacitance  
Copper pour for thermal  
pad must be connected to  
negative supply (VS-)  
77. INA826S PCB Layout Example  
版权 © 2017, Texas Instruments Incorporated  
31  
INA826S  
ZHCSGB6A MAY 2017REVISED JUNE 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
OPAx330 50μV VOS0.25μV/°C35μA CMOS 运算放大器零漂移系列》  
REF32xx 4ppm/°C100μASOT23-6 系列电压基准》  
REF50xx 低噪声、极低漂移、高精度电压基准》  
《基于 SPICE 的模拟仿真程序》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
32  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA826SIDRCR  
INA826SIDRCT  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
IN826S  
IN826S  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA826SIDRCR  
INA826SIDRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA826SIDRCR  
INA826SIDRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

INA826SIDRCR

具有关断模式的 200μA、36V 轨到轨输出仪表放大器 | DRC | 10 | -40 to 125
TI

INA826SIDRCT

具有关断模式的 200μA、36V 轨到轨输出仪表放大器 | DRC | 10 | -40 to 125
TI

INA826_1112

Precision, 200-μA Supply Current, 2.7-V to 36-V Supply Instrumentation Amplifier with Rail-to-Rail Output
TI

INA826_12

Precision, 200-μA Supply Current, 2.7-V to 36-V Supply
TI

INA826_13

Supply Instrumentation Amplifier
TI

INA827

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier with a Minimum Gain of 5
TI

INA827AIDGK

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier with a Minimum Gain of 5
TI

INA827AIDGKR

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier with a Minimum Gain of 5
TI

INA827_13

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
TI

INA828

50µV 失调电压、7nV/√Hz 噪声、低功耗、精密仪表放大器
TI

INA828ID

50µV 失调电压、7nV/√Hz 噪声、低功耗、精密仪表放大器 | D | 8 | -40 to 125
TI

INA828IDR

50µV 失调电压、7nV/√Hz 噪声、低功耗、精密仪表放大器 | D | 8 | -40 to 125
TI